The present disclosure relates generally to hydraulic systems and, more particularly, to methods of manufacturing a fluid distribution system assembly.
Known aircraft hydraulic systems use a pressurized supply line to transport hydraulic fluid to a load, and a separate return line for returning the hydraulic fluid from the load back to a storage tank or reservoir. Known pressurized supply lines and return lines are fabricated with a wall thickness that is sufficient to withstand pressure differentials that may exist within the hydraulic system. Separate pressure and return lines may require extra space and hardware. In an aircraft, space is limited, and the additional hardware increases weight, part cost, and installation time. Additionally, pressure lines are generally unprotected and thus, may be susceptible to damage during handling and installation and may be thicker and heavier than necessary.
In one aspect, a method of manufacturing a fluid distribution system is provided. The method includes providing a first distribution line configured to channel a fluid in a first direction and coupling at least one internal support member to an outer surface of the first distribution line. The at least one internal support member includes a plurality of support legs extending radially outward therefrom. The method also includes aligning a second distribution line concentrically with and circumscribing the first distribution line. The second distribution line is configured to channel the fluid in an opposite second direction. The method further includes coupling the plurality of support legs to an inner surface of the second distribution line.
In another aspect, a fluid distribution system assembly is provided. The assembly includes a first distribution line configured to channel a fluid in a first direction and at least one internal support member coupled to an outer surface of the first distribution line. The at least one internal support member includes a plurality of support legs extending radially outward therefrom. The assembly also includes a second distribution line including an inner surface coupled to the plurality of support legs. The second distribution line is concentrically aligned with and circumscribes the first distribution line. The second distribution line is configured to channel the fluid in an opposite second direction, wherein the second distribution line is aligned after the at least one internal support member is coupled to the first distribution line.
First and second actuators 104 and 106, respectively, may include any actuators used in known hydraulic systems. Each actuator 104 and 106, respectively, includes a piston (not shown) movable within an actuator barrel (not shown). Each actuator 104 and 106, respectively, also includes a shaft or rod (not shown). One end of the shaft engages the piston, while the other end of the shaft engages with the flight control surface. The actuator barrel is in flow communication to fluid reservoir 108 and to pump 110 via an extended fluid conduit 114 or 116 and a retracted fluid conduit 118 or 120. Each actuator barrel is sized to enable the piston to move within the barrel when the barrel receives a supply of pressurized working fluid from reservoir 108 and pump 110 via fluid distribution system 112.
Each actuator 104 and 106 is in flow communication to manifold 102 via a respective extended fluid conduit or line 114 or 116, respectively, and via a retracted fluid conduit 118 or 120. When provided with pressurized working fluid, the flow direction of the pressurized working fluid determines whether actuators 104 and 106 extend or retract, and thus operate to retract or extend the flight control surface. For example, first actuator's 104 piston extends when the pressurized working fluid enters an extend side 122 of first actuator 104 via extended fluid conduit 114. Working fluid is discharged from a retract side 124 of first actuator 104 via retracted fluid conduit 118 and is returned to reservoir 108 via fluid distribution system 112. Conversely, first actuator's 104 piston retracts when the pressurized working fluid is provided to retract side 124 via retracted fluid conduit 118. In such a condition, the working fluid is discharged from extend side 122 of first actuator 104 via extended fluid conduit 114 and returned to reservoir 108 via fluid distribution system 112.
Inner line 200 is concentrically positioned within outer line 202 along a full length L of fluid distribution system 112. More specifically, outer line 202 is radially outward from inner line 200. Fluid distribution system 112 is configured to channel a fluid in a first direction 204 via inner line 200 and channel fluid in a second direction 206 that is opposite first direction 204 via outer line 202.
In the exemplary implementation, inner line 200 is a pressure supply line 200 that delivers pressurized working fluid to manifold 102 (shown in
In the exemplary embodiment, fluid distribution system 112 is fabricated using an additive manufacturing process. Specifically, an additive manufacturing process known as direct metal laser sintering (DMLS) or direct metal laser melting (DMLM) is used to manufacture fluid distribution system 112. Although the fabrication process is described herein as DMLS, one having ordinary skill in the art would understand that DMLM could also be used. Alternatively, the additive manufacturing method is not limited to the DMLS or DMLM process, but may be any known additive manufacturing process that enables fluid distribution system 112 to function as described herein. This fabrication process eliminates complex joints and structures that would typically be defined between separate components that require welding or brazing. Rather, DMLS is an additive layer process that produces a metal component directly from a CAD model using a laser and a fine metal powder. The result is a monolithic distribution system having concentric first and second distribution lines connected by support members. The distribution system may further include ducts that extend from the first and second distribution lines that are configured to couple with separate fluid sources. In a further implementation, the ducts may also be manufactured in-situ with the distribution system using a DMLS, DMLM, or other additive manufacturing process to form a monolithic distribution system. In the exemplary implementation, aluminum-based alloy powders, corrosion resistant steel-based alloy powders, titanium-based alloy powders, and synthetic rubber compound powders are used to fabricate the fluid distribution line disclosed herein, but other powders that enable the fluid distribution line to function as described herein may be used.
In the exemplary implementation, at a second end 306, pressure supply line 200 is coupled in flow communication to an inlet 308 of manifold 102 to enable fluid flow of pressurized fluid from pump 110 into manifold 102. Further, fluid distribution system 112 includes a return line inlet 310 that channels fluid flowing from manifold 102 back towards reservoir 108. In alternative implementations, fluid distribution system 112 may be coupled within system 100 using a separate connection device than the device that couples fluid distribution system 112 to system 100.
