Methods Of Regulating Metabolism And Mitochondrial Function

Abstract
The invention relates to novel methods of regulating metabolism and mitochondrial biogenesis. Some aspects of the invention relate to methods of treating or preventing diseases in a patient associated with reduced mitochondrial function, to methods of identifying agents to treat such diseases, and to methods of diagnosing such diseases. Other aspects of the invention relate to a set of coordinately-regulated genes which regulate oxidative phosphorylation.
Description
BACKGROUND OF THE INVENTION

Type 2 diabetes (DM2) affects an estimated 110 million people worldwide and is a major contributor to atherosclerotic vascular disease, blindness, amputation, and kidney failure. Defects in insulin secretion are observed early in patients with MODY, a monogenic form of type 2 diabetes; insulin resistance at tissues such as skeletal muscle is a cardinal feature of patients with fully developed DM2. Many molecular pathways have been implicated in the disease process: beta-cell development, insulin receptor signaling, carbohydrate production and utilization, mitochondrial metabolism, fatty acid oxidation, cytokine signaling, adipogenesis, adrenergic signaling, and others. It remains unclear, however, which of these or other pathways are disturbed in, and might be responsible for, DM2 in its common form.


Therefore, a need remains to identify the molecular pathways implicated in the disease process and to develop new tools and assays to identify therapeutics for the treatment of diabetes.


SUMMARY OF THE INVENTION

One aspect of the invention provides a method of modulating a biological response in a cell, the method comprising contacting the cell with at least one agent that modulates the expression or activity of Errα or Gabp, wherein the biological response is (a) expression of at least one OXPHOS gene; (b) mitochondrial biogenesis; (c) expression of Nuclear Respiratory Factor 1 (NRF-1); (d) β-oxidation of fatty acids; (e) total mitochondrial respiration; (f) uncoupled respiration; (g) mitochondrial DNA replication; (h) expression of mitochondrial enzymes; or (i) skeletal muscle fiber-type switching.


Another aspect of the invention provides a method of determining if an agent is a potential agent for the treatment of a disorder that is characterized by glucose intolerance, insulin resistance or reduced mitochondrial function, the method comprising determining if the agent increases: (i) the expression or activity of Errα or Gabp in a cell; or (ii) the formation of a complex between a PGC-1 polypeptide and (1) an Errα polypeptide; or (2) a Gabp polypeptide; wherein an agent that increases (i) or (ii) is a potential target for the treatment of the disorder.


The invention also provides a method of identifying an agent that modulates a biological response, the method comprising (a) contacting, in the presence of the agent, a PGC-1 polypeptide and an (i) Errα polypeptide, or (ii) a Gabp polypeptide, under conditions which allow the formation of a complex between the PGC-1 polypeptide and (i) the Errα polypeptide, or (ii) the Gabp polypeptide; and (b) detecting the presence of the complex; wherein an agent that modulates the biological response is identified if the agent increases or decreases the formation of the complex, and wherein the biological response is (a) expression of at least one OXPHOS gene; (b) mitochondrial biogenesis; (c) expression of Nuclear Respiratory Factor 1 (NRF-1); (d) β-oxidation of fatty acids; (e) total mitochondrial respiration; (f) uncoupled respiration; (g) mitochondrial DNA replication; (h) expression of mitochondrial enzymes; or (i) skeletal muscle fiber-type switching.


Additionally, the invention provides a method of treating or preventing a disorder characterized by reduced mitochondrial function, glucose intolerance, or insulin intolerance in a subject, the method comprising administering to the subject a therapeutically effective amount of an agent which (i) increases the expression or activity of Errα or Gabp or both; or (ii) increases the formation of a complex between a PGC-1 polypeptide and (a) an Errα polypeptide; (b) a Gabp polypeptide; or both; or (iii) binds to an (a) Errα binding site, or to a (b) Gabpa binding site, and which increases transcription of at least one gene in the subject, said gene having an Errα binding site, a Gabpa binding site, or both.


Yet another aspect of the invention provides a method of treating or preventing a disorder characterized by reduced mitochondrial function, glucose intolerance, or insulin intolerance in a subject, the method comprising administering to the subject a therapeutically effective amount of an agent which increases the expression or activity of a gene, wherein the gene has an Errα binding site or a Gapba binding site.


The invention also provides a method of reducing the metabolic rate of a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of an agent which decreases the expression or activity of at least one of the following: (i) Errα; (ii) Gabpa; (iii) a gene having an Errα binding site, a Gabpa binding site, or both; or (iv) a transcriptional activator which binds to an Errα binding site or to a Gabpa binding site; thereby reducing the metabolic rate of the patient.


The invention further provides a method of identifying a susceptibility locus for a disorder that is characterized by reduced mitochondrial function, glucose intolerance, or insulin intolerance in a subject, the method comprising (i) identifying at least one polymorphisms in a gene, or linked to a gene, wherein the gene (a) has an Errα binding site, a Gabpa binding site, or both; or (b) is Errα, Gabpa, or Gabpb; (ii) determining if at least one polymorphism is associated with the incidence of the disorder, wherein if a polymorphism is associated with the incidence of the disorder then the gene having the polymorphism, or the gene to which the polymorphism is linked, is a susceptibility locus.


A related aspect of the invention provides a method of determining if a subject is at risk of developing a disorder which is characterized by reduced mitochondrial function, the method comprising determining if a gene from the subject contains a mutation which reduces the function of the gene, wherein the gene has an Errα binding site, a Gapba binding site, or both, wherein if a gene from the subject contains a mutation then the subject is at risk of developing the disorder.


Yet another aspect of the invention provides a method of identifying a transcriptional regulator having differential activity between an experimental cell and a control cell, the method comprising (i) determining the level of gene expression of at least two genes in the experimental cell and in the control cell; (ii) ranking genes according to a difference metric of their expression level in the experimental cell compared to the control cell; (iii) identifying a subset of genes, wherein each gene in the subset contains the same DNA sequence motif; (iv) testing using a nonparametric statistic if the subset of genes are enriched at either the top or the bottom of the ranking; (v) optionally reiterating steps (ii)-(iii) for additional motifs; (vi) for a subset of genes that is enriched, identifying a transcriptional regulator which binds to a DNA sequence motif that is contained in the subset of genes; thereby identifying a transcriptional regulator having differential activity between two cells.


An additional aspect of the invention provides a method of treating impaired glucose tolerance in an individual in need thereof, the method comprising administering to the individual a therapeutically effective amount of an agent which increases the expression level of at least two OXPHOS-CR genes, thereby treating impaired glucose tolerance in the individual. A related aspect provides a method of treating obesity in an individual, comprising administering to the individual a therapeutically effective amount of an agent which increases the expression level of at least two OSPHOS-CR genes, thereby treating obesity in the individual.


One aspect of the invention provides a method of detecting statistically-significant differences in the expression level of at least one biomarker belonging to a biomarker set, between the members of a first and of a second experimental group, comprising: (a) obtaining a biomarker sample from members of the first and the second experimental groups; (b) determining, for each biomarker sample, the expression levels of at least one biomarker belonging to the biomarker set and of at least one biomarker not belonging to the set; (c) generating a ranks order of each biomarker according to a difference metric of its expression level in the first experimental group compared to the second experimental group; (d) calculating an experimental enrichment score for the biomarker set by applying a non parametric statistic; and (e) comparing the experimental enrichment score with a distribution of randomized enrichment scores to calculate the fraction of randomized enrichment scores greater than the experimental enrichment score, wherein a low fraction indicates a statistically-significant difference in the expression level of the biomarker set, between the members of a first and of a second experimental group. In one embodiment, the distribution of randomized enrichment scores is generated by (i) randomly permutating the assignment of each biomarker sample to the first or to the second experimental group; (ii) generating a rank order of each biomarker according to the absolute value of a difference metric of its expression level in the first experimental group compared to the second experimental group; (iii) calculating an experimental enrichment score for the biomarker set by applying a non parametric statistic to the rank order; and (iv) repeating steps (i), (ii) and (iii) a number of times sufficient to generate the distribution of randomized enrichment scores.


In addition, the invention provides a method of identifying an agent that regulates expression of OXPHOS-CR genes, the method comprising (a) contacting (i) an agent to be assessed for its ability to regulate expression of OXPHOS-CR genes with (ii) a test cell; and (b) determining whether the expression of at least two OXPHOS-CR gene products show a coordinate change in the test cell compared to an appropriate control, wherein a coordinate change in the expression of the OXPHOS-CR gene products indicates that the agent regulates the expression levels of OXPHOS-CR genes. In one embodiment, the OXPHOS-CR genes are selected from the group consisting of NDUFB3, SDHA, NDUFA8, COX7A1, UQCRC1, NDUFC1, NDUFS2, ATP5O, NDUFS3, SDHB, NDUFS5, NDUFB6, COX5B, CYC1, NDUFA7, UQCRB, COX7B, ATP5L, COX7C, NDUFA5, GRIM19, ATP5J, COX6A2 NDUFB5, CYCS, NDUFA2 and HSPC051.




BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a schematic overview of an embodiment of gene set enrichment analysis (GSEA). The goal of GSEA is to determine whether any a priori defined gene sets (step 1) are enriched at the top of list of genes ordered on the basis of expression difference between two classes (e.g., high in NGT vs. DM2). Genes, R1, . . . RN, are rank ordered on the basis of expression difference (step 2) using an appropriate difference measure (e.g. signal to noise ratio (SNR), see Methods). To determine whether the G members of a gene set S are enriched at the top of this list (step 3), a Kolmogorov-Smirnov (K-S) running sum statistic is computed: beginning with the top ranking gene, the running sum increases when a gene annotated to be a member of gene set S is encountered, and decreases otherwise. The enrichment score (ES) for a single gene set is defined as the greatest positive deviation of the running sum across all N genes. When many members of S appear at the top of the list, ES is high. The enrichment score is computed for every gene set using actual data, and the maximum ES (MES) achieved is recorded (step 4). To determine whether one or more of the gene sets are enriched in one diagnostic class relative to the other (step 5), the entire procedure (steps 2-4) is repeated 1000 times, using permuted diagnostic assignments, and building a histogram of the maximum ES achieved by any pathway in a given permutation. The MES achieved using the actual data is then compared to this histogram (step 6, red arrow), providing us with a global P-value for assessing whether any gene set is associated with the diagnostic categorization.



FIG. 2 shows that OXPHOS gene expression is reduced in diabetic muscle. (a) The mean expression of all genes (gray) and for OXPHOS genes (red) is plotted for DM2 vs. NGT individuals. (b) Histogram of mean gene expression level differences between NGT and DM2, using the data from (b), for all genes (black) and for OXPHOS genes (red).



FIG. 3 shows that OXPHOS-CR represents a co-regulated subset of OXPHOS genes responsive to the transcriptional co-activator PGC-1α. (a) Normalized expression profile of 52 mouse homologs of the human OXPHOS genes across the mouse expression atleas (Su, A. I. et al. Proc Natl Acad Sci USA 99, 4465-70. (2002)). These 52 genes were hierarchically clustered (Eisen et al. Proc Natl Acad Sci USA 95, 14863-8. (1998)). The purple tree corresponds to a sub-cluster with a correlation coefficient of 0.65. Applicants call the human homologs of these mouse genes the OXPHOS-CR set. The human homologs of this tightly coregulated cluster, marked with an * and delimited with a yellow box, are: ATP5J, ATP5L, ATP5O, COX5B, COX6A2, COX7A1, COX7B, COX7C, CYC1, CYCS, GRIM19, HSPC051, NDUFA2, NDUFA5, NDUFA7, NDUFA8, NDUFB3, NDUFB5, NDUFB6, NDUFC1, NDUFS2, NDUFS3, NDUFS5, SDHA, SDHB, UQCRB, UQCRC1. (b) Normalized expression profile of OXPHOS mouse homologs in a mouse skeletal muscle cell line during a three-day time course in response to PGC-1α. The expression profile includes infection with control (GFP) or with PGC-1α, at day 0 (prior to infection) as well as on days 1, 2, and 3 following adenoviral infection, all performed in duplicate.



FIG. 4 shows that OXPHOS-CR accounts for the bulk of OXPHOS signal seen in NGT vs. DM2. Histogram of signal:noise ratio for (a) All 10,983 human genes meeting the clipping and filtering criteria in the GSEA enrichment screen between NGT and DM2, (b) 106 OXPHOS genes meeting these clipping and filtering criteria, (c) 47 OXPHOS genes for which reliable mouse homologs are available in the mouse microarray, (d) OXPHOS-CR genes, and (e) OXPHOS genes but not in the OXPHOS-CR set.



FIG. 5 shows that OXPHOS-CR predicts total body aerobic capacity (VO2max). (a) Linear regression was used to model VO2max with diabetes status, the mean centroid of OXPHOS-CR gene expression, ubiquinol cytochrome c reductase binding protein (UQCRB) expression, or in combination as explanatory predictor) variables. The explanatory power and significance of the model are shown in the table. (b) Linear regression of VO2max against the mean centroid of OXPHOS-CR gene expression.



FIG. 6 shows previously known and newly identified mitochondrial proteins (mito-P). (A) Proteomic survey of mitochondria from mouse brain, heart, kidney, and liver resulted in the identification of 422 proteins, 262 of which were previously annotated as being mitochondrial. The distributions for (B) molecular weight, (C) isoelectric point, (D) mitochondrial compartments are plotted for proteins detected (pink) or not detected (blue) by our proteomic survey. Isolectric point, molecular weight, and subcellular distribution data came from the MITOchondria Project (MITOP, (Scharfe et al., 2000)). (E) Cumulative distribution of mRNA abundance for those genes whose protein product was detected (pink) or not detected (blue) by proteomics. The median expression levels for both groups are indicated. The cumulative distribution function for the proteins detected in proteomics is significantly greater than the cumulative distribution function for proteins not detected (Kolmogorov-Smirnov statistic, D=0.3618, P=9.4×10−18).



FIG. 7 shows modules of tightly co-regulated mito-P genes. Pairwise correlation matrix for the 388 mitochondrial genes present in the GNF mouse tissue compendium. Red represents strong positive correlation, blue represents strong negative correlation. Dominant gene modules are labeled 1-7 with functional annotations.



FIG. 8 shows the mRNA expression profile for 388 mitochondrial genes (rows) across 47 different mouse tissues (columns) in the GNF mouse expression atlas (Su et al., 2002). These genes and tissues were hierarchically clustered and visualized using DCHIP (Schadt et al., 2001). Key tissues showing high expression levels are labeled at the top of the panel. Evidence for being in mito-P is indicated by the white (previously known but not found in proteomics), gray (previously known and found in proteomics), and black (not previously known but found in proteomics) bars placed to the right of the correlogram.



FIG. 9 shows mitochondria neighborhood analysis. The mitochondria neighborhood index (N100) is defined as the number of mito-P genes that occur within the nearest 100 expression neighbors of a given gene. The distribution of N100 is plotted for all genes (white), mito-P genes (gray), and for the ancestral mito-P genes (black).



FIG. 10 shows a schematic overview of motifADE and application to the PGC-1a timecourse. (A) motifADE identifies motifs associated with differential expression. It begins with a list of genes ordered on the basis of differential expression across two conditions. Each gene is then annotated for the presence of a given motif in the promoter region. A nonparametric statistic is used to assess whether genes with the motif tend to rank high on this list (see Methods). In this example, genes with Motif 1 are randomly distributed on the list, while genes with Motif 2 tend to rank high, suggesting an association between Motif 2 and the differential expression. (B) C2C12 cells were infected with an adenovirus expressing either GFP (control) or with PGC-1α and profiled over a three day period. Experiments were performed in duplicate and relative gene expression measures are shown. Genes are ranked according to the difference in expression between PGC-1a and GFP on day 3. Mouse genes having a perfect Errα motif (5′-TGACCTTG-3′), a perfect Gabpa/b motif (5′-CTTCCG-3′), or both motifs are labeled with a black bar on the right side of the correlogram.



FIG. 11 shows a proposed model of mechanism of action of PGC-1a. PGC-1a is a highly regulated gene that responds to external stimuli, e.g., reduced in diabetes and increased following exercise. When PGC-1a levels rise, the expression of Errα and Gabpa are immediately induced via a double positive feedback loop. This results in the strong induction of Errα as well as Gabpa. These levels rise and over the course of 2-3 days, these factors couple with PGC-1a to induce the expression of NRF-1 as well as hundreds of downstream targets, such as OXPHOS and other mitochondrial genes.



FIG. 12 shows cooperativity between the Errα and Gabpa binding sites. All 5034 genes from motifADE analysis are rank ordered on the basis of expression difference (signal to noise ratio) on day 3 between cells treated with PGC-1a vs. GFP. The cumulative fraction of genes with a specified motif (Errα, blue; Gabpa, pink; both, black) is plotted as a function of fractional rank ordering of all 5034 genes.




DETAILED DESCRIPTION OF THE INVENTION

I. Overview


The invention broadly relates to novel therapeutics for regulating metabolism, mitochondrial function, and for treating disorders, including obesity and type 2 diabetes, and to related methods. The invention stems, in part, from the discovery by applicants of a new group of coordinately-regulated genes, termed OXPHOS, which are involved in oxidative phosphorylation. OXPHOS-CR genes have the following key characteristics: (a) they are members of oxidative phosphorylation; (b) they are transcriptionally co-regulated and highly expressed at the major sites of insulin mediated glucose uptake (brown fat, heart, skeletal muscle); (c) they are targets of the transcriptional co-activator PPARGC1 (PGC-1α); (d) they show a subtle but extremely consistent expression decrease in diabetic and pre-diabetic muscle; and (e) their expression predicts total body aerobic capacity in humans.


Applicant have discovered that OXPHOS genes are downregulated in subjects afflicted with type 2 diabetes or with glucose intolerance and that Peroxisome Proliferator-Activated Receptor γ-Coactivator-1α (PGC-1α) transcriptionally regulates the OXPHOS genes. Applicants have also discovered that PGC-1α acts through Errα and Gabp to regulate OXPHOS gene expression. Such discoveries provide the basis for novel assays and methods of treatment relating to the genes and disorders.


The invention provides, in part, methods of modulating mitochondrial function, expression of the OXPHOS genes, mitochondrial biogenesis, expression of Nuclear Respiratory Factor 1 (NRF-1), β-oxidation of fatty acids, total mitochondrial respiration, uncoupled respiration, mitochondrial DNA replication, or expression of mitochondrial enzymes, by modulating the expression or activity of Errα, Gabpa, Gabpb or of genes containing Errα binding sites, Gabpa binding sites, or both. Modulation of these biological activities may be carried out in a cell, such as contacting a cell with an agent, or in a subject in need thereof. The invention further provides agents for treating these disorders and for modulating Errα, Gabp and PGC-1 function.


A related aspect of the invention provides a method of identifying agents useful for treating disorders related to altered glucose homeostasis, insulin resistance or reduced mitochondrial function. Furthermore, the invention provides methods of diagnosing such disorders or of identifying subjects at risk of developing the disorders.


The invention also provides cell-based methods of identifying agents which modulate the expression of OXPHOS genes. Since applicants have discovered that PGC-1α, Errα and Gabp regulate the expression of level of OXPHOS genes, such methods are useful in identifying agents which regulate the expression or activity of PGC-1α, Errα and Gabp. Furthermore, expression of OXPHOS genes may be used to predict total body aerobic capacity in humans and other mammals.


Another aspect of the invention provides a method of detecting statistically-significant differences in the expression level of at least one biomarker belonging to a biomarker set, between the members of a first and of a second experimental group. Such a method may be applied, for example, to identify biomarker sets which are differentially expressed in an experimental group afflicted with a disorder, even when the changes in expression between the two groups are very subtle. Biomarker sets identified using the methods described herein may be used in the development of diagnostic tools and treatments for the disorder for which they are associated. A related aspect of the invention provides methods of identifying transcriptional regulators which display differential activity between two sets of conditions. Such methods may be applied to the bio markers identified using the related methods provided herein, and may be useful in identifying disease genes and targets for novel therapeutics to treat or prevent disease.


II. Definitions


For convenience, certain terms employed in the specification, examples, and appended claims, are collected here. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.


The term “expression vector” and equivalent terms are used herein to mean a vector which is capable of inducing the expression of DNA that has been cloned into it after transformation into a host cell. The cloned DNA is usually placed under the control of (i.e., operably linked to) certain regulatory sequences such a promoters or enhancers. Promoters sequences maybe constitutive, inducible or repressible.


The term “operably linked” is used herein to mean molecular elements that are positioned in such a manner that enables them to carry out their normal functions. For example, a gene is operably linked to a promoter when its transcription is under the control, of the promoter and, if the gene encodes a protein, such transcription produces the protein normally encoded by the gene. For example, a binding site for a transcriptional regulator is said to be operably linked to a promoter when transcription from the promoter is regulated by protein(s) binding to the binding site. Likewise, two protein domains are said to be operably linked in a protein when both domains are able to perform their normal functions.


The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.


The term “including” is used herein to mean, and is used interchangeably with, the phrase “including but not limited to”.


The term “or” is used herein to mean, and is used interchangeably with, the term “and/or,” unless context clearly indicates otherwise.


The term “such as” is used herein to mean, and is used interchangeably, with the phrase “such as but not limited to”.


A “patient” or “subject” to be treated by the method of the invention can mean either a human or non-human animal, preferably a mammal.


The term “encoding” comprises an RNA product resulting from transcription of a DNA molecule, a protein resulting from the translation of an RNA molecule, or a protein resulting from the transcription of a DNA molecule and the subsequent translation of the RNA product.


The term “promoter” is used herein to mean a DNA sequence that initiates the transcription of a gene. Promoters are typically found 5′ to the gene and located proximal to the start codon. If a promoter is of the inducible type, then the rate of transcription increases in response to an inducer. Promoters may be operably linked to DNA binding elements that serve as binding sites for transcriptional regulators. The term “mammalian promoter” is used herein to mean promoters that are active in mammalian cells. Similarly, “prokaryotic promoter” refers to promoters active in prokaryotic cells.


The term “expression” is used herein to mean the process by which a polypeptide is produced from DNA. The process involves the transcription of the gene into mRNA and the translation of this mRNA into a polypeptide. Depending on the context in which used, “expression” may refer to the production of RNA, protein or both.


The term “recombinant” is used herein to mean any nucleic acid comprising sequences which are not adjacent in nature. A recombinant nucleic acid may be generated in vitro, for example by using the methods of molecular biology, or in vivo, for example by insertion of a nucleic acid at a novel chromosomal location by homologous or non-homologous recombination.


The term “transcriptional regulator” refers to a biochemical element that acts to prevent or inhibit the transcription of a promoter-driven DNA sequence under certain environmental conditions (e.g., a repressor or nuclear inhibitory protein), or to permit or stimulate the transcription of the promoter-driven DNA sequence under certain environmental conditions (e.g., an inducer or an enhancer).


The term “microarray” refers to an array of distinct polynucleotides or oligonucleotides synthesized on a substrate, such as paper, nylon or other type of membrane, filter, chip, glass slide, or any other suitable solid support.


The terms “disorders” and “diseases” are used inclusively and refer to any deviation from the normal structure or function of any part, organ or system of the body (or any combination thereof). A specific disease is manifested by characteristic symptoms and signs, including biological, chemical and physical changes, and is often associated with a variety of other factors including, but not limited to, demographic, environmental, employment, genetic and medically historical factors. Certain characteristic signs, symptoms, and related factors can be quantitated through a variety of methods to yield important diagnostic information.


The terms “level of expression of a gene in a cell” or “gene expression level” refer to the level of mRNA, as well as pre-mRNA nascent transcript(s), transcript processing intermediates, mature mRNA(s) and degradation products, encoded by the gene in the cell.


The term “modulation” refers to upregulation (i.e., activation or stimulation), downregulation (i.e., inhibition or suppression) of a response, or the two in combination or apart. A “modulator” is a compound or molecule that modulates, and may be, e.g., an agonist, antagonist, activator, stimulator, suppressor, or inhibitor.


The term “prophylactic” or “therapeutic” treatment refers to administration to the subject of one or more of the subject compositions. If it is administered prior to clinical manifestation of the unwanted condition (e.g., disease or other unwanted state of the host animal) then the treatment is prophylactic, i.e., it protects the host against developing the unwanted condition, whereas if administered after manifestation of the unwanted condition, the treatment is therapeutic (i.e., it is intended to diminish, ameliorate or maintain the existing unwanted condition or side effects therefrom).


The term “therapeutic effect” refers to a local or systemic effect in animals, particularly mammals, and more particularly humans caused by a pharmacologically active substance. The term thus means any substance intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease or in the enhancement of desirable physical or mental development and conditions in an animal or human. The phrase “therapeutically-effective amount” means that amount of such a substance that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment. In certain embodiments, a therapeutically-effective amount of a compound will depend on its therapeutic index, solubility, and the like. For example, certain compounds discovered by the methods of the present invention may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment.


The term “improving mitochondrial function” may refer to (a) substantially (e.g., in a statistically significant manner, and preferably in a manner that promotes a statistically significant improvement of a clinical parameter such as prognosis, clinical score or outcome) restoring to a normal level at least one indicator of glucose responsiveness in cells having reduced glucose responsiveness and reduced mitochondrial mass and/or impaired mitochondrial function; or (b) substantially (e.g., in a statistically significant manner, and preferably in a manner that promotes a statistically significant improvement of a clinical parameter such as prognosis, clinical score or outcome) restoring to a normal level, or increasing to a level above and beyond normal levels, at least one indicator of mitochondrial function in cells having impaired mitochondrial function or in cells having normal mitochondrial function, respectively. Improved or altered mitochondrial function may result from changes in extra-mitochondrial structures or events, as well as from mitochondrial structures or events, in direct interactions between mitochondrial and extra-mitochondrial genes and/or their gene products, or in structural or functional changes that occur as the result of interactions between intermediates that may be formed as the result of such interactions, including metabolites, catabolites, substrates, precursors, cofactors and the like.


The term “effective amount” refers to the amount of a therapeutic reagent that when administered to a subject by an appropriate dose and regime produces the desired result.


The term “subject in need of treatment for a disorder” is a subject diagnosed with that disorder or suspected of having that disorder.


The term “metabolic disorder” refers to a disorder, disease or condition which is caused or characterized by an abnormal metabolism (i.e., the chemical changes in living cells by which energy is provided for vital processes and activities) in a subject. Metabolic disorders include diseases, disorders, or conditions associated with aberrant thermogenesis or aberrant adipose cell (e.g., brown or white adipose cell) content or function. Metabolic disorders can detrimentally affect cellular functions such as cellular proliferation, growth, differentiation, or migration, cellular regulation of homeostasis, inter- or intra-cellular communication; tissue function, such as liver function, muscle function, or adipocyte function; systemic responses in an organism, such as hormonal responses (e.g., insulin response). Examples of metabolic disorders include obesity, diabetes, hyperphagia, hypophagia, endocrine abnormalities, triglyceride storage disease, Bardet-Biedl syndrome, Lawrence-Moon syndrome, Prader-Labhart-Willi syndrome, Kearns-Sayre syndrome, anorexia, medium chain acyl-CoA dehydrogenase deficiency, and cachexia. Obesity is defined as a body mass index (BMI) of 30 kg/2m or more (National Institute of Health, Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults (1998)). However, the present invention is also intended to include a disease, disorder, or condition that is characterized by a body mass index (BMI) of 25 kg/2m or more, 26 kg/2m or more, 27 kg/2m or more, 28 kg/2m or more, 29 kg/2m or more, 29.5 kg/2m or more, or 29.9 kg/2m or more, all of which are typically referred to as overweight (National Institute of Health, Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults (1998)).


A “susceptibility locus” for a particular disease is a sequence or gene locus implicated in the initiation or progression of the disease. The susceptibility locus can be, for example, a gene or a microsatellite repeat, as identified by a microsatellite marker, or can be identified by a defined single nucleotide polymorphism. Generally, susceptibility genes implicated in specific diseases and their loci can be found in scientific publications, but may also be determined experimentally.


The term “Gabp polypeptide” comprises Gabpa and Gabpb polypeptides. In preferred embodiments of the methods described herein, the Gabpa and Gabpb polypeptides are mammalian polypeptides, preferably human. The amino acid sequences of human Gabpa and Gabpb are deposited as Genbank Accession Nos. NP002031 and NP852092, respectively. Gabpa is also known as E4TF1-53 in the art, while Gabpb is also known as E4TF1-60. Additional assays to those described herein for assaying the transcriptional activity of Gabpa and Gabpb, and additional isoforms of these subunits, may be found in the art (Sawa et al., Nucleic Acids Res. 24(24):4954-61 (1996); Watanabe, et al. Mol. Cell. Biol. 13 (3), 1385-1391 (1993), Sawada, J. et al J. Biol. Chem. 274 (50), 35475-35482 (1999); Suzuki, F. et al J. Biol. Chem. 273 (45), 29302-29308 (1998); Sawa, C., et al. Nucleic Acids Res. 24 (24), 4954-4961 (1996); Gugneja, S. et al Mol. Cell. Biol. 15 (1), 102-111 (1995); de la Brousse, F. C. et al. Genes Dev. 8 (15), 1853-1865 (1994); Virbasius, J. V. et al. Genes Dev. 7 (3), 380-392 (1993)), the teachings of which are incorporated by referenced herein.


The term “PGC-1 polypeptide” comprises PGC-1a and PGC-1b polypeptides. In preferred embodiments of the methods described herein, the PGC-1a and PGC-1b polypeptides are mammalian polypeptides, preferably human. The amino acid sequences of human PGC-1a and PGC-1b are deposited as Genbank Accession Nos. NP573570 and AF453324, respectively. Additional assays to those described herein for assaying the transcriptional activity of Gabpa and Gabpb, and additional isoforms of these subunits, may be found in the art (Huss, J. M., et al. Biol. Chem. 277 (43), 40265-40274 (2002); Kressler, D., et al. J. Biol. Chem. 277 (16), 13918-13925 (2002); Lin, J., et al. J. Biol. Chem. 277 (3), 1645-1648 (2002); Lin et al. J. Biol. Chem., Vol. 277, Issue 3, 1645-1648, Jan. 18, (2002)), the teachings of which are incorporated by referenced herein.


