Methods of manufacture of catheter with helical drive shaft

Abstract
Drive shafts having helical blades and methods of making are disclosed. In one method a helical auger blade is formed by twisting or sculpting a heated polymer tube which has been placed over a cylindrical drive shaft. In another method a drive shaft is placed within a helical winding and heat is applied to melt polymer which has been coated over one or both of the drive shaft and helical winding.
Description
FIELD OF THE INVENTION

The present invention relates to drive shafts for use in tissue removal devices. More particularly, this invention pertains to a catheter having a helical drive shaft with an auger shaped outer surface and methods of manufacturing those drive shafts.


BACKGROUND OF THE INVENTION

Atherosclerosis is a progressive disease of the vascular system whereby atheroma is deposited on the inner walls of blood vessels. Atherosclerosis is a complex, progressive and degenerative condition resulting in the build-up of cholesterol and other obstructive materials, known as plaque, on the walls of the arteries. The accumulation of plaque narrows the interior or lumen of blood vessels, such as arteries, thereby reducing blood flow.


Plaque occurs in several different forms and may be located in many different anatomies throughout the vascular system. Plaque varies in composition, with portions that are hard and brittle, referred to as calcified plaque, and other portions that are fatty or fibrous. Over time atheromatous deposits can become large enough to reduce or occlude blood flow through the vessels, leading to symptoms of low blood flow, such as pain in the legs (on walking or at rest), skin ulcer, angina (at rest or exertional), and other symptoms. To treat this disease and improve or resolve these symptoms it is desirable to restore or improve blood flow through the vessel.


Various means are used to restore or improve blood flow through atheromatous vessels. The atheroma deposits may be displaced by diametrically expanding the vessel by inflating balloons, expanding stents, and other methods. The deposits may be pulverized using lasers and other methods. Atherectemy catheters may also be used to remove atheromatous deposits from the blood vessel.


Many types of atherectomy catheter devices have been proposed, including catheters with rotating burrs, or lasers to photo-dissolve tissue. Other atherectomy catheters have cutting elements that extend through or beyond an opening in the distal end of the catheter to cut tissue or that cut tissue through a side opening or window in the catheter body. Some of these catheters use balloons or other positioning devices to position the cutter adjacent material to be removed.


One catheter design attempts to capture the removed plaque in a collection or storage chamber so that it can be removed from the vessel. In use, the storage or collection location may fill up with excised tissue debris. If the storage or collection location is contained within the catheter body, a cleaning procedure may require the physician to remove the device to empty the collection chamber.


As used in this application the term “distal” refers to a direction away from the operator and the term “proximal” refers to a direction towards the operator. Thus, the handle of the device is located at the “proximal end” and the “distal end” is the end of the device that is inserted first into the vessel. One recent atherectomy catheter, the SILVERHAWK articulated rotating blade atherectomy catheter, (sold by Covidien) has been designed to treat atherosclerotic plaque by excising it from the artery. The SILVERHAWK catheter (features of which are exemplified in U.S. patent application Ser. Nos. 10/027,418; 10/288,559; 10/89,747; and others) uses a rotating blade, a side cutting window through which the blade can be extended, and a hinged nose design which can be controlled to cause the catheter to assume a straight position or an angled position. During the cutting procedure the catheter is in the angled position so the side cutting window and cutting blade can be urged against the vessel wall. The SILVERHAWK catheter is moved distally through the lesion during the cutting procedure. The SILVERHAWK catheter includes a collection chamber located in a distal portion of the catheter nose distal of the cutting window. The cutting blade and cutting window are configured to direct material cut from the vessel wall through the cutting window and into the collection chamber.


In some tissue cutting devices the collection chamber is located proximal of the tissue cutting element. For example, in co-pending U.S. patent application Ser. No. 13/160,044 filed Jun. 14, 2011, the contents of which are incorporated herein by reference in their entirety, an atherectomy catheter having a proximally located collector chamber is disclosed. The catheter includes a side cutting window and a cutting blade configured to extend through the window to cut material from the wall of a vessel at a treatment site as the catheter is pulled proximally through the treatment site. The catheter includes a material collection chamber which is positioned proximally of the cutting window. During use the cutting window is advanced distal to the treatment site, the cutting blade is extended out the window and material is cut from the treatment site by pulling the catheter proximally across the treatment site. In one of the embodiments the drive shaft is provided with auger blades to help transport cut material proximally to the collection chamber.


Although material cutting devices using auger blades to transport cut material, such as the one described above, have been proposed there are design challenges which must be met in order for the devices to function properly in the environment in which they are used. Therefore, there is need for an atherectomy catheter capable of meeting these design challenges.


These and other aspects of the invention will become apparent from the following description of the preferred embodiments, drawings and claims. The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF THE DRAWINGS


FIG. 1 is a partial isometric view of an atherectomy catheter.



FIG. 2 is a partial cross-sectional view of a portion of the body of the atherectomy catheter of FIG. 1 showing portions of the drive shaft and helical auger blade.



FIG. 3 is a side view of an embodiment of a drive shaft of the present invention.



FIG. 4 is a perspective view of a cylindrical layer or tube used in the formation of the auger blade in some of the embodiments of the present invention.



FIG. 5 is a cross-sectional view of a tube having a star shaped cross-section used in the formation of the auger blade in some of the embodiments of the present invention.



FIG. 6 is a plan view of a helical winding used in the formation of the auger blade in some of the embodiments of the present invention.



FIG. 7 is a partial cross-sectional view of a portion of the drive shaft of FIG. 3 received within the tube of FIG. 4.



FIG. 8 is a schematic view in partial cross-section of a coated drive shaft being fed through a die.



FIG. 9 is a partial cross-sectional view of a coated drive shaft during a cutting process used in formation of an auger blade.



FIG. 10 is a schematic view showing the application of glass to the surface of a drive shaft.



FIG. 11 shows the drive shaft and applied glass of FIG. 10 being shaped in a die.



FIGS. 12 and 13 are schematic representations of a process of attaching a helical winding to a drive shaft using an enhanced extrusion process.



FIG. 14 is a partial plan view of a drive shaft having a surface portion roughened in a helical pattern.



FIG. 15 is a partial plan view of a drive shaft having an auger blades formed in accordance with anther embodiment of the invention.



FIGS. 16 and 17 are cross-sectional views of the embodiment of FIG. 15 during different steps in the process of forming the auger blades.



FIG. 18 is a cross-sectional view of a drive shaft having auger blades and forming tools used to form the auger blades according to another embodiment of the invention.





DETAILED DESCRIPTION

Apparatus according to the present invention will generally comprise of catheters having catheter bodies adapted for intraluminal introduction to the target body lumen. The body lumen may include arteries or veins in the vascular system, or may be other similar types of body lumens. The dimensions and other physical characteristics of the catheter bodies will vary significantly depending on the body lumen which is to be accessed. In the exemplary case of atherectomy catheters intended for intravascular introduction, the distal portions of the catheter bodies will typically be very flexible and suitable for introduction over a guidewire to a target site within the vasculature. In particular, catheters can be intended for “over-the-wire” introduction when a guidewire channel extends fully through the catheter body or for “rapid exchange” introduction where the guidewire channel extends only through a distal portion of the catheter body. In other cases, it may be possible to provide a fixed or integral coil tip or guidewire tip on the distal portion of the catheter or even dispense with the guidewire entirely. For convenience of illustration, guidewires will not be shown in all embodiments, but it should be appreciated that they can be incorporated into any of these embodiments which are described herein as being configured for use with a guidewire.


Catheter bodies intended for intravascular introduction will typically have a length in the range from 50 cm to 200 cm and an outer diameter in the range from 1 French to 12 French (0.33 mm: 1 French), usually from 3 French to 9 French. In the case of catheters intended for peripheral intra-arterial use, the length is typically in the range from 100 cm to 160 cm, and the diameter is preferably below 8 French, more preferably below 7 French, and most preferably in the range from 2 French to 7 French. Catheter bodies will typically be composed of an organic polymer which is fabricated by conventional extrusion techniques. Suitable polymers include polyvinylchloride, polyurethanes, polyesters, polytetrafluoroethylenes (PTFE), polyamides, silicone rubbers, natural rubbers, and the like. Optionally, the catheter body may be reinforced with braid, helical wires, coils, axial filaments, or the like, in order to increase rotational strength, column strength, toughness, pushability, kink resistance, and the like. Suitable catheter bodies may be formed by extrusion, with one or more channels being provided when desired. The catheter diameter can be modified by heat expansion and shrinkage using conventional techniques. The resulting catheters will thus be suitable for introduction to the vascular system, including both coronary arteries and peripheral arteries, by conventional techniques.


Referring to FIG. 1, an atherectomy catheter 2 is shown. Catheter 2 includes a catheter body connected at its proximal end to a control handle. Located in a lumen of the catheter body is a drive shaft 20 connected at its distal end to a cutting element 4 and at its proximal end to a drive motor located within the handle or cutter driver 5. The drive shaft 20 may be comprised of a high modulus material or composite with flexibility and torquability, e.g. a NiTi tube, stainless steel coil, or other composite layered polymer or metal material. In some embodiments the cutting element 4 is configured to cut tissue that extends through a side opening or cutting window 6 in the catheter body and in other embodiments the cutting element 4 is configured to extend from a distal opening in the catheter body to cut material from the vascular lumen. Cutting elements within the scope of this invention include those which cut tissue or material while the catheter is advanced distally, retracted proximally or maintained stationary.


Catheter 2 is coupled to exemplary cutter driver 5. Cutter driver 5 is comprised of motor 11, power source 15 (for example one or more batteries), microswitch (not shown), housing 17 (upper half of housing removed as shown), lever 13 and connection assembly (not shown) for connecting shaft 20 to driver motor 11. Cutter driver 5 can act as a handle for the user to manipulate catheter 2. Lever 13, when actuated to close the microswitch, electrically connects power source 15 to motor 11 thereby causing rotation of cutting element 4. The cutting element 4 is rotated about a longitudinal axis LA when the shaft rotates. The cutting element 4 is rotated at about 1 to 160,000 rpm but may be rotated at any other suitable speed depending upon the particular application.



