This application is related to commonly owned U.S. patent application Ser. No. 11/041,554. entitled “A Sealant Composition Comprising a Crosslinkable Material and a Reduced Amount of Cement for a Permeable Zone Downhole,” filed Jan. 24, 2005 and incorporated by reference herein.
The present invention generally relates to subterranean zonal isolation, and more particularly to methods of plugging a permeable zone in a wellbore using a sealant composition comprising a crosslinkable material and a reduced amount of cement.
A technique known as squeeze or remedial cementing is a common operation in the petroleum industry. Most squeezes are performed with a drilling or workover rig and through threaded tubing or drillpipe. Squeeze cementing is most often performed to repair leaks in well tubulars and restore pressure integrity to the wellbore, raise the level of or restore a cement sheath behind the casing to support or protect well tubulars, modify the production or injection profile of a well by sealing unwanted production or thief zones, or repair a poor primary cement job before well completion. Squeeze cementing coupled with coiled tubing has been a standard remediation technique for shutting of unwanted gas or water production. Cement is able to fill perforation tunnels, channels behind pipe, and/or washout zones behind pipe, and consequently cement is able to provide a near wellbore block to production. Production from selected zones can then be reestablished by reperforating these zones. Unfortunately, cement has limitations as it does not penetrate into the porous rock. Microchannels along the cement and porous rock interface often develop due to cyclical changes in underground pressures and temperatures during subsequent production and shut-in stages.
Polymer gels are also used for shutting of unwanted gas or water production and can be placed by bullheading or can be selectively placed through coiled tubing. The main difference with squeeze cementing is that the polymer gels provide in depth blockage by penetrating the porous media and crosslinking in situ. The in situ properties of these gels can be varied from flowing gels to ringing gels by adjusting the polymer concentration, the polymer molecular weight, and/or the type of crosslinker. A limitation of gels is that they may not have the mechanical properties to provide sufficient resistance to flow in the absence of a porous medium, for example in areas such as voids and cavities behind pipe.
A logical solution to the limitations outlined above is to combine polymer gels with cement squeezes to effectively block to production through the porous medium, perforations, voids and/or cavities. This combination is typically conducted sequentially: first the polymer gel is placed in the formation and the treatment is completed with a cement tail-in to squeeze the perforations and any voids and cavities behind pipe. A disadvantage of the sequential combination treatment may be that the depth of polymer invasion in the porous media extends beyond the depths that can be penetrated by perforating guns and consequently the shut-off may be permanent.
Another approach to combining squeeze cementing and polymer gel technology for shutting of unwanted gas or water production is to use the polymer gel as the “mix water” for the cement slurry. The limited and controlled leak off of the polymer gel into the porous medium during the squeeze enables a controlled depth of invasion. US Patent Application Publication 2003/0224946 A1, incorporated herein by reference in its entirety, discloses compositions that can be used for this combined gel-cement technique. One composition includes a crosslinkable material, e.g., H2ZERO polymer sold by Halliburton Energy Services of Duncan, Okla., for improving the strength of the composition when it sets such that it can withstand the pressures exerted by fluids in the subterranean formation. However, due to the alkalinity of the cement, which typically has a pH greater than 12, the gel time of the cement composition at the relatively high temperatures in the wellbore may be unacceptably short. The gel time refers to the period of time from initial mixing of the components in the cement composition to the point when a gel is formed. At this point, the viscosity of the cement composition is so high that it is no longer pumpable and thus does not reach the permeable zone where its placement is intended. A need therefore exists to reduce the gel time of such squeeze sealant compositions, thus ensuring that they can be properly placed in permeable zones downhole to prevent fluids from flowing into the wellbore.