The term “Errα polypeptide” includes Errα polypeptides from any species. In some preferred embodiments of the methods described herein, an Errα polypeptide is a mammalian polypeptide, preferably a human polypeptide. The sequence of human Errα corresponds to Genbank Accession No. NP004442. Additional isoforms of Errα and methods for assaying Errα activity are known in the art e.g. Schreiber, S. N., et al. J. Biol. Chem. 278 (11), 9013-9018 (2003); Igarashi, M., et al. J. Gen. Virol. 84 (Pt 2), 319-327 (2003); Kraus, R. J., et al. J. Biol. Chem. 277 (27), 24826-24834 (2002); Vanacker, J. M., Oncogene 17 (19), 2429-2435 (1998); Sladek, R., et al. Genomics 45 (2), 320-326 (1997); Sladek, R., et al. Mol. Cell. Biol. 17 (9), 5400-5409 (1997); Shi, H., et al. Genomics 44 (1), 52-60 (1997); Yang, N., et al. J. Biol. Chem. 271 (10), 5795-5804 (1996); Giguere, V et al. Nature 331 (6151), 91-94 (1988); Eiler, S., et al Protein Expr. Purif. 22 (2), 165-173 (2001), the teachings of which are incorporated by referenced herein.


The term “nuclear hormone receptors” comprises comprise a large, well-defined family of ligand-activated transcription factors which modify the expression of target genes by binding to specific cis-acting sequences (Laudet et al., 1992, EMBO J, Vol, 1003-1013; Lopes da Silva et al., 1995, TINS 18, 542-548; Mangelsdorf et al., 1995, Cell 83, 835-839; Mangelsdorf et al., 1995, Cell 83, 841-850). Family members include both orphan receptors and receptors for a wide variety of clinically significant ligands including steroids, vitamin D, thyroid hormones, retinoic acid, etc. Additional receptors may be found in the literature (See for example The Nuclear Receptor FactsBook; Vincent Laudet (Editor); Elsevier Science & Technology, 2001).


The term “antibody” as used herein is intended to include whole antibodies, e.g., of any isotype (IgG, IgA, IgM, IgE, etc), and includes fragments thereof which are also specifically reactive with a vertebrate, e.g., mammalian, protein. Antibodies can be fragmented using conventional techniques and the fragments screened for utility and/or interaction with a specific epitope of interest. Thus, the term includes segments of proteolytically-cleaved or recombinantly-prepared portions of an antibody molecule that are capable of selectively reacting with a certain protein. Non-limiting examples of such proteolytic and/or recombinant fragments include Fab, F(ab′)2, Fab′, Fv, and single chain antibodies (scFv) containing a V[L] and/or V[H] domain joined by a peptide linker. The scFv's may be covalently or non-covalently linked to form antibodies having two or more binding sites. The term antibody also includes polyclonal, monoclonal, or other purified preparations of antibodies and recombinant antibodies.


The term “recombinant” as used in reference to a nucleic acid indicates any nucleic acid that is positioned adjacent to one or more nucleic acid sequences that it is not found adjacent to in nature. A recombinant nucleic acid may be generated in vitro, for example by using the methods of molecular biology, or in vivo, for example by insertion of a nucleic acid at a novel chromosomal location by homologous or non-homologous recombination. The term “recombinant” as used in reference to a polypeptide indicates any polypeptide that is produced by expression and translation of a recombinant nucleic acid.


The following terms are used to describe the sequence relationships between two or more polynucleotides: “reference sequence,” “comparison window,” “sequence identity,” “percentage of sequence identity,” and “substantial identity.” A reference sequence is a defined sequence used as a basis for a sequence comparison; a reference sequence can be a subset of a larger sequence, for example, as a segment of a fall length cDNA or gene sequence given in a sequence listing, or may comprise a complete cDNA or gene sequence. Generally, a reference sequence is at least 20 nucleotides in length, frequently at least 25 nucleotides in length, and often at least 50 nucleotides in length. Since two polynucleotides can each (1) comprise a sequence (for example a portion of the complete polynucleotide sequence) that is similar between the two polynucleotides, and (2) may further comprise a sequence that is divergent between the two polynucleotides, sequence comparisons between two (or more) polynucleotides are typically performed by comparing sequences of the two polynucleotides over a “comparison window” to identify and compare local regions of sequence similarity. A comparison window, as used herein, refers to a conceptual segment of at least 20 contiguous nucleotide positions wherein a polynucleotide sequence may be compared to a reference sequence of at least 20 contiguous nucleotides and wherein the portion of the polynucleotide sequence in the comparison window can comprise additions and deletions (for example, gaps) of 20 percent or less as compared to the reference sequence (which would not comprise additions or deletions) for optimal alignment of the two sequences. Optimal alignment of sequences for aligning a comparison window can be conducted by the local identity algorithm (Smith and Waterman, Adv. Appl. Math., 2:482 (1981)), by the identity alignment algorithm (Needleman and Wunsch, J. Mol. Bio., 48:443 (1970)), by the search for similarity method (Pearson and Lipman, Proc. Natl. Acid. Sci. U.S.A. 85:2444 (1988)), by the computerized implementations of these algorithms such as GAP, BESTFIT, FASTA and TFASTA (Wisconsin Genetics Software Page Release 7.0, Genetics Computer Group, Madison, Wis.), or by inspection. Preferably, the best alignment (for example, the result having the highest percentage of identity over the comparison window) generated by the various methods is selected.


The term “diagnostic” refers to assays that provide results which can be used by one skilled in the art, typically in combination with results from other assays, to determine if an individual is suffering from a disease or disorder of interest such as diabetes, including type I and type II, whereas the term “prognostic” refers to the use of such assays to evaluate the response of an individual having such a disease or disorder to therapeutic or prophylactic treatment. The term “pharmacogenetic” refers to the use of assays to predict which individual patients in a group will best respond to a particular therapeutic or prophylactic composition or treatment.


Other technical terms used herein have their ordinary meaning in the art that they are used, as exemplified by a variety of technical dictionaries, such as the McGraw-Hill Dictionary of Chemical Terms and the Stedman's Medical Dictionary.


III. Methods of Modulating Biological Responses in a Cell


In one aspect, the invention provides methods of modulating biological responses in a cell. One specific aspect of the invention provides a method of modulating a biological response in a cell, the method comprising contacting the cell with at least one agent that modulates the expression or activity of Errα or Gabp, wherein the biological response is (a) expression of at least one OXPHOS gene; (b) mitochondrial biogenesis; (c) expression of Nuclear Respiratory Factor 1 (NRF-1); (d) β-oxidation of fatty acids; (e) total mitochondrial respiration; (f) uncoupled respiration; (g) mitochondrial DNA replication; (h) expression of mitochondrial enzymes; or (i) skeletal muscle fiber-type switching.


In one embodiment of the methods described herein, the biological response that is modulated is the expression of at least one OXPHOS gene. OXPHOS genes have been described in Mootha et al., Nat. Genet. 2003; 34(3):267-73, hereby incorporated by reference in its entirety. In one embodiment, the OXPHOS gene is NDUFB3, SDHA, NDUFA8, COX7A1, UQCRC1, NDUFC1, NDUFS2, ATP5O, NDUFS3, SDHB, NDUFS5, NDUFB6, COX5B, CYC1, NDUFA7, UQCRB, COX7B, ATP5L, COX7C, NDUFA5, GRIM19, ATP5J, COX6A2 NDUFB5, CYCS, NDUFA2 or HSPC051.


In another embodiment of the methods described herein, the biological response that is modulated is mitochondrial biogenesis. U.S. Patent Publication No. 2002/0049176 describes assays for determining mitochondrial mass, volume or number, and is hereby incorporated by reference in its entirety.


In another embodiment of the methods described herein, the biological response that is modulated is expression of Nuclear Respiratory Factor 1 (NRF-1). NRF-1 is a transcription factor occurring as a homodimer of a 54 KDa polypeptide encoded by the nuclear gene nrf-1 (Evans and Scarpulla, Genes & Development 4:1023-1034 (1990), Scarpulla, J. Bioenergetics and Biomembranes 29:109-119 (1997), Moyes et al., J. Exper. Biol. 201:299-307 (1998)). NRF-1 binds to the upstream promoters of nuclear genes that encode respiratory components associated with mitochondrial transcription and replication. NRF-1 can be any NRF-1, such as rat, mouse or human. NRF-1 nucleotide and polypeptide sequences are described in U.S. Patent Publication No. 20020049176, hereby incorporated by reference in its entirety.


In another embodiment of the methods described herein, the biological response that is modulated is β-oxidation of fatty acids. In another embodiment of the methods described herein, the biological response that is modulated is total mitochondrial respiration. In another embodiment of the methods described herein, the biological response that is modulated uncoupled respiration. Uncoupled respiration occurs when electron transport is uncoupled from ATP synthesis


In another embodiment of the methods described herein, the biological response that is modulated is mitochondrial DNA replication. Quantification of mitochondrial DNA (mtDNA) content may be accomplished by one with routine skill in the art using any of a variety of established techniques that are useful for this purpose, including but not limited to, oligonucleotide probe hybridization or polymerase chain reaction (PCR) using oligonucleotide primers specific for mitochondrial DNA sequences (see, e.g., Miller et al., 1996 J. Neurochem. 67:1897; Fahy et al., 1997 Nucl. Ac. Res. 25:3102; U.S. patent application Ser. No. 09/098,079; Lee et al., 1998 Diabetes Res. Clin. Practice 42:161; Lee et al., 1997 Diabetes 46(suppl. 1): 175A). A particularly useful method is the primer extension assay disclosed by Fahy et al. (Nucl. Acids Res. 25:3102, 1997) and by Ghosh et al. (Am. J. Hum. Genet. 58:325, 1996). Suitable hybridization conditions may be found in the cited references or may be varied according to the particular nucleic acid target and oligonucleotide probe selected, using methodologies well known to those having ordinary skill in the art (see, e.g., Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing, 1987; Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, 1989).


In another embodiment of the methods described herein, the biological response that is modulated is expression of mitochondrial enzymes. In one embodiment, mitochondrial enzymes are Electron Transport Chain (ETC) enzymes. An ETC enzyme refers to any mitochondrial molecular component that is a mitochondrial enzyme component of the mitochondrial electron transport chain (ETC) complex associated with the inner mitochondrial membrane and mitochondrial matrix. An ETC enzyme may include any of the multiple ETC subunit polypeptides encoded by mitochondrial and nuclear genes. The ETC is typically described as comprising complex I (NADH:ubiquinone reductase), complex II (succinate dehydrogenase), complex III (ubiquinone: cytochrome c oxidoreductase), complex IV (cytochrome c oxidase) and complex V (mitochondrial ATP synthetase), where each complex includes multiple polypeptides and cofactors (for review see, e.g., Walker et al., 1995 Meths. Enzymol. 260:14; Ernster et al., 1981 J. Cell Biol. 91:227s-255s, and references cited therein). A mitochondrial enzyme of the present invention may also comprise a Krebs cycle enzyme, which includes mitochondrial molecular components that mediate the series of biochemical/bioenergetic reactions also known as the citric acid cycle or the tricarboxylic acid cycle (see, e.g., Lehninger, Biochemistry, 1975 Worth Publishers, NY; Voet and Voet, Biochemistry, 1990 John Wiley & Sons, NY; Mathews and van Holde, Biochemistry, 1990 Benjamin Cummings, Menlo Park, Calif.). Krebs cycle enzymes include subunits and cofactors of citrate synthase, aconitase, isocitrate dehydrogenase, the α-ketoglutarate dehydrogenase complex, succinyl CoA synthetase, succinate dehydrogenase, fumarase and malate dehydrogenase. Krebs cycle enzymes further include enzymes and cofactors that are functionally linked to the reactions of the Krebs cycle, such as, for example, nicotinamide adenine dinucleotide, coenzyme A, thiamine pyrophosphate, lipoamide, guanosine diphosphate, flavin adenine dinucloetide and nucleoside diphosphokinase.


In another embodiment of the methods described herein, the biological response that is modulated is skeletal muscle fiber-type switching, that is, a shift towards type I oxidative skeletal muscle fibers. International PCT Application WO 03/068944 describes skeletal muscle fiber-type switching. In some embodiments, the agent increases at least one of the biological responses. In alternate embodiments, the agent decreases at least one of the biological responses.


The methods described herein for modulating a biological activity in a cell may be applied to any type of cell. In specific embodiments, the cell is a skeletal muscle cell, a smooth muscle cell, a cardiac muscle cell, a hepatocyte, an adipocyte, a neuronal cell, or a pancreatic cell. The cell may be a primary cell, a cell derived from a cell line, or a cell which has differentiated in vitro, such as a differentiated cell obtained through manipulation of a stem cell. In some embodiments, the cell in an organism, while in other embodiments the cell is manipulated ex vivo, such as in cell or tissue culture. The methods described herein also apply to groups of cells, such as to whole tissues or organs. In some embodiments, the organism is a mammal, such as a mouse, rat, an ungulate, a horse, a dog or a human.


In some embodiments, the human is afflicted, at risk of developing, or suspected with being afflicted, with a disorder. In some embodiments, the disorder comprises a metabolic disorder, a disorder characterized by altered mitochondrial activity, a disorder characterized by sugar intolerance, or a combination thereof. In specific embodiments of the methods described herein, the disorder is diabetes, obesity, cardiac myopathy, aging, coronary atherosclerotic heart disease, diabetes mellitus, Alzheimer's Disease, Parkinson's Disease, Huntington's disease, dystonia, Leber's hereditary optic neuropathy (LHON), schizophrenia, myodegenerative disorders such as “mitochondrial encephalopathy, lactic acidosis, and stroke” (MELAS). and “myoclonic epilepsy ragged red fiber syndrome” (MERRY), NARP (Neuropathy; Ataxia; Retinitis Pigmentosa), MNGIE (Myopathy and external ophthalmoplegia, neuropathy; gastrointestinal encephalopathy, Kearns-Sayre disease, Pearson's Syndrome, PEO (Progressive External Ophthalmoplegia), congenital muscular dystrophy with mitochondrial structural abnormalities, Wolfram syndrome, Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy Deafness, Leigh's Syndrome, fatal infantile myopathy with severe mitochondrial DNA (mtDNA) depletion, benign “later-onset” myopathy with moderate reduction in mtDNA, dystonia, medium chain acyl-CoA dehydrogenase deficiency, arthritis, and mitochondrial diabetes and deafness (MIDD), mitochondrial DNA depletion syndrome.


In one embodiment of the methods for modulating biological responses in a cell described herein, the agent modulates the formation of a complex between a PGC-1 polypeptide and (i) an Errα polypeptide; or (ii) a Gabp polypeptide. The agent may be an agent which increases formation of the complex in the cell, or it may be an agent that reduces formation of the complex in the cell. In embodiments where the agent increases a biological activity of the cell, the agent increases complex formation, whereas in embodiments where a biological activity is to be decreased, complex formation is decreased. One skilled in the art would recognize that complex formation, as used herein, refers to the normal association between the polypeptides which results in the transcriptional activation of target genes by the complex. Therefore, an agent which resulted in an aberrant aggregation of PGC-1α and Errα polypeptides, wherein the resulting complex has reduced transcriptional activating activity, would not result in increased biological activity but instead in less. Likewise, an agent which increased complexed formation, but the resulting complex was degraded in the cell, would result in less biological activity in the cell. Accordingly, in some specific embodiments for reducing biological activity, the agent results in increase complex formation, wherein the complex has reduced transcriptional activity or stability.


In one embodiment of the methods for modulating biological responses in a cell described herein, the agent modulates the expression level or the transcriptional activity of an Errα polypeptide, a Gabp polypeptide, or of both. The agent may comprise a polypeptide, a nucleic acid, or a chemical compound. In one embodiment of the methods for modulating biological responses in a cell described herein, the agent is itself an Errα polypeptide or fragments thereof, or a Gapb polypeptide or a fragment thereof, or a nucleic acid encoding such polypeptides or fragments thereof.


In some embodiments of the methods for increasing biological responses in a cell described herein, the agent increases complex formation between a PGC-1 polypeptide and an Errα polypeptide. In preferred embodiments, the agent is specific for the complex formation between a PGC-1 polypeptide and an Errα polypeptide. In a preferred embodiment, the agent increases Errα activity by preferentially promoting complex formation between a PGC-1 polypeptide and an Errα polypeptide over complex formation between a PGC-1 polypeptide and at least one other polypeptide to which PGC-1 normally binds in an organism. Polypeptides to which PGC-1 normally binds in an organism include the following: nearly all nuclear receptor (e.g., PPAR-gamma, PPAR-alpha, thyroid hormone receptor, HNF4α, etc.) as well as other transcription factors, such as NRF1, NFAT, etc (see Puigserver and Spiegelman, Endocr Rev. 2003; 24(1):78-90).


In another preferred embodiment, the agent increases Errα activity by preferentially promoting complex formation between a PGC-1 polypeptide and an Errs polypeptide over a PGC-1 polypeptide and another nuclear receptor. In some embodiments, the affinity of an agent which increases complex formation between PGC-1 polypeptide and Errα does so at least 2, 5, 10, 20, 40, 50, 100, 200, 500, 1000, 5000, 10,000, 50,000 or 100,000-fold times more potently than complex formation between the same PGC-1 polypeptide and (i) at least another polypeptide to which PGC-1 normally binds in an organism; or (ii) a nuclear receptor; or (iii) both. The fold-level of potency may be determined by measuring the association constant, the disassociation constant, or more preferably the Kd of the agent for the various complexes.


In parallel embodiments of the methods for inhibiting a biological response in a cell described herein, the agent preferentially inhibits complex formation between a PGC-1 polypeptide and an Errα polypeptide over a PGC-1 polypeptide and another nuclear receptor. In some embodiments, the affinity of an agent which decreases complex formation between PGC-1 polypeptide and an Errα does so at least 2, 5, 10, 20, 40, 50, 100, 200, 500, 1000, 5000, 10,000, 50,000 or 100,000-fold times more potently than complex formation between the same PGC-1 polypeptide and (i) at least another polypeptide to which PGC-1 normally binds in an organism; or (ii) a nuclear receptor; or (iii) both. In other embodiments, the IC50 for disrupting the interaction between a PGC-1 polypeptide and an Errα polypeptide is 2, 5, 10, 20, 40, 50, 100, 200, 500, 1000, 5000, 10,000, 50,000 or 100,000-fold lower than that for disrupting the interaction between a PGC-1 polypeptide and (i) at least one another polypeptide to which PGC-1 normally binds in an organism; or (ii) a nuclear hormone receptor.


In other embodiments of the methods described herein for modulating biological responses in a cell, a Gabp polypeptide may replace the Errα polypeptide. For example, instead of using an agent that modulates the interaction between a PGC-1 polypeptide and an Errα polypeptide, an agent is used that modulates the interaction between a polypeptide PGC-1 polypeptide and an Gabp polypeptide. Thus all variations of the methods described herein for modulating biological responses in a cell using an Errα polypeptide may be applied to an Gabp polypeptide, such as a Gabpa polypeptide.


Another embodiment of the methods described herein for modulating biological responses in a cell, the cell is contacted with two agents, wherein one agent modulates the expression or activity of Errα and the other agent modulates the expression or activity of a Gabp polypeptide, such as a Gabpa polypeptide. In another embodiment, the cell is contacted with one agent which modulates the expression or activity of both Errs and of a Gabp polypeptide.


IV. Methods of Preventing/Treating Disease


Some aspects of the invention provide methods of treating or preventing a disorder. Some aspects provide methods of preventing disorders which are associated with glucose intolerance, excess glucose production, insulin resistance, aberrant metabolism or abnormal mitochondrial function.


The invention further provides agents for the manufacture of medicaments to treat any of the disorders described herein. Any methods disclosed herein for treating or preventing a disorder by administering an agent to a subject may be applied to the use of the agent in the manufacture of a medicament to treat that disorder. For example, in one specific embodiment, an Errα agonist may be used in the manufacture of a medicament for the treatment of a disorder characterized by low mitochondrial function or by sugar intolerance, such as diabetes.


One aspect of the invention provides method of treating or preventing a disorder characterized by reduced mitochondrial function, glucose intolerance, or insulin intolerance in a subject, the method comprising administering to the subject a therapeutically effective amount of an agent which (i) increases the expression or activity of Errα or Gabp or both; or (ii) increases the formation of a complex between a PGC-1 polypeptide and (a) an Errα polypeptide; (b) a Gabp polypeptide; or both; or (iii) binds to an (a) Errα binding site, or to a (b) Gabpa binding site, and which increases transcription of at least one gene in the subject, said gene having an Errα binding site, a Gabpa binding site, or both.


In one embodiment, the agent which binds to an (a) Errα binding site, or to a (b) Gabp binding site, comprises at least one DNA binding domain. In a further embodiment, the DNA binding domain comprises at least one zinc-finger. In some embodiments, such agents comprise a DNA binding domain and a transactivation domain. Methods are known in the art for designing transcriptional activator or repressors which bind to specific DNA sequences, including those disclosed in U.S. Pat. Nos. 6,607,882, 6,453,242 and 6,511,808.


In one embodiment, the disorder is type 2 diabetes mellitus. In one embodiment of any of the methods described herein, a disorder characterized by reduced mitochondrial function, glucose intolerance, or insulin intolerance is diabetes, obesity, cardiac myopathy, aging, coronary atherosclerotic heart disease, diabetes mellitus, Alzheimer's Disease, Parkinson's Disease, Huntington's disease, dystonia, Leber's hereditary optic neuropathy (LHON), schizophrenia, myodegenerative disorders such as “mitochondrial encephalopathy, lactic acidosis, and stroke” (MELAS). and “myoclonic epilepsy ragged red fiber syndrome” (MERRF), NARP (Neuropathy; Ataxia; Retinitis Pigmentosa), MNGIE (Myopathy and external ophthalmoplegia, neuropathy; gastro-intestinal encephalopathy, Kearns-Sayre disease, Pearson's Syndrome, PEO (Progressive External Ophthalmoplegia), congenital muscular dystrophy with mitochondrial structural abnormalities, Wolfram syndrome, Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy Deafness, Leigh's Syndrome, fatal infantile myopathy with severe mitochondrial DNA (mtDNA) depletion, benign “later-onset” myopathy with moderate reduction in mtDNA, dystonia, medium chain acyl-CoA dehydrogenase deficiency, arthritis, and mitochondrial diabetes and deafness (MIDD), mitochondrial DNA depletion syndrome.


The invention further provides a method of treating or preventing a disorder characterized by reduced mitochondrial function, glucose intolerance, or insulin intolerance in a subject, the method comprising administering to the subject a therapeutically effective amount of an agent which increases the expression or activity of a gene, wherein the gene has an Errα binding site or a Gapba binding site.


In one preferred embodiment of this method, the gene has both an Errα binding site and a Gapba binding site. In one embodiment, the Errα binding site comprises the sequence 5′-TGACCTTG-3′ or the sequence ′5-CAAGGTCA-3′. In one embodiment, the Gapba binding site comprises the sequence ′5-CTTCCG-3′ or ′5-CGGAAG-3′. It is well known by one of routine skill in the art that transcriptional factors may have optimal binding sites to which they may bind in vivo or in vitro with substantially the same binding affinity as their optimal binding sites. Accordingly, in some embodiments, an Errα binding site comprises any sequence that, when operably bound to a promoter, allows transcriptional control of the promoter by Errα. In another embodiment, an Errα binding site comprises any sequence that may be bound by an Errα polypeptide with high affinity, such as with a Kd that is less than at least about 10−5 M, about 10−6 M, about 10−7 M, about 10−8 M, about 10−9 M, about 10−10 M, about 10−11 M, or about 10−12 M. Likewise, in some embodiments, an Gabpa binding site comprises any sequence that, when operably bound to a promoter, allows transcriptional control of the promoter by Gabpa. In another embodiment, an Errα binding site comprises any sequence that may be bound by an Gabpa polypeptide with high affinity, such as with a Kd that is less than at least about 10−5 M, about 10−6 M, about 10−7 M, about 10−8 M, about 10−9 M, about 10−10 M, about 10−11 M, or about 10−12 M. In some embodiments, an Errα binding site comprises a sequence which is about 50%, 62.5%, 75%, or 87.5% identical to either 5′-TGACCTTG-3′ or to ′5-CAAGGTCA-3′. In some embodiments, a Gabpa binding site comprises a sequence which is about 50%, 66.6%, or 83.3%, identical to either ′5-CTTCCG-3′ or ′5-CGGAAG-3′.


In another embodiment of any of the methods described herein, a gene which has an Errα binding site is any one of the genes listed on Table 10, a gene which has a Gabpa binding site is any one of the genes on Table 11, and a gene having both an Errα and a Gabpa binding site is any one of the genes listed on Table 12.


In yet another embodiment of this method, the binding sites are located within the promoter region of the gene. In one embodiment, the promoter region comprises from at least 0.5, 1, 1.5, 2, 2.5, 3, 4, 5 or 10 kb upstream of the transcriptional start site of the gene to at least either (i) 0.5, 1, 1.5, 2, 2.5, 3, 4, 5 or 10 kb downstream of the transcriptional start site of the gene; or (ii) 0.5, 1, 1.5, 2, 2.5, 3, 4, 5 or 10 kb downstream of the stop codon of the gene. In yet another embodiment of this methods, the promoter region comprises a masked promoter region. A masked promoter region comprises the regions of promoters that are conserved between two organisms. For example, a masked promoter region may comprise the promoter sequences which are conserved between human and another mammal, such as a mouse. By sequences that are conserved, it is meant sequences which share at least 70% sequence identity between the two species across a window size of at least 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, or 50 nucleotides, or more preferably a window of 10 nucleotides.


In another embodiment, the binding sites are located within the promoter region, the coding region, the exons, the introns, or the untranslated region of the gene, or a combination thereof.


In yet another specific embodiment of the method, the gene having an Errα binding site or a Gapba binding site is not Errα, while in another embodiment, the gene is not Gabpa. The agent which increases the activity or expression of a specific gene may be selected by one skilled in the art according to the type of protein that is encoded. For example, if the gene encodes an enzyme, then enzyme activators are expected to increase the activity of the enzyme. Likewise, if the gene is a receptor, a receptor agonist may be administered. Such agonist may comprise small organic molecules, such as those having less than 1 kDa in mass, or may comprise an antibody that binds to the gene product and increases its activity. For any gene, an agent which increases the activity of the gene may comprise a polypeptide of the gene itself, or a nucleic acid containing the gene or an active fragment thereof.


In one embodiments of the methods described herein, reduced mitochondrial function comprises reduced total mitochondrial respiration, reduced uncoupled respiration, reduced expression of mitochondrial enzymes, reduced mitochondrial biogenesis or a combination thereof. In some embodiments of the methods for preventing or treating a disorder in a subject, at least one of the agents increases the expression or activity of Errα, of a Gabp polypeptide, or of both. In another embodiment, the agent promotes the expression or activity of a binding partner of PGC-1α or of PGC-1β. In yet another embodiment, the agent promotes the binding of PGC-1α to a transcriptional regulator. In some embodiments, the transcriptional regulator is Errα or Gabpa. In one preferred embodiment, the agent induces mitochondrial activity in skeletal muscle.


Another aspect of the invention provides a method of treating impaired glucose tolerance in an individual, comprising administering to the individual a therapeutically effective amount of an agent which increases the expression level of at least two OXPHOS-CR genes, thereby treating impaired glucose tolerance in the individual. Another aspect of the invention provides a method of treating obesity in an individual, comprising administering to the individual a therapeutically effective amount of an agent which increases the expression level of at least two OSPHOS-CR genes, thereby treating obesity in the individual. In preferred embodiments, the expression level of the OXPHOS-CR genes is increased in the skeletal muscle cells of the subject by at least 10%, 20%, 30%, 40%, 50% or 75%.


Another aspect of the invention provides methods of treating or preventing disorders characterized by an elevated metabolic rate in a subject and methods of lowering a metabolic rate in a subject. The invention provides a method of reducing the metabolic rate of a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of an agent which decreases the expression or activity of at least one of the following: (i) Errα; (ii) Gabpa; (iii) a gene having an Errα binding site, a Gabpa binding site, or both; or (iv) a transcriptional activator which binds to an Errα binding site or to a Gabpa binding site; thereby reducing the metabolic rate of the patient.


In some embodiments of the methods provided for reducing the metabolic rate of a subject in need thereof, the subject is afflicted with an infection, such as a viral infection. In one specific embodiment, the viral infection is a human immunodeficiency virus infection.


In another embodiment of methods for reducing metabolic rates, the subject is afflicted with cancer or with cachexia. Cachexia is a metabolic condition characterized by weight loss and muscle wasting. It is associated with a wide range of conditions including inflammation, heart failure and malignancies, and is well known and described in the clinical literature e.g., J. Natl. Cancer Inst. 89(23): 1763-1773 (1997) 1. The mechanistic derangements underlying cachexia are not known, but it is clear that a negative energy balance obtains in the face of severe weight loss. In specific embodiments, the subject is afflicted with cancer cachexia, pulmonary cachexia, Russell's Diencephalic Cachexia, cardiac cachexia or chronic renal insufficiency.


In some embodiments of the methods provided for reducing the metabolic rate of a subject in need thereof, the agent decreases the formation of a complex between a PGC-1 polypeptide and (i) an Errα polypeptide; or (ii) a Gabp polypeptide. In preferred embodiments, the PGC-1 polypeptide is a PGC-1α polypeptide. In another embodiment, the agent decreases the expression level or the transcriptional activity of an Errα polypeptide, a Gabp polypeptide, or of both, while in additional embodiments the agent inhibits the expression or activity of a gene which has an Errα binding site, a Gabpa binding site, or both. In some embodiments, the agents comprise double stranded RNA reagents, dominant negative polypeptides or nucleic acids encoding them, or antibodies directed to Errα, Gabpa, Gabpb, or to genes (or their gene products) which have an Errα binding site, a Gabpa binding site, or both, such as binding sites in their promoter regions.