FIG. 2 is a cross-sectional view of a portion of the catheter body 22 showing the drive shaft 20 and helical auger blade 21 which together form helical drive shaft 25 contained within the lumen 23 of the catheter body. As used herein, the term “drive shaft” refers to a generally cylindrical drive shaft which may be solid, hollow, braided, and/or stranded such as drive shaft 20a shown in FIG. 3, or any other composition. The term “helical drive shaft” refers to the combination of a cylindrical drive shaft and a helical winding, as described in more detail hereafter. In the illustrated embodiment, the helical drive shaft 25 both transports removed or cut tissue proximally in the catheter body and drives rotation of the cutting element 4. In other embodiments the helical drive shaft 25 may transport removed or cut tissue proximally within the catheter body 22 but may not drive rotation of a cutting element. FIG. 2 shows the drive shaft 20 proximal of the location where the drive shaft 20 is attached to the cutting element 4. The drive shaft 20 is oriented in this figure such that the proximal and distal ends of the drive shaft 20 (not shown) would lie to the left and right sides of this figure, respectively.


The drive shaft 20 is generally cylindrical and may comprise a solid tube, a hollow tube, or may be formed from multiple layers of wire wound in alternating right and left hand layers such as drive shaft 20a shown in FIG. 3. The drive shaft with helical auger structure is manufactured to be flexible enough to allow the catheter to navigate tortuous vessel anatomy and strong enough to withstand the stresses encountered by high speed rotation, transmission of torque through the augered driveshaft to the cutter at the distal tip of the device, and transport of calcified material. The helical structure may be a separate element which is attached or affixed in some manner to a substantially cylindrical drive shaft that is composed of multiple counterwound layers as shown in FIG. 3. Alternatively, the drive shaft and helical structure may be formed as a single unitary element incorporating multiple counterwound layers. To withdraw tissue distally, the helical auger must be driven in a direction opposite to its winding direction. This spinning motion tends to cause the helix to unwrap and fail structurally, so the auger and driveshaft must be designed in such a way as to counteract these forces to prevent damage to the auger or to the driveshaft. A counterwound driveshaft enables sufficient torque transmission to meet the design constraints described above, but attachment to the auger is challenged by the conflicting directions of forces experienced by adjacent counterwound layers.


Positioned about the drive shaft 20 in the embodiments disclosed herein is a helical winding forming the helical auger blade 21 that is continuous for a least a portion or all of the drive shaft, as desired. In one example, the auger outer diameter may range from about 0.010 inches to about 0.100 inches, and the pitch may range from about 0.010 inches to about 0.25 inches, with the possibility of multiple helices combined to form one auger in a double-helix or multiple-helix configuration. As used herein the terms “helical winding”, “auger blade” or “auger blades” are meant to encompass both single and multiple helix designs. The inner diameter of the auger blade 21 is sized to receive the drive shaft. The auger blade 21 or winding may be fixedly attached to the drive shaft 20 along its entire length or at intermittent locations or may be constructed in a floating configuration adjacent, but not attached, to the drive shaft. The auger blade 21 may be wound in a left-handed winding pattern, as depicted in FIGS. 2 and 6, or optionally, a right-handed winding may be used instead. In either case, the helix would be rotated in a direction so as to draw material proximally. The lumen 23 of the catheter body 22 may optionally be attached to a source of suction (not shown) to assist in the transport of the material proximally.


Various embodiments and/or methods of associating or attaching a helical winding (auger blades) to a drive shaft to form a helical drive shaft are described herein. In accordance with the present invention the helical drive shaft will have auger blades or fins having a desired pitch, depth or radial length, width or thickness and outer diameter. In some methods the helical winding is formed starting from a generally cylindrical layer of nylon or other polymer, such as tubular member 24 shown in FIG. 4, which is reflowed, ablated, extruded or otherwise formed to receive a drive shaft. In other methods the polymer layer has a star shaped cross-section such as star shaped member 26 as shown in FIG. 5. Star shaped member 26 comprises alternating peaks 27 and valleys 29. Other methods use a metal wire made of copper, stainless steel, NiTi, a cobalt alloy, or other metal alloy having a rectangular cross-section with desired dimensions which is formed into the shape of a helical winding such as auger blade 21a shown in FIG. 6. A portion of drive shaft 20 having a layer of polymer having a depth D1, such as tubular member 24, is shown in cross-section in FIG. 7. The present invention includes all of the methods described herein for forming or making helical drive shafts, the helical drive shafts which are produced by such methods and the catheters that include these helical drive shafts.


In a first method, a drive shaft such as drive shaft 20a shown in FIG. 3 has been coated with a layer of polymer 24 (such as seen in FIG. 7) to a depth which is thicker that the desired dimension of the helical winding or auger blade. The polymer layer 24 may be reflowed, extruded, or in some other manner adhered to the outer surface of the drive shaft 20a, such as by the use of adhesives. The coated drive shaft is then screwed through a die 28 with internal threads 30 such as shown in FIG. 8 to form a helical drive shaft such as helical drive shaft 25 shown in FIG. 2. The threads 30 are configured to form the desired pitch and width of the auger blade 21. The die 28 may be spun to allow convenient auger blade formation on the drive shaft 20a without needing to rotate the drive shaft stock and finished parts. In an alternative embodiment a drive shaft itself rotates through a fixed die. In this embodiment, due to the threads 30, the part can be spun and will be self feeding. During this process the die 28 can be heated to promote movement of the material through the die.



FIG. 9 illustrates another method of associating the auger blade with the drive shaft to form a helical drive shaft. In this method the drive shaft 20 is coated with a polymer layer 24 similar to the one shown in FIG. 7. Next, a helical groove 31 (shown cross-hatched in FIG. 9) is cut into the polymer layer 24 to a desired depth, pitch, thickness and shape using laser ablation or mechanical means such as a lathe to form the auger blade.


In another method, a glass helix is formed on the surface of the drive shaft 20 by dripping melted Si (glass) 32 over the surface of the drive shaft in a helical pattern in the manner shown in FIG. 10. Next, as shown in FIG. 11, the drive shaft 20 is placed into a die 34 which is configured to shape the glass 32 into the desired helical shape. In this process the glass provides a base. A polymer coating is then applied over the cylindrical portion and glass base by dip coating, spray coating, vapor deposition, or similar process. The polymer coating forms an outer layer with a raised helical winding in the areas overlying the glass 32. This method results in the production of a helical drive shaft comprising a drive shaft, a layer of glass in a helical pattern adjacent the outer surface of the drive shaft, and an outer coating of polymer.



FIGS. 12 and 13 (Note: be sure FIG. 13 contains the appropriate reference numerals) show a process of bonding or attaching a helical winding or auger blade 21 to the drive shaft 20 with an enhanced extrusion process. In this process the drive shaft 20 is positioned directly in front of and perpendicular to an extrusion die 36 as shown schematically in FIG. 12. The drive shaft 20 has its two ends mounted on a rotating apparatus that rotates the drive shaft as shown by arrow 38. The rotating apparatus rests on a linear slide that imparts linear motion to the drives shaft 20 in the direction shown by arrow 40. In this embodiment the extrusion die 36 is configured to the desired shape of the fin or blade of the desired helix. A polymer fin is thus extruded through the die and, while it is still pliable, wound onto the surface of the drive shaft as the drive shaft is rotated and moved sideways past the die as best seen in FIG. 13. In one example, the drive shaft 20 comprises one or more layers of helically-wound wires or filars (e.g., at least two layers of alternating right and left hand filar layers). In this example, the extruded polymer fin flows into spaces or gaps between adjacent filars so that the formed extruded auger blade 21 is fixed to the drive shaft by a mechanical lock. In one embodiment, during the process the drive shaft 20 is rotated circumferentially and slid axially to create a helix with the desired pitch. The process may either be performed using a continuous length of spooled drive shaft 20 or alternately may be performed with discrete lengths of drive shaft. To extrude the helix 21 onto discrete lengths of drive shaft 20, the two ends of each drive shaft may be clamped and pulled axially apart to create tension in the drive shaft. The entire drive shaft 20 is then rotated circumferentially and slid axially as described above. Alternatively, if a continuous length of spooled drive shaft is used instead, the same rotation and sliding motion may be accomplished using spools. Two spools would be used: one would hold and dispense the untreated (bare) driveshaft, and the other would receive the treated driveshaft after the extrusion process. The driveshaft would be attached to both spools, and tension would be applied to the driveshaft by pulling the two spools apart. To begin the helical extrusion, the receiving spool would be simultaneously rotated and wound, with the direction of rotation being perpendicular to the direction of winding so as to twist the driveshaft and wind it onto the receiving spool. The dispensing spool would simultaneously unwind and rotate, thereby imparting an axial sliding motion and a circumferential twisting motion to the driveshaft described above.


A process of bonding or attaching a helical winding to the drive shaft with an enhanced mechanical lock can be described with respect to FIG. 14. In this process the outer surface of the drive shaft 20 is mechanically or chemically roughened in the pattern or path 42 of the helix wind by ablating, sand blasting or the like as shown in FIG. 14. A helix in the desired pattern is then formed from a wire by coiling it around the drive shaft over the roughened path. The coil is mechanically locked in place by the high level of friction with the roughened drive shaft surface. In some embodiments, welding or adhesives might be used to augment the frictional force holding the helix to the drive shaft. This process results in the production of a helical drive shaft comprising a drive shaft having a roughened surface patterned in the shape of a helix, and a helical winding overlying the drive shaft having a pitch which follows the roughened surface pattern. In an alternate embodiment, the entire drive shaft surface may be roughened to facilitate alignment and assembly. In this embodiment, the process results in the production of a helical drive shaft with a fully-roughened surface along all its length, and a helical winding overlying the drive shaft.