Disclosed herein is a method of servicing a wellbore, comprising preparing a sealant composition comprising a crosslinkable material, a crosslinking agent, a fluid loss control additive, and water, placing the sealant composition in a permeable zone in the wellbore, and allowing the sealant composition to set. Also disclosed herein is a method of servicing a wellbore, comprising preparing a sealant composition by combining a crosslinkable material, a crosslinking agent, a fluid loss control additive, water, and a cement, wherein an amount of the cement is reduced to an effective amount to increase a gel time of the sealant composition to greater than or equal to about 4 hours when the sealant composition is exposed to ambient temperatures in the wellbore, placing the sealant composition in a permeable zone in the wellbore, and allowing the sealant composition to gel.
Sealant compositions for plugging permeable zones in a wellbore include at least one crosslinkable material, at least one fluid loss control additive, water, and a reduced amount of cement relative to a conventional cement composition containing the same components except for the cement, for example a cement composition disclosed in U.S. Patent Application Publication No. 2003/0224946 A1, filed Jun. 4, 2002, and incorporated by reference herein in its entirety. The amount of cement in the sealant compositions is reduced by an effective amount to lengthen the gel time of the sealant compositions to greater than or equal to about 4 hours when the composition is exposed to ambient temperatures in the wellbore. In an embodiment, the gel time is in a range of from about 4 hours to about 12 hours, alternatively, from about 4 to about 8 hours, alternatively, from about 4 to about 6 hours. In particular, the amount of cement present in the sealant compositions may be in a range of from about 0% to about 50% by weight of the sealant composition. Thus, cementless sealant compositions are contemplated in one embodiment. As used herein, gel time is defined as the period of time from initial mixing of the components in the sealant composition to the point when a gel is formed. Further, as used herein, a gel is defined as a crosslinked polymer network swollen in a liquid medium.
In embodiments comprising cement, any suitable cement known in the art may be used in the sealant compositions. An example of a suitable cement includes hydraulic cement, which comprises calcium, aluminum, silicon, oxygen, and/or sulfur and which sets and hardens by reaction with water. Examples of hydraulic cements include, but are not limited to a Portland cement, a pozzolan cement, a gypsum cement, a high alumina content cement, a silica cement, a high alkalinity cement, or combinations thereof. Preferred hydraulic cements are Portland cments of the type described in American Petroleum Institute (API) Specification 10, 5th Edition, Jul. 1, 1990, which is incorporated by reference herein in its entirety. The cement may be, for example, a class A, B, C, G, or H Portland cement. Another example of a suitable cement is microfine cement, for example, MICRODUR RU microfine cement available from Dyckerhoff GmBH of Lengerich, Germany.
Examples of suitable crosslinkable materials include but are not limited to the following: a water soluble copolymer of a non-acidic ethylenically unsaturated polar monomer and a copolymerizable ethylenically unsaturated ester; a terpolymer or tetrapolymer of an ethylenically unsaturated polar monomer, an ethylenically unsaturated ester, and a monomer selected from acrylamide-2-methylpropane sulfonic acid, N-vinylpyrrolidone, or both; or combinations thereof. The sealant compositions may also include at least one crosslinking agent, which is herein defined as a material that is capable of crosslinking such copolymers to form a gel. The crosslinking agent may be, for example, an organic crosslinking agent such as a polyalkyleneimine, a polyfunctional aliphatic amine, an aralkylamine, or a heteroaralkylamine. The amount of the crosslinkable material present in the sealant composition may be in a range of from about 1% to about 5% by weight of the sealant composition. The amount of the crosslinking agent may be in a range of from about 0.1% to about 5% by weight of the sealant compositions. A description of such copolymers and crosslinking agents can be found in U.S. Pat. Nos. 5,836,392, 6,192,986, and 6,196,317, each of which is incorporated by reference herein in its entirety. In an embodiment, the crosslinkable material is a copolymer of acrylamide and t-butyl acrylate, and the crosslinking agent is polyethylene imine. These materials are commercially available in a single H2ZERO system sold by Halliburton Energy Services of Duncan, Okla.