U.S. Pat. No. 5,602,009 describes a method of generating inhibitory nuclear hormone receptors. Such methods may be applied to Errα or to Gabp to generate polypeptides or nucleic acids which encode them, which may be used as agents in the methods described herein for reducing the metabolic rate of a subject.


V. Methods of Diagnosing/Identifying Disease Genes


One aspect of the invention provides methods of identifying a susceptibility loci for a disorder characterized by reduced mitochondrial function or reduced metabolism. The identification of these loci allows for the diagnosis of the disorders and for the design or screening of agents for the treatment of these disorders.


The invention provides a method of identifying a susceptibility locus for a disorder that is characterized by reduced mitochondrial function, glucose intolerance, or insulin intolerance in a subject, the method comprising (i) identifying at least one polymorphisms in a gene, or linked to a gene, wherein the gene (a) has an Errα binding site, a Gabpa binding site, or both; or (b) is Errα, Gabpa, or Gabpb; (ii) determining if at least one polymorphism is associated with the incidence of the disorder, wherein if a polymorphism is associated with the incidence of the disorder then the gene having the polymorphism, or the gene to which the polymorphism is linked, is a susceptibility locus.


In one embodiment of the methods described herein for identifying a susceptibility locus for a disorder, the gene is any one of the gene listed on Tables 10-12.


As used herein, the term “polymorphism” refers to the co-existence, within a population, of more than one form of a gene or portion thereof (e.g. allelic variant), at a frequency too high to be explained by recurrent mutation alone. A portion of a gene of which there are at least two different forms, i.e. two different nucleotide sequences, is referred to as a polymorphic region of a gene”. A specific genetic sequence at a polymorphic region of a gene is an allele.


A polymorphic region can be a single nucleotide or more than one nucleotide, the identity of which differs in different alleles. A polymorphic region can be a restriction fragment length polymorphism (RFLP). A RFLP refers to a variation in DNA sequence that alters the length of a restriction fragment as described in Botstein et al., Am. J. Hum. Genet. 32. 3 14-33 1 (1980). The RFLP may create or delete a restriction site, thus changing the length of the restriction fragment. RFLPs have been widely used in human and animal genetic analyses (see WO 90/13668; WO90/11369; Donis-Keller, Cell 5 1, 3) 19-33)7 (1987); Lander et al. Genetics 121, 85-99 (1989)). When a heritable trait can be linked to a particular RFLP, the presence of the RFLP in an individual can be used to predict the likelihood that the individual will also exhibit the trait.


Other polymorphisms take the form of short tandem repeats (STRs) that include tandem di-, tri- and tetranucleotide repeated motifs. These tandem repeats are also referred to as variable number tandem repeat (VNTR) polymorphisms. VNTRs have been used in identity and paternity analysis (U.S. Pat. No. 5,075,217; Armour et al., FEBS Lett. 307, 1 3-1 15 (1992); Horn et al. WO 91/14003; Jeffreys, EP 370,719), and in a large number of genetic mapping studies.


Other polymorphisms take the form of single nucleotide variations between individuals of the same species. Such single nucleotide variations may arise due to substitution of one nucleotide for another at the polymorphic site or from a deletion of a nucleotide or an insertion of a nucleotide relative to a referenced allele. These single nucleotide variations are referred to herein as single nucleotide polymorphism (SNPs). Such SNPs are far more frequent than RFLPS, STRs and VNTRs. Some SNPs may occur in protein-coding sequences, in which case, one of the polymorphic forms may give rise to the expression of a defective protein and, potentially, a genetic disease. Other SNPs may occur in noncoding regions. Some of these polymorphisms may also result in defective protein expression (e.g. as a result of defective splicing). Other SNPs may have no phenotypic effects.


Techniques for determining the presence of particular alleles would be those known to persons skilled in the art and include, but are not limited to, nucleic acid techniques based on size or sequence, such as restriction fragment length polymorphism (RFLP), nucleic acid sequencing, or nucleic acid hybridization. The nucleic acid tested may be RNA or DNA. These techniques may also comprise the step of amplifying the nucleic acid before analysis. Amplification techniques are known to those of skill in the art and include, but are not limited to, cloning, polymerase chain reaction (CR), polymerase chain reaction of specific alleles (PASA), polymerase chain ligation, nested polymerase chain reaction, and the like. Amplification products may be assayed in a variety of ways, including size analysis, restriction digestion followed by size analysis, detecting specific tagged oligonucleotide primers in the reaction products, allele-specific oligonucleotide (ASO) hybridization, allele specific exonuclease detection, sequencing, hybridization and the like. Polymorphic variations leading to altered protein sequences or structures may also be detected by analysis of the protein itself. Additional methods for the detection of polymorphisms are described in U.S. Pat. No. 6,453,244 and in International PCT publications No. WO 04/011668, WO 03/048384, WO 01/20031 and WO 03/038125, the teachings of which are hereby incorporated by reference.


General methods are available to one skilled in the art for determining if a particular allele is associated with the incidence of the disorder, such as those described in Analysis of Human Genetic Linkage, by Jurg Ott: Johns Hopkins University Press, 1999; and Statistical Genomics: Linkage, Mapping, and QTL Analysis by Ben Hui Liu: CRC Press, 1997.


The invention also provides a related method for determining if a subject is at risk of developing a disorder which is characterized by reduced mitochondrial function, the method comprising determining if a gene from the subject contains a mutation which reduces the function of the gene, wherein the gene has an Errα binding site, a Gapba binding site, or both, wherein if a gene from the subject contains a mutation then the subject is at risk of developing the disorder.


In one embodiment of this method, the mutation reduces the function of the gene. In another embodiment, the disorder is diabetes, obesity, premature aging, cardiomyopathy, a neurodegenerative disease, or retinal degeneration. In further embodiments, the gene is any one of the genes on Tables 10-12.


The proposed role of the candidate genes proteins can be validated by traditional overexpression or knockout approaches to ascertain the effects of such manipulations on mitochondrial biogenesis in the engineered cell lines. This approach ultimately identifies additional molecules whose expression or activity can be modulated to enhance mitochondrial function. For example, cultured skeletal muscle cells may be used with electrical stimulation or thyroid hormone as the stimulus for mitochondrial biogenesis. Alternatively, a fat cell culture such as 3T3-L1 cells may be used, with norepinephrine providing the stimulus for mitochondrial biogenesis. Alternatively, cultured cells such as HeLa or HEK293 that express PGC-1 and/or NRF-1 under a tetracycline inducible system may be used, wherein induced expression of PGC-1 and/or NRF-1 stimulates mitochondrial biogenesis. After sufficient time with the appropriate stimulus to allow induction (1-2 days), the cells are incubated with P32 orthophosphate for 4 hrs. Cells are then harvested and subjected to SDS-PAGE to resolve the labeled proteins. Using these systems, the function of a candidate disease gene may be altered, such as through overexpression, expression of dominant negative forms of the proteins, inhibitory RNAi reagents, antibodies, and the like, and the effects on mitochondrial biogenesis or function determined.


VI. Methods of Identifying Therapeutic Agents


One aspect of the invention provides methods of identifying agents which modulate biological responses in a cell, which modulate expression of the OXPHOS-CR genes or which prevent or treat a disorder.


One aspect of the invention provides a method of determining if an agent is a potential agent for the treatment of a disorder that is characterized by glucose intolerance, insulin resistance or reduced mitochondrial function, the method comprising determining if the agent increases: (i) the expression or activity of Errα or Gabp in a cell; or (ii) the formation of a complex between a PGC-1 polypeptide and (i) an Errα polypeptide; or (ii) a Gabp polypeptide; wherein an agent that increases (i) or (ii) is a potential target for the treatment of the disorder.


In some embodiments of the methods described herein for determining if an agent is a potential agent for the treatment of a disorder, the disorder is diabetes, obesity, cardiac myopathy, aging, coronary atherosclerotic heart disease, diabetes mellitus, Alzheimer's Disease, Parkinson's Disease, Huntington's disease, dystonia, Leber's hereditary optic neuropathy (LHON), schizophrenia, myodegenerative disorders such as “mitochondrial encephalopathy, lactic acidosis, and stroke” (MELAS). and “myoclonic epilepsy ragged red fiber syndrome” (MERRF), NARP (Neuropathy; Ataxia; Retinitis Pigmentosa), MNGIE (Myopathy and external ophthalmoplegia, neuropathy; gastrointestinal encephalopathy, Kearns-Sayre disease, Pearson's Syndrome, PEO (Progressive External Ophthalmoplegia), congenital muscular dystrophy with mitochondrial structural abnormalities, Wolfram syndrome, Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy Deafness; Leigh's Syndrome, fatal infantile myopathy with severe mitochondrial DNA (mtDNA) depletion, benign “later-onset” myopathy with moderate reduction in mtDNA, medium chain acyl-CoA dehydrogenase deficiency, dystonia, arthritis, and mitochondrial diabetes and deafness (MIDD) or mitochondrial DNA depletion.


Any general method known to one skilled in the art may be applied to determine if an agent increases the expression or activity of Errα or Gabp. In one specific embodiment for determining if an agent increases the expression of Errα or Gabp, a cell is contacted with an agent, and an indicator of gene expression, such as mRNA level or protein level, is determined. Levels of mRNA may be determined, for example, using such techniques as Northern Blots, reverse-transcriptase polymerase chain reaction (RT-PCR), RNA protection assays or a DNA microarray comprising probes capable of detecting Errα or Gabp mRNA or cDNA molecules. Likewise, protein levels may be quantitated using techniques well-known in the art, such as western blotting, immuno-sandwich assays, ELISA assays, or any other immunological technique. Techniques for quantitating nucleic acids and proteins may be found, for example, in Molecular Cloning: A Laboratory Manual, 3rd Ed., ed. by Sambrook and Russell (Cold Spring Harbor Laboratory Press: 2001); and in Current Protocols in Cell Biology, ed. by Bonifacino, Dasso, Lippincott-Schwartz, Harford, and Yamada, John Wiley and Sons, Inc., New York, 1999, hereby incorporated by reference in their entirety.


In one example, an RC cell culture system can be used to identify compounds which activate production of ERRα or, once ERRα production has been activated in the cells, can be used to identify compounds which lead to suppression or switching off of ERRα, production. Alternatively, such a cell culture system can be used to identify compounds or binding partners of ERRα which increase its expression. Compounds thus identified are useful as therapeutics in conditions where ERRα production is deficient or excessive. Similar experiments may be carried out with Gabpa or Gabpb or both.


Likewise, any general method known to one skilled in the art may be applied to determining if an agent increases the activity of Errα or Gabp. Activities of Errα or Gabp include their ability to bind to DNA, their ability to bind to other transcriptional regulators or their ability to promote transcription of target genes. In one embodiment, candidate agents are tested for their ability to modulate ERRα activity by (a) providing a system for measuring a biological activity of ERRα; and (b) measuring the biological activity of ERRα in the presence or absence of the candidate compound, wherein a change in ERRα activity in the presence of the compound relative to ERRα activity in the absence of the compound indicates an ability to modulate ERRα activity. In specific embodiments, the biological activity is the ability of Errα to bind the promoter of a target gene, such as the promoter or medium chain acyl-CoA dehydrogenase (MCAD), which may be determined using chromatin immunoprecipitation and analysis of the DNA bound to the Errα polypeptide. In another embodiment, the biological activity is the ability of Errα to complex with PGC-1a or PGC-1b, which may be measured by immunoprecipitation of either Errα or a PGC-1 polypeptide and determining the presence of the other protein by western blotting. In another embodiment, the biological activity is promoting transcription of a target gene. An indicator of gene expression for a target gene whose transcription is regulated by Errα or by Gabp can be compared between cells which have or have not been contacted with the agent. In specific embodiments, PGC-1α or PGC-1β is also present when testing of an agent modulates the transcriptional activating activity of Errα or Gabp polypeptides. Target genes which may be used include those which contain either an Errα or a Gabp binding site, such as OXPHOS genes or those provided by the invention. Because Gabpa and Gabpb form a complex, in some preferred embodiments both proteins, or nucleic acids encoding them, are present in the assay systems described herein.


One particular embodiment for identifying agents which modulate activity of Errα employs two genetic constructs. One is typically a plasmid that continuously expresses the transcriptional regulator of interest when transfected into an appropriate cell line. The second is a plasmid which expresses a reporter, e.g., luciferase under control of the transcriptional regulator. For example, if a compound which acts as a ligand for Errα is to be evaluated, one of the plasmids would be a construct that results in expression of the Errα in the cell line. The second would possess a promoter linked to the luciferase gene in which an Errα response element is inserted. If the compound to be tested is an agonist for the Errα receptor, the ligand will complex with the receptor and the resulting complex binds the response element and initiates transcription of the luciferase gene. In time the cells are lysed and a substrate for luciferase added. The resulting chemiluminescence is measured photometrically. Dose response curves are obtained and can be compared to the activity of known ligands. Other reporters than luciferase can be used including CAT and other enzymes. In one specific embodiments of this approach, the cells further express PGC-1α or PGC-1β, either endogenously or by introduction of a third plasmid encoding said polypeptides. The presence of PGC-1 polypeptides in the cell further allows for the identification of agents which increase or decrease the binding interaction between a PGC-1 polypeptide and Errα. This approach may also be modified to express both Gabpa and Gabpb to identify agents which modulate their transcriptional activity. Alternatively, a cell may be used which endogenously expresses any combination of polypeptides, such that only a plasmid encoding a reporter gene is introduced into the cell.


Viral constructs can be used to introduce the gene for Errα Gabp or PGC-1 and the reporter into a cell. An usual viral vector is an adenovirus. For further details concerning this preferred assay, see U.S. Pat. No. 4,981,784 issued Jan. 1, 1991 hereby incorporated by reference, and Evans et al., WO88/03168 published on 5 May 1988, also incorporated by reference.


Errα antagonists can be identified using this same basic “agonist” assay. A fixed amount of an antagonist is added to the cells with varying amounts of test compound to generate a dose response curve. If the compound is an antagonist, expression of luciferase is suppressed.


Additional methods for the isolation of agonists and antagonist of transcriptional regulators are described in U.S. Pat. Nos. 6,187,533, 5,620,887, 5,804,374, and 5,298,429, and U.S. Patent Publication Nos. 2004/003394, 2003/0077664, 2003/0215829 and 2003/0039980. Any of the methods described herein may be easily adapted to identify agonists or antagonists of any one Errα or Gabp polypeptides.


U.S. Pat. No. 6,555,326 (PCT Pub No. WO 99/27365) describes a fluorescent polarization assay for identifying agents which regulate the activity of nuclear hormone receptors, by using a nuclear hormone receptor, a peptide sensor and a candidate agent. Table 1 of this patent also lists exemplary nuclear hormone receptors. Such a method may easily be modified by one skilled in the art to identify agents which regulate the activity of Errα or Gabp.


The invention also provides a method for screening a candidate compound for its ability to modulate Errα activity in a suitable system, in the presence or absence of the candidate compound. A change in Errα activity the presence of the compound relative to ERRα activity in the absence of the compound indicates that the compound modulates ERRα activity. ERRα activity is increased relative to the control in the presence of the compound, the compound is an ERRS agonist. Conversely, if ERRS activity is decreased in the presence of the compound, the compound is an ERRα antagonist.


Another way of determining if an agent increases the activity of Errα or Gabp may also be based on binding of the agent to an ERRα or to a Gabp polypeptide or fragment thereof. Such competitive binding assays are well known to those skilled in the art.


For example, the invention provides screening methods for compounds able to bind to ERRα which are therefore candidates for modifying the activity of ERRα. Various suitable screening methods are known to those in the art, including immobilization of ERRα on a substrate and exposure of the bound ERRα to candidate compounds, followed by elution of compounds which have bound to the ERRα. Additional methods and assays for identifying agents which modulate Errα activity, for generating Errα knock out animals and cells, and for generating Errα reagents, such as anti-Errα antibodies are described in International PCT publication No. WO 00/122988, hereby incorporated by reference in its entirety.


Another aspect of the invention provides a method of identifying an agent that modulates a biological response, the method comprising (a) contacting, in the presence of the agent, a PGC-1 polypeptide and an (i) Errα polypeptide, or (ii) a Gabp polypeptide, under conditions which allow the formation of a complex between the PGC-1 polypeptide and (i) the Errα polypeptide, or (ii) the Gabp polypeptide; and (b) detecting the presence of the complex; wherein an agent that modulates the biological response is identified if the agent increases or decreases the formation of the complex, and wherein the biological response is (a) expression of the OXPHOS genes; (b) mitochondrial biogenesis; (c) expression of Nuclear Respiratory Factor 1 (NRF-1); (d) β-oxidation of fatty acids; (e) total mitochondrial respiration; (f) uncoupled respiration; (g) mitochondrial DNA replication; or (h) expression of mitochondrial enzymes.


In some embodiments of the methods for identifying an agent that modulates a biological response, the method comprises an agent that increases the formation of the complex and that increases the biological response. In alternate embodiments, the agent decreases the formation of the complex and decreases the biological response. In some embodiments, the conditions which allow the formation of a complex between the PGC-1 polypeptide and an Errα polypeptide or a Gabpa polypeptide comprise in vitro conditions, while in other embodiments they comprise in vivo conditions such as expression in a cell or in an organism.


The following embodiments of methods for identifying a compound that modulates a biological response, although directed at Errα and PGC-1α, are equally applicable to Gabp polypeptides, such as Gabpa polypeptides, or to PGC-1β polypeptides.


One embodiment for the of the methods for identifying a compound that modulates a biological response comprises: 1) combining: a Errα polypeptide or fragment thereof, a PGC-1α polypeptide or fragment thereof, and an agent, under conditions wherein the Err alpha and PGC-1α polypeptides physically interact in the absence of the agent, 2) determining if the agent interferes with the interaction, and 3) for an agent that interferes with the interaction, further assessing its ability to promote the any of the biological responses of the cell, such as (a) expression of the OXPHOS genes, mitochondrial biogenesis, expression of Nuclear Respiratory Factor 1 (NRF-1), β-oxidation of fatty acids, total mitochondrial respiration, uncoupled respiration, mitochondrial DNA replication or expression of mitochondrial enzymes.


A variety of assay formats will suffice and, in light of the present disclosure; those not expressly described herein will nevertheless be comprehended by one of ordinary skill in the art. Assay formats which approximate such conditions as formation of protein complexes, enzymatic activity, may be generated in many different forms, and include assays based on cell-free systems, e.g. purified proteins or cell lysates, as well as cell-based assays which utilize intact cells. Simple binding assays can also be used to detect agents which bind to Errα or PGC-1α. Such binding assays may also identify agents that act by disrupting the interaction between a Errα polypeptide and PGC-1α. Agents to be tested can be produced, for example, by bacteria, yeast or other organisms (e.g. natural products), produced chemically (e.g. small molecules, including peptidomimetics), or produced recombinantly. Because Errα and PGC-1a polypeptides contain multiple domains, specific embodiments of the assays and methods described to identify agents which modulate complex formation between Errα and PGC-1a employ fragments of Errα rather than full-length polypeptides, such as those lacking the DNA binding domains. Fragments of PGC-1α may also be used in some embodiments, in particular fragments which retain the ability to complex with Errα.


In many drug screening programs which test libraries of compounds and natural extracts, high throughput assays are desirable in order to maximize the number of compounds surveyed in a given period of time. Assays of the present invention which are performed in cell-free systems, which may be developed with purified or semi-purified proteins or with lysates, are often preferred as “primary” screens in that they can be generated to permit rapid development and relatively easy detection of an alteration in a molecular target which is mediated by a test compound. Moreover, the effects of cellular toxicity and/or bioavailability of the test agent can be generally ignored in the in vitro system, the assay instead being focused primarily on the effect of the drug on the molecular target as may be manifest in an alteration of binding affinity with other proteins or changes in enzymatic properties of the molecular target.


In preferred in vitro embodiments of the present assay, a reconstituted Errα/PGC-1α complex comprises a reconstituted mixture of at least semi-purified proteins. By semi-purified, it is meant that the proteins utilized in the reconstituted mixture have been previously separated from other cellular or viral proteins. For instance, in contrast to cell lysates, the proteins involved in Errα/PGC-1α complex formation are present in the mixture to at least 50% purity relative to all other proteins in the mixture, and more preferably are present at 90-95% purity. In certain embodiments of the subject method, the reconstituted protein mixture is derived by mixing highly purified proteins such that the reconstituted mixture substantially lacks other proteins (such as of cellular or viral origin) which might interfere with or otherwise alter the ability to measure Errα/PGC-1α complex assembly and/or disassembly.


Assaying Errα/PGC-1α complexes, in the presence and absence of a candidate agent, can be accomplished in any vessel suitable for containing the reactants. Examples include microtiter plates, test tubes, and micro-centrifuge tubes. In a screening assay, the effect of a test agent may be assessed by, for example, determining the effect of the test agent on kinetics, steady-state and/or endpoint of the reaction.


In one embodiment of the present invention, drug screening assays can be generated which detect inhibitory agents on the basis of their ability to interfere with assembly or stability of the Errα/PGC-1a complex. In an exemplary binding assay, the compound of interest is contacted with a mixture comprising a Errα/PGC-1a complex. Detection and quantification of Errα/PGC-1α complexes provides a means for determining the compound's efficacy at inhibiting (or potentiating) interaction between the two polypeptides. The efficacy of the compound can be assessed by generating dose response curves from data obtained using various concentrations of the test compound. Moreover, a control assay can also be performed to provide a baseline for comparison. In the control assay, the formation of complexes is quantitated in the absence of the test compound.


Complex formation may be detected by a variety of techniques. For instance, modulation in the formation of complexes can be quantitated using, for example, detectably labeled proteins (e.g. radiolabeled, fluorescently labeled, or enzymatically labeled), by immunoassay, or by chromatographic detection. Surface plasmon resonance systems, such as those available from Biacore © International AB (Uppsala, Sweden), may also be used to detect protein-protein interaction.


The proteins and peptides described herein may be immobilized. Often, it will be desirable to immobilize the peptides and polypeptides to facilitate separation of complexes from uncomplexed forms of one of the proteins, as well as to accommodate automation of the assay. The peptides and polypeptides can be immobilized on any solid matrix, such as a plate, a bead or a filter. The peptide or polypeptide can be immobilized on a matrix which contains reactive groups that bind to the polypeptide. Alternatively or in combination, reactive groups such as cysteines in the protein can react and bind to the matrix. In another embodiment, the polypeptide may be expressed as a fusion protein with another polypeptide which has a high binding affinity to the matrix, such as a fusion protein to streptavidin which binds biotin with high affinity.


In an illustrative embodiment, a fusion protein can be provided which adds a domain that permits the protein to be bound to an insoluble matrix. For example, a GST-ERRα fusion protein can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtitre plates, which are then combined with a PGC-1a polypeptide, e.g. an 35S-labeled polypeptide, and the test compound and incubated under conditions conducive to complex formation. Following incubation, the beads are washed to remove any unbound interacting protein, and the matrix bead-bound radiolabel determined directly (e.g. beads placed in scintillant), or in the supernatant after the complexes are dissociated, e.g. when microtitre plate is used. Alternatively, after washing away unbound protein, the complexes can be dissociated from the matrix, separated by SDS-PAGE gel, and the level of interacting polypeptide found in the matrix-bound fraction quantitated from the gel using standard electrophoretic techniques.


In yet another embodiment, the Errα and PGC-1α polypeptides can be used to generate an interaction trap assay (see also, U.S. Pat. No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J Biol Chem 268:12046-12054; Bartel et al. (1993) Biotechniques 14: 920-924; and Iwabuchi et al. (1993) Oncogene 8:1693-1696), for subsequently detecting agents which disrupt binding of the proteins to one and other.


In still further embodiments of the present assay, the Errα/PGC-1α complex is generated in whole cells, taking advantage of cell culture techniques to support the subject assay. For example, as described below, the Errα/PGC-1α complex can be constituted in a eukaryotic cell culture system, such as a mammalian cell and a yeast cell. Other cells known to one skilled in the art may be used. Advantages to generating the subject assay in a whole cell include the ability to detect inhibitors which are functional in an environment more closely approximating that which therapeutic use of the inhibitor would require, including the ability of the agent to gain entry into the cell. Furthermore, certain of the in vivo embodiments of the assay, such as examples given below, are amenable to high through-put analysis of candidate agents.


The components of the Errα/PGC-1a complex can be endogenous to the cell selected to support the assay. Alternatively, some or all of the components can be derived from exogenous sources. For instance, fusion proteins can be introduced into the cell by recombinant techniques (such as through the use of an expression vector), as well as by microinjecting the fusion protein itself or mRNA encoding the fusion protein.


In still further embodiments of the present assay, the Errα/PGC-1a complex is generated in whole cells and the level of interaction is determined by measuring the level of gene expression of an (i) endogenous gene or of a transgene, whose expression is dependent on the formation of a complex. Genes which are responsive to Errα/PGC-1a complex are provided by the invention and some may be found in the literature.


In specific embodiments, the cells used in the methods described herein for identifying agents are cells in culture or from a subject, such as a tissue, fluid or organ or a portion of any of the foregoing. For example, cells can preferably be from tissues that are involved in glucose metabolism, such as pancreatic cells, islates of Langerhans, pancreatic beta cells, muscle cells, liver cells or other appropriate cells. Preferably, cells are provided in culture and can be a primary cell line or a continuous cell line and can be provided as a clonal population of cells or a mixed population of cells.


VII. Methods of Identifying Agents which Modulate OXPHOS-CR Expression


Applicants have identified a core set of genes (OXPHOS-CR) that help unify previous observations from clinical investigation, exercise physiology, pharmacology, and genetics. Drugs that modulate OXPHOS-CR activity may be promising candidates for the prevention and/or treatment of type 2 diabetes. Applicants discovery of OXPHOS-CR properties and previous observations support the hypothesis that drugs that increase OXPHOS-CR activity in muscle and fat will improve insulin resistance, while agents that reduce it will worsen insulin resistance. These drugs may have benefit in other processes characterized by aberrant oxidative capacity in these tissues, including obesity and aging.


The methods described in this section for identifying agents which regulate the expression level of one or more OXPHOS-CR genes may also identify agents which modulate PGC-1α, Gabp or Errα expression or activity, or agents which mimic or functionally substitute for these genes, since applicants have demonstrated that these three transcriptional regulators regulate the expression of OXPHOS-CR genes. Likewise, these methods also identify therapeutic agents which modulate metabolism or mitochondrial function in a subject in need thereof, such as a subject afflicted with diabetes.


Accordingly, the invention further provides cell based methods for identifying agents which regulate the expression of OXPHOS-CR genes, On aspect provides a method of identifying an agent that regulates expression of OXPHOS-CR genes, the method comprising (a) contacting (i) an agent to be assessed for its ability to regulate expression of OXPHOS-CR genes with (ii) a test cell; and (b) determining whether the expression level of at least two OXPHOS-CR gene products show a coordinate change in the test cell compared to an appropriate control, wherein a coordinate change in the expression of the OXPHOS-CR gene products relative to the appropriate control indicates that the agent regulates the expression of OXPHOS-CR genes.


A related aspect of the invention provides method of identifying an agent that regulates expression of a gene, wherein the gene is an OXPHOS-CR gene, the method comprising (a) contacting (i) an agent to be assessed for its ability to regulate expression of the gene with (ii) a test cell; and (b) determining whether the expression level of two or more OXPHOS-CR gene products show a coordinate change in the test cell compared to an appropriate control, wherein the gene does not encode the two or more OXPHOS-CR gene products, and wherein a coordinate change in the expression of the OXPHOS-CR gene products relative to the appropriate control indicates that the agent regulates the expression level of the gene.


In some embodiments, the OXPHOS-CR gene products comprise an mRNA or a polypeptide. The gene products of the two genes need not be of the same type. For instance, in one specific embodiment, the mRNA levels of a first OXPHOS-CR gene, the polypeptide levels of a second OPHOS-CR gene, and the enzymatic activity of a third OXPHOS-CR genes are determined. In a preferred embodiment, all the gene products comprises mRNAs.


In additional embodiments, determining whether the expression of at least two OXPHOS-CR gene products show a coordinate change in the test cell comprises detecting, either qualitatively, semiquantitatively, or more preferably quantitatively, the levels of the OXPHOS-CR gene products. In one embodiment, the coordinate change comprises an increase or a decrease in expression in all the genes tested. In another embodiment, a coordinate change comprises an increase or a decrease in at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 95%, 97%, 98% or 99% of the genes tested.


In a variation of this method, more than one cell is contacted with the agent. In yet another variation, multiple cells or cell populations are contacted with the agent, such that each cell or cell population provides a measure of expression for each of the OXPHOS-CR gene products. For example, if the expression level of four OXPHOS-CR genes is to be determined, then four cell populations, such as one on each well of a 96-well plate, is contacted with the agent, and from each well the expression level of one of the OXPHOS genes is determined. Alternatively, two cell populations could be used and the expression level of two gene products could be determined from each of the two cell populations. In another embodiment, the cell or cell population is contacted with more than one agent.


The expression level of the OXPHOS-CR gene products may be determined using techniques known in the art. Gene products which comprise an mRNA may be detected, for example, using reverse transcriptase mediated polymerase chain reaction (RT-PCR), Northern blot analysis, in situ hybridization, microarray analysis, etc. (Schena et al., Science 270:467-470 (1995); Lockhart et al., Nature Biotech. 14: 1675-1680 (1996), and U.S. Pat. Nos. 5,770,151, 5,807,522, 5,837,832, 5,952,180, 6,040,138 and 6,045,996). Polypeptide products may be detected using, for example, standard immunoassay methods known in the art. Such immunoassays include but are not limited to, competitive and non-competitive assay systems using techniques such as radioimmunoassays, ELISA (enzyme-linked immunosorbent assay), “sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitin, reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzymatic, or radioisotope labels, for example), Western blots, 2-dimensional gel analysis, precipitation reactions, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays.


