1. Field of the Invention
The present invention relates to the field of aptamer- and nucleic acid-based diagnostics. More particularly, it relates to methods for the production and use of self-assembling DNA aptamer-magnetic bead (“MB”) conjugate combined with aptamer-quantum dot (“QD”) or other aptamer-fluorophore conjugate sandwich assays that naturally adhere to glass and certain plastics such as polystyrene (or derivatives thereof) to enable one-step (homogeneous) tests without a wash step even after an external magnetic field is removed. Conjugation of aptamers to the MBs or QDs and other fluorophores may be accomplished by simple chemical coupling reactions through bifunctional linkers, or key functional groups such as aldehydes, carbodiimides, carboxyls, N-hydroxy-succinimide (“NHS”) esters, N-oxy-succinimide (“NOS”) esters, thiols, etc. or via biotin-avidin, histidine-Nickel, or other high affinity linkage systems. This one-step, washless assay format has numerous applications for sensitive detection of foodborne pathogens on and in meats, poultry, serous fluids, dairy products, fruits, vegetables, and other food matrices. The assay is also applicable to environmental analyses in soil or muddy water samples and clinical and veterinary diagnostics performed directly on whole blood, urine, saliva or other body fluids with or without sample dilution, but without a wash step. The typical wash step involves purification by removal of unwanted materials contributing to background fluorescence.
2. Background Information
The most desirable of all diagnostic assay strategies are rapid one-step “bind and detect” or “homogeneous” assays that do not require a wash step and yet do not sacrifice a significant degree of sensitivity. Examples of successful one-step assay strategies include fluorescence polarization (“FP”) and fluorescence resonance energy transfer (“FRET”)-based assays. While both of these formats are popular, they tend to sacrifice sensitivity for speed in obtaining test results. Therefore, FP and FRET assays are typically relegated to clinical diagnostics for certain analytes that exist in relatively high concentrations (micro to milliMolar ranges) in blood, urine, or other body fluids. For analytes that exist in much lower concentrations, multi-step assays such as enzyme-linked immunosorbent assays (“ELISA”), radioimmunoassays (“RIA”) and other sandwich-formatted assays such as immunomagnetic-electrochemiluminescence (“IM-ECL”) assays are required to detect nanogram, nanoMolar or lower amounts of various target analytes. Typically, these types of sandwich assays will require one or more wash steps, thereby slowing their execution speed. Wash steps will be known to one skilled in the art as a generally necessary step to remove unwanted materials (besides the detected target analyte) to prevent high background fluorescence signals. Eliminating the need for a wash step is found to be desirable in the present invention because it can enhance the speed and accuracy of many assays.
DNA is well known to adhere to some glass surfaces especially if the surface is charged by rubbing. This principle is used in the electrostatic collection of genomic DNA from cell lysates which is known as “spooling” of DNA with a charged glass rod. Similarly, Allemand et al., Bensimon et al., Buck and Andrews, Dudley et al., Klein et al., Labit et al., Michalet et al., Moscoso et al., and Torres et al. teach adherence of DNA, bacteria, biofilms, and other materials to polystyrene by electrostatic and hydrophobic or other weak forces. However, Allemand et al., Bensimon et al., and Klein et al. emphasize that DNA is far more likely to bind to polystyrene and other plastics at its free 3′ or 5′ ends than in the mid-regions and that such binding is not instantaneous (requires one or more minutes of residence time for DNA to bind to plastic) and is pH-dependent with optimal pH for binding being acidic (at an approximate pH of 5.5, which is below the range of most biological assays). Bensimon et al. (1994) have even suggested that DNA may couple covalently to polystyrene by electrophilic addition of 5′ or 3′ phosphate ends (in their phosphoric acid forms) to the pi double bonds of the styrene rings or free unpolymerized alkene ends of polystyrene fibers. Such covalent bonding of DNA aptamers to polystyrene would explain the very stable and long-lasting adherence of assay materials observed and reported herein and by Bruno et al. (2008) for their Campylobacter assay.