Additional examples of suitable crosslinkable materials include but are not limited to self-crosslinking, water soluble hydroxy unsaturated carbonyl monomers and water soluble, vinyl monomers. These monomers may be used in combination with a crosslinking agent, for example a suitable initiator such as an azo compound that is temperature activated over a range of temperatures. As used herein, an initiator is defined as a compound that is capable of forming free radicals that initiate polymerization of self-crosslinking monomers. Further, the vinyl monomers may also be used in combination with crosslinking agents such as multifunctional, vinyl monomers. The amount of the crosslinkable material present in the sealant composition may be in a range of from about 1% to about 5% by weight of the sealant composition. The amount of the crosslinking agent may be in a range of from about 0.05% to about 2% by weight of the sealant compositions. A description of such crosslinkable materials, and initiators, can be found in U.S. Pat. Nos. 5,358,051 and 5,335,726, each of which is incorporated by reference herein in its entirety. In an embodiment, the crosslinkable material is 2-hydroxy ethyl acrylate monomer, and the initiators used therewith are different AZO-compounds. These materials are commercially available in a single PERMSEAL system sold by Halliburton Energy Services.
The water employed in the sealant compositions may be fresh water or salt water, e.g., an unsaturated aqueous salt solution or a saturated aqueous salt solution such as brine or seawater. The amount of water present in the sealant compositions is sufficient to form a pumpable slurry. In an embodiment, the amount of water may be in a range of from about 25% to about 75% by weight of the sealant composition.
Any suitable fluid loss control additives known in the art may be used, for example polymer fluid loss control additives, particulate fluid loss control additives, or combinations thereof. Examples of suitable fluid loss control additives are disclosed in U.S. Pat. Nos. 5,340,860, 6,626,992, 6,182,758, each of which is incorporated by reference herein in its entirety. In an embodiment, and in particular in an embodiment where the sealant composition comprises cement, the fluid loss control additives included in the sealant compositions are a copolymer of acrylamido-2-methylpropanesulfonate and N,N dimethylacrylamide, e.g., HALAD-344 fluid loss control additive also sold by Halliburton Energy Services, and a particulate matter such as silica flour, silica fume, sodium silicate, microfine sand, iron oxides, manganese oxides, barite, calcium carbonate, ground nut shells, ground wood, ground corncobs, mica, ceramics, ground tires, ground glass, ground drill cutting, etc., or mixtures of these. In an embodiment, and in particular in an embodiment where the sealant composition does not comprise cement, the fluid loss control additives included in the sealant composition may comprise, for example, natural and/or derivatized polysaccharides like galactomannan gums (guar gum, guar derivatives, etc), biopolymers, modified celluloses or combinations thereof in addition to or in lieu of the fluid loss control additives listed in the preceding sentence. The particulate matter preferably has a particle size between 0.5 and 150 microns. A suitable commercially available particulate matter is SSA-1 silica flour sold by Halliburton Energy Services. In embodiments comprising polymer fluid loss additives, particulate fluid loss additives, or combinations thereof, the amount of the particulate fluid loss additive in the sealant composition may be in the range from about 30 to about 70% by weight of the sealant composition and the amount of polymer fluid loss control additive present in the sealant composition may be in a range of from about 0.1% to about 3% by weight of the sealant composition.
Moreover, the sealant compositions may include one or more gel retarders. The amount of gell retarder present in the sealant composition may be in a range of from about 0% to about 5% by weight of the sealant composition. A suitable gel retarder is available from Halliburton Energy Services under the tradename FDP-S727-04.
In an embodiment, the gel retarder may be a formate compound, e.g., water soluable formate, for contributing to the reduction in the gel time of the crosslinkable material as described in US patent application publication 2004/0035580, filed Jun. 5, 2002, and incorporated by reference herein in its entirety. The amount of the formate compound present in the sealant composition is in a range of from about 0% to about 5% by weight of the sealant composition. Examples of suitable water-soluble formates include ammonium formate, lithium formate, sodium formate, potassium formate, rubidium formate, cesium formate, francium formate, and combinations thereof.