When the gene product comprises an enzyme, the level of gene product may be determined using a measure of enzymatic activity. Products of enzyme catalytic activity may be detected by suitable methods that will depend on the quantity and physicochemical properties of the particular product. Thus, detection may be, for example by way of illustration and not limitation, by radiometric, calorimetric, spectrophotometric, fluorimetric, immunometric or mass spectrometric procedures, or by other suitable means that will be readily apparent to a person having ordinary skill in the art. In certain embodiments of the invention, detection of a product of enzyme catalytic activity may be accomplished directly, and in certain other embodiments detection of a product may be accomplished by introduction of a detectable reporter moiety or label into a substrate or reactant such as a marker enzyme, dye, radionuclide, luminescent group, fluorescent group or biotin, or the like. The amount of such a label that is present as unreacted substrate and/or as reaction product, following a reaction to assay enzyme catalytic activity, is then determined using a method appropriate for the specific detectable reporter moiety or label. For radioactive groups, radionuclide decay monitoring, scintillation counting, scintillation proximity assays (SPA) or autoradiographic methods are generally appropriate. For immunometric measurements, suitably labeled antibodies may be prepared including, for example, those labeled with radionuclides, with fluorophores, with affinity tags, with biotin or biotin mimetic sequences or those prepared as antibody-enzyme conjugates (see, e.g., Weir, D. M., Handbook of Experimental Immunology, 1986, Blackwell Scientific, Boston; Scouten, W. H., Methods in Enzymology 135:30-65, 1987; Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; Haugland, 1996 Handbook of Fluorescent Probes and Research Chemicals—Sixth Ed., Molecular Probes, Eugene, Oreg.; Scopes, R. K., Protein Purification: Principles and Practice, 1987, Springer-Verlag, NY; Hermanson, G. T. et al., Immobilized Affinity Ligand Techniques, 1992, Academic Press, Inc., NY; Luo et al., 1998 J. Biotechnol. 65:225 and references cited therein). Spectroscopic methods may be used to detect dyes (including, for example, colorimetric products of enzyme reactions), luminescent groups and fluorescent groups. Biotin may be detected using avidin or streptavidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic, spectrophotometric or other analysis of the reaction products. Standards and standard additions may be used to determine the level of enzyme catalytic activity in a sample, using well known techniques.


In one embodiment, the promoter regions for two or more OXPHOS-CR genes (or larger portions of such genes) may be operatively linked to a reporter gene and used in a reporter gene-based assay to detect agents that enhance or diminish OXPHOS-CR gene expression. In such embodiments, the OXPHOS gene product is the mRNA or polypeptide encoded by the reporter gene. In a specific embodiment, the recombinant fluorescent polypeptide comprises a polypeptide selected from the group consisting of the green fluorescent protein (GFP), DsRed, zFP538, mRRFP1, BFP, CFP, YFP, mutants thereof, or functionally-active fragments thereof. GFP is described in U.S. Pat. No. 5,491,084, while zFP538 is described in Zagranichny et al. Biochemistry. 2004; 43(16):4764-72.


In another specific embodiment, the appropriate control comprises the expression level of the two or more OXPHOS-CR gene products in cells that (a) have not been contacted with the agent; (b) have been contacted with a different dosage of the agent; (c) have been contacted with a second agent; or (d) a combination thereof. Alternatively, an appropriate control may be a measure of the gene product in the cell prior to contacting with the agent. In another embodiment, the level of gene expression of the OXPHOS-CR gene product in the cell can be compared with a standard (e.g., presence or absence of an OXPHOS-CR gene product) or numerical value determined (e.g. from analysis of other samples) to correlate with a normal or expected level of expression.


In some embodiments, the identification of agents which regulate the expression of OXPHOS-CR genes is carried out in a high-throughput fashion. When screening agents in a high-throughput manner, such as when test compounds are screened for their effects on the cellular phenotype, arrays of cells may be prepared for parallel handling of cells and reagents. Standard 96 well microtiter plates which are 86 mm by 129 mm, with 6 mm diameter wells on a 9 mm pitch, may be used for compatibility with current automated loading and robotic handling systems, The microplate is typically 20 mm by 30 mm, with cell locations that are 100-200 microns in dimension on a pitch of about 500 microns. Methods for making microplates are described in U.S. Pat. No. 6,103,479, incorporated by reference herein in its entirety. Microplates may consist of coplanar layers of materials to which cells adhere, patterned with materials to which cells will not adhere, or etched 3-dimensional surfaces of similarly pattered materials. For the purpose of the following discussion, the terms ‘well’ and ‘microwell’ refer to a location in an array of any construction to which cells adhere and within which the cells are imaged. Microplates may also include fluid delivery channels in the spaces between the wells. The smaller format of a microplate increases the overall efficiency of the system by minimizing the quantities of the reagents, storage and handling during preparation and the overall movement required for the scanning operation. In addition, the whole area of the microplate can be imaged more efficiently.


In specific embodiments, the test cell that is contacted with the agent may be a primary cell, a cell within a tissue, or a cell line. In a preferred embodiment, the test cell is a liver cell, a skeletal muscle cell, such as a C2C12 myoblast or a fat cell, such as 3T3-L1 preadipocyte.


In one embodiment, the method for identifying an agent that regulates expression of OXPHOS-CR genes comprises determining whether the expression of at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 or 27 OXPHOS-CR gene products. In a preferred embodiment, the expression level of five or less OXPHOS-CR gene products is determined. In a specific embodiment, the OXPHOS-CR gene products are selected from the group consisting of NDUFB3, SDHA, NDUFA8, COX7A1, UQCRC1, NDUFC1, NDUFS2, ATP50, NDUFS3, SDHB, NDUFS5, NDUFB6, COX5B, CYC1, NDUFA7, UQCRB, COX7B, ATP5L, COX7C, NDUFA5, GRIM19, ATP5J, COX6A2 NDUFB5, CYCS, NDUFA2 and HSPC051. In a specific embodiment, one of the OXPHOS-CR genes is ubiquinol cytochrome c reductase binding protein (UQCRB). In a preferred embodiment, the OXPHOS-CR gene products are human OXPHOS-CR products. The OXPHOS-CR genes whose expression level is determined may be encoded by (i) mitochondrial DNA (mtDNA); (ii) nuclear DNA; or (iii) a combination thereof.


In one embodiment of the methods described herein for identifying agents which regulate the expression of OXPHOS-CR genes, the method further comprises determining if the agent regulates the expression of at least one gene which is not an OXPHOS-CR gene. In some embodiments, the method further comprises determining if the agent regulates the expression of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or 50 genes which are not an OXPHOS-CR genes. Such genes may be mitochondrial genes or, in preferred embodiments, not mitochondrial genes, such as actin genes. The expression level of another gene which is not an OXPHOS-CR gene may serve as an internal control, such that agents which specifically modulate the expression of an OXPHOS-CR gene may be identified.


In other embodiments, a secondary screening step is performed on the agent. In a specific embodiment, the agent is tested in additional assays for its effects on mitochondrial cell number or a mitochondrial function, such as coupled oxygen consumption. Such assays may comprise contacting a cell with the agent, measuring mitochondrial cell number or function, and comparing it to an appropriate control. U.S. Patent Publication No. 20020049176 describes assays for determining mitochondrial mass, volume or number, and U.S. Patent Publication No. 2002/0127536 describes assays for determining coupled oxygen consumption. Accordingly, in one embodiment, the agent being tested in the assays described herein additionally (a) increases the number of mitochondria in the test cell; (b) increases coupled oxygen consumption in the cell; (c) increases mtDNA copy number in the test cell; or (d) a combination thereof.


Agents identified using the methods of the present invention may also be tested in model systems for their efficacy in inducing the desired biological response or in treating disorders. One example is high-fat diet induced obesity and insulin resistance. In another example, agents may also be tested for their efficacy in treating diabetes by using a non-obese diabetic (NOD) mouse. The successful use of this animal model in diabetic drug discovery is reported in the literature (Yang et al., J. Autoimmun. 10:257-260 (1997), Akashi et al., Int. Immunol. 9:1159-1164 (1997), Suri and Katz, Immunol. Rev. 169:55-65 (1999), Pak et al., Autoimmunity 20:19-24 (1995), Toyoda and Formby, Bioessays 20:750-757 (1998), Cohen, Res. Immunol. 148:286-291 (1997), Baxter and Cooke, Diabetes Metal. Rev. 11:315-335 (1995), McDuffie, Curr. Opin. Immunol. 10:704-709 (1998), Shieh et al. Autoimmunity 15:123-135 (1993), Anderson et al., Autoimmunity 15:113-122 (1993)).


It is well understood by one skilled in the art that many of the methods described herein may be carried out using variants of the polypeptides described. Variants include truncated polypeptides, mutant polypeptides, such as those carrying point mutations, and fusions between domains of the subject polypeptides and other polypeptides. In some embodiments, the subject polypeptides, or their domains, may be fused to reporter proteins, such as to GFP or to enzymes. In some embodiments of any of the methods described herein, the polypeptides used are 50, 60, 70, 80, 90, 95, 98 or 99% identical to the sequences referenced to in the various Genbank Accession numbers.


In the methods described herein for identifying an agent, the agent may comprise a recombinant polypeptide, a synthetic molecule, or a purified or partially purified naturally occurring molecule. In a specific embodiment, the agent comprises a virus or a phage. In another embodiment, the agent is a nuclear hormone, such as estrogen, thyroid hormone, cortisol, testosterone, and others. Additional agents include nucleic acids encoding nuclear hormone receptors.


In another embodiment, the agent comprises a set of environmental conditions. The condition may be a physical condition of the environment in which the cell resides, a chemical condition of the environment, and/or a biological condition of the site. Exposure may be for any suitable time. The exposure may be continuous, transient, periodic, sporadic, etc. Physical conditions include any physical state of the examination site. The physical state may be the temperature or pressure of the sample, or an amount or quality of light (electromagnetic radiation) at the site. Alternatively, or in addition, the physical state may relate to an electric field, magnetic field, and/or particle radiation at the site, among others. Chemical conditions include any chemical aspect of the fluid in which the sample populations are disposed. The chemical aspect may relate to presence or concentration of a test compound or material, pH, ionic strength, and/or fluid composition, among others.


Biological conditions include any biological aspect of the shared fluid volume in which cell populations are disposed. The biological aspects may include the presence, absence, concentration, activity, or type of cells, viruses, vesicles, organelles, biological extracts, and/or biological mixtures, among others. The assays described herein may screen a library of conditions to test the activity of each library member on a set of cell populations. A library generally comprises a collection of two or more different members. These members may be chemical modulators (or candidate modulators) in the form of molecules, ligands, compounds, transfection materials, receptors, antibodies, and/or cells (phages, viruses, whole cells, tissues, and/or cell extracts), among others, related by any suitable or desired common characteristic. This common characteristic may be “type.” Thus, the library may comprise a collection of two or more compounds, two or more different cells, two or more different antibodies, two or more different nucleic acids, two or more different ligands, two or more different receptors, or two or more different phages or whole cell populations distinguished by expressing different proteins, among others. This common characteristic also may be “function.” Thus, the library may comprise a collection of two or more binding partners (e.g., ligands and/or receptors), agonists, or antagonists, among others, independent of type.


Library members may be produced and/or otherwise generated or collected by any suitable mechanism, including chemical synthesis in vitro, enzymatic synthesis in vitro, and/or biosynthesis in a cell or organism. Chemically and/or enzymatically synthesized libraries may include libraries of compounds, such as synthetic oligonucleotides (DNA, RNA, peptide nucleic acids, and/or mixtures or modified derivatives thereof), small molecules (about 100 Da to 10 KDa), peptides, carbohydrates, lipids, and/or so on. Such chemically and/or enzymatically synthesized libraries may be formed by directed synthesis of individual library members, combinatorial synthesis of sets of library members, and/or random synthetic approaches. Library members produced by biosynthesis may include libraries of plasmids, complementary DNAs, genomic DNAs, RNAs, viruses, phages, cells, proteins, peptides, carbohydrates, lipids, extracellular matrices, cell lysates, cell mixtures, and/or materials secreted from cells, among others. Library members may be contact arrays of cell populations singly or as groups/pools of two or more members.


VIII. Methods of Identifying Transcriptional Regulators


Another aspect of the invention provides methods of identifying transcriptional regulators. In some aspects, the invention provides methods of identifying transcriptional regulators which display differential activity between two cells.


The invention provides a method of identifying a transcriptional regulator having differential activity between an experimental cell and a control cell, the method comprising (i) determining the level of gene expression of at least two genes in the experimental cell and in the control cell; (ii) ranking genes according to a difference metric of their expression level in the experimental cell compared to the control cell; (iii) identifying a subset of genes, wherein each gene in the subset contains the same DNA sequence motif; (iv) testing via a nonparametric statistic if the subset of genes are enriched at either the top or the bottom of the ranking; (v) optionally reiterating steps (ii)-(iii) for additional motifs; (vi) for a subset of genes that is enriched, identifying a transcriptional regulator which binds to a DNA sequence motif that is contained in the subset of genes; thereby identifying a transcriptional regulator having differential activity between two cells.


The methods provided by the invention for identifying transcriptional regulators with differential activity are not limited to any type of cell or to any type of difference between the two cell. The cells may be eukaryotic, prokaryotic, yeast, nematode, insect, mammalian or human cells. The cells may be primary cells, or cell lines. The cells may be in an organism. In one specific embodiment, the cells are isolated from a subject.


The control and the experimental cell may be the same type of cell or they may be different types of cells. In one embodiment, the experimental cell and the control cell are both cells derived from the same cell line or from the same tissue types. In some embodiments, the experimental cell and the control cell are from different organisms, such as from two different subjects. In some specific embodiments in which the cells are derived from the same organism, one cell is a normal cell and another cell is a diseased cell. For instance, one cell may be a cancer cell and one may be a non-cancer cell, or one cell may be a virus infected cell and one may be a non-infected cell. In some embodiments, both cells may be diseased cells, but differ in their disease states. For instance, the two cells may be hyperplastic cells but at different stages of cancer progression e.g. one cell may be a tumor cell and the other a metastatic cell derived from that tumor. Furthermore, the two cells may differ genetically or they may be clonal cells with essentially identical genotypes. One or both of the cells may be experimentally manipulated, such as by contacting one of the cells with an agent, or contacting both cells with an agent but at different concentrations.


In some embodiments of the method, the subject from which one or both of the cells are derived in is afflicted with a disorder. The method is not limited by any particular disorder. In some specific embodiments, the disorder is a metabolic disorder or a hyperplastic condition. Hyperplastic conditions include renal cell cancer, Kaposi's sarcoma, chronic leukemia, prostate cancer, breast cancer, sarcoma, pancreatic cancer, leukemia, ovarian carcinoma, rectal cancer, throat cancer, melanoma, colon cancer, bladder cancer, lymphoma, mastocytoma, lung cancer, mammary adenocarcinoma, pharyngeal squamous cell carcinoma, testicular cancer, gastrointestinal cancer, or stomach cancer, or a combination thereof. Additional disorders to which this method may be applied may be found, for example, in Braunwald, E. et al. eds. Harrison's Principles of Internal Medicine, 15th Edition (McGraw-Hill Book Company, New York, 2001).


In some embodiments, a transgene is introduced into the experimental cell. The transgene may encode any protein, such as transcriptional regulators or proteins that regulate the activity of transcriptional regulators, such as kinase and phosphatases. The transgene may also encode an inhibitory RNA, such as a hairpin RNA, so that the function of the gene to which the hairpin RNA is directed may be knocked down, allowing a comparison of gene expression in between the two cells. In some embodiments, the transgenes is a transgene associated with a disease state. For example, a gene whose overexpressing leads to cancer may be overexpressed to identify transcriptional regulators expressing differential activity between the two cells. These transcriptional regulators may then be used as therapeutic targets for the treatment of cancer. In some embodiments, the transgene is a mutant transgene, such as a mutant transgene associated with a disease state.


In some embodiments, the DNA sequence motif comprises at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or 25 nucleotides in length, preferably at least 5. The DNA sequence motif may be any combination of nucleotides, and it may represent a known binding site or a novel binding site. In some embodiments, the DNA sequence motif comprises undefined nucleotide positions which may contain more than one base. For instance, a DNA sequence motif may comprise the sequence GATNNATC, wherein the 3rd and 4th positions would include any of the four bases. Similarly, a DNA sequence motif comprising the sequence GAT(G/T)ATC would have a G or a T in the fourth position. In some embodiments, DNA sequence motif comprises at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 defined positions.


The method can be applied to any number of motifs. In one embodiment, all permutations of DNA sequence motifs of at least 6, 7, 8 and 9 bases in length are tested. The number selected may depend on the number of genes in the subset, the computational capabilities available, and the size of the window in each gene in which the DNA sequence motif is search.


The method is not limited to any particular method of measuring gene expression. In some embodiments, determining the level of expression of a gene in a cell comprises determining the levels of mRNA for the gene in the cell. Any method known in the art may be used to determine mRNA levels. In one embodiment, mRNA is isolated from the cell, and the levels of mRNA for each gene in the subset is determined by hybridizing the mRNA, or cDNA derived from the mRNA, to a DNA microarray.


In some embodiments of the methods described herein, identifying the transcriptional regulator which binds to a DNA sequence motif comprises searching a database comprising transcriptional regulators and DNA sequence motifs to which they bind. For example, the TRANSFAC transcription factor database, maintained at the GBF Braunschweig, Germany, defines sequence specific binding site patterns, or motifs, for transcription factors. In another embodiment, the transcriptional regulator is identified by comparing the sequences identified to those found in the literature. It is understood by one skilled in the art that more than one transcriptional regulator may bind to a given DNA sequence motif, and therefore multiple transcriptional regulators may be identified.


In some embodiments of the method described herein, identifying a transcriptional regulator which binds to a DNA sequence motif comprises experimentally identifying a transcriptional regulator which binds to the DNA sequence motif. In one embodiment, this is achieved by These may be achieved by (i) identifying, from a library of genes, a transcriptional regulator capable of driving the expression of a selectable marker, wherein the expression of the selectable marker is dependent on binding of the transcriptional regulator to the DNA sequence motif. In a specific embodiment, a reporter gene is introduced into a cell, such as a mammalian cell or a yeast cell, wherein the promoter of the reporter gene is operably linked to the DNA sequence motif. A plasmid library which comprises candidate transcriptional regulator genes is introduced into the cells such that the transcriptional regulators are expressed in the cell. If a transcriptional regulator is able to bind to the DNA sequence motif, it will increase or decrease expression of the reporter gene, allowing identification of the cell expressing said regulator and thus allowing its identification. In a specific embodiment, a yeast one-hybrid approach, or other approaches well known to one skilled in the art, is used to identify a transcriptional regulator which binds to the DNA sequence motif (Vidal M et al. Nucleic Acids Res. 1999; 27(4):919-29, Kadonaga et al., (1986) Proc. Natl. Acad. Sci. USA, 83, 5889-5893. Singh et el. (1988) Cell, 52, 415-423; Chong, J. A. et al. (1997) In Bartel, P. L. and Fields, S. (eds), The Yeast Two-Hybrid System. Oxford University Press, New York, N.Y., pp. 289-297). Transcriptional regulators may also be identified based on its binding affinity for the DNA sequence motif, such by standard affinity chromatography.


In some embodiments, the non-parametric statistic is a nonparametric, rank sum statistic. In specific embodiments, the non-parametric statistic is selected from the group consisting of a Kolmogorov-Smirnov, Mann-Whitney or Wald-Wolfowitz. Non-parametric statistics are well-known in the art (David J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, CRC Press, 2003; Myles Hollander, Douglas A. Wolfe, Nonparametric Statistical Methods, Wiley, John & Sons, Inc., 1998; Larry Wasserman, All of Statistics, Springer-Verlag New York, Incorporated, 2003). In some embodiments, the difference metric is a difference in arithmetic means, t-test scores, or signal to noise ratios. In some embodiments, a gene set is said to be enriched if the probability that the gene set would be enriched by chance, or when compared to an appropriate null hypothesis, is less than 0.05, 0.04, 0.03, 0.02, 0.01, 0.005, 0.0001, 0.00005 or 0.00001.


In some embodiments where the experimental cell expresses a recombinant transgene, such as a recombinant transcriptional regulator, the recombinant transcriptional regulator may itself be found to have differential activity. In other embodiments where the experimental cell expresses a recombinant transgene, the method may yield transcriptional regulators whose activity or expression is itself regulated by the recombinant transcriptional regulator, and if a recombinant transcriptional regulator is used whose activity is related to a disease state is used, identification of transcriptional regulators having differential activity between the two cells may yield therapeutic targets to treat the disorder.


IX. Biomarker Set Enrichment Analysis (BSEA)


One aspect of the invention provides methods of detecting statistically-significant differences in the expression level of at least one biomarker belonging to a biomarker set, between the members of a first and of a second experimental group. Applicants have named this new analytical technique Biomarker Set Enrichment Analysis (BSEA), or Gene Set Enrichment Analysis (GSEA) when the biomarker is a gene or a gene product.


GSEA may be valuable in efforts to relate genomic variation to disease and measures of total body physiology. Single-gene methods are powerful only where the individual gene effect is dramatic and the variance small, which may not be the case in many disease states. Methods like GSEA are complementary, and provide a framework with which to examine changes operating at a higher level of biological organization. This may be needed if common, complex disorders typically result from modest variation in the expression or activity of multiple members of a pathway e.g. gene (biomarker) sets. As gene sets are systematically assembled using functional and genomic approaches, methods such as GSEA will likely be valuable in detecting coordinated but subtle variation in gene function that contribute to common human diseases. Accordingly, in a preferred embodiment, the methods detect statistically-significant differences in the expression level in more than one biomarker.


One aspect of the invention provides a method of detecting statistically-significant differences in the expression level of at least one biomarker belonging to a biomarker set, between the members of a first and of a second experimental group, comprising: (a) obtaining a biomarker sample from members of the first and the second experimental groups; (b) determining, for each biomarker sample, the expression levels of at least one biomarker belonging to the biomarker set and of at least one biomarker not belonging to the set; (c) generating a rank order of each biomarker according to a difference metric of its expression level in the first experimental group compared to the second experimental group; (d) calculating an experimental enrichment score for the biomarker set by applying a non parametric statistic; and (e) comparing the experimental enrichment score with a distribution of randomized enrichment scores to calculate the fraction of randomized enrichment scores greater than the experimental enrichment score, wherein a low fraction indicates a statistically-significant difference in the expression level of the biomarker set between the members of the first and of the second experimental group.


In one embodiment of the foregoing methods, the distribution of randomized enrichment scores is generated by randomly permutating the assignment of each biomarker sample to the first or to the second experimental group; (ii) generating a rank order of each biomarker according to the absolute value of a difference metric of its expression level in the first experimental group compared to the second experimental group; (iii) calculating an experimental enrichment score for the biomarker set by applying a non parametric statistic to the rank order; and (iv) repeating steps (i), (ii) and (iii) a number of times sufficient to generate the distribution of randomized enrichment scores. In a specific embodiment, the number of times sufficient to generate a distribution is at least 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200 or 500 times. In another specific embodiment, the low fraction is less than 0.05, while in other embodiments it is less than 0.04, 0.03, 0.02, 0.01, 0.005 or 0.001.


In one embodiment of the foregoing methods, the distribution of randomized enrichment scores is a normal distribution. The difference metric may be any difference metric, such as a difference in arithmetic means, a difference in t-test scores, or a difference in signal-to-noise ratio. Similarly, the non-parametric statistic may be any non-parametric statistic, such Mann-Whitney, Wald-Wolfowitz or more preferably Kolmogorov-Smirnov.


The biomarker set typically comprises elements of a pathway, such as a metabolic pathway, a biochemical pathway, a signaling pathway, or any set of genes which share a common biological function or which are coordinately regulated. In a preferred embodiment, the biomarker is selected from the group consisting of a nucleic acid, a polypeptide, a metabolite and a genotype. For example, when the biomarker set comprises genes encoding enzymes of a metabolic pathway, such as glycolytic enzymes, the biomarkers may comprise the genotype of the glycolytic genes. In the embodiment where the biomarker is a genotype, the genotype of all or a subset of the glycolytic genes may be determined by DNA sequencing, and the expression level of the genotype would correspond to the amount of polymorphic DNA i.e. 0, 1 or 2 copies of a wild-type copy of the gene for a diploid cell or organism. Alternatively, the number of mutant copies, or of a specific mutation, can be used in determining the expression level of the genotype.


In other embodiments where the biomarker is the mRNA of each of, or of a subset of, the glycolytic enzymes, the expression level of the mRNA may be determined, or the expression level of a particular splice isoform, using methods well known in the art, such as by northern blots or microarray analysis. In other embodiments where the biomarker is the protein of each of, or of a subset of, the glycolytic enzymes, the level of expression may comprise total protein levels or levels of a particular modified form of the protein, such as the level of phosphorylated or glycosylated protein, both of which may be determined using immunological techniques. Finally, when the biomarker is a metabolite, such as the product whose formation is catalyzed by the glycolytic enzyme, the expression level of the metabolite is its concentration in the biomarker sample, such as its cellular concentration. Metabolite levels may be determined using chromatographic means or other means well known in the art. The reference to the glycolitic pathway in the examples above is meant to be illustrative and non-limiting, or the same principles may apply to any other pathway or biomarker set.


In one embodiment, experimental groups comprise organisms, such as mammals, or more preferably humans. In such embodiments, the sample from the biomarker sample comprises a sample of cells from the organism, or a sample of bodily fluid, such as serum, saliva, tears, sweat or semen. The difference between the first and second experimental groups may be a disease state. For example, the first experimental group may be afflicted with a disease or disorder, while the second group is not. In a specific embodiment, the disorder is characterized by defective glucose metabolism, such as type II diabetes. In another embodiment where the experimental groups comprise organisms, the first and second experimental groups may differ by any measurable characteristic. For example, the groups may differ by a physical characteristic, such as weight, age, sex, sexual preference, eyesight, percent body fat, percent lean muscle mass, height, right vs. left handedness or race. The groups may also differ by a psychological characteristic, such as intelligence, verbal skills, emotional intelligence and even personality types, such those determined by the Myers-Briggs Type Indicator. The groups may also differ by emotional state, such as relaxed vs. emotionally stressed subjects, or cheerful vs. gloomy subjects. The subjects may also differ by the presence or absence of one or more mutations, such as subjects having mutations in an oncogene. In another embodiment, the two experimental groups differ in that one group has been treated with at least one agent, such as a drug.


In another embodiment, experimental groups comprise cells. The cells may comprise primary cells, cell lines, or come in the form of tissue samples. As described above for organisms, the cells in the two experimental groups may differ by a physical characteristic or differ genetically. In a preferred embodiment, the two experimental groups differ in that the cells in one of the experimental groups have been treated with an agent, such as with a compound or drug. In such embodiments, the methods described herein may be used to detect subtle changes that the agent may have on the biomarker set, such as a biochemical or signaling pathway.


X. Nucleic Acid and Polypeptide Agents


In some of embodiments of methods described herein, an agent which reduces the expression of Errα, Gabpa, Gabpb, or any other gene, or an genet used in any of the methods of screening agents described herein, comprises a double stranded RNAi molecule, a ribozyme, or an antisense nucleic acid directed at said gene.


Certain embodiments of the invention make use of materials and methods for effecting knockdown of one form of a gene, by means of RNA interference (RNAi). RNAi is a process of sequence-specific post-transcriptional gene repression which can occur in eukaryotic cells. In general, this process involves degradation of an mRNA of a particular sequence induced by double-stranded RNA (dsRNA) that is homologous to that sequence. For example, the expression of a long dsRNA corresponding to the sequence of a particular single-stranded mRNA (ss mRNA) will labilize that message, thereby “interfering” with expression of the corresponding gene. Accordingly, any selected gene may be repressed by introducing a dsRNA which corresponds to all or a substantial part of the mRNA for that gene. It appears that when a long dsRNA is expressed, it is initially processed by a ribonuclease III into shorter dsRNA oligonucleotides of in some instances as few as 21 to 22 base pairs in length. Furthermore, RNAi may be effected by introduction or expression of relatively short homologous dsRNAs. Indeed the use of relatively short homologous dsRNAs may have certain advantages as discussed below.


Mammalian cells have at least two pathways that are affected by double-stranded RNA (dsRNA). In the RNAi (sequence-specific) pathway, the initiating dsRNA is first broken into short interfering (si) RNAs, as described above. The siRNAs have sense and antisense strands of about 21 nucleotides that form approximately 19 nucleotide si RNAs with overhangs of two nucleotides at each 3′ end. Short interfering RNAs are thought to provide the sequence information that allows a specific messenger RNA to be targeted for degradation. In contrast, the nonspecific pathway is triggered by dsRNA of any sequence, as long as it is at least about 30 base pairs in length. The nonspecific effects occur because dsRNA activates two enzymes: PKR, which in its active form phosphorylates the translation initiation factor eIF2 to shut down all protein synthesis, and 2′, 5′ oligoadenylate synthetase (2′,5′-AS), which synthesizes a molecule that activates RNAse L, a nonspecific enzyme that targets all mRNAs. The nonspecific pathway may represents a host response to stress or viral infection, and, in general, the effects of the nonspecific pathway are preferably minimized under preferred methods of the present invention. Significantly, longer dsRNAs appear to be required to induce the nonspecific pathway and, accordingly, dsRNAs shorter than about 30 bases pairs are preferred to effect gene repression by RNAi (see Hunter et al. (1975) J Biol Chem 250: 409-17; Manche et al. (1992) Mol Cell Biol 12: 5239-48; Minks et al. (1979) 3 Biol Chem 254: 10180-3; and Elbashir et al. (2001) Nature 411: 494-8).