FIG. 15 shows a portion of a drive shaft 20 with auger blades 21b formed by another process. In this method the drive shaft 20 is placed into an extruded thermoplastic polymer tube 24 leaving a suitable gap between the drive shaft 20 and the tube 24. In one example, the tube inner diameter may be about 0.003″ to 0.015″ larger than the drive shaft outer diameter (DDS) as shown in FIG. 16. One end of the tube 24 is attached to the drive shaft 20. Heat is applied focally to a section of the tube 24 immediately adjacent to the anchored region of the tube, and this heat is sufficient to soften the polymer tube, for example 400 to 800° F. FIG. 17 is a cross sectional view of a portion of the drive shaft 20 illustrating the process of forming an auger blade 21b. As the heated polymer tube is twisted, the softened polymer buckles in the heated region, as illustrated in FIG. 17. Eventually, the gap between the large polymer tube 24 and the drive shaft 20 will seal closed in that region. This eliminates the air gap that previously existed between the polymer tube 24 and the drive shaft 20, and it creates a fin structure on one side of the tube that, as it is twisted, will wrap up on itself creating a helix that functions as the blade 21b of an auger. As the polymer cools, it hardens and retains the helical shape. An auger 21 is thus formed and attached to the drive shaft 20 via a continuous process from the attached end of the tube to the opposite end. The wall thickness of the polymer tube 24 (TPOLY) will largely determine the fin thickness in the circumferential direction which will be about twice the wall thickness. The diameter of the original polymer tube (DPOLY) will, to a large extent, control the radial length of the fin (and thus, the outer diameter of the final helix). In this embodiment the radial length of the fold or auger blade will be approximately equal to: (πDPOLY−πDDS)/2 and the diameter of the resulting auger will be approximately equal to: DDS+(πDPOLY−πDDS)+2TPOLY. The pitch is controlled by the rate of twist as the polymer tube and drive shaft are pulled axially through the heat source.


In an alternative embodiment, the heating and twisting operation is replaced by heating and sculpting. In this approach, the oversized thermoplastic polymer tubing is shaped by applying one or more heated tools 46 that spin around the drive shaft 20 and push against the polymer tube 24, simultaneously softening and sculpting it into a cross-section with fins, as shown in FIG. 18. In this embodiment, each tool creates an individual fin in the cross-section of the auger by folding the tube over upon itself and closing the air gap resulting from the large ID of the polymer tube. The resulting shape is a double helix or other multi-armed helix of polymer that is wrapped around a metal core driveshaft and serves as an auger. In yet another embodiment, a single heated tool is used to incompletely close the air gap by sculpting from one side only. In this approach, the heated tool spins around the driveshaft in a helical shape, and it creates one large fin of a desired size, for example, 0.002″ to 0.012″ in height. The single tool does not fully compress the oversized tubing onto the driveshaft, and a small bulge is left approximately 180 degrees away from the main fin. This bulge is relatively small, 0.0005″ to 0.005″ in length. In this embodiment, the result is a polymer double helix with one helical wind that is substantially larger than the other. The polymer double helix is wrapped around a metal driveshaft and serves as an auger.


In another method the helical winding is formed over the drive shaft by inserting the drive shaft into a polymer tube which is extruded in the shape of a star such as star shaped member 26 shown in FIG. 5. The tube thus has a cross-sectional shape having alternating peaks 27 and valleys 29. One end of the tube is attached to the cylindrical drive shaft. While applying heat to the tube at a temperature sufficient to soften the polymer tube, for example 425° F., the free end of the tube is twisted in a controlled manner. The tube is twisted such that the radially extending peaks 27 of the star form a helical winding having the desired pitch, which may be controlled by the rate of rotation as the device is twisted. The number of peaks 27 of the cross-sectional shape can be varied as desired to create an auger with a single blade or multiple blades.


In a similar method a helical winding is formed over the drive shaft with an extruded polymer tube having a star shaped cross-section such as star shaped member 26 shown in FIG. 5. In the method, however, the tube 26 is twisted during the extrusion process to form a polymer tube having helical windings. The polymer tube 26 is extruded with a spinning die or a spinning puller assembly to have a generally tube-shaped form, with an air-filled cylindrical space or lumen running down the center and a thin tube of polymer over which a helix is formed. The lumen is slightly larger than the drive shaft to allow the drive shaft to be inserted through the polymer tube. The polymer tube with preformed helical winding is attached to the drive shaft by means of adhesives, which may include UV-cured adhesives, IR-cured adhesives, or thermally-cured adhesives.


In another method a flat wire of copper, stainless steel, NiTi, a cobalt alloy, or other metal alloy having a rectangular cross-section is coiled in a helical configuration using a commercially available mechanical winder or coiler to form a helical winding having the desired configuration, similar to auger blade 21a shown in FIG. 6. The drive shaft is placed within the helical winding and a thick parylene coating or other polymer-based coating is applied over both, such as by a vapor deposition process. The parylene or other polymer coating functions to attach the helical winding or auger to the cylindrical portion and further provides the helix with a lubricious coating that reduces torque requirements and improves helix efficiency. This process results in the production of a helical drive shaft comprising a drive shaft, a helical winding and an outer coating or layer of parylene. The bond between drive shaft and helix may be strengthened by welding, gluing, soldering, or brazing the helix to the drive shaft in two or more locations prior to vapor deposition coating.


In another method the helical winding is attached to the drive shaft by laser welding a helically coiled flat wire, similar to auger blade 21a shown in FIG. 6, to the drive shaft. In this method the wire is coiled to form a helical winding or auger by using a mechanical winder or coiler to form a helix over a temporary mandrel, which is then removed. The wire is a metal such as copper, stainless steel, titanium, or equivalent or an alloy such as MP35N. After forming the helical winding it is then placed or slid over the drive shaft. The helical winding is then attached by welding it to the drive shaft. The weld may be a continuous weld, a series of spot welds, or a series of seam welds.


In a further method a drive shaft is combined with a helical winding using a brazing process. In this method a helical winding of metal wire such as auger blade 21a shown in FIG. 6 is coated along its entire surface to a thickness of 0.0005″ to 0.005″ with a braze material such as silver, gold, tin, copper, platinum, or a suitable alloy. The helical winding is placed over the drive shaft and the assembled unit is then fired in an oven at a suitable temperature, usually above about 800° F., to join the helical winding to the cylindrical portion. The combined unit includes the drive shaft, a layer of brazed metal, and the helically coiled wire.


In another method a helical winding of metal wire such as auger blade 21a shown in FIG. 6 is welded to the drive shaft by arc welding. In this method the helical winding is placed over the drive shaft, and a high voltage is applied between the helix and the drive shaft to arc weld the helix to the drive shaft. The drive shaft may be coated with an insulation material (such as glass, PTFE, or another polymer) to ensure that there is only contact between the drive shaft and helix where welding is desired. In an alternate embodiment of this method, a conductive layer or conductive nodules, for example of metal alloys with good conductivity, could be applied to the outer surface of the drive shaft to encourage arc formation at specific locations. In another embodiment, the arc welding could be performed while wire was being coiled directly onto the drive shaft. Voltage could be applied between the drive shaft and the helix at the location where the wire was being coiled onto the drive shaft with the intention of inducing an arc between the drive shaft and the helix at the moment that the wire first touches the drive shaft. The voltage could be applied either continuously or in bursts, and conductive nodules or insulating patches could be applied to minimize electrical conduction through sites other than the desired arc locations.


Another method of making a helical drive shaft involves the use of an electropolishing or a galvanic cell process. First, a metal shaft is produced of the material desired for the helix, such as stainless steel, NiTi, a cobalt alloy, or zinc. The metal shaft is masked to leave exposed only those areas defining the pattern of the helical winding by covering it tightly with a helix-shaped shell. Then the drive shaft is charged in an acid bath or a metal-salt bath to remove the metal over the unmasked areas. The masked areas are protected by the helix-shaped shell covering them, so material is removed preferentially from the unmasked regions. When the desired thickness is removed, the helix is removed from the bath, and the mask is removed from the helix.


In another method the helical winding is swaged to the drive shaft. In this method a helical winding such as auger blade 21a shown in FIG. 6 is formed with an inner diameter just large enough to allow the drive shaft to be inserted with a tight fit. The combined drive shaft and helical winding are then placed through a mechanical compression system that provides radial force from multiple sides of the helix simultaneously to permanently and plastically deform the helix and reduce its inner diameter. The result is a mechanical lock that holds the helix on the drive shaft. In an alternate embodiment, the strength of this bond may be supplemented by welding the helix onto the driveshaft in two or more locations after swaging.


In another method the helical drive shaft is made using a vacuum forming process. In this method a drive shaft such as drive shaft 20a shown in FIG. 3 is placed within a helical winding such as auger blade 21a shown in FIG. 6. A tubular plastic, such as one having a wall thickness of 0.00025″ to 0.003″, is then placed over the combined unit and connected on both ends to a vacuum system. A vacuum is then applied to the interior of the tubular structure to cause it to compress and stretch over the exterior surface of the combined drive shaft and helical winding locking them together. The result of this process produces an outer layer or coating comprised of the plastic material which permanently attaches the helical winding to the drive shaft. Optionally, the process may be performed inside an environment where heat is applied (e.g., an oven, or a hot fluidized bed), and the heat would soften the polymer and allow the ends of the tube to seal upon the drive shaft. This would assist in excluding air from the inside of the polymer tube. Another optional embodiment would expose the outer surface of the polymer tube to high pressures instead of or in addition to applying a vacuum on the inside of the tube. In this way, the tube could be deflated more fully and form a more effective crimp upon the helix, because a higher pressure differential could be attained across the tube.


