Methods of providing insurance savings based upon telematics and insurance incentives

Information

  • Patent Grant
  • 10475127
  • Patent Number
    10,475,127
  • Date Filed
    Tuesday, July 14, 2015
    9 years ago
  • Date Issued
    Tuesday, November 12, 2019
    5 years ago
  • CPC
  • Field of Search
    • CPC
    • G06Q40/08
  • International Classifications
    • G06Q40/00
    • G06Q40/08
    • Term Extension
      868
Abstract
A system and method may collect telematics and/or other data, and apply the data to insurance-based applications. From the data, an insurance provider may determine accurate vehicle usage information, including information regarding who is using a vehicle and under what conditions. An insurance provider may likewise determine risk levels or a risk profile for an insured driver (or other drivers), which may be used to adjust automobile or other insurance policies. The insurance provider may also use the data collected to adjust behavior based insurance using incentives, recommendations, or other means. For customers that opt-in to the data collection program offered, the present embodiments present the opportunity to demonstrate a low or moderate risk lifestyle and the chance for insurance-related savings based upon that low or moderate risk.
Description
FIELD

The present embodiments relate generally to telematics data and/or insurance policies. More particularly, the present embodiments relate to performing certain actions, and/or adjusting insurance policies, based upon telematics and/or other data indicative of risk or insured behavior.


BACKGROUND

Conventional insurance techniques and policies may be subject to inaccuracies due to limited information and/or inadequate risk mitigation or prevention. For example, conventional automobile insurance policies are based upon risk estimates using the age, location, and reported driving history (e.g., reported accidents) of a an insured driver. When such a policy covers multiple drivers (e.g., family members), estimates of risks associated with each driver are used, based upon typical drivers having similar demographic characteristics. Thus, conventional automobile insurance fails to accurately account for different risk levels posed by personal risk preferences and/or driving styles, as well as different risks associated with different usage levels of insured drivers. Conventional insurance techniques may also suffer from the lack of incentivizing the preferred types of behaviors; failure to properly identify risks associated with an individual; inefficient or ineffective customer communications; inadequate or incorrect behavior-based policies; and/or other drawbacks. The present embodiments may overcome these and/or other deficiencies.


BRIEF SUMMARY

The present embodiments disclose systems and methods that may relate to the intersection of telematics and insurance. In some embodiments, for example, telematics and/or other data may be gathered and used to determine risks associated with an insured vehicle or person. The data may be gathered from one or more sources, such as mobile devices (e.g., smart phones, smart glasses, smart watches, smart wearable devices, smart contact lenses, and/or other devices capable of wireless communication); smart vehicles; smart vehicle or smart home mounted sensors; third party sensors or sources of data (e.g., other vehicles, public transportation systems, government entities, and/or the Internet); and/or other sources of information. The data may further be collected or gathered from other vehicles (either directly or indirectly through vehicle-to-vehicle communication), infrastructure components, and/or other road side equipment. Insurance claims, policies, premiums, rates, discounts, rewards, deductibles, limits, and/or programs may then be adjusted based upon the risks determined from the telematics and/or other collected data. The determined risks may be applied to automobile insurance and/or other types of insurance. In some embodiments, the data may be received, risks determined, and/or insurance policies adjusted at a remote server.


In accordance with the described embodiments, the disclosure herein generally addresses systems, methods, and computer-readable media for using anonymous driver data to adjust driving risk. The system, method, or media may include (1) collecting anonymous driver data associated with driving behavior of a plurality of drivers; (2) collecting insured driving behavior data associated with the driving behavior of an insured driver; (3) determining a driving risk score associated with the insured driver by comparing the anonymous driver data with the insured driving behavior data; (4) determining an adjustment to an insurance policy associated with the insured driver based upon the determined driving risk score; and/or (5) causing the adjustment to the insurance policy to be implemented.


The anonymous driver data may indicate anonymous driver behavior associated with one or more road segments. The insured driving behavior data may be associated with the one or more road segments and/or may include telematics data generated by one or more sensors. The one or more road segments may include one or more of the following: a specific road, a specific section of a road, and/or an intersection. In some aspects, comparing the anonymous driver data with the insured driving behavior data may include comparing one or more of the following associated with the one or more road segments for anonymous drivers and the insured driver: vehicle speed, vehicle braking, vehicle acceleration, vehicle turning, vehicle position in a lane, vehicle distance from other vehicles, use of safety equipment, and/or driver alertness.


In accordance with the described embodiments, the disclosure herein also generally addresses systems, methods, and computer-readable media for generating, adjusting, or updating an insurance policy using telematics data. The system, method, or media may include (1) collecting telematics data associated with driving behavior of an insured driver from one or more sensors; (2) determining one or more driving risk scores associated with the insured driver based upon the collected telematics data; (3) determining a risk aversion score associated with the insured driver based upon the one or more driving risk scores; (4) determining an adjustment to an insurance policy associated with the insured driver based upon the determined risk aversion score; and/or (5) causing the adjustment to the insurance policy to be implemented. In some aspects, the system, method, or media may further include transmitting information regarding the adjustment to the insurance policy to one or more insurance customers associated with the insurance policy for review and/or receiving a confirmation of the adjustment to the insurance policy from at least one of the one or more insurance customers.


The insurance policy may be an automobile insurance policy or another type of insurance policy, such as a life insurance policy, a health insurance policy, a disability insurance policy, an accident insurance policy, a homeowners insurance policy, a renters insurance policy, and/or an excess liability insurance policy.


Determining the one or more driving risk scores may include analyzing the collected telematics data to determine one or more of the following usage characteristics: (i) driving characteristics associated with the driving behavior of the insured driver (which may include one or more of the following: vehicle speed, vehicle braking, vehicle acceleration, vehicle turning, vehicle position in a lane, vehicle distance from other vehicles, use of safety equipment, and/or insured driver alertness), and/or (ii) driving environments associated with the driving behavior of the insured driver (which may include one or more of the following: geographic location, time of day, type of road, weather conditions, traffic conditions, construction conditions, route traveled, and/or a daily commute of the insured driver to and from a workplace). Determining the one or more driving risk scores may further include determining the one or more driving risk scores based upon the determined usage characteristics.


Additionally, or alternatively, the one or more driving risk scores may be determined based, at least in part, upon one or more of the following: biometric data associated with the insured driver, the identity and usage of an insured vehicle by one or more drivers, a location an insured vehicle is parked, an amount of time the insured vehicle is garaged, and/or vehicle maintenance records. The identity and usage of an insured vehicle by one or more drivers may be determined based upon determined identities of one or more drivers of one or more insured vehicles and/or usage characteristics of the one or more drivers associated with the one or more insured vehicles, which may include one or more of the following: (i) an amount that each of the one or more drivers uses each of the one or more insured vehicles, (ii) driving behavior characteristics of each of the one or more drivers with respect to each of the one or more insured vehicles, and/or (iii) the vehicle environments in which each of the one or more drivers operates the one or more insured vehicles.


In accordance with the described embodiments, the disclosure herein also generally addresses systems, methods, and computer-readable media for updating, adjusting, or generating an insurance policy associated with one or more insured vehicles based upon vehicle usage. The system, method, or media may include (1) collecting telematics data from one or more sensors associated with the one or more insured vehicles during one or more vehicle trips; (2) determining the identity of one or more drivers during each vehicle trip by analyzing the telematics data; (3) determining a summary of vehicle usage for the one or more insured vehicles over a plurality of vehicle trips; (4) determining an adjustment to the insurance policy based upon the determined summary of vehicle usage; and/or (5) causing the adjustment to the insurance policy to be implemented. In some aspects, the system, method, or media may further include transmitting information regarding the adjustment to the insurance policy to one or more insurance customers associated with the insurance policy for review and/or receiving a confirmation of the adjustment to the insurance policy from at least one of the one or more insurance customers.


The telematics data may include sensor data regarding the identity of the driver and driving behavior during each vehicle trip. The summary of vehicle usage may include one or more of the following: (1) an amount that each of the one or more drivers uses each of the one or more insured vehicles, (2) driving behavior characteristics of each of the one or more drivers with respect to each of the one or more insured vehicles, and/or (3) the vehicle environments in which each of the one or more drivers operates the one or more insured vehicles. The vehicle environment of each vehicle trip may include the following: geographic location, time of day, type of road, weather conditions, traffic conditions, construction conditions, and/or route traveled.


In accordance with the described embodiments, the disclosure herein also generally addresses systems, methods, and computer-readable media for providing insurance-based incentives or recommendations for vehicle insurance. The system, method, or media may include (1) collecting telematics data associated with driving behavior of an insured driver from one or more sensors; (2) analyzing the collected telematics data to determine one or more usage characteristics for the insured driver; (3) determining driving behavior summary for the insured driver based upon the determined usage characteristics; (4) determining one or more risky driving behaviors of the insured driver based upon the driving behavior summary; (5) determining one or more recommendations to the insured driver; and (6) causing the one or more recommendation to be transmitted to a computing device associated with the insured driver. The computing device may be a mobile device and/or a computer system of a vehicle associated with the insured driver.


The one or more recommendations may include one or more actions to be taken by the insured driver in order to reduce one or more risks associated with the determined one or more risky driving behaviors. In some aspects, the system, method, or media may further include determining an estimated cost savings on a vehicle insurance policy associated with the insured driver; and/or causing the estimated cost savings to be transmitted to a computing device associated with the insured driver. The estimated cost savings may be associated with the insured driver taking the one or more recommended actions. In further aspects, the system, method, or media may further include monitoring the driving behavior of the insured driver following transmission of the one or more recommendations; determining that the insured driver has taken some or all of the one or more recommended actions based upon the monitored driving behavior; and/or causing an adjustment to be made to an insurance policy associated with the insured driver based upon the determination that the driver has taken some or all of the one or more recommended actions based upon the monitored driving behavior.


In some aspects, the one or more usage characteristics may be determined based upon (i) driving characteristics associated with the driving behavior of the insured driver, and/or (ii) driving environments associated with the driving behavior of the insured driver. The driving characteristics may include one or more of a vehicle speed, vehicle braking, vehicle acceleration, vehicle turning, vehicle position in a lane, vehicle distance from other vehicles, use of safety equipment, and/or insured driver alertness. The driving environments may include one or more of a geographic location, time of day, type of road, weather conditions, traffic conditions, construction conditions, and/or route traveled. The driving environment may also include a daily commute of the insured driver to and from a workplace.


Advantages will become more apparent to those skilled in the art from the following description of the preferred embodiments which have been shown and described by way of illustration. As will be realized, the present embodiments may be capable of other and different embodiments, and their details are capable of modification in various respects. Accordingly, the drawings and description are to be regarded as illustrative in nature and not as restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS

There are shown in the drawings arrangements which are presently discussed, it being understood, however, that the present embodiments are not limited to the precise arrangements and instrumentalities shown, wherein:



FIG. 1 illustrates an exemplary computer system for implementing the methods in accordance with the disclosure herein;



FIG. 2 illustrates an exemplary mobile device and/or smart vehicle controller;



FIG. 3 illustrates an exemplary computer-implemented method of determining a driving or other risk score from anonymous driver data and/or anonymous driver behavior;



FIG. 4 illustrates an exemplary computer-implemented method of applying a driving risk score to types of insurance other than auto insurance;



FIG. 5 illustrates another exemplary computer-implemented method of applying a driving risk score to types of insurance other than auto insurance;



FIG. 6 illustrates an exemplary computer-implemented method of providing more accurate usage-based insurance;



FIG. 7 illustrates an exemplary computer-implemented method of providing insurance-related incentives and/or recommendations; and



FIG. 8 illustrates an exemplary computer-implemented method of generating an individual-based insurance product.





DETAILED DESCRIPTION

The present embodiments may relate to, inter alia, collecting data, including telematics and/or other data. The data may be analyzed by an insurance provider server or processor to provide insurance-related benefits to an insured, and/or apply the insurance-related benefits to an insurance policy or premium of the insured. The insurance-related benefits may include: (1) more accurate cause of accident and/or fault determination; (2) accurate accident or accident scene reconstructions; (3) identifying misstated or inaccurate claims, which may lower individual premiums on the whole for those within a collective group or pool of insurance customers; (4) providing risk or loss mitigation or prevention services; (5) issuing or adjusting behavior or usage-based insurance; (6) insuring people (instead of their belongings per se); (7) insurance pertinent data collection and/or communication techniques; and/or (8) theft protection, mitigation, and/or avoidance.


The insurance-related benefits may further include other products and/or services. An insurance provider may: (9) incentivize low risk or less risky behavior for an insured; (10) provide recommendations that reduce risk and/or result in insurance savings for the insured; (11) provide intelligent vehicle routing in real-time that reduces the risk of a vehicle accident; (12) identify a level of risk or a driving behavior model for an insured based upon an analysis involving anonymous driver data; (13) apply driving behavior or a driving risk score for an insured to other types of insurance (home owners, renters, life, health, etc.); and/or provide other benefits, services, and/or products. The present embodiments may reward an insured for exhibiting risk-averse behavior in the form of lower insurance premiums or rates, or additional insurance discounts, points, and/or rewards.


I. Exemplary Telematics Data System



FIG. 1 illustrates a block diagram of an exemplary telematics system 1 on which the exemplary methods described herein may be implemented. The high-level architecture includes both hardware and software applications, as well as various data communications channels for communicating data between the various hardware and software components. The telematics system 1 may be roughly divided into front-end components 2 and back-end components 4.


The front-end components 2 may obtain information regarding a vehicle 8 (e.g., a car, truck, motorcycle, etc.) and/or the surrounding environment. Information regarding the surrounding environment may be obtained by one or more other vehicles 6, public transportation system components 22 (e.g., a train, a bus, a trolley, a ferry, etc.), infrastructure components 26 (e.g., a bridge, a stoplight, a tunnel, a rail crossing, etc.), smart homes 28 having smart home controllers 29, and/or other components communicatively connected to a network 30. Information regarding the vehicle 8 may be obtained by a mobile device 10 (e.g., a smart phone, a tablet computer, a special purpose computing device, etc.) and/or a smart vehicle controller 14 (e.g., an on-board computer, a vehicle diagnostic system, a vehicle control system or sub-system, etc.), which may be communicatively connected to each other and/or the network 30.


In some embodiments, telematics data may be generated by and/or received from sensors 20 associated with the vehicle 8. Such telematics data from the sensors 20 may be received by the mobile device 10 and/or the smart vehicle controller 14, in some embodiments. Other, external sensors 24 (e.g., sensors associated with one or more other vehicles 6, public transportation system components 22, infrastructure components 26, and/or smart homes 28) may provide further data regarding the vehicle 8 and/or its environment, in some embodiments. For example, the external sensors 24 may obtain information pertaining to other transportation components or systems within the environment of the vehicle 8, and/or information pertaining to other aspect so of that environment. The sensors 20 and the external sensors 24 are described further below, according to some embodiments.


In some embodiments, the mobile device 10 and/or the smart vehicle controller 14 may process the sensor data from sensors 20, and/or other of the front-end components 2 may process the sensor data from external sensors 24. The processed data (and/or information derived therefrom) may then be communicated to the back-end components 4 via the network 30. In other embodiments, the front-end components 2 may communicate the raw sensor data from sensors 20 and/or external sensors 24, and/or other telematics data, to the back-end components 4 for processing. In thin-client embodiments, for example, the mobile device 10 and/or the smart vehicle controller 14 may act as a pass-through communication node for communication with the back-end components 4, with minimal or no processing performed by the mobile device 10 and/or the smart vehicle controller 14. In other embodiments, the mobile device 10 and/or the smart vehicle controller 14 may perform substantial processing of received sensor, telematics, or other data. Summary information, processed data, and/or unprocessed data may be communicated to the back-end components 4 via the network 30.


The mobile device 10 may be a general-use personal computer, cellular phone, smart phone, tablet computer, or a dedicated vehicle use monitoring device. In some embodiments, the mobile device 10 may include a wearable device such as a smart watch, smart glasses, wearable smart technology, or a pager. Although only one mobile device 10 is illustrated, it should be understood that a plurality of mobile devices may be used in some embodiments. The smart vehicle controller 14 may be a general-use on-board computer capable of performing many functions relating to vehicle operation, an on-board computer system or sub-system, or a dedicated computer for monitoring vehicle operation and/or generating telematics data. Further, the smart vehicle controller 14 may be installed by the manufacturer of the vehicle 8 or as an aftermarket modification or addition to the vehicle 8. Either or both of the mobile device 10 and the smart vehicle controller 14 may communicate with the network 30 over link 12 and link 18, respectively. Additionally, the mobile device 10 and smart vehicle controller 14 may communicate with one another directly over link 16. In some embodiments, the mobile device 10 and/or the smart vehicle controller 14 may communicate with other of the front-end components 2, such as the vehicles 6, public transit system components 22, infrastructure components 26, and/or smart homes 28, either directly or indirectly (e.g., via the network 30).


The one or more sensors 20 referenced above may be removably or fixedly disposed within (and/or on the exterior of) the vehicle 8, within the mobile device 10, and/or within the smart vehicle controller 14, for example. The sensors 20 may include any one or more of various different sensor types, such as an ignition sensor, an odometer, a system clock, a speedometer, a tachometer, an accelerometer, a gyroscope, a compass, a geolocation unit (e.g., a GPS unit), a camera and/or video camera, a distance sensor (e.g., radar, LIDAR, etc.), and/or any other sensor or component capable of generating or receiving data regarding the vehicle 8 and/or the environment in which the vehicle 8 is located.


Some of the sensors 20 (e.g., radar, LIDAR, ultrasonic, infrared, or camera units) may actively or passively scan the vehicle environment for objects (e.g., other vehicles, buildings, pedestrians, etc.), traffic control elements (e.g., lane markings, signs, signals, etc.), external conditions (e.g., weather conditions, traffic conditions, road conditions, etc.), and/or other physical characteristics of the environment. Other sensors of sensors 20 (e.g., GPS, accelerometer, or tachometer units) may provide operational and/or other data for determining the location and/or movement of the vehicle 8. Still other sensors of sensors 20 may be directed to the interior or passenger compartment of the vehicle 8, such as cameras, microphones, pressure sensors, thermometers, or similar sensors to monitor the vehicle operator and/or passengers within the vehicle 8.


The external sensors 24 may be disposed on or within other devices or components within the vehicle's environment (e.g., other vehicles 6, infrastructure components 26, etc.), and may include any of the types of sensors listed above. For example, the external sensors 24 may include sensors that are the same as or similar to sensors 20, but disposed on or within some of the vehicles 6 rather than the vehicle 8.


To send and receive information, each of the sensors 20 and/or external sensors 24 may include a transmitter and/or a receiver designed to operate according to predetermined specifications, such as the dedicated short-range communication (DSRC) channel, wireless telephony, Wi-Fi, or other existing or later-developed communications protocols. As used herein, the terms “sensor” or “sensors” may refer to the sensors 20 and/or external sensors 24.


The other vehicles 6, public transportation system components 22, infrastructure components 26, and/or smart homes 28 may be referred to herein as “external” data sources. The other vehicles 6 may include any other vehicles, including smart vehicles, vehicles with telematics-capable mobile devices, autonomous vehicles, and/or other vehicles communicatively connected to the network 30 via links 32.


The public transportation system components 22 may include bus, train, ferry, ship, airline, and/or other public transportation system components. Such components may include vehicles, tracks, switches, access points (e.g., turnstiles, entry gates, ticket counters, etc.), and/or payment locations (e.g., ticket windows, fare card vending machines, electronic payment devices operated by conductors or passengers, etc.), for example. The public transportation system components 22 may further be communicatively connected to the network 30 via a link 34, in some embodiments.


The infrastructure components 26 may include smart infrastructure or devices (e.g., sensors, transmitters, etc.) disposed within or communicatively connected to transportation or other infrastructure, such as roads, bridges, viaducts, terminals, stations, fueling stations, traffic control devices (e.g., traffic lights, toll booths, entry ramp traffic regulators, crossing gates, speed radar, cameras, etc.), bicycle docks, footpaths, or other infrastructure system components. In some embodiments, the infrastructure components 26 may be communicatively connected to the network 30 via a link (not shown in FIG. 1).


The smart homes 28 may include dwellings or other buildings that generate or collect data regarding their condition, occupancy, proximity to a mobile device 10 or vehicle 8, and/or other information. The smart homes 28 may include smart home controllers 29 that monitor the local environment of the smart home, which may include sensors (e.g., smoke detectors, radon detectors, door sensors, window sensors, motion sensors, cameras, etc.). In some embodiments, the smart home controller 29 may include or be communicatively connected to a security system controller for monitoring access and activity within the environment. The smart home 28 may further be communicatively connected to the network 30 via a link 36, in some embodiments.


The external data sources may collect data regarding the vehicle 8, a vehicle operator, a user of an insurance program, and/or an insured of an insurance policy. Additionally, or alternatively, the other vehicles 6, the public transportation system components 22, the infrastructure components 26, and/or the smart homes 28 may collect such data, and provide that data to the mobile device 10 and/or the smart vehicle controller 14 via links not shown in FIG. 1.


In some embodiments, the front-end components 2 communicate with the back-end components 4 via the network 30. The network 30 may include a proprietary network, a secure public internet, a virtual private network and/or one or more other types of networks, such as dedicated access lines, plain ordinary telephone lines, satellite links, cellular data networks, or combinations thereof. In embodiments where the network 30 comprises the Internet, data communications may take place over the network 30 via an Internet communication protocol.


The back-end components 4 may use a remote server 40 to receive data from the front-end components 2, determine characteristics of vehicle use, determine risk levels, modify insurance policies, and/or perform other processing functions in accordance with any of the methods described herein. In some embodiments, the server 40 may be associated with an insurance provider, either directly or indirectly. The server 40 may include one or more computer processors adapted and configured to execute various software applications and components of the telematics system 1.


The server 40 may further include a database 46, which may be adapted to store data related to the operation of the vehicle 8 and/or other information. As used herein, the term “database” may refer to a single database or other structured data storage, or to a collection of two or more different databases or structured data storage components. Additionally, the server 40 may be communicatively coupled via the network 30 to one or more data sources, which may include an accident database 42 and/or a third party database 44. The accident database 42 and/or third party database 44 may be communicatively connected to the network via a communication link 38. The accident database 42 and/or the third party database 44 may be operated or maintained by third parties, such as commercial vendors, governmental entities, industry associations, nonprofit organizations, or others.


The data stored in the database 46 might include, for example, dates and times of vehicle use, duration of vehicle use, speed of the vehicle 8, RPM or other tachometer readings of the vehicle 8, lateral and longitudinal acceleration of the vehicle 8, incidents or near-collisions of the vehicle 8, communications between the vehicle 8 and external sources (e.g., other vehicles 6, public transportation system components 22, infrastructure components 26, smart homes 28, and/or external information sources communicating through the network 30), environmental conditions of vehicle operation (e.g., weather, traffic, road condition, etc.), errors or failures of vehicle features, and/or other data relating to use of the vehicle 8 and/or the vehicle operator. Prior to storage in the database 46, some of the data may have been uploaded to the server 40 via the network 30 from the mobile device 10 and/or the smart vehicle controller 14. Additionally, or alternatively, some of the data may have been obtained from additional or external data sources via the network 30. Additionally, or alternatively, some of the data may have been generated by the server 40. The server 40 may store data in the database 46 and/or may access data stored in the database 46 when executing various functions and tasks associated with the methods described herein.


The server 40 may include a controller 55 that is operatively connected to the database 46 via a link 56. It should be noted that, while not shown in FIG. 1, one or more additional databases may be linked to the controller 55 in a known manner. For example, separate databases may be used for sensor data, vehicle insurance policy information, and vehicle use information. The controller 55 may include a program memory 60, a processor 62 (which may be called a microcontroller or a microprocessor), a random-access memory (RAM) 64, and an input/output (I/O) circuit 66, all of which may be interconnected via an address/data bus 65. It should be appreciated that although only one microprocessor 62 is shown, the controller 55 may include multiple microprocessors 62. Similarly, the memory of the controller 55 may include multiple RAMs 64 and multiple program memories 60. Although the I/O circuit 66 is shown as a single block, it should be appreciated that the I/O circuit 66 may include a number of different types of I/O circuits. The RAM 64 and program memories 60 may be implemented as semiconductor memories, magnetically readable memories, or optically readable memories, for example. The controller 55 may also be operatively connected to the network 30 via a link 35.


The server 40 may further include a number of software applications stored in a program memory 60. The various software applications on the server 40 may include specific programs, routines, or scripts for performing processing functions associated with the methods described herein. Additionally, or alternatively, the various software application on the server 40 may include general-purpose software applications for data processing, database management, data analysis, network communication, web server operation, or other functions described herein or typically performed by a server. The various software applications may be executed on the same computer processor or on different computer processors. Additionally, or alternatively, the software applications may interact with various hardware modules that may be installed within or connected to the server 40. Such modules may implement part of all of the various exemplary methods discussed herein or other related embodiments.


In some embodiments, the server 40 may be a remote server associated with or operated by or on behalf of an insurance provider. The server 40 may be configured to receive, collect, and/or analyze telematics and/or other data in accordance with any of the methods described herein. The server 40 may be configured for one-way or two-way wired or wireless communication via the network 30 with a number of telematics and/or other data sources, including the accident database 42, the third party database 44, the database 46 and/or the front-end components 2. For example, the server 40 may be in wireless communication with mobile device 10; insured smart vehicles 8; smart vehicles of other motorists 6; smart homes 28; present or past accident database 42; third party database 44 operated by one or more government entities and/or others; public transportation system components 22 and/or databases associated therewith; smart infrastructure components 26; and/or the Internet. The server 40 may be in wired or wireless communications with other sources of data, including those discussed elsewhere herein.


Although the telematics system 1 is shown in FIG. 1 to include one vehicle 8, one mobile device 10, one smart vehicle controller 14, one other vehicle 6, one public transportation system component 22, one infrastructure component 26, one smart home 28, and one server 40, it should be understood that different numbers of each may be utilized. For example, the system 1 may include a plurality of servers 40 and hundreds or thousands of mobile devices 10 and/or smart vehicle controllers 14, all of which may be interconnected via the network 30. Furthermore, the database storage or processing performed by the server 40 may be distributed among a plurality of servers in an arrangement known as “cloud computing.” This configuration may provide various advantages, such as enabling near real-time uploads and downloads of information as well as periodic uploads and downloads of information. This may in turn support a thin-client embodiment of the mobile device 10 or smart vehicle controller 14 discussed herein.



FIG. 2 illustrates a block diagram of an exemplary mobile device 10 and/or smart vehicle controller 14. The mobile device 10 and/or smart vehicle controller 14 may include a processor 72, display 74, sensor 76, memory 78, power supply 80, wireless radio frequency transceiver 82, clock 84, microphone and/or speaker 86, and/or camera or video camera 88. In other embodiments, the mobile device and/or smart vehicle controller may include additional, fewer, and/or alternate components.


The sensor 76 may be able to record audio or visual information. If FIG. 2 corresponds to the mobile device 10, for example, the sensor 76 may be a camera integrated within the mobile device 10. The sensor 76 may alternatively be configured to sense speed, acceleration, directional, fluid, water, moisture, temperature, fire, smoke, wind, rain, snow, hail, motion, and/or other type of condition or parameter, and/or may include a gyro, compass, accelerometer, or any other type of sensor described herein (e.g., any of the sensors 20 described above in connection with FIG. 1). Generally, the sensor 76 may be any type of sensor that is currently existing or hereafter developed and is capable of providing information regarding the vehicle 8, the environment of the vehicle 8, and/or a person.


The memory 78 may include software applications that control the mobile device 10 and/or smart vehicle controller 14, and/or control the display 74 configured for accepting user input. The memory 78 may include instructions for controlling or directing the operation of vehicle equipment that may prevent, detect, and/or mitigate vehicle damage. The memory 78 may further include instructions for controlling a wireless or wired network of a smart vehicle, and/or interacting with mobile device 10 and remote server 40 (e.g., via the network 30).


The power supply 80 may be a battery or dedicated energy generator that powers the mobile device 10 and/or smart vehicle controller 14. The power supply 80 may harvest energy from the vehicle environment and be partially or completely energy self-sufficient, for example.


The transceiver 82 may be configured for wireless communication with sensors 20 located about the vehicle 8, other vehicles 6, other mobile devices similar to mobile device 10, and/or other smart vehicle controllers similar to smart vehicle controller 14. Additionally, or alternatively, the transceiver 82 may be configured for wireless communication with the server 40, which may be remotely located at an insurance provider location.


The clock 84 may be used to time-stamp the date and time that information is gathered or sensed by various sensors. For example, the clock 84 may record the time and date that photographs are taken by the camera 88, video is captured by the camera 88, and/or other data is received by the mobile device 10 and/or smart vehicle controller 14.


The microphone and speaker 86 may be configured for recognizing voice or audio input and/or commands. The clock 84 may record the time and date that various sounds are collected by the microphone and speaker 86, such as sounds of windows breaking, air bags deploying, tires skidding, conversations or voices of passengers, music within the vehicle 8, rain or wind noise, and/or other sound heard within or outside of the vehicle 8.


The present embodiments may be implemented without changes or extensions to existing communications standards. The smart vehicle controller 14 may also include a relay, node, access point, Wi-Fi AP (Access Point), local node, pico-node, relay node, and/or the mobile device 10 may be capable of RF (Radio Frequency) communication, for example. The mobile device 10 and/or smart vehicle controller 14 may include Wi-Fi, Bluetooth, GSM (Global System for Mobile communications), LTE (Long Term Evolution), CDMA (Code Division Multiple Access), UMTS (Universal Mobile Telecommunications System), and/or other types of components and functionality.


II. Telematics Data


Telematics data, as used herein, may include telematics data, and/or other types of data that have not been conventionally viewed as “telematics data.” The telematics data may be generated by, and/or collected or received from, various sources. For example, the data may include, indicate, and/or relate to vehicle (and/or mobile device) speed; acceleration; braking; deceleration; turning; time; GPS (Global Positioning System) or GPS-derived location, speed, acceleration, or braking information; vehicle and/or vehicle equipment operation; external conditions (e.g., road, weather, traffic, and/or construction conditions); other vehicles or drivers in the vicinity of an accident; vehicle-to-vehicle (V2V) communications; vehicle-to-infrastructure communications; and/or image and/or audio information of the vehicle and/or insured driver before, during, and/or after an accident. The data may include other types of data, including those discussed elsewhere herein. The data may be collected via wired or wireless communication.