The methods and systems described herein are in the context of aircraft manufacturing and service method 600 (shown in
Each of the processes of method 600 may be performed or carried out by a system integrator, a third party, and/or an operator (e.g., a customer). For the purposes of this description, a system integrator may include without limitation any number of aircraft manufacturers and major-system subcontractors; a third party may include without limitation any number of venders, subcontractors, and suppliers; and an operator may be an airline, leasing company, military entity, service organization, and so on.
As shown in
In the exemplary implementation, base portion 902 has a circular shape and is sized to slide onto an outer surface 906 of inner line 200 (shown in
In the exemplary implementation, support legs 904 extend radially outward from base portion 902. Although
In the exemplary implementation, to form fluid distribution system 112 into a desired configuration, first plug 1100 is inserted in inner and outer lines 200 and 202 at first end 1102. Filling material 1108 is inserted into inner and outer lines 200 and 202 at second end 1106 and is packed tightly. Once full, second plug 1104 is inserted at second end 1106. Fluid distribution system 112 is formed or bent into a desired configuration. Filling material 1108 provides internal support for inner and outer lines 200 and 202 and prevent them from wrinkling or deforming during bending. After the desired configuration is achieved, plugs 1100 and 1104 and filling material 1108 are removed from inner and outer lines 200 and 202.
In the exemplary implementation, the method includes providing 1202 a first distribution line configured to channel a fluid in a first direction. At least one internal support member is coupled 1204 to an outer surface of the first distribution line. The at least one internal support member includes a plurality of support legs extending radially outward therefrom. The at least one internal support member includes a brazing material disposed on an inner surface of the at least one internal support member. The at least one internal support member is coupled to an outer surface of the first distribution line by heating the at least one internal support member to braze the at least one internal support member to the first distribution line. In one implementation, a plurality of internal support members are coupled to the outer surface of the first distribution line at predetermined distances along the first distribution line.
In the exemplary implementation, the method includes aligning 1206 a second distribution line concentrically with and circumscribing the first distribution line. The second distribution line is configured to channel the fluid in an opposite second direction.
In the exemplary implementation, the method includes coupling 1208 the plurality of support legs to an inner surface of the second distribution line. An outer surface of each support leg of the plurality of support legs includes a brazing material disposed thereon. The plurality of support legs are coupled to the inner surface of the second distribution line by heating the second distribution line to braze the plurality of support legs to the second distribution line. Heating the second distribution line to braze the plurality of support legs to the second distribution line may include heating the second distribution line at predetermined locations where the plurality of support legs contact the inner surface of the second distribution line.
In the exemplary implementation, the method further includes filling the first and second distribution lines with a filling material. The filling material may include sand. To fill the first and second distribution lines, a first end of the first and second distribution lines is plugged before filling the first and second distribution lines with the filling material. After filling the first and second distribution lines with the filling material, a second end of the first and second distribution lines is plugged. After the first and second distribution lines are filled with the filling material and plugged at the first and second ends, the first and second distribution lines are formed into a desired configuration. When the desired configuration is achieved, the filling material is removed from the first and second distribution lines.
Apparatus and methods embodied herein may be employed during any one or more of the stages of the production and service method 600. For example, components or subassemblies corresponding to production process 608 may be fabricated or manufactured in a manner similar to components or subassemblies produced while the aircraft 602 is in service. Also, one or more apparatus implementations, method implementations, or a combination thereof may be utilized during the production stages 608 and 610, for example, by substantially expediting assembly of or reducing the cost of an aircraft 602. Similarly, one or more of apparatus implementations, method implementations, or a combination thereof may be utilized while the aircraft 602 is in service, for example and without limitation, to maintenance and service 616.
The embodiments described herein facilitate reducing the size and space required for installation of fluid distribution lines in an aircraft. More specifically, the above-described systems integrate a pressure supply line within a return line, rather than having separate lines that require more space. The return line reduces stresses on and protects the pressure supply line during installation and operation, enabling a reduction in thickness of the pressure supply line. Further, the above-described fluid distribution line reduces weight, installation time, and costs.
A technical effect of the systems and methods described herein includes at least one of: (a) providing a first distribution line configured to channel a fluid in a first direction; (b) coupling at least one internal support member to an outer surface of the first distribution line, wherein the at least one internal support member includes a plurality of support legs extending radially outward therefrom; (c) aligning a second distribution line concentrically with and circumscribing the first distribution line, the second distribution line configured to channel the fluid in an opposite second direction; and (d) coupling the plurality of support legs to an inner surface of the second distribution line.
The implementations described herein relate generally to hydraulic systems and, more particularly, to methods and systems for channeling a fluid using aircraft hydraulic fluid distribution lines. Exemplary implementations of methods and systems for channeling a fluid using aircraft hydraulic fluid distribution lines are described above in detail. The methods and systems are not limited to the specific implementations described herein, but rather, components of systems and/or steps of the method may be utilized independently and separately from other components and/or steps described herein. Each method step and each component may also be used in combination with other method steps and/or components. Although specific features of various implementations may be shown in some drawings and not in others, this is for convenience only. Any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
An element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural elements or steps unless such exclusion is explicitly recited. Moreover, references to “one implementation” of the present invention and/or the “exemplary implementation” are not intended to be interpreted as excluding the existence of additional implementations that also incorporate the recited features.
This written description uses examples to disclose the implementations, including the best mode, and also to enable any person skilled in the art to practice the implementations, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
This application is a continuation-in-part of U.S. application Ser. No. 13/922,748, filed Jun. 20, 2013, the disclosure of which is hereby incorporated by reference in its entirety.
| Number | Date | Country | |
|---|---|---|---|
| Parent | 13922748 | Jun 2013 | US |
| Child | 14287564 | US |