In a further method a helical winding, such as auger blade 21a shown in FIG. 6, is formed of a bimetal. The bimetal may comprise a first metal, such as a strong metal with high melting point, including for instance stainless steel, NiTi, or a cobalt alloy. The second metal may be a solder-like or brazing material, such as silver, gold, tin, copper, or platinum. This brazing or soldering material forms a thin coating of thickness 0.0005″ to 0.005″ on one or more edges of the wire cross-section. Bimetal wire may be dual-extruded using the bimetal material, or in an alternate embodiment, a wire may be extruded of the stainless steel, NiTi, or cobalt alloy and then coated with the brazing or soldering material after extrusion. In both these embodiments, the bimetal is formed into a wire before being wound into a helix. The drive shaft is then placed within the bimetal helical winding and heated in an oven to a temperature sufficient to melt the solder like material and solder the helical winding to the drive shaft.


In another method a helical drive shaft is formed using a helical winding, such as auger blade 21a shown in FIG. 6, and a drive shaft that has been coated with a thermoplastic polymer having a low glass transition temperature such as a nylon, laminated over the drive shaft in a thickness which in one embodiment ranges from 0.0005″ to 0.005″ and in another embodiment ranges from 0.0015″ to 0.0035″. The coated drive shaft, such as drive shaft 20a shown in FIG. 3, is inserted into the helical winding with a diametric gap of up to 0.005″ separating them. In one embodiment the separation is up to 0.003″. The combined unit is then placed in an oven and heated to a temperature which, in one embodiment, is in the range of 100° C. to 300° C. and in another embodiment is in the range 180° C. to 200° C. The temperature is selected to be sufficient to soften the polymer into the helix. Wicking preferentially keeps the polymer at the interface between the helix and the drive shaft and causes the polymer to form a slight meniscus onto the helix. When cooled, this meniscus hardens and mechanically anchors the helix in place. In another embodiment, additional strength is provided by welding the helix to the drive shaft in one or more locations, either by using a laser to ablate sections of the laminate before welding or by designating specific weld locations on the drive shaft that are left without laminate. The polymer may be reflowed to form the meniscus around the helix either before or after this welding is performed.


In another method a helical drive shaft is formed using an uncoated drive shaft and a helical winding, such as auger blade 21a shown in FIG. 6, that has been coated with a polymer having a low melting temperature. An example of this polymer is a nylon or another thermoplastic polymer that is capable of being reflowed, and the chosen polymer might be applied to the helix in a thickness which in one embodiment ranges from 0.0005″ to 0.005″ and in another embodiment ranges from 0.0015″ to 0.0035″ by dip-coating or spray-coating or another method. The drive shaft, such as drive shaft 20a shown in FIG. 3, is inserted into the coated helical winding. The combined unit is then placed in an oven and heated to a temperature in the range of 100° C. to 300° C. in a first embodiment and in another embodiment is in the range 180° C. to 200° C. The temperature is selected to be sufficient to melt the polymer into the drive shaft. Wicking preferentially keeps the polymer at the interface between the helix and the drive shaft and causes the polymer to form a slight meniscus onto the helix. When cooled, this meniscus mechanically anchors the helix in place. In another embodiment, additional strength is provided by welding the helix to the driveshaft in one or more locations, either by using a laser to ablate sections of the laminate before welding or by designating specific weld locations on the helix which are left without laminate.


In another method a drive shaft, such as drive shaft 20a shown in FIG. 3, is placed in a tube that is filled with an adhesive that is designed to be cured by exposure to ultraviolet light. The tube surround in the drive shaft has a diameter that is equivalent to the desired diameter of the desired helical winding. The tube is masked with a pattern in the shape of the desired helix, and this masking is designed to block light in the ultraviolet range, for example, by using UV-opaque paint to cover the tube with a helix pattern. The tube is then irradiated in UV light to harden the UV adhesive in the unmasked portions of the tube. In the portions of the tube that are masked, the masking prevents ultraviolet light from curing the adhesive, so the adhesive remains soft. Next, the tube is rinsed in an acetone bath to remove the unhardened portions of UV adhesive underlying the masked portions of the tube.


The above description and the drawings are provided for the purpose of describing embodiments of the invention and are not intended to limit the scope of the invention in any way. It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the invention. Thus, intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. Further, while choices for materials and configurations may have been described above with respect to certain embodiments, one of ordinary skill in the art will understand that the materials and configurations described are applicable across the embodiments. The invention is intended to comprise, at least, the following.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: coating a cylindrical drive shaft with a layer of polymer to a thickness greater than the outer diameter of the auger blade; and rotating the coated drive shaft through a die having threads configured to form the auger blade in the polymer with the desired pitch, depth, width and outer diameter.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: coating a cylindrical drive shaft with a layer of polymer to a thickness conforming to the outer diameter of the auger blade; and cutting a helical groove in the polymer to form the auger blade in the polymer with the desired pitch, depth, width and outer diameter.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: dripping glass onto the outer surface of a cylindrical drive shaft in a helical pattern; shaping the glass on the surface of the drive shaft into a desired base shape; and after the glass has been shaped coating the surface of the drive shaft with a polymer to form a helical auger blade having the desired pitch, depth, width and outer diameter of the auger blade in a helical pattern overlying the shaped glass.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: extruding polymer through a die in a desired shape of the auger blade; and while it is pliable, winding the extruded polymer onto the outer surface of a cylindrical drive shaft in a helical pattern, the polymer forming a helical auger blade with the desired pitch, depth, width and outer diameter.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: roughening the surface of a cylindrical drive shaft; and placing a wire helix over the cylindrical drive shaft, the helix having an inner surface which overlies the roughened surface of the drive shaft, the roughened surface creating a frictional attachment between the drive shaft and the wire helix.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: placing a cylindrical drive shaft into an extruded polymer tube, the polymer tube having a circular cross-section; attaching one end of the polymer tube to the drive shaft; applying heat to the tube overlying the drive shaft at a temperature sufficient to soften the polymer tube; and twisting the softened polymer tube causing a portion of the tube to buckle, the buckled portion of the tube forming a helical auger blade with a desired pitch, depth, width and outer diameter.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: placing a cylindrical drive shaft into an extruded polymer tube, the polymer tube having a star shaped cross-section defined by the intersection of the tube with a plane which is perpendicular to a longitudinal axis of the tube, the star shaped cross-section defining alternating peaks and valleys; attaching one end of the polymer tube to the drive shaft; applying heat to the tube overlying the drive shaft at a temperature sufficient to soften the polymer tube; and twisting the heated polymer tube such that each peak of the tube forms a helical auger blade with the desired pitch, depth, width and outer diameter.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: extruding a polymer tube through a die shaped to provide the tube with a star shaped cross-section defined by the intersection of the tube with a plane which is perpendicular to a longitudinal axis of the tube, the star shaped cross-section defining alternating peaks and valleys; twisting the polymer tube as it is extruded such that each peak of the polymer tube forms a helical auger blade with the desired pitch, width, and outer diameter; and placing a cylindrical drive shaft into the extruded polymer tube.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: forming a flat metal wire into a helical coil, the helical coil having an inner diameter and an outer diameter; placing a cylindrical drive shaft within the inner diameter of the helical coil; and after the drive shaft is placed within the helical coil applying a coating of parylene or other polymer over the drive shaft and helical coil to attach the helical coil to the drive shaft.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: forming a flat metal wire into a helical coil, the helical coil having an inner diameter and an outer diameter; placing a cylindrical drive shaft within the inner diameter of the helical coil; and welding the helical coil to the drive shaft by one of continuous welding, spot welding, or seam welding, the helical coil forming an auger blade having the desired pitch, depth, width and outer diameter.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: forming a flat metal wire into a helical coil, the helical coil having an inner surface defining an inner diameter and an outer surface defining an outer diameter; coating the surface of the helical coil with a braze material; piecing a cylindrical drive shaft within the inner diameter of the helical coil; and after the drive shaft is placed within the inner diameter of the helical coil, applying heat at a temperature sufficient to melt the braze material and join the helical coil to the drive shaft, the helical coil forming an auger blade having the desired pitch, depth, width and outer diameter.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: forming a flat metal wire into a helical coil, the helical coil having an inner surface defining an inner diameter and an outer surface defining an outer diameter, the inner surface being coated with a conductive layer of welding material; piecing a cylindrical drive shaft within the inner diameter of the helical coil; and applying a high voltage between the helical coil and the drive shaft to weld the inner surface of the helical coil to an outer surface of the drive shaft.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: masking a cylindrical drive shaft to leave exposed only areas defining the pattern of a helical winding; placing the masked drive shaft in an acid or metal salt bath to remove metal over unmasked areas of the drive shaft; and when a desired thickness of metal has been removed, removing the drive shaft from the bath.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: forming a flat metal wire into a helical coil, the helical coil having an inner surface defining an inner diameter and an outer surface defining an outer diameter, the inner surface being coated with a conductive layer of welding material; placing a cylindrical drive shaft within the inner diameter of the helical coil; and after the drive shaft is placed within the inner diameter of the helical coil, locking the helical coil to the drive shaft by placing the drive shaft and inner coil through a mechanical compression device that provides radial force from multiple sides of the helical coil simultaneously to permanently and plastically deform the helical coil and reduce its inner diameter.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: placing a cylindrical drive shaft within a helical winding; placing the combined drive shaft and winding within the lumen or interior of a plastic tube; connecting the interior of the tube to a source of vacuum; and applying a vacuum to the interior of the plastic tube to compress and stretch the tube over an exterior surface of the combined drive shaft and helical winding to attach the winding to the drive shaft.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: forming a bimetal wire into a helical coil, the bimetal comprising a metal having a high melting point and a metal having a low melting point, the helical coil having an inner surface defining an inner diameter and an outer surface defining an outer diameter; placing a cylindrical drive shaft within the inner diameter of the helical coil; and after the drive shaft is placed within the inner diameter of the helical coil, applying heat at a temperature sufficient to melt the metal having a low melting point and join the helical coil to the drive shaft, the helical coil forming an auger blade having the desired pitch, depth, width and outer diameter.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: coating a cylindrical drive shaft with a polymer; placing the cylindrical drive shaft within a helical winding; and after the drive shaft is placed within the helical winding, applying heat at a temperature sufficient to melt the polymer coating and join the helical winding to the drive shaft, the helical coil forming an auger blade having the desired pitch, depth, width and outer diameter.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: coating a helical winding with a polymer; placing a cylindrical drive shaft within the helical winding; and after the drive shaft is placed within the helical winding, applying heat at a temperature sufficient to melt the polymer coating and join the helical winding to the drive shaft, the helical coil forming an auger blade having the desired pitch, depth, width and outer diameter.