While some species of bacteria can bind to plastics and glass, not all species can form such adherent biofilms. In the presently described assays, attachment of the assay components (DNA aptamers, MBs and QDs) have occurred in the presence and absence of target bacteria. Conversely, immunomagnetic (“antibody-MB”) sandwich assays do not adhere to polystyrene very well at neutral or acidic pH, presumably because protein antibodies do not adhere well to plastic or glass materials at neutral or acidic pH. Proteins such as antibodies are well known to adhere to polystyrene microtiter plate wells at alkaline pH values as in the popular ELISA test formats. However, the pH for adherence of antibodies and proteins in ELISA assays is typically 8.0-9.5 and clearly not acidic as in the presently described DNA-adherent assays. Therefore, the DNA aptamer is considered to be the key component which enables adherence to polystyrene or glass or derivatives thereof and thus enables one-step washless assays. While some species of bacteria may contribute to overall adherence to the inner face of a cuvette, the DNA aptamer component appears sufficient to enable adherence of the aforementioned assays in the magnetized region because assay components (aptamer-MB conjugates) will adhere to plastic and glass even in the absence of captured bacterial cells.
Herein is described a new type of aptamer-MB-aptamer-QD sandwich assay and its derivative formats with variations in the fluorophore component that can be accomplished in one-step, obviating a wash step, by collecting the MBs with a strong external magnetic field onto a glass, polystyrene, other plastic or coated surface such as the inner face of a cuvette. Collection of the MBs and all attached assay components, including DNA aptamers, MBs, fluorophores and the captured analytes, into a small area on the plastic surface thereby focuses fluorescence intensity of the assay due to capture of the analyte in a thin planar area of adherence. Thus, when the adherent material is illuminated even in nearly opaque matrices such as foods or blood, the fluorescence can be detected with ultra sensitivity over background autofluorescence from the bulk solution due to partitioning and concentrating of the assay materials and captured analytes to the area of adherence. Fluorescence from uncaptured aptamer-QD or aptamer-fluorophore conjugates in the bulk solution contributes to background fluorescence, but its contribution to the total fluorescence signal is greatly minimized because it is not concentrated to the area of assay adherence. Any aptamer-QD or aptamer-fluorophore conjugates that do not bind the analyte and aptamer-MB conjugates will not be pulled toward the plastic surface nor adhere to the surface significantly and will not contribute significantly to the detection signal, but will contribute to the much weaker background fluorescence “noise” in the bulk solution. The combination of high aptamer affinity, the MBs ability to be concentrated in a defined area, and the long Stoke's shift of red-emitting QDs (i.e., high energy ultraviolet excitation with emission in the red region of the spectrum above 600 nm) contribute to the ultra sensitive nature of this one-step washless assay format. However, adherence of the assay materials and captured analytes to a small area on a clear plastic or glass surface even when the external magnetic field is removed is the key factor that enables one-step washless detection.
The present invention provides for the assembly of DNA and RNA aptamer-MB conjugates for capture of target analytes with aptamer-QD or other aptamer-fluorophore conjugates. The target analytes are molecules that it is desirable to detect such as, pathogenic bacteria, viruses, parasites, leukocytes, cancer cells, proteins, other macromolecules, toxins, pollutants, drugs, explosives, proteins, viral capsid proteins, viral polymerases, biotoxins such as bacterial toxin, botulinum, cholera, tetanus, staphylococcal enterotoxin, shigatoxins or verotoxins, algal toxins, such as brevetoxin, ciguatoxin, cyanotoxin, or saxitoxin, snake or spider venoms, clinically relevant proteins or portions of proteins (peptides) such as bone marker (e.g., collagen breakdown peptides such as CTx, NTx, OCF, Cathepsin K or its precursor ProCathepsin K, deoxypyridinoline, pyridinoline, lysyl pyridinoline, or hydroxylysyl pyridinoline) cytokines and interleukins, markers of myocardial infarctions (troponin, myoglobin, etc.), kidney disease, antibodies, autoimmune disorders, arthritis, or other clinically relevant macromolecules such as lipopolysaccharides (LPS, endotoxins), and other small molecules (where “small molecules” are defined as being those that are less than 1,000 Daltons) such as with at least two distinct epitopes from a group including the following: pesticides, natural and synthetic amino acids and their derivatives, hydroxylysine, hydroxyproline, histidine, histamine, homocysteine, DOPA, melatonin, nitrotyrosine, short chain proteolysis products, cadaverine, putrescine, polyamines, spermine, spermidine, deoxypyridinoline, pyridinoline, lysyl pyridinoline, or hydroxylysyl pyridinoline, nitrogen bases of DNA or RNA, nucleosides, nucleotides, nucleotide cyclical isoforms, cAMP, cGMP, cellular metabolites, urea, uric acid, pharmaceuticals, therapeutic drugs, vitamins, illegal drugs, narcotics, hallucinogens, gamma-hydroxybutyrate (GHB), cellular mediators, cytokines, chemokines, immune modulators, neural modulators, neurotransmitters such as acetylcholine, inflammatory modulators, prostaglandins, prostaglandin metabolites, nitoaromatic and nitramine explosives, explosive breakdown products (e.g., DNT) or byproducts, quorum sensing molecules such as AHLs, steroids, hormones, and their derivatives.
