The present invention relates to roll products and, in a preferred embodiment, to compressed and hollow coreless rolls of absorbent paper products such as tissue and toweling, commonly referred to as tissue, in flexible packaging that enables the manufacturer to ship a larger usable area of tissue in a given volume while enabling the end user to store tissue in nooks and crannies that might not be suitable for tissue packaged in conventional configurations.
Transportation costs add substantially to the cost of absorbent paper products sold for consumer use as the volume of these products is such that when the entire allowable space in a trailer or container is filled with product, the weight is typically far less than the load carrying capacity of the trailer or container. Prime contributors to the excessive volume of these products are the central void which is typically around 40 mm or so and also to a lesser extent the generally cylindrical external shape of the overall product. In practice, when an array of absorbent products is packaged in a polyethylene overwrap, the exteriors of the roll are flattened to some extent, increasing the packability of the array of rolls over that which would be predicted based solely on the uncompressed roll diameter. It seems that consumers do not find such rolls objectionable, most likely due to substantial recovery of the cylindrical shape resulting from the resilient nature of absorbent paper products. However, efforts to eliminate the excess volume contributed by the hollow center void have been less successful in consumer markets, as rolls that have been compressed sufficiently to eliminate the hollow center space apparently do not recover their overall cylindrical shape sufficiently to satisfy consumers' aesthetic demands.
It is known to compress rolled goods to reduce volume which is advantageous for transportation and storage. There is disclosed, for example, in U.S. Pat. No. 864,975 to Luce, a method and apparatus for baling cotton in sheet form. The method includes baling the cotton around a mandrel, removing the mandrel, followed by compressing the annular bale so formed. So also, U.S. Pat. No. 3,537,226 to Le Van et al. discloses a method of packaging batts of textile fibers, including: (a) wrapping the initial batt onto a rigid core to form a cylindrical structure; (b) encasing the structure with a bag of an air impervious material and removing the core; (c) evacuating air from the bag to contract the structure and to increase the initial batt density; and then (d) wrapping the contracted structure with a wrapper of sufficient tensile strength to maintain substantially the contracted state.
U.S. Pat. No. 5,480,060 to Blythe shows a system for dispensing wipers which includes a bi-directionally compressed hollow coreless roll of wipers configured for center-feed dispensing.
Bath tissue is sometimes produced in hollow coreless roll form, typically with a very small axial central cavity (see U.S. Pat. No. 4,487,378 to Kobayashi) to minimize volume, or with a larger central cavity when the tissue roll is configured for center-feed dispensing. See U.S. Pat. No. 5,849,357 to Andersson. Such products have not been popular with consumers who prefer rolled bath tissue with a. relatively large core, outer roll-feed for home use where the product is mounted about a spindle. Typically bath tissue rolls are provided with a core having a diameter of 40 mm or so consisting of a paperboard tube which adds cost, weight and volume to the product. Production efficiency deficits are also associated with tissue having a large core which are often formed on center wind equipment operating at lower winding speeds than surface winders often employed to produce hollow coreless products.
U.S. Pat. No. 4,886,167 to Dearwester discloses compressed rolls of absorbent sheet with conventional paperboard tubular cores. It has been found that this type of product often does not recover well from compression; as re-shaping to cylindrical roll form can be quite difficult, possibly due, in part, to the difficulty of removing creases from the paperboard core after it has been flattened.
U.S. Pat. No. 7,992,818 to Maddaleni relates to a technique for forming rolls of tissue having a large central opening on high speed winders without the expense of a board tube. Rather by providing a discontinuity or low friction interface between adjacent layers in the wound roll, it becomes possible to remove a central plug or small diameter roll of tissue located interiorly to the discontinuity or low friction interface after the roll has been formed. The central plug is a product usable in its own right after removal from the larger roll, particularly where a small, easily carried around supply of tissue is desirable as in a lady's purse for example.
There is provided in accordance with the invention compressed hollow coreless robs of absorbent paper sheet having a substantially collapsed central axial cavity. Prior to use, the roll is re-formed into cylindrical shape and subsequently mounted about a spindle for dispensing. Optionally, a tubular dispensing core with a diameter smaller than the original cavity before collapse is provided which may be inserted into the hollow coreless roll after it is re-formed into cylindrical shape and prior to dispensing. Such a core can suitably be 2-50% smaller, preferably 10-50% smaller, more preferably 15 to 40% smaller than the original cavity before collapse and is preferably re-usable, although single use or several use adaptors are employable as well.