The data may be generated by mobile devices (smart phones, cell phones, lap tops, tablets, phablets, PDAs (Personal Digital Assistants), computers, smart watches, pagers, hand-held mobile or portable computing devices, smart glasses, smart electronic devices, wearable devices, smart contact lenses, and/or other computing devices); smart vehicles; dash or vehicle mounted systems or original telematics devices; public transportation systems; smart street signs or traffic lights; smart infrastructure, roads, or highway systems (including smart intersections, exit ramps, and/or toll booths); smart trains, buses, or planes (including those equipped with Wi-Fi or hotspot functionality); smart train or bus stations; internet sites; aerial, drone, or satellite images; third party systems or data; nodes, relays, and/or other devices capable of wireless RF (Radio Frequency) communications; and/or other devices or systems that capture image, audio, or other data and/or are configured for wired or wireless communication.


In some embodiments, the data collected may also derive from police or fire departments, hospitals, and/or emergency responder communications; police reports; municipality information; automated Freedom of Information Act requests; and/or other data collected from government agencies and officials. The data from different sources or feeds may be aggregated.


The data generated may be transmitted, via wired or wireless communication, to a remote server, such as a remote server and/or other processor(s) associated with an insurance provider. The remote server and/or associated processors may build a database of the telematics and/or other data, and/or otherwise store the data collected.


The remote server and/or associated processors may analyze the data collected and then perform certain actions and/or issue tailored communications based upon the data, including the insurance-related actions or communications discussed elsewhere herein. The automatic gathering and collecting of data from several sources by the insurance provider, such as via wired or wireless communication, may lead to expedited insurance-related activity, including the automatic identification of insured events, and/or the automatic or semi-automatic processing or adjusting of insurance claims.


In one embodiment, telematics data may be collected by a mobile device (e.g., smart phone) application. An application that collects telematics data may ask an insured for permission to collect and send data about driver behavior and/or vehicle usage to a remote server associated with an insurance provider. In return, the insurance provider may provide incentives to the insured, such as lower premiums or rates, or discounts. The application for the mobile device may be downloadable off of the internet.


In some embodiments, the telematics and/or other data generated, collected, determined, received, transmitted, analyzed, or otherwise utilized may relate to biometrics. For example, biometrics data may be used by an insurance provider to push wireless communications to a driver or an insured related to health and/or driving warnings or recommendations. In one aspect, a wearable electronics device may monitor various physical conditions of a driver to determine the physical, mental, and/or emotional condition of the driver, which may facilitate identification of a driver that may have a high risk of accident. Wearable electronics devices may monitor, for example, blood pressure or heart rate. Such data may be remotely gathered by an insurance provider remote server 40 for insurance-related purposes, such as for automatically generating wireless communications to the insured and/or policy and premium adjustments.


In some embodiments, the telematics and/or other data may indicate a health status of a driver. If biometrics data indicates that an insured is having a heart attack, for example, a recommendation or warning to stop driving and/or go to a hospital may be issued to the insured via the mobile device 10 or other means, and/or the insurance provider (or mobile device 10 or smart vehicle controller 14) may issue a request for immediate medical assistance.


The biometrics data may indicate the health or status of an insured immediately after an accident has occurred. The biometrics data may be automatically analyzed by the remote server 40 to determine that an ambulance should be sent to the scene of an accident. In the unfortunate situation that a death and/or a cause of death (e.g, severe auto accident) is indicated (from the telematics or other data, or from emergency responder wireless communication), an insurance provider may remotely receive that information at a remote server 40, and/or automatically begin processing a life insurance policy claim for the insured.


III. Risk-Averse Behavior-Based Insurance


The telematics and/or other data gathered may be analyzed for risk-averse or low risk behavior. The behavior may be used to identify low risk driving, living, and/or activities. An insurance provider may analyze actual accident information over a period of time, and/or build or train a data model of low risk behavior and/or characteristics. Comparing behavior or other data of individual insurance customers with the data model may identify low risk individuals.


A. Identifying Driving Behavior from Data Analysis


The telematics and/or other data gathered by an insurance provider remote server (such as server 40) may indicate excellent or good driving behavior. The data may lead to generating a best estimate of driving behavior for an insured. Such information may then be used by the insurance provider to adjust a risk score for the insured and/or associated insurance premiums or rates, and/or discounts, points, or rewards.


The telematics and/or other data may indicate the insured's behavior with respect to vehicle operations, such as the following: braking; speed; acceleration; deceleration; turning; average distance to the next vehicle—whether ahead, behind, or adjacent (i.e., traveling along side in the same direction of traffic); usage of vehicle technology (such as accident avoidance technology); usage of turn signals; usage of wireless communications from remote servers 40 or other vehicles 6 (i.e., vehicle-to-vehicle communication); and/or other driving characteristics. The data may also indicate whether an insured usually drives alone or in a car pool; the typical roads taken during a commute to and from work; time of day information; and/or other insured tendencies, including those discussed elsewhere herein.


The present embodiments may be configured to distinguish between good and bad driving behavior in order to not penalize good driving behavior. For example, the telematics and/or other data may involve both braking data and visual information, such as video from a dash camera. A hard braking event indicated from braking or speed information associated with vehicle deceleration may be verified as not being the fault of the driver, but rather indicative of responsible driving. Video from a dash camera may reveal that the hard braking event was caused by another vehicle, pedestrian, or child unexpectedly moving or jumping in front of the vehicle's path, and/or a traffic signal rapidly changing color. Alternatively, the video may indicate that the driver was following the vehicle ahead too closely. Also, an indicated sleeping event associated with gripping a steering wheel too tightly may be cancelled (or verified) by analyzing video or other telematics data showing driver alertness.


1. Individual Profile


A driving behavior profile for an insured may be developed based upon the telematics and/or other data. The data collected may indicate the speed at which an insured typically drives; the location(s) where the insured typically drives; the type of vehicle(s) that the insured typically drives; the type of roads or routes that the insured usually takes; the weather conditions that the insured will normally drive in; the time of day that the insured usually drives or drives the most at; the distance at which the insured typically trails other vehicles; whether the insured drives a large percentage of time adjacent to other vehicles traveling in the same direction (such as on a four-lane highway); whether the insured typically drives too slow or too fast in relation to the posted speed limit; and/or other driving characteristics of the insured.


The telematics and/or other data may reveal location information, i.e., where the insured drives. The risk for open road or highway driving may be less than the risk associated with downtown or city driving. Highway driving may indicate that a driver is not driving through a large amount of intersections, and/or typically driving greater distances from other vehicles on the road (i.e., less bumper-to-bumper driving). Driving over a certain speed, such as 45 mph, may also indicate that a driver or insured normally drives on the highway, and thus may have a lower risk of accident.


The data may include time and/or time of day information. The data may include a percentage of time that the vehicle spends on highways (which may be associated with a relatively low risk), and/or a percentage of time that the vehicle spends in parking lots (which may be associated with a relatively high risk). The data may also be used to determine normal traffic conditions associated with an insured, and/or the percentage of time that an insured vehicle is not being driven and/or parked in a public place (such as on the street), but rather is stored or housed inside and/or in a secure location (such as in the garage of the owner). Storing a vehicle inside may prevent theft and/or damage from the environment, such as wind or hail damage.


The telematics and/or other data may include the number of miles that an insured typically drives. More miles driven may indicate more risk, depending upon type of road traveled. The data may also indicate the type, make, or model of a vehicle that is driven by the insured. Certain vehicle types, makes, or models may have superior safety, equipment, or other vehicle ratings.


The data may facilitate driver mood detection in real-time or building an average mood profile for the insured. The mood of a driver or insured may impact driving behavior. Soft or light music may indicate that the driver or insured is relaxed and calm while driving. Conversely, loud music may indicate that the driver or insured is in an aggressive mood. A mobile device or smart vehicle application may detect the songs or type of music usually played on the vehicle sound system or radio, and/or loudness thereof.


2. Family Members


The telematics and/or other data gathered may be associated with a family that has multiple drivers driving a specific vehicle, such as parents and teenagers. The vehicle and/or mobile devices may be able to capture video, images, and/or audio information associated with, and/or of, the driver while driving an insured vehicle. The identification of the specific driver may be made by analysis of the video or images (e.g., via facial recognition software) and/or of audio data (e.g., via voice recognition software). Additionally or alternatively, the data collected from various sources may facilitate driver identification from fingerprints, a recognition of the driver's grip upon a smart steering wheel, and/or the driver's weight (such as from seat pressure sensors).


The telematics and/or other data may alert parents and/or police of risky driving behavior. Young or elderly drivers may exhibit high risk driving behavior, and that may be communicated to the parents, adult children, and/or the insured. On the other hand, telematics data may confirm that a young or elderly driver typically exhibits lower risk driving behavior as compared to those of the same age group. An insured or parent may submit, to an insurance provider, a telematics profile for their teenage driver to demonstrate low risk behavior, and thus obtain associated insurance savings.


Certain telematics devices may require data adjustments based upon movement of the data collection device (e.g., mobile device 10, smart vehicle controller 14, etc.) within the vehicle during data collection. If an insured moves a mobile device 10 during vehicle movement, for example, the data collected may need to be adjusted for a telematics algorithm to use and/or analyze the data. An insurance rating may be based upon the number of times that a mobile device 10 (collecting telematics data) was used, or moved, during driving.


Over or under reporting of vehicle usage by family members may impact risk and rates. For instance, undisclosed drivers may impact risk, such as teenagers driving a higher rated vehicle. The telematics and/or other data may determine which driver is actually driving an insured vehicle and/or how much. The data may also reveal over and/or under reporting of teenage and/or high-risk driver usage of, or miles driving, insured vehicles. Insurance rates may be adjusted to reflect actual, or a more accurate estimate of, vehicle usage by teenage and/or high-risk drivers determined from analysis of the telematics and/or other data. Alternatively, over reporting of teenage and/or high-risk driver usage by risk-averse customers may be similarly determined from analysis of the telematics and/or other data. Thus, telematics and/or other data may be analyzed as discussed herein to provide a technical solution to improve the accuracy of data regarding vehicle usage and/or risks associated therewith.


3. Road Conditions


The telematics and/or other data may reveal the amount of traffic lights and/or intersections that the vehicle and/or insured typically travels through on a daily, weekly, monthly, or other basis. Certain commuters may have mostly highway driving, with minimum stopping along the route from home to work. Such conditions may be associated with lower risk levels because fewer changes to the vehicle's operation need to be safely executed by the driver. Conversely, other commuters may have mainly congested or city driving, with frequent red lights or stop signs at which they must stop on the way to and from work, which may be associated with higher risk levels.


The data may reveal the percentage of time that the vehicle is driven in parking lots or ramps. Parking lot or ramp driving may be associated with a higher than normal risk of collision.


B. Applying Driver Behavior to Other Types of Insurance


The driving behavior may indicate an amount and/or type of risk behavior that the insured usually avoids, or alternatively, engages in. A risk behavior or driving score may be associated with, and/or otherwise attributed to, the insured. Low risk and/or risk-averse driving behavior may be applied to other types of insurance other than auto insurance to provide savings to the insured on premiums or rates associated with the other types of insurance.


An analysis of how well one drives a vehicle (i.e., how responsible a driver the insured is) may be indicative of how responsible and/or risk-averse a home owner the insured is. Also, maintenance records of the vehicle may be gathered. The maintenance records, like the driving behavior, may be indicative of how well an insured takes care of, maintains, and/or fixes their vehicle. This data, in turn, may be reflective of how well that same insured is likely to take care of and maintain their home. A risk factor may be determined from the vehicle or driving data that is subsequently applied to home owner insurance (as well as renters, life, or health insurance) premiums or rates, and/or discounts or rewards.


C. Recommendations & Incentives


An insurance provider may request that an insured permits the insurance provider to collect telematics and/or other data regarding certain behaviors of the insured. The insurance provider may ask the insured to opt into insurance programs that provide insurance related benefits to the insured that reflect low risk and/or risk-averse behavior of the insured and/or family members. From the data collected, the insurance provider may provide specific recommendations and/or incentivize insurance customer (and/or family) behavior. The behavior that is encouraged may benefit both the insured and insurance provider, and/or may reduce the risk associated with the insured and/or family members.


An application on a mobile device 10 (or smart vehicle controller 14) associated with an insured and/or a family member may display an up-to-date driving score for the insured. As the driving score for the insured and/or family member changes, the mobile device may show an amount of a discount and/or a reduced premium that the insured and/or family member has earned, and/or is entitled to receive from the insurance provider based upon lower risk and/or more risk-averse driving behavior.


The insurance provider may indicate that the insured and/or another family member is driving over the speed limit or tailgating too frequently. If the insured and/or other family member drives slower and/or more responsibly, the insurance provider may provide a discount and/or reduced premium on their auto insurance policy and/or other insurance policies.


The insurance provider may provide other insurance-related recommendations and/or incentives unrelated to driving. The insurance provider may monitor workout or fitness center habits of the insured and/or family members with their permission, and/or once they decide to opt into an insurance rewards or points program. For example, a personal activity monitor (e.g., a pedometer) may be used to determine exercise and/or fitness levels for an individual. The insurance provider may provide a discount or reduced premiums on health or life insurance if the insured and/or family members go to the gym and workout more often, and/or exercise a set amount times within a given period, such as a month or year.


Also with the insured's permission, eating habits may be determined from foodography and/or photographs of food or restaurants that the insured shares on social media or the internet. Additionally, or alternatively, the insured's location may be used to determine likely eating habits (e.g., by identifying the insured is located within a restaurant that may be associated with healthy or unhealthy food). If the insured (and/or a family member) is typically eating fast or unhealthy food, the insurance provider may provide a discount on a health or life insurance policy if the insured (and/or family member) agrees to eat healthier food. Also, if it is detected that the insured (and/or family member) is engaging in risky behavior, such as smoking cigarettes, the insurance provider may provide a discount on health or life insurance if the insured (and/or family member) reduces the frequency of that behavior. Again, location information from a mobile device 10 may be used to determine such behavior. For example, frequent five-minute trips to stand outside may be taken as an indication of smoking.


IV. Intelligent Routing


The present embodiments may facilitate generating intelligent routing recommendations and transmitting those to an insured via the mobile device 10 and/or smart vehicle controller 14. The intelligent routing may be based upon vehicle location, route, and/or destination information. The intelligent routing may also be based upon historical data and/or real-time data. The historical and/or real-time data may relate to past or current accidents, weather, traffic, traffic patterns, road conditions, and/or road construction. The intelligent routing functionality, and/or usage (or percentage of usage) thereof, may be used to adjust insurance premiums or rates, and/or discounts.


The intelligent routing may provide directions and/or route guidance to a driver or insured based upon traffic patterns and/or actual accident data. The intelligent routing may also take into consideration current weather, construction, traffic, and/or other current conditions.


The intelligent routing may provide real-time warnings or updates to drivers or insurance customers. The intelligent routing may lead to collision or accident avoidance; more efficient or quicker trips; driving through less traffic or construction; better gas mileage; and/or other benefits.


For instance, short-term or minor road construction projects that may occur with little or no notice may be promptly detected by an insured or the insured's smart vehicle controller 14. The GPS location of the minor road construction project (that may be temporarily shutting down a main traffic route or otherwise slowing down traffic) may be sent from the smart vehicle controller 14 of the insured to the insurance provider remote server 40. The remote server 40 may then estimate routes to divert traffic around the construction project and notify other insurance customers in the area of an alternate recommended route, such as via wireless communication to their mobile devices 10 and/or smart vehicle controllers 14.


The telematics and/or other data may be used to generate messages or alerts transmitted to a mobile device 10 or smart vehicle controller 14. A message may indicate that the driver is entering a danger zone associated with an above average risk. For instance, the area may have a lot of ongoing construction, and/or be associated with a higher than average number of accidents. A message may further indicate a recommendation, such as one or more alternate routes.


In one embodiment, the intelligent routing may utilize vehicle-to-vehicle (V2V) communication. The V2V communication may reveal that the other vehicles 6 ahead of an insured vehicle 8 are all braking, indicating an accident ahead. The V2V communication data may be sent directly from one vehicle 6 to an insured vehicle 8, or alternatively, from one vehicle 8 to a remote telematics or an insurance provider server 40 via the network 30. The remote server 40 may then send a message or warning to the insured or insured vehicle to slow down, or even exit a highway and take an alternate route. Access to the remote server 40 may be granted via a subscription service or as a customer service provided by the insurance provider. In some embodiments, messages may be determined in part based upon preferences or options selected or set by the insured.


V2V communication may include sending a message to a smart vehicle controller 14 or mobile device 10 directing the smart vehicle controller 14 or mobile device 10 to automatically start recording and/or transmitting telematics data. For instance, V2V communication may indicate that an accident has occurred or is likely to happen. In such situations, automatically recording telematics and/or other data may facilitate accident reconstruction and/or cause of accident determination. In some embodiments, the telematics and/or other data may include vehicle-to-infrastructure (V2I) communications.


In some embodiments, if an insured self-reports an accident location (e.g., via automatic wireless communication indicating GPS location information), other insurance customers or drivers may be able to promptly and effectively avoid the accident scene through intelligent routing recommendations. The intelligent routing may not only consider avoidance of the accident scene, but also other driving risk conditions, such as current traffic, construction, and/or weather conditions, to determine an overall lowest risk alternate route to each vehicle's respective destination.


V. Partner Data Collection with Other Functionality


A telematics application may partner with another (non-insurance related) application to increase usage. Telematics or insurance-based application functionality may be combined with another application functionality that is associated with social media websites, and/or virtual map or vehicle navigation services. The non-insurance based functionality may include points-of-interest, friend finder, entertainment event or concert-related, restaurant locator, internet or internet searching, and/or other functionality.


As an example, the non-insurance functionality may present a list of recommended restaurants for an upcoming town when the vehicle is traveling along a highway or on a long trip. The list of recommended restaurants may be read or displayed to the occupants of the vehicle. Additionally, the telematics and/or other data collected may indicate that an insured goes to a specific fitness center routinely. With the insured's permission, targeted ads may be sent to the insured associated with that fitness center and/or shops located nearby. The targeted ads may present local bargains or reduced prices for products and/or services, such as on a mobile device or vehicle display screen.


The non-insurance functionality may also relate to providing other benefits to the insured. For instance, the telematics or insurance-based application functionality may be combined with functionality that directs a driver to a nearest gas station or shopping mall, or to a parking spot. The parking spot, gas station, shopping mall, and/or other places/services recommended may be rated for safety, cost, and/or service. The use of additional or non-insurance functionality for the telematics or insurance-based mobile device applications may incentivize typical insurance customers into using telematics applications and/or usage-based insurance more often.


VI. Anonymous Driver Data


The telematics and/or other data gathered may be used to develop an anonymous or average driver profile or model associated with anonymous driver behavior. The anonymous driver profile may include information regarding typical or average driving behaviors for a specific driving environment and/or type of driving environment. The anonymous driver profile may be generated, developed, and/or determined based upon telematics and/or other data regarding driving behavior of a plurality or group of drivers and/or vehicles. For example, an anonymous driver profile may be determined from telematics data collected from hundreds or thousands of drivers and/or individual trips in an area and/or along a particular portion of a roadway (e.g., a city, a census tract, a parking lot, a block of a street, a highway section, an intersection, an entrance or exit ramp, etc.). The anonymous driver profile may be compared with the insured's driving behavior to analyze and/or determine a risk score for the insured.


For example, the telematics and/or other data gathered may indicate an average speed that the insured normally drives at as compared to typical drivers, and/or average drivers in a given community or geographical area. Anonymous speed data may be gathered that indicates the average speed of anonymous drivers in a given area or on a given stretch of road. The anonymous speed data may also indicate average braking events (e.g., number of braking events, whether such braking is hard or soft, deceleration rate during braking, distance to stop, etc.) or aggressive driving (or lack thereof) for anonymous drivers on a given stretch of road.


When the insured is on the same road as the road for which anonymous or average driver data is collected, data related to their specific vehicle speed and braking may be collected. If the insured's vehicle speed on that road is below the speed indicated for the average driver, it may indicate that the insured typically drives below the speed limit and/or in a low risk manner. Conversely, if the insured's vehicle speed on that road (or stretch of road or location) is above average, that may indicate the insured typically drives in a more risky manner.


If the insured's vehicle braking information indicates that the insured brakes a below average amount, that may be indicative that the insured trails other vehicles at a risk-averse distance, does not tailgate, and/or otherwise drives in a below risk manner. Conversely, if the vehicle braking information indicates that the insured brakes an excessive or above average amount, that may indicate that the insured is typically following other vehicles too closely and/or potentially driving in a manner associated with above average risk.


In one aspect, GPS data from a number of anonymous drivers may be gathered. A database of anonymous driver behavior on certain roads or areas may be built, such as demonstrating the speed and/or braking of the average driver on a specific section of road. Telematics and/or other data, including GPS data, associated with the insured may be collected and compared with the anonymous driver characteristics for specific sections of road. If lower than average risk is identified by the behavior exhibited by the insured (or other driver, such as a family member), the insurance provider may then provide the insured with insurance savings.


VII. Individual-Based Insurance


An insurance provider may determine a rating, risk profile, or risk score for individuals using telematics and/or other data. The vehicles available for use by an individual may impact or influence their personal insurance rate. The telematics and/or other data collected may indicate, or be used to estimate, a percentage of time that an insured or other person operates each vehicle within a household. The telematics and/or other data may be received by a remote server 40 from a mobile device 10, smart vehicle controller 14, and/or other sources described herein.


The telematics and/or other data may indicate, or be used to determine, driver behavior and characteristics for an individual. The type of car driven may impact safety, such as certain types of vehicles may be better or quicker at braking, which may lead to less rear-end collisions. More detailed data regarding vehicle usage and/or driving behavior may be used to determine more accurate risk level assessments associated with individuals, households, businesses, and/or vehicles.


A. Transportation Characteristics


To insure a specific individual, an insurance provider remote server 40 may consider and analyze a number of factors. The insurance provider remote server may develop a “transportation coverage” rating or score for an insured, and/or use telematics and/or other data to monitor or identify transportation characteristics of an individual. The data may be used to score individuals based upon their lifestyle and/or build individual profiles, which may take into consideration information and pictures available on social media and/or the internet.


The transportation coverage or characteristics may include information related to the types of roads and conditions (traffic, construction, weather, etc.) that the insured typically drives. This may allow the insurance provider remote server to estimate an insurance rate for the actual type of miles that the insured is driving, and not simply basing an insurance rate on an amount of generic or average miles driven. For example, a driver who drives fifty miles per week in daylight on infrequently trafficked rural roads may have a substantially lower risk than a driver who drives fifty miles per week during evenings on congested urban streets.


The transportation coverage or characteristics may include information related to the operation of one or more vehicles identified by the remote server 40 based upon analysis of the telematics and/or other data. Analysis of the data may reveal the amount and/or type of other forms of transportation an insured uses. Data collected (such as by the mobile device 10) may reveal that the insured takes a safer mode of transportation a certain percentage of the time. The data may indicate the amount or frequency that the insured takes public transportation, a bus system, a train system, travels via airplane, rides a bicycle, and/or even walks. The data may further be used to determine times and/or places in which generally safer forms of transportation may be particularly dangerous (e.g., bicycling in a business district of a major city during weekday rush hour).


If the insured commonly travels via modes of transportation other than automobile, that may indicate that the person is typically risk-averse. People who are risk-averse may in turn typically have less risk of accident or injury, such as from dangerous activities (e.g., sky diving, scuba diving, and/or skiing). Risk-averse people may also take greater precautions with their property, leading to lower risk levels associated with property theft, damage, and/or destruction.


Telematics and/or other data may monitor a mobile device 10 location and/or speed to determine the transportation tendencies of an individual. From determining that an insured traveled slowly to a known bus stop or train station, and then traveled at typical speed for a bus or train, for example, it may be gleaned by the remote server 40 that the insurance customer walked to a public transportation system component 22, and then traveled via public transportation, as opposed to driving their personal and/or insured vehicle.


With the insured's permission, the insurance provider may develop a transportation-related profile for an insured. The transportation-related profile may include when and where the insured is driving an insured or other vehicle; what type of vehicle the insured typically drives; when the insured is a passenger in another vehicle, such as a bus; a percentage of time that the insured travels during which the insured is not driving a vehicle but using alternate and/or safer modes of transportation; and/or other conditions or factors, including those discussed elsewhere herein.


To insure an individual, in addition to estimating a transportation-related coverage, other variables may be weighted and aggregated. For instance, insurance coverage or scores related to lifestyle, habits, hobbies, activities, health, home, fitness routine, finances, geographic area, marital status, age, sex, family members, education level, and/or other factors may be determined and/or combined.


B. Social Media


If a customer opts in to an insurance discount program, the customer may agree to allow the insurance provider remote server 40 to automatically analyze their pictures and/or comments posted on social media to determine a rating or score for individual-based insurance. For instance, a customer or insured may agree to share social networking information and/or an online profile for insurance-related purposes. In some embodiments, the server 40 may generate automatic messages and/or recommendations tailored for the customer or insured based upon social media content. For example, if a customer posts a message regarding looking for a new car, the server 40 may send a message to the customer (via social media or otherwise) with information regarding safety ratings of various cars.


Social media may reveal, among other things, that an insured lives in a safe neighborhood; typically walks to work; engages in certain recreational activities; exercises routinely; avoids risky activities; is generally in good physical health; and/or otherwise indicates that the insured leads a low risk of accident or injury life style. For example, an insured may frequently post messages on social media indicating fitness-related activities (e.g., marathons, triathlons, fitness classes, workouts, fitness tracker automated posts, etc.) that indicate frequent physical activity likely to result in or indicate good health. As another example, the insured may subscribe to a number of healthy cooking or eating sites, lists, etc., which may similarly indicate healthy behavior indicative of good health.


C. Limiting Distractions


The telematics and/or other data may control the vehicle, or allowable functionality thereof, in certain ways for specific operators/drivers. In one aspect, the data may facilitate automatically starting an insured vehicle 8 for an insured or other driver when their mobile device 10 gets within a certain distance of the vehicle 8, and/or automatically adjusting the vehicle air conditioning or heater to achieve a pre-determined temperature. Such automatic adjustments may limit distractions to the driver, thereby reducing risk levels associated with vehicle operation.


For other drivers that may be prone to distractions, such as beginning or teenage drivers, the data may be used to limit the vehicle functionality that may be used. For instance, a specific driver may be identified by the data, and then they may be prevented from adjusting windows or minors while they are driving or the vehicle is moving. Other types of distractions in the vehicle may also be alleviated. For example, mobile device 10 and/or vehicle entertainment system usage may be prevented or limited while driving, such as by preventing mobile device texting and/or limiting the vehicle radio to a certain volume.


VIII. Umbrella Insurance


The telematics and/or other data may be used for umbrella insurance, such as insurance coverage covering everyone in a household. A risk score or factor for a household and/or a number of family members, instead of an individual, may be generated from the data. The household risk score may make underwriting universal policies (e.g., auto/home/life/health) easier.


In one aspect, ride sharing data may be used. For those that carpool, carpooling with drivers that have demonstrated good driving behavior may be reflected or rewarded by the insurance provider with lower insurance premiums or rates, or discounts. Such discounts or adjustments may reflect the proportion of driving time, distance, trips, etc. that each driver in the car pool drives. Additionally, or alternatively, the discounts or adjustments may reflect the usage of different vehicles.


Vehicle tracking may be performed for a fleet of vehicles. A fleet of drivers for a company may be given a discount based upon their collective driving behavior that is determined from the data collected. Information regarding driving behavior of individuals or groups of drivers may be provided for fleet management and/or other purposes (e.g., verifying safe driving, logs, or routes).


The telematics and/or other data may be used to coach drivers on how to be safer, more efficient, and/or otherwise improve vehicle operation. For example, telematics and/or other data may be provided to drivers to help them achieve better gas mileage. For instance, better driving habits and taking better or more efficient routes may allow the driver to save money on gas. The insurance provider may provide tips and recommendations to the driver and/or insured via their mobile device or vehicle display.


The telematics and/or other data may be used with location services. For instance, data from one or more mobile devices 10 or other sources may be used to determine home occupancy. Vacant homes may be at a greater risk of theft and/or in need of yard work or repairs that are being left unattended to. Unoccupied properties may be subject to a variety of increased risks, from higher risk of theft to higher risks of fire or water damage (partially due to delay in observing and responding to hazardous conditions). For example, an unattended yard may indicate that the house is currently vacant, which in turn may increase the likelihood of a break in. If a home or vacation home is not occupied for 60 days, a message may be sent to the insured and/or insurance provider. The insurance provider may adjust the home owner insurance policy, premium, rate, or discount accordingly if an insured home is left unattended for too long a period.


Telematics and/or other data may be used to determine that a home is unoccupied from an insured vehicle 8 or mobile device 10 travel history (such as a travel history indicating movement to and from a second or vacation home), and/or a present location of the insured vehicle 8 or mobile device 10. Unattended homes may also be determined from a detected lack of use of a smart garage door or other smart doors on the home, and/or a smart home controller 29 of a smart home 28 that is in wireless communication with the insurance provider remote server 40 via the network 30.


Telematics and/or other data may also be used to determine pet behavior. For instance, dogs and/or cats may be timid, tame, or vicious. Images and audio data may be received and automatically analyzed by a remote server 40 to determine or characterize average pet behavior and/or identify overly aggressive animals. Home insurance may be adjusted to reflect an appropriate level of risk, or lack thereof, associated with the home owner's pet(s).


IX. Exemplary Use of Anonymous Data



FIG. 3 illustrates an exemplary computer-implemented method 300 of determining a driving or other risk score from anonymous driver data and/or anonymous driver behavior. As used herein, an “anonymous driver” means either (i) an average (possibly fictitious) driver whose characteristics and/or behavior are determined from information regarding a plurality of drivers or (ii) each of a plurality of drivers for whom information regarding past driving behavior is available. Also as used herein, “anonymous driver data” means data regarding past vehicle operation associated with one or more anonymous drivers, and “anonymous driver behavior” means past driving behavior of one or more anonymous drivers. In some embodiments, the anonymous driver or anonymous drivers may be selected and/or determined based upon characteristics, such as driving experience, age, residency, etc., and information regarding the anonymous drivers may be anonymized by separating identifying information from the information regarding vehicle operation.