RNAi has been shown to be effective in reducing or eliminating the expression of a gene in a number of different organisms including Caenorhabditis elegans (see e.g. Fire et al. (1998) Nature 391: 806-11), mouse eggs and embryos (Wianny et al. (2000) Nature Cell Biol 2: 70-5; Svoboda et al. (2000) Development 127: 4147-56), and cultured RAT-1 fibroblasts (Bahramina et al. (1999) Mol Cell Biol 19: 274-83), and appears to be an anciently evolved pathway available in eukaryotic plants and animals (Sharp (2001) Genes Dev. 15: 485-90). RNAi has proven to be an effective means of decreasing gene expression in a variety of cell types including HeLa cells, NIH/3T3 cells, COS cells, 293 cells and BHK-21 cells, and typically decreases expression of a gene to lower levels than that achieved using antisense techniques and, indeed, frequently eliminates expression entirely (see Bass (2001) Nature 411: 428-9). In mammalian cells, siRNAs are effective at concentrations that are several orders of magnitude below the concentrations typically used in antisense experiments (Elbashir et al. (2001) Nature 411: 494-8).


The double stranded oligonucleotides used to effect RNAi are preferably less than 30 base pairs in length and, more preferably, comprise about 25, 24, 23, 22, 21, 20, 19, 18 or 17 base pairs of ribonucleic acid. Optionally the dsRNA oligonucleotides of the invention may include 3′ overhang ends. Exemplary 2-nucleotide 3′ overhangs may be composed of ribonucleotide residues of any type and may even be composed of 2′-deoxythymidine resides, which lowers the cost of RNA synthesis and may enhance nuclease resistance of siRNAs in the cell culture medium and within transfected cells (see Elbashi et al. (2001) Nature 411: 494-8). Longer dsRNAs of 50, 75, 100 or even 500 base pairs or more may also be utilized in certain embodiments of the invention. Exemplary concentrations of dsRNAs for effecting RNAi are about 0.05 nM, 0.1 nM, 0.5 nM, 1.0 nM, 1.5 nM, 25 nM or 100 nM, although other concentrations may be utilized depending upon the nature of the cells treated, the gene target and other factors readily discernable to the skilled artisan. Exemplary dsRNAs may be synthesized chemically or produced in vitro or in vivo using appropriate expression vectors. Exemplary synthetic RNAs include 21 nucleotide RNAs chemically synthesized using methods known in the art (e.g. Expedite RNA phophoramidites and thymidine phosphoramidite (Proligo, Germany). Synthetic oligonucleotides are preferably deprotected and gel-purified using methods known in the art (see e.g. Elbashir et al. (2001) Genes Dev. 15: 188-200). Longer RNAs may be transcribed from promoters, such as T7 RNA polymerase promoters, known in the art. A single RNA target, placed in both possible orientations downstream of an in vitro promoter, will transcribe both strands of the target to create a dsRNA oligonucleotide of the desired target sequence. For example, if Errα is the target of the double stranded RNA, any of the above RNA species will be designed to include a portion of nucleic acid sequence of the Errα gene.


The specific sequence utilized in design of the oligonucleotides may be any contiguous sequence of nucleotides contained within the expressed gene message of the target. Programs and algorithms, known in the art, may be used to select appropriate target sequences. In addition, optimal sequences may be selected utilizing programs designed to predict the secondary structure of a specified single stranded nucleic acid sequence and allowing selection of those sequences likely to occur in exposed single stranded regions of a folded mRNA. Methods and compositions for designing appropriate oligonucleotides may be found, for example, in U.S. Pat. No. 6,251,588, the contents of which are incorporated herein by reference. Messenger RNA (mRNA) is generally thought of as a linear molecule which contains the information for directing protein synthesis within the sequence of ribonucleotides, however studies have revealed a number of secondary and tertiary structures that exist in most mRNAs. Secondary structure elements in RNA are formed largely by Watson-Crick type interactions between different regions of the same RNA molecule. Important secondary structural elements include intramolecular double stranded regions, hairpin loops, bulges in duplex RNA and internal loops. Tertiary structural elements are formed when secondary structural elements come in contact with each other or with single stranded regions to produce a more complex three dimensional structure. A number of researchers have measured the binding energies of a large number of RNA duplex structures and have derived a set of rules which can be used to predict the secondary structure of RNA (see e.g. Jaeger et al. (1989) Proc. Natl. Acad. Sci. USA 86:7706 (1989); and Turner et al. (1988) Annu. Rev. Biophys. Biophys. Chem. 17:167). The rules are useful in identification of RNA structural elements and, in particular, for identifying single stranded RNA regions which may represent preferred segments of the mRNA to target for silencing RNAi, ribozyme or antisense technologies. Accordingly, preferred segments of the mRNA target can be identified for design of the RNAi mediating dsRNA oligonucleotides as well as for design of appropriate ribozyme and hammerhead ribozyme compositions of the invention.


The dsRNA oligonucleotides may be introduced into the cell by transfection with an heterologous target gene using carrier compositions such as liposomes, which are known in the art—e.g. Lipofectamine 2000 (Life Technologies) as described by the manufacturer for adherent cell lines. Transfection of dsRNA oligonucleotides for targeting endogenous genes may be carried out using Oligofectamine (Life Technologies). Transfection efficiency may be checked using fluorescence microscopy for mammalian cell lines after co-transfection of hGFP-encoding pAD3 (Kehlenback et al. (1998) J Cell Biol 141: 863-74). The effectiveness of the RNAi may be assessed by any of a number of assays following introduction of the dsRNAs. Further compositions, methods and applications of RNAi technology are provided in U.S. Pat. Nos. 6,278,039, 5,723,750 and 5,244,805, which are incorporated herein by reference.


Ribozyme molecules designed to catalytically cleave Errα or Gabpa mRNA transcripts can also be used to prevent translation of Errα or Gabpa (see, e.g., PCT International Publication WO90/11364, published Oct. 4, 1990; Sarver et al. (1990) Science 247:1222-1225 and U.S. Pat. No. 5,093,246). Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. (For a review, see Rossi (1994) Current Biology 4: 469-471). The mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by an endonucleolytic cleavage event. The composition of ribozyme molecules preferably includes one or more sequences complementary to the gene whose activity is to be reduced.


While ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy target mRNAs, the use of hammerhead ribozymes is preferred. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. Preferably, the target mRNA has the following sequence of two bases: 5′-UG-3′. The construction and production of hammerhead ribozymes is well known in the art and is described more fully in Haseloff and Gerlach (1988) Nature 334:585-591; and see PCT Appln. No. WO89/05852, the contents of which are incorporated herein by reference). Hammerhead ribozyme sequences can be embedded in a stable RNA such as a transfer RNA (tRNA) to increase cleavage efficiency in vivo (Perriman et al. (1995) Proc. Natl. Acad. Sci. USA, 92: 6175-79; de Feyter, and Gaudron, Methods in Molecular Biology, Vol. 74, Chapter 43, “Expressing Ribozymes in Plants”, Edited by Turner, P. C, Humana Press Inc., Totowa, N.J.). In particular, RNA polymerase III-mediated expression of tRNA fusion ribozymes are well known in the art (see Kawasaki et al. (1998) Nature 393: 284-9; Kuwabara et al. (1998) Nature Biotechnol. 16: 961-5; and Kuwabara et al. (1998) Mol. Cell. 2: 617-27; Koseki et al. (1999) J Virol 73: 1868-77; Kuwabara et al. (1999) Proc Natl Acad Sci USA 96: 1886-91; Tanabe et al. (2000) Nature 406: 473-4). There are typically a number of potential hammerhead ribozyme cleavage sites within a given target cDNA sequence. Preferably the ribozyme is engineered so that the cleavage recognition site is located near the 5′ end of the target mRNA- to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts. Furthermore, the use of any cleavage recognition site located in the target sequence encoding different portions of the C-terminal amino acid domains of, for example, long and short forms of target would allow the selective targeting of one or the other form of the target, and thus, have a selective effect on one form of the target gene product.


In addition, ribozymes possess highly specific endoribonuclease activity, which autocatalytically cleaves the target sense mRNA. The present invention extends to ribozymes which hybridize to a sense mRNA encoding a Errα or Gabpa or any other genes of interest described herein, thereby hybridizing to the sense mRNA and cleaving it, such that it is no longer capable of being translated to synthesize a functional polypeptide product.


The ribozymes of the present invention also include RNA endoribonucleases (hereinafter “Cech-type ribozymes”) such as the one which occurs naturally in Tetrahymena thermophila (known as the IVS, or L-19 IVS RNA) and which has been extensively described by Thomas Cech and collaborators (Zaug, et al. (1984) Science 224:574-578; Zaug, et al. (1986) Science 231:470-475; Zaug, et al. (1986) Nature 324:429-433; published International patent application No. WO88/04300 by University Patents Inc.; Been, et al. (1986) Cell 47:207-216). The Cech-type ribozymes have an eight base pair active site which hybridizes to a target RNA sequence whereafter cleavage of the target RNA takes place. The invention encompasses those Cech-type ribozymes which target eight base-pair active site sequences that are present in a target gene or nucleic acid sequence.


Ribozymes can be composed of modified oligonucleotides (e.g., for improved stability, targeting, etc.) and should be delivered to cells which express the target gene in vivo. A preferred method of delivery involves using a DNA construct “encoding” the ribozyme under the control of a strong constitutive pol III or pol II promoter, so that transfected cells will produce sufficient quantities of the ribozyme to destroy endogenous target messages and inhibit translation. Because ribozymes, unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.


In a long target RNA chain, significant numbers of target sites are not accessible to the ribozyme because they are hidden within secondary or tertiary structures (Birikh et al. (1997) Eur J Biochem 245: 1-16). To overcome the problem of target RNA accessibility, computer generated predictions of secondary structure are typically used to identify targets that are most likely to be single-stranded or have an “open” configuration (see Jaeger et al. (1989) Methods Enzymol 183: 281-306). Other approaches utilize a systematic approach to predicting secondary structure which involves assessing a huge number of candidate hybridizing oligonucleotides molecules (see Milner et al. (1997) Nat Biotechnol 15: 537-41; and Patzel and Sczakiel (1998) Nat Biotechnol 16: 64-8). Additionally, U.S. Pat. No. 6,251,588, the contents of which are hereby incorporated herein, describes methods for evaluating oligonucleotide probe sequences so as to predict the potential for hybridization to a target nucleic acid sequence. The method of the invention provides for the use of such methods to select preferred segments of a target mRNA sequence that are predicted to be single-stranded and, further, for the opportunistic utilization of the same or substantially identical target mRNA sequence, preferably comprising about 10-20 consecutive nucleotides of the target mRNA, in the design of both the RNAi oligonucleotides and ribozymes of the invention.


In other embodiments of methods described herein, an agent which modulates the activity of Errα, Gabpa, Gabpb, or any other gene, comprises an antibody or fragment thereof. An antibody may increase or decrease the activity of any of the subject polypeptides, and it may increase or decrease the binding of two proteins into a complex, such as an Errα/PCG-1a complex.


Chickens, mammals, such as a mouse, a hamster, a goat, a guinea pig or a rabbit, can be immunized with an immunogenic form of the Errα, Gabpa, Gabpb, or any polypeptide provided by the invention, or with peptide variants thereof (e.g., an antigenic fragment which is capable of eliciting an antibody response). Techniques for conferring immunogenicity on a protein or peptide include conjugation to carriers or other techniques well known in the art. For instance, a peptidyl portion of one of the subject proteins can be administered in the presence of adjuvant. The progress of immunization can be monitored by detection of antibody titers in plasma or serum. Standard ELISA or other immunoassays can be used with the immunogen as antigen to assess the levels of antibodies.


Following immunization, antisera can be obtained and, if desired, polyclonal antibodies against the target protein can be further isolated from the serum. To produce monoclonal antibodies, antibody producing cells (lymphocytes) can be harvested from an immunized animal and fused by standard somatic cell fusion procedures with immortalizing cells such as myeloma cells to yield hybridoma cells. Such techniques are well known in the art, and include, for example, the hybridoma technique (originally developed by Kohler and Milstein, Nature, 256: 495-497, 1975), as well as the human B cell hybridoma technique (Kozbar et al., Immunology Today, 4: 72, 1983), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. pp. 77-96, 1985). Hybridoma cells can be screened immunochemically for production of antibodies specifically reactive to the peptide immunogen and the monoclonal antibodies isolated. Accordingly, another aspect of the invention provides hybridoma cell lines which produce the antibodies described herein. The antibodies can then be tested for their effects on the activity and expression of the protein to which they are directed.


The term antibody as used herein is intended to include fragments which are also specifically reactive with a protein described herein or a complex comprising such protein. Antibodies can be fragmented using conventional techniques and the fragments screened in the same manner as described above for whole antibodies. For example, F(ab′)2 fragments can be generated by treating antibody with pepsin. The resulting F(ab′)2 fragment can be treated to reduce disulfide bridges to produce Fab′ fragments. The antibody of the present invention is further intended to include bispecific and chimeric molecules, as well as single chain (scFv) antibodies.


The subject antibodies include trimeric antibodies and humanized antibodies, which can be prepared as described, e.g., in U.S. Pat. No. 5,585,089. Also within the scope of the invention are single chain antibodies. All of these modified forms of antibodies as well as fragments of antibodies are intended to be included in the term “antibody”.


In yet another embodiment of the methods described herein, the agent is a polypeptide, such as an Errα polypeptide or a Gabp polypeptide, or a fragment thereof which retains a biological activity or which antagonizes a biological activity of the wild-type polypeptide. For example, an Errα stimulatory agent comprises an active Errα protein, a nucleic acid molecule encoding Errα that has been introduced into the cell. In another embodiment, the agent is a mutant polypeptide which inhibits Errα protein activity. Examples of such inhibitory agents include a nucleic acid molecule encoding a dominant negative Errα a protein, such a fragment of Errα which may compete with wildtype Errα protein for DNA binding or complex formation with PGC-1.


XI. Therapeutics


In one aspect, the invention provides methods of treating disorders in a subject comprising the administration of a agent or of a composition comprising an agent, such as a therapeutic agent. “Therapeutic agent” or “therapeutic” refers to an agent capable of having a desired biological effect on a host. Chemotherapeutic and genotoxic agents are examples of therapeutic agents that are generally known to be chemical in origin, as opposed to biological, or cause a therapeutic effect by a particular mechanism of action, respectively. Examples of therapeutic agents of biological origin include growth factors, hormones, and cytokines. A variety of therapeutic agents are known in the art and may be identified by their effects. Certain therapeutic agents are capable of regulating cell proliferation and differentiation. Examples include chemotherapeutic nucleotides, drugs, hormones, non-specific (non-antibody) proteins, oligonucleotides (e.g., antisense oligonucleotides that bind to a target nucleic acid sequence (e.g., mRNA sequence)), peptides, and peptidomimetics.


In one embodiment, the compositions are pharmaceutical compositions. Pharmaceutical compositions for use in accordance with the present invention may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients. Thus, the compounds and their physiologically acceptable salts and solvates may be formulated for administration by, for example, by aerosol, intravenous, oral or topical route. The administration may comprise intralesional, intraperitoneal, subcutaneous, intramuscular or intravenous injection; infusion; liposome-mediated delivery; topical, intrathecal, gingival pocket, per rectum, intrabronchial, nasal, transmucosal, intestinal, oral, ocular or otic delivery.


An exemplary composition of the invention comprises an compound capable of modulating the expression or activity of a transcriptional regulator, such as a PGC-1, Gabp or Errα polypeptide, with a delivery system, such as a liposome system, and optionally including an acceptable excipient. In a preferred embodiment, the composition is formulated for injection.


Techniques and formulations generally may be found in Remmington's Pharmaceutical Sciences, Meade Publishing Co., Easton, Pa. For systemic administration, injection is preferred, including intramuscular, intravenous, intraperitoneal, and subcutaneous. For injection, the compounds of the invention can be formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringer's solution. In addition, the compounds may be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms are also included.


For oral administration, the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., ationd oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.


Preparations for oral administration may be suitably formulated to give controlled release of the active compound. For buccal administration the compositions may take the form of tablets or lozenges formulated in conventional manner. For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.


The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.


The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.


In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.


Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration bile salts and fusidic acid derivatives in addition, detergents may be used to facilitate permeation. Transmucosal administration may be through nasal sprays or using suppositories. For topical administration, the oligomers of the invention are formulated into ointments, salves, gels, or creams as generally known in the art. A wash solution can be used locally to treat an injury or inflammation to accelerate healing.


The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.


For therapies involving the administration of nucleic acids, the oligomers of the invention can be formulated for a variety of modes of administration, including systemic and topical or localized administration. Techniques and formulations generally may be found in Remmington's Pharmaceutical Sciences, Meade Publishing Co., Easton, Pa. For systemic administration, injection is preferred, including intramuscular, intravenous, intraperitoneal, intranodal, and subcutaneous for injection, the oligomers of the invention can be formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringer's solution. In addition, the oligomers may be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms are also included.


Systemic administration can also be by transmucosal or transdermal means, or the compounds can be administered orally. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration bile salts and fusidic acid derivatives. In addition, detergents may be used to facilitate permeation. Transmucosal administration may be through nasal sprays or using suppositories. For oral administration, the oligomers are formulated into conventional oral administration forms such as capsules, tablets, and tonics. For topical administration, oligomers may be formulated into ointments, salves, gels, or creams as generally known in the art.


Toxicity and therapeutic efficacy of the agents and compositions of the present invention can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds which exhibit large therapeutic induces are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.


The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.


In one embodiment of the methods described herein, the effective amount of the agent is between about 1 mg and about 50 mg per kg body weight of the subject. In one embodiment, the effective amount of the agent is between about 2 mg and about 40 mg per kg body weight of the subject. In one embodiment, the effective amount of the agent is between about 3 mg and about 30 mg per kg body weight of the subject. In one embodiment, the effective amount of the agent is between about 4 mg and about 20 mg per kg body weight of the subject. In one embodiment, the effective amount of the agent is between about 5 mg and about 10 mg per kg body weight of the subject.


In one embodiment of the methods described herein, the agent is administered at least once per day. In one embodiment, the agent is administered daily. In one embodiment, the agent is administered every other day. In one embodiment, the agent is administered every 6 to 8 days. In one embodiment, the agent is administered weekly.


As for the amount of the compound and/or agent for administration to the subject, one skilled in the art would know how to determine the appropriate amount. As used herein, a dose or amount would be one in sufficient quantities to either inhibit the disorder, treat the disorder, treat the subject or prevent the subject from becoming afflicted with the disorder. This amount may be considered an effective amount. A person of ordinary skill in the art can perform simple titration experiments to determine what amount is required to treat the subject. The dose of the composition of the invention will vary depending on the subject and upon the particular route of administration used. In one embodiment, the dosage can range from about 0.1 to about 100,000 ug/kg body weight of the subject. Based upon the composition, the dose can be delivered continuously, such as by continuous pump, or at periodic intervals. For example, on one or more separate occasions. Desired time intervals of multiple doses of a particular composition can be determined without undue experimentation by one skilled in the art.


The effective amount may be based upon, among other things, the size of the compound, the biodegradability of the compound, the bioactivity of the compound and the bioavailability of the compound. If the compound does not degrade quickly, is bioavailable and highly active, a smaller amount will be required to be effective. The effective amount will be known to one of skill in the art; it will also be dependent upon the form of the compound, the size of the compound and the bioactivity of the compound. One of skill in the art could routinely perform empirical activity tests for a compound to determine the bioactivity in bioassays and thus determine the effective amount. In one embodiment of the above methods, the effective amount of the compound comprises from about 1.0 ng/kg to about 100 mg/kg body weight of the subject. In another embodiment of the above methods, the effective amount of the compound comprises from about 100 ng/kg to about 50 mg/kg body weight of the subject. In another embodiment of the above methods, the effective amount of the compound comprises from about 1 ug/kg to about 10 mg/kg body weight of the subject. In another embodiment of the above methods, the effective amount of the compound comprises from about 100 ug/kg to about 1 mg/kg body weight of the subject.


As for when the compound, compositions and/or agent is to be administered, one skilled in the art can determine when to administer such compound and/or agent. The administration may be constant for a certain period of time or periodic and at specific intervals. The compound may be delivered hourly, daily, weekly, monthly, yearly (e.g. in a time release form) or as a one time delivery. The delivery may be continuous delivery for a period of time, e.g. intravenous delivery. In one embodiment of the methods described herein, the agent is administered at least once per day. In one embodiment of the methods described herein, the agent is administered daily. In one embodiment of the methods described herein, the agent is administered every other day. In one embodiment of the methods described herein, the agent is administered every 6 to 8 days. In one embodiment of the methods described herein, the agent is administered weekly.


EXEMPLIFICATION

The invention now being generally described, it will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and are not intended to limit the invention, as one skilled in the art would recognize from the teachings hereinabove and the following examples, that other DNA microarrays, cell types, agents, constructs, or data analysis methods, all without limitation, can be employed, without departing from the scope of the invention as claimed.


The contents of any patents, patent applications, patent publications, or scientific articles referenced anywhere in this application are herein incorporated in their entirety.


The practice of the present invention will employ, where appropriate and unless otherwise indicated, conventional techniques of cell biology, cell culture, molecular biology, transgenic biology, microbiology, virology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are described in the literature. See, for example, Molecular Cloning: A Laboratory Manual, 3rd Ed., ed. by Sambrook and Russell (Cold Spring Harbor Laboratory Press: 2001); the treatise, Methods In Enzymology (Academic Press, Inc., N.Y.); Using Antibodies, Second Edition by Harlow and Lane, Cold Spring Harbor Press, New York, 1999; Current Protocols in Cell Biology, ed. by Bonifacino, Dasso, Lippincott-Schwartz, Harford, and Yamada, John Wiley and Sons, Inc., New York, 1999; and PCR Protocols, ed. by Bartlett et al., Humana Press, 2003.


The tables for all the Experimental genes are listed at the end of the third experimental series.


First Experimental Series


Described herein are results of RNA expression profiling of 43 individuals with varying levels of insulin resistance, carried out to systematically identify pathways and processes operative in diabetes. The 43 individuals were: 17 with normal glucose tolerance (NGT), 8 with impaired glucose tolerance (IGT), and 18 with type 2 diabetes (DM2). No single gene showed statistically significant expression differences between the diagnostic classes. Therefore, they developed a new analytical technique, called Gene Set Enrichment Analysis (GSEA), that seeks to determine whether members of gene sets (e.g., pathways) are consistently different, even though modestly or slightly, in one diagnostic class versus another. Application of GSEA to the microarray data, demonstrated that the oxidative phosphorylation pathway (OXPHOS) was significantly different. Of the approximately 106 members in this pathway, 94 are diminished in DM2 versus NGT. The effect is subtle—with each gene only showing a 15-20% decrease.


Also described herein are results of work carried out to define mechanisms underlying this coordinated decrease in expression of OXPHOS genes. Analysis of the expression of these OXPHOS genes in a public atlas of mouse gene expression, showed that ⅔ of all OXPHOS genes are tightly co-regulated across all 47 tissues examined, and that they are highly expressed at the major sites of insulin mediated glucose uptake (brown fat, heart, and skeletal muscle). This group of genes is referred to herein as “ONPHOS-CR,” for “OXPHOS Co-Regulated.” Applicants hypothesized that the transcriptional co-activator PPARGC1 (also known as PGC-1α was responsible for this transcriptional co-regulation. To prove this, Applicants infected mouse muscle cell lines with PPARGC1 and demonstrated that the OXPHOS-CR genes are specifically induced in a time-dependent manner over a three day period. As described in detail below, GSEA was re-applied to the diabetes data, this time testing whether OXPHOS-CR is specifically differentially expressed between the patient classes. Results showed that this accounts for the bulk of the signal detected in the comparison between NGT and DM2, and moreover, appears to be very different between NGT and IGT, as well, suggesting derangements in this group of genes is an early event. Previous studies have suggested that total body aerobic capacity (VO2max) is predictive of future insulin resistance and diabetes. Interestingly, Applicants found a striking relationship between the mean expression of the OXPHOS-CR genes and total body oxygen consumption.


The following experimental procedures were followed in the first experimental series:


Methods


Human Subjects and Clinical Measurements. Applicants selected 54 men of similar age but with varying degree of glucose tolerance who had been participating in The Malmö Prevention Study in southern Sweden for more than 12 years (Eriksson et al. Diabetologia 33, 526-31. (1990)). The investigation was approved by the Ethics Committée at Lund University, and informed consent was obtained from each of the volunteers. All subjects were Northern Europeans, and their glucose tolerance status was assessed using standardized 75-gram OGTT and by applying WHO85 criteria (Eriksson et al. Diabetologia 33, 526-31. (1990)). At the initial OGTT performed 10 years earlier, none of the men had DM2 (Eriksson et al. Diabetologia 33, 526-31. (1990)). An OGTT performed at the time the biopsy showed that 20 of the subjects had developed manifest type 2 diabetes (DM2), 8 fulfilled the criteria for IGT and 26 had normal glucose tolerance (NGT). As diabetes was diagnosed at the time of the repeat OGTT, none of the subjects were on medication for hyperglycemia or diabetes-related conditions.


Anthropometric and insulin sensitivity measures were performed as previously described (Groop, L. et al. Diabetes 45, 1585-93. (1996)). Height, weight, waist to hip ratio (WHR) and fat free mass were measured on the day of the euglycemic clamp. Maximal oxygen uptake (VO2max) was measured using an incremental work-conducted upright exercise test with a bicycle ergometer (Monark Varberg, Sweden) combined with continuous analysis of expiratory gases and minute ventilation. Exercise was started at a workload varying between 30-100 W depending on the previous history of endurance training or exercise habits and then increased by 20-50 W every 3 min, until a perceived exhaustion or a respiratory quotient of 1.0 was reached. Maximal aerobic capacity was defined as the VO2 during the last 30 s of exercise and is expressed per lean body mass. Insulin sensitivity was determined with a standard 2 hour-euglycemic hyperinsulinemic clamp combined with infusion of tritiated glucose to estimate endogenous glucose production and indirect calorimetry (Deltatrac, Datex Instrumentarium, Finland) to estimate substrate oxidation (Groop, L. et al. Diabetes 45, 1585-93. (1996)). The rate of glucose uptake (also referred to as the M-value) was calculated from the infusion rate of glucose and the residual rate of endogenous glucose production measured by the tritiated glucose tracer during the clamp.


Percutaneous muscle biopsies (20-50 mg) were taken from the vastus lateralis muscle under local anesthesia (1% lidocaine) after the 2-h euglycemic hyperinsulinemic clamp using a Bergström needle (Eriksson et al. Diabetes 43, 805-8. (1994)). Fiber-type composition and glycogen concentration were determined as previously described (Schalin et al. Eur J Clin Invest 25, 693-8. (1995)). Quantification and calculation of the fibers was performed using the COMFAS image analysis system (Scan Beam, Hadsun, Denmark).


Cell Culture and Adenoviral Infection. Mouse myoblasts (C2C12 cells) were cultured and differentiated into myotubes as previously described (Wu, Z. et al. Cell 98, 115-24. (1999)). After 3 days of differentiation, they were infected with an adenovirus containing either green fluorescent protein (GFP) or PGC-1α as previously described (Lin, J. et al. Nature 418, 797-801. (2002)).


mRNA Isolation, Target Preparation, and Hybridization. Targets were prepared from human biopsy or mouse cell lines as previously described (Golub, T. R. et al. Science 286, 531-7. (1999)) and hybridized to the Affymetrix HG-U133A or MG-U74Av2 chip, respectively. Only scans with 10% Present calls and a GAPDH 3′/GAPDH 5′ expression ratio<1.33 were selected. Applicants obtained gene expression data for 54 human samples, but only 43 met these selection criteria; the analysis in this paper is limited to these 43 individuals.


Data Scaling and Filtering. Human microarray data were subjected to global scaling to correct for intensity related biases. For each scan applicants binned all genes according to their expression intensity in a designated reference scan, and recorded the median intensity of that bin to serve as a calibration curve for that scan. Applicants then scaled the expression to the calibration curve of one NGT scan (patient mm12) which applicants visually inspected and deemed high quality using a linear interpolation between the calibration points. Applicants then filtered the 22,283 genes on the HG-U133A chip to eliminate genes that had extremely low expression. A previous study suggested that an Affymetrix average difference level of 100 corresponds to an extremely low level (“not expressed”) (Su, A. I. et al. Proc Natl Acad Sci USA 99, 4465-70. (2002)). Therefore, applicants only considered genes for which there was at least a single measure (average difference) greater than 100. Of the 22,283 genes on the HG-U133A chip, 10,983 genes met this filtering criterion.


Single Gene Microarray Analysis. Microarray analysis to identify individual genes that are significantly different between diagnostic classes was performed using two software packages. First, marker analysis was performed as previously described using GeneCluster. Significance of individual genes was testing by permutation of class labels (5000 iterations), as previously described (Golub, T. R. et al. Science 286, 531-7. (1999)). Applicants used both the t-test and signal to noise difference metrics in these analysis, both yielding comparable results. Second, applicants used the software package SAM, using a A=0.5, to search for gene expression values significantly different between classes (Tusher et al. Proc Natl Acad Sci USA 98, 5116-21. (2001)).


Compilation of Gene Sets. Applicants analyzed 149 gene sets consisting of manually curated pathways and clusters defined by public expression compendia. First, applicants used two different sets of metabolic pathway annotations. Applicants manually curated genes belonging to the following pathways: free fatty acid metabolism, gluconeogenesis, glycolysis, glycogen metabolism, insulin signaling, ketogenesis, pyruvate metabolism, reactive oxygen species (ROS) homeostasis, Kreb's cycle, oxidative phosphorylation (OXPHOS), and mitochondria, using standard textbooks, literature reviews, and LocusLink. Applicants also downloaded NetAFFX (Liu, G. et al et al. Nucleic Acids Res 31, 82-6. (2003)) annotations (October 2002) corresponding to GenMAPP metabolic pathways. To identify sets of co-regulated genes, applicants used self-organizing maps to group the GNF mouse expression atlas into 36 clusters (Su, A. I. et al. Proc Natl Acad Sci USA 99, 4465-70. (2002), Tamayo et al. Proc Natl Acad Sci USA 96, 2907-12. (1999). Genes in these 36 groups were converted to Affymetrix HG-U133A probe sets using the ortholog tables available at the NetAFFX website (October 2002).