A method of making a helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: placing a cylindrical drive shaft within an adhesive filled tube; masking the tube with a masking agent selected to block light in the ultraviolet range to leave exposed only areas defining the pattern of a helical winding; irradiating the masked tube in ultraviolet light to harden the adhesive in unmasked portions of the tube; rinsing the tube in a solvent bath to remove unhardened portions of the adhesive, remaining hardened portions of the adhesive forming an auger blade having the desired pitch, depth, width and outer diameter.


A helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: a metal wire having a rectangular cross-section wound to form a helical coil having an inner surface defining an inner diameter and an outer surface defining an outer diameter, and a cylindrical drive shaft positioned within the inner diameter of the helical coil, the drive shaft having an outer surface attached to the inner surface of the helical coil, the helical coil being shaped to form a helical auger blade having the desired pitch, depth, width and outer diameter.


A helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: a polymer tube having an inner surface defining an inner diameter and an outer surface defining an outer diameter, the outer surface being shaped to form a fin extending radially from the polymer tube in a helical pattern; and a cylindrical drive shaft positioned within the inner diameter of the polymer tube, the drive shaft having an outer surface attached to the inner surface of the polymer tube, the helical fin being shaped to form a helical auger blade having the desired pitch, depth, width and outer diameter.


A helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: a cylindrical drive shaft having an outer surface; a glass fin extending radially from the outer surface of the cylindrical drive shaft in a helical pattern; and an outer coating or layer of polymer over the drive shaft and fin, the glass fin being shaped to form a helical auger blade having the desired pitch, depth, width and outer diameter.


A helical drive shaft having a helical auger blade with a desired pitch, depth, width and outer diameter comprising: a cylindrical drive shaft having an outer surface; and an extruded polymer portion having an inner surface and an outer surface, the polymer portion being wound about the cylindrical drive shaft such that the inner surface of the polymer portion is attached to the outer surface of the cylindrical drive shaft, the polymer portion extending radially from the outer surface of the cylindrical drive shaft in a helical pattern to form a helical auger blade having the desired pitch, depth, width and outer diameter.


A material removal device comprising: a tubular sheath having proximal and distal ends and a lumen; a helical drive shaft extending through the lumen of the tubular sheath, the helical drive shaft including a helical winding portion and a cylindrical portion, the cylindrical portion positioned within an inner diameter of the helical winding portion and being attached to the winding portion by one of the methods described above, the helical winding forming an auger blade having a desired pitch, depth, width, and outer diameter; and a cutting element attached at a distal portion of the helical drive shaft.


A material removal device comprising: a tubular sheath having proximal and distal ends and a lumen; a helical drive shaft according to one of as described herein extending through the lumen of the tubular sheath, the helical drive shaft including a helical winding portion forming an auger blade having a desired pitch, depth, width, and outer diameter; and a cutting element attached at a distal portion of the helical drive shaft.

Claims
  • 1. A method of making a helical drive shaft having a double-helical auger blade with a desired pitch, depth, width, and outer diameter comprising: placing a cylindrical drive shaft into an extruded polymer tube, the polymer tube having a circular cross-section;attaching one end of the polymer tube to the drive shaft;applying a single heated tool to the tube overlying the drive shaft at a temperature sufficient to soften the polymer tube;rotating the heated tool about the driveshaft; andsculpting the softened polymer tube with the heated tool causing a portion of the tube to buckle under the heated tool, the buckled portion of the tube forming a helical auger blade with a secondary helical pitch of residual polymer left on the wall opposite with the same desired pitch, depth, and width.
  • 2. The method of claim 1 wherein the drive shaft comprises wire wound in alternating right and left hand layers.
  • 3. The method of claim 1 wherein the heated tool is applied to the tube at a temperature of 425° F.
  • 4. A method of making a helical drive shaft having a double or multi-helical auger blade with a desired pitch, depth, width, and outer diameter comprising: placing a cylindrical drive shaft into a polymer tube, the polymer tube having opposite ends, a longitudinal axis extending between the opposite ends, and a generally cross-section;attaching one end of the polymer tube to the drive shaft;applying multiple heated tools to the tube overlying the drive shaft, the heated tool being at a temperature sufficient to soften the polymer tube;rotating the applied heated tools about the longitudinal axis of the polymer tube to buckle a portion of the tube, the buckled portion of the tube forming at least a portion of the auger blade of multiple helices all with the same desired pitch, depth, width.
  • 5. The method of claim 4 wherein the drive shaft comprises wire wound in alternating right and left hand layers.
  • 6. The method of claim 4 wherein the heated tools are applied to the tube at a temperature of 425° F.
  • 7. The method of claim 4 wherein the multiple heated tools comprise two heated tools.
RELATED APPLICATIONS

This application claims the benefit of U.S. patent application Ser. No. 14/642,811, filed Mar. 10, 2015, now allowed, which is a Division of and claims priority to U.S. patent application Ser. No. 13/599,523, filed Aug. 30, 2012, now U.S. Pat. No. 8,992,717, which claims the benefit of U.S. Provisional Patent Application No. 61/530,299, filed Sep. 1, 2011, the contents of which are hereby incorporated by reference herein.