In some embodiments, the method 300 may be implemented in whole or in part by one or more components of the telematics system 1 depicted in FIG. 1. For example, the method 300 may be implemented by a server 40 remote from the front-end components 2 (e.g., sensors 20 or 24, vehicles 6 or 8, mobile devices 10, smart vehicle controllers 14, etc.) or another server (not shown). In some embodiments, the front-end components 2 may be used to generate and/or collect data relating to driving behavior of multiple drivers, including an insured driver of the vehicle 8. The method 300 is exemplary and may include additional, fewer, or alternate actions, including those discussed elsewhere herein.


At block 302, the method 300 may include collecting telematics and/or other data associated with anonymous drivers and/or anonymous driver behavior. The telematics and/or other data may include information regarding vehicle operation, such as driving speed, braking, acceleration, distance from other vehicles, turns, lane changes, and/or other aspects of vehicle operation. Such data may be collected at or via a server 40, such as an insurance provider remote server. In some embodiments, the telematics and/or other data may be generated by sensors associated with a plurality of vehicles 6 and/or an infrastructure component 26 (e.g., a traffic camera, a speed radar device, etc.). The telematics and/or other data may also be generated by or include information related to vehicle-to-vehicle (V2V) communications and/or vehicle-to-infrastructure (V2I) communications.


At block 304, the method 300 may include collecting telematics and/or other data associated with insured driving behavior. Insured driving behavior may include driving behavior of an insured driver, who may be associated with one or more insurance policies issued by the insurance provider. Data associated with the insured driving behavior may be collected at or via the remote server 40 or other remote server. The telematics and/or other data may be directly or indirectly generated and/or received from the mobile device 10 and/or smart vehicle controller 14 via the network 30. In some embodiments, the data may be generated and/or received by the sensors 20 or 24. In various embodiments, the data may be associated with a driver and/or a vehicle.


At block 306, the method 300 may include comparing and/or analyzing the insured driver behavior data with the anonymous driver behavior to identify low risk driving, high risk driving, or risk levels associated with the driving behavior. This may include determining and/or identifying (at the server 40 or at another server or computing device) high or low risk behavior, relative to the anonymous driver behavior. In some embodiments, this may include a comparison of telematics data regarding a plurality of driving behaviors and/or risk-indicating behaviors. For example, the method 300 may include comparisons related to speed in block 306A, braking in block 306B, acceleration or deceleration in block 306C, and/or average distance to the next vehicle in block 306D. Other comparison of driver characteristics and/or behavior may also be made using the insured and anonymous driver behavior data sets.


At block 308, the method 300 may include determining a risk score for the insured based upon the comparison of the insured's driving behavior with the anonymous driver behavior. The remote server 40 may be used to determine one or more risk scores or levels based upon the one or more driver behaviors identified and/or determined in blocks 306 and/or 306A-D. The one or more risk scores may indicate an absolute risk level associated with the vehicle and/or driver, or the one or more risk scores may indicate relative risk levels in comparison with one or more risk levels associated with the anonymous drivers and/or driver behavior. In some embodiments, multiple score levels may be combined into one risk score, which may be a weighted combination of the multiple scores. Where a weighted combination is determined, the weights may be determined manually or automatically by known or later-developed computer-learning methods (e.g., support vector machines, random forests, artificial neural networks, etc.). In some embodiments, the risk score may also include one or more risk aversion scores indicating a general risk preference profile or level of the insured driver.


At block 310, the method 300 may include adjusting, updating, and/or generating insurance premiums, rates, discounts, etc. based upon the risk score for the insured determined at block 308. Thus, the remote server 40 may determine change to an insurance policy based upon the risk score. For example, a discount may be generated for an insurance policy when a determined risk score indicates that a driver operates a vehicle in a risk averse manner or in a manner that results in lower risk than the average risk associated with the anonymous drivers. In some embodiments, an insurance customer, insured driver, and/or other party may be notified or warned regarding the risk levels, adjustment, and/or update.


In one aspect, a computer-implemented method of using anonymous driver data to adjust a driving risk score may be provided. The method may include (1) collecting anonymous driver data associated with anonymous driver behavior (at or via a remote server associated with an insurance provider), the data indicating anonymous driver behavior for specific roads, sections of roads, and/or intersections; (2) collecting insured driving behavior data (at or via the remote server) associated with a specific driver and/or insured that has an auto insurance policy with the insurance provider, the insured driving behavior data including telematics related data; (3) comparing the anonymous driver data with the insured driving behavior data (via the remote server) to determine a driving risk score for the insured; and/or (4) generating, adjusting, and/or updating an insurance policy, premium, rate, discount, and/or reward for the insured based upon the comparison of the anonymous driver data with the insured driving behavior data and/or the driving risk score generated for the insured.


The comparison of the anonymous driver data with the insured driving behavior data may include one or more of the following: a comparison of anonymous driver speed with an insured driving speed for a specific road, section of road, and/or individual intersection; a comparison of anonymous driver braking with insured braking for a specific road, section of road, and/or individual intersection; a comparison of anonymous driver acceleration with insured acceleration for a specific road, section of road, and/or individual intersection; and/or a comparison of anonymous driver following distance with an insured driving following distance for a specific road, section of road, and/or individual intersection.


In one aspect, the telematics and/or other data may include data associated with, or generated by, mobile devices, such as smart phones, smart glasses, and/or smart wearable electronic devices capable of wireless communication. The telematics and/or other data may include data associated with, or generated by, an insured vehicle or a computer system of the insured vehicle. The telematics and/or other data may include data associated with, or generated by, (i) a vehicle other than the insured vehicle; (ii) vehicle-to-vehicle (V2V) communication; and/or (iii) road side equipment or infrastructure. The method may include additional, fewer, or alternative actions.


X. Exemplary Application of Driving Score



FIG. 4 illustrates an exemplary computer-implemented method 400 of applying a driving risk score to types of insurance other than auto insurance. In some embodiments, the method 400 may be implemented in whole or in part by one or more components of the telematics system 1 depicted in FIG. 1. For example, the method 400 may be implemented by a server 40 remote from the front-end components 2 (e.g., sensors 20 or 24, vehicles 6 or 8, mobile devices 10, smart vehicle controllers 14, etc.) or another server (not shown). In some embodiments, the front-end components 2 may be used to generate and/or collect data relating to driving behavior of one or more drivers, including an insured driver of the vehicle 8. The method 400 is exemplary and may include additional, fewer, or alternate actions, including those discussed elsewhere herein.


At block 402, the method 400 may include collecting telematics and/or other data associated with driving behavior of an insured at or via an insurance provider remote server 40. The telematics and/or other data may be received from a smart vehicle 8 (or other vehicle) or mobile device 10. Such data may include any of the data discussed herein, but data regarding vehicle operation by an insured may be particularly useful in determining risks in method 400. In some embodiments, the data may also include data from an accident database 42 and/or a third-party database 44 via the network 30, which data may supplement, verify, and/or contradict some or all of the other collected data.


At block 404, the method 400 may include calculating, at or via the remote server, a low or other driving risk or risk score for the insured from the data collected and/or received. This may include determining and/or identifying (at the server 40 or at another server or computing device) high or low risk behavior. This may also include determining associations and/or correlations between the data and risk preferences and/or levels associated with one or more insurance customers and/or insured persons. For example, data indicating an insured driver maintains a greater distance from vehicles traveling ahead of the driver may be used to determine risk scores or levels for either or both of a driving risk and/or general risk preferences of the insured. In some embodiments, data relating to anonymous driver behavior may be used to determine risk scores and/or levels. In some embodiments, this may include a comparison of telematics data regarding a plurality of driving behaviors and/or risk-indicating behaviors.


At block 406, the method 400 may include determining (at or via the remote server 40) a risk score for one or more types of insurance other than auto insurance (e.g., home owners, renters, health, life, excess liability, etc.) for the insured based upon the low or other driver risk for the insured. For example, the server 40 may determined a risk score for homeowners' insurance, based upon determined risk preferences and/or property care levels of the insured. If the insured demonstrates low risk levels while driving, this may indicate general risk aversion, responsibility, or forethought that may similarly indicate lower risks to property. For example, if the telematics and/or other data indicate that the insured regularly parks a safe distance from other vehicles and always ensures the vehicle is locked, the insured may be determined by server 40 to be more likely to ensure all windows are closed when leaving home. As another example, if data from the smart vehicle controller 14 indicated that an insurance customer performs routine maintenance on the vehicle 8 on a regular schedule, the customer may be determined by server 40 to be more likely to perform routine maintenance on a dwelling (e.g., cleaning gutters, trimming dead branches from trees, etc.) in a timely manner. In some embodiments, the risk score may also include one or more risk aversion scores indicating a general risk preference profile or level of the insured driver.


At block 408, the method 400 may include adjusting, updating, and/or generating (at or via the remote server 40) one or more other types of insurance policies based upon one or more of (i) the driving risk or risk score determined at block 404, and/or (ii) the risk score for the other types of insurance determined at block 406. This may include adjusting, updating, determining, applying, and/or implementing premiums, rates, discounts, surcharges, deductibles, limits, and/or other terms of one or more insurance policies, which terms may be related to price and/or coverage. Such changes to the one or more insurance policies may cause the policies to more accurately reflect the risk levels associated with the policies by utilizing the telematics and/or other data. To this end, the server 40 may weight the driving risk scores and/or other risk scores based upon the type of insurance policy to be adjusted.


At block 410, the server 40 may cause information regarding the adjusted, updated, and/or generated one or more other types of insurance policies to be presented the insured and/or insurance customer for their review, approval, and/or modification. The information may include all or part of the one or more insurance policies. In some embodiments, the information may be presented to the insured and/or insurance customer via wireless communication with the mobile device 10 and/or smart vehicle controller 14. The information may then be presented to the user via the display 74 or otherwise. The insured and/or insurance customer may further be presented with one or more options pertaining to insurance policies (e.g., coverage levels, payment options, etc.), which the insured and/or insurance customer may select. Upon selection of options and/or approval from the insured and/or insurance customer, the server 40 may cause adjustments, changes, and/or updates to be implemented regarding the one or more other insurance policies.


XI. Exemplary Application of Driving Risk



FIG. 5 illustrates an exemplary computer-implemented method 500 of applying driving risk to non-automobile insurance. In some embodiments, the method 500 may be implemented in whole or in part by one or more components of the telematics system 1 depicted in FIG. 1. For example, the method 500 may be implemented by a server 40 remote from the front-end components 2 (e.g., sensors 20 or 24, vehicles 6 or 8, mobile devices 10, smart vehicle controllers 14, etc.) or another server (not shown). In some embodiments, the front-end components 2 may be used to generate and/or collect data relating to driving behavior of one or more drivers, including an insured driver of the vehicle 8. The method 500 is exemplary and may include additional, fewer, or alternate actions, including those discussed elsewhere herein.


At block 502, the method 500 may include collecting telematics and/or other data associated with driving behavior of an insured at or via an insurance provider remote server 40. The telematics and/or other data may be received from a smart vehicle 8 (or other vehicle) or mobile device 10. Such data may include any of the data discussed herein, but data regarding vehicle operation by an insured may be particularly useful in determining risks in method 500. In some embodiments, the data may also include data from an accident database 42 and/or a third-party database 44 via the network 30, which data may supplement, verify, and/or contradict some or all of the other collected data.


At block 504, the method 500 may include analyzing the collected insured driver driving behavior data at or via the remote server 40. Analysis of the data may include determining driving characteristics and/or driving environments. Information regarding driving characteristics may include indicators of aggressive or conservative driving, such as speed, braking (hard, soft, frequency, etc.), acceleration, lane centering, distance from other vehicles, attentiveness, distraction, fatigue, impairment, and/or use of vehicle options or equipment. Information regarding driving environments may include time, location, type of road, traffic or congestion, weather conditions, construction, and/or other relevant information regarding the operating environment of the vehicle 8. The driving characteristic and/or driving environment information may be classified in categories and/or scored (e.g., by determining probabilities or likelihoods of salient features). In some embodiments, machine learning techniques may be used to determine driving characteristics and/or driving environments.


At block 506, the method 500 may include developing a driving risk or a driving risk score for the insured from analysis of the insured driver driving behavior data, similar to risk or score determination discussed elsewhere herein. To determine the driving risk or driving risk score, the remote server 40 may further analyze and/or process the insured driver driving behavior data to determine insured driver driving characteristics and/or typical acuity at block 506A, normal driving conditions for the insured (including road, weather, construction, and/or traffic) at block 506B, and/or other insured or vehicle characteristics (including vehicle maintenance records) at block 506C. In some embodiments, a plurality of driving risk scores may be determined, which may be associated with different driving environments, different insured drivers, and/or different vehicles. In some embodiments, the driving risk or driving risk score may also include one or more risk aversion scores indicating a general risk preference profile or level of the insured driver.


At block 508, the method 500 may include applying the driving risk or driving risk score of the insured to an automobile insurance policy and/or premiums for the insured at or via the remote server 40. This may include adjusting, updating, and/or generating automobile or automotive insurance policies based upon the determined driving risks or driving risk scores, which may further include adjusting, updating, determining, applying, and/or implementing premiums, rates, discounts, surcharges, deductibles, limits, and/or other terms of one or more insurance policies, which terms may be related to price and/or coverage.


At block 510, the method 500 may include applying the driving risk or driving risk score of the insured to one or more non-auto insurance (e.g., health, life, home owners, renters, etc.) policies, premiums, rates, discounts, rewards, and/or points for the insured at the remote server 40. This may include determining associations and/or correlations between the data and risk preferences and/or levels associated with one or more insurance customers and/or insured persons. For example, driving risk scores may be indicative of general risk preferences, which may further affect risk levels relating to health, life, or property insurance policies. Changes to the one or more non-automobile insurance policies may cause the policies to more accurately reflect the risk levels associated with the policies by utilizing the telematics and/or other data. To this end, the server 40 may weight the driving risk scores and/or other risk scores based upon the type of insurance policy to be adjusted.


The method 500 may include presenting information regarding the non-auto insurance policies, or portions thereof, generated from the driving risk or driving risk score for the insured to the insured for their review, approval, and/or modification. In some embodiments, the information may be presented to the insured and/or insurance customer via wireless communication with the mobile device 10 and/or smart vehicle controller 14. The information may then be presented to the user via the display 74 or otherwise. The insured and/or insurance customer may further be presented with one or more options pertaining to insurance policies (e.g., coverage levels, payment options, etc.), which the insured and/or insurance customer may select. Upon selection of options and/or approval from the insured and/or insurance customer, the server 40 may cause adjustments, changes, and/or updates to be implemented regarding the one or more other insurance policies.


XII. Exemplary Usage-Based Insurance



FIG. 6 illustrates an exemplary computer-implemented method 600 of improving accuracy usage-based insurance. In some embodiments, the method 600 may be implemented in whole or in part by one or more components of the telematics system 1 depicted in FIG. 1. For example, the method 600 may be implemented by a server 40 remote from the front-end components 2 (e.g., sensors 20 or 24, vehicles 6 or 8, mobile devices 10, smart vehicle controllers 14, etc.) or another server (not shown). In some embodiments, the front-end components 2 may be used to generate and/or collect data relating to driving behavior of multiple drivers, including an insured driver of the vehicle 8. The method 600 is exemplary and may include additional, fewer, or alternate actions, including those discussed elsewhere herein.


At block 602, the method 600 may include collecting telematics and/or other data associated with driving behavior of one or more insured drivers at or via an insurance provider remote server 40. The telematics and/or other data may be received from a smart vehicle 8 (or other vehicle) or mobile device 10. Such data may include any of the data discussed herein, but data regarding vehicle operation by insured drivers may be particularly useful in determining risks in method 600. In some embodiments, the data may also include data from an accident database 42 and/or a third-party database 44 via the network 30, which data may supplement, verify, and/or contradict some or all of the other collected data.


At block 604, the method 600 may include analyzing the telematics and/or other data collected at or via the remote server 40. Analysis of the data may include determining driving characteristics and/or driving environments for one or more vehicles 8 and/or one or more drivers, in a manner similar to that discussed elsewhere herein.


At block 606, the method 600 may include determining, from analysis of the telematics and/or other data, a specific insured driver who is driving a specific insured vehicle for each trip that the insured vehicle is driven at or via the remote server 40. For example, a family may include multiple family members who are insured on each of a number of vehicles (and who may have different risk profiles and/or driving behavior). The method 600 may determine which family member is driving each vehicle during each vehicle trip in order to determine risk levels associated with each family member and/or to determine a total risk level based upon relative usage of the vehicles by the family members. In some embodiments, the identity of the driver for each trip may be determined by communication between a mobile device 10 associated with the driver and a smart vehicle controller 14 of the vehicle 8.


At block 608, the method 600 may include determining information regarding each vehicle trip at or via the remote server 40 from analysis of the telematics and/or other data. This may include determining what insured vehicle was used for the trip. This may also include when, where, and/or how the identified driver drives for each trip (that they drive the insured vehicle). For example, the server 40 may determined that (for a particular vehicle trip) a specific family member is driving the insured vehicle, as well as the time and location of the trip. The server 40 may further determine driving characteristics and/or driving environments (as discussed elsewhere herein) for the vehicle trip.


At block 610, the method 600 may include developing a driving risk or driving risk score for each insured driver (e.g., for each family member) based upon the analysis of the telematics and/or other data at or via the remote server 40. This may be developed based upon the identified driver determined at block 606 and the information regarding each vehicle trip determined at block 608. Determining the driving risk or score may include analyzing various data types (which may be received from a plurality of sources). These may include information regarding insured driving characteristics (insured driver behavior and/or acuity data) at block 610A, driving environments (road, weather, construction, and/or traffic conditions) at block 610B, and/or other vehicle and/or other driver behavior or action data at block 610C. In some embodiments, the driving risk or driving risk score may also include one or more risk aversion scores indicating a general risk preference profile or level of the insured driver. The driving risk or driving risk scores may be determined using weighted models, computer learning techniques, and/or in a manner similar to any of the methods described herein.


At block 612, the method 600 may include applying the driving risk or driving risk score of one or more of the insured drivers to an automobile insurance policy and/or premiums for the insured at or via the remote server 40. In some embodiments, this may include determining a weighted risk profile including multiple insured drivers (such as family members). This may include adjusting, updating, and/or generating automobile or automotive insurance policies based upon the determined driving risks or driving risk scores, which may further include adjusting, updating, determining, applying, and/or implementing premiums, rates, discounts, surcharges, deductibles, limits, and/or other terms of one or more insurance policies, which terms may be related to price and/or coverage.


At block 614, the method 600 may include applying the driving risk or driving risk scores of one or more of the insured drivers to one or more other (non-automobile) types of insurance policies (e.g., health, life, home owners, renters, etc.) at the remote server 40. Applying the driving risk or driving risk scores may include adjusting, updating, and/or generating one or more of premiums, rates, discounts, rewards, and/or points. This may further include determining associations and/or correlations between the data and risk preferences and/or levels associated with one or more insured persons, as discussed elsewhere herein.


The method may provide a more accurate picture of which family member is driving which type of vehicle (e.g., a higher or lower rated vehicle), when and where they are driving that vehicle (such as on what type of roads, in what type of traffic or weather, and/or the actual mileage (and not estimated mileage) that each family member drives each insured vehicle), and thus more accurate insurance or usage-based insurance may be provided to the insured or family members of the insured.


In one aspect, a computer-implemented method of updating, adjusting, or generating an insurance policy for an insured based upon vehicle usage may be provided. The method may include: (1) collecting or receiving telematics and/or other data at or via a remote server associated with an insurance provider, the telematics and/or other data being associated with driver identification and/or driving behavior of a driver driving an insured vehicle during a specific trip or a group of trips, the insured vehicle being covered by an insurance policy issued by the insurance provider; (2) analyzing the telematics and/or other data, at or via the remote server, to determine who the driver of the insured vehicle was during each trip, such as a specific family member (e.g., either an insured parent or insured teenager); (3) determining over time, at or via the remote server, a summary of vehicle usage for the insured vehicle, the summary of vehicle usage may include (a) an amount that each family member drives the insured vehicle, (b) the driving behavior of each family member for the insured vehicle, and/or (c) when and where (i.e., on what types of roads and/or in what weather, construction, traffic, or road conditions) each family member drives the insured vehicle; and/or (4) updating, adjusting, and/or generating, at or via the remote server, an insurance policy, premium, rate, discount, and/or reward for the insured vehicle and/or for an individual family member based upon the summary of vehicle usage. The method may further include transmitting, via wireless communication, the updated, adjusted, or generated insurance policy from the remote server to an insured or owner of the insured vehicle for their review, approval, and/or modification; and/or receiving from the insured or owner of the insured vehicle, at the remote server, a wireless communication associated with rejection, approval, or modification of the insurance policy by the insured or owner.


The telematics and/or other data may include data associated with, or generated by, mobile devices, such as smart phones, smart glasses, and/or smart wearable electronic devices capable of wireless communication. The telematics and/or other data may include data associated with, or generated by, an insured vehicle or a computer system of the insured vehicle. The telematics and/or other data may include data associated with, or generated by, (i) a vehicle other than the insured vehicle; (ii) vehicle-to-vehicle (V2V) communication; and/or (iii) road side equipment or infrastructure. The method may include additional, fewer, or alternate actions, including those discussed elsewhere herein.


XIII. Exemplary Incentives & Recommendations



FIG. 7 illustrates an exemplary computer-implemented method 700 of providing insurance-related incentives and/or recommendations. In some embodiments, the method 700 may be implemented in whole or in part by one or more components of the telematics system 1 depicted in FIG. 1. For example, the method 700 may be implemented by a server 40 remote from the front-end components 2 (e.g., sensors 20 or 24, vehicles 6 or 8, mobile devices 10, smart vehicle controllers 14, etc.) or another server (not shown). In some embodiments, the front-end components 2 may be used to generate and/or collect data relating to driving behavior of multiple drivers, including an insured driver of the vehicle 8. In further embodiments, the front-end components 2 may be used to present information, such as recommendations, to the driver of the vehicle 8. In embodiments using the server 40 to determine incentives and/or recommendations, processing of telematics data to determine changes to improve driving safety at the server 40 may reduce the processing burden at the mobile device 10 or smart vehicle controller 14. This may allow more effective processing of control and/or other on-board systems, and may further allow more data to be processed. Since the server 40 may directly access the database 46 without the bandwidth limitations and potential disruption inherent in communicating via network 30, processing the telematics and/or other data at the remote server 40 may further improve processing speed. Moreover, processing the telematics and/or other data at the remote server 40 may reduce storage requirements by avoiding storing historical data in memory within each vehicle 8. The method 700 is exemplary and may include additional, fewer, or alternate actions, including those discussed elsewhere herein.


At block 702, the method 700 may include collecting telematics and/or other data associated with driving behavior of an insured at or via an insurance provider remote server 40. The telematics and/or other data may be received from a smart vehicle 8 (or other vehicle) or mobile device 10. Such data may include any of the data discussed herein, but data regarding vehicle operation by an insured may be particularly useful in determining risks and/or recommendations in method 700. In some embodiments, the data may also include data from an accident database 42 and/or a third-party database 44 via the network 30, which data may supplement, verify, and/or contradict some or all of the other collected data.


At block 704, the method 700 may include analyzing the telematics and/or other data collected at or via the remote server 40. Analysis of the data may include determining driving characteristics and/or driving environments for the vehicle 8 and/or insured driver, in a manner similar to that discussed elsewhere herein.


At block 706, the method 700 may include determining a driving risk score or driving behavior summary for an insured driver at or via the remote server 40. The driving risk score or driving behavior summary may be determined based upon analysis of the telematics and/or other data received or collected at block 702. In some embodiments, one or more driving risk scores may be determined by analyzing information regarding driving characteristics (insured vehicle data, and/or insured driver behavior and/or acuity data) at block 706A, driving environments (road, weather, construction, and/or traffic conditions or data) at block 706B, and/or other vehicle and/or other driver behavior or action data at block 706C. The driving behavior summary may include information regarding risk levels for an insured driver and/or insured vehicle. In some embodiments, the driving behavior summary may include a driver profile or information regarding recommended changes to the insured driver's operation of the vehicle. In some embodiments, the driving risk score or driving behavior summary may also include one or more risk aversion scores indicating a general risk preference profile or level of the insured driver. The driving risk scores or driving behavior summary may be determined using weighted models, computer learning techniques, and/or in a manner similar to any of the methods described herein.


At block 708, the method 700 may include applying the driving risk or driving risk score of the insured to an automobile insurance policy and/or premiums for the insured at or via the remote server 40. This may include adjusting, updating, and/or generating automobile or automotive insurance policies based upon the determined driving risks or driving risk scores, which may further include adjusting, updating, determining, applying, and/or implementing premiums, rates, discounts, surcharges, deductibles, limits, and/or other terms of one or more insurance policies, which terms may be related to price and/or coverage.


At block 710, the method 700 may include generating and/or sending communications related to insurance-based incentives and/or cost savings from the remote server 40 to the insured and/or insurance customer. The insurance-based incentives and/or cost savings may be determined by the server 40 based upon the driving behavior summary and/or analysis of the driving behavior or driving risk score of the insured determined at block 704 based upon the telematics and/or other data. In some embodiments, the insurance-based incentives may include discounts, surcharges, credits, points, and/or other price or non-price adjustments to an insurance policy that are related to driver behavior and/or vehicle usage in certain driving environment. For example, the server 40 may determined that the insured driver engages in low-risk driving behavior by following other vehicles at a suitable distance, resulting in less braking. The server 40 may determine a discount and send a communication to the driver indicating both the discount and the reason therefore.


At block 712, the method 700 may include generating and/or sending communications related to insurance-based recommendation from the remote server 40 to the insured and/or insurance customer. The recommendations may be determined by the server 40 based upon the driving behavior summary and/or analysis of the driving behavior or driving risk score of the insured determined at block 704 based upon the telematics and/or other data. The recommendations may include instructions or actions the insured driver may take to reduce the risk associated with driving the vehicle. Such actions may include changing speed, following a recommended route, increasing distance from other vehicles, turning on headlights, etc. In some embodiments, the recommendations may also include indications of discounts, surcharges, credits, points, and/or other price or non-price adjustments to an insurance policy that may result from the insured driver implementing or not implementing the recommendations. For example, the server 40 may determine that the insured driver engages in high-risk driving behavior by following other vehicles too closely, resulting in excess braking. The server 40 may determine a recommendation regarding increasing following distance and send a communication to the driver indicating the recommendation. The server 40 may further determine a possible discount the driver may achieve by increasing following distance, which may be included in the communication to the driver. In some embodiments, the server 40 may further receive data from the mobile device 10 and/or smart vehicle controller 14 indicating whether the insured driver has taken actions to implement the recommendation by increasing following distance. If the data indicate that following distance has increased, the server 40 may then determine and apply an appropriate discount or implement other appropriate adjustments to the insurance policy.


In some embodiments, the communications sent from the server 40 at block 710 and/or block 712 may be presented to the insured for their review and/or action. In some embodiments, the information may be presented to the insured and/or insurance customer via wireless communication with the mobile device 10 and/or smart vehicle controller 14. The information may then be presented to the user via the display 74 or otherwise. In some embodiments, the insured and/or insurance customer may further be presented with one or more options pertaining to insurance policies (e.g., coverage levels, payment options, etc.), which the insured and/or insurance customer may select.


In one aspect, a computer-implemented method of providing insurance-based incentives (e.g., cost savings) and/or recommendations for auto insurance may be provided. The method may include: (1) collecting telematics and/or other data associated with driving behavior of an insured, at or via a remote server associated with an insurance provider, the insured having an auto insurance policy with the insurance provider; (2) determining a risk aversion score and/or driving behavior summary for the insured, at or via the remote server, based upon analysis of the telematics and/or other data collected, the analysis of the telematics and/or other data may include identifying, at or via the remote server: (i) insured driving characteristics (e.g., speed, braking, acceleration, turning, and/or other driving characteristics); (ii) types of roads that the insured typically drives on (e.g., intersections, city streets, and/or highways) and/or types of conditions that the insured typically drives in (e.g., weather, traffic, construction, or road conditions); and/or (iii) a daily commute to and from work for the insured; (3) identifying, at or via the remote server, risky driving behavior of the insured based upon the risk aversion score and/or driving behavior summary; (4) identifying, at or via the remote server, recommendations for the insured to take or follow to reduce driving risk associated with the risky driving behavior identified; and/or (5) transmitting the recommendations for the insured to take or follow to reduce driving risk from the remote server to a mobile or computing device of the insured. The method may include estimating, at or via the remote server, cost savings on auto insurance that the insured may or could receive if the insured followed the recommendations to reduce driving risk; and/or transmitting the cost savings on auto insurance from the remote server to the mobile or computing device of the insured. The method may include monitoring, at or via the remote server, whether the insured followed all or some of the recommendations to reduce driving risk; and/or if so, updating or adjusting an insurance policy, premium, rate, or discount for the insured based upon the insured following all or some of the recommendations to reduce driving risk.


In addition or alternatively to the foregoing, determining a risk aversion score and/or a driving behavior summary for the insured, at or via the remote server, from analysis of the telematics and/or other data collected may include analysis of driving speed (whether too fast, too slow, or proper for conditions); hard braking events and/or verifying the accuracy of hard braking events indicated by some telematics data or determining or assigning fault for the hard braking events to the insured, drivers other than insured, pedestrians, traffic, congestion, weather, construction, or other factors or conditions; acceleration or acceleration events; sleeping events and/or verifying the accuracy of sleeping events indicated by some telematics data; time of day driving; closeness to other vehicles (e.g., analysis for potential tailgating); lane analysis (e.g., analysis of driving or staying within a correct lane); type of weather, traffic, construction, and/or roads in or on which the insured typically drives; and/or proper use of safety equipment, including headlights, turn signals, and wiper blades.