Rationale for Grouped Gene Analysis. Consider a microarray dataset with the samples in two categories, A, B. For the sake of simplicity, let the size of A and B each be n. Consider a gene set S for which the expression levels differ between samples of A and B. Model the dataset so that the entry Dij for gene i and sample j is normally distributed with mean μij and standard deviation σ, where
μij={0,iS+α,iS,jA-α,iS,jB.


Then the signal to noise for an individual gene in S is proportionate to
αnσ.


Suppose on the other hand applicants know S and add the expression levels for all genes in S. Then the signal to noise is proportionate to
αnMσ,

where M is the number of genes in S. This increases the mean of our statistic (which is standard normal for the null hypothesis of no gene set association) by a factor of √{square root over (M)}. If the noise is in fact correlated for genes of S, this reduces the benefit, but applicants can still expect a large gain. In practice applicants will not be able to select a gene set containing fully concordant expression levels, but as long as an appreciable fraction of our gene set exhibits this property, applicants can expect a benefit from the grouped gene approach.


Gene Set Enrichment Analysis (GSEA). GSEA determines if the members of a given gene set are enriched amongst the most differentially expressed genes between two classes. First, the genes are rank ordered on the basis of a difference metric. The results presented in the current experimental series use the signal to noise (SNR) difference metric, which is simply the difference in means of the two classes divided by the sum of the standard deviations of the two diagnostic classes. In general other difference metrics can also be used.


For each gene set, applicants then make an enrichment measure, called the enrichment score (ES), which is a normalized Kolmogorov-Smirnov statistic. Consider the genes R1, . . . , RN that are rank ordered on the basis of the difference metric between the two classes, and a gene set S containing G members. Applicants define
S,Xi=N-GG,

if Ri is not a member of
Xi=-GN-G

if Ri is a member of S. Applicants then compute a running sum across all N genes. The enrichment score (ES) is defined as
max1jNi=1jXi,

or the maximum observed positive deviation of the running sum. ES is measured for every gene set considered. To determine whether any of the given gene sets shows association with the class phenotype distinction, applicants permute the class labels 1000 times, each time recording the maximum ES over all gene sets. Note that in this regard, applicants are testing a single hypothesis. The null hypothesis is that no gene set is associated with the class distinction.


In this experimental series, after identifying OXPHOS-CR as a subset of co-regulated OXPHOS genes, applicants tested it (a single gene set) for association with clinical status using GSEA. Because OXPHOS-CR is not independent of the OXPHOS set interrogated in the initial analysis, this cannot be viewed as an independent hypothesis. For this reason, these P-values are explicitly marked as nominal P-values.


Gene set enrichment analysis (GSEA) has been implemented as a software tool for use with microarray data and will be presented in fuller detail, including a discussion of different varieties of multiple hypothesis testing and applications to other biomedical problems, in a companion paper (Subramanian et. al., in preparation).


Evaluating OXPHOS Coregulation in Mouse Expression Datasets. Applicants used the NetAFFX to identify probe sets on the mouse expression chips corresponding to human OXPHOS probe sets. Applicants identified a total of 114 (106 of which passed our filtering criterion) probe-sets corresponding to the human oxidative phosphorylation genes. Using the October 2002 ortholog tables at NetAFFX, applicants were able to identify 61 mouse orthologs on the Affymetrix MG-U74Av2 chip. Of these 61 probe-sets, 52 were represented in the GNF mouse expression atlas (Su, A. I. et al. Proc Natl Acad Sci USA 99, 4465-70. (2002)). These expression data were normalized to a mean of 0 and a variance of 1. Data were hierarchically clustered and visualized using the Cluster and TreeView software packages (Eisen et al. Proc Natl Acad Sci USA 95, 14863-8. (1998)).


Applicants parsed these 52 genes into 32 co-regulated probe-sets and 20 probe-sets that are not co-regulated, based on the dendrogram in FIGS. 7 and 8. 40 distinct HG-HG-U133A probe-sets mapped to the 32 co-regulated mouse probe-sets, and 19 distinct HG-U133A probe-sets mapped to the 20 mouse probe-sets that are not co-regulated. Five HG-U133A probe-sets are shared between these two groups, representing ambiguous cases (i.e., these human probe-sets that map to two mouse probe-sets, one of which is co-regulated and the other of which is not co-regulated). Applicants discarded these five ambiguous human probe-sets from our analysis. This left a total of 35 HG-U133A probe-sets which applicants call OXPHOS-CR genes, and a total of 14 HG-U133A probe-sets which applicants call OXPHOS not CR. Note that 34 and 13 of these genes, respectively, passed our filtering criteria, and these were the genes used in FIG. 9 as well as in the OXPHOS-CR analysis described in the paper.


Linear Regression Analysis. Applicants generated linear regression models using SAS (SAS Institute, USA). Clinical variables were used as dependent variables, and OXPHOS-CR gene expression levels or other clinical/biochemical measures used as the independent (explanatory or predictor) variables. To compute the mean centroid of OXPHOS-CR, the 34 genes OXPHOS-CR gene expression levels were normalized to a mean 0 and a variance 1 across all 43 patients. The OXPHOS-CR mean centroid vector is simply the mean of these 34 expression vectors. In some regression analyses, applicants introduced dummy variables to represent diabetes status. For the regressions applicants have performed, applicants have reported the adjusted squared correlation coefficient (R2adj), which corrects for the degrees of freedom.


Example 1
Comparison of Gene Expression in between Experimental Groups

DNA microarrays were used to profile expression of over 22,000 genes in skeletal muscle biopsies from 43 age-matched males (Table 1): 17 with Normal Glucose Tolerance (NGT), 8 with Impaired Glucose Tolerance (IGT), and 18 with Type 2 Diabetes Mellitus (DM2). Biopsies were obtained at the time of diagnosis (before treatment with hypoglycemic medication) and under the controlled conditions of a hyperinsulinemic euglycemic clamp (see Methods). When assessed with either of two different analytical techniques (Golub, T. R. et al. Science 286, 531-7. (1999), Tusher et al. Proc Natl Acad Sci USA 98, 5116-21. (2001)) that take into account the multiple comparisons implicit in microarray analysis, no single gene exhibited a significant difference in expression between the diagnostic categories. This result is consistent with smaller studies (Sreekumar et al. Diabetes 51, 1913-20. (2002), Yang et al. Diabetologia 45, 1584-93. (2002)) which failed to identify any individual gene whose expression difference was significant when corrected for the large number of hypotheses tested (Kropf et al. Biometrical J. 44, 789-800 (2002), Storey et al. J. R. Statist. Soc. B 64, 479-498 (2002)).


Example 2
Gene Set Enrichment Analysis

To test for sets of related genes that might be systematically altered in diabetic muscle, Applicants devised a simple approach called Gene Set Enrichment Analysis (GSEA), which is introduced here (see FIG. 1 and Methods). The method combines information from the members of previously defined sets of genes (e.g., biological pathways) to increase signal relative to noise (see Methods) and improve statistical power.


For a given pairwise comparison (e.g., high in NGT vs DM2), all genes are ranked based on the difference in expression (using an appropriate metric such as signal to noise). The null hypothesis of GSEA is that the rank ordering of the genes in a given comparison is random with regard to the diagnostic categorization of the samples. The alternative hypothesis is the rank ordering of the pathway members is associated with the specific diagnostic criteria used to categorize the patient groups.


The extent of association is then measured by a non-parametric, running sum statistic termed the enrichment score (ES), and record the Maximum ES (MES) over all gene sets in the actual patient data (FIG. 1). To assess the statistical significance of the MES, applicants use permutation testing of the patient diagnostic labels (for example, whether a patient is NGT or DM2, see FIG. 1). Specifically, applicants compare the MES achieved in the actual data to that seen in each of 1,000 permutations that shuffled the diagnostic labels among the samples. The significance of the MES score is calculated as the fraction of the 1,000 random permutations in which the top pathway gave a stronger result than that observed in the actual data. Because the permutation test involves randomization of the patient labels, it is a test for the dependence on the actual diagnostic status of the patients. Moreover, because the actual MES is compared to the distribution of maximal ES values over all pathways examined in each of the randomized datasets, it accounts for multiple pathways tested, and no further correction is required (Kropf et al. Biometrical J. 44, 789-800 (2002), Storey et al. J. R. Statist. Soc. B 64, 479-498 (2002).


Example 3
Decreased Expression of Genes Involved in Oxidative Phosphorylation

Applicants applied GSEA to the microarray data described above, using 149 gene sets that applicants compiled (Table 2). Of these gene sets, 113 are based on involvement in metabolic pathways (based on public or local curation (Liu, G. et al et al. Nucleic Acids Res 31, 82-6. (2003)) and 36 consist of gene clusters that exhibit co-regulation in a mouse expression atlas of 46 tissues (Su, A. I. et al. Proc Natl Acad Sci USA 99, 4465-70. (2002)) (see Methods). The gene sets were selected without regard to the results of the microarray data from our patients. The top gene set in GSEA analysis yielded a Maximal Enrichment Score (MES=346) that was significant at P=0.029 over the 1,000 permutations of the 149 pathways. That is, in only 29 or 1,000 permutations did the top pathway (of the 149) exceed the score achieved by the top pathway achieved using the actual diagnostic labels.


The maximal ES score was obtained for an internally curated set consisting of genes involved in oxidative phosphorylation (applicants refer to this gene set as OXPHOS). Interestingly, the four gene sets with the next highest ES scores overlap with this OXPHOS gene set, and their enrichment is almost entirely explained by the overlap: a locally curated set of genes involved in mitochondrial function, a set of genes identified with the keyword ‘mitochondria,’ a cluster (referred to here as c20) of co-regulated genes derived from the comparison of publicly available mouse data, and a set of genes related to oxidative phosphorylation defined at the Affymetrix website (Liu, G. et al et al. Nucleic Acids Res 31, 82-6. (2003)).


Examination of the individual expression values for the 106 OXPHOS genes reveals the source of this signal (FIG. 2). Although the typical decrease in expression for individual OXPHOS genes is very modest (˜20%), the decrease is remarkably consistent across the set: 89% (94 of 106) of the genes showing decreased expression in DM2 relative to NGT (FIG. 2). As controls, applicants confirmed that the result is independent of specific aspects of data processing (such as scaling, thresholding, filtering) or of selection of difference metrics. Moreover, the result identified by GSEA is supported by previous observations: others have shown that oxidative capacities are altered in insulin resistant muscle (Bjorntorp, et al. Diabetologia 3, 346-52. (1967), Simoneau et al. Faseb J 9, 273-8. (1995), and recent microarray analyses of human diabetic muscle have identified genes in oxidative phosphorylation among their top-ranked genes (Sreekumar et al. Diabetes 51, 1913-20. (2002)).


Example 4
OXPHOS-CR: A Coregulated Subset of OXPHOS Genes

One of the overlapping gene sets identified by GSEA is cluster c20, defined as a set of genes that are tightly co-regulated across many tissues (see Methods). The partial overlap of OXPHOS with the coregulated cluster led us to ask whether all OXPHOS genes are coordinately regulated, or just a subset. Applicants examined transcriptional co-regulation of mouse homologs of OXPHOS genes across a mouse tissue expression atlas (Su, A. I. et al. Proc Natl Acad Sci USA 99, 4465-70. (2002)). This revealed a previously unrecognized subset of the OXPHOS biochemical pathway, corresponding to about two-thirds of the OXPHOS genes, that exhibit strong correlation across mouse tissues (r=0.67) (FIG. 3a). Applicants term this subset OXPHOS-CR (OXidative PHOSphorylation Co-Regulated). The remaining OXPHOS genes show little co-regulation with OXHPOS-CR or each other (FIG. 3a). The OXPHOS-CR subset strongly expressed in three of 46 tissues: skeletal muscle, heart, and brown fat. Applicants note that these are the major sites of insulin-mediated glucose disposal in mice.


Applicants next asked whether the downregulation of OXPHOS observed in DM2 was a general property of all OXPHOS genes or was specific to OXPHOS-CR. Interestingly, the bulk of the statistical signal applicants observe in GSEA is accounted for by OXPHOS-CR (FIG. 4). Namely, the OXPHOS-CR subset showed a stronger mean deviation than the remainder of the OXPHOS gene set (FIG. 4), and was itself significant in the GSEA analysis (nominal P-value 0.001, as compared to nominal P=0.226 for the remainder of the OXPHOS set). To see if these changes were secondary to hyperglycemia per se, or preceded the onset of frank diabetes, applicants compared expression of OXPHOS-CR in NGT patients to those with the pre-diabetic state, IGT. Applicants found that expression of OXPHOS-CR is also downregulated in IGT (nominal P<10−4). This suggests that downregulation of OXPHOS-CR precedes onset of hyperglycemia. Thus, GSEA allowed us to detect a subset of OXPHOS genes, called OXPHOS-CR, with three key properties: (1) they are members of the oxidative phosphorylation pathway, (2) they are tightly co-regulated across many tissues and are highly expressed in the major sites of insulin mediated glucose disposal, and (3) they exhibit a subtle but consistent decreased expression in muscle from patients with both the pre-diabetic state IGT and type 2 diabetes.


Example 5
PGC-1α can Induce Expression of OXPHOS-CR

The strong correlation in expression of the OXPHOS-CR genes and their coordinated downregulation in diabetic muscle led us to explore mechanisms that might mediate to this tight control. Applicants reasoned that peroxisome proliferator-activated receptor γ coactivator 1custom character (PGC-1α), a cold-inducible regulator of mitochondrial biogenesis, thermogenesis, and skeletal muscle fiber type switching (Puigserver, P. et al. Cell 92, 829-39. (1998), Wu, Z. et al. Cell 98, 115-24. (1999), Lin, J. et al. Nature 418, 797-801. (2002)), was a prime candidate for mediating these effects. Consistent with this hypothesis, applicants observed that mean levels of PGC-1α transcript were similarly decreased (−20%) in the diabetic muscle, and noted that the promoters of several of the OXPHOS-CR genes have been reported to contain binding sites for nuclear respiratory factor 1, a transcription factor co-activated by PGC-1α (Scarpulla, R. C. Biochim Biophys Acta 1576, 1-14. (2002)).


To test directly whether OXPHOS-CR genes might be transcriptional targets of PGC-1α, applicants expressed PGC-1α in a mouse skeletal muscle cell line using an adenoviral expression vector (Lin, J. et al. Nature 418, 797-801. (2002)) and used DNA microarrays to profile expression of the OXPHOS genes over a 3 day period (see Methods). Applicants found that a subset of OXPHOS genes were strongly upregulated in a time-dependent manner in response to PGC-1α, and that this subset corresponds almost precisely to OXPHOS-CR (FIG. 3b). These in vitro results support the hypothesis that PGC-1 plays a role in the regulation of OXPHOS-CR, both across the mouse tissue compendium as well as in the observed downregulation in diabetes.


Example 6
Expression of OXPHOS-CR and Measures of Whole Body Physiology

Metabolic control theory suggests that small increases in many sequential steps of a metabolic pathway can lead to a dramatic change in the total flux through the pathway, whereas large changes in a single enzyme might have no measurable effects (Brown et al. Biochem J 284, 1-13. (1992). To test the hypothesis that subtle differences in OXPHOS-CR gene expression in diabetic patients might be related to changes in total body metabolism, applicants examined the relationships between diabetes status, expression of OXPHOS-CR genes, and VO2max as measured in our patients (FIG. 5). Consistent with previous reports (Eriksson et al. Diabetologia 33, 526-31. (1990)), diabetes and VO2max are correlated in our patients (Radj2=0.28, P=0.0005). Strikingly, applicants found that the expression of OXPHOS-CR genes in muscle is strongly correlated with VO2max (Radj2=0.22, P=0.0012) (FIG. 5), a measure of total-body physiology. The top ranking OXPHOS-CR gene, ubiquinol cytochrome c reductase binding protein (UQCRB), is even a stronger predictor (Radj2=0.31, P<0.0001). OXPHOS-CR appears to be not solely a proxy for diabetes status, however, because a two-variable regression of VO2max on diabetes status and OXPHOS-CR expression level shows that both variables contribute significantly to the correlation (P=0.05 for the model with both variables as compared to the model with only diabetes status).


It is important to note that these results do not seem secondary to other known predictors of oxidative capacity. Applicants found no relationship between BMI or WHR and OXPHOS-CR gene expression (Radj2<0.01 in both cases). In addition, there was no significant relationship between quantitative measures of fiber types and OXPHOS-CR expression. Thus, subtle decrease in expression of OXPHOS-CR genes in muscle appears to be associated with changes in total body aerobic capacity, even beyond their correlation to diabetes status, body habitus, or muscle fiber type.


Second Experimental Series


The following experimental procedures were followed in the second experimental series:


Organelle Purification and Sample Preparation. 6-8 week old male mice were subjected to an 8 hour fast and then euthanized. Brain, heart, kidney, and livers were harvested immediately and placed in ice cold saline. Mitochondria were isolated using differential centrifugation as previously described and purified with a Percoll gradient (Mootha et al. (2003). Proc Natl Acad Sci USA 100, 605-10). The proteins were then solubilized, size separated, and digested as previously described (Mootha et al. (2003). Proc Natl Acad Sci USA 100, 605-10)).


Tandem Mass Spectrometry. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was performed on QSTAR pulsar quadrupole time of flight mass spectrometers (AB/MDS Sciex, Toronto) as described previously (Mootha et al. (2003). Proc Natl Acad Sci USA 100, 605-10). Tandem mass spectra were searched against the NCBInr database (February 2002) with tryptic constraints and initial mass tolerances<0.13 Da in the search software Mascot (Matrix Sciences, London). Only peptides achieving a Mascot score above 25 and containing a sequence tag of at least three consecutive amino acids were accepted.


Curation of Previously Annotated Mitochondrial Proteins. Two key sources were used to identify previously annotated proteins. First, Applicant downloaded the 308 human and 117 mouse protein sequences at MITOcondria Project (Scharfe et al. (2000). Nucleic Acids Res 28, 155-8). Applicant also downloaded the 199 human and 290 mouse protein sequences annotated at LocusLink (http://www.ncbi.nlm.nih.gov/LocusLink) as having a mitochondrial subcellular localization based on gene ontology terminology (GO:0005739) (Lewis et al. (2000). Curr Opin Struct Biol 10, 349-54) (January 2003). Also included in the master list the are 13 mtDNA encoded proteins, based on LocusLink annotation.


A Nonredundant List of Mitochondrial Proteins. FASTA sequences corresponding to the previously annotated mitochondrial proteins, newly identified mitochondrial proteins, and the mouse Reference Sequences (Maglott et al. (2000). Nucleic Acids Res 28, 126-8) were merged. These were then collapsed into distinct protein clusters using a downloaded version of blastclust (http://www.ncbi.nlm.nih.gov/BLAST/). Applicants required that members of a cluster demonstrate 70% sequence identity over 50% of the total length, not requiring a reciprocal relationship to exist. Clusters containing multiple Reference Sequences were then broken using a higher stringency blastclust, in which applicants required 90% identity over 50% of the length. Clusters containing hemoglobin, trypsin, and albumin were eliminated as obvious contaminants. When possible the Reference Sequence was selected as the exemplar from the cluster, otherwise another sequence was manually selected. Hence, each cluster is annotated by an exemplar sequence, the protein accessions (and tissues) in which the proteins were found in the proteomics experiments, and the protein accessions corresponding to annotation sources. Applicant obtained a total of 612 distinct protein clusters (Table 2). The GenPept descriptions of 37 of these exemplars suggested that they are mitochondrial, but simply missed by the automated annotation procedure using the MITOP and LocusLink databases. These exemplars were therefore manually annotated as previously known mitochondrial proteins, to provide a more conservative estimate of our sensitivity measure and newly discovered proteins.


Statistical Analysis. Cluster enrichment was determined using a cumulative hypergeometric distribution. To determine whether two empirical cumulative distributions arise from the same underlying distribution, Applicant used the Kolmogorov-Smirnov test statistic, D. Tail values were obtained using Matlab (Mathworks).


RNA/Protein Concordance Test. the RNA/protein concordance test was developed to determine whether there is significant concordance between protein detection in a proteomics experiment and mRNA abundance in a microarray experiment. Consider the pair of tissues, i,j, where i,jε{brain, heart, kidney, liver}. For a given gene, G, let M(G,k) represent the gene expression level of gene G in tissue k. Let P(G,k) be an indicator variable that is 0 if the protein product of gene G is not found in tissue k, and 1 if the protein product is found in tissue k. The mRNA and protein expression levels of gene G are concordant in tissues i and j if M(G,i)>M(G,j) when P(G,i)>P(G,j). For a given gene, G, compute the total number of observed concordances (cG) between all pairs of tissues as well as the expected variance in concordance (vG) for that gene. The test statistic is simply
C=GcGGvG,

which has mean 0 and variance 1 and is approximately normal in the null case where there is no concordance between RNA abundance and protein detection.


Compositional Diversity Across Tissues. Mitochondrial gene products show distinct patterns of expression based on protein and RNA expression (Table 5). These patterns of distribution can be used to develop a simple model that describes core mitochondrial proteins versus those that are specialized to any set of cell types.


Consider a set of i+1 tissues, Si+1, as well as a distinct subset Si, i.e., Si⊂Si+1, where i>0. Applicants are interested in the probability that a given gene product is found in Si+1 conditional that it is found in Si, or simply T(Si+1, Si)=P (gene product is found in Si+1|gene product is found in Si). Define Pi as the average T(Si+1, Si) over all selections of Si⊂Si+1. When applicant assessed compositional diversity using RNA expression levels, Applicant interpreted an RNA expression level greater than 200 as present (Su et al. (2002). Proc Natl Acad Sci USA 99, 4465-70), and an expression below this level as not present. These average conditional probabilities Pi can also be modeled. Imagine that a fraction f of all mitochondrial proteins are ubiquitous (i.e., expressed in all cell types with probability 1) and that a fraction 1−f are not ubiquitous, but rather, appear in a given tissue with probability p. Then Pi+1=(f+(1−f)pi+1)/(f+(1−f)pi).


DNA Microarray Analysis. To identify Affymetrix probe-sets corresponding to each protein cluster, Applicant mapped the exemplar sequence to the Unigene cluster, and then identified the corresponding Affymetrix MG-U74Av2 probe set. The NetAffx website (http://www.affymetrix.com) and its tables were used to perform these mappings (January 2003). The GNF mouse expression atlas (Su et al. (2002). Proc Natl Acad Sci USA 99, 4465-70) was downloaded from its website (http://www.gnf.org). In comparisons of protein detection and mRNA abundance, the used the mRNA expression level for a given tissue averaged over the replicates, since the GNF mouse expression atlas includes duplicates for each tissue. Because the proteomic survey was performed on whole brain, applicants simply compared to the average expression of all brain samples in the GNF mouse atlas. Hierarchical clustering was performed using DCHIP (Schadt et al. (2001). J Cell Biochem Suppl Suppl, 120-5).


Identification of Ancestral Mitochondrial Genes. The consensus FASTA sequences for the genes represented on the Affymetrix MG-U74Av2 oligonucleotide array were downloaded from the NetAFFX (Liu et al. (2003). Nucleic Acids Res 31, 82-6) website (http://www.affymetrix.com). A blastx comparison of these sequences was performed against the Rickettsia prowazekii protein sequences, downloaded from the NCBI, and then a tblastn comparison of the bacterial protein sequences was performed against the consensus FASTA sequences. An ancestral gene as defined as one achieving a BLASTX E<0.01 and having a reciprocal best match in the BLAST analysis.


Example 7
Proteomic Survey of Mitochondria

Applicants carried out a systematic survey of mitochondrial proteins from brain, heart, kidney, and liver of C57BL6/S mice (see Methods). Each of these tissues provides a rich source of mitochondria. The isolation consisted of density centrifugation followed by Percoll purification. Preparations were tested for purity and for contamination using immunoblotting directed against organelle markers, enzymatic assays to ensure that the mitochondria were intact, and electron microscopy. The liver, heart, and kidney mitochondria were extremely pure. The brain mitochondria tended to show persistent contamination by synaptosomes, which themselves are a rich source of neuronal mitochondria (see Fernandez-Vizarra (2002). Methods 26, 292-7).


Mitochondrial proteins from each tissue were solubilized and size separated by gel filtration chromatography into approximately 20 fractions (see Methods). These proteins were then digested and analyzed by liquid chromatography mass spectrometry/mass spectrometry (LC-MS/MS). More than 100 LC-MS/MS experiments were performed (see Methods).


The acquired tandem mass spectra were then searched against the NCBI nonredundant database consisting of mammalian proteins using a probability-based method (Perkins et al. (1999). Electrophoresis 20, 3551-67. [pii]). Stringent criteria were used for accepting a database hit. Specifically, only peptides corresponding to complete tryptic cleavage specificity with scores greater than 25 were considered (see Methods). Furthermore, only fragmentation spectra which also exhibited a correct, corresponding peptide sequence tag (Mann et al. (1994). Anal Chem 66, 4390-9) consisting of at least three amino acids were considered.


Using these criteria, ˜2100 database hits were identified. This list contains a high degree of redundancy, because a protein may have been found in adjacent fractions of the gel and in different tissues. The ˜2100 hits collapse to a distinct set of 422 mouse proteins (see Table 4, FIG. 6, and Methods).


Example 8
Previously Annotated Mitochondrial Proteins

A list of previously annotated mouse and human mitochondrial proteins was created by pooling all the mouse and human proteins from MITOchondria Project (MITOP, http://mips.gsf.de/proj/medgen/mitop/), a public database of curated mitochondrial proteins, as well as all proteins annotated as mitochondrial in NCBI's LocusLink database (http://www.ncbi.nlm.nih.gov/LocusLink/) (see Methods). After elimination of redundancy, the list contains 452 distinct mouse proteins that are either directly annotated as mitochondrial or whose human homolog is annotated as mitochondrial (FIG. 6A). The human proteins recently reported to be mitochondrial by Taylor et. al. 2003 (in a study published after the construction of Applicant's list of previously annotated proteins) were not included in Applicant's list. These proteins instead serve as a control against which to compare the proteins identified in our proteomic analysis. The list of 452 previously annotated mitochondrial proteins is by no means comprehensive—there are likely many mitochondrial proteins that are simply not annotated by these public databases. However, it does provide a reasonable, high confidence list of previously annotated proteins against which to benchmark Applicant's proteomic survey.


Example 9
Newly Identified Mitochondrial Proteins

The set of 422 proteins identified in Applicant's proteomic survey include 262 of the 452 proteins previously annotated to be mitochondrial (58%) and 160 proteins not previously annotated as associated with the mitochondria (FIG. 6A). The previous and new sets were combined to produce a list of 612 genes whose protein product is physically associated with mitochondria. This set of genes is referred to as mito-P (Table 4).


The 422 proteins identified in the proteomic survey span a wide range of isoelectric points and molecular weights (FIG. 6B, 6C), although proteins from the inner mitochondrial membrane are underrepresented (FIG. 6D). The incomplete sensitivity (58%) is most likely due to a bias against proteins of low abundance, which is a known feature of the mass spectrometry methodology. This explanation is supported by analysis of RNA expression of the genes encoding the detected and undetected proteins. Considering the subset of the 452 previously annotated genes for which RNA expression was reported in a recent atlas of mRNA expression in mouse 0, the distribution of RNA expression level was about 5-fold higher for the genes whose products were detected in our proteomic survey as compared to those that were not (P=1×10−21) (FIG. 6E). This suggests that the proteomics strategy preferentially detected the higher abundance proteins


The 160 proteins not previously annotated as mitochondrial potentially represent new mitochondrial proteins, either in the conventional sense of being present within the organelle or in a broader sense of being tethered to the mitochondrial outer membrane (e.g., tubulin (Heggeness et al. (1978). Proc Natl Acad Sci USA 75, 3863-6)).


To test this notion, Applicants sought independent evidence that these 160 proteins are actually mitochondrial. First, the list was compared to proteins identified in a recent survey of human heart mitochondria (Taylor et al. (2003). Nat Biotechnol 18, 18). Human homologs of 64 of the 160 proteins were identified in this recently published study. Of the remaining 96 proteins, 24 have strong mitochondrial targeting sequences based on bioinformatic analysis of protein targeting sequences (Table 4 and Methods) (Nakai et al. (1999). Trends Biochem Sci 24, 34-6), a proportion similar to the known mitochondrial proteins. For example polymerase delta interacting protein 38 (encoded by Pdip38-pending), which was detected only in liver mitochondria, and the gene product of Rnaseh1, which was found only in the kidney, have strong mitochondrial targeting scores. A recent study confirmed that Rnaseh1 can be localized to the mitochondrion, where it plays a critical role in mtDNA homeostasis (Cerritelli et al. (2003). Mol Cell 11, 807-15).


Example 10
Modules of Coregulated Mitochondrial Genes

Applicant also investigated co-regulation of the 612 mito-P genes across different tissues. For 388 of the 612 mito-P genes, mRNA expression levels were available in a mouse gene expression compendium containing data across 47 tissues (Su et al. (2002). Proc Natl Acad Sci USA 99, 4465-70).


Applicant calculated pairwise correlation and performed hierarchical clustering of these 388 gene expression profiles (FIGS. 6 and 7). There are several striking mitochondrial gene modules (FIG. 6), which are defined here as clusters of genes showing strong expression correlation across the 47 tissues (Table 6). These modules include genes with strong annotation support as well as genes identified in this study as being mitochondrial (see bar labeling in FIG. 7). These clusters appear to have properties of scale-free networks, in which a few central nodes are highly correlated with each other (module 6), while most are correlated with only a few genes or none at all (Barabasi, (2003). Scale-free networks, Sci Am 288, 60-9). As shown in FIG. 7, mitochondrial gene expression profiles vary tremendously from tissue to tissue, consistent with the compositional diversity of mitochondria noted above.