A particularly significant aspect of the invention is the reduced volume of a package as compared with a package of conventional rolls of cored product with the same weight and sheet count. Volume reductions of about 10 to about 20%, about 14% to about 20%, 30%, 40% and more are realized while delivering the same quality and quantity of product without incurring excessive aesthetic objections. In one particularly popular format, we have found that we can increase the amount of tissue (rolls of specified width and length) which can be loaded into a 96″ wide trailer having a length of 608″ and a height of 104″ can be increased by over 35% by use of compressed hollow coreless re-formable roll products of the present invention res compared to conventional cylindrical cored products.
The central cavity of the hollow coreless roll, prior to compression of the roll, is typically cylindrical with a diameter in the range of 25-75 mm. The invention is superior to core-in compressed products in terms of reduced weight and in terms of re-formability of the central cavity as will be appreciated from the discussion provided hereinafter.
In contrast to conventional hollow coreless products with small central axial cavities, the invention product has a relatively large central cavity and the product is much more compressible, making available the benefits in terms of volume reduction and product shape. Conventional hollow coreless products are also difficult to re-shape after compression to a stable “round” shape.
Moreover, the present invention makes it possible to overcome consumer negatives associated with producing desirable combinations of sheet count and caliper without needing to achieve specific roll diameter requirements. Current rolled products have desired roll diameters for specific characterizations like “Regular Roll”, “Large Roll”, Big Roll“, “Giant Roll”, Mega Roll”, “Super Roll”, “Double Roll” and similar other size related descriptions. As sheet counts are reduced, it becomes more and more difficult to achieve the desired roll diameter, whether by increasing base sheet caliper, finished product caliper (i.e., through more emboss, higher basis weight, high bulk forming), or through winding the roll in a way that results in a large diameter, but low overall fiber weight, roll.
By compressing a hollow coreless roll, the need to balance the sheet count, forming, caliper, embossing, and roll winding process to achieve the desired roll diameter is eliminated, as compressed rolls will not have the same roll diameter requirements as conventional rolled product. This will result in more cost-effective papermaking and converting processing of the base sheet and finished product, as well as more efficient transportation of these compressed rolls.
The present invention also provides for multiple packaging options for a plurality of rolls. Packages of multiple rolls in accordance with the invention require less storage space and can be configured to fit into spaces not suitable for conventional products; making it possible to better utilize available storage areas in the home or in a business establishment. Significantly, the tissue rolls in the compressed configurations also adapt well to limited storage and display spaces found in retail environments. Savings in transportation costs can be of immense importance commercially.
In one particularly attractive embodiment, each roll of compressed absorbent paper product may be wrapped in a polyethylene film formed from a tube flattened and heat sealed between rolls so that each roll is ensconced in its own separate sub package while a linear array of wrapped rolls may be manipulated like a string of sausages to adapt to storage in oddly sized or configured spaces that may be available. In many cases, it will be convenient to provide two heat sealed regions separated by one line of weakness in the portion of the tube between adjacent rolls so that the rolls may be easily separated from the linear array while remaining individually sealed from the environment. Preferably the distance between at least some of adjacent rolls will be at least substantially equal to the transverse dimension (width) of the compressed roll to make it convenient to dispose the rolls in serpentine configurations.
In some embodiments, each individualized roll will bear a transverse circumferential band to stabilize the compression. Such a band may comprise paper, a similar nonwoven or a polymeric film. In most cases it will be expedient to secure the transverse band by interposing pressure sensitive adhesive between overlapping ends thereof. In other cases, particularly where the hollow compressed rolls are packaged in a long polymeric tube as described above, that packaging will itself be sufficient to retain the rolls in the compressed configuration.
In some cases, it may be expedient to compress the rolls using opposed pistons. In other cases, the rolls may be compressed by forcing them through a suitably shaped chute.
Still further features and advantages will become apparent from the discussion which follows.