The telematics and/or other data may include data associated with, or generated by, mobile devices, such as smart phones, smart glasses, and/or smart wearable electronic devices capable of wireless communication. The telematics and/or other data may include data associated with, or generated by, an insured vehicle or a computer system of the insured vehicle. The telematics and/or other data may include data associated with, or generated by, (i) a vehicle other than the insured vehicle; (ii) vehicle-to-vehicle (V2V) communication; and/or (iii) road side equipment or infrastructure. The method may include additional, fewer, or alternate actions, including those discussed elsewhere herein.


XIV. Exemplary Individual-Based Insurance



FIG. 8 illustrates an exemplary computer-implemented method of generating an individual-based insurance product. In some embodiments, the method 800 may be implemented in whole or in part by one or more components of the telematics system 1 depicted in FIG. 1. For example, the method 800 may be implemented by a server 40 remote from the front-end components 2 (e.g., sensors 20 or 24, vehicles 6 or 8, mobile devices 10, smart vehicle controllers 14, etc.) or another server (not shown). In some embodiments, the front-end components 2 may be used to generate and/or collect data relating to driving behavior of multiple drivers, including an insured driver of the vehicle 8. The method 800 is exemplary and may include additional, fewer, or alternate actions, including those discussed elsewhere herein.


At block 802, the method 800 may include collecting and/or receiving telematics and/or other data associated with an insured at the remote server 40 from one or more front-end components 2, such as the mobile device 10, the smart vehicle controller 14, and/or the smart home controller 29. The data may include information related to the lifestyle, transportation usage, and/or driving behavior of the insured, including any of the information described elsewhere herein. For example, data collected from the insured's mobile device 10 and/or a wearable device may be collected for the purpose of determining when the insured has chosen to walk or take public transportation (for which data from a public transportation system component 22 may also be collected). In some embodiments, additional information from accident database 42, third-party database 44, and/or other database 46 may be collected and/or received by the server 40.


At block 804, the method 800 may include analyzing the telematics and/or other data collected at or via the remote server 40. Analysis of the data may include determining driving characteristics and/or driving environments for the vehicle 8 and/or insured driver, in a manner similar to that discussed elsewhere herein. Additionally, or alternatively, analysis of the data may include determining risk preferences of the insured with respect to one or more types of risks (e.g., transportation, health, financial, etc.). Additionally, or alternatively, analysis of the data may include determining one or more other types of scores, risk levels, or metrics regarding other aspects of the insured's lifestyle, activities, or behavior that may affect risk coverage under one or more insurance policies.


At block 806, the method 800 may include determining, from the analysis of the telematics and/or other data, a transportation rating for the insured at or via the remote server 40. The transportation rating may include a transportation coverage rating, which may include information regarding transportation options available to or utilized by the insured, transportation conditions or environments in which the insured typically travels, and/or other information relating to typical circumstances or conditions of transportation used by or available to the insured. In some embodiments, determining the transportation rating may include determining a plurality of ratings or scores, which may include analyzing the type of transportation typically used by the insured at block 806A, analyzing an amount or frequency each type of transportation is used by the insured at block 806B, analyzing driving characteristics (insured vehicle data, and/or insured driver behavior and/or acuity data) at block 806C, analyzing normal driving environment or conditions for the insured (which may include information about where, when, and how a vehicle 8 is used and/or normal parking conditions or locations) at block 806D. Determining the normal driving environment or conditions may further include determining driving behavior for the insured, where or when the insured typically drives, the conditions in which the insured typically drives (e.g., roads, weather, construction, and/or traffic), where the insured typically parks the insured vehicle (e.g., inside a garage, in a driveway, on busy street, etc.), and/or when the insured typically parks the insured vehicle in types of locations (e.g., street parking during the day or at night).


At block 808, the method 800 may also include developing or determining a lifestyle rating or individual profile at or via the remote server 40. The lifestyle rating or individual profile may be based upon analysis of non-driving factors or characteristics of the insured determined from analysis of the telematics and/or other data. The lifestyle rating or individual profile may take into consideration risky or risk-averse behaviors or activities of the insured. This may include non-driving activities that the insured engages or non-driving factors (such as sports, workout routine, outdoor activities, eating habits, age, sex, marital status, etc.). Some non-driving activities or factors may nonetheless be related to transportation, such as walking, bicycling, or utilizing public transportation. As discussed elsewhere herein, data from mobile devices 10, wearable devices, social media, third-party databases 44, and/or other sources may be used in developing or determining the lifestyle rating or individual profile.


At block 810, the method 800 may include may include applying (a) the transportation rating for the insured, (b) the lifestyle rating for the insured, and/or (c) the individual profile for the insured to determine an aspect of an insurance policy for the insured at or via the remote server 40. This may include adjusting, updating, and/or generating one or more of premiums, rates, discounts, limits, deductibles, rewards, and/or points of an insurance policy. The insurance policy may cover specific types or risks (e.g., automobile, health, life, home owners, renters, etc.) or may cover general risks associated with the insured (i.e., an individual-based insurance policy). In some embodiments, the remote server 40 may further cause information regarding the insurance policy or changes thereto to be presented to the insured and/or an insurance customer, as discussed elsewhere herein.


In one aspect, a computer-implemented method of generating or adjusting an individual-based or other insurance product may be provided. The method may include: (1) collecting or receiving telematics and/or other data at or via a remote server associated with an insurance provider, the telematics and/or other data being associated with a lifestyle, transportation usage, and/or driving behavior of an insured, the insured being an insured driver that drives an insured vehicle and the insured vehicle being covered by an insurance policy issued by the insurance provider; (2) analyzing, at or via the remote server, the telematics and/or other data received; and/or (3) determining, at or via the remote server, a transportation rating for the insured from the analysis of the telematics and/or other data, the transportation rating being determined based upon at least (a) an identification of each type of transportation that the insured typically uses within a given period of time; (b) an identification of an amount or frequency that each type of transportation is typically used by the insured within the given period of time; and/or (c) the driving behavior of the insured. The method may include (4) updating, adjusting, or generating, at or via the remote server, a premium, rate, discount, or reward for an insurance policy of the insured based upon the transportation rating for the insured. The method may include additional, fewer, or alternate actions, including those discussed elsewhere herein.


For instance, the insurance policy that is updated, adjusted, or generated may be an individual-based insurance policy that provides insurance and/or coverage for the insured (as opposed to providing coverage for property), or an auto or other insurance policy. The transportation rating may take into consideration where the insured typically parks the insured vehicle, such as inside or outside. The type of transportation that the insured takes or uses may include public transportation, trains, buses, airplanes, automobiles, car pools, bicycles, boats, running, and/or walking


The method may include determining, at or via the remote server, a lifestyle rating or individual profile based upon (i) non-driving activities that the insured engages in, and/or (ii) non-driving factors or conditions as determined from the analysis of the telematics and/or other data. Each non-driving activity or factor may be assigned or associated with a risk factor corresponding to a risk of engaging in that non-driving activity or associated with the non-driving factors or conditions. The method may also include updating, adjusting, or generating, at or via the remote server, a premium, rate, discount, or reward for an insurance policy of the insured based upon (a) the transportation rating, and (b) the lifestyle rating or individual profile for the insured. The non-driving activities may include sporting activities, workout routine, outdoor activities, and/or eating habits of the insured. The non-driving factors may include age, sex, marital status, and/or health conditions of the insured.


The telematics and/or other data may include data associated with, or generated by, mobile devices, such as smart phones, smart glasses, and/or smart wearable electronic devices capable of wireless communication. The telematics and/or other data may include data associated with, or generated by, an insured vehicle or a computer system of the insured vehicle. The telematics and/or other data may include data associated with, or generated by, (i) a vehicle other than the insured vehicle; (ii) vehicle-to-vehicle (V2V) communication; and/or (iii) road side equipment or infrastructure.


While the preferred embodiments have been described, it should be understood that the invention is not so limited and modifications may be made without departing from the invention. The scope of the invention is defined by the appended claims, and all devices that come within the meaning of the claims, either literally or by equivalence, are intended to be embraced therein.


It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.


XV. Exemplary Driver Risk Score for Auto Insurance


In one aspect, a computer-implemented method of applying a driving risk score to auto insurance may be provided. The method may include collecting telematics and/or other data associated with driving behavior of an insured, at or via a remote server associated with an insurance provider. The insured may have an auto insurance policy with the insurance provider. The method may include determining a risk aversion score for the insured, at or via the remote server, based upon analysis of the telematics and/or other data collected. The analysis of the telematics and/or other data may include identifying, at or via the remote server: (i) insured driving characteristics (e.g., speed, braking, and acceleration characteristics); (ii) types of roads that the insured typically drives on (e.g., intersections, city streets, and/or highways); and/or (iii) a daily commute to and from work for the insured. The method may include estimating, at or via the remote server, an insurance premium, rate, and/or discount associated with an auto insurance policy for the insured based upon the risk aversion score; and/or generating, adjusting, and/or updating the auto insurance policy for the insured based upon the risk aversion score at or via the remote server. The method may include additional, fewer, or alternate actions, including those discussed elsewhere herein.


For instance, the analysis of the telematics and/or other data may include identification of which family member is driving a vehicle, as well as when and where that family member is driving. The analysis of the telematics and/or other data may include using biometric data associated with the insured to determine the risk aversion score. The analysis of the telematics and/or other data may include identification of where an insured vehicle is typically parked, and/or a percentage of time that the insured vehicle is garaged. The analysis of the telematics and/or other data may include analysis of vehicle maintenance records. The telematics and/or other data may include data associated with, or generated by, mobile devices, such as smart phones, smart glasses, and/or smart wearable electronic devices capable of wireless communication. The telematics and/or other data may include data associated with, or generated by, an insured vehicle or a computer system of the insured vehicle. The telematics and/or other data may include data associated with, or generated by, (i) a vehicle other than the insured vehicle; (ii) vehicle-to-vehicle (V2V) communication; and/or (iii) road side equipment or infrastructure.


The method may include estimating, at or via the remote server, an insurance premium, rate, and/or discount associated with a home insurance policy for the insured based upon the risk aversion score; and/or generating, adjusting, and/or updating the home insurance policy for the insured based upon the risk aversion score at or via the remote server. The method may additionally or alternatively include estimating, at or via the remote server, an insurance premium, rate, and/or discount associated with a home insurance policy for the insured based upon the risk aversion score; and/or generating, adjusting, and/or updating the home insurance policy for the insured based upon the risk aversion score at or via the remote server. The method may additionally or alternatively include transmitting an estimated insurance premium, rate, and/or discount based upon the risk aversion score from the remote server to a mobile device associated with the insured to facilitate a presentation of the estimated insurance premium, rate, and/or discount, and/or a portion thereof, to the insured for their review, approval, and/or modification.


In addition or alternatively to the foregoing, determining a risk aversion score and/or a driving risk score for the insured, at or via the remote server, from analysis of the telematics and/or other data collected may include analysis of driving speed (whether too fast, too slow, or proper for conditions or posted speed limit); hard braking events and/or verifying the accuracy of hard braking events indicated by some telematics data or determining or assigning fault for the hard braking events to the insured, drivers other than insured, pedestrians, traffic, congestion, weather, construction, or other factors or conditions; acceleration or acceleration events; sleeping events and/or verifying the accuracy of sleeping events indicated by some telematics data; time of day driving; closeness or proximity of the insured vehicle to other vehicles traveling on the road (e.g., analysis for potential tailgating or otherwise driving too closely to other vehicles); lane analysis (e.g., analysis of driving or staying within a correct lane); type of weather, traffic, construction, and/or roads in or on which the insured typically drives; and/or proper use of safety equipment, including headlights, turn signals, and wiper blades.


XVI. Exemplary Driver Risk Score for Other Insurance


In one aspect, a computer-implemented method of applying a driving risk score to insurance other than auto insurance may be provided. The method may include collecting driving behavior data associated with driving behavior of an insured, at or via a remote server associated with an insurance provider, the insured having an auto insurance policy with the insurance provider, and the driving behavior data including telematics related and/or other data, including the data discussed elsewhere herein. The method may include calculating a driving risk score for the insured, at or via the remote server, based upon the driving behavior data collected. The method may include determining a risk aversion score for the insured, at or via the remote server, based upon analysis of the driver behavior data collected. The analysis of the driver behavior data may include identifying, at or via the remote server, may include: (i) insured driving characteristics (e.g., speed, braking, acceleration, time of day, and/or other driving characteristics, including those discussed elsewhere herein); (ii) types of roads that the insured normally drives on (e.g., intersections, city streets, and/or highways); and/or (iii) a daily commute to and from work for the insured. The method may include estimating, at or via the remote server, an insurance premium, rate, and/or discount associated with a life, health, renters, and/or home owners insurance policy for the insured based upon the risk aversion score; and/or generating, adjusting, and/or updating the life, health, renters, and/or home owners insurance policy for the insured based upon the risk aversion score at or via the remote server. The method may include additional, fewer, or alternate actions, including those discussed elsewhere herein.


For instance, the method may also include estimating, at or via the remote server, an insurance premium, rate, and/or discount associated with an auto insurance policy for the insured based upon the risk aversion score; and/or generating, adjusting, and/or updating the auto insurance policy for the insured based upon the risk aversion score at or via the remote server. The method may also include transmitting an estimated insurance premium, rate, and/or discount based upon the risk aversion score from the remote server to a mobile device associated with the insured to facilitate a presentation of the estimated insurance premium, rate, and/or discount, and/or a portion thereof, to the insured for their review, approval, and/or modification.


The analysis of the driver behavior data may include identification of which family member is driving a vehicle, as well as when and where that family member is driving. The analysis of the driver behavior data may include using biometric data associated with the driver to determine the risk aversion score. The analysis of the driver behavior data may include identification of where an insured vehicle is typically parked, and/or a percentage of time that the insured vehicle is garaged (protecting the vehicle from the environment).


In addition or alternatively to the foregoing, determining a risk aversion score and/or a driving risk score for the insured, at or via the remote server, from analysis of the telematics and/or other data collected may include analysis of driving speed (whether too fast, too slow, or proper for conditions or posted speed limit); hard braking events and/or verifying the accuracy of hard braking events indicated by some telematics data, or determining or assigning fault for the hard braking events to (a) the insured, (b) drivers other than insured, (c) pedestrians, (d) traffic, (e) congestion, (f) weather, (g) construction, or other factors or conditions; acceleration or acceleration events; sleeping events and/or verifying the accuracy of sleeping events indicated by some telematics data (such as steering wheel sensors); time of day driving; closeness or proximity (or average closeness or proximity) of the insured vehicle to other vehicles traveling on the road (e.g., analysis for potential tailgating and/or otherwise traveling to close to other vehicles on the road—whether ahead, behind, or alongside the insured vehicle); lane analysis (e.g., analysis of driving or staying within a correct lane); type of weather, traffic, construction, and/or roads in or on which the insured typically drives; and/or proper use of safety equipment, including headlights, turn signals, and wiper blades. Additionally, or alternatively, calculating the driving risk score for the insured may include analysis of the same factors.


XVII. Additional Considerations


The following additional considerations apply to the foregoing discussion. Throughout this specification, plural instances may implement operations or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein.


Unless specifically stated otherwise, discussions herein using words such as “processing,” “computing,” “calculating,” “determining,” “presenting,” “displaying,” or the like may refer to actions or processes of a machine (e.g., a computer) that manipulates or transforms data represented as physical (e.g., electronic, magnetic, or optical) quantities within one or more memories (e.g., volatile memory, non-volatile memory, or a combination thereof), registers, or other machine components that receive, store, transmit, or display information.


As used herein any reference to “one embodiment” or “an embodiment” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.


As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).


In addition, use of “a” or “an” is employed to describe elements and components of the embodiments herein. This is done merely for convenience and to give a general sense of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.


Upon reading this disclosure, those of skill in the art will appreciate still additional alternative structural and functional designs through the principles disclosed herein. Thus, while particular embodiments and applications have been illustrated and described, it is to be understood that the disclosed embodiments are not limited to the precise construction and components disclosed herein. Various modifications, changes and variations, which will be apparent to those skilled in the art, may be made in the arrangement, operation and details of the methods and systems disclosed herein without departing from the spirit and scope defined in the appended claims. Finally, the patent claims at the end of this patent application are not intended to be construed under 35 U.S.C. § 112(f) unless traditional means-plus-function language is expressly recited, such as “means for” or “step for” language being explicitly recited in the claim(s).

Claims
  • 1. A computer-implemented method for providing insurance-based incentives or recommendations for vehicle insurance, comprising: collecting, at one or more processors, telematics data associated with driving behavior of an insured driver from one or more sensors;analyzing, by one or more processors, the collected telematics data to determine the following usage characteristics for the insured driver: (i) driving characteristics associated with the driving behavior of the insured driver, and(ii) driving environments associated with the driving behavior of the insured driver, wherein each driving environment includes a location and the location is associated with a frequency index indicating an amount of time the insured driver spends driving in the location;determining, by one or more processors, a driving behavior summary for the insured driver based upon the determined usage characteristics;determining, by one or more processors, one or more risky driving behaviors of the insured driver based upon the driving behavior summary, wherein the one or more risky driving behaviors include interactions of the insured driver with distracting features or components within a vehicle while controlling the vehicle, and wherein the one or more risky driving behaviors are weighted according to the frequency index;determining, by one or more processors, one or more recommendations to be implemented by the insured driver based upon the one or more risky driving behaviors, wherein the one or more recommendations include one or more changes to control actions to be taken by the insured driver while controlling the vehicle in order to reduce one or more risks associated with the determined one or more risky driving behaviors, wherein the one or more changes to control actions include one or more of the following: reducing speed, increasing following distance, or following an alternative route;causing, by one or more processors, the one or more recommendation to be transmitted to a computing device associated with the insured driver and presented to the insured driver; andlimiting, by one or more processors, operation of the distracting features or components while the insured driver is controlling the vehicle.
  • 2. The computer-implemented method of claim 1, wherein: the driving characteristics include one or more of the following: vehicle speed, vehicle braking, vehicle acceleration, vehicle turning, vehicle position in a lane, vehicle distance from other vehicles, use of safety equipment, or insured driver alertness; andthe driving environments include one or more of the following: geographic location, time of day, type of road, weather conditions, traffic conditions, construction conditions, or route traveled.
  • 3. The computer-implemented method of claim 1, wherein the driving environment includes a daily commute of the insured driver to and from a workplace.
  • 4. The computer-implemented method of claim 1, wherein the computing device associated with the insured driver includes one or more of the following: a mobile device or a computer system of a vehicle associated with the insured driver.
  • 5. The computer-implemented method of claim 1, further comprising: determining, by one or more processors, an estimated cost savings on a vehicle insurance policy associated with the insured driver, wherein the estimated cost savings is associated with the insured driver taking the one or more recommended actions; andcausing, by one or more processors, the estimated cost savings to be transmitted to a computing device associated with the insured driver.
  • 6. The computer-implemented method of claim 1, further comprising: monitoring, by one or more processors, the driving behavior of the insured driver following transmission of the one or more recommendations;determining, by one or more processors, that the insured driver has taken some or all of the one or more recommended actions based upon the monitored driving behavior; andcausing, by one or more processors, an adjustment to be made to an insurance policy associated with the insured driver based upon the determination that the driver has taken some or all of the one or more recommended actions based upon the monitored driving behavior, wherein one or more of the following is adjusted: a premium, a rate, a discount, a reward, a deductible, or a limit.
  • 7. The computer-implemented method of claim 1, wherein the one or more sensors are disposed within or communicatively connected to one or more of the following: a mobile device or a computer system of at least one of the one or more insured vehicles.
  • 8. The computer-implemented method of claim 1, wherein the telematics data further includes data generated by one or more of the following: (i) a vehicle other than an insured vehicle associated with the insured driver; (ii) the insured vehicle, based upon vehicle-to-vehicle communication with one or more other vehicles; (iii) an infrastructure component; or (iv) road side equipment.
  • 9. A computer system for providing insurance-based incentives or recommendations for vehicle insurance, comprising: one or more processors;one or more communication modules adapted to communicate data; anda program memory coupled to the one or more processors and storing executable instructions that when executed by the one or more processors cause the computer system to: collect telematics data associated with driving behavior of an insured driver from one or more sensors via the one or more communication modules;analyze the collected telematics data to determine the following usage characteristics for the insured driver: (i) driving characteristics associated with the driving behavior of the insured driver, and(ii) driving environments associated with the driving behavior of the insured driver, wherein each driving environment includes a location and the location is associated with a frequency index indicating an amount of time the insured driver spends driving in the location;determine a driving behavior summary for the insured driver based upon the determined usage characteristics;determine one or more risky driving behaviors of the insured driver based upon the driving behavior summary, wherein the one or more risky driving behaviors include interactions of the insured driver with distracting features or components within a vehicle while controlling the vehicle, and wherein the one or more risky driving behaviors are weighted according to the frequency index;determine one or more recommendations to be implemented by the insured driver based upon the one or more risky driving behaviors, wherein the one or more recommendations include one or more changes to control actions to be taken by the insured driver while controlling the vehicle in order to reduce one or more risks associated with the determined one or more risky driving behaviors, wherein the one or more changes to control actions include one or more of the following: reducing speed, increasing following distance, or following an alternative route;cause the one or more recommendation to be transmitted to a computing device associated with the insured driver via the one or more communication modules and presented to the insured driver; andlimit operation of the distracting features or components while the insured driver is controlling the vehicle.
  • 10. The computer system of claim 9, wherein: the driving characteristics include one or more of the following: vehicle speed, vehicle braking, vehicle acceleration, vehicle turning, vehicle position in a lane, vehicle distance from other vehicles, use of safety equipment, or insured driver alertness; andthe driving environments include one or more of the following: geographic location, time of day, type of road, weather conditions, traffic conditions, construction conditions, route traveled, or a daily commute of the insured driver to and from a workplace.
  • 11. The computer system of claim 9, wherein the program memory further includes executable instructions that cause the computer system to: determine an estimated cost savings on a vehicle insurance policy associated with the insured driver, wherein the estimated cost savings is associated with the insured driver taking the one or more recommended actions; andcause the estimated cost savings to be transmitted to a computing device associated with the insured driver.
  • 12. The computer system of claim 9, wherein the program memory further includes executable instructions that cause the computer system to: monitor the driving behavior of the insured driver following transmission of the one or more recommendations;determine that the insured driver has taken some or all of the one or more recommended actions based upon the monitored driving behavior; andcause an adjustment to be made to an insurance policy associated with the insured driver based upon the determination that the driver has taken some or all of the one or more recommended actions based upon the monitored driving behavior, wherein one or more of the following is adjusted: a premium, a rate, a discount, a reward, a deductible, or a limit.
  • 13. The computer system of claim 9, wherein the one or more sensors are disposed within or communicatively connected to one or more of the following: a mobile device or a computer system of at least one of the one or more insured vehicles.
  • 14. The computer system of claim 9, wherein the telematics data further includes data generated by one or more of the following: (i) a vehicle other than an insured vehicle associated with the insured driver; (ii) the insured vehicle, based upon vehicle-to-vehicle communication with one or more other vehicles; (iii) an infrastructure component; or (iv) road side equipment.
  • 15. A tangible, non-transitory computer-readable medium storing instructions for providing insurance-based incentives or recommendations for vehicle insurance that, when executed by one or more processors of a computer system, cause the computer system to: collect telematics data associated with driving behavior of an insured driver from one or more sensors;analyze the collected telematics data to determine the following usage characteristics for the insured driver: (i) driving characteristics associated with the driving behavior of the insured driver, and(ii) driving environments associated with the driving behavior of the insured driver, wherein each driving environment includes a location and the location is associated with a frequency index indicating an amount of time the insured driver spends driving in the location;determine a driving behavior summary for the insured driver based upon the determined usage characteristics;determine one or more risky driving behaviors of the insured driver based upon the driving behavior summary, wherein the one or more risky driving behaviors include interactions of the insured driver with distracting features or components within a vehicle while controlling the vehicle, and wherein the one or more risky driving behaviors are weighted according to the frequency index;determine one or more recommendations to be implemented by the insured driver based upon the one or more risky driving behaviors, wherein the one or more recommendations include one or more changes to control actions to be taken by the insured driver while controlling a vehicle in order to reduce one or more risks associated with the determined one or more risky driving behaviors, wherein the one or more changes to control actions include one or more of the following: reducing speed, increasing following distance, or following an alternative route; andcause the one or more recommendation to be transmitted to a computing device associated with the insured driver and presented to the insured driver; andlimit operation of the distracting features or components while the insured driver is controlling the vehicle.
  • 16. The tangible, non-transitory computer-readable medium of claim 15, wherein: the driving characteristics include one or more of the following: vehicle speed, vehicle braking, vehicle acceleration, vehicle turning, vehicle position in a lane, vehicle distance from other vehicles, use of safety equipment, or insured driver alertness; andthe driving environments include one or more of the following: geographic location, time of day, type of road, weather conditions, traffic conditions, construction conditions, route traveled, or a daily commute of the insured driver to and from a workplace.
  • 17. The tangible, non-transitory computer-readable medium of claim 15, further comprising executable instructions that cause the computer system to: determine an estimated cost savings on a vehicle insurance policy associated with the insured driver, wherein the estimated cost savings is associated with the insured driver taking the one or more recommended actions; andcause the estimated cost savings to be transmitted to a computing device associated with the insured driver.
  • 18. The tangible, non-transitory computer-readable medium of claim 15, further comprising executable instructions that cause the computer system to: monitor the driving behavior of the insured driver following transmission of the one or more recommendations;determine that the insured driver has taken some or all of the one or more recommended actions based upon the monitored driving behavior; andcause an adjustment to be made to an insurance policy associated with the insured driver based upon the determination that the driver has taken some or all of the one or more recommended actions based upon the monitored driving behavior, wherein one or more of the following is adjusted: a premium, a rate, a discount, a reward, a deductible, or a limit.
  • 19. The tangible, non-transitory computer-readable medium of claim 15, wherein the one or more sensors are disposed within or communicatively connected to one or more of the following: a mobile device or a computer system of at least one of the one or more insured vehicles.
  • 20. The tangible, non-transitory computer-readable medium of claim 15, wherein the telematics data further includes data generated by one or more of the following: (i) a vehicle other than an insured vehicle associated with the insured driver; (ii) the insured vehicle, based upon vehicle-to-vehicle communication with one or more other vehicles; (iii) an infrastructure component; or (iv) road side equipment.
CROSS-REFERENCE TO RELATED APPLICATIONS

This claims the benefit of U.S. Provisional Application No. 62/027,021 (filed Jul. 21, 2014); U.S. Provisional Application No. 62/040,735 (filed Aug. 22, 2014); U.S. Provisional Application No. 62/145,022 (filed Apr. 9, 2015); U.S. Provisional Application No. 62/145,024 (filed Apr. 9, 2015); U.S. Provisional Application No. 62/145,027 (filed Apr. 9, 2015); U.S. Provisional Application No. 62/145,028 (filed Apr. 9, 2015); U.S. Provisional Application No. 62/145,029 (filed Apr. 9, 2015); U.S. Provisional Application No. 62/145,145 (filed Apr. 9, 2015); U.S. Provisional Application No. 62/145,228 (filed Apr. 9, 2015); U.S. Provisional Application No. 62/145,232 (filed Apr. 9, 2015); U.S. Provisional Application No. 62/145,234 (filed Apr. 9, 2015); U.S. Provisional Application No. 62/145,032 (filed Apr. 9, 2015); and U.S. Provisional Application No. 62/145,033 (filed Apr. 9, 2015). The entirety of each of the foregoing provisional applications is incorporated by reference herein. Additionally, the present application is related to co-pending U.S. patent application Ser. No. 14/798,741 (filed Jul. 14, 2015); co-pending U.S. patent application Ser. No. 14/798,750 (filed Jul. 14, 2015); co-pending U.S. patent application Ser. No. 14/798,757 (filed Jul. 14, 2015); co-pending U.S. patent application Ser. No. 14/798,763 (filed Jul. 14, 2015); co-pending U.S. patent application Ser. No. 14/798,609 (filed Jul. 14, 2015); co-pending U.S. patent application Ser. No. 14/798,615 (filed Jul. 14, 2015); co-pending U.S. patent application Ser. No. 14/798,626 (filed Jul. 14, 2015); co-pending U.S. patent application Ser. No. 14/798,745 (filed Jul. 14, 2015); co-pending U.S. patent application Ser. No. 14/798,769 (filed Jul. 14, 2015); and co-pending U.S. patent application Ser. No. 14/798,770 (filed Jul. 14, 2015). The entire contents of these related applications are hereby incorporated by reference in their entireties.