A fluorophore is a fluorescent component, or functional group, bound to a molecule. A fluorophore can be a dye, a glowing bead, a glowing liposome, a quantum dot (“QD”), a fluorescent or phosphorescent nanoparticle (“NP”), a fluorescent latex particle or microbead, a fluorescent dye molecule, such as fluorescein, carboxyfluorescein and other fluorescein derivatives, rhodamine, and their derivatives, a fluorescence resonance energy transfer (“FRET”) complex such as an intrachain or competitive FRET-aptamer, or any other glowing entity capable of forming a covalent bond with the aptamer. As used herein, “other aptamer-fluorophore conjugates” includes those aptamers having a fluorophore bonded to them, such as, in addition to those listed otherwise herein, aptamer-fluorescent dye conjugates, aptamer-fluorescent microbead conjugates, or aptamer-liposome conjugates containing fluorescent dyes. In the present invention, the fluorophore acts to “report” detection of the target analytes in one rapid and washless step. The only requirement of the target is that it contains two accessible epitopes of the same or different composition and conformation to enable a sandwich assay with capture and reporter aptamer components.
The present invention utilizes a one-step assay format, which can be used for sandwich assay to detect and quantify said target analyte in said bulk solution, as well as fluorescence intensity, time-resolved fluorescence, chemiluminescence, electrical detection, electrochemical detection, electrochemiluminescence, phosphorescence, or radioisotopic detection. The one-step nature of the assay stems from the fact that the assay components capture the analyte and then stick or adhere to the inner surface of the assay substrate, generally expected to be a polystyrene plastic, glass, or other type of cuvette that is transparent or translucent enough so as to allow fluorescent light propagation, in a highly magnetized region for a brief time (5-10 minutes).
More specifically, the one-step nature of the assay stems from the ability, after the application of an external magnetic field, to magnetically separate or partition the assay materials (aptamer-MBs and aptamer-QDs or other aptamer-fluorophore conjugates) from the bulk solution and allow these materials to bind or adhere to a surface such as the inner face of a polystyrene or glass cuvette via the attractive or covalent forces between DNA and some plastics or glass, thereby increasing the signal-to-noise ratio at the surface where the magnet was placed even after the magnet or magnetic field is removed to enable fluorescence detection. The sticking of brightly fluorescing analytes to the inner plane of the cuvette leads to the ability to discriminate the sample's more intense fluorescence from background or target fluorescence from bulk solution or “signal from noise” and to make one-step homogeneous assays possible. Adherence of assay materials to the cuvette constitutes a technique that even allows for detection in dense food samples (e.g. milk, chicken and beef juice, and egg yolk samples).
A typical one-step aptamer-magnetic bead plus aptamer-quantum dot cuvette assay or test will consist of the following two components synthesized and added in any order: 1) One-hundred μg of 5′-amino modified aptamer DNA specific for one epitope on the target analyte plus 10 mM BS3 [Bis(sulfosuccinimidyl) suberate] or other appropriate amine-reactive bifunctional linker such as EDC [1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride], Sulfo-EGS [Ethylene glycol bis(sulfosuccinimidylsuccinate)], Sulfo-SMCC [Sulfosuccinimidyl 4-[N-maleimidomethyl]-cyclohexane-1-carboxylate], glutaraldehyde, etc. plus 8 μM Qdot 655 ITK reagent (Invitrogen Corp.). These components are mixed in a 1 ml volume of 1× binding buffer (“1XBB”; 0.5 M NaCl, 10 mM Tris-HCl, 1 mM MgCl2, pH 7.5-7.6) for 30 mM at room temperature (“RT”). This aptamer-QD component is purified through Sephadex G-25 or another suitable size exclusion chromatography matrix. 2) One-hundred μg of a second 5′-amine-modified DNA aptamer with specificity to a second epitope on the target analyte plus 10 μl of tosyl-activated MBs (approximately 1×106 MBs, 1 to 5 microns in diameter). This aptamer-MB component is incubated at 37° C. for 2 or more hours and then collected with a strong magnet and washed 3 times in 1XBB. These two major components (aptamer-QD and aptamer-MB conjugates) are added to a polystyrene or other plastic cuvette with the addition of 1XBB up to a total volume of 2 ml. The cuvette is then lyophilized, back flushed with nitrogen gas and capped for long-term storage.