The invention is described in detail below with reference to the drawings wherein like numerals designate similar parts.
The invention is described in detail below in connection with the various Figures for purposes of illustration, only. The invention is defined in the appended claims. Terminology used throughout the specification and claims herein are given their ordinary meanings as supplemented immediately below.
When we refer to the axial cavity of the product as “substantially collapsed”, the reference is to a flattened form as shown in
“Tissue” rolls or similar terminology refers to cellulosic fiber tissue products, while “bath tissue” rolls must be flushable and are typically manufactured without a substantial amount of permanent wet strength resin; as opposed to paper toweling, or kitchen roll towel, which has a substantial amount of wet strength resin. Moreover, the most preferred bath tissue is predominantly (over 50% dry weight) composed of hardwood fiber such as eucalyptus fiber, although many grades, particularly commercial and economy grades, have ever increasing recycled content of uncertain origin. Bath tissue generally has a basis weight of anywhere from 8 to 35 lbs per 3000 square foot ream, with 2 and 3 ply products typically having a basis weight of from 20 to 35 lbs per 3000 square foot ream. Details and various properties of bath tissue are presented in U.S. Pat. No. 8,287,986 to Huss et al. As mentioned previously, similar savings and advantages are also realizable with kitchen roll towel as well as any absorbent paper product sold in roll form. Preferably, the invention is employed with respect to absorbent papers in which the sheets are not spoiled or defaced by the compression process. Accordingly, the invention can be employed with bath tissue, kitchen roll towel, other paper toweling formats, or even napkin stock.
In the various packaging configurations hereinafter described and shown in the drawings, relative orientation of the compressed rolls in the package is specified, in part, by reference to a central axis of the collapsed axial cavities of the compressed rolls which corresponds to the axis of the forming core member upon which the sheet is wound during manufacture and/or converting. Relative orientation is also sometimes specified by reference to either longer or shorter sides of the compressed rolls.
Referring to
Prior to compression, central plugs are preferably removed from substantially hollow coreless rolls using the procedures such as those described in U.S. Pat. No. 7,992,818 to Maddaleni, Aug. 9, 2011 (incorporated herein by reference). Subsequent to core removal, hollow coreless roll 8 may be compressed by action of opposed pistons 70, 72 bearing against lateral surfaces of the rolls as illustrated in
Typically, the plug removed has a diameter of from about 15 mm to 45 mm such that the axial cavity of the roll has a diameter of from 15 mm to 45 mm prior to compression of the roll, and in some embodiments the forming core member has a diameter of from about 37.5 mm to 42.5 mm such that the axial cavity of the roll has a diameter of from 37.5 mm to 42.5 mm prior to compression of the roll.
The forming core member may be a tubular paperboard core or any other suitable collapsible core member, but the forming core is preferably removed prior to completion of roll compression in order to facilitate both compression and re-forming as will be appreciated from the Figures. In some cases, initial compression of the roll while still retaining the core may facilitate removal of the core, particularly if the roll is formed around a conventional paperboard core rather than being formed directly on a mandrel or on a collapsible mandrel. In the cases in which the product of the present invention is formed from a substantially hollow coreless roll, it will generally be preferable to remove the central plug from the roll prior to compression thereof. However, advantageously there is no necessity to remove the central plug prior to sawing of individual rolls prior to the log saw.
In
There is shown in
In
In
The compressed products of the invention have significantly less volume than corresponding products provided with a core and may be packaged in various individually wrapped sub packaged configurations, preferably overwrapped with a polymeric film effective to maintain the compressed roll in a substantially collapsed configuration, as shown in
A hollow coreless tissue roll of the present invention suitably has a diameter of from about 80 mm to 230 mm prior to compression, and a thickness after compression such that after its axial cavity is substantially collapsed, it has a thickness of no more than about 90%, preferably no more than about 85%, preferably no more than about 80%, preferably no more than about 70% and more preferably no more than about 60%, still more preferably no more than about 55% of the diameter of the roll prior to compression and still more preferably, a thickness after compression of no more than about 50% of the diameter of the roll prior to compression. A particularly preferred hollow coreless tissue roll has a diameter of from about 100 mm to 230 mm prior to compression and a thickness after compression such that its axial cavity is substantially collapsed to no more than about 60% of the diameter of the roll prior to compression. The tissue, whether kitchen roll towel or bath tissue, may be 2-ply or 3-ply product or, if a suitable high-bulk forming method is used even single ply.