US Referenced Citations (630)
Number Name Date Kind
1481078 Albertson Jan 1924 A
2178790 Henry Nov 1939 A
2701559 Cooper Feb 1955 A
2850007 Lingley Sep 1958 A
3064651 Henderson Nov 1960 A
3082805 Royce Mar 1963 A
3320957 Sokolik May 1967 A
3614953 Moss Oct 1971 A
3683891 Eskridge et al. Aug 1972 A
3705577 Sierra Dec 1972 A
3732858 Banko May 1973 A
3749085 Wilson et al. Jul 1973 A
3800783 Jamshidi Apr 1974 A
3815604 O'Malley et al. Jun 1974 A
3831585 Brondy et al. Aug 1974 A
3837345 Matar Sep 1974 A
3845375 Stiebel Oct 1974 A
3937222 Banko Feb 1976 A
3945375 Banko Mar 1976 A
3976077 Kerfoot, Jr. Aug 1976 A
3995619 Glatzer Dec 1976 A
4007732 Kvavle et al. Feb 1977 A
4020847 Clark, III May 1977 A
4030503 Clark, III Jun 1977 A
4034744 Goldberg Jul 1977 A
4038985 Chiulli Aug 1977 A
4112708 Fukuda Sep 1978 A
4177797 Baylis et al. Dec 1979 A
4210146 Banko Jul 1980 A
4273128 Lary Jun 1981 A
4306562 Osborne Dec 1981 A
4306570 Matthews Dec 1981 A
4349032 Koyata Sep 1982 A
4368730 Sharrock Jan 1983 A
4424045 Kulischenko et al. Jan 1984 A
4436091 Banko Mar 1984 A
4445509 Auth May 1984 A
4490139 Huizenga et al. Dec 1984 A
4494057 Hotta Jan 1985 A
4512344 Barber Apr 1985 A
4589412 Kensey May 1986 A
4603694 Wheeler Aug 1986 A
4620547 Boebel Nov 1986 A
4631052 Kensey Dec 1986 A
4646719 Neuman et al. Mar 1987 A
4646736 Auth Mar 1987 A
4646738 Trott Mar 1987 A
4649919 Thimsen et al. Mar 1987 A
4653496 Bundy et al. Mar 1987 A
4664112 Kensey et al. May 1987 A
4669469 Gifford, III et al. Jun 1987 A
4679558 Kensey et al. Jul 1987 A
4686982 Nash Aug 1987 A
4692141 Mahurkar Sep 1987 A
4696298 Higgins et al. Sep 1987 A
4696667 Masch Sep 1987 A
4705038 Sjostrom Nov 1987 A
4706671 Weinrib Nov 1987 A
4728319 Masch Mar 1988 A
4729763 Henrie Mar 1988 A
4730616 Frisbie et al. Mar 1988 A
4732154 Silber Mar 1988 A
4733662 DeSatnick et al. Mar 1988 A
4745919 Bundey et al. May 1988 A
4747406 Nash May 1988 A
4747821 Kensey et al. May 1988 A
4749376 Kensey et al. Jun 1988 A
4754755 Husted Jul 1988 A
4757819 Yokoi et al. Jul 1988 A
4765332 Fischell et al. Aug 1988 A
4771774 Simpson et al. Sep 1988 A
4781186 Simpson et al. Nov 1988 A
4784636 Rydell Nov 1988 A
4790812 Hawkins, Jr. et al. Dec 1988 A
4794931 Yock Jan 1989 A
4817613 Jaraczewski et al. Apr 1989 A
4819634 Shiber Apr 1989 A
4819635 Shapiro Apr 1989 A
4838268 Keith et al. Jun 1989 A
4842579 Shiber Jun 1989 A
4844064 Thimsen et al. Jul 1989 A
4848343 Wallsten et al. Jul 1989 A
4850957 Summers Jul 1989 A
4857046 Stevens et al. Aug 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4870953 DonMichael et al. Oct 1989 A
4883458 Shiber Nov 1989 A
4886061 Fischell et al. Dec 1989 A
4886490 Shiber Dec 1989 A
4887613 Farr et al. Dec 1989 A
4894051 Shiber Jan 1990 A
4899757 Pope, Jr. et al. Feb 1990 A
4919133 Chiang Apr 1990 A
4923462 Stevens May 1990 A
4926858 Gifford, III et al. May 1990 A
4928693 Goodin et al. May 1990 A
4936987 Persinski et al. Jun 1990 A
RE33258 Onik et al. Jul 1990 E
4950238 Sullivan Aug 1990 A
4954338 Mattox Sep 1990 A
4957482 Shiber Sep 1990 A
4966604 Reiss Oct 1990 A
4973409 Cook Nov 1990 A
4979939 Shiber Dec 1990 A
4979951 Simpson Dec 1990 A
4986807 Farr Jan 1991 A
4990134 Auth Feb 1991 A
4994067 Summers Feb 1991 A
4997435 Demeter Mar 1991 A
5000185 Yock Mar 1991 A
5002553 Silber Mar 1991 A
5003918 Olson et al. Apr 1991 A
5007896 Shiber Apr 1991 A
5009659 Hamlin et al. Apr 1991 A
5019088 Farr May 1991 A
5024234 Leary et al. Jun 1991 A
5024651 Shiber Jun 1991 A
5026384 Farr et al. Jun 1991 A
5029588 Yock et al. Jul 1991 A
5030201 Palestrant Jul 1991 A
5047040 Simpson et al. Sep 1991 A
5049124 Bales, Jr. Sep 1991 A
5053044 Mueller et al. Oct 1991 A
5054492 Scribner et al. Oct 1991 A
5064435 Porter Nov 1991 A
5071425 Gifford et al. Dec 1991 A
5074841 Ademovic et al. Dec 1991 A
5077506 Krause et al. Dec 1991 A
5078722 Stevens Jan 1992 A
5078723 Stevens Jan 1992 A
5084010 Plaia et al. Jan 1992 A
5085662 Willard Feb 1992 A
5087265 Summers Feb 1992 A
5092839 Kipperman Mar 1992 A
5092873 Simpson et al. Mar 1992 A
5095911 Pomeranz Mar 1992 A
5100423 Fearnot Mar 1992 A
5100424 Jang et al. Mar 1992 A
5100426 Nixon Mar 1992 A
5108525 Gharibadeh Apr 1992 A
5110822 Sherba et al. May 1992 A
5112345 Farr May 1992 A
5114399 Kovalcheck May 1992 A
5115814 Griffith et al. May 1992 A
5120323 Shockey et al. Jun 1992 A
5127902 Fischell Jul 1992 A
5127917 Niederhauser et al. Jul 1992 A
5135531 Shiber Aug 1992 A
5154705 Fleischhacker et al. Oct 1992 A
5154724 Andrews Oct 1992 A
5165421 Fleischhacker et al. Nov 1992 A
5176693 Pannek, Jr. Jan 1993 A
5178625 Groshong Jan 1993 A
5181920 Mueller et al. Jan 1993 A
5183432 Noguchi Feb 1993 A
5190528 Fonger et al. Mar 1993 A
5192291 Pannek, Jr. Mar 1993 A
5195956 Stockmeier Mar 1993 A
5211651 Reger et al. May 1993 A
5217474 Zacca et al. Jun 1993 A
5222966 Perkins et al. Jun 1993 A
5224488 Neuffer Jul 1993 A
5224945 Pannek, Jr. Jul 1993 A
5224949 Gomringer et al. Jul 1993 A
5226909 Evans et al. Jul 1993 A
5226910 Kajiyama et al. Jul 1993 A
5234451 Osypka Aug 1993 A
5242460 Klein et al. Sep 1993 A
5242461 Kortenbach et al. Sep 1993 A
5250059 Andreas et al. Oct 1993 A
5250065 Clement et al. Oct 1993 A
5263928 Trauthen et al. Nov 1993 A
5263959 Fischell Nov 1993 A
5267955 Hanson Dec 1993 A
5267982 Sylvanowicz Dec 1993 A
5269793 Simpson et al. Dec 1993 A
5273526 Dance et al. Dec 1993 A
5282484 Reger Feb 1994 A
5284486 Kotula et al. Feb 1994 A
5285795 Ryan et al. Feb 1994 A
5295493 Radisch, Jr. Mar 1994 A
5300085 Yock Apr 1994 A
5306294 Winston et al. Apr 1994 A
5308354 Zacca et al. May 1994 A
5312425 Evans et al. May 1994 A
5312427 Shturman May 1994 A
5314438 Shturman May 1994 A
5318032 Lonsbury et al. Jun 1994 A
5318528 Heaven et al. Jun 1994 A
5318576 Plassche, Jr. et al. Jun 1994 A
5321501 Swanson et al. Jun 1994 A
5322508 Viera Jun 1994 A
5350390 Sher Sep 1994 A
5356418 Shturman Oct 1994 A
5358472 Vance et al. Oct 1994 A
5358485 Vance et al. Oct 1994 A
5360432 Shturman Nov 1994 A
5366463 Ryan Nov 1994 A
5368035 Hamm et al. Nov 1994 A
5370609 Drasler et al. Dec 1994 A
5370651 Summers Dec 1994 A
5372601 Lary Dec 1994 A
5372602 Burke Dec 1994 A
5373619 Fleischhacker et al. Dec 1994 A
5373849 Maroney et al. Dec 1994 A
5377682 Ueno et al. Jan 1995 A
5378234 Hammerslag et al. Jan 1995 A
5383460 Jang et al. Jan 1995 A
5395311 Andrews Mar 1995 A
5395313 Naves et al. Mar 1995 A
5395335 Jang Mar 1995 A
5397345 Lazarus Mar 1995 A
5402790 Jang et al. Apr 1995 A
5403334 Evans et al. Apr 1995 A
5409454 Fischell et al. Apr 1995 A
5413107 Oakley et al. May 1995 A
5419774 Willard et al. May 1995 A
5423740 Sullivan Jun 1995 A
5423799 Shiu Jun 1995 A
5423838 Willard Jun 1995 A
5423846 Fischell Jun 1995 A
5427107 Milo et al. Jun 1995 A
5429136 Milo et al. Jul 1995 A
5431673 Summers et al. Jul 1995 A
5441510 Simpson et al. Aug 1995 A
5443446 Shturman Aug 1995 A
5443497 Venbrux Aug 1995 A
5444078 Yu et al. Aug 1995 A
5445155 Sieben Aug 1995 A
5449369 Imran Sep 1995 A
5451233 Yock Sep 1995 A
5454809 Janssen Oct 1995 A
5456667 Ham et al. Oct 1995 A
5456689 Kresch et al. Oct 1995 A
5458585 Salmon et al. Oct 1995 A
5459570 Swanson et al. Oct 1995 A
5464016 Nicholas et al. Nov 1995 A
5470415 Perkins et al. Nov 1995 A
5485042 Burke et al. Jan 1996 A
5485840 Bauman Jan 1996 A
5487729 Avellanet et al. Jan 1996 A
5489295 Piplani et al. Feb 1996 A
5491524 Hellmuth et al. Feb 1996 A
5496267 Drasler et al. Mar 1996 A
5501694 Ressemann et al. Mar 1996 A
5503155 Salmon et al. Apr 1996 A
5505210 Clement Apr 1996 A
5507292 Jang et al. Apr 1996 A
5507760 Wynne et al. Apr 1996 A
5507761 Duer Apr 1996 A
5507795 Chiang et al. Apr 1996 A
5512044 Duer Apr 1996 A
5514115 Frantzen et al. May 1996 A
5520189 Malinowski et al. May 1996 A
5522825 Kropf et al. Jun 1996 A