Moreover, the sealant compositions may include a gel retarder as described in U.S. patent application Ser. No. 10/875,649, filed Jun. 24, 2004, and incorporated by reference herein in its entirety. In an embodiment, the gel retarder is comprised of a chemical compound that is capable of acetylating an organic amine and/or slowly hydrolyzing or thermolyzing to produce one or more acids in the sealant composition. The compounds retard the cross-linking of the sealant composition at high temperatures, i.e., temperatures above about 200° F., for a period of time sufficient to place the sealant composition in the subterranean formation or zone in which the permeability is to be reduced. Examples of gel retarder chemical compounds that is capable of acetylating an organic amine and/or slowly hydrolyzing or thermolyzing to produce one or more acids that can be utilized in accordance with the present invention include, but are not limited to, anhydrides such as acetic or propionic anhydride, esters such polylactate, amides such as proteins and polyamides, imides such as polysuccinimide, polyacids such as polyaspartic acid polyglutamic acids and their salts. Of these, polysuccinimide or polyaspartic acid are preferred. Polysuccinimide hydrolyzes or thermolyzes in water to produce iminodisuccinic acid, polyaspartic acid or aspartic acid.
Optionally, the sealant compositions may include a latex comprising a styrene/butadiene copolymer suspended in water to form an aqueous emulsion. Examples of suitable latexes are described in U.S. Pat. No. 5,688,844, which is incorporated by reference herein in its entirety. In an embodiment, the styrene/butadiene copolymer latex is LATEX 2000 emulsion sold by Halliburton Energy Services. The weight ratio of the styrene to butadiene in LATEX 2000 emulsion is about 25:75, and the amount of the copolymer in the LATEX 2000 emulsion is about 50% by weight of the aqueous emulsion. In addition, the sealing compositions may optionally include a stabilizer such as C15 alcohol ethoxylated with 40 moles of ethylene oxide, which is commercially available from Halliburton Energy Services under the tradename 434C stabilizer.
As deemed appropriate by one skilled in the art, additional additives may be added to the sealant compositions for improving or changing the properties thereof. Examples of such additives include but are not limited to set retarding agents, set accelerating agents, dispersing agents, strength retrogression control agents, viscosifying agents, and formation conditioning agents. The sealant compositions may further include a clay stabilizer for inhibiting damage to the subterranean formation during injection. The amount and type of clay stabilizer may be selected as deemed appropriate by one skilled in the art.
Methods of using the foregoing cement compositions first include preparing the compositions. They may be made by combining all of the components in any order and thoroughly mixing the components in a manner known to those skilled in the art. In an embodiment, the crosslinkable material, the water, and the cement, if any, are combined first, followed by the addition of the fluid loss control additives and any other additives. In an embodiment, the cement compositions are prepared immediately prior to use to ensure that they do not form a gel before reaching permeable zones in the wellbore.
Subsequently, the foregoing sealant compositions may be placed in the permeable zones to improve the zonal isolation of a subterranean formation penetrated by the wellbore. As used herein, a permeable zone is defined as an area in the wellbore through which a fluid can undesirably flow, wherein the permeable zone may be present in a conduit disposed in the wellbore, a cement column disposed in the annulus of the wellbore between the conduit and the wall of the wellbore, a microannulus interposed between the cement column and the conduit, a microannulus interposed between the cement column and the wall of the wellbore, or combinations thereof. Examples of such permeable zones include perforations such as those formed by a perforation gun, fissures, cracks, fractures, streaks, flow channels, voids, high permeability streaks, annular voids, or combinations thereof.
In an embodiment, a cement squeezing technique is employed to force a sealant composition into at least one permeable zone. As indicated previously, the sealant composition has a gel time greater than or equal to about 4 hours, for example, in a range of from about 4 hours to about 12 hours when it is exposed to ambient temperatures in a wellbore. Ambient downhole temperatures typically range from about 50° C. to about 175° C. As such, the composition remains pumpable for a sufficient amount of time to allow it to be squeezed into the permeable zone despite being exposed to relatively high temperatures. After placement in the permeable zone, the sealant composition is allowed to set into a rigid mass, thereby plugging the permeable zone such that fluids, e.g., water, most likely cannot pass through the permeable zone to the subterranean formation. Thus, the sealant composition effectively seals the subterranean formation from outside contaminants.