US Referenced Citations (959)
Number Name Date Kind
4218763 Kelley et al. Aug 1980 A
4386376 Takimoto et al. May 1983 A
4565997 Seko et al. Jan 1986 A
4833469 David May 1989 A
5214582 Gray May 1993 A
5220919 Phillips et al. Jun 1993 A
5363298 Survanshi et al. Nov 1994 A
5367456 Summerville et al. Nov 1994 A
5368484 Copperman et al. Nov 1994 A
5436839 Dausch et al. Jul 1995 A
5453939 Hoffman et al. Sep 1995 A
5488353 Kawakami et al. Jan 1996 A
5499182 Ousborne Mar 1996 A
5515026 Ewert May 1996 A
5574641 Kawakami et al. Nov 1996 A
5626362 Mottola May 1997 A
5689241 Clarke, Sr. et al. Nov 1997 A
5797134 McMillan et al. Aug 1998 A
5825283 Camhi Oct 1998 A
5835008 Colemere, Jr. Nov 1998 A
5978720 Hieronymus et al. Nov 1999 A
5983161 Lemelson et al. Nov 1999 A
6031354 Wiley et al. Feb 2000 A
6064970 McMillan et al. May 2000 A
6067488 Tano May 2000 A
6141611 Mackey et al. Oct 2000 A
6151539 Bergholz et al. Nov 2000 A
6215200 Genzel Apr 2001 B1
6246933 Bague Jun 2001 B1
6253129 Jenkins et al. Jun 2001 B1
6285931 Hattori et al. Sep 2001 B1
6298290 Abe et al. Oct 2001 B1
6313749 Horne et al. Nov 2001 B1
6353396 Atlas Mar 2002 B1
6400835 Lemelson et al. Jun 2002 B1
6473000 Secreet et al. Oct 2002 B1
6477117 Narayanaswami et al. Nov 2002 B1
6553354 Hausner et al. Apr 2003 B1
6556905 Mittelsteadt et al. Apr 2003 B1
6570609 Heien May 2003 B1
6579233 Hursh Jun 2003 B2
6661345 Bevan et al. Dec 2003 B1
6704434 Sakoh et al. Mar 2004 B1
6765495 Dunning et al. Jul 2004 B1
6795759 Doyle Sep 2004 B2
6832141 Skeen et al. Dec 2004 B2
6889137 Rychlak May 2005 B1
6909947 Douros et al. Jun 2005 B2
6925425 Remboski et al. Aug 2005 B2
6931309 Phelan et al. Aug 2005 B2
6934365 Suganuma et al. Aug 2005 B2
6944536 Singleton Sep 2005 B2
6956470 Heise et al. Oct 2005 B1
6974414 Victor Dec 2005 B2
6989737 Yasui Jan 2006 B2
7027621 Prokoski Apr 2006 B1
7054723 Seto et al. May 2006 B2
7056265 Shea Jun 2006 B1
7138922 Strumolo et al. Nov 2006 B2
7149533 Laird et al. Dec 2006 B2
7200207 Meer et al. Apr 2007 B2
7253724 Prakah-Asante et al. Aug 2007 B2
7254482 Kawasaki et al. Aug 2007 B2
7290275 Baudoin et al. Oct 2007 B2
7302344 Olney et al. Nov 2007 B2
7315233 Yuhara Jan 2008 B2
7330124 Ota Feb 2008 B2
7348882 Adamczyk et al. Mar 2008 B2
7349860 Wallach et al. Mar 2008 B1
7356392 Hubbard et al. Apr 2008 B2
7386376 Basir et al. Jun 2008 B2
7391784 Renkel Jun 2008 B1
7423540 Kisacanin Sep 2008 B2
7424414 Craft Sep 2008 B2
7480501 Petite Jan 2009 B2
7499774 Barrett et al. Mar 2009 B2
7565230 Gardner et al. Jul 2009 B2
7609150 Wheatley et al. Oct 2009 B2
7639148 Victor Dec 2009 B2
7692552 Harrington et al. Apr 2010 B2
7719431 Bolourchi May 2010 B2
7783426 Kato et al. Aug 2010 B2
7783505 Roschelle et al. Aug 2010 B2
7791503 Breed et al. Sep 2010 B2
7792328 Albertson et al. Sep 2010 B2
7797107 Shiller Sep 2010 B2
7812712 White et al. Oct 2010 B2
7813888 Vian et al. Oct 2010 B2
7835834 Smith et al. Nov 2010 B2
7865378 Gay Jan 2011 B2
7870010 Joao Jan 2011 B2
7877275 Ball Jan 2011 B2
7881914 Trotta et al. Feb 2011 B2
7881951 Roschelle et al. Feb 2011 B2
7890355 Gay et al. Feb 2011 B2
7904219 Lowrey et al. Mar 2011 B1
7912740 Vahidi et al. Mar 2011 B2
7973674 Bell et al. Jul 2011 B2
7979172 Breed Jul 2011 B2
7979173 Breed Jul 2011 B2
7987103 Gay et al. Jul 2011 B2
7991629 Gay et al. Aug 2011 B2
8005467 Gerlach et al. Aug 2011 B2
8009051 Omi Aug 2011 B2
8010283 Yoshida et al. Aug 2011 B2
8016595 Aoki et al. Sep 2011 B2
8027853 Kazenas Sep 2011 B1
8035508 Breed Oct 2011 B2
8040247 Gunaratne Oct 2011 B2
8068983 Vian et al. Nov 2011 B2
8078334 Goodrich Dec 2011 B2
8090598 Bauer et al. Jan 2012 B2
8095394 Nowak et al. Jan 2012 B2
8108655 Abernathy et al. Jan 2012 B2
8117049 Berkobin et al. Feb 2012 B2
8123686 Fennell et al. Feb 2012 B2
8139109 Schmiedel et al. Mar 2012 B2
8140249 Hessling et al. Mar 2012 B2
8140358 Ling et al. Mar 2012 B1
8140359 Daniel Mar 2012 B2
8164432 Broggi et al. Apr 2012 B2
8180522 Tuff May 2012 B2
8180655 Hopkins, III May 2012 B1
8185380 Kameyama May 2012 B2
8188887 Catten et al. May 2012 B2
8190323 Maeda et al. May 2012 B2
8204766 Bush Jun 2012 B2
8255243 Raines et al. Aug 2012 B2
8255244 Raines et al. Aug 2012 B2
8260489 Nielsen et al. Sep 2012 B2
8260639 Medina, III et al. Sep 2012 B1
8265861 Ikeda et al. Sep 2012 B2
8275417 Flynn Sep 2012 B2
8280752 Cripe et al. Oct 2012 B1
8311858 Everett et al. Nov 2012 B2
8314708 Gunderson et al. Nov 2012 B2
8332242 Medina, III Dec 2012 B1
8340893 Yamaguchi et al. Dec 2012 B2
8340902 Chiang Dec 2012 B1
8344849 Larsson et al. Jan 2013 B2
8352118 Mittelsteadt et al. Jan 2013 B1
8355837 Avery et al. Jan 2013 B2
8364391 Nagase et al. Jan 2013 B2
8384534 James et al. Feb 2013 B2
8386168 Hao Feb 2013 B2
8423239 Blumer et al. Apr 2013 B2
8437966 Connolly et al. May 2013 B2
8447231 Bai et al. May 2013 B2
8451105 McNay May 2013 B2
8457880 Malalur et al. Jun 2013 B1
8473143 Stark et al. Jun 2013 B2
8487775 Victor et al. Jul 2013 B2
8510196 Brandmaier et al. Aug 2013 B1
8520695 Rubin et al. Aug 2013 B1
8554468 Bullock Oct 2013 B1
8554587 Nowak et al. Oct 2013 B1
8566126 Hopkins, III Oct 2013 B1
8595034 Bauer et al. Nov 2013 B2
8595037 Hyde et al. Nov 2013 B1
8605947 Zhang et al. Dec 2013 B2
8606512 Bogovich et al. Dec 2013 B1
8618922 Debouk et al. Dec 2013 B2
8634980 Urmson et al. Jan 2014 B1
8645014 Kozlowski et al. Feb 2014 B1
8645029 Kim et al. Feb 2014 B2
8660734 Zhu et al. Feb 2014 B2
8698639 Fung et al. Apr 2014 B2
8700251 Zhu et al. Apr 2014 B1
8712893 Brandmaier et al. Apr 2014 B1
8725311 Breed May 2014 B1
8725472 Hagelin et al. May 2014 B2
8731977 Hardin et al. May 2014 B1
8738523 Sanchez et al. May 2014 B1
8742936 Galley et al. Jun 2014 B2
8781442 Link, II Jul 2014 B1
8781669 Teller et al. Jul 2014 B1
8788299 Medina, III Jul 2014 B1
8799034 Brandmaier et al. Aug 2014 B1
8816836 Lee et al. Aug 2014 B2
8818608 Cullinane et al. Aug 2014 B2
8825258 Cullinane et al. Sep 2014 B2
8849558 Morotomi et al. Sep 2014 B2
8868288 Plante et al. Oct 2014 B2
8874301 Rao et al. Oct 2014 B1
8874305 Dolgov et al. Oct 2014 B2
8876535 Fields et al. Nov 2014 B2
8880291 Hampiholi Nov 2014 B2
8902054 Morris Dec 2014 B2
8909428 Lombrozo Dec 2014 B1
8917182 Chang et al. Dec 2014 B2
8928495 Hassib et al. Jan 2015 B2
8935036 Christensen et al. Jan 2015 B1
8954205 Sagar et al. Feb 2015 B2
8954217 Montemerlo et al. Feb 2015 B1
8954226 Binion et al. Feb 2015 B1
8954340 Sanchez et al. Feb 2015 B2
8965677 Breed et al. Feb 2015 B2
8972100 Mullen et al. Mar 2015 B2
8981942 He et al. Mar 2015 B2
8989959 Plante et al. Mar 2015 B2
8996228 Ferguson et al. Mar 2015 B1
8996240 Plante Mar 2015 B2
9008952 Caskey et al. Apr 2015 B2
9019092 Brandmaier et al. Apr 2015 B1
9020876 Rakshit Apr 2015 B2
9026266 Aaron May 2015 B2
9049584 Hatton Jun 2015 B2
9053588 Briggs et al. Jun 2015 B1
9055407 Riemer Jun 2015 B1
9056395 Ferguson et al. Jun 2015 B1
9056616 Fields et al. Jun 2015 B1
9063543 An et al. Jun 2015 B2
9070243 Kozlowski et al. Jun 2015 B1
9075413 Cullinane et al. Jul 2015 B2
9079587 Rupp et al. Jul 2015 B1
9081650 Brinkmann et al. Jul 2015 B1
9098080 Norris et al. Aug 2015 B2
9123250 Duncan et al. Sep 2015 B2
9135803 Fields et al. Sep 2015 B1
9141582 Brinkmann et al. Sep 2015 B1
9141995 Brinkmann Sep 2015 B1
9141996 Christensen et al. Sep 2015 B2
9144389 Srinivasan et al. Sep 2015 B2
9147219 Binion et al. Sep 2015 B2
9147353 Slusar Sep 2015 B1
9164507 Cheatham, III et al. Oct 2015 B2
9177475 Sellschopp Nov 2015 B2
9180888 Fields et al. Nov 2015 B1
9182942 Kelly et al. Nov 2015 B2
9188985 Hobbs et al. Nov 2015 B1
9194168 Lu et al. Nov 2015 B1
9205805 Cudak et al. Dec 2015 B2
9205842 Fields et al. Dec 2015 B1
9221396 Zhu et al. Dec 2015 B1
9224293 Taylor Dec 2015 B2
9229905 Penilla et al. Jan 2016 B1
9230441 Sung et al. Jan 2016 B2
9235211 Davidsson et al. Jan 2016 B2
9262787 Binion et al. Feb 2016 B2
9274525 Ferguson et al. Mar 2016 B1
9275417 Binion et al. Mar 2016 B2
9275552 Fields et al. Mar 2016 B1
9279697 Fields et al. Mar 2016 B1
9282430 Brandmaier et al. Mar 2016 B1
9282447 Gianakis Mar 2016 B2
9283847 Riley, Sr. et al. Mar 2016 B2
9299108 Diana et al. Mar 2016 B2
9308891 Cudak et al. Apr 2016 B2
9311271 Wright Apr 2016 B2
9317983 Ricci Apr 2016 B2
9342074 Dolgov et al. May 2016 B2
9342993 Fields et al. May 2016 B1
9352709 Brenneis et al. May 2016 B2
9352752 Cullinane et al. May 2016 B2
9355423 Slusar May 2016 B1
9361599 Biemer et al. Jun 2016 B1
9361650 Binion et al. Jun 2016 B2
9371072 Sisbot Jun 2016 B1
9373203 Fields et al. Jun 2016 B1
9376090 Gennermann Jun 2016 B2
9377315 Grover et al. Jun 2016 B2
9381916 Zhu et al. Jul 2016 B1
9384491 Briggs et al. Jul 2016 B1
9384674 Nepomuceno Jul 2016 B2
9390451 Slusar Jul 2016 B1
9390452 Biemer et al. Jul 2016 B1
9390567 Kim et al. Jul 2016 B2
9398421 Guba Jul 2016 B2
9399445 Abou Mahmoud et al. Jul 2016 B2
9406177 Attard et al. Aug 2016 B2
9421972 Davidsson et al. Aug 2016 B2
9424607 Bowers et al. Aug 2016 B2
9429943 Wilson et al. Aug 2016 B2
9430944 Grimm et al. Aug 2016 B2
9440657 Fields et al. Sep 2016 B1
9443152 Atsmon et al. Sep 2016 B2
9454786 Srey et al. Sep 2016 B1
9457754 Christensen et al. Oct 2016 B1
9466214 Fuehrer Oct 2016 B2
9477990 Binion et al. Oct 2016 B1
9478150 Fields et al. Oct 2016 B1
9489635 Zhu Nov 2016 B1
9505494 Marlow et al. Nov 2016 B1
9511765 Obradovich Dec 2016 B2
9511767 Okumura et al. Dec 2016 B1
9511779 Cullinane et al. Dec 2016 B2
9524648 Gopalakrishnan et al. Dec 2016 B1
9529361 You et al. Dec 2016 B2
9530333 Fields et al. Dec 2016 B1
9542846 Zeng et al. Jan 2017 B2
9558667 Bowers et al. Jan 2017 B2
9566959 Breuer et al. Feb 2017 B2
9567007 Cudak et al. Feb 2017 B2
9583017 Nepomuceno Feb 2017 B2
9586591 Fields et al. Mar 2017 B1
9587952 Slusar Mar 2017 B1
9594373 Solyom et al. Mar 2017 B2
9601027 Nepomuceno Mar 2017 B2
9604652 Strauss Mar 2017 B2
9633318 Plante Apr 2017 B2
9646428 Konrardy et al. May 2017 B1
9646433 Sanchez et al. May 2017 B1
9656606 Vose et al. May 2017 B1
9665101 Templeton May 2017 B1
9697733 Penilla et al. Jul 2017 B1
9707942 Cheatham, III et al. Jul 2017 B2
9715711 Konrardy et al. Jul 2017 B1
9720419 O'Neill et al. Aug 2017 B2
9727920 Healy et al. Aug 2017 B1
9734685 Fields et al. Aug 2017 B2
9754325 Konrardy et al. Sep 2017 B1
9754424 Ling et al. Sep 2017 B2
9761139 Acker, Jr. et al. Sep 2017 B2
9767516 Konrardy et al. Sep 2017 B1
9773281 Hanson Sep 2017 B1
9783159 Potter et al. Oct 2017 B1
9786154 Potter et al. Oct 2017 B1
9792656 Konrardy et al. Oct 2017 B1
9797881 Biondo et al. Oct 2017 B2
9805423 Konrardy et al. Oct 2017 B1
9805601 Fields et al. Oct 2017 B1
9816827 Slusar Nov 2017 B1
9847033 Carmack et al. Dec 2017 B1
9852475 Konrardy et al. Dec 2017 B1
9858621 Konrardy et al. Jan 2018 B1
9868394 Fields et al. Jan 2018 B1
9870649 Fields et al. Jan 2018 B1
9878617 Mochizuki Jan 2018 B2
9884611 Abou Mahmoud et al. Feb 2018 B2
9892567 Binion et al. Feb 2018 B2
9896062 Potter et al. Feb 2018 B1
9904928 Leise Feb 2018 B1
9908530 Fields et al. Mar 2018 B1
9934667 Fields et al. Apr 2018 B1
9939279 Pan et al. Apr 2018 B2
9940676 Biemer Apr 2018 B1
9940834 Konrardy et al. Apr 2018 B1
9944282 Fields et al. Apr 2018 B1
9946531 Fields et al. Apr 2018 B1
9972054 Konrardy et al. May 2018 B1
10007263 Fields et al. Jun 2018 B1
10017153 Potter et al. Jul 2018 B1
10019901 Fields et al. Jul 2018 B1
10026237 Fields et al. Jul 2018 B1
10042359 Konrardy et al. Aug 2018 B1
10043323 Konrardy et al. Aug 2018 B1
10065517 Konrardy et al. Sep 2018 B1
10102587 Potter et al. Oct 2018 B1
20010005217 Hamilton et al. Jun 2001 A1
20020016655 Joao Feb 2002 A1
20020049535 Rigo et al. Apr 2002 A1
20020111725 Burge Aug 2002 A1
20020116228 Bauer et al. Aug 2002 A1
20020128751 Engstrom et al. Sep 2002 A1
20020128882 Nakagawa et al. Sep 2002 A1
20020135618 Maes et al. Sep 2002 A1
20020146667 Dowdell et al. Oct 2002 A1
20030028298 Macky et al. Feb 2003 A1
20030046003 Smith et al. Mar 2003 A1
20030061160 Asahina Mar 2003 A1
20030112133 Webb et al. Jun 2003 A1
20030120576 Duckworth Jun 2003 A1
20030139948 Strech Jul 2003 A1
20030146850 Fallenstein Aug 2003 A1
20030182042 Watson et al. Sep 2003 A1
20030182183 Pribe Sep 2003 A1
20030200123 Burge et al. Oct 2003 A1
20040005927 Bonilla et al. Jan 2004 A1
20040017106 Aizawa et al. Jan 2004 A1
20040019539 Raman et al. Jan 2004 A1
20040039503 Doyle Feb 2004 A1
20040054452 Bjorkman Mar 2004 A1
20040077285 Bonilla et al. Apr 2004 A1
20040085198 Saito et al. May 2004 A1
20040085211 Gotfried May 2004 A1
20040090334 Zhang et al. May 2004 A1
20040111301 Wahlbin et al. Jun 2004 A1
20040122639 Qiu Jun 2004 A1
20040139034 Farmer Jul 2004 A1
20040153362 Bauer et al. Aug 2004 A1
20040158476 Blessinger et al. Aug 2004 A1
20040169034 Park Sep 2004 A1
20040185842 Spaur Sep 2004 A1
20040198441 Cooper et al. Oct 2004 A1
20040204837 Singleton Oct 2004 A1
20040226043 Mettu et al. Nov 2004 A1
20040252027 Torkkola et al. Dec 2004 A1
20040260579 Tremiti Dec 2004 A1
20050007438 Busch et al. Jan 2005 A1
20050059151 Bosch Mar 2005 A1
20050065678 Smith et al. Mar 2005 A1
20050071052 Coletrane et al. Mar 2005 A1
20050071202 Kendrick Mar 2005 A1
20050073438 Rodgers et al. Apr 2005 A1
20050075782 Torgunrud Apr 2005 A1
20050080519 Oesterling et al. Apr 2005 A1
20050088291 Blanco et al. Apr 2005 A1
20050088521 Blanco et al. Apr 2005 A1
20050093684 Cunnien May 2005 A1
20050107673 Ball May 2005 A1
20050108065 Dorfstatter May 2005 A1
20050108910 Esparza et al. May 2005 A1
20050131597 Raz et al. Jun 2005 A1
20050134443 Hottebart et al. Jun 2005 A1
20050154513 Matsunaga et al. Jul 2005 A1
20050216136 Lengning et al. Sep 2005 A1
20050227712 Estevez et al. Oct 2005 A1
20050228763 Lewis et al. Oct 2005 A1
20050237784 Kang Oct 2005 A1
20050246256 Gastineau et al. Nov 2005 A1
20050259151 Hamilton et al. Nov 2005 A1
20050267784 Slen et al. Dec 2005 A1
20060010665 Watzl Jan 2006 A1
20060031103 Henry Feb 2006 A1
20060052909 Cherouny Mar 2006 A1
20060052929 Bastian et al. Mar 2006 A1
20060053038 Warren et al. Mar 2006 A1
20060055565 Kawamata et al. Mar 2006 A1
20060079280 LaPerch Apr 2006 A1
20060089763 Barrett et al. Apr 2006 A1
20060092043 Lagassey May 2006 A1
20060095302 Vahidi et al. May 2006 A1
20060106650 Bush May 2006 A1
20060136291 Morita et al. Jun 2006 A1
20060149461 Rowley et al. Jul 2006 A1
20060155616 Moore et al. Jul 2006 A1
20060184295 Hawkins et al. Aug 2006 A1
20060212195 Veith et al. Sep 2006 A1
20060220905 Hovestadt Oct 2006 A1
20060229777 Hudson et al. Oct 2006 A1
20060232430 Takaoka et al. Oct 2006 A1
20060244746 England et al. Nov 2006 A1
20060294514 Bauchot et al. Dec 2006 A1
20070001831 Raz et al. Jan 2007 A1
20070027726 Warren et al. Feb 2007 A1
20070048707 Caamano et al. Mar 2007 A1
20070055422 Anzai et al. Mar 2007 A1
20070080816 Haque et al. Apr 2007 A1
20070088469 Schmiedel et al. Apr 2007 A1
20070093947 Gould et al. Apr 2007 A1
20070122771 Maeda et al. May 2007 A1
20070124599 Morita et al. May 2007 A1
20070132773 Plante Jun 2007 A1
20070149208 Syrbe et al. Jun 2007 A1
20070159344 Kisacanin Jul 2007 A1
20070208498 Barker et al. Sep 2007 A1
20070219720 Trepagnier et al. Sep 2007 A1
20070249372 Gao et al. Oct 2007 A1
20070263628 Axelsson et al. Nov 2007 A1
20070265540 Fuwamoto et al. Nov 2007 A1
20070282489 Boss et al. Dec 2007 A1
20070282638 Surovy Dec 2007 A1
20070291130 Broggi et al. Dec 2007 A1
20070299700 Gay et al. Dec 2007 A1
20080007451 De Maagt et al. Jan 2008 A1
20080027761 Bracha Jan 2008 A1
20080033684 Vian et al. Feb 2008 A1
20080052134 Nowak et al. Feb 2008 A1
20080061953 Bhogal et al. Mar 2008 A1
20080064014 Wojtczak et al. Mar 2008 A1
20080065427 Helitzer et al. Mar 2008 A1
20080077383 Hagelin et al. Mar 2008 A1
20080082372 Burch Apr 2008 A1
20080084473 Romanowich Apr 2008 A1
20080106390 White May 2008 A1
20080111666 Plante et al. May 2008 A1
20080114502 Breed et al. May 2008 A1
20080114530 Petrisor et al. May 2008 A1
20080126137 Kidd et al. May 2008 A1
20080143497 Wasson et al. Jun 2008 A1
20080147266 Plante et al. Jun 2008 A1
20080147267 Plante et al. Jun 2008 A1
20080161989 Breed Jul 2008 A1
20080180237 Fayyad et al. Jul 2008 A1
20080189142 Brown et al. Aug 2008 A1
20080195457 Sherman et al. Aug 2008 A1
20080204256 Omi Aug 2008 A1
20080243558 Gupte Oct 2008 A1
20080255887 Gruter Oct 2008 A1
20080255888 Berkobin et al. Oct 2008 A1
20080258885 Akhan Oct 2008 A1
20080258890 Follmer et al. Oct 2008 A1
20080291008 Jeon Nov 2008 A1
20080294690 McClellan et al. Nov 2008 A1
20080297488 Operowsky et al. Dec 2008 A1
20080300733 Rasshofer et al. Dec 2008 A1
20080306996 McClellan et al. Dec 2008 A1
20080319665 Berkobin et al. Dec 2008 A1
20090005979 Nakao et al. Jan 2009 A1
20090015684 Ooga et al. Jan 2009 A1
20090027188 Saban Jan 2009 A1
20090040060 Anbuhl et al. Feb 2009 A1
20090063030 Howarter et al. Mar 2009 A1
20090063174 Fricke Mar 2009 A1
20090069953 Hale et al. Mar 2009 A1
20090079839 Fischer et al. Mar 2009 A1
20090081923 Dooley et al. Mar 2009 A1
20090085770 Mergen Apr 2009 A1
20090115638 Shankwitz et al. May 2009 A1
20090132294 Haines May 2009 A1
20090207005 Habetha et al. Aug 2009 A1
20090210257 Chalfant et al. Aug 2009 A1
20090247113 Sennett et al. Oct 2009 A1
20090254240 Olsen, III et al. Oct 2009 A1
20090267801 Kawai et al. Oct 2009 A1
20090300065 Birchall Dec 2009 A1
20090303026 Broggi et al. Dec 2009 A1
20090313566 Vian et al. Dec 2009 A1
20100004995 Hickman Jan 2010 A1
20100005649 Kim et al. Jan 2010 A1
20100013130 Ramirez et al. Jan 2010 A1
20100014570 Dupis et al. Jan 2010 A1
20100015706 Quay et al. Jan 2010 A1
20100030540 Choi et al. Feb 2010 A1
20100030586 Taylor et al. Feb 2010 A1
20100042318 Kaplan et al. Feb 2010 A1
20100043524 Takata Feb 2010 A1
20100055649 Takahashi et al. Mar 2010 A1
20100076646 Basir et al. Mar 2010 A1
20100082244 Yamaguchi et al. Apr 2010 A1
20100085171 Do Apr 2010 A1
20100106346 Badli et al. Apr 2010 A1
20100106356 Trepagnier et al. Apr 2010 A1
20100128127 Ciolli May 2010 A1
20100131300 Collopy et al. May 2010 A1
20100131302 Collopy et al. May 2010 A1
20100131304 Collopy et al. May 2010 A1
20100131307 Collopy et al. May 2010 A1
20100142477 Yokota Jun 2010 A1
20100143872 Lankteee Jun 2010 A1
20100157061 Katsman Jun 2010 A1
20100157255 Togino Jun 2010 A1
20100205012 McClellan Aug 2010 A1
20100214087 Nakagoshi et al. Aug 2010 A1
20100219944 McCormick et al. Sep 2010 A1
20100253541 Seder et al. Oct 2010 A1
20100256836 Mudalige Oct 2010 A1
20100286845 Rekow et al. Nov 2010 A1
20100293033 Hall et al. Nov 2010 A1
20100299021 Jalili Nov 2010 A1
20100332131 Horvitz et al. Dec 2010 A1
20110009093 Self et al. Jan 2011 A1
20110043350 David Feb 2011 A1
20110043377 McGrath et al. Feb 2011 A1
20110054767 Schafer et al. Mar 2011 A1
20110060496 Nielsen et al. Mar 2011 A1
20110066310 Sakai et al. Mar 2011 A1
20110077809 Leary Mar 2011 A1
20110087505 Terlep Apr 2011 A1
20110090075 Armitage et al. Apr 2011 A1
20110090093 Grimm et al. Apr 2011 A1
20110093134 Emanuel et al. Apr 2011 A1
20110093350 Laumeyer et al. Apr 2011 A1
20110106370 Duddle et al. May 2011 A1
20110109462 Deng et al. May 2011 A1
20110118907 Elkins May 2011 A1
20110128161 Bae et al. Jun 2011 A1
20110133954 Ooshima et al. Jun 2011 A1
20110137684 Peak et al. Jun 2011 A1
20110140919 Hara et al. Jun 2011 A1
20110140968 Bai et al. Jun 2011 A1
20110144854 Cramer et al. Jun 2011 A1
20110153367 Amigo et al. Jun 2011 A1
20110161116 Peak et al. Jun 2011 A1
20110161119 Collins Jun 2011 A1
20110169625 James et al. Jul 2011 A1
20110184605 Neff Jul 2011 A1
20110187559 Applebaum Aug 2011 A1
20110190972 Timmons et al. Aug 2011 A1
20110196571 Foladare et al. Aug 2011 A1
20110202305 Willis et al. Aug 2011 A1
20110238997 Bellur et al. Sep 2011 A1
20110241862 Debouk et al. Oct 2011 A1
20110246244 O'Rourke Oct 2011 A1
20110251751 Knight Oct 2011 A1
20110288770 Greasby Nov 2011 A1
20110295446 Basir et al. Dec 2011 A1
20110295546 Khazanov Dec 2011 A1
20110301839 Pudar et al. Dec 2011 A1
20110304465 Boult et al. Dec 2011 A1
20110307188 Peng et al. Dec 2011 A1
20110307336 Smirnov et al. Dec 2011 A1
20120004933 Foladare et al. Jan 2012 A1
20120007224 Hasebe et al. Jan 2012 A1
20120010185 Stenkamp et al. Jan 2012 A1
20120010906 Foladare et al. Jan 2012 A1
20120013582 Inoue et al. Jan 2012 A1
20120019001 Hede et al. Jan 2012 A1
20120025969 Dozza Feb 2012 A1
20120028680 Breed Feb 2012 A1
20120053824 Nam et al. Mar 2012 A1
20120056758 Kuhlman et al. Mar 2012 A1
20120059227 Friedlander et al. Mar 2012 A1
20120066007 Ferrick et al. Mar 2012 A1
20120071151 Abramson et al. Mar 2012 A1
20120072214 Cox et al. Mar 2012 A1
20120072243 Collins et al. Mar 2012 A1
20120072244 Collins et al. Mar 2012 A1
20120081221 Doerr et al. Apr 2012 A1
20120083668 Pradeep et al. Apr 2012 A1
20120083960 Zhu et al. Apr 2012 A1
20120083964 Montemerlo et al. Apr 2012 A1
20120083974 Sandblom Apr 2012 A1
20120092157 Tran Apr 2012 A1
20120101855 Collins et al. Apr 2012 A1
20120108909 Slobounov et al. May 2012 A1
20120109407 Yousefi et al. May 2012 A1
20120109692 Collins et al. May 2012 A1
20120116548 Goree et al. May 2012 A1
20120123806 Schumann, Jr. et al. May 2012 A1
20120129545 Hodis et al. May 2012 A1
20120135382 Winston et al. May 2012 A1
20120143391 Gee Jun 2012 A1
20120143630 Hertenstein Jun 2012 A1
20120146766 Geisler et al. Jun 2012 A1
20120172055 Edge Jul 2012 A1
20120185204 Jallon et al. Jul 2012 A1
20120188100 Min et al. Jul 2012 A1
20120190001 Knight et al. Jul 2012 A1
20120191343 Haleem Jul 2012 A1
20120197669 Kote et al. Aug 2012 A1
20120200427 Kamata Aug 2012 A1
20120209634 Ling et al. Aug 2012 A1
20120209692 Bennett et al. Aug 2012 A1
20120215375 Chang Aug 2012 A1
20120221168 Zeng et al. Aug 2012 A1
20120235865 Nath et al. Sep 2012 A1
20120239242 Uehara Sep 2012 A1
20120239281 Hinz Sep 2012 A1
20120239471 Grimm et al. Sep 2012 A1
20120239822 Poulson et al. Sep 2012 A1
20120246733 Schafer et al. Sep 2012 A1
20120256769 Satpathy Oct 2012 A1
20120258702 Matsuyama Oct 2012 A1
20120277950 Plante et al. Nov 2012 A1
20120284747 Joao Nov 2012 A1
20120289819 Snow Nov 2012 A1
20120303222 Cooprider et al. Nov 2012 A1
20120303392 Depura et al. Nov 2012 A1
20120306663 Mudalige Dec 2012 A1
20120316406 Rahman et al. Dec 2012 A1
20130006674 Bowne et al. Jan 2013 A1
20130006675 Bowne et al. Jan 2013 A1
20130017846 Schoppe Jan 2013 A1
20130018677 Chevrette Jan 2013 A1
20130030275 Seymour et al. Jan 2013 A1
20130030606 Mudalige et al. Jan 2013 A1
20130030642 Bradley et al. Jan 2013 A1
20130038437 Talati et al. Feb 2013 A1
20130044008 Gafford et al. Feb 2013 A1
20130046562 Taylor et al. Feb 2013 A1
20130057671 Levin et al. Mar 2013 A1
20130066751 Glazer et al. Mar 2013 A1
20130073115 Levin et al. Mar 2013 A1
20130073318 Feldman Mar 2013 A1
20130073321 Hofmann et al. Mar 2013 A1
20130093886 Rothschild Apr 2013 A1
20130116855 Nielsen et al. May 2013 A1
20130131907 Green et al. May 2013 A1
20130144459 Ricci Jun 2013 A1
20130144657 Ricci Jun 2013 A1
20130151027 Petrucci et al. Jun 2013 A1