5522880 Barone et al. Jun 1996 A
5527292 Adams et al. Jun 1996 A
5527298 Vance et al. Jun 1996 A
5527325 Conley et al. Jun 1996 A
5531685 Hemmer et al. Jul 1996 A
5531690 Solar Jul 1996 A
5531700 Moore et al. Jul 1996 A
5540707 Ressemann et al. Jul 1996 A
5549601 McIntyre et al. Aug 1996 A
5554163 Shturman Sep 1996 A
5556408 Farhat Sep 1996 A
5558093 Pomeranz Sep 1996 A
5562726 Chuter Oct 1996 A
5562728 Lazarus et al. Oct 1996 A
5569275 Kotula et al. Oct 1996 A
5569276 Jang et al. Oct 1996 A
5569277 Evans et al. Oct 1996 A
5569279 Rainin Oct 1996 A
5570693 Jang et al. Nov 1996 A
5571122 Kelly et al. Nov 1996 A
5571130 Simpson et al. Nov 1996 A
5575817 Martin Nov 1996 A
5584842 Fogarty et al. Dec 1996 A
5584843 Wulfman et al. Dec 1996 A
5609605 Marshall et al. Mar 1997 A
5618293 Sample et al. Apr 1997 A
5620447 Smith et al. Apr 1997 A
5624457 Farley et al. Apr 1997 A
5626562 Castro May 1997 A
5626576 Janssen May 1997 A
5628761 Rizik May 1997 A
5632754 Farley et al. May 1997 A
5632755 Nordgren et al. May 1997 A
5634464 Jang et al. Jun 1997 A
5643296 Hundertmark et al. Jul 1997 A
5643298 Nordgren et al. Jul 1997 A
5649941 Lary Jul 1997 A
5660180 Malinowski et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5665098 Kelly et al. Sep 1997 A
5669920 Conley et al. Sep 1997 A
5674232 Halliburton Oct 1997 A
5676696 Marcade Oct 1997 A
5676697 McDonald Oct 1997 A
5681336 Clement et al. Oct 1997 A
5682897 Pomeranz Nov 1997 A
5683449 Marcade Nov 1997 A
5683453 Palmaz Nov 1997 A
5688234 Frisbie Nov 1997 A
5695506 Pike Dec 1997 A
5695507 Auth et al. Dec 1997 A
5697944 Lary Dec 1997 A
5700240 Barwick, Jr. et al. Dec 1997 A
5700687 Finn Dec 1997 A
5707350 Krause et al. Jan 1998 A
5707376 Kavteladze et al. Jan 1998 A
5707383 Bays et al. Jan 1998 A
5709698 Adams et al. Jan 1998 A
5713913 Lary et al. Feb 1998 A
5715825 Crowley Feb 1998 A
5716410 Wang et al. Feb 1998 A
5720735 Dorros Feb 1998 A
5724977 Yock et al. Mar 1998 A
5728123 Lemelson et al. Mar 1998 A
5733296 Rogers et al. Mar 1998 A
5735816 Lieber et al. Apr 1998 A
5741270 Hansen et al. Apr 1998 A
5766192 Zacca Jun 1998 A
5772674 Nakhjavan Jun 1998 A
5775327 Randolph et al. Jul 1998 A
5776114 Frantzen et al. Jul 1998 A
5776153 Rees Jul 1998 A
5779643 Lum et al. Jul 1998 A
5779673 Roth et al. Jul 1998 A
5779721 Nash Jul 1998 A
5779722 Shturman et al. Jul 1998 A
5792157 Mische et al. Aug 1998 A
5797949 Parodi Aug 1998 A
5799655 Jang et al. Sep 1998 A
5807329 Gelman Sep 1998 A
5810867 Zarbatany et al. Sep 1998 A
5816923 Milo et al. Oct 1998 A
5820592 Hammerslag Oct 1998 A
5823971 Robinson et al. Oct 1998 A
5824039 Piplani et al. Oct 1998 A
5824055 Spiridigliozzi et al. Oct 1998 A
5827201 Samson et al. Oct 1998 A
5827229 Auth et al. Oct 1998 A
5827304 Hart Oct 1998 A
5827322 Williams Oct 1998 A
5830224 Cohn et al. Nov 1998 A
5836957 Schulz et al. Nov 1998 A
5843022 Willard et al. Dec 1998 A
5843103 Wulfman Dec 1998 A
5843161 Solovay Dec 1998 A
5855563 Kaplan et al. Jan 1999 A
5865748 Co et al. Feb 1999 A
5868685 Powell et al. Feb 1999 A
5868767 Farley et al. Feb 1999 A
5871536 Lazarus Feb 1999 A
5873882 Straub et al. Feb 1999 A
5876414 Straub Mar 1999 A
5879397 Kalberer et al. Mar 1999 A
5883458 Sumita et al. Mar 1999 A
5888201 Stinson et al. Mar 1999 A
5895399 Barbut et al. Apr 1999 A
5895402 Hundertmark et al. Apr 1999 A
5902245 Yock May 1999 A
5906036 Pagan May 1999 A
5910150 Saadat Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5916210 Winston Jun 1999 A
5922003 Anctil et al. Jul 1999 A
5935108 Katoh et al. Aug 1999 A
5938645 Gordon Aug 1999 A
5938671 Katon et al. Aug 1999 A
5938672 Nash Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5947985 Imran Sep 1999 A
5948184 Frantzen et al. Sep 1999 A
5951480 White et al. Sep 1999 A
5951482 Winston et al. Sep 1999 A
5954745 Gertler et al. Sep 1999 A
5968064 Selmon et al. Oct 1999 A
5972019 Engelson et al. Oct 1999 A
5985397 Witt et al. Nov 1999 A
5989281 Barbut et al. Nov 1999 A
5997557 Barbut et al. Dec 1999 A
6001112 Taylor Dec 1999 A
6010449 Selmon et al. Jan 2000 A
6010522 Barbut et al. Jan 2000 A
6013072 Winston et al. Jan 2000 A
6019778 Wislon et al. Feb 2000 A
6022362 Lee et al. Feb 2000 A
6027450 Brown et al. Feb 2000 A
6027460 Shturman Feb 2000 A
6027514 Stine et al. Feb 2000 A
6032673 Savage et al. Mar 2000 A
6036646 Barthe et al. Mar 2000 A
6036656 Slater Mar 2000 A
6036707 Spaulding Mar 2000 A
6048349 Winston et al. Apr 2000 A
6050949 White et al. Apr 2000 A
6063093 Winston et al. May 2000 A
6066153 Lev May 2000 A
6068603 Suzuki May 2000 A
6068638 Makower May 2000 A
6081738 Hinohara et al. Jun 2000 A
RE36764 Zacca et al. Jul 2000 E
6095990 Parodi Aug 2000 A
6099542 Cohn et al. Aug 2000 A
6106515 Winston et al. Aug 2000 A
6110121 Lenker Aug 2000 A
6120515 Rogers et al. Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6126649 VanTassel et al. Oct 2000 A
6129734 Shturman et al. Oct 2000 A
6134003 Tearney et al. Oct 2000 A
6152909 Bagaoisan et al. Nov 2000 A
6152938 Curry Nov 2000 A
6156046 Passafaro et al. Dec 2000 A
6157852 Selmon et al. Dec 2000 A
6159195 Ha et al. Dec 2000 A
6159225 Makower Dec 2000 A
6165127 Crowley Dec 2000 A
6179859 Bates et al. Jan 2001 B1
6183432 Milo Feb 2001 B1
6187025 Machek Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6191862 Swanson et al. Feb 2001 B1
6193676 Winston et al. Feb 2001 B1
6196963 Williams Mar 2001 B1
6206898 Honeycutt et al. Mar 2001 B1
6217527 Selmon et al. Apr 2001 B1
6217549 Selmon et al. Apr 2001 B1
6217595 Shturman et al. Apr 2001 B1
6221049 Selmon et al. Apr 2001 B1
6221332 Thumm et al. Apr 2001 B1
6228049 Schroeder et al. May 2001 B1
6228076 Winston et al. May 2001 B1
6231546 Milo et al. May 2001 B1
6231549 Noecker et al. May 2001 B1
6235000 Milo et al. May 2001 B1
6238405 Findlay, III et al. May 2001 B1
6241667 Vetter et al. Jun 2001 B1
6241744 Imran et al. Jun 2001 B1
6245012 Kleshinski Jun 2001 B1
6258052 Milo Jul 2001 B1
6263236 Kasinkas et al. Jul 2001 B1
6264611 Ishikawa et al. Jul 2001 B1
6266550 Selmon et al. Jul 2001 B1
6267592 Mays Jul 2001 B1
6277138 Levinson et al. Aug 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6283983 Makower et al. Sep 2001 B1
6299622 Snow et al. Oct 2001 B1
6299623 Wulfman Oct 2001 B1
6302875 Makower et al. Oct 2001 B1
6305834 Schubert et al. Oct 2001 B1
6312444 Barbut Nov 2001 B1
6319242 Patterson et al. Nov 2001 B1
6319275 Lashinski et al. Nov 2001 B1
6330884 Kim Dec 2001 B1
6355005 Powell et al. Mar 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6375615 Flaherty et al. Apr 2002 B1
6383195 Richard May 2002 B1
6383205 Samson et al. May 2002 B1
6394976 Winston et al. May 2002 B1
6398798 Selmon et al. Jun 2002 B2
6422736 Antoniades et al. Jul 2002 B1
6423081 Lee et al. Jul 2002 B1
6425870 Flesch Jul 2002 B1
6428551 Hall et al. Aug 2002 B1
6428552 Sparks Aug 2002 B1
6443966 Shiu Sep 2002 B1
6445939 Swanson et al. Sep 2002 B1
6447525 Follmer et al. Sep 2002 B2
6451036 Heitzmann et al. Sep 2002 B1
6454779 Taylor Sep 2002 B1
6475226 Belef et al. Nov 2002 B1
6482217 Pintor et al. Nov 2002 B1
6497711 Plaia et al. Dec 2002 B1
6501551 Tearney et al. Dec 2002 B1
6520975 Branco Feb 2003 B2
RE38018 Anctil et al. Mar 2003 E
6532380 Close et al. Mar 2003 B1
6533749 Mitusina et al. Mar 2003 B1
6561998 Roth et al. May 2003 B1
6565588 Clement et al. May 2003 B1
6569177 Dillard et al. May 2003 B1
6592526 Lenker Jul 2003 B1
6620180 Bays et al. Sep 2003 B1
6623437 Hinchliffe et al. Sep 2003 B2
6623495 Findlay, III et al. Sep 2003 B2
6623496 Snow et al. Sep 2003 B2
6629953 Boyd Oct 2003 B1
6638233 Corvi et al. Oct 2003 B2
RE38335 Aust et al. Nov 2003 E
6652505 Tsugita Nov 2003 B1
6652548 Evans et al. Nov 2003 B2
6656195 Peters et al. Dec 2003 B2
6666874 Heitzmann et al. Dec 2003 B2