The invention has been described above in a typical embodiment and amounts of the assay components for food safety testing for low numbers of pathogenic bacteria. However, broad ranges of detection are required for other types of analytes. Therefore, considering aptamer affinity ranges and ranges of detectable fluorescence, the one-step cuvette assays may be described based on the following ratios of ranges for the two major assay components:
In general, affinities for antibodies and aptamers, 10-fold ranges for each assay component (i.e., 10-fold lower and higher) are anticipated by the current invention. The amounts of the assay components are intended to be varied, because the present invention envisions assays of varying sensitivity. Thus, the same basic assay can have assay component amounts modified to allow for situations wherein extreme sensitivity is required, and others situations wherein less sensitivity is acceptable for the application.
Prior to use, the one-step cuvette assay is reconstituted with a bulk solution which is to be tested for the presence of the desired target analyte. The bulk solution, which is in an amount anticipated to be approximately 2 ml, can be any number of various sample fluid matrices possibly containing target analytes including, but not limited to: natural waters, buffer, or diluted or undiluted food samples (e.g., milk, yoghurt, cheeses prior to solidification, meat juices, fruit juices, eggs, rinse waters from fruit and vegetable surfaces, diluted peanut butter, etc.), diluted whole blood, serum, urine, sputum or other body fluid samples.
Along with the bulk solution, an aptamer-magnetic bead conjugate (“aptamer-MB”), and an aptamer-fluorophore conjugate are added, or can be lyophilized together in situ (in a cuvette) prior to adding the target analyte. The aptamer conjugates are chosen based upon the aptamer-MB being able to bind with the target analyte at a first binding site on the target analyte, and the aptamer-fluorophore conjugate being able to bind with the target analyte at a second binding site on the target analyte. Thus, if the target analyte is present in the bulk solution, both the aptamer-MB and an aptamer-fluorophore conjugates bind with the target analyte to form an analyte-aptamer-fluorophore complex. It is also necessary that the aptamer-MBs will not bind, base pair, or hybridize with the aptamer-fluorophores in the bulk solution. If they were to attach to each other in some way, in competition with the target analyte, then the assay would produce false positives because the MB would pull the aptamer-MB-fluorophore (without a target analyte) over to the cuvette translucent surface area to be assayed.
The cuvette is recapped, shaken and mixed periodically over a 15-20 minute period, allowing the aptamer-MBs to bind with target analytes at the first binding site and the aptamer-fluorophore conjugates to bind with the target analyte at the second binding site to form an analyte-aptamer-fluorophore complex. Then the cuvette is added to a rack or other device with an external magnet set at the appropriate height to cause the analyte-aptamer-fluorophore complexes to adhere to the cuvette translucent surface area by applying an external magnetic field to attract the magnetic beads. Attracted by the magnetic field, the magnetic bead pulls the remainder of the analyte-aptamer-fluorophore complex which collects any captured analytes in a band (rectangular or square) or circular pattern at the level of a fluorometer's light path. The MBs with captured assay and target analytes are collected for 5 or more minutes and then the external magnet is removed, leaving adherent fluorescent MBs, assay and target analyte components adhering on the inner surface of the plastic cuvette as shown in
Although described above as a cuvette, the present invention is effective in any number of container or vessel geometries. Thus, the method of the present invention may be run in a tube, vial, dish, flow cell, cassette, cartridge, microfluidic chip, and any other similar type of containers. And, the container can be composed of a plethora of materials, in any shape and of any type as long as a planar area of assay material attachment in a viewing “window” is provided and nucleic acid aptamers can adhere to the material. Therefore, the assay format may also be applied to a flattened plastic or glass cassette or cartridge in which assay components might be magnetically pulled along a channel or path by an external magnet. Upon reaching a clear plastic or glass detection window the assay components would be allowed to reside in the detection window where they could adhere to the window's surface and be concentrated away from the bulk solution by the external magnet. Hence, several embodiments or geometries for the assay vessel are envisioned so long as the cuvette has a translucent surface area so as to enable a fluorescent assay. For example, the cuvette translucent surface area, on which said analyte-aptamer-fluorophore complex adheres, may be formed as a square, rectangular, round, oval, or flat container, vial, tube, cylinder, cassette, or cartridge.