20130151202 Denny et al. Jun 2013 A1
20130164715 Hunt et al. Jun 2013 A1
20130179198 Bowne et al. Jul 2013 A1
20130189649 Mannino Jul 2013 A1
20130190966 Collins et al. Jul 2013 A1
20130209968 Miller et al. Aug 2013 A1
20130218603 Hagelstein et al. Aug 2013 A1
20130218604 Hagelstein et al. Aug 2013 A1
20130226391 Nordbruch et al. Aug 2013 A1
20130227409 Das et al. Aug 2013 A1
20130231824 Wilson et al. Sep 2013 A1
20130237194 Davis Sep 2013 A1
20130245881 Scarbrough Sep 2013 A1
20130257626 Masli et al. Oct 2013 A1
20130267194 Breed Oct 2013 A1
20130278442 Rubin et al. Oct 2013 A1
20130289819 Hassib et al. Oct 2013 A1
20130290037 Hu et al. Oct 2013 A1
20130297418 Collopy et al. Nov 2013 A1
20130302758 Wright Nov 2013 A1
20130304513 Hyde et al. Nov 2013 A1
20130304514 Hyde et al. Nov 2013 A1
20130307786 Heubel Nov 2013 A1
20130317665 Fernandes et al. Nov 2013 A1
20130317693 Jefferies et al. Nov 2013 A1
20130317711 Plante Nov 2013 A1
20130317786 Kuhn Nov 2013 A1
20130317865 Tofte et al. Nov 2013 A1
20130332402 Rakshit Dec 2013 A1
20130339062 Brewer et al. Dec 2013 A1
20140002651 Plante Jan 2014 A1
20140004734 Hoang Jan 2014 A1
20140009307 Bowers et al. Jan 2014 A1
20140011647 Lalaoua Jan 2014 A1
20140012492 Bowers et al. Jan 2014 A1
20140013965 Perez Jan 2014 A1
20140019170 Coleman et al. Jan 2014 A1
20140027790 Lin et al. Jan 2014 A1
20140030073 Lacy et al. Jan 2014 A1
20140039934 Rivera Feb 2014 A1
20140047347 Mohn et al. Feb 2014 A1
20140047371 Palmer et al. Feb 2014 A1
20140052323 Reichel et al. Feb 2014 A1
20140052336 Moshchuk et al. Feb 2014 A1
20140058761 Freiberger et al. Feb 2014 A1
20140059066 Koloskov Feb 2014 A1
20140063064 Seo et al. Mar 2014 A1
20140070980 Park Mar 2014 A1
20140080100 Phelan et al. Mar 2014 A1
20140095214 Mathe et al. Apr 2014 A1
20140099607 Armitage et al. Apr 2014 A1
20140100892 Collopy et al. Apr 2014 A1
20140104405 Weidl et al. Apr 2014 A1
20140106782 Chitre et al. Apr 2014 A1
20140108198 Jariyasunant et al. Apr 2014 A1
20140111647 Atsmon et al. Apr 2014 A1
20140114691 Pearce Apr 2014 A1
20140125474 Gunaratne May 2014 A1
20140129053 Kleve et al. May 2014 A1
20140129139 Ellison May 2014 A1
20140129301 Van Wiemeersch et al. May 2014 A1
20140130035 Desai et al. May 2014 A1
20140135598 Weidl et al. May 2014 A1
20140148988 Lathrop et al. May 2014 A1
20140149148 Luciani May 2014 A1
20140156133 Cullinane et al. Jun 2014 A1
20140156134 Cullinane et al. Jun 2014 A1
20140156176 Caskey et al. Jun 2014 A1
20140167967 He et al. Jun 2014 A1
20140168399 Plummer et al. Jun 2014 A1
20140172467 He et al. Jun 2014 A1
20140172727 Abhyanker et al. Jun 2014 A1
20140180727 Freiberger et al. Jun 2014 A1
20140188322 Oh et al. Jul 2014 A1
20140191858 Morgan et al. Jul 2014 A1
20140218187 Chun et al. Aug 2014 A1
20140218520 Teich et al. Aug 2014 A1
20140221781 Schrauf et al. Aug 2014 A1
20140236638 Pallesen et al. Aug 2014 A1
20140240132 Bychkov Aug 2014 A1
20140244096 An et al. Aug 2014 A1
20140253376 Large et al. Sep 2014 A1
20140257866 Gay et al. Sep 2014 A1
20140257869 Binion et al. Sep 2014 A1
20140266655 Palan Sep 2014 A1
20140272810 Fields et al. Sep 2014 A1
20140272811 Palan Sep 2014 A1
20140277916 Mullen et al. Sep 2014 A1
20140278569 Sanchez et al. Sep 2014 A1
20140278571 Mullen et al. Sep 2014 A1
20140278586 Sanchez et al. Sep 2014 A1
20140278840 Scofield et al. Sep 2014 A1
20140279707 Joshua et al. Sep 2014 A1
20140301218 Luo et al. Oct 2014 A1
20140303827 Dolgov et al. Oct 2014 A1
20140306799 Ricci Oct 2014 A1
20140309864 Ricci Oct 2014 A1
20140310186 Ricci Oct 2014 A1
20140330478 Cullinane et al. Nov 2014 A1
20140335902 Guba Nov 2014 A1
20140337930 Hoyos et al. Nov 2014 A1
20140350970 Schumann, Jr. et al. Nov 2014 A1
20140358324 Sagar et al. Dec 2014 A1
20140376410 Ros et al. Dec 2014 A1
20140378082 Ros et al. Dec 2014 A1
20140379385 Duncan et al. Dec 2014 A1
20150006278 Di Censo et al. Jan 2015 A1
20150019266 Stempora Jan 2015 A1
20150024705 Rashidi Jan 2015 A1
20150025917 Stempora Jan 2015 A1
20150032581 Blackhurst et al. Jan 2015 A1
20150035685 Strickland et al. Feb 2015 A1
20150039348 Miller Feb 2015 A1
20150039350 Martin Feb 2015 A1
20150039397 Fuchs Feb 2015 A1
20150045983 Fraser et al. Feb 2015 A1
20150051752 Paszkowicz Feb 2015 A1
20150051787 Doughty et al. Feb 2015 A1
20150058046 Huynh et al. Feb 2015 A1
20150066284 Yopp Mar 2015 A1
20150070160 Davidsson et al. Mar 2015 A1
20150070265 Cruz-Hernandez et al. Mar 2015 A1
20150073645 Davidsson et al. Mar 2015 A1
20150088334 Bowers et al. Mar 2015 A1
20150088358 Yopp Mar 2015 A1
20150088360 Bonnet et al. Mar 2015 A1
20150088373 Wilkins Mar 2015 A1
20150088550 Bowers et al. Mar 2015 A1
20150095132 Van Heerden et al. Apr 2015 A1
20150100189 Tellis et al. Apr 2015 A1
20150100190 Yopp Apr 2015 A1
20150100191 Yopp Apr 2015 A1
20150100353 Hughes et al. Apr 2015 A1
20150112504 Binion et al. Apr 2015 A1
20150112543 Binion et al. Apr 2015 A1
20150112545 Binion et al. Apr 2015 A1
20150112730 Binion et al. Apr 2015 A1
20150112731 Binion et al. Apr 2015 A1
20150112800 Binion et al. Apr 2015 A1
20150113521 Suzuki et al. Apr 2015 A1
20150120331 Russo et al. Apr 2015 A1
20150127570 Doughty et al. May 2015 A1
20150128123 Eling May 2015 A1
20150142244 You et al. May 2015 A1
20150142262 Lee May 2015 A1
20150149018 Attard et al. May 2015 A1
20150149023 Attard et al. May 2015 A1
20150149265 Huntzicker et al. May 2015 A1
20150153733 Ohmura et al. Jun 2015 A1
20150154711 Christopulos et al. Jun 2015 A1
20150158469 Cheatham, III et al. Jun 2015 A1
20150158495 Duncan et al. Jun 2015 A1
20150160653 Cheatham, III et al. Jun 2015 A1
20150161738 Stempora Jun 2015 A1
20150161893 Duncan et al. Jun 2015 A1
20150161894 Duncan et al. Jun 2015 A1
20150166069 Engelman et al. Jun 2015 A1
20150169311 Dickerson et al. Jun 2015 A1
20150170287 Tirone et al. Jun 2015 A1
20150170522 Noh Jun 2015 A1
20150178997 Ohsaki Jun 2015 A1
20150178998 Attard et al. Jun 2015 A1
20150185034 Abhyanker Jul 2015 A1
20150187013 Adams et al. Jul 2015 A1
20150187015 Adams et al. Jul 2015 A1
20150187016 Adams et al. Jul 2015 A1
20150187019 Fernandes et al. Jul 2015 A1
20150189241 Kim et al. Jul 2015 A1
20150193219 Pandya et al. Jul 2015 A1
20150193220 Rork et al. Jul 2015 A1
20150203113 Duncan et al. Jul 2015 A1
20150221142 Kim et al. Aug 2015 A1
20150229885 Offenhaeuser Aug 2015 A1
20150232064 Cudak et al. Aug 2015 A1
20150233719 Cudak et al. Aug 2015 A1
20150235323 Oldham Aug 2015 A1
20150235557 Engelman et al. Aug 2015 A1
20150239436 Kanai et al. Aug 2015 A1
20150241241 Cudak et al. Aug 2015 A1
20150241853 Vechart et al. Aug 2015 A1
20150242953 Suiter Aug 2015 A1
20150246672 Pilutti et al. Sep 2015 A1
20150253772 Solyom et al. Sep 2015 A1
20150254955 Fields et al. Sep 2015 A1
20150266489 Solyom et al. Sep 2015 A1
20150266490 Coelingh et al. Sep 2015 A1
20150274072 Croteau et al. Oct 2015 A1
20150284009 Cullinane et al. Oct 2015 A1
20150293534 Takamatsu Oct 2015 A1
20150294422 Carver et al. Oct 2015 A1
20150302719 Mroszczak et al. Oct 2015 A1
20150307110 Grewe et al. Oct 2015 A1
20150310742 Albornoz Oct 2015 A1
20150310758 Daddona et al. Oct 2015 A1
20150321641 Abou Mahmoud et al. Nov 2015 A1
20150332407 Wilson, II et al. Nov 2015 A1
20150336502 Hillis et al. Nov 2015 A1
20150338852 Ramanujam Nov 2015 A1
20150339777 Zhalov Nov 2015 A1
20150343947 Bernico et al. Dec 2015 A1
20150346727 Ramanujam Dec 2015 A1
20150348335 Ramanujam Dec 2015 A1
20150348337 Choi Dec 2015 A1
20150356797 McBride et al. Dec 2015 A1
20150382085 Lawrie-Fussey et al. Dec 2015 A1
20160014252 Biderman et al. Jan 2016 A1
20160019790 Tobolski et al. Jan 2016 A1
20160026182 Boroditsky et al. Jan 2016 A1
20160027276 Freeck et al. Jan 2016 A1
20160036899 Moody et al. Feb 2016 A1
20160042644 Velusamy Feb 2016 A1
20160042650 Stenneth Feb 2016 A1
20160055750 Linder et al. Feb 2016 A1
20160068103 McNew et al. Mar 2016 A1
20160071418 Oshida et al. Mar 2016 A1
20160073324 Guba Mar 2016 A1
20160083285 De Ridder et al. Mar 2016 A1
20160086285 Peters et al. Mar 2016 A1
20160086393 Collins et al. Mar 2016 A1
20160092962 Wasserman et al. Mar 2016 A1
20160093212 Barfield, Jr. et al. Mar 2016 A1
20160105365 Droste et al. Apr 2016 A1
20160116293 Grover et al. Apr 2016 A1
20160116913 Niles Apr 2016 A1
20160117871 McClellan et al. Apr 2016 A1
20160117928 Hodges et al. Apr 2016 A1
20160125735 Tuukkanen May 2016 A1
20160129917 Gariepy et al. May 2016 A1
20160140783 Catt et al. May 2016 A1
20160140784 Akanuma et al. May 2016 A1
20160147226 Akselrod et al. May 2016 A1
20160163217 Harkness Jun 2016 A1
20160167652 Slusar Jun 2016 A1
20160171521 Ramirez et al. Jun 2016 A1
20160189303 Fuchs Jun 2016 A1
20160189306 Bogovich et al. Jun 2016 A1
20160189544 Ricci Jun 2016 A1
20160200326 Cullinane et al. Jul 2016 A1
20160203560 Parameshwaran Jul 2016 A1
20160221575 Posch et al. Aug 2016 A1
20160229376 Abou Mahmoud et al. Aug 2016 A1
20160255154 Kim et al. Sep 2016 A1
20160264132 Paul et al. Sep 2016 A1
20160272219 Ketfi-Cherif et al. Sep 2016 A1
20160275790 Kang et al. Sep 2016 A1
20160277911 Kang et al. Sep 2016 A1
20160282874 Kurata et al. Sep 2016 A1
20160288833 Heimberger et al. Oct 2016 A1
20160291153 Mossau et al. Oct 2016 A1
20160301698 Katara et al. Oct 2016 A1
20160304027 Di Censo et al. Oct 2016 A1
20160304038 Chen et al. Oct 2016 A1
20160304091 Remes Oct 2016 A1
20160313132 Larroy Oct 2016 A1
20160314224 Wei et al. Oct 2016 A1
20160323233 Song et al. Nov 2016 A1
20160327949 Wilson et al. Nov 2016 A1
20160343249 Gao et al. Nov 2016 A1
20160347329 Zelman et al. Dec 2016 A1
20160370194 Colijn et al. Dec 2016 A1
20170001146 Van Baak et al. Jan 2017 A1
20170015263 Makled et al. Jan 2017 A1
20170017734 Groh et al. Jan 2017 A1
20170017842 Ma et al. Jan 2017 A1
20170023945 Cavalcanti et al. Jan 2017 A1
20170024938 Lindsay Jan 2017 A1
20170036678 Takamatsu Feb 2017 A1
20170038773 Gordon et al. Feb 2017 A1
20170072967 Fendt et al. Mar 2017 A1
20170078948 Guba Mar 2017 A1
20170080900 Huennekens et al. Mar 2017 A1
20170084175 Sedlik et al. Mar 2017 A1
20170086028 Hwang et al. Mar 2017 A1
20170106876 Gordon et al. Apr 2017 A1
20170116794 Gortsas Apr 2017 A1
20170120761 Kapadia et al. May 2017 A1
20170136902 Ricci May 2017 A1
20170147722 Greenwood May 2017 A1
20170148324 High et al. May 2017 A1
20170154479 Kim Jun 2017 A1
20170168493 Miller et al. Jun 2017 A1
20170169627 Kim et al. Jun 2017 A1
20170176641 Zhu et al. Jun 2017 A1
20170178422 Wright Jun 2017 A1
20170178423 Wright Jun 2017 A1
20170178424 Wright Jun 2017 A1
20170234689 Gibson et al. Aug 2017 A1
20170236210 Kumar et al. Aug 2017 A1
20170249844 Perkins et al. Aug 2017 A1
20170274897 Rink et al. Sep 2017 A1
20170308082 Ullrich et al. Oct 2017 A1
20170309092 Rosenbaum Oct 2017 A1
20180046198 Nordbruch et al. Feb 2018 A1
20180075538 Konrardy et al. Mar 2018 A1
20180080995 Heinen Mar 2018 A1
20180099678 Absmeier et al. Apr 2018 A1
20180231979 Miller et al. Aug 2018 A1
Foreign Referenced Citations (17)
Number Date Country
102010001006 Jul 2011 DE
102015208358 Nov 2015 DE
700009 Mar 1996 EP
3239686 Nov 2017 EP
2268608 Jan 1994 GB
2488956 Sep 2012 GB
2494727 Mar 2013 GB
2002-259708 Sep 2002 JP
101515496 May 2015 KR
WO-2005083605 Sep 2005 WO
WO-2010034909 Apr 2010 WO
WO-2010062899 Jun 2010 WO
WO-2012145780 Nov 2012 WO
WO-2014139821 Sep 2014 WO
WO-2014148976 Sep 2014 WO
WO-2016156236 Oct 2016 WO
WO-2017142931 Aug 2017 WO
Non-Patent Literature Citations (637)
Entry
“Linking Driving Behavior to Automobile Accidents and Insurance Rates: An Analysis of Five Billion Miles Driven”, Progressive Insurance brochure (Jul. 2012).
“Self-Driving Cars: The Next Revolution”, KPMG, Center for Automotive Research (2012).
The Influence of Telematics on Customer Experience: Case Study of Progressive's Snapshot Program, J.D. Power Insights, McGraw Hill Financial (2013).
Alberi et al., A proposed standardized testing procedure for autonomous ground vehicles, Virginia Polytechnic Institute and State University, 63 pages (Apr. 29, 2008).
Broggi et al., Extensive Tests of Autonomous Driving Technologies, IEEE Trans on Intelligent Transportation Systems, 14(3):1403-15 (May 30, 2013).
Campbell et al., Autonomous Driving in Urban Environments: Approaches, Lessons, and Challenges, Phil. Trans. R. Soc. A, 368:4649-72 (2010).
Figueiredo et al., An Approach to Simulate Autonomous Vehicles in Urban Traffic Scenarios, University of Porto, 7 pages (Nov. 2009).
Gechter et al., Towards a Hybrid Real/Virtual Simulation of Autonomous Vehicles for Critical Scenarios, International Academy Research and Industry Association (IARIA), 4 pages (2014).
Hars, Autonomous Cars: The Next Revolution Looms, Inventivio GmbH, 4 pages (Jan. 2010).
Lee et al., Autonomous Vehicle Simulation Project, Int. J. Software Eng. and Its Applications, 7(5):393-402 (2013).
Miller, A simulation and regression testing framework for autonomous workers, Case Western Reserve University, 12 pages (Aug. 2007).
Pereira, An Integrated Architecture for Autonomous Vehicle Simulation, University of Porto., 114 pages (Jun. 2011).
Quinlan et al., Bringing Simulation to Life: A Mixed Reality Autonomous Intersection, Proc. IROS 2010—IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei Taiwan, 6 pages (Oct. 2010).
Reddy, The New Auto Insurance Ecosystem: Telematics, Mobility and the Connected Car, Cognizant (Aug. 2012).
Reifel et al., “Telematics: The Game Changer—Reinventing Auto Insurance”, A.T. Kearney (2010).
Roberts, “What is Telematics Insurance?”, MoneySupermarket (Jun. 20, 2012).
Stavens, Learning to Drive: Perception for Autonomous Cars, Stanford University, 104 pages (May 2011).
U.S. Appl. No. 13/844,090, Office Action, dated Dec. 4, 2013.
U.S. Appl. No. 14/057,408, Notice of Allowance, dated Sep. 25, 2014.
U.S. Appl. No. 14/057,419, Notice of Allowance, dated Oct. 5, 2015.
U.S. Appl. No. 14/057,435, Notice of Allowance, dated Apr. 1, 2016.
U.S. Appl. No. 14/057,447, Final Office Action, dated Jun. 20, 2016.
U.S. Appl. No. 14/057,447, Nonfinal Office Action, dated Dec. 11, 2015.
U.S. Appl. No. 14/057,447, Nonfinal Office Action, dated Sep. 28, 2016.
U.S. Appl. No. 14/057,456, Final Office Action, dated Jun. 16, 2016.
U.S. Appl. No. 14/057,456, Final Office Action, dated Mar. 17, 2015.
U.S. Appl. No. 14/057,456, Nonfinal Office Action, dated Dec. 3, 2015.
U.S. Appl. No. 14/057,456, Nonfinal Office Action, dated Mar. 9, 2017.
U.S. Appl. No. 14/057,467, Final Office Action, dated Dec. 7, 2016.
U.S. Appl. No. 14/057,467, Final Office Action, dated Mar. 16, 2016.
U.S. Appl. No. 14/057,467, Nonfinal Office Action, dated Jul. 1, 2016.
U.S. Appl. No. 14/057,467, Nonfinal Office Action, Nov. 12, 2015.
U.S. Appl. No. 14/208,626, Notice of Allowance, dated May 11, 2015.
U.S. Appl. No. 14/208,626, Notice of Allowance, dated Sep. 1, 2015.
U.S. Appl. No. 14/215,789, Final Office Action, dated Mar. 11, 2016.
U.S. Appl. No. 14/255,934, Notice of Allowance, dated May 27, 2015.
U.S. Appl. No. 14/339,652, Final Office Action, dated Apr. 22, 2016.
U.S. Appl. No. 14/339,652, Nonfinal Office Action, dated Sep. 24, 2015.
U.S. Appl. No. 14/511,712, Office Action, dated Dec. 26, 2014.
U.S. Appl. No. 14/528,424, Final Office Action, dated Apr. 22, 2016.
U.S. Appl. No. 14/528,424, Nonfinal Office Action, dated Dec. 3, 2015.
U.S. Appl. No. 14/528,642, Final Office Action, dated Mar. 9, 2016.
U.S. Appl. No. 14/713,184, Final Office Action, dated Jul. 15, 2016.
U.S. Appl. No. 14/713,184, Nonfinal office action, dated Mar. 10, 2017.
U.S. Appl. No. 14/713,184, Nonfinal Office Action, dated Feb. 1, 2016.
U.S. Appl. No. 14/713,188, Final Office Action, dated May 31, 2016.
U.S. Appl. No. 14/713,188, Nonfinal Office Action, dated Dec. 3, 2015.
U.S. Appl. No. 14/713,188, Nonfinal Office Action, dated Feb. 24, 2017.
U.S. Appl. No. 14/713,194, Final Office Action, dated Jan. 25, 2017.
U.S. Appl. No. 14/713,194, Nonfinal Office Action, dated Jul. 29, 2016.
U.S. Appl. No. 14/713,201, Final Office Action, dated Sep. 27, 2016.
U.S. Appl. No. 14/713,201, Nonfinal Office Action, dated May 19, 2016.
U.S. Appl. No. 14/713,206, Final Office Action, dated May 13, 2016.
U.S. Appl. No. 14/713,206, Nonfinal Office Action, dated Feb. 13, 2017.
U.S. Appl. No. 14/713,206, Nonfinal Office Action, dated Nov. 20, 2015.
U.S. Appl. No. 14/713,214, Final Office Action, dated Aug. 26, 2016.
U.S. Appl. No. 14/713,214, Nonfinal Office Action, dated Feb. 26, 2016.
U.S. Appl. No. 14/713,217, Final Office Action, dated Jul. 22, 2016.
U.S. Appl. No. 14/713,217, Nonfinal Office Action, dated Mar. 10, 2017.
U.S. Appl. No. 14/713,217, Nonfinal Office Action, dated Feb. 12, 2016.
U.S. Appl. No. 14/713,223, Final Office Action, dated Sep. 1, 2016.
U.S. Appl. No. 14/713,223, Nonfinal Office Action, dated Feb. 26, 2016.
U.S. Appl. No. 14/713,226, Final Office Action, dated May 26, 2016.
U.S. Appl. No. 14/713,226, Nonfinal Office Action, dated Jan. 13, 2016.
U.S. Appl. No. 14/713,226, Notice of Allowance, dated Sep. 22, 2016.
U.S. Appl. No. 14/713,226, Second Notice of Allowance, dated Jan. 12, 2017.
U.S. Appl. No. 14/713,230, Final Office Action, dated Mar. 22, 2016.
U.S. Appl. No. 14/713,230, Nonfinal Office Action, dated Feb. 10, 2017.
U.S. Appl. No. 14/713,237, Final Office Action, dated Sep. 9, 2016.
U.S. Appl. No. 14/713,237, Nonfinal Office Action, dated Apr. 18, 2016.
U.S. Appl. No. 14/713,240, Final Office Action, dated Sep. 12, 2016.
U.S. Appl. No. 14/713,240, Nonfinal Office Action, dated Apr. 7, 2016.
U.S. Appl. No. 14/713,249, Final Office Action, dated Jul. 12, 2016.
U.S. Appl. No. 14/713,249, Nonfinal Office Action, dated Mar. 7, 2017.
U.S. Appl. No. 14/713,249, Nonfinal Office Action, dated Jan. 20, 2016.
U.S. Appl. No. 14/713,254, Final Office Action, dated Mar. 16, 2016.
U.S. Appl. No. 14/713,254, Nonfinal Office Action, dated Jan. 30, 2017.
U.S. Appl. No. 14/713,261, Final Office Action, dated Apr. 1, 2016.
U.S. Appl. No. 14/713,261, Nonfinal Office Action, dated Feb. 23, 2017.
U.S. Appl. No. 14/713,266, Final Office Action, dated Sep. 12, 2016.
U.S. Appl. No. 14/713,266, Nonfinal Office Action, dated Mar. 23, 2016.
U.S. Appl. No. 14/713,271, Final Office Action, dated Jun. 17, 2016.
U.S. Appl. No. 14/713,271, Nonfinal Office Action, dated Feb. 28, 2017.
U.S. Appl. No. 14/713,271, Nonfinal Office Action, dated Nov. 6, 2015.
U.S. Appl. No. 14/718,338, Notice of Allowance, dated Nov. 2, 2015.
U.S. Appl. No. 14/887,580, Final Office Action, dated Mar. 21, 2017.
U.S. Appl. No. 14/887,580, Nonfinal Office Action, dated Apr. 7, 2016.
U.S. Appl. No. 14/887,580, Nonfinal Office Action, dated Oct. 18, 2016.
U.S. Appl. No. 14/934,326, filed Nov. 6, 2015, Fields et al., “Autonomous Vehicle Operating Status Assessment”.
U.S. Appl. No. 14/934,333, filed Nov. 6, 2015, Fields et al., “Autonomous Vehicle Control Assessment and Selection”.
U.S. Appl. No. 14/934,339, filed Nov. 6, 2015, Fields et al., “Autonomous Vehicle Operator Identification”.
U.S. Appl. No. 14/934,343, filed Nov. 6, 2015, Fields et al., “Autonomous Vehicle Operating Style and Mode Monitoring”.
U.S. Appl. No. 14/934,345, filed Nov. 6, 2015, Fields et al., “Autonomous Vehicle Feature Recommendations”.
U.S. Appl. No. 14/934,347, filed Nov. 6, 2015, Fields et al., “Autonomous Vehicle Software Version Assessment”.
U.S. Appl. No. 14/934,347, Nonfinal Office Action, dated Mar. 16, 2017.
U.S. Appl. No. 14/934,355, filed Nov. 6, 2015, Fields et al., “Autonomous Vehicle Insurance Based Upon Usage”.
U.S. Appl. No. 14/934,357, filed Nov. 6, 2015, Fields et al., “Autonomous Vehicle Salvage and Repair”.
U.S. Appl. No. 14/934,361, filed Nov. 6, 2015, Fields et al., “Autonomous Vehicle Infrastructure Communication Device”.
U.S. Appl. No. 14/934,371, filed Nov. 6, 2015, Fields et al., “Autonomous Vehicle Accident and Emergency Response”.
U.S. Appl. No. 14/934,381, filed Nov. 6, 2015, Fields et al., “Personal Insurance Policies”.
U.S. Appl. No. 14/934,385, filed Nov. 6, 2015, Fields et al., “Autonomous Vehicle Operating Status Assessment”.
U.S. Appl. No. 14/934,388, filed Nov. 6, 2015, Fields et al., “Autonomous Vehicle Control Assessment and Selection”.
U.S. Appl. No. 14/934,393, filed Nov. 6, 2015, Fields et al., “Autonomous Vehicle Control Assessment and Selection”.
U.S. Appl. No. 14/934,400, filed Nov. 6, 2015, Fields et al., “Autonomous Vehicle Control Assessment and Selection”.
U.S. Appl. No. 14/934,405, filed Nov. 6, 2015, Fields et al., “Autonomous Vehicle Automatic Parking”.
U.S. Appl. No. 14/950,492, Final Office Action, dated May 3, 2016.
U.S. Appl. No. 14/950,492, Nonfinal Office Action, dated Jan. 22, 2016.
U.S. Appl. No. 14/950,492, Notice of Allowance, dated Aug. 3, 2016.
U.S. Appl. No. 14/951,798, Nonfinal Office Action, dated Jan. 27, 2017.
U.S. Appl. No. 14/951,803, “Accident Fault Determination for Autonomous Vehicles”, Konrardy et al., filed Nov. 25, 2015.
U.S. Appl. No. 14/978,266, “Autonomous Feature Use Monitoring and Telematics”, Konrardy et al., filed Dec. 22, 2015.
U.S. Appl. No. 15/229,926, “Advanced Vehicle Operator Intelligence System”, filed Aug. 5, 2016.
U.S. Appl. No. 15/410,192, “Autonomous Vehicle Operation Feature Monitoring and Evaluation of Effectiveness”, Konrardy et al., filed Jan. 19, 2017.
U.S. Appl. No. 15/421,508, “Autonomous Vehicle Operation Feature Monitoring and Evaluation of Effectiveness”, Konrardy et al., filed Feb. 1, 2017.
U.S. Appl. No. 15/421,521, “Autonomous Vehicle Operation Feature Monitoring and Evaluation of Effectiveness”, Konrardy et al., filed Feb. 1, 2017.
Wiesenthal et al., “The Influence of Music on Driver Stress,” Journal of Applied Social Psychology 30(8):1709-19 (2000).
Zhou et al., A Simulation Model to Evaluate and Verify Functions of Autonomous Vehicle Based on Simulink, Tongji University, 12 pages (2009).
“Driverless Cars . . . The Future is Already Here”, Autolnsurance Center, downloaded from the Internet at: <http://www.autoinsurancecenter.com/driverless-cars . . . the-future-is-already-here.htm> (2010; downloaded on Mar. 27, 2014).
“Integrated Vehicle-Based Safety Systems (IVBSS)”, Research and Innovative Technology Administration (RITA), http://www.its.dot.gov/ivbss/, retrieved from the internet on Nov. 4, 2013, 3 pages.
Advisory Action dated Apr. 1, 2015 for U.S. Appl. No. 14/269,490, 4 pgs.
Carroll et al. “Where Innovation is Sorely Needed”, http://www.technologyreview.com/news/422568/where-innovation-is-sorely-needed/?nlid, retrieved from the internet on Nov. 4, 2013, 3 pages.
Davies, Avoiding Squirrels and Other Things Google's Robot Car Can't Do, downloaded from the Internet at: <http://www.wired.com/2014/05/google-self-driving-car-can-cant/ (downloaded on May 28, 2014).
Fields et al., U.S. Appl. No. 14/511,712, filed Oct. 10, 2014.
Fields et al., U.S. Appl. No. 14/511,750, filed Oct. 10, 2014.
Final Office Action, U.S. Appl. No. 14/255,934, dated Sep. 23, 2014.
Final Office Action, U.S. Appl. No. 14/269,490, dated Jan. 23, 2015.