6682543 Barbut et al. Jan 2004 B2
6733511 Hall et al. May 2004 B2
6740103 Hall et al. May 2004 B2
6746462 Selmon et al. Jun 2004 B1
6764495 Lee et al. Jul 2004 B2
6790204 Zadno-Azizi et al. Sep 2004 B2
6790215 Findlay, III et al. Sep 2004 B2
6818001 Wulfman et al. Nov 2004 B2
6830577 Nash et al. Dec 2004 B2
6843797 Nash et al. Jan 2005 B2
6849068 Bagaoisan et al. Feb 2005 B1
6863676 Lee et al. Mar 2005 B2
6911026 Hall et al. Jun 2005 B1
6970732 Winston et al. Nov 2005 B2
6997934 Snow et al. Feb 2006 B2
7153315 Miller Dec 2006 B2
7172610 Heitzmann et al. Feb 2007 B2
7208511 Williams et al. Apr 2007 B2
7235088 Pintor et al. Jun 2007 B2
7318831 Alvarez et al. Jan 2008 B2
7388495 Fallin et al. Jun 2008 B2
7479148 Beaupre Jan 2009 B2
7488322 Brunnett et al. Feb 2009 B2
7524289 Lenker Apr 2009 B2
7603166 Casscells, III et al. Oct 2009 B2
7708749 Simpson et al. May 2010 B2
7713235 Torrance et al. May 2010 B2
7713279 Simpson et al. May 2010 B2
7729745 Maschke Jun 2010 B2
7734332 Sher Jun 2010 B2
7753852 Maschke Jul 2010 B2
7758599 Snow et al. Jul 2010 B2
7771444 Patel et al. Aug 2010 B2
7887556 Simpson et al. Feb 2011 B2
20010000041 Selmon et al. Mar 2001 A1
20010031784 Petersen et al. Oct 2001 A1
20010031981 Evans et al. Oct 2001 A1
20010044622 Vardi et al. Nov 2001 A1
20010049500 VanTassel et al. Dec 2001 A1
20020019644 Hastings et al. Feb 2002 A1
20020022788 Corvi et al. Feb 2002 A1
20020058904 Boock et al. May 2002 A1
20020077373 Hudson Jun 2002 A1
20020077642 Patel et al. Jun 2002 A1
20020095141 Belef et al. Jul 2002 A1
20020103459 Sparks et al. Aug 2002 A1
20020116039 Walker et al. Aug 2002 A1
20020177800 Bagaoisan et al. Nov 2002 A1
20020188307 Pintor et al. Dec 2002 A1
20030018346 Follmer et al. Jan 2003 A1
20030023263 Krolik et al. Jan 2003 A1
20030093098 Heitzmann et al. May 2003 A1
20030120295 Simpson et al. Jun 2003 A1
20030125757 Patel et al. Jul 2003 A1
20030125758 Simpson et al. Jul 2003 A1
20030163126 West, Jr. Aug 2003 A1
20030199747 Michlitsch et al. Oct 2003 A1
20030206484 Childers et al. Nov 2003 A1
20030229369 Findlay, III et al. Dec 2003 A1
20040006358 Wulfman et al. Jan 2004 A1
20040049225 Denison Mar 2004 A1
20040167553 Simpson et al. Aug 2004 A1
20040167554 Simpson et al. Aug 2004 A1
20040193034 Wasicek et al. Sep 2004 A1
20040210245 Erickson et al. Oct 2004 A1
20040236346 Parker Nov 2004 A1
20050004585 Hall et al. Jan 2005 A1
20050004594 Nool et al. Jan 2005 A1
20050021063 Hall et al. Jan 2005 A1
20050042239 Lipiecki et al. Feb 2005 A1
20050090845 Boyd Apr 2005 A1
20050090849 Adams Apr 2005 A1
20050177068 Simpson Aug 2005 A1
20050216018 Sennett Sep 2005 A1
20050222596 Maschke Oct 2005 A1
20050222663 Simpson et al. Oct 2005 A1
20060015126 Sher Jan 2006 A1
20060235334 Corvi et al. Oct 2006 A1
20060259052 Pintor et al. Nov 2006 A1
20070010840 Rosenthal et al. Jan 2007 A1
20070038061 Huennekens et al. Feb 2007 A1
20070049958 Adams Mar 2007 A1
20070135712 Maschke Jun 2007 A1
20070135886 Maschke Jun 2007 A1
20070167824 Lee et al. Jul 2007 A1
20070225739 Pintor et al. Sep 2007 A1
20070265647 Bonnette et al. Nov 2007 A1
20070276419 Rosenthal Nov 2007 A1
20080001643 Lee Jan 2008 A1
20080004644 To et al. Jan 2008 A1
20080004645 To et al. Jan 2008 A1
20080004646 To et al. Jan 2008 A1
20080004647 To et al. Jan 2008 A1
20080045986 To et al. Feb 2008 A1
20080051812 Schmitz et al. Feb 2008 A1
20080065124 Olson Mar 2008 A1
20080065125 Olson Mar 2008 A1
20080097403 Donaldson et al. Apr 2008 A1
20080125799 Adams May 2008 A1
20080161840 Osiroff et al. Jul 2008 A1
20080177139 Courtney et al. Jul 2008 A1
20080208227 Kadykowski et al. Aug 2008 A1
20080249553 Gruber et al. Oct 2008 A1
20080312673 Viswanathan et al. Dec 2008 A1
20090012548 Thatcher et al. Jan 2009 A1
20090018565 To et al. Jan 2009 A1
20090018566 Escudero et al. Jan 2009 A1
20090138031 Tsukernik et al. May 2009 A1
20090187203 Corvi et al. Jul 2009 A1
20090216125 Lenker Aug 2009 A1
20090216180 Lee et al. Aug 2009 A1
20090226063 Rangwala et al. Sep 2009 A1
20090234378 Escudero et al. Sep 2009 A1
20090270888 Patel et al. Oct 2009 A1
20090275966 Mitusina Nov 2009 A1
20090299394 Simpson et al. Dec 2009 A1
20090306689 Welty et al. Dec 2009 A1
20100030216 Arcenio Feb 2010 A1
20100049225 To et al. Feb 2010 A1
20100130996 Doud et al. May 2010 A1
20100198240 Simpson et al. Aug 2010 A1
20100241147 Maschke Sep 2010 A1
20100280534 Sher Nov 2010 A1
20100292721 Moberg Nov 2010 A1
20100298850 Snow et al. Nov 2010 A1
20100312263 Moberg et al. Dec 2010 A1
20110004107 Rosenthal et al. Jan 2011 A1
20110022069 Mitusina Jan 2011 A1
20110040315 To et al. Feb 2011 A1
20110130777 Zhang et al. Jun 2011 A1
20110144673 Zhang et al. Jun 2011 A1
20120172905 Lee Shee Jul 2012 A1
Foreign Referenced Citations (75)
Number Date Country
2000621 Apr 1990 CA
3732236 Dec 1988 DE
8900059 May 1989 DE
93 03 531 Jul 1994 DE
44 44 166 Jun 1996 DE
29722136 May 1999 DE
0086048 Aug 1983 EP
0 107 009 May 1984 EP
0 229 620 Jul 1987 EP
0291170 Nov 1988 EP
0 302 701 Feb 1989 EP
0330843 Sep 1989 EP
0373927 Jun 1990 EP
0421457 Apr 1991 EP
0 431 752 Jun 1991 EP
0448859 Oct 1991 EP
0463798 Jan 1992 EP
0 490 565 Jun 1992 EP
0514810 Nov 1992 EP
0 526 042 Feb 1993 EP
0533320 Mar 1993 EP
0 608 911 Aug 1994 EP
0 608 912 Aug 1994 EP
0 611 522 Aug 1994 EP
0 648 414 Apr 1995 EP
0657140 Jun 1995 EP
0 680 695 Nov 1998 EP
0 983 749 Mar 2000 EP
1 767 159 Mar 2007 EP
1 875 871 Jan 2008 EP
2016354 Sep 1979 GB
2093353 Sep 1982 GB
2 115 829 Sep 1983 GB
2210965 Jun 1989 GB
64-084523 Mar 1989 JP
2-206452 Aug 1990 JP
02-280765 Nov 1990 JP
2271847 Nov 1990 JP
3186256 Aug 1991 JP
4200459 Jul 1992 JP
5042162 Feb 1993 JP
5056984 Mar 1993 JP
5184679 Jul 1993 JP
6269460 Sep 1994 JP
7075611 Aug 1995 JP
442795 Sep 1974 SU
665908 Jun 1979 SU
WO 8906517 Jul 1989 WO
9001406 Feb 1990 WO
WO 9207500 May 1992 WO
WO 9313716 Jul 1993 WO
WO 9313717 Jul 1993 WO
9316642 Sep 1993 WO
WO 9521576 Aug 1995 WO
WO 9611648 Apr 1996 WO
WO 9746164 Dec 1997 WO
WO 9804199 Feb 1998 WO
WO 9824372 Jun 1998 WO
WO 9939648 Aug 1999 WO
WO 9952454 Oct 1999 WO
WO 0030531 Jun 2000 WO
WO 0054735 Sep 2000 WO
WO 0062913 Oct 2000 WO
WO 0063800 Nov 2000 WO
WO 0072955 Dec 2000 WO
WO 0115609 Mar 2001 WO
WO 0119444 Mar 2001 WO
WO 0130433 May 2001 WO
WO 0143857 Jun 2001 WO
WO 0143809 Jun 2001 WO
WO 0216017 Feb 2002 WO
WO 0245598 Jun 2002 WO
02085440 Oct 2002 WO
2006058223 Jun 2006 WO
2006066012 Jun 2006 WO
Non-Patent Literature Citations (7)
Entry
Amplatz Coronary Catheters, posted: Feb. 25, 2009 [online], [retrieved on Mar. 29, 2011], retrieved from the Cardiophile MD using Internet website <URL:http://cardiophile.org/2009/02/amplatzcoronary-catheter.html> (3 pages).
Judkins Left Coronary Catheter, posted: Feb. 19, 2009, [online], [retrieved on Mar. 29, 2011], retrieved from the Cardiophile MD using Internet website <URL:http://cardiophile.org/2009/02/judkins-left-coronary-catheter-html> (3 pages).
International Search Report and Written Opinion dated Mar. 12, 2013 for PCT/US2012/053181, 17 pages, Rijswijk, The Netherlands.
Notice of Reasons for Rejection from Japanese Application No. 2014-528609, dated Nov. 19, 2014, 9 pages.
Brezinski et al., “Optical Coherence Tomography for Optical Biopsy,” Circulation, 93:1206-1213 (1996).
Brezinski et al., “Assessing Atherosclerotic Plaque Morphology: Comparison of Optical Coherence Tomography and High Frequency Intravascular Ultrasound,” Heart, 77:397-403 (1997).
Huang et al., “Optical Coherence Tomography,” Science, 254:1178-1181 (1991).
Related Publications (1)
Number Date Country
20170360470 A1 Dec 2017 US
Provisional Applications (1)
Number Date Country
61530299 Sep 2011 US
Divisions (2)
Number Date Country
Parent 14642811 Mar 2015 US
Child 15684110 US
Parent 13599526 Aug 2012 US
Child 14642811 US