The fluid leak off properties were measured in a custom built system 5 as depicted in
Shut off properties of the sealant composition were measured using a system as depicted in
In a controlled squeeze the fluid leak off penetrated the core approximately 2 cm. Subsequently the temperature of the heating cabinet was raised to the required value while maintaining an absolute pressure of 10 bars. The sealant was allowed to cure for 24 to 48 hours. After the cure pressure was stepwise increased from the back-side (reverse flow) and flow was monitored. Pressure was increased until maximum operating pressure of the set-up was reached (200 bars) or when pumps could not maintain pressure with the observed flow.
While preferred embodiments of the invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the spirit and teachings of the invention. The embodiments described herein are exemplary only, and are not intended to be limiting. Many variations and modifications of the invention disclosed herein are possible and are within the scope of the invention. Use of the term “optionally” with respect to any element of a claim is intended to mean that the subject element is required, or alternatively, is not required. Both alternatives are intended to be within the scope of the claim.
Accordingly, the scope of protection is not limited by the description set out above but is only limited by the claims which follow, that scope including all equivalents of the subject matter of the claims. Each and every claim is incorporated into the specification as an embodiment of the present invention. Thus, the claims are a further description and are an addition to the preferred embodiments of the present invention. The discussion of a reference in the Description of Related Art is not an admission that it is prior art to the present invention, especially any reference that may have a publication date after the priority date of this application. The disclosures of all patents, patent applications, and publications cited herein are hereby incorporated by reference, to the extent that they provide exemplary, procedural, or other details supplementary to those set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
2805719 | Anderson | Sep 1957 | A |
3793244 | Megee | Feb 1974 | A |
3835926 | Clement, Jr. | Sep 1974 | A |
3928052 | Clement, Jr. | Dec 1975 | A |
3967681 | Curzon | Jul 1976 | A |
4480693 | Newlove et al. | Nov 1984 | A |
4515635 | Rao et al. | May 1985 | A |
4537918 | Parcevaux et al. | Aug 1985 | A |
4555269 | Rao et al. | Nov 1985 | A |
4582139 | Childs et al. | Apr 1986 | A |
4629747 | Wu et al. | Dec 1986 | A |
4683949 | Sydansk et al. | Aug 1987 | A |
4721160 | Parcevaux | Jan 1988 | A |
4761183 | Clarke | Aug 1988 | A |
4767460 | Parcevaux et al. | Aug 1988 | A |
4861822 | Keskey et al. | Aug 1989 | A |
5086850 | Harris et al. | Feb 1992 | A |
5121795 | Ewert et al. | Jun 1992 | A |
5123487 | Harris et al. | Jun 1992 | A |
5125455 | Harris et al. | Jun 1992 | A |
5127473 | Harris et al. | Jul 1992 | A |
5146986 | Dalrymple | Sep 1992 | A |