Hancock, G.M., P.A. Hancock, and C.M. Janelle, “The Impact of Emotions and Predominant Emotion Regulation Technique on Driving Performance,” pp. 5882-5885, 2012.
Levendusky, Advancements in automotive technology and their effect on personal auto insurance, downloaded from the Internet at: <http://www.verisk.com/visualize/advancements-in-automotive-technology-and-their-effect> (2013).
McCraty, R., B. Barrios-Choplin, M. Atkinson, and D. Tomasino. “The Effects of Different Types of Music on Mood, Tension, and Mental Clarity.” Alternative Therapies in Health and Medicine 4.1 (1998): 75-84. NCBI PubMed. Web. Jul. 11, 2013.
Mui, Will auto insurers survive their collision with driverless cars? (Part 6), downloaded from the Internet at: <http://www.forbes.com/sites/chunkamui/2013/03/28/will-auto-insurers-survive-their-collision> (Mar. 28, 2013).
Nonfinal Office Action, U.S. Appl. No. 14/255,934, dated Jan. 15, 2015.
Nonfinal Office Action, U.S. Appl. No. 14/255,934, dated Jun. 18, 2014.
Nonfinal Office Action, U.S. Appl. No. 14/269,490, dated Sep. 12, 2014.
Notice of Allowance in U.S. Appl. No. 14/057,408 dated Sep. 25, 2014.
Notice of Allowance in U.S. Appl. No. 14/057,419 dated Oct. 5, 2015.
Notice of Allowance in U.S. Appl. No. 14/208,626 dated May 11, 2015.
Notice of Allowance in U.S. Appl. No. 14/208,626 dated Sep. 1, 2015.
Notice of Allowance in U.S. Appl. No. 14/255,934 dated May 27, 2015.
Notice of Allowance in U.S. Appl. No. 14/729,290 dated Aug. 5, 2015.
Office Action in U.S. Appl. No. 13/844,090 dated Dec. 4, 2013.
Office Action in U.S. Appl. No. 14/057,419 dated Mar. 31, 2015.
Office Action in U.S. Appl. No. 14/057,456 dated Mar. 17, 2015.
Office Action in U.S. Appl. No. 14/201,491 dated Apr. 29, 2015.
Office Action in U.S. Appl. No. 14/201,491 dated Jan. 16, 2015.
Office Action in U.S. Appl. No. 14/201,491 dated Sep. 11, 2015.
Office Action in U.S. Appl. No. 14/201,491 dated Sep. 26, 2014.
Office Action in U.S. Appl. No. 14/215,789 dated Sep. 17, 2015.
Office Action in U.S. Appl. No. 14/255,934 dated Jan. 15, 2015.
Office Action in U.S. Appl. No. 14/255,934 dated Jun. 18, 2014.
Office Action in U.S. Appl. No. 14/255,934 dated Sep. 23, 2014.
Office Action in U.S. Appl. No. 14/269,490 dated Jan. 23, 2015.
Office Action in U.S. Appl. No. 14/269,490 dated Jun. 11, 2015.
Office Action in U.S. Appl. No. 14/269,490 dated Sep. 12, 2014.
Office Action in U.S. Appl. No. 14/511,712 dated Jun. 25, 2015.
Office Action in U.S. Appl. No. 14/511,712 dated Oct. 10, 2014.
Office Action in U.S. Appl. No. 14/511,750 dated Dec. 19, 2014.
Office Action in U.S. Appl. No. 14/511,750 dated Jun. 30, 2015.
Office Action in U.S. Appl. No. 14/057,408 dated Jan. 28, 2014.
Office Action in U.S. Appl. No. 14/057,408 dated May 22, 2014.
Office Action in U.S. Appl. No. 14/057,419 dated Jan. 28, 2014.
Office Action in U.S. Appl. No. 14/057,419 dated Jun. 18, 2014.
Office Action in U.S. Appl. No. 14/057,435 dated Jul. 23, 2014.
Office Action in U.S. Appl. No. 14/057,435 dated Mar. 20, 2014.
Office Action in U.S. Appl. No. 14/057,435 dated May 29, 2015.
Office Action in U.S. Appl. No. 14/057,435 dated Nov. 18, 2014.
Office Action in U.S. Appl. No. 14/057,447 dated Aug. 28, 2014.
Office Action in U.S. Appl. No. 14/057,447 dated Dec. 18, 2014.
Office Action in U.S. Appl. No. 14/057,447 dated Feb. 24, 2014.
Office Action in U.S. Appl. No. 14/057,447 dated Jul. 6, 2015.
Office Action in U.S. Appl. No. 14/057,456 dated Mar. 14, 2014.
Office Action in U.S. Appl. No. 14/057,456 dated Oct. 28, 2014.
Office Action in U.S. Appl. No. 14/208,626 dated Apr. 29, 2014.
Office Action in U.S. Appl. No. 14/208,626 dated Aug. 13, 2014.
Office Action in U.S. Appl. No. 14/339,652 dated May 15, 2015.
Office Action in U.S. Appl. No. 14/339,652 dated Oct. 23, 2014.
Office Action in U.S. Appl. No. 14/339,652 dated Sep. 24, 2015.
Office Action in U.S. Appl. No. 14/528,424 dated Feb. 27, 2015.
Office Action in U.S. Appl. No. 14/528,424 dated Jul. 30, 2015.
Office Action in U.S. Appl. No. 14/528,642 dated Jan. 13, 2015.
Office Action in U.S. Appl. No. 14/713,230 dated Oct. 9, 2015.
Office Action in U.S. Appl. No. 14/713,254 dated Oct. 9, 2015.
Office Action in U.S. Appl. No. 14/718,338 dated Jul. 7, 2015.
Office Action, U.S. Appl. No. 14/713,261, dated Oct. 21, 2015.
Read, Autonomous cars & the death of auto insurance, downloaded from the Internet at: <http://www.thecarconnection.com/news/1083266_autonomous-cars-the-death-of-auto-insurance> (Apr. 1, 2013).
Riley et al., U.S. Appl. No. 14/269,490, filed May 5, 2014.
Ryan, Can having safety features reduce your insurance premiums? (Dec. 15, 2010).
Search Report in EP Application No. 13167206.5 dated Aug. 13, 2013, 6 pages.
Sharma, Driving the future: the legal implications of autonomous vehicles conference recap, downloaded from the Internet at: <http://law.scu.edu/hightech/autonomousvehicleconfrecap2012> (2012).
Stienstra, Autonomous Vehicles & the Insurance Industry, 2013 CAS Annual Meeting—Minneapolis, MN (2013).
U.S. Appl. No. 14/215,789, filed Mar. 17, 2014, Baker et al., “Split Sensing Method”.
U.S. Appl. No. 14/339,652, filed Jul. 24, 2014, Freeck et al., “System and Methods for Monitoring a Vehicle Operator and Monitoring an Operating Environment Within the Vehicle”.
U.S. Appl. No. 14/528,424, filed Oct. 30, 2014, Christensen et al., “Systems and Methods for Processing Trip-Based Insurance Policies”.
U.S. Appl. No. 14/528,642, filed Oct. 30, 2014, Christensen et al., “Systems and Methods for Managing Units Associated with Time-Based Insurance Policies”.
U.S. Appl. No. 14/713,184, filed May 15, 2015, Konrardy et al., “Autonomous Vehicle Insurance Pricing”.
U.S. Appl. No. 14/713,188, filed May 15, 2015, Konrardy et al., “Autonomous Feature Use Monitoring and Insurance Pricing”.
U.S. Appl. No. 14/713,194, filed May 15, 2015, Konrardy et al., “Autonomous Communication Feature Use and Insurance Pricing”.
U.S. Appl. No. 14/713,201, filed May 15, 2015, Konrardy et al., “Autonomous Vehicle Insurance Pricing and Offering Based Upon Accident Risk Factors”.
U.S. Appl. No. 14/713,206, filed May 15, 2015, Konrardy et al., “Determining Autonomous Vehicle Technology Performance for Insurance Pricing and Offering”.
U.S. Appl. No. 14/713,214, filed May 15, 2015, Konrardy et al., “Accident Risk Model Determination Using Autonomous Vehicle Operating Data”.
U.S. Appl. No. 14/713,217, filed May 15, 2015, Konrardy et al., “Autonomous Vehicle Operation Feature Usage Recommendations”.
U.S. Appl. No. 14/713,223, filed May 15, 2015, Konrardy et al., “Driver Feedback Alerts Based Upon Monitoring Use of Autonomous Vehicle Operation Features”.
U.S. Appl. No. 14/713,226, filed May 15, 2015, Konrardy et al., “Accident Response Using Autonomous Vehicle Monitoring”.
U.S. Appl. No. 14/713,230, filed May 15, 2015, Konrardy et al., “Accident Fault Determination for Autonomous Vehicles”.
U.S. Appl. No. 14/713,237, filed May 15, 2015, Konrardy et al., “Autonomous Vehicle Technology Effectiveness Determination for Insurance Pricing”.
U.S. Appl. No. 14/713,240, filed May 15, 2015, Konrardy et al., “Fault Determination with Autonomous Feature Use Monitoring”.
U.S. Appl. No. 14/713,244, filed May 15, 2015, Konrardy et al., “Autonomous Vehicle Operation Feature Evaulation”.
U.S. Appl. No. 14/713,249, filed May 15, 2015, Konrardy et al., “Autonomous Vehicle Operation Feature Monitoring and Evaluation of Effectiveness”.
U.S. Appl. No. 14/713,254, filed May 15, 2015, Konrardy et al., “Accident Fault Determination for Autonomous Vehicles”.
U.S. Appl. No. 14/713,261, filed May 15, 2015, Konrardy et al., “Accident Fault Determination for Autonomous Vehicles”.
U.S. Appl. No. 14/713,266, filed May 15, 2015, Konrardy et al., “Autonomous Vehicle Operation Feature Monitoring and Evaluation of Effectiveness”.
U.S. Appl. No. 14/713,271, filed May 15, 2015, Konrardy et al. “Fully Autonomous Vehicle Insurance Pricing”.
U.S. Appl. No. 14/729,290, filed Jun. 3, 2015, Fields et al., “Advanced Vehicle Operator Intelligence System”.
U.S. Appl. No. 14/857,242, filed Sep. 17, 2015, Fields et al., “Advanced Vehicle Operator Intelligence System”.
Wiesenthal, David L., Dwight A. Hennessy, and Brad Totten, “The Influence of Music on Driver Stress,” Journal of Applied Social Psychology 30, 8, pp. 1709-1719, 2000.
Young et al., “Cooperative Collision Warning Based Highway Vehicle Accident Reconstruction”, Eighth International Conference on Intelligent Systems Design and Applications, Nov. 26-28, 2008, pp. 561-565.
“Biofeedback mobile app”, Kurzweill Accelerating Intelligence, downloaded from the Internet at: ,http://www.kurzweilai.net/biofeedback-mobile-app> (Feb. 12, 2013).
“Intel Capital to Invest in Future of Automotive Technology”, News Release, Intel Corp. (Feb. 29, 2012).
“MIT Spin-off Affectiva Raises $5.7 Million to Commercialize Emotion Technology”, Business Wire (Jul. 19, 2011).
“Private Ownership Costs”, RACQ, Wayback Machine, http://www.racq.com.au:80/˜/media/pdf/racqpdfs/cardsanddriving/cars/0714_vehicle_running_costs.ashx/ (Oct. 6, 2014).
Al-Shihabi et al., A framework for modeling human-like driving behaviors for autonomous vehicles in driving simulators, Agents'01, pp. 286-291 (May 2001).
Beard et al., Autonomous vehicle technologies for small fixed-wing UAVs, J. Aerospace Computing Info. Commun. (Jan. 2005).
Birch, ‘Mercedes-Benz’ world class driving simulator complex enhances moose safety, SAE International, Automotive Engineering (Nov. 13, 2010).
Bondarev, Design of an Emotion Management System for a Home Reboot, Koninklijke Philips Electronics NV, pp. 63 (2002).
Bosker, Affectiva's Emotion Recognition Tech: When Machines Know What You're Feeling, www.HuffPost.com (Dec. 24, 2012).
Chan et al., The emotional side of cognitive distraction: implications for road safety, Accident Analysis and Prevention, 50:147-54 (2013).
Cutler, Using the IPhone's Front-Facing Camera, Cardiio Measures Your Heartrate, downloaded from the Internet at: <https://techcrunch.com/2012/08/09/cardiio/> (Aug. 9, 2012).
Davies, Here's How Mercedes-Benz Tests its New Self-Driving Car, Business Insider (Nov. 20, 2012).
Duffy et al., Sit, Stay, Drive: The Future of Autonomous Car Liability, SMU Science & Technology Law Review, vol. 16, pp. 101-23 (Winter 2013).
Foo et al., Three-dimensional path planning of unmanned aerial vehicles using particle swarm optimization, Sep. 2006, AIAA.
Franke et al., Autonomous Driving Goes Downtown, IEEE Intelligent Systems, (Nov. 1998).
Funkhouser, Paving the Road Ahead: Autonomous vehicles, products liability, and the need for a new approach, Utah Law Review, vol. 437, Issue 1 (2013).
Garza, “Look Ma, No Hands!” Wrinkles and Wrecks in the Age of Autonomous Vehicles, New England Law Review, vol. 46, pp. 581-616 (2012).
Goldmark, MIT is making a road frustration index to measure stresses of driving, Fast Company (Jul. 23, 2013).
Graham-Rowe, “A Smart Phone that Knows You're Angry”, MIT Technology Review (Jan. 9, 2012).
Grifantini, Sensor detects emotions through the skin, MIT Technology Review (Oct. 26, 2010).
Gurney, Sue my car not me: Products liability and accidents involving autonomous vehicles, Journal of Law, Technology & Policy (2013).
Hancock et al., “The Impact of Emotions and Predominant Emotion Regulation Technique on Driving Performance,” Work, 41 Suppl 1:3608-11 (Feb. 2012).
Healy, Detecting Stress during Real-world Driving Tasks Using Physiological Sensors, IEEE Trans Intelligent Transportation Systems 6.2:156-66 (2005).
Kluckner et al., Image based building classification and 3D modeling with super-pixels, ISPRS Technical Commission II Symposium, PCV 2010, vol. XXXVIII, part 3A, pp. 233-238 (Sep. 3, 2010).
Kus, Implementation of 3D optical scanning technology for automotive applications, Sensors, 9:1967-79 (2009).
Laine et al., Behavioral triggers of skin conductance responses and their neural correlates in the primate amygdala, J. Neurophysiol., 101:1749-54 (2009).
Lee et al., What is stressful on the road? Analysis on aggression-inducing traffic situations through self-report, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 57(1):1500-1503 (Sep. 2013).
Lomas, Can an algorithm be empathetic? UK startup EI technologies is building software that's sensitive to tone of voice, downloaded from the Internet at: https://techcrunch.com/2013/08/04/empathy/ (Aug. 4, 2013).
Marchant et al., The coming collision between autonomous vehicles and the liability system, Santa Clara Law Review, 52(4): Article 6 (2012).
McCraty et al., “The Effects of Different Types of Music on Mood, Tension, and Mental Clarity.” Alternative Therapies in Health and Medicine 4.1 (1998): 75-84. NCBI PubMed. Web. Jul. 11, 2013.
Mercedes-Benz, Press Information: Networked With All Sense, Mercedes-Benz Driving Simulator (Nov. 2012).
Merz et al., Beyond Visual Range Obstacle Avoidance and Infrastructure Inspection by an Autonomous Helicopter, Sep. 2011, IEEE.
Murph, Affectiva's Q Sensor Wristband Monitors and Logs Stress Levels, Might Bring Back the Snap Bracelet, Engadget.com (Nov. 2, 2010).
Nasoz et al., Emotion recognition from physiological signals using wireless sensors for presence technologies, Cogn. Tech. Work, 6:4-14 (2004).
Nass et al., Improving automotive safety by pairing driver emotion and car voice emotion. CHI 2005 Late Breaking Results: Short Papers, Portland, Oregon (Apr. 2-7, 2005).
Office Action dated Dec. 19, 2014 for U.S. Appl. No. 14/511,750, 18 pgs.
Office Action in U.S. Appl. No. 14/057,456 dated Mar. 9, 2017.
Office Action in U.S. Appl. No. 14/057,467 dated Feb. 23, 2015.
Office Action in U.S. Appl. No. 14/208,626 dated Dec. 23, 2014.
Office Action in U.S. Appl. No. 14/057,419 dated Oct. 9, 2014.
Office Action in U.S. Appl. No. 14/057,447 dated May 4, 2017.
Office Action in U.S. Appl. No. 14/057,456 dated Jun. 16, 2016.
Office Action in U.S. Appl. No. 14/057,456 dated Sep. 7, 2017.
Office Action in U.S. Appl. No. 14/057,467 dated Apr. 4, 2018.
Office Action in U.S. Appl. No. 14/057,467 dated Apr. 6, 2017.
Office Action in U.S. Appl. No. 14/057,467 dated Dec. 7, 2016.
Office Action in U.S. Appl. No. 14/057,467 dated Jan. 27, 2014.
Office Action in U.S. Appl. No. 14/057,467 dated Jul. 1, 2016.
Office Action in U.S. Appl. No. 14/057,467 dated Jun. 11, 2014.
Office Action in U.S. Appl. No. 14/057,467 dated Mar. 16, 2016.
Office Action in U.S. Appl. No. 14/057,467 dated Oct. 17, 2014.
Office Action in U.S. Appl. No. 14/057,467 dated Sep. 6, 2017.
Office Action in U.S. Appl. No. 14/887,580 dated Apr. 7, 2016.
Office Action in U.S. Appl. No. 14/887,580 dated Mar. 21, 2017.
Office Action in U.S. Appl. No. 14/887,580 dated May 31, 2018.
Office Action in U.S. Appl. No. 14/887,580 dated Oct. 18, 2016.
Office Action in U.S. Appl. No. 14/950,492 dated Jan. 22, 2016.
Office Action in U.S. Appl. No. 14/950,492 dated May 3, 2016.
Office Action in U.S. Appl. No. 15/145,993 dated May 1, 2017.
Office Action in U.S. Appl. No. 15/237,832 dated Jan. 12, 2018.
Office Action dated Dec. 26, 2014 for U.S. Appl. No. 14/511,712, 21 pgs.
Peterson, New technology—old law: autonomous vehicles and California's insurance framework, Santa Clara Law Review, 52(4):Article 7 (Dec. 2012).
Philipson, Want to drive safely? Listen to Elton John, Aerosmith or S Club 7, The Telegraph (Jan. 8, 2013).
Pohanka et al., Sensors simulation environment for sensor data fusion, 14th International Conference on Information Fusion, Chicago, IL, pp. 1-8 (2011).
Ryan Hurlbert, “Can Having Safety Features Reduce Your Insurance Premiums?”, Dec. 15, 2010, 1 page.
Saberi et al., An approach for functional safety improvement of an existing automotive system, IEEE (2015).
Sepulcre et al., “Cooperative Vehicle-to-Vehicle Active Safety Testing Under Challenging Conditions”, Transportation Research Part C 26 (2013), Jan. 2013, pp. 233-255.
Shaya, “For Some, Driving Is More Stressful than Skydiving.” AutomotiveNews.com. Automotive News, Jun. 12, 2013.
Sorrel, App Measures Vital Signs Using IPad Camera, wired.com (Nov. 18, 2011).
Talbot, “Wrist Sensor Tells You How Stressed Out You Are”, MIT Technology Review (Dec. 20, 2012).
Toor, Valve looks to sweat levels and eye controls for future game design, downloaded from the Internet at: https://www.theverge.com/2013/5/7/4307750/valve-biometric-eye-tracking-sweat-left-4-dead-portal-2 (May 7, 2013).
U.S. Appl. No. 13/647,098, Final Office Action, dated Oct. 9, 2014.
U.S. Appl. No. 13/647,098, Nonfinal Office Action, dated Apr. 26, 2013.
U.S. Appl. No. 13/836,695, Final Office Action, dated Feb. 25, 2014.
U.S. Appl. No. 13/839,634, Final Office Action, dated Mar. 21, 2014.
U.S. Appl. No. 13/839,634, Nonfinal Office Action, dated Aug. 5, 2014.
U.S. Appl. No. 13/839,634, Nonfinal Office Action, dated Oct. 25, 2013.
U.S. Appl. No. 14/047,844, Notice of Allowance, dated Feb. 3, 2014.
U.S. Appl. No. 14/047,873, Notice of Allowance, dated Apr. 30, 2014.
U.S. Appl. No. 14/201,491, Nonfinal Office Action, dated Sep. 26, 2016.
U.S. Appl. No. 14/201,491, Notice of Allowance, dated Apr. 21, 2017.
U.S. Appl. No. 14/269,490, Final Office Action, dated Jan. 23, 2015.
U.S. Appl. No. 14/269,490, Nonfinal Office Action, dated Jun. 11, 2015.
U.S. Appl. No. 14/269,490, Nonfinal Office Action, dated Sep. 12, 2014.
U.S. Appl. No. 14/269,490, Notice of Allowance, dated Nov. 17, 2015.
U.S. Appl. No. 14/269,920, Final Office Action, dated Feb. 11, 2015.
U.S. Appl. No. 14/269,920, Nonfinal Office Action, dated Jul. 13, 2015.
U.S. Appl. No. 14/269,920, Nonfinal Office Action, dated Sep. 25, 2014.
U.S. Appl. No. 14/318,521, Nonfinal Office Action, dated Oct. 10, 2014.
U.S. Appl. No. 14/323,626, Nonfinal Office Action, dated Sep. 17, 2014.
U.S. Appl. No. 14/323,626, Notice of Allowance, dated Oct. 13, 2015.
U.S. Appl. No. 14/339,652, Final Office Action, dated Dec. 13, 2017.
U.S. Appl. No. 14/339,652, Final Office Action, dated Jan. 11, 2017.
U.S. Appl. No. 14/339,652, Nonfinal Office Action, dated Aug. 11, 2016.
U.S. Appl. No. 14/339,652, Nonfinal Office Action, dated Jun. 6, 2017.
U.S. Appl. No. 14/496,802, Nonfinal Office Action, dated Jan. 2, 2015.
U.S. Appl. No. 14/496,802, Notice of Allowance, dated Oct. 2, 2015.
U.S. Appl. No. 14/496,840, Final Office Action, dated May 5, 2015.
U.S. Appl. No. 14/496,840, Nonfinal Office Action, dated Jan. 5, 2015.
U.S. Appl. No. 14/496,840, Notice of Allowance, dated Nov. 23, 2015.
U.S. Appl. No. 14/528,424, Final Office Action, dated Feb. 23, 2017.
U.S. Appl. No. 14/528,424, Nonfinal Office Action, dated Sep. 12, 2016.
U.S. Appl. No. 14/528,642, Final Office Action, dated Jan. 30, 2017.
U.S. Appl. No. 14/528,642, Nonfinal Office Action, dated Jul. 5, 2016.
U.S. Appl. No. 14/631,558, Notice of Allowance, dated Jun. 10, 2015.
U.S. Appl. No. 14/631,568, Final Office Action, dated Sep. 10, 2015.
U.S. Appl. No. 14/631,568, Nonfinal Office Action, dated May 19, 2015.
U.S. Appl. No. 14/631,568, Notice of Allowance, dated Jan. 7, 2016.
U.S. Appl. No. 14/656,185, Final Office Action, dated Jun. 25, 2015.
U.S. Appl. No. 14/656,185, Nonfinal Office Action, dated Apr. 2, 2015.
U.S. Appl. No. 14/656,185, Notice of Allowance, dated Oct. 9, 2015.
U.S. Appl. No. 14/713,184, Final Office Action, dated Jun. 29, 2017.
U.S. Appl. No. 14/713,184 Notice of Allowance, dated Mar. 20, 2018.
U.S. Appl. No. 14/713,188, Advisory Action, dated Dec. 15, 2017.
U.S. Appl. No. 14/713,188, Final Office Action, dated Sep. 8, 2017.
U.S. Appl. No. 14/713,194, Nonfinal Office Action, dated Dec. 28, 2017.
U.S. Appl. No. 14/713,201, Notice of Allowance, dated Mar. 28, 2017.
U.S. Appl. No. 14/713,206, Final Office Action, dated Jun. 29, 2017.
U.S. Appl. No. 14/713,206, Notice of Allowance, dated May 17, 2018.
U.S. Appl. No. 14/713,214, Notice of Allowance, dated Sep. 11, 2017.
U.S. Appl. No. 14/713,217, Advisory Action, dated Dec. 15, 2017.
U.S. Appl. No. 14/713,217, Final Office Action, dated Sep. 8, 2017.
U.S. Appl. No. 14/713,223, Notice of Allowance, dated May 24, 2017.
U.S. Appl. No. 14/713,226, Notice of Allowance (second), dated Jan. 12, 2017.
U.S. Appl. No. 14/713,230, Final Office Action, dated Jun. 29, 2017.
U.S. Appl. No. 14/713,230, Nonfinal Office Action, dated May 3, 2018.
U.S. Appl. No. 14/713,237, Notice of Allowance, dated Aug. 30, 2017.
U.S. Appl. No. 14/713,240, Notice of Allowance, dated Jun. 30, 2017.
U.S. Appl. No. 14/713,244, Advisory Action, dated Sep. 6, 2018.
U.S. Appl. No. 14/713,244, Final Office Action, dated Jun. 27, 2018.
U.S. Appl. No. 14/713,244, Nonfinal Office Action, dated Dec. 13, 2017.
U.S. Appl. No. 14/713,249, Final Office Action, dated Sep. 8, 2017.
U.S. Appl. No. 14/713,249, Nonfinal Office Action, dated Sep. 7, 2018.
U.S. Appl. No. 14/713,254, Final Office Action, dated Jun. 29, 2017.
U.S. Appl. No. 14/713,254, Nonfinal Office Action, dated May 3, 2018.
U.S. Appl. No. 14/713,261, Notice of Allowance, dated Jul. 12, 2017.
U.S. Appl. No. 14/713,266, Notice of Allowance, dated May 5, 2017.
U.S. Appl. No. 14/713,271, Final Office Action, dated Jun. 29, 2017.
U.S. Appl. No. 14/713,271, Notice of Allowance, dated Jun. 6, 2018.
U.S. Appl. No. 14/716,999, Final Office Action, dated Mar. 29, 2016.
U.S. Appl. No. 14/716,999, Nonfinal Office Action, dated Sep. 1, 2015.
U.S. Appl. No. 14/798,609, Nonfinal Office Action, dated Aug. 23, 2018.
U.S. Appl. No. 14/798,615, Final Office Action, dated Aug. 3, 2018.
U.S. Appl. No. 14/798,615, Nonfinal Office Action, dated Feb. 7, 2018.
U.S. Appl. No. 14/798,626, Final Office Action, dated Jul. 19, 2018.
U.S. Appl. No. 14/798,626, Nonfinal Office Action, dated Jan. 30, 2018.
U.S. Appl. No. 14/798,633, Final Office Action, dated Sep. 19, 2018.
U.S. Appl. No. 14/798,741, Final Office Action, dated Jul. 17, 2018.
U.S. Appl. No. 14/798,741, Nonfinal Office Action, dated Jan. 29, 2018.
U.S. Appl. No. 14/798,741, Nonfinal Office Action, dated Nov. 9, 2018.
U.S. Appl. No. 14/798,745, Final Office Action, dated Aug. 30, 2018.
U.S. Appl. No. 14/798,745, Nonfinal Office Action, dated Apr. 17, 2018.
U.S. Appl. No. 14/798,750, Final Office Action, dated Aug. 29, 2018.
U.S. Appl. No. 14/798,750, Nonfinal Office Action, dated Mar. 5, 2018.
U.S. Appl. No. 14/798,757, Nonfinal Office Action, dated Jan. 17, 2017.
U.S. Appl. No. 14/798,757, Notice of Allowance, dated Jul. 12, 2017.
U.S. Appl. No. 14/798,763, Final Office Action, dated Jul. 12, 2018.
U.S. Appl. No. 14/798,763, Nonfinal Office Action, dated Feb. 5, 2018.
U.S. Appl. No. 14/798,763, Nonfinal Office Action, dated Oct. 25, 2018.
U.S. Appl. No. 14/798,769, Final Office Action, dated Mar. 14, 2017.
U.S. Appl. No. 14/798,769, Nonfinal Office Action, dated Oct. 6, 2016.
U.S. Appl. No. 14/798,769, Notice of Allowance, dated Jun. 27, 2017.
U.S. Appl. No. 14/798,770, Nonfinal Office Action, dated Nov. 2, 2017.
U.S. Appl. No. 14/798,770, Notice of Allowance, dated Jun. 25, 2018.