It is anticipated that the cuvette may be made from polystyrene, clear plastic, or glass. But in addition, the chemistry of DNA attachment to the glass or plastic is not restricted to natural glass or simple polystyrene. Rather, logical derivative plastics and coatings (e.g., silanes, etc.) that include alkenes for electrophilic addition of DNA and hydrophobic coatings that may encourage weak force (van der Waals or dipole-dipole) interactions and adherence of DNA to the coated glass or plastic are also envisioned.
Referring to the figures,
No wash steps are required and detection can be achieved directly in various food, environmental, or body fluid matrices as illustrated in
The invention has been used to detect as few as 2 live or dead C. jejuni bacterial cells (a common foodborne pathogen) in neat buffer and various food matrices as shown in
The present invention has potential to be used for detection of enterohemorraghic E. coli O157:H7 in and on various foods via binding of aptamers to the outer saccharides of 0157 lipopolysaccharide (LPS) and the H7 flagellar antigen. Aptamer sequences from SEQ ID NOs. 7-20 could be chosen for capture (aptamer-MB conjugate) or reporter (aptamer-fluorophore conjugate) functions and used to detect E. coli O157:H7 in or on foods. Alternatively, outer membrane proteins (OMPs) common to many species of E. coli can be used for aptamer-MB-based capture (or identification) of the E. coli bacterial cells followed by specific identification of the E. coli strain or serotype using LPS-specific aptamer-QD reporter reagents to complete the sandwich assay. Aptamer SEQ ID NOs. 279-322 can be used for E. coli OMP recognition and capture. In yet another embodiment non-O157:H7 toxigenic E. coli bacteria can be sensitively identified by their secretion of Shiga or Verotoxins (types 1 and 2 or Stx-1 and Stx-2). Many other strains of E. coli including O126 can produce deadly disease in humans and the common thread among these lethal pathogens is the secretion of Stx. Therefore, a very useful embodiment of the invention would be detection of Stx-1 and/or Stx-2 using any of the DNA aptamer sequences identified by SEQ ID NOs. 323-352.
The present invention has potential to be used for detection of lethal L. monocytogenes in and on various foods via binding to the listerolysin (LO) surface protein. Aptamer sequences from SEQ ID NOs. 21-52 could be chosen for capture (aptamer-MB conjugate) or reporter (aptamer-fluorophore conjugate) functions and used to detect LO and L. moncytogenes in or on foods.
The present invention has potential to be used for detection of S. typhimurium and other Salmonella species (S. typhi etc.) in and on various foods. S. typhimurium has been renamed Salmonella enterica serovar Typhimurium, but many microbiologists and lay people still refer to the microbe as S. typhimurium. Aptamer sequences from SEQ ID NOs. 53-68 could be chosen for capture (aptamer-MB conjugate) or reporter (aptamer-fluorophore conjugate) functions for detection of Salmonella typhimurium LPS bacteria in or on foods. In addition, aptamer SEQ ID NOs. 353-392 could be used for capture or identification of S. typhimurium OMPs. These S. typhimurium DNA aptamer sequences are unique and bear no resemblance to those recently reported by Joshi et al. (2008).
The present invention has the potential to detect all species of Escherichia coli bacteria in recreational, treated waste water, and drinking water supplies using aptamer DNA SEQ ID NOs. 69-122 directed against common core components of LPS for capture and reporter functions. The present invention has the potential to detect all species of Enterococcus bacteria (another common fecal indicator organism) in recreational, treated waste water, and drinking water supplies using aptamer DNA SEQ ID NOs. 123-130 directed against common teichoic acid moieties for capture and reporter functions.
The present invention has the potential to detect Leishmania donovani or L. tropica parasites in skin lesions of body fluids and other samples using aptamer DNA Sequences chosen from SEQ ID NOs. 131-134 directed against surface proteins of common to both Leishmania species for capture and reporter functions.
The invention has the potential to detect encapsulated B. anthracis (anthrax) vegetative bacteria in blood and body fluids and other samples using aptamer DNA Sequences chosen from SEQ ID NOs. 135-138 directed against surface poly-D-glutamic acid (PDGA) capsular materials for capture and reporter functions.