5159980 | Onan et al. | Nov 1992 | A |
5181568 | McKown et al. | Jan 1993 | A |
5238064 | Dahl et al. | Aug 1993 | A |
5293938 | Onan et al. | Mar 1994 | A |
5296627 | Tang et al. | Mar 1994 | A |
5332037 | Schmidt et al. | Jul 1994 | A |
5335726 | Rodrigues | Aug 1994 | A |
5338726 | Shiosaki et al. | Aug 1994 | A |
5340860 | Brake et al. | Aug 1994 | A |
5358051 | Rodrigues | Oct 1994 | A |
5377757 | Ng | Jan 1995 | A |
5563201 | Joanicot et al. | Oct 1996 | A |
5588488 | Vijn et al. | Dec 1996 | A |
5688844 | Chatterji et al. | Nov 1997 | A |
5779787 | Brothers et al. | Jul 1998 | A |
5836392 | Urswin-Smith | Nov 1998 | A |
5850880 | Moran et al. | Dec 1998 | A |
5900451 | Krishnan et al. | May 1999 | A |
5913364 | Sweatman | Jun 1999 | A |
5945387 | Chatterji et al. | Aug 1999 | A |
5948344 | Cusick et al. | Sep 1999 | A |
6060434 | Sweatman et al. | May 2000 | A |
6130287 | Krishnan | Oct 2000 | A |
6167967 | Sweatman | Jan 2001 | B1 |
6176315 | Reddy et al. | Jan 2001 | B1 |
6182758 | Vijn | Feb 2001 | B1 |
6187839 | Eoff et al. | Feb 2001 | B1 |
6192986 | Uslwin-Smith | Feb 2001 | B1 |
6196317 | Hardy | Mar 2001 | B1 |
6218343 | Burts, Jr. | Apr 2001 | B1 |
6258757 | Sweatman et al. | Jul 2001 | B1 |
6312515 | Barlet-Gouedard et al. | Nov 2001 | B1 |
6321841 | Eoff et al. | Nov 2001 | B1 |
6457524 | Roddy | Oct 2002 | B1 |
6497283 | Eoff et al. | Dec 2002 | B1 |
6508306 | Reddy et al. | Jan 2003 | B1 |
6590050 | Bair et al. | Jul 2003 | B1 |
6607035 | Reddy et al. | Aug 2003 | B1 |
6626992 | Vijn et al. | Sep 2003 | B2 |
6656266 | Barlet-Gouedard et al. | Dec 2003 | B1 |
6702044 | Reddy et al. | Mar 2004 | B2 |
6722433 | Brothers et al. | Apr 2004 | B2 |
6743288 | Eoff et al. | Jun 2004 | B2 |
6764981 | Eoff et al. | Jul 2004 | B1 |
6766858 | Nguyen et al. | Jul 2004 | B2 |
6770604 | Reddy et al. | Aug 2004 | B2 |
6822061 | Eoff et al. | Nov 2004 | B2 |
6823940 | Reddy et al. | Nov 2004 | B2 |
6837316 | Reddy et al. | Jan 2005 | B2 |
6843841 | Reddy et al. | Jan 2005 | B2 |
6936574 | Dao et al. | Aug 2005 | B2 |
6951250 | Reddy et al. | Oct 2005 | B2 |
20030213593 | Bouwmeester et al. | Nov 2003 | A1 |
20030224946 | Verlaan et al. | Dec 2003 | A1 |
20040020650 | Burts, III | Feb 2004 | A1 |
20040023813 | Burts, III | Feb 2004 | A1 |
20040035580 | Bouwmeester et al. | Feb 2004 | A1 |
20040182576 | Reddy et al. | Sep 2004 | A1 |
20040226717 | Reddy et al. | Nov 2004 | A1 |
20050159319 | Eoff et al. | Jul 2005 | A1 |
20050167106 | Reddy et al. | Aug 2005 | A1 |
20050197257 | Bouwmeester | Sep 2005 | A1 |
20050230112 | Reddy et al. | Oct 2005 | A1 |
20050230113 | Eoff et al. | Oct 2005 | A1 |
20050288190 | Dao et al. | Dec 2005 | A1 |
20060086503 | Reddy et al. | Apr 2006 | A1 |
20060122071 | Reddy et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
0 145 151 | Oct 1984 | EP |
0 566 118 | Oct 2001 | EP |
1201874 | May 2002 | EP |
1369401 | Dec 2003 | EP |
2296713 | Jul 1996 | GB |
WO 9902464 | Jan 1999 | WO |
WO 2005078235 | Aug 2005 | WO |
WO 2005100739 | Oct 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20060162930 A1 | Jul 2006 | US |