U.S. Appl. No. 14/820,328, Final Office Action, dated Feb. 17, 2016.
U.S. Appl. No. 14/820,328, Nonfinal Office Action, dated Sep. 24, 2015.
U.S. Appl. No. 14/887,580, Nonfinal Office Action, dated Oct. 23, 2017.
U.S. Appl. No. 14/934,326, Final Office Action, dated Aug. 14, 2018.
U.S. Appl. No. 14/934,326, Nonfinal Office Action, dated Mar. 30, 2018.
U.S. Appl. No. 14/934,333, Nonfinal Office Action, dated Oct. 5, 2018.
U.S. Appl. No. 14/934,339, Final Office Action, dated Aug. 10, 2018.
U.S. Appl. No. 14/934,339, Nonfinal Office Action, dated Mar. 14, 2018.
U.S. Appl. No. 14/934,343, Nonfinal Office Action, dated Mar. 19, 2018.
U.S. Appl. No. 14/934,343, Notice of Allowance, dated Aug. 10, 2018.
U.S. Appl. No. 14/934,345, Nonfinal Office Action, dated Sep. 13, 2018.
U.S. Appl. No. 14/934,347, Final Office Action, dated Sep. 22, 2017.
U.S. Appl. No. 14/934,347, Notice of Allowance, dated Dec. 15, 2017.
U.S. Appl. No. 14/934,352, filed Nov. 6, 2015, Fields et al., “Autonomous Vehicle Automatic Parking”.
U.S. Appl. No. 14/934,352, Final Office Action, dated Sep. 19, 2018.
U.S. Appl. No. 14/934,352, Nonfinal Office Action, dated Apr. 18, 2018.
U.S. Appl. No. 14/934,355, Final Office Action, dated Jul. 26, 2018.
U.S. Appl. No. 14/934,355, Nonfinal Office Action, dated Mar. 22, 2018.
U.S. Appl. No. 14/934,357, Final Office Action, dated Jul. 20, 2018.
U.S. Appl. No. 14/934,357, Nonfinal Office Action, dated Feb. 28, 2018.
U.S. Appl. No. 14/934,361, Final Office Action, dated Jan. 29, 2018.
U.S. Appl. No. 14/934,361, Nonfinal Office Action, dated Jul. 10, 2017.
U.S. Appl. No. 14/934,361, Nonfinal Office Action, dated Jun. 29, 2018.
U.S. Appl. No. 14/934,371, Final Office Action, dated Oct. 31, 2017.
U.S. Appl. No. 14/934,371, Nonfinal Office Action, dated Jun. 1, 2017.
U.S. Appl. No. 14/934,371, Notice of Allowance, dated Feb. 23, 2018.
U.S. Appl. No. 14/934,381, Final Office Action, dated Jun. 20, 2018.
U.S. Appl. No. 14/934,381, Nonfinal Office Action, dated Feb. 1, 2018.
U.S. Appl. No. 14/934,385, Nonfinal Office Action, dated Apr. 9, 2018.
U.S. Appl. No. 14/934,385, Notice of Allowance, dated Sep. 7, 2018.
U.S. Appl. No. 14/934,388, Final Office Action, dated Aug. 31, 2018.
U.S. Appl. No. 14/934,388, Nonfinal Office Action, dated Apr. 4, 2018.
U.S. Appl. No. 14/934,393, Nonfinal Office Action, dated Jul. 27, 2018.
U.S. Appl. No. 14/934,400, Nonfinal Office Action, dated Jun. 28, 2018.
U.S. Appl. No. 14/934,405, Final Office Action, dated Oct. 31, 2017.
U.S. Appl. No. 14/934,405, Nonfinal Office Action, dated Apr. 20, 2017.
U.S. Appl. No. 14/934,405, Notice of Allowance, dated Jan. 23, 2018.
U.S. Appl. No. 14/951,774, filed Nov. 25, 2015, Konrardy et al., “Fully Autonomous Vehicle Insurance Pricing”.
U.S. Appl. No. 14/951,774, Nonfinal Office Action, dated Feb. 6, 2018.
U.S. Appl. No. 14/951,798, filed Nov. 25, 2015, Konrardy et al., “Accident Fault Determination for Autonomous Vehicles”.
U.S. Appl. No. 14/951,798, Final Office Action, dated Jul. 26, 2017.
U.S. Appl. No. 14/951,798, Notice of Allowance, dated Feb. 9, 2018.
U.S. Appl. No. 14/951,803, filed Nov. 25, 2015, Konrardy et al., “Accident Fault Determination for Autonomous Vehicles”.
U.S. Appl. No. 14/951,803, Final Office Action, dated Sep. 20, 2018.
U.S. Appl. No. 14/951,803, Nonfinal Office Action, dated Feb. 6, 2018.
U.S. Appl. No. 14/966,226, Final Office Action, dated May 4, 2016.
U.S. Appl. No. 14/966,226, Nonfinal Office Action, dated Jan. 15, 2016.
U.S. Appl. No. 14/978,266, filed Dec. 22, 2015, Konrardy et al., “Autonomous Feature Use Monitoring and Telematics”.
U.S. Appl. No. 14/978,266, Nonfinal Office Action, dated Feb. 7, 2018.
U.S. Appl. No. 14/997,154, Nonfinal Office Action, dated Mar. 24, 2016.
U.S. Appl. No. 15/005,300, Nonfinal Office Action, dated Oct. 5, 2017.
U.S. Appl. No. 15/005,300, Notice of Allowance, dated Apr. 18, 2018.
U.S. Appl. No. 15/005,300, Notice of Allowance, dated Jul. 30, 2018.
U.S. Appl. No. 15/005,300, Notice of Allowance, dated Jul. 5, 2018.
U.S. Appl. No. 15/145,993, Nonfinal Office Action, dated May 1, 2017.
U.S. Appl. No. 15/145,993, Notice of Allowance, dated Oct. 25, 2017.
U.S. Appl. No. 15/229,926, Notice of Allowance, dated Aug. 15, 2017.
U.S. Appl. No. 15/237,832, filed Aug. 16, 2016, Binion et al., “Creating a Virtual Model of a Vehicle Event”.
U.S. Appl. No. 15/241,769, filed Aug. 19, 2016, Fields et al., “Vehicular Traffic Alerts for Avoidance of Abnormal Traffic Conditions”.
U.S. Appl. No. 15/241,769, Nonfinal Office Action, dated Feb. 10, 2017.
U.S. Appl. No. 15/241,769, Notice of Allowance, dated Jul. 7, 2017.
U.S. Appl. No. 15/241,812, filed Aug. 19, 2016, Fields et al., “Using Personal Telematics Data for Rental or Insurance Discounts”.
U.S. Appl. No. 15/241,817, filed Aug. 19, 2016, Fields et al., “Vehicular Accident Risk Monitoring and Assessment”.
U.S. Appl. No. 15/241,817, Nonfinal Office Action, dated Jun. 8, 2018.
U.S. Appl. No. 15/241,826, filed Aug. 19, 2016, Fields et al., “Shared Vehicle Usage, Monitoring and Feedback”.
U.S. Appl. No. 15/241,826, Nonfinal Office Action, dated May 1, 2017.
U.S. Appl. No. 15/241,826, Notice of Allowance, dated Sep. 20, 2017.
U.S. Appl. No. 15/241,832, filed Aug. 19, 2016, Fields et al., “Vehicular Driver Evaluation”.
U.S. Appl. No. 15/241,832, Nonfinal Office Action, dated Sep. 12, 2018.
U.S. Appl. No. 15/241,842, filed Aug. 19, 2016, Fields et al., “Vehicular Driver Warnings”.
U.S. Appl. No. 15/241,842, Nonfinal Office Action, dated Feb. 22, 2018.
U.S. Appl. No. 15/241,842, Notice of Allowance, dated Sep. 17, 2018.
U.S. Appl. No. 15/241,849, filed Aug. 19, 2016, Fields et al., “Vehicular Warnings Based Upon Pedestrian or Cyclist Presence”.
U.S. Appl. No. 15/241,849, Nonfinal Office Action, dated Jun. 1, 2017.
U.S. Appl. No. 15/241,849, Notice of Allowance, dated Sep. 29, 2017.
U.S. Appl. No. 15/241,859, filed Aug. 19, 2016, Fields et al., “Determination of Driver or Vehicle Discounts and Risk Profiles Based Upon Vehicular Travel Environment”.
U.S. Appl. No. 15/241,916, filed Aug. 19, 2016, Fields et al., “Determination and Reconstruction of Vehicular Cause and Collision”.
U.S. Appl. No. 15/241,922, filed Aug. 19, 2016, Fields et al., “Electric Vehicle Battery Conservation”.
U.S. Appl. No. 15/241,922, Nonfinal Office Action, dated Aug. 29, 2018.
U.S. Appl. No. 15/241,932, filed Aug. 19, 2016, Fields et al., “Vehicular Driver Profiles and Discounts”.
U.S. Appl. No. 15/241,932, Nonfinal Office Action, dated Jun. 4, 2018.
U.S. Appl. No. 15/255,538, filed Sep. 2, 2016, Fields et al., “Real-Time Driver Observation and Scoring for Driver'S Education”.
U.S. Appl. No. 15/285,001, filed Oct. 4, 2016, Fields et al., “Real-Time Driver Observation and Scoring for Driver'S Education”.
U.S. Appl. No. 15/409,092, filed Jan. 18, 2017, Konrardy et al., “Autonomous Vehicle Action Communications”.
U.S. Appl. No. 15/409,099, filed Jan. 18, 2017, Konrardy et al., “Autonomous Vehicle Path Coordination”.
U.S. Appl. No. 15/409,099, Nonfinal Office Action, dated Apr. 12, 2018.
U.S. Appl. No. 15/409,107, filed Jan. 18, 2017, Konrardy et al., “Autonomous Vehicle Signal Control”.
U.S. Appl. No. 15/409,107, Nonfinal Office Action, dated Sep. 27, 2018.
U.S. Appl. No. 15/409,115, filed Jan. 18, 2017, Konrardy et al., “Autonomous Vehicle Application”.
U.S. Appl. No. 15/409,115, Nonfinal Office Action, dated Oct. 3, 2017.
U.S. Appl. No. 15/409,115, Notice of Allowance, dated Jan. 26, 2018.
U.S. Appl. No. 15/409,136, filed Jan. 18, 2017, Konrardy et al., “Method and System for Enhancing the Functionality of a Vehicle”.
U.S. Appl. No. 15/409,136, Nonfinal Office Action, dated Jul. 19, 2018.
U.S. Appl. No. 15/409,143, filed Jan. 18, 2017, Konrardy et al., “Autonomous Operation Suitability Assessment and Mapping”.
U.S. Appl. No. 15/409,143, Final Office Action, dated Aug. 15, 2018.
U.S. Appl. No. 15/409,143, Nonfinal Office Action, dated Jan. 26, 2018.
U.S. Appl. No. 15/409,146, filed Jan. 18, 2017, Konrardy et al., “Autonomous Vehicle Routing”.
U.S. Appl. No. 15/409,146, Nonfinal Office Action, dated Jul. 26, 2018.
U.S. Appl. No. 15/409,148, filed Jan. 18, 2017, Konrardy et al., “System and Method for Autonomous Vehicle Sharing Using Facial Recognition”.
U.S. Appl. No. 15/409,148, Nonfinal Office Action, dated Aug. 28, 2018.
U.S. Appl. No. 15/409,149, filed Jan. 18, 2017, Konrardy et al., “Autonomous Vehicle Routing During Emergencies”.
U.S. Appl. No. 15/409,149, Nonfinal Office Action, dated Apr. 10, 2018.
U.S. Appl. No. 15/409,149, Notice of Allowance, dated Aug. 15, 2018.
U.S. Appl. No. 15/409,159, filed Jan. 18, 2017, Konrardy et al., “Autonomous Vehicle Trip Routing”.
U.S. Appl. No. 15/409,163, filed Jan. 18, 2017, Konrardy et al., “Autonomous Vehicle Parking”.
U.S. Appl. No. 15/409,163, Nonfinal Office Action, dated Apr. 5, 2018.
U.S. Appl. No. 15/409,167, filed Jan. 18, 2017, Konrardy et al., “Autonomous Vehicle Retrieval”.
U.S. Appl. No. 15/409,167, Nonfinal Office Action, dated Oct. 4, 2018.
U.S. Appl. No. 15/409,180, filed Jan. 18, 2017, Konrardy et al., “Method and System for Repairing a Malfunctioning Autonomous Vehicle”.
U.S. Appl. No. 15/409,180, Nonfinal Office Action, dated Jul. 20, 2018.
U.S. Appl. No. 15/409,198, filed Jan. 18, 2017, Konrardy et al., “System and Method for Autonomous Vehicle Ride Sharing Using Facial Recognition”.
U.S. Appl. No. 15/409,213, filed Jan. 18, 2017, Konrardy et al., “Coordinated Autonomous Vehicle Automatic Area Scanning”.
U.S. Appl. No. 15/409,215, filed Jan. 18, 2017, Konrardy et al., “Autonomous Vehicle Sensor Malfunction Detection”.
U.S. Appl. No. 15/409,215, Nonfinal Office Action, dated May 31, 2018.
U.S. Appl. No. 15/409,220, filed Jan. 18, 2017, Konrardy et al., “Autonomous Electric Vehicle Charging”.
U.S. Appl. No. 15/409,220, Notice of Allowance, dated May 7, 2018.
U.S. Appl. No. 15/409,228, filed Jan. 18, 2017, Konrardy et al., “Operator-Specific Configuration of Autonomous Vehicle Operation”.
U.S. Appl. No. 15/409,228, Nonfinal Office Action, dated Apr. 17, 2018.
U.S. Appl. No. 15/409,236, filed Jan. 18, 2017, Konrardy et al., “Autonomous Vehicle Operation Adjustment Based Upon Route”.
U.S. Appl. No. 15/409,239, filed Jan. 18, 2017, Konrardy et al., “Autonomous Vehicle Component Maintenance and Repair”.
U.S. Appl. No. 15/409,239, Nonfinal Office Action, dated Jul. 27, 2018.
U.S. Appl. No. 15/409,243, filed Jan. 18, 2017, Konrardy et al., “Anomalous Condition Detection and Response for Autonomous Vehicles”.
U.S. Appl. No. 15/409,243, Nonfinal Office Action, dated Oct. 5, 2018.
U.S. Appl. No. 15/409,248, filed Jan. 18, 2017, Konrardy et al., “Sensor Malfunction Detection”.
U.S. Appl. No. 15/409,271, filed Jan. 18, 2017, Konrardy et al., “Autonomous Vehicle Component Malfunction Impact Assessment”.
U.S. Appl. No. 15/409,271, Nonfinal Office Action, dated Apr. 6, 2018.
U.S. Appl. No. 15/409,271, Notice of Allowance, dated Sep. 18, 2018.
U.S. Appl. No. 15/409,305, filed Jan. 18, 2017, Konrardy et al., “Component Malfunction Impact Assessment”.
U.S. Appl. No. 15/409,318, filed Jan. 18, 2017, Konrardy et al., “Automatic Repair of Autonomous Vehicles”.
U.S. Appl. No. 15/409,326, Nonfinal Office Action, dated Sep. 20, 2018.
U.S. Appl. No. 15/409,336, filed Jan. 18, 2017, Konrardy et al., “Automatic Repair of Autonomous Components”.
U.S. Appl. No. 15/409,340, filed Jan. 18, 2017, Konrardy et al., “Autonomous Vehicle Damage and Salvage Assessment”.
U.S. Appl. No. 15/409,340, Nonfinal Office Action, dated Feb. 12, 2018.
U.S. Appl. No. 15/409,340, Notice of Allowance, dated Jun. 6, 2018.
U.S. Appl. No. 15/409,349, filed Jan. 18, 2017, Konrardy et al., “Component Damage and Salvage Assessment”.
U.S. Appl. No. 15/409,359, filed Jan. 18, 2017, Konrardy et al., “Detecting and Responding to Autonomous Vehicle Collisions”.
U.S. Appl. No. 15/409,371, filed Jan. 18, 2017, Konrardy et al., “Detecting and Responding to Autonomous Environment Incidents”.
U.S. Appl. No. 15/409,371, Nonfinal Office Action, dated Apr. 19, 2018.
U.S. Appl. No. 15/409,445, filed Jan. 18, 2017, Konrardy et al., “Virtual Testing of Autonomous Vehicle Control System”.
U.S. Appl. No. 15/409,473, filed Jan. 18, 2017, Konrardy et al., “Virtual Testing of Autonomous Environment Control System”.
U.S. Appl. No. 15/410,192, filed Jan. 19, 2017, Konrardy et al., “Autonomous Vehicle Operation Feature Monitoring and Evaluation of Effectiveness”.
U.S. Appl. No. 15/410,192, Nonfinal Office Action, dated Feb. 26, 2018.
U.S. Appl. No. 15/413,796, filed Jan. 24, 2017, Konrardy et al., “Autonomous Vehicle Refueling”.
U.S. Appl. No. 15/413,796, Notice of Allowance, dated Apr. 19, 2018.
U.S. Appl. No. 15/421,508, filed Feb. 1, 2017, Konrardy et al., “Autonomous Vehicle Operation Feature Monitoring and Evaluation of Effectiveness”.
U.S. Appl. No. 15/421,508, Nonfinal Office Action, dated Mar. 7, 2018.
U.S. Appl. No. 15/421,521, filed Feb. 1, 2017, Konrardy et al., “Autonomous Vehicle Operation Feature Monitoring and Evaluation of Effectiveness”.
U.S. Appl. No. 15/472,813, filed Mar. 29, 2017, Konrardy et al., “Accident Response Using Autonomous Vehicle Monitoring”.
U.S. Appl. No. 15/472,813, Nonfinal Office Action, dated Nov. 22, 2017.
U.S. Appl. No. 15/472,813, Notice of Allowance, dated Apr. 25, 2018.
U.S. Appl. No. 15/491,487, filed Apr. 19, 2017, Konrardy et al., “Autonomous Vehicle Insurance Pricing and Offering Based Upon Accident Risk Factors”.
U.S. Appl. No. 15/600,125, filed May 19, 2017, Fields et al., “Vehicle Operator Emotion Management System and Method”.
U.S. Appl. No. 15/600,125, Nonfinal Office Action, dated Jun. 15, 2017.
U.S. Appl. No. 15/600,125, Notice of Allowance, dated Dec. 4, 2017.
U.S. Appl. No. 15/606,049, filed May 26, 2017, Konrardy et al. “Autonomous Vehicle Operation Feature Monitoring and Evaluation of Effectiveness”.
U.S. Appl. No. 15/627,596, filed Jun. 20, 2017, Konrardy et al., “Driver Feedback Alerts Based Upon Monitoring Use of Autonomous Vehicle Operation Features”.
U.S. Appl. No. 15/676,355, Nonfinal Office Action, dated Nov. 17, 2017.
U.S. Appl. No. 15/676,355, Notice of Allowance, dated Mar. 21, 2018.
U.S. Appl. No. 15/676,460, Notice of Allowance, dated Oct. 5, 2017.
U.S. Appl. No. 15/676,470, Nonfinal Office Action, dated Apr. 24, 2018.
U.S. Appl. No. 15/676,470, Notice of Allowance, dated Sep. 17, 2018.
U.S. Appl. No. 15/689,374, filed Aug. 29, 2017, Konrardy et al., “Fault Determination With Autonomous Feature Use Monitoring”.
U.S. Appl. No. 15/689,437, filed Aug. 29, 2017, Konrardy et al., “Accident Fault Determination for Autonomous Vehicles”.
U.S. Appl. No. 15/806,784, filed Nov. 8, 2017, Konrardy et al., “Accident Risk Model Determination Using Autonomous Vehicle Operating Data”.
U.S. Appl. No. 15/806,784, Nonfinal Office Action, dated Oct. 4, 2018.
U.S. Appl. No. 15/806,789, filed Nov. 8, 2017, Konrardy et al., “Autonomous Vehicle Technology Effectiveness Determination for Insurance Pricing”.
U.S. Appl. No. 15/808,548, Nonfinal Office Action, dated Dec. 14, 2017.
U.S. Appl. No. 15/808,548, Notice of Allowance, dated Mar. 20, 2018.
U.S. Appl. No. 15/808,974, filed Nov. 10, 2017, Fields et al., “Vehicular Warnings Based Upon Pedestrian or Cyclist Presence”.
U.S. Appl. No. 15/808,974, Nonfinal Office Action, dated Feb. 8, 2018.
U.S. Appl. No. 15/808,974, Notice of Allowance, dated Jul. 5, 2018.
U.S. Appl. No. 15/859,854, Notice of Allowance, dated Mar. 28, 2018.
U.S. Appl. No. 15/869,736, Fields et al., “Vehicle Operator Emotion Management System and Method”, filed Jan. 12, 2018.
U.S. Appl. No. 15/869,777, Fields et al., “Autonomous Vehicle Software Version Assessment”, filed Jan. 12, 2018.
U.S. Appl. No. 15/869,777, Nonfinal Office Action, dated Nov. 2, 2018.
U.S. Appl. No. 15/895,533, “Autonomous Vehicle Automatic Parking”, filed Feb. 13, 2018.
U.S. Appl. No. 15/895,533, Nonfinal Office Action, dated Oct. 19, 2018.
U.S. Appl. No. 15/902,354, Nonfinal Office Action, dated Jun. 4, 2018.
U.S. Appl. No. 15/907,380 filed Feb. 28, 2018, Konrardy et al., “Accident Fault Determination for Autonomous Vehicles.”.
U.S. Appl. No. 15/907,380, “Accident Fault Determination for Autonomous Vehicles”, filed Feb. 28, 2018.
U.S. Appl. No. 15/907,380, Nonfinal Office Action, dated Sep. 27, 2018.
U.S. Appl. No. 15/908,060, Konrardy et al., “Autonomous Vehicle Application”, filed Feb. 28, 2018.
U.S. Appl. No. 15/908,060, Nonfinal Office Action, dated Apr. 6, 2018.
U.S. Appl. No. 15/908,060, Notice of Allowance, dated Jul. 17, 2018.
U.S. Appl. No. 15/935,556, “Autonomous Vehicle Accident and Emergency Response” filed Mar. 26, 2018.
U.S. Appl. No. 15/958,134, filed Apr. 20, 2018, Konrardy et al., “Autonomous Vehicle Insurance Pricing”.
U.S. Appl. No. 15/964,971, Nonfinal Office Action, dated Jun. 5, 2018.
U.S. Appl. No. 15/976,971 filed May 11, 2018, Konrardy et al., “Accident Response Using Autonomous Vehicle Monitoring.”.
U.S. Appl. No. 15/976,990 filed May 11, 2018, Konrardy et al., “Autonomous Vehicle Refueling.”.
U.S. Appl. No. 15/995,183, filed Jun. 1, 2018, Fields et al., “Vehicular Traffic Alerts for Avoidance of Abnormal Traffic Conditions”.
U.S. Appl. No. 15/995,183, Nonfinal Office Action, dated Sep. 5, 2018.
U.S. Appl. No. 15/995,191, filed Jun. 1, 2018, Fields et al., “Shared Vehicle Usage, Monitoring and Feedback”.
U.S. Appl. No. 15/995,191, Nonfinal Office Action, dated Jul. 23, 2018.
U.S. Appl. No. 13/844,090, Fields et al., filed Mar. 15, 2013.
U.S. Appl. No. 13/844,090, Nonfinal Office Action, dated Dec. 4, 2013.
U.S. Appl. No. 13/844,090, Notice of Allowance, dated Jul. 8, 2014.
U.S. Appl. No. 13/897,650, “Risk Evaluation Based on Vehicle Operator Behavior”, filed Sep. 18, 2014.
U.S. Appl. No. 14/201,491, Fields et al., filed Mar. 7, 2014.
U.S. Appl. No. 14/201,491, Final Office Action, dated Jan. 16, 2015.
U.S. Appl. No. 14/201,491, Final Office Action, dated Sep. 11, 2015.
U.S. Appl. No. 14/201,491, Nonfinal Office Action, dated Apr. 29, 2015.
U.S. Appl. No. 14/201,491, Nonfinal Office Action, dated Sep. 26, 2014.
U.S. Appl. No. 14/255,934, Fields et al., filed Apr. 17, 2014.
U.S. Appl. No. 14/255,934, Final Office Action, dated Sep. 23, 2014.
U.S. Appl. No. 14/255,934, Nonfinal Office Action, dated Jan. 15, 2015.
U.S. Appl. No. 14/255,934, Nonfinal Office Action, dated Jun. 18, 2014.
U.S. Appl. No. 14/255,934, Notice of Allowance, dated Apr. 28, 2015.
U.S. Appl. No. 14/269,490, Advisory Action, dated Apr. 1, 2015.
U.S. Appl. No. 14/469,490, Riley et al., filed May 5, 2014.
U.S. Appl. No. 14/511,712, Fields et al., filed Oct. 10, 2014.
U.S. Appl. No. 14/511,712, Final Office Action, dated Jun. 25, 2015.
U.S. Appl. No. 14/511,712, Notice of Allowance, dated Oct. 22, 2015.
U.S. Appl. No. 14/511,750, Fields et al., filed Oct. 10, 2014.
U.S. Appl. No. 14/511,750, Final Office Action, dated Jun. 30, 2015.
U.S. Appl. No. 14/511,750, Nonfinal Office Action, dated Dec. 19, 2014.
U.S. Appl. No. 14/511,750, Nonfinal Office Action, dated Nov. 3, 2015.
U.S. Appl. No. 14/511,750, Notice of Allowance, dated Mar. 4, 2016.
U.S. Appl. No. 14/592,265, “Risk Evaluation Based on Vehicle Operator Behavior”, filed Jan. 8, 2015.
U.S. Appl. No. 14/592,265, Final Office Action, dated May 18, 2015.
U.S. Appl. No. 14/592,265, Final Office Action, dated Oct. 5, 2017.
U.S. Appl. No. 14/592,265, Nonfinal Office Action, dated Sep. 30, 2015.
U.S. Appl. No. 14/592,265, Nonfinal Office Action, dated Feb. 6, 2015.
U.S. Appl. No. 14/592,265, Nonfinal Office Action, dated Jun. 6, 2017.
U.S. Appl. No. 14/592,277, “Risk Evaluation Based on Vehicle Operator Behavior”, filed Jan. 8, 2015.
U.S. Appl. No. 14/592,277, Final Office Action, dated Aug. 25, 2017.
U.S. Appl. No. 14/592,277, Final Office Action, dated Dec. 22, 2015.
U.S. Appl. No. 14/592,277, Final Office Action, dated May 15, 2015.
U.S. Appl. No. 14/592,277, Nonfinal Office Action, dated Apr. 13, 2017.
U.S. Appl. No. 14/592,277, Nonfinal Office Action, dated Feb. 6, 2015.
U.S. Appl. No. 14/592,277, Nonfinal Office Action, dated Sep. 1, 2015.
U.S. Appl. No. 14/729,290, Fields et al., filed Jun. 3, 2015.
U.S. Appl. No. 14/729,290, Notice of Allowance, dated Aug. 5, 2015.
U.S. Appl. No. 14/857,242, Fields et al., filed Sep. 17, 2015.
U.S. Appl. No. 14/857,242, Final Office Action, dated Apr. 20, 2016.
U.S. Appl. No. 14/857,242, Nonfinal Office Action, dated Jan. 22, 2016.
U.S. Appl. No. 14/857,242, Notice of Allowance, dated Jul. 1, 2016.
U.S. Appl. No. 15/005,300, Riley et al., filed Jan. 25, 2016.
U.S. Appl. No. 15/005,498, Fields et al., filed Jan. 25, 2016.
U.S. Appl. No. 15/005,498, Nonfinal Office Action, dated Mar. 31, 2016.
U.S. Appl. No. 15/005,498, Notice of Allowance, dated Aug. 2, 2016.
U.S. Appl. No. 15/076,142, Fields et al., filed Mar. 21, 2016.
U.S. Appl. No. 15/076,142, Nonfinal Office Action dated Aug. 9, 2016.
U.S. Appl. No. 15/076,142, Notice of Allowance, dated Sep. 19, 2016.
U.S. Appl. No. 15/229,926, Fields et al., filed Aug. 5, 2016.
U.S. Appl. No. 15/229,926, Notice of Allowance, dated Nov. 1, 2017.
U.S. Appl. No. 15/255,538, Fields et al., filed Sep. 2, 2016.
U.S. Appl. No. 15/285,001, Fields et al., filed Oct. 4, 2016.
U.S. Appl. No. 15/511,750, Final Office Action, dated Jun. 30, 2015.
U.S. Appl. No. 15/511,750, Nonfinal Office Action, dated Nov. 3, 2015.
U.S. Appl. No. 15/511,750, Notice of Allowance, dated Mar. 4, 2016.
U.S. Appl. No. 15/600,125, Fields et al., filed May 19, 2017.
U.S. Appl. No. 15/869,516, Nonfinal Office Action, dated Sep. 6, 2018.
UTC Spotlight: Superstorm Sandy LiDAR Damage Assessment to Change Disaster Recovery, Feb. 2013.
Vasudevan et al., Safe semi-autonomous control with enhanced driver modeling, 2012 American Control Conference, Fairmont Queen Elizabeth, Montreal, Canada (Jun. 27-29, 2012).
Villasenor, Products liability and driverless cars: Issues and guiding principles for legislation, Brookings Center for Technology Innovation, 25 pages (Apr. 2014).
Wang et al., Shader-based sensor simulation for autonomous car testing, 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, Alaska, pp. 224-229 (Sep. 2012).
Wardzinski, Dynamic risk assessment in autonomous vehicles motion planning, Proceedings of the 2008 1st International Conference on Information Technology, IT 2008, Gdansk, Poland (May 19-21, 2008).
Woodbeck et al., “Visual cortex on the GPU: Biologically inspired classifier and feature descriptor for rapid recognition”, Jun. 28, 2008, IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops 2008, p. 1-8.
Provisional Applications (13)
Number Date Country
62145022 Apr 2015 US
62145234 Apr 2015 US
62145027 Apr 2015 US
62145228 Apr 2015 US
62145029 Apr 2015 US
62145232 Apr 2015 US
62145032 Apr 2015 US
62145033 Apr 2015 US
62145024 Apr 2015 US
62145028 Apr 2015 US
62145145 Apr 2015 US
62040735 Aug 2014 US
62027021 Jul 2014 US