Some of these gene modules have no obvious functional relationships, though two appear to be enriched in certain tissues (modules 1,2). Each of these gene modules is characterized by tightly correlated gene expression across the tissue compendium. Members of these genes likely share transcriptional regulatory mechanisms as well as cellular functions. Many of the newly identified mitochondrial genes (black bar in annotation bar of FIG. 7) lie within these modules, providing a functional context for their cellular role.


The mitochondria gene modules provide an initial step towards the characterization of some of the newly identified mitochondrial genes, since functionally related genes tend to have correlated gene expression. Of the 104 newly identified mitochondrial proteins that are represented in this microarray dataset, 38 fall within these 7 modules, providing them with a preliminary functional context.


Example 11
Modules Enriched in Genes of Oxidative Phosphorylation

A striking gene module (module 6) consists of genes related to oxidative phosphorylation (OXPHOS) and β-oxidation and expressed at high levels in brown fat, skeletal muscle, and heart (FIGS. 6 and 7). The related module 5, enriched in OXPHOS genes but not the β-oxidation genes, is expressed not only in brown fat, heart, and skeletal muscle, but also in colon. Colon is not traditionally considered to be a highly metabolic tissue, but it has high expression of peroxisome proliferative activated receptor-γ, a partner of PGC-1α, a master regulator of mitochondrial biogenesis (Puigserver et al. (2003). Endocr Rev 24, 78-90). In a recent study of human diabetic muscle, Applicant and co-workers demonstrated that the OXPHOS genes in modules 5 and 6 (termed OXPHOS-CR for OXidative PHOShorylation CoRegulated) show diminished expression in type 2 diabetes, and that these genes are targets of PGC-1α. The current study identifies two modules (modules 5, 6) that contain OXPHOS-CR as well as other mitochondrial genes, including 4 newly identified genes in module 5 and 12 newly mitochondrial genes in module 6. It will be interesting to determine how this expanded set contributes to type 2 diabetes and other measures of whole-body metabolism.


Example 12
Mitochondrial Gene Expression Neighborhood

Applicant also sought to systematically identify all genes that exhibit correlated expression with the mito-P genes. This was done using the neighborhood index (N100), a previously described statistic that measures a given gene's expression similarity to a target gene set (Mootha et al. (2003). Proc Natl Acad Sci USA 100, 605-10). For a given gene, the mitochondria neighborhood index is defined as the number of mito-P genes among its nearest 100 expression neighbors. Applicant computed the N100 statistic for all genes in the mouse expression atlas (FIG. 9).


The 10,043 genes in the mouse expression atlas include 388 of the 612 mito-P genes. If these 388 genes were a random subset, an N100 value greater than 10 would be expected to occur by chance 1 in 1000 times, and an N100 greater than 50 would be exceedingly rare (P=1.5×10−14).


A total of 806 genes have N100>10. This is defined herein as the expression neighborhood of the mito-P set, and Applicant interprets these genes as being co-regulated with mitochondrial genes (see the entire rank ordered list, Table 7). This group corresponds to only 8% of all the genes studied, but it contains 52% of the mito-P genes (6.5-fold enrichment, P=1.49×10−11). The list includes 59 that are newly mitochondrial, based on the proteomic survey described herein and 25 that were previously known to be mitochondrial but not detected by that proteomic survey.


Importantly, the expression neighborhood includes 605 genes not present in the mito-P set itself. These genes may encode proteins that are physically present in mitochondria but were missed in the proteomic survey or that are functionally related to mitochondria but not physically associated. They provide a catalog of genes that are likely functionally relevant to mitochondrial biology, and are complementary to the proteomic approach that identified proteins resident in this organelle.


Example 13
Transcription Factors and Nutrient Sensors within the Mitochondrial Neighborhood

Applicant found several genes involved in DNA replication within the mitochondria neighborhood (Table 1). Essra, Pparg, and Ppara encode nuclear receptors that are tightly co-regulated with the mitochondrial genes. This is intriguing since previous studies have suggested that these nuclear receptors are important partners of the coactivator PGC-1custom character key molecule in mitochondrial biogenesis (Puigserver et al. (2003). Endocr Rev 24, 78-90). While nuclear receptors are critical to mitochondrial biogenesis (Scarpulla, R. C. (2002). Biochim Biophys Acta 1576, 1-14), to our knowledge, none has previously been reported to be co-regulated with the mitochondrial genes themselves. Interestingly, a recent report demonstrated that PGC-1α co-activates Essra gene expression (Schreiber et al. (2003). J Biol Chem 278, 9013-8). Applicant's results raise the hypothesis that this may be a general phenomenon, in which PGC-1α is co-activating a number of its own transcriptional partners.


A number of other transcriptional regulators also have expression patterns very tightly regulated with the mitochondrial genes, including Mdfi, Nfix, Thx6, and Crsp2. These are excellent candidate transcription factors that may be targets of PGC-1α, or perhaps are involved in other mechanisms leading to the biogenesis of this organelle.


Surprisingly, the nutrient sensor Sir2 is also found within the mitochondrial expression neighborhood. Sir2 encodes an NAD(+)-dependent histone deacetylase which is homologous to the yeast silent information regulator 2 (ySir2). Sir2 is involved in gene silencing, chromosomal stability, and aging. Chromatin remodeling enzymes rely on coenzymes derived from metabolic pathways, including those generated by the mitochondrion. These observations suggest that Sir2 and mitochondrial gene expression are cooperatively regulated, perhaps linking the mitochondrion to the nutrient sensing activities of Sir2.


Third Experimental Series


The following experimental procedures were followed in the third experimental series:


Data Scaling, Visualization, and Annotation Enrichment. Microarray data were acquired and subjected to linear scaling using the median scan as a reference. Data were visualized using the dChip software package (10) and enrichment by ontology terms determined with the GoSurfer tool, using a P-value of 0.01 (11). Mitochondrial genes were defined based on a recent proteomic survey of organelle in mouse (12).


Promoter Databases. Applicants used the Reference Sequence annotations of mm3 build of the mouse genome (http://genome.ucsc.edu) and the annotation tables for the Affymetrix MG-U74Av2 chip (http://www.affymetrix.com) to compile a list of 5034 mouse genes for which there is a 1:1 mapping between Affymetrix probe-set and Reference Sequences. The ‘mouse promoter database’ consists of 2000 bp of genomic sequence centered on the annotated transcription start site of these genes.


Applicants also performed analyses on a ‘masked promoter database’, consisting of the regions within these 2000 bp that are aligned and conserved between mouse and human. Applicants used the mouse/human BLASTZ alignments (mouse mm3 vs. human hg15) (13) and only considered the 5008 promoters for which the alignment contained at least 100 bp. Applicants masked the aligned promoters to retain mouse sequence exhibiting at least 70% identity to human across windows of size 10. The median promoter length in the masked database is ˜1200 bp.


Motif discovery. For a given day, genes from the microarray are ordered on the basis of expression difference between GFP and PGC-1α (applicants use the signal to noise ratio as our difference metric). Each gene is annotated for the presence of a motif in the promoter by searching for exact k-mers (where k=6, 7, 8 or 9) or for selected motifs of interest. Applicants use the Mann-Whitney rank sum statistic U to determine whether the distribution of differential expression for those genes with a given motif differs from those genes lacking the motif. When working with promoters of unequal length (e.g., the masked promoter database), a more appropriate null hypothesis for the Mann-Whitney statistic is that the probability of detecting a motif in a promoter is proportional to its length. To assess the significance of a motif with rank sum U that appears in C promoters, applicants use Monte Carlo simulation (with 1000 samples) to estimate the null distribution of U for a sample of C ranks drawn randomly, without replacement, given relative weights proportional to the promoter lengths. For large C (C>10) and a reasonable distribution of promoter lengths, U is approximately normally distributed.


Promoter databases and motifADE source code are available at http://www-genome.wi.mit.edu/mpg/PGC_motifs/.


Example 14
Discovering Motifs Associated with Differential Expression

Systematic identification of transcription factors involved in biological processes in mammals remains a largely unsolved problem (17). A promising approach relates genome-wide expression profiles to promoter sequences to discover influential cis-motifs (18-21). Such methods have yielded impressive results in simple organisms such as yeast, but it has been challenging to extend these algorithms to mammalian genomes, where intergenic regions are large, annotation of gene structure is imperfect, and DNA sequence can be highly repetitive. Most of these methods seek motifs by comparison to a fixed background model of nucleotide composition (which fails to represent the fluctuations seen in large genomes) or by comparison between two sets of genes (which is likely to capture only very sharp differences). Further, many of these methods assume that the expression data are normally distributed, which may not always be true.


To overcome some of these obstacles, applicants devised a simple, nonparametric strategy for identifying motifs associated with differential expression (motifADE) (FIG. 10a). The algorithm involves three steps: (i) ranking genes based on differential expression between two conditions; (ii) given a candidate motif, identifying the subset of genes whose promoter regions contains the motif; and (iii) testing via a nonparametric, rank sum statistic (see Methods) if these genes tend to appear toward the top or bottom of the ranked list (indicating association) or are randomly distributed on the list. motifADE may be applied to a specific candidate motif of interest or to the list of all possible motifs of a given size (in which case the significance level should be adjusted to reflect multiple hypothesis testing). By using a nonparametric scoring procedure (see Methods), applicants do not make assumptions about the distribution of the expression data. Furthermore, by considering the entire rank ordered list, the promoters without the motif implicitly provide a background of DNA composition for comparison, and there is no need to group the genes into clusters. The method can operate on a traditional promoter database or even a database of promoters that have been masked based on evolutionary conservation (see Methods).


Example 15
Binding Sites for Errα and Gabpa are the Top Scoring Motifs Associated with the PGC-1α Transcriptional Program

To identify motifs related to PGC-1α action, applicants infected mouse C2C12 muscle cells with an adenovirus expressing PGC-1α and obtained gene expression profiles for 12,488 genes at 0, 1, 2, and 3 days following infection. Applicants found 649 genes that were induced at least 1.5-fold (nominal P<0.05) at day 3. As expected, these were enriched for genes involved in carbohydrate metabolism and the mitochondrion (see (1)). Interestingly, many genes involved with protein synthesis (GO terms: protein biosynthesis, mitochondrial ribosome and ribosome) are also induced.


Applicants then applied motifADE to study the 5034 mouse genes for which applicants have measures of gene expression as well as reliable annotations of the transcriptional start site (TSS) (see Methods). For each gene, the target region was defined to be a 21 kb region centered on the TSS. Applicants then tested all possible k-mers ranging in size from k=6 to k=9 nucleotides for association with differential expression on each of the three days of the timecourse. A total of 20 motifs achieved high statistical significance (p<0.001, following Bonferroni correction for multiple hypothesis testing) and these were almost exclusively related to two distinct motifs (see Table 8 and Table 9). The first motif, 5′-TGACCTTG-3′ was significant on days 1, 2, and 3 (adjusted P=2.1×10−6, 2.9×10−9, and 7.7×10−7, respectively). It corresponds to the published binding site for the orphan nuclear receptor Errα (22), which is known to be capable of being co-activated by PGC-1custom character and -β (23-25). The Errα gene is known to be involved in metabolic processes, based on studies showing that knockout mice have reduced body weight and peripheral fat tissue, as well as altered expression of genes involved in metabolic pathways (26). The second motif is 5′-CTTCCG-3′ (adjusted p=8.9×10−9), which is the top scoring motif on day 3. It corresponds to the published binding site for Gabpa (27), which complexes with Gabpb (15) to form the heterodimer, nuclear respiratory factor-2 (NRF-2), a factor known to regulate the expression of some OXPHOS genes (28).


Interestingly, the reverse complements of these motifs did not score as well, suggesting a preference for the orientation of these motifs, and some occurrences of the motifs occurred downstream of the TSS. While each of these motifs is individually associated with PGC-1A, our analyses suggest that a gene having both motifs typically ranks higher on the list of differentially expressed genes and genes with only one of the motifs (FIG. 12) suggesting that the two motifs might have an additive or synergistic effect.


Example 16
Errα and Gabpa Motifs are Evolutionarily Conserved and Enriched Upstream of OXPHOS Genes

Applicants next repeated motifADE analysis using a “masked” promoter database (Table 3). Applicants still considered the 2000 bp centered on the TSS, but only considered those nucleotides aligned and conserved between mouse and human (see Methods). Still, the top ranking motifs on days 1 and 3 were related to Errα (day 1, P=4.8×10−6; day 3 P-1.2×10−11) and to Gabpa (day 3 P=3.1×10−11), providing additional support these motifs are biologically relevant.


The Errα and Gabpa motifs are particularly enriched upstream of the OXPHOS-CR genes, which exhibit reduced expression in human diabetes (5, 6). Whereas the top scoring Errα motif (5′-TGACCTTG-3′ or its reverse complement) only occurs in 12% of the promoters in the database, in 29% of the PGC-responsive genes (i.e., those genes induced at least 1.5 fold on day 3), and in 27% of the mitochondrial genes, they are found in 52% of the OXPHOS-CR genes (significance of enrichment, P-1×10−4). About one-half of these sites are perfectly conserved in the syntenic region in human. The top scoring Gabpa binding sites (5′-CTTCCG-3′ or its reverse complement) are much more common (62% of all promoters of the database and in 79% of the PGC-responsive genes), but they, too, show significant enrichment in the OXPHOS-CR genes (89%, P=0.02).


Example 17
Errα and Gabpa are Themselves Induced by PGC-1α

The above results suggest that Errα and Gabpa may be the key transcriptional factors mediating PGC-1α action in muscle. In this connection, it is notable that based on the microarray data, both Errα and Gabpa are themselves induced 2-fold (P<0.01) on day 1 following expression PGC-1custom character consistent with previous studies (2, 23). Moreover, careful analysis of the Errα and Gabpa genes suggest that each contain potential binding sites for both transcription factors within the vicinity of their promoters. The Errα gene has the Errα motif as well as a conserved variant of the Gabpa binding site (27) upstream of the TSS, while the Gabpa gene has an Errα site upstream of the TSS and a conserved variant of the Gabpa binding site in its first intron These results raise the possibility that Errα and Gabpa may regulate their own and each other's expression.


Taken together, the systematic analysis of the transcriptional program driven by PGC-1α in skeletal muscle suggests a model (FIG. 11) in which increases in PGC-1α protein levels (induced, for example, by exercise, e.g. see (29)) results in increased transcriptional activity of Gabpa and Errα on their own promoters, leading to a stable increase in the expression of these two factors via a double positive-feedback loop. These two factors, perhaps in combination with PGC-1α, are then crucial in the induction of downstream target genes, many of which have binding sites for these motifs (FIG. 11). Such a circuit may serve as a regulatory switch, analogous to a feed-forward loop that plays a key role in the early stages of endomesodermal development in sea urchin (30).


Experiment 18: MotifADE Results Applied to Human Diabetic Versus Normal Expression


Applicants applied the MotifADE method to analyze the transcription factor binding sites that are differentially expressed in diabetic vs. normal human skeletal muscle (previously published data, Mootha et al Nature Genetics 2003). The program identified exactly three motifs achieving an adjusted P-value<0.05. These are AAATCG (adjusted P-value 0.003), CCGGAAG (adjusted P-value 0.039), and AGCGTTT (adjusted P-value 0.011). Applicants note that the second motif is a published binding site for Gabpa (reverse complement of CTTCCG). This results suggest that Gabpa function is altered in diabetic muscle, or that perhaps another transcription factor that binds to this element.


Experiment 6: Identification of Human Genes Having Binding Sites for Errα, Gabpa or Both


Applicants searched for the binding sites motifs (forward or reverse complement) 3 Kb upstream and 1 Kb downstream of the annotated transcription start site. In the accompanying files are the genes with either one motif (forward or reverse complement) or both motifs conserved between human and mouse. The following genes were identified: Table 10: 678 genes with Errα motif conserved between mouse and human. Table 11: 2799 genes with Gabpa motif conserved between mouse and human. Table 12: 354 genes with both motifs conserved between mouse and human.


Discussion of First Experimental Series


In this study, applicants have used a combined genomic and computational strategy to systematically dissect a mammalian transcriptional circuit central to cellular energetics. The results above have computational, biological and medical implications.


First, the motifADE algorithm provides a simple, nonparametric approach for discovering cis-elements by considering differential gene expression. It makes very few assumptions about the statistical properties of DNA composition or about the distribution of gene expression. The method is flexible, and as applicants have shown, can easily incorporate “masked” or “phylogenetically footprinted” promoters. With additional cross-species comparisons, it should be possible to interrogate conserved segments of larger upstream regions (34). Moreover, the method operates on any ordered set of genes and is particularly convenient for discovering motifs associated with human disease states, e.g., “healthy versus sick” or “treated versus control.” Clearly, the method has some limitations. For example, in the current study, applicants were confident in the identity of the transcription factors binding the motifs discovered—in general this may not be the case, and experimental strategies will be needed to systematically determine the occupancy of newly identified motifs. Moreover, a motif may be missed if it lies outside the target promoter region, or if a functional binding site is too degenerate for our motif search strategy.


Second, the analyses above indicate that the immediate effects of PGC-1α on OXPHOS genes in muscle are largely mediated through Errα and Gabpa. Recent studies have shown that PGC-1β can also co-activate Errα (25). Together, the data imply a model of gene regulation in which PGC-1α (and likely PGC-1β) initially induces the expression of Errα and Gabpa, via a double positive feedback mechanism (FIG. 11). These transcription factors are then expressed at higher levels and are themselves co-activated by PGC-1 to induce downstream genes such as NRF-1 and members of OXPHOS. Certainly, other transcription factors and regulators, not identified in the current study, are involved in the mitochondrial biogenesis program. Whereas previous studies have shown that PGC-1 interacts with and/or induces 15-20 transcription factors in various physiological settings (including Errα and Gabpa (2, 23-25), the present study points to Errα and Gabpa as being especially important early in the timecourse in muscle and provides a model of how these factors interact in executing the transcriptional program.


Finally, the results suggest a potential approach to the treatment of type 2 diabetes. Recent studies in diabetic and pre-diabetic humans have demonstrated that there is a consistent decrease in the expression of genes of oxidative phosphorylation that are responsive to PGC-1α and PGC-1β and that treatments that induce PGC-1α (such as exercise) lead to increased expression of OXPHOS genes and improved insulin sensitivity (5, 6, 8, 9). On its face, this might argue for developing therapeutic approaches that raise the transcriptional activity of PGC-1. However, PGC-1 activates many different pathways in many tissues and such approaches may suffer from lack of specificity. For example, global transgenic overexpression of PGC-1β in mice results in resistance to obesity induced by a high-fat diet or by a genetic abnormality, though the contribution of PGC-1β expression in muscle has not been explored (25). On the other hand, a global knockout of Errα also causes a leaner phenotype and resistance to high-fat diet-induced obesity (26). The identification of the critical roles of Errcustom character and Gabpa in mediating the transcriptional program altered in human diabetic muscle may offer a more specific target. Because Errα is an orphan nuclear receptor, it may be an attractive, “druggable” target for diabetes and for other human metabolic disorders.


REFERENCES OF THIRD EXPERIMENTAL SECTION



  • 1. Puigserver, P. & Spiegelman, B. M. (2003) Endocr Rev 24, 78-90.

  • 2. Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R. C., et al. (1999) Cell 98, 115-24.

  • 3. Michael, L. F., Wu, Z., Cheatham, R. B., Puigserver, P., Adelmant, G., Lehman, J. J., Kelly, D. P. & Spiegelman, B. M. (2001) Proc Natl Acad Sci USA 98, 3820-5.

  • 4. Lin, J., Wu, H., Tarr, P. T., Zhang, C. Y., Wu, Z., Boss, O., Michael, L. F., Puigserver, P., Isotani, B., Olson, E. N., et al. (2002) Nature 418, 797-801.

  • 5. Patti, M. B., Butte, A. J., Crunkhorn, S., Cusi, K., Berria, R., Kashyap, S., Miyazaki, Y., Kohane, I., Costello, M., Saccone, R., et al. (2003) Proc Natl Acad Sci USA 100, 8466-71.

  • 6. Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., et al. (2003) Nat Genet 34, 267-73.

  • 7. Kelley, D. E., He, J., Menshikova, E. V. & Ritov, V. B. (2002) Diabetes 51, 2944-50.

  • 8. Petersen, K. F., Befroy, D., Dufour, S., Dziura, J., Ariyan, C., Rothman, D. L., DiPietro, L., Cline, G. W. & Shulman, G. I. (2003) Science 300, 1140-2.

  • 9. Sreekumar, R., Halvatsiotis, P., Schimke, J. C. & Nair, K. S. (2002) Diabetes 51, 1913-20.

  • 10. Schadt, E. E., Li, C., Ellis, B. & Wong, W. H. (2001) J Cell Biochem Suppl 37, 120-5.

  • 11. Zhong, S., Li, C. & Wong, W. H. (2003) Nucleic Acids Res 31, 3483-6.

  • 12. Mootha, V. K., Bunkenborg, J., Olsen, J. V., Hjerrild, M., Wisniewski, J. R., Stahl, E., Bolouri, M. S., Ray, H. N., Sihag, S., Kamal, M., et al. (2003) Cell 115, 629-40.

  • 13. Schwartz, S., Kent, W. J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R. C., Haussler, D. & Miller, W. (2003) Genome Res 13, 103-7.

  • 14. Handschin, C., Rhee, J., Lin, J., Tarr, P. T. & Spiegelman, B. M. (2003) Proc Natl Acad Sci USA 100, 7111-6.

  • 15. Batchelor, A. H., Piper, D. E., de la Brousse, F. C., McKnight, S. L. & Wolberger, C. (1998) Science 279, 1037-41.

  • 16. St-Pierre, J., Lin, J., Krauss, S., Tarr, P. T., Yang, R., Newgard, C. B. & Spiegelman, B. M. (2003) J Biol Chem 278, 26597-603.

  • 17. Qiu, P. (2003) Biochem Biophys Res Commun 309, 495-501.

  • 18. Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J. & Church, G. M. (1999) Nat Genet 22, 281-5.

  • 19. Liu, X. S., Brutlag, D. L. & Liu, J. S. (2002) Nat Biotechnol 20, 835-9.

  • 20. Conlon, E. M., Liu, X. S., Lieb, J. D. & Liu, J. S. (2003) Proc Natl Acad Sci USA 100, 3339-44.

  • 21. Bussemaker, H. J., Li, H. & Siggia, E. D. (2001) Nat Genet 27, 167-71.

  • 22. Johnston, S. D., Liu, X., Zuo, F., Eisenbraun, T. L., Wiley, S. R., Kraus, R. J. & Mertz, J. E. (1997) Mol Endocrinol 11, 342-52.

  • 23. Schreiber, S. N., Knutti, D., Brogli, K., Uhlmann, T. & Kralli, A. (2003) J Biol Chem 278, 9013-8.

  • 24. Huss, J. M., Kopp, R. P. & Kelly, D. P. (2002) J Biol Chem 277, 40265-74.

  • 25. Kamei, Y., Ohizumi, H., Fujitani, Y., Nemoto, T., Tanaka, T., Takahashi, N., Kawada, T., Miyoshi, M., Ezaki, O. & Kakizuka, A. (2003) Proc Natl Acad Sci USA 100, 12378-83.

  • 26. Luo, J., Sladek, R., Carrier, J., Bader, J. A., Richard, D. & Giguere, V. (2003) Mol Cell Biol 23, 7947-56.

  • 27. Chinenov, Y., Coombs, C. & Martin, M. E. (2000) Gene 261, 311-20.

  • 28. Virbasius, J. V. & Scarpulla, R. C. (1994) Proc Natl Acad Sci USA 91, 1309-13.

  • 29. Russell, A. P., Feilchenfeldt, J., Schreiber, S., Praz, M., Crettenand, A., Gobelet, C., Meier, C. A., Bell, D. R., Kralli, A., Giacobino, J. P., et al. (2003) Diabetes 52, 2874-81.

  • 30. Davidson, E. H., Rast, J. P., Oliveri, P., Ransick, A., Calestani, C., Yuh, C. H., Minokawa, T., Amore, G., Hinman, V., Arenas-Mena, C., et al. (2002) Science 295, 1669-78.

  • 31. Sladek, R., Bader, J. A. & Giguere, V. (1997) Mol Cell Biol 17, 5400-9.

  • 32. Scarpulla, R. C. (2002) Gene 286, 81-9.

  • 33. Baar, K., Song, Z., Semenkovich, C. F., Jones, T. E., Han, D., H., Nolte, L. A., Ojuka, E. O., Chen, M. & Holloszy, J. O. (2003) FASEB J 17, 1666-73.

  • 34. Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E. S. (2003) Nature 423, 241-54.

  • 35. Stunnenberg, H. G. (1993) Bioessays 15, 309-15.

  • 36. Chinenov, Y., Henzl, M. & Martin, M. B. (2000) J Biol Chem 275, 7749-56.



Tables:

TABLE 1Clinical and biochemical characteristics of male subjects with normal glucosetolerance (NGT), impaired glucose tolerance (IGT), and type 2 diabetes mellitus (DM2).ClassP-ValueNGTIGTDM2NGT vs. IGTIGT vs. DM2NGT vs. DM2n17818Age (yrs)66.1 (1.0) 66.4 (1.6) 65.5 (1.8) BMI (kg/m2)23.6 (3.4) 27.1 (4.8) 27.3 (4.0) 5.70 × 10−3WHR0.91 (0.09)0.97 (0.04)0.99 (0.03)3.00 × 10−23.83 × 10−3Trigs (mmol/L)1.03 (0.40)1.83 (1.60)2.04 (1.13)2.63 × 10−3Chol (mmol/L)5.39 (0.09)4.60 (1.48)5.77 (0.97)OGTTGlucose 0 (mmol/L)4.67 (0.50)5.05 (0.46)7.83 (2.3) 9.22 × 10−52.01 × 10−5Insulin 0 (uU/ml)5.41 (3.3) 13.38 (8.9) 12.0 (6.0) 4.05 × 10−24.10 × 10−4Glucose 120 (mmol/L)6.58 (0.94)9.15 (0.8) 14.9 (4.0) 2.51 × 10−68.91 × 10−64.90 × 10−8Insulin 120 (uU/ml)33.5 (19.3)125.1 (66.1) 43.5 (25.6)5.47 × 10−39.73 × 10−3M-value (mg/kg/min)8.74 (3.15)6.32 (3.08)4.22 (1.72)2.30 × 10−5VO2max (ml O2/kg/min)32.1 (5.46)26.5 (4.6) 24.3 (5.6) 1.72 × 10−23.09 × 10−4Glycogen (mmol/kg)371.1 (77.0) 326.5 (88.0) 350.6 (97.8) Type I FibersNumber (%)37.2 (13.5)33.5 (3.6) 36.4 (9.3) Area (%)39.1 (14.4)32.7 (0.91)40.1 (10.7)2.35 × 10−2Capillaries/Fiber3.91 (0.72)4.05 (1.04)4.14 (0.75)Type IIb FibersNumber (%)73.8 (42.1)60.2 (51.4)72.2 (36.7)Area (%)31.3 (18.0)24.7 (18.3)36.2 (15.4)Capillaries/Fiber2.97 (0.71)3.05 (0.87)3.02 (0.65)
Values are mean (S.D.).

M-value is the total body glucose uptake.

VO2max is the total body aerobic capacity.

Only P-values < 0.05 are shown for pairwise comparisons, using a two-sided t-test.









TABLE 2








149 gene sets considered in the current analysis.

