The products of the invention are typically provided in a package containing a plurality of the compressed hollow coreless rolls which are overwrapped with a polymeric film, wherein the polymeric film is effective to maintain the axial cavities of the plurality of hollow coreless rolls in the substantially collapsed configuration. Optionally, the package contains a re-usable tubular dispensing core such as re-usable core 40 which has a diameter smaller than the forming core member upon which the roll was wound. Re-usable core 40 may have a diameter of from 25 mm to 32 mm, or from 2 to 50% less than the axial cavity, and may, if so desired, be perfumed, or may be manufactured from a water-dispersible material. In some embodiments, the tubular dispensing core is colored with a pigment or die, wherein the pigment or dye is of a color selected from red, yellow, blue, green, cyan, magenta and combinations thereof, or white if pigmented with TiO2.
Packages of product in accordance with the invention, consisting of rolls of absorbent sheet overwrapped with a polymeric film, occupy much less space than corresponding conventional cored products and also have less weight due to the absence of a core. Weight benefits are of anywhere from 5 to 15% or even 25%, over conventional products, saving transportation costs. The benefits with respect to decreased occupied volume are much more dramatic ranging anywhere from 25 to 45%, as can be appreciated from
The product of the invention provides dramatic volume reductions in comparison with conventional 2×2 package dimensions of 24×12×20. This can be appreciated from the variety of packaging arrangements having drastically different package dimensions illustrated in
Still yet another package configuration is shown in
Table 1 sets forth the relevant parameters concerning the shipping efficiency of this configuration. It is considered particularly significant that the cubic efficiency of this packaging configuration is almost 85%.
Table 2 sets forth the relevant parameters concerning the shipping efficiency of this configuration. It is considered particularly significant that the cubic efficiency of this packaging configuration is again almost 85%.
Recent years have seen retail marketing move from ‘brick-and-mortar stores” to e-commerce with more and more products becoming available on-line for shipment direct to the customer's home or office every day. In the past e-commerce was largely limited to small, compact relatively high value items; but as this channel of commerce is developed, merchandisers have found ways to economically offer more and more products. Towel and tissue products however present unusual difficulties for e-commerce in that their volume to cost ratio is rather lower than the more conventional products. We have found that these compressed hollow coreless re-formable roll products provided much more attractive product for e-commerce due to their greatly reduced volume. Tables 3 and 4 set forth configurations of products which are particularly suitable for e-commerce illustrating the reduction in volume for each configuration tabulated.
For e-commerce applications, it is particularly important to have electronically sortable unit size package to control cost of handling. One particularly common unit size package is 18″×14″×8″. Table 3 sets forth the length, width and height for a number of product configurations which are well-suited for this size. It should be noted that each configuration provides a volume savings of at least 22% while the 3 roll by 7 roll by 2 roll configuration using regular length rolls provides a savings of 29%. In Table 3, the “Roll Orientation” column refers to
Table 4 sets forth a number of other product configurations for kitchen roll tell (paper towel) which are also suitable for use in this unit size package. It is particularly important to note that most of these configurations provide a savings of over 30% in volume compared to conventional kitchen roll towel.
Table 5 presents the possible savings and efficiency of trailer volume utilization achievable with other product configurations of compressed hollow coreless re-formable roll products of the present invention.
indicates data missing or illegible when filed
In view of the foregoing discussion, relevant knowledge in the art and references discussed above in connection with the Background and Detailed Description, the disclosures of which are all incorporated herein by reference, further description is deemed unnecessary. In addition, it should be understood that aspects of the invention and portions of various embodiments may be combined or interchanged either in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to limit the invention
This application is a divisional of and claims priority to and the benefit of U.S. Nonprovisional patent application Ser. No. 14/942,866, filed Nov. 16, 2015; which application further claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 62/080,822, filed Nov. 17, 2014; the entire contents of both of which as are hereby incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62080822 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14942866 | Nov 2015 | US |
Child | 17142793 | US |