The invention has the potential to detect small molecules of <1,000 Daltons, if the target has two distinct and accessible epitopes for attachment of capture and reported aptamers to enable a sandwich assay format. Among such small molecule targets would be organophosphorus pesticides (such as diazinon and malathion) in environmental water, soil, or mud samples as well as blood and body fluids and other samples using aptamer DNA Sequences chosen from SEQ ID NOs. 139-154 directed against different ends of the pesticide molecule for capture and reporter functions. In addition, vitamins such as 25-hydroxyvitamin D3 (calcidiol; SEQ ID NOs. 243-274), the neurotransmitter acetylcholine (ACh; SEQ ID Nos. 393-416) might be viable targets for this novel adherent assay format
The invention has the potential to detect FMD and related viruses in blood and body fluids and other samples using aptamer DNA Sequences chosen from SEQ ID NOs. 155-164 directed against a conserved 16-amino acid peptide from several 0 serotypes of FMD for capture and reporter functions.
The invention has the potential to detect markers of bone loss such as cathepsin K, C-terminal telopeptides (CTx) and N-terminal telopeptides (NTx) of collagen, hydroxylysine (HL), osteocalcin fragments (OCF), etc. due to the effects of low gravity during lengthy spaceflights or osteoporosis and aging in blood, urine and other body fluids and other samples using aptamer DNA Sequences chosen from SEQ ID NOs. 165-242 directed against unique epitopes on each type of bone marker. The invention also has the potential to detect and discriminate various isomers of vitamin D associated with bone formation chosen from SEQ ID NOs. 243-274 for capture and reporter functions.
The invention has the potential to detect Clostridum botulinum toxins which affect humans and animals (serotypes A-F) and related bacterial, harmful algal bloom (HAB, dinoflagellate), marine (shellfish-related), or plant toxins such as tetanus toxin, cholera and diphtheria toxins, shiga and verotoxins, staphylococcal enterotoxins, cyanotoxins, azaspiracids, brevetoxins, ciguatoxins, gonyautotoxins, domoic acid isomers, maitotoxins, palytoxins, yessotoxins, saxitoxins, ricin, gelonin, abrin, spider and snake venoms, etc. in blood and body fluids and other samples using aptamer DNA sequences in the adherent sandwich format. Aptamer sequences chosen from SEQ ID NOs. 275-278 in particular can be used to for detection of botulinum type A light chains or the holotoxin.
Many species of bacteria are now known to communicate chemically via secreted small molecules. Many Gram negative bacterial pathogens commonly use a family of small molecules called acylhomoserine lactones (AHLs) to communicate between bacterial cells to sense when a critical concentration of cells or “quorum” has been reached to enable effective infection of a host organism. AHLs control induction of pathogenesis and virulence factors such as expression of adherence proteins and toxins. Therefore, early sensing of AHLs could indicate an imminent Gram negative bacterial infection and prompt a physician to administer the appropriate antibiotics to prevent an infection or more severe sepsis. AHLs do commonly possess two different ends or potential epitopes and are therefore potential candidates for the one-step plastic-adherent DNA aptamer-MB-aptamer-QD or other aptamer-reporter sandwich assays described herein. Sequence ID Nos. 417-426 illustrate potential aptamer DNA sequences developed against and reactive with the family of Gram negative bacterial AHLs for diagnostics.
Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limited sense. Various modifications of the disclosed embodiments, as well as alternative embodiments of the inventions will become apparent to persons skilled in the art upon the reference to the description of the invention. It is, therefore, contemplated that the appended claims will cover such modifications that fall within the scope of the invention. Such alternative embodiments may include, but are not limited to changes in the reporter method including chemiluminescence, electrical detection, electrochemical detection, electrochemiluminescence, phosphorescence, and radioisotopic detection instead of fluorescence-based detection.
Campylobacter jejuni Surface Protein Aptamers
E. coli O157 Lipopolysaccharide (LPS) Aptamers
Listeriolysin (A surface protein on Listeria
Listeriolysin (Alternate form of Listeria surface
Salmonella typhimurium lipopolysaccharide(LPS)
Enterococcus faecalis Teichoic Acid (TA) Aptamers
Leishmania donovani and Leishmania tropica Surface
Bacillus anthraces Poly-D-Glutamic Acid Capsule
Organophosphorus Pesticide Aptamers
E. coli Outer Membrane Proteins (OMPs)
S. typhimurium (S. enterica serovar Typhimurium
This application is based upon and claims priority from U.S. Provisional application Ser. Nos. 61/066,506 and 61/132,147, which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61066506 | Feb 2008 | US | |
61132147 | Jun 2008 | US |