Pathways Curated at WICGR



FFA Oxidation



Gluconeogenesis



Glycolysis



Glycogen metabolism



GO: 0005739



Insulin signaling



Ketone body metabolism



Pyruvate metabolism



Reactive oxygen species



Kreb's cycle



Oxidative phosphorylation (OXPHOS)



human_mitoDB_6_2002



mitochondria keyword



36 GNF Mouse Expression



Clusters



cluster c0, . . . , cluster c35



Pathways from NetAFFX (October 2002)



MAP00010_Glycolysis_Gluconeogenesis



MAP00020_Citrate_cycle_TCA_cycle



MAP00030_Pentose_phosphate_pathway



MAP00031_Inositol_metabolism



MAP00040_Pentose_and_glucuronate_interconversions



MAP00051_Fructose_and_mannose_metabolism



MAP00052_Galactose_metabolism



MAP00053_Ascorbate_and_aldarate_metabolism



MAP00061_Fatty_acid_biosynthesis_path_1



MAP00062_Fatty_acid_biosynthesis_path_2



MAP00071_Fatty_acid_metabolism



MAP00072_Synthesis_and_degradation_of_ketone_bodies



MAP00100_Sterol_biosynthesis



MAP00120_Bile_acid_biosynthesis



MAP00130_Ubiquinone_biosynthesis



MAP00140_C21_Steroid_hormone_metabolism



MAP00150_Androgen_and_estrogen_metabolism



MAP00190_Oxidative_phosphorylation



MAP00193_ATP_synthesis



MAP00195_Photosynthesis



MAP00220_Urea_cycle_and_metabolism_of_amino_groups



MAP00230_Purine_metabolism



MAP00240_Pyrimidine_metabolism



MAP00251_Glutamate_metabolism



MAP00252_Alanine_and_aspartate_metabolism



MAP00253_Tetracycline_biosynthesis



MAP00260_Glycine_serine_and_threonine_metabolism



MAP00271_Methionine_metabolism



MAP00272_Cysteine_metabolism



MAP00280_Valine_leucine_and_isoleucine_degradation



MAP00290_Valine_leucine_and_isoleucine_biosynthesis



MAP00300_Lysine_biosynthesis



MAP00310_Lysine_degradation



MAP00330_Arginine_and_proline_metabolism



MAP00340_Histidine_metabolism



MAP00350_Tyrosine_metabolism



MAP00360_Phenylalanine_metabolism



MAP00361_gamma_Hexachlorocyclohexane_degradation



MAP00380_Tryptophan_metabolism



MAP00400_Phenylalanine_tyrosine_and_tryptophan_biosynthesis



MAP00410_beta_Alanine_metabolism



MAP00430_Taurine_and_hypotaurine_metabolism



MAP00440_Aminophosphonate_metabolism



MAP00450_Selenoamino_acid_metabolism



MAP00460_Cyanoamino_acid_metabolism



MAP00471_D_Glutamine_and_D_glutamate_metabolism



MAP00472_D_Arginine_and_D_ornithine_metabolism



MAP00480_Glutathione_metabolism



MAP00500_Starch_and_sucrose_metabolism



MAP00510_N_Glycans_biosynthesis



MAP00511_N_Glycan_degradation



MAP00512_O_Glycans_biosynthesis



MAP00520_Nucleotide_sugars_metabolism



MAP00521_Streptomycin_biosynthesis



MAP00522_Erythromycin_biosynthesis



MAP00530_Aminosugars_metabolism



MAP00531_Glycosaminoglycan_degradation



MAP00532_Chondroitin_Heparan_sulfate_biosynthesis



MAP00533_Keratan_sulfate_biosynthesis



MAP00550_Peptidoglycan_biosynthesis



MAP00561_Glycerolipid_metabolism



MAP00562_Inositol_phosphate_metabolism



MAP00570_Sphingophospholipid_biosynthesis



MAP00580_Phospholipid_degradation



MAP00590_Prostaglandin_and_leukotriene_metabolism



MAP00600_Sphingoglycolipid_metabolism



MAP00601_Blood_group_glycolipid_biosynthesis_lact_series



MAP00602_Blood_group_glycolipid_biosynthesis_neolact_series



MAP00603_Globoside_metabolism



MAP00620_Pyruvate_metabolism



MAP00625_Tetrachloroethene_degradation



MAP00630_Glyoxylate_and_dicarboxylate_metabolism



MAP00631_1_2_Dichloroethane_degradation



MAP00632_Benzoate_degradation



MAP00640_Propanoate_metabolism



MAP00643_Styrene_degradation



MAP00650_Butanoate_metabolism



MAP00670_One_carbon_pool_by_folate



MAP00680_Methane_metabolism



MAP00710_Carbon_fixation



MAP00720_Reductive_carboxylate_cycle_CO2_fixation



MAP00740_Riboflavin_metabolism



MAP00750_Vitamin_B6_metabolism



MAP00760_Nicotinate_and_nicotinamide_metabolism



MAP00770_Pantothenate_and_CoA_biosynthesis



MAP00780_Biotin_metabolism



MAP00790_Folate_biosynthesis



MAP00830_Retinol_metabolism



MAP00860_Porphyrin_and_chlorophyll_metabolism



MAP00900_Terpenoid_biosynthesis



MAP00910_Nitrogen_metabolism



MAP00920_Sulfur_metabolism



MAP00940_Flavonoids_stilbene_and_lignin_biosynthesis



MAP00950_Alkaloid_biosynthesis_I



MAP00960_Alkaloid_biosynthesis_II



MAP00970_Aminoacyl_tRNA_biosynthesis



MAP03020_RNA_polymerase



MAP03030_DNA_polymerase



MAP03070_Type_III_secretion_system



MAP03090_Type_II_secretion_system

















TABLE 3










Genes in the mitochondria expression neighborhood with putative roles


in DNA maintenance and repair based on Gene Ontology annotations.


The gene name, symbol, and neighborhood index (N100) are


provided for each gene.










Gene



Gene name
symbol
N100










Transcriptional regulators









MyoD family inhibitor
Mdfi
63


nuclear factor I/X
Nfix
60


zinc finger protein 288
Zfp288
56


T-box 6
Tbx6
49


Cofactor required for Sp1 transcriptional activation subunit 2
Crsp2
47


RIKEN cDNA 9130025P16 gene
9130025P16Rik
46


Kruppel-like factor 9
Klf9
43


EGL nine homolog 1
Egln1
39


Estrogen related receptor, alpha
Esrra
36


nuclease sensitive element binding protein 1
Nsep1
34


sirtuin 1 (silent mating type information regulation 2,
Sirt1
31


homolog)


peroxisome proliferator activated receptor alpha
Ppara
29


metastasis associated 1-like 1
Mta1l1
28


NK2 transcription factor related, locus 5
Nkx2-5
27


cardiac responsive adriamycin protein
Crap
24


homeo box D8
Hoxd8
21


nuclear receptor subfamily 1, group I, member 2
Nr1i2
21


nuclear receptor subfamily 1, group H, member 3
Nr1h3
20


cellular nucleic acid binding protein
Cnbp
19


transcription factor 2
Tcf2
19


Est2 repressor factor
Erf
19


nuclear receptor subfamily 5, group A, member 1
Nr5a1
18


nuclear factor, erythroid derived 2, -like 1
Nfe2l1
18


zinc finger protein 30
Zfp30
17


peroxisome proliferator activated receptor gamma
Pparg
17


cAMP responsive element binding protein 1
Creb1
15


SRY-box containing gene 6
Sox6
15


CCAAT/enhancer binding protein (C/EBP), alpha
Cebpa
15







DNA repair









mutL homolog 1
Mlh1
29


mutS homolog 5
Msh5
24


excision repair cross-complementing rodent repair
Ercc1
15


deficiency, complementation group 1
















TABLE 4










Annotation and experimental support for the mito-A proteins. The mito-A list of protein clusters consist of proteins that


are physically associated with mitochondria, based on previous annotations or based on organelle proteomics. The


list is produced by pooling all the individual proteins identified in the organelle proteomics survey with proteins


previously annotated as being mitochondrial. These proteins were then clustered into 601 groups using a BLAST


procedure (see Methods). Each cluster may be supported by previous annotations, organelle proteomics, or by


both (protein accessions are indicated in the appropriate columns). Of the 601 clusters, 10 correspond to expected


contaminants and have been flagged. The remaining 591 constitute the mito-A list that is used in the analysis.


For each mito-A cluster, an exemplar protein (typically corresponding to a Reference Sequence) accession


and description are provided. GenPept or Swissprot accession numbers of the cluster members are provided


in the appropriate columns. Of the 591 mito-A clusters, 37 appeared to be obviously mitochondrial based on the


description, so these have been flagged as mitochondrial in a dedicated column called “by name.”









Previous Mitochondral Annotations











Exemplar Protein for the Cluster
LocusLink

LocusLink













Accession
Description
Mouse
MITOP Mouse
Human
MITOP Human















19354491
1110020P15Rik protein [Mus musculus]






13385680
2,4-dienoyl CoA reductase 1, mitochondrial [Mus


4503301
S53352




musculus]



20071710
2010002H18Rik protein [Mus musculus]


21630283
2′-5′ oligoadenylate synthetase 1A [Mus musculus]

P29080 P11928

P1_A22842







B24359







A91013


21644597
2′-5′ oligoadenylate synthetase 2; 2′-5′ oligoadenylate



B42665 A42665



synthetase-like 11 [Mus


6680233
3-hydroxy-3-methylglutaryl-Coenzyme A lyase [Mus
25022682
HMGL_MOUSE

A45470




musculus]

25049209




6680233


31560689
3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2
27734729
B55729
5031751
S51103



[Mus musculus]
20965433




20874930


31982169
3-hydroxybutyrate dehydrogenase (heart,


17738292
A42845



mitochondrial); 3-hydroxybutyrate


21704140
3-hydroxyisobutyrate dehydrogenase, mitochondrial



D3HI_HUMAN



precursor; EST AI265272;


20149758
3-mercaptopyruvate sulfurtransferase; e [Mus



ROHU




musculus]



481864
3-methyl-2-oxobutanoate dehydrogenase (lipoamide)

S39807
4557353
A37157



(EC 1.2.4.4) - mouse


18266680
3-oxoacid CoA transferase [Mus musculus]



SCOT_HUMAN


11968160
3-oxoacid CoA transferase 2A; haploid germ cell



specific succinyl CoA


6679066
4-nitrophenylphosphatase domain and non-neuronal



SNAP25-like protein homolog 1


20127399
5′,3′-deoxyribonucleotidase, mitochondrial [Mus
20127399

9910372




musculus]



18921208
8-oxoguanine DNA-glycosylase 1 [Mus musculus]
18921208


9910174
A kinase (PRKA) anchor protein 10; protein kinase A
9910174



anchoring protein [Mus


30725845
AAA-ATPase TOB3 [Mus musculus]


1167982
ABC transporter-7



ABC7_HUMAN


21450129
acetyl-Coenzyme A acetyltransferase 1 precursor [Mus
21450129

4557237
JH0255




musculus]



29126205
acetyl-Coenzyme A acyltransferase 2 (mitochondrial 3-


5174429
S43440



oxoacyl-Coenzyme A


20841184
acetyl-Coenzyme A carboxylase beta [Mus musculus]


31982520
acetyl-Coenzyme A dehydrogenase, long-chain [Mus
6680616
ACDL_MOUSE
4501857
A40559




musculus]

25020672


6680618
acetyl-Coenzyme A dehydrogenase, medium chain
6680618
A55724
4557231
I52240



[Mus musculus]


9790059
acid phosphatase 6, lysophosphatidic; acid


21359911



phosphatase like 1 [Mus musculus]


18079339
aconitase 2, mitochondrial [Mus musculus]
18079339

4501867
Q99798


8850209
actin-like [Mus musculus]


31982522
acyl-Coenzyme A dehydrogenase, short chain; acetyl-
6680620
I49605
4557233
A30605



Coenzyme A dehydrogenase,


17647119
acyl-Coenzyme A dehydrogenase, short/branched


4501859
A55680



chain [Mus musculus]


23956084
acyl-Coenzyme A dehydrogenase, very long chain [Mus
23956084
ACDV_MOUSE
4557235
ACDB_HUMAN




musculus]

25056160




20881925


7656855
acyl-Coenzyme A oxidase 1, palmitoyl; acyl-Coenzyme



A oxidase; Acyl-CoA oxidase


12331400
acyl-Coenzyme A thioesterase 3, mitochondrial; MT-
12331400

6912518



ACT48, p48 [Mus musculus]
9790025


6753074
adaptor protein complex AP-2, mu1; adaptor-related



protein complex AP-2, mu1;


10946936
adenylate kinase 1; cytosolic adenylate kinase [Mus




musculus]



34328230
adenylate kinase 2 [Mus musculus]
8392883


KAD2_HUMAN


23956104
adenylate kinase 3 alpha-like; adenylate kinase 3 alpha



like [Mus musculus]


6753022
adenylate kinase 4 [Mus musculus]
6753022


KIHUA3


16905099
AFG3(ATPase family gene 3)-like 1 [Mus musculus]
16905099

5802970


6753030
A-kinase anchor protein 1; A kinase anchor protein
6753030


I39173



[Mus musculus]


7709978
alanine-glyoxylate aminotransferase; alanine-glyoxylate
7709978


P21549 XNHUSP



aminotransferase 1 [Mus


6753036
aldehyde dehydrogenase 2, mitochondrial [Mus
6753036
I48966
25777732
A40872 DEHUE2




musculus]



19527258
aldehyde dehydrogenase family 6, subfamily A1 [Mus



MMSA_HUMAN




musculus]



20070418
aldehyde dehydrogenase family 7, member A1;



aldehyde dehydrogenase 7 family,


27659728
aldo-keto reductase family 7, member A5 (aflatoxin



aldehyde reductase);


13435924
aldolase 3, C isoform [Mus musculus]


6678766
alpha-methylacyl-CoA racemase; alpha-methylacyl-
6678766

23618869



Coenzyme A racemase;


31980703
aminoadipate-semialdehyde synthase; lysine



oxoglutarate reductase, saccharopine


33859502
aminolevulinic acid synthase 2, erythroid; erythroid-
20985872
SYMSAL

SYHUAL SYHUAE



specific ALAS;


13507620
ankycorbin; NORPEG-like protein [Mus musculus]


6753058
annexin A10 [Mus musculus]


21541818
AP endonuclease 2 [Mus musculus]
21541818


6753110
arginase type II [Mus musculus]
6753110

4502215
ARG2_HUMAN


25089776
ATP synthase D chain, mitochondrial

PN0046


5834959
ATP synthase F0 subunit 6 [Mus musculus]
5834959
PWMS6
27754208
PWHU6


5834958
ATP synthase F0 subunit 8 [Mus musculus]
5834958
PWMS8

PWHU8


21263432
ATP synthase gamma chain, mitochondrial precursor

PT0095


31980648
ATP synthase, H+ transporting mitochondrial F1
25052136
P56480
4502295
A33370



complex, beta subunit; ATP
7949003


33859512
ATP synthase, H+ transporting, mitochondrial F0
20875157

21361565
JQ1144



complex, subunit b, isoform 1
25020502


31982497
ATP synthase, H+ transporting, mitochondrial F0
6680750
AT91_MOUSE

I38612 S34067



complex, subunit c (subunit 9),



S34066


10181184
ATP synthase, H+ transporting, mitochondrial F0
10181184
P56135



complex, subunit f, isoform 2;


7949005
ATP synthase, H+ transporting, mitochondrial F0
7949005
PD0444
18644883
JT0563



complex, subunit F;


31980744
ATP synthase, H+ transporting, mitochondrial F0



complex, subunit g; F1F0-ATP


6680748
ATP synthase, H+ transporting, mitochondrial F1
6680748
JC1473
4757810
PWHUA



complex, alpha subunit, isoform


13385484
ATP synthase, H+ transporting, mitochondrial F1


5901896



complex, epsilon subunit; ATP


11602916
ATP synthase, H+ transporting, mitochondrial F1
11602916

4885079
A49108



complex, gamma polypeptide 1; F1


20070412
ATP synthase, H+ transporting, mitochondrial F1



ATPO_HUMAN



complex, O subunit [Mus


6671592
ATP synthase, H+ transporting, mitochondrial F1F0
6671592
JC1412



complex, subunit e [Mus


31982864
ATPase inhibitor [Mus musculus]
6671594

7705927
JC7175


6680758
ATPase, Cu++ transporting, beta polypeptide; Wilson



S40525



protein; toxic milk [Mus


31560731
ATPase, H+ transporting, V1 subunit A, isoform 1;



ATPase, H+ transporting,


6680756
ATPase, H+ transporting, V1 subunit E isoform 1;



ATPase, H+ transporting


6680612
ATP-binding cassette, sub-family D, member 3;



peroxisomal membrane protein, 70


3766201
ATP-specific succinyl-CoA synthetase beta subunit
20876884



[Mus musculus]


7709988
AU RNA-binding enoyl-coenzyme A hydratase; AU
7709988

18426971



RNA-binding protein/enoyl-coenzyme
25052987


6753168
B-cell leukemia/lymphoma 2 [Mus musculus]
6753168
TVMSA1 B25960

TVHUA1 D37332


6671622
B-cell receptor-associated protein 37; repressor of



estrogen receptor activity


6753198
BCL2/adenovirus E1B 19 kDa-interacting protein 1,
6753198



NIP3; BCL2/adenovirus E1B 19


6753200
BCL2/adenovirus E1B 19 kDa-interacting protein 3-like;
6753200

4757860
NIPL_HUMAN



BCL2/adenovirus E1B 19


6680770
Bcl2-associated X protein [Mus musculus]

BAXA_MOUSE

BAXA_HUMAN


31981887
Bcl2-like [Mus musculus]
6753170

20336335
BCLX_HUMAN






4502381


31981875
benzodiazepine receptor, peripheral [Mus musculus]
6753216
A53405

I38105


31542228
BH3 interacting domain death agonist [Mus musculus]


4557361
BID_HUMAN


9055178
brain protein 44-like; apoptosis-regulating basic protein



[Mus musculus]


33859514
branched chain aminotransferase 2, mitochondrial [Mus
23597235

4502375
BCAM_HUMAN




musculus]



31982494
branched chain ketoacid dehydrogenase E1, alpha
6671624
S71881
11386135
DEHUXA



polypeptide; BCKAD E1[a] [Mus


6753164
branched chain ketoacid dehydrogenase kinase;
6753164

5031609



branched chain keto acid


16905127
butyryl Coenzyme A synthetase 1; acetyl-Coenzyme A



synthetase 3 [Mus musculus]


6753290
calsequestrin 1 [Mus musculus]



A60424


7381085
carbamoylphosphate synthetase I [Mus musculus]


21361331
JQ1348


6671680
carbonic anhydrase 5a, mitochondrial; carbonic
6671680
S12579
4502521
CRHU5



anhydrase 5, mitochondrial;


9506463
carbonic anhydrase 5b, mitochondrial; carbonic
9506463

6005723



anhydrase VB; carbonic anhydrase


6671688
carbonyl reductase 2; lung carbonyl reductase [Mus
6671688
A28053




musculus]



6681009
carnitine acetyltransferase [Mus musculus]
6681009
CACP_MOUSE
21618331
A55720






21618334






21618336


27804309
carnitine palmitoyltransferase 1, liver; L-CPT I [Mus
20884997

4503021
I59351




musculus]

27804309


6753512
carnitine palmitoyltransferase 1, muscle; M-CPT I [Mus


23238254
S70579




musculus]



23238256






4758050






23238258


6753514
carnitine palmitoyltransferase 2; CPT II [Mus musculus]
6753514
A49362

A39018


6753454
caseinolytic protease X [Mus musculus]
6753454

7242140
CLPX_HUMAN


8393156
caseinolytic protease, ATP-dependent, proteolytic
8393156


S68421



subunit homolog; caseinolytic


20847456
caspase 8 [Mus musculus]


15718704






15718706






15718708






15718710






15718712


6753272
catalase; catalase 1 [Mus musculus]


6681079
cathepsin B preproprotein [Mus musculus]


6753556
cathepsin D [Mus musculus]


11968166
cathepsin Z preproprotein; cathepsin Z precursor;



cathepsin X [Mus musculus]


31560609
ceroid lipofuscinosis, neuronal 3, juvenile (Batten,


4502889



Spielmeyer-Vogt disease)


6753448
ceroid-lipofuscinosis, neuronal 2 [Mus musculus]


7304963
chloride intracellular channel 4 (mitochondrial) [Mus
7304963




musculus]



13385942
citrate synthase [Mus musculus]


4758076


6680816
complement component 1, q subcomponent binding
6680816



protein [Mus musculus]


6681007
coproporphyrinogen oxidase; clone 560 [Mus musculus]
6681007
A48049
20127406
I52444


10946574
creatine kinase, brain [Mus musculus]


6753428
creatine kinase, mitochondrial 1, ubiquitous [Mus
6753428
S24612
4502855
A35756 A30789




musculus]



10334859


6681031
cryptochrome 1 (photolyase-like) [Mus musculus]


4758072


201006
Cu/Zn-superoxide dismutase


5834966
cytochrome b [Mus musculus]
5834966
CBMS

CBHU


22094077
cytochrome b-245, alpha polypeptide; cytochrome beta-


4557505



558; p22 phox [Mus


31542440
cytochrome b-245, beta polypeptide [Mus musculus]


6996021


13385268
cytochrome b-5 [Mus musculus]


4503183
CBHU5 CBHU5E


5834956
cytochrome c oxidase subunit I [Mus musculus]
5834956
ODMS1
27754204
ODHU1


5834957
cytochrome c oxidase subunit II [Mus musculus]
5834957
OBMS2
27754206
OBHU2


5834960
cytochrome c oxidase subunit III [Mus musculus]
5834960
OTMS3

OTHU3


16716379
cytochrome c oxidase subunit IV isoform 2 precursor;
16716379



Cox IV-2 [Mus musculus]


6677977
cytochrome c oxidase subunit VIIa polypeptide 2-like;
6677977


O14548



silica-induced gene 81


13384754
cytochrome c oxidase subunit VIIb [Mus musculus]
13384754

4502991
OSHU7B


6753498
cytochrome c oxidase, subunit IVa; cytochrome c
6753498
S12142

OLHU4



oxidase, subunit IV [Mus


6680986
cytochrome c oxidase, subunit Va [Mus musculus]
6680986
S05495
4758038
OTHU5A


6753500
cytochrome c oxidase, subunit Vb [Mus musculus]
6753500
A39425

OTHU5B


6680988
cytochrome c oxidase, subunit VI a, polypeptide 1;
6680988
S52088

OGHU6L



subunit VIaL (liver-type)


6753502
cytochrome c oxidase, subunit VI a, polypeptide 2;
6753502
COXD_MOUSE

OGHU6A



subunit VIaH (heart-type)


13385090
cytochrome c oxidase, subunit VIb [Mus musculus]



OGHU6B


16716343
cytochrome c oxidase, subunit VIc [Mus musculus]

S16083

OGHU6C


6753504
cytochrome c oxidase, subunit VIIa 1; cytochrome c
6753504



oxidase subunit VIIa 1 [Mus


31981830
cytochrome c oxidase, subunit VIIa 2; cytochrome c
6753506
I48286



oxidase subunit VIIa 3;


6680991
cytochrome c oxidase, subunit VIIc; cytochrome c
25025041
COXO_MOUSE

OSHU7C



oxidase subunit VIIc [Mus
25053109
S10303




25057077




6680991


6680993
cytochrome c oxidase, subunit VIIIa; COX VIII-L [Mus
6680993
COXR_MOUSE
4758044
OSHU8




musculus]



6680995
cytochrome c oxidase, subunit VIIIb; COX VIII-H [Mus
6680995
COXQ_MOUSE




musculus]



16758308
cytochrome c oxidase, subunit XVII assembly protein



Q14061



homolog [Rattus norvegicus]


6681095
cytochrome c, somatic [Mus musculus]
6753560
CCMS CCMST
11128019
CCHU


13385006
cytochrome c-1 [Mus musculus]


21359867
S00680


231896
Cytochrome P450 11B2, mitochondrial precursor


13904853
B34181 S11338



(CYPXIB2) (P450C11) (Steroid


20867579
cytochrome P450, 40 (25-hydroxyvitamin D3 1 alpha-
20867579

4503213



hydroxylase) [Mus musculus]


9789921
cytochrome P450, family 11, subfamily a, polypeptide 1;
9789921

4503189
A25922 S14367



cytochrome P450, 11a,


7106287
cytochrome P450, family 11, subfamily b, polypeptide 2;
7106287
A41552


6681097
cytochrome P450, family 17, subfamily a, polypeptide 1;



cytochrome P450, 17;


6753572
cytochrome P450, family 24, subfamily a, polypeptide 1;
6753572
S60033

A47436



cytochrome P450, 24;


30578401
cytochrome P450, family 27, subfamily a, polypeptide 1;


4503211
A39740



cytochrome P450, 27;


18875324
DAZ associated protein 1 [Mus musculus]
18875324


17505907
DEAD (Asp-Glu-Ala-Asp) box polypeptide 31 isoform 1;



DEAD/DEXH helicase DDX31


20587962
demethyl-Q 7 [Mus musculus]


25453484


7304999
deoxyguanosine kinase [Mus musculus]
7304999

18426967
JC6142






18426963






18426969






18426965


21281687
deoxyuridine triphosphatase [Mus musculus]


4503423
DUT_HUMAN


19745150
diaphorase 1 (NADH) [Mus musculus]



RDHUB5


6681137
diazepam binding inhibitor; acyl-CoA binding protein;



diazepam-binding inhibitor


6753610
dihydrolipoamide branched chain transacylase E2;
6753610
S65760
4503265
A32422



BCKAD E2 [Mus musculus]


31982856
dihydrolipoamide dehydrogenase [Mus musculus]
6681189
107450
4557525
DEHULP


31542559
dihydrolipoamide S-acetyltransferase (E2 component of


21630255
S25665 XXHU



pyruvate dehydrogenase


21313536
dihydrolipoamide S-succinyltransferase (E2 component
21313536


PN0673



of 2-oxo-glutarate complex)


9910194
dihydroorotate dehydrogenase [Mus musculus]
9910194

16753223
PC1219


6753676
dihydropyrimidinase-like 2; collapsin response mediator



protein 2 [Mus musculus]


21311901
dimethylglycine dehydrogenase precursor [Mus


24797151
M2GD_HUMAN




musculus]



34328271
direct IAP binding protein with low PI [Mus musculus]
12963593

9845297






21070978






21070976


34328379
D-lactate dehydrogenase [Mus musculus]


19527228
DNA segment, Chr 10, ERATO Doi 214, expressed



[Mus musculus]


20070420
DNA segment, Chr 10, Johns Hopkins University 81



JC4913 JC4914



expressed [Mus musculus]


25092662
DNA segment, Chr 11, Wayne State University 68,



expressed [Mus musculus]


27552760
DNA segment, Chr 16, Indiana University Medical 22,
27552760



expressed [Mus musculus]


14861848
DNA segment, Chr 7, Roswell Park 2 complex,



expressed; androgen regulated gene


31560085
DnaJ (Hsp40) homolog, subfamily A, member 3 [Mus
13994155




musculus]

25053902


31981810
dodecenoyl-Coenzyme A delta isomerase (3,2 trans-
6753612
S38770
4503267
A55723



enoyl-Coenyme A isomerase) [Mus


31981826
electron transferring flavoprotein, alpha polypeptide;


4503607
A31998



Alpha-ETF [Mus musculus]


21313290
electron transferring flavoprotein, dehydrogenase [Mus



Q16134




musculus]



6679647
endonuclease G [Mus musculus]
6679647

4758270
NUCG_HUMAN


19923857
endothelial cell growth factor 1; thymidine



P19971



phosphorylase; gliostatin; platelet


7949037
enoyl coenzyme A hydratase 1, peroxisomal;
7949037



peroxisomal/mitochondrial dienoyl-CoA


29789289
enoyl Coenzyme A hydratase, short chain, 1,


12707570
ECHM_HUMAN



mitochondrial [Mus musculus]


7305125
estradiol 17 beta-dehydrogenase 8; 17-beta-



hydroxysteroid dehydrogenase 8;


18079334
ethanol induced 6 [Mus musculus]


6679078
expressed in non-metastatic cells 2, protein; expressed



in non-metastatic cells


9790123
expressed in non-metastatic cells 4, protein; nucleoside
9790123

4826862
NDKM_HUMAN



diphosphate kinase


21618729
Facl5 protein [Mus musculus]


31560705
fatty acid Coenzyme A ligase, long chain 2; acetyl-



LCFA_HUMAN



Coenzyme A synthetase;



JX0202


6679765
ferredoxin 1; ADRENODOXIN [Mus musculus]
6679765
S53524
4758352
AXHU


6679767
ferredoxin reductase [Mus musculus]
6679767
S60028
4758354
A40487






13435350


13385780
ferritin heavy chain 3; mitochondrial ferritin [Mus
13385780




musculus]



20452466
ferrochelatase [Mus musculus]
20452466
A37972

A36403


10946808
fibroblast growth factor (acidic) intracellular binding


7262378



protein; aFGF


33469107
folylpolyglutamyl synthetase [Mus musculus]
20824150
S65755
22024385
A46281


9507187
fractured callus expressed transcript 1; Fracture Callus
9507187



1; small zinc


6679863
frataxin [Mus musculus]
6679863

4503785


33859554
fumarate hydratase 1 [Mus musculus]
20831568

19743875
UFHUM


20070402
G elongation factor; mitochondrial [Mus musculus]


12963633
genes associated with retinoid-IFN-induced mortality 19



[Mus musculus]


6679957
glioblastoma amplified [Mus musculus]


31982798
glucokinase; hexokinase 4 [Mus musculus]



A46157 C46157


6680027
glutamate dehydrogenase [Mus musculus]
6680027
S16239
27485958
A53719 DEHUE






4885281






6912392


6754036
glutamate oxaloacetate transaminase 2, mitochondrial;
6754036
S01174
4504069
XNHUDM



mitochondrial aspartate


31982332
glutamate-ammonia ligase (glutamine synthase);



glutamine synthetase [Mus


31982847
glutamic acid decarboxylase 1 [Mus musculus]


6679959
glutaryl-Coenzyme A dehydrogenase [Mus musculus]
6679959
GCDH_MOUSE
4503943
GCDH_HUMAN






7669494


6680075
glutathione peroxidase 1; cellular GPx [Mus musculus]
6680075


13540480
glutathione peroxidase 4; sperm nuclei glutathione
13540480

4504107



peroxidase; phospholipid


34328489
glutathione reductase 1 [Mus musculus]
13775154


21313138
glutathione S-transferase class kappa [Mus musculus]


6754092
glutathione transferase zeta 1 (maleylacetoacetate



isomerase);


6679937
glyceraldehyde-3-phosphate dehydrogenase [Mus




musculus]



6680139
glycerol kinase [Mus musculus]



GKP2_HUMAN







GLPK_HUMAN


34536827
glycerol-3-phosphate acyltransferase, mitochondrial
6680057



[Mus musculus]


31981769
glycerol-3-phosphate dehydrogenase 2; glycerol
6753970

4504085
GPDM_HUMAN



phosphate dehydrogenase 1,


13385454
glycine amidinotransferase (L-arginine: glycine
13385454

4503933
S41734



amidinotransferase) [Mus


31560488
glycine C-acetyltransferase (2-amino-3-ketobutyrate-
7305083



coenzyme A ligase);


20070408
glycine decarboxylase [Mus musculus]



B39521


6806917
GM2 ganglioside activator protein [Mus musculus]


6680107
granulin; acrogranulin; progranulin; PC cell-derived



growth factor [Mus


12746414
growth factor, erv1 (S. cerevisiae)-like (augmenter of



liver regeneration);


13277394
GrpE-like 1, mitochondrial [Mus musculus]
13277394


29789124
GrpE-like 2, mitochondrial [Mus musculus]
20878923


3766203
GTP-specific succinyl-CoA synthetase beta subunit
20828815


T08812



[Mus musculus]


2137368
H+-transporting two-sector ATPase (EC 3.6.3.14) chain

S58660



c - mouse (fragments)


6680309
heat shock protein 1 (chaperonin 10); heat shock 10 kDa
6680309
A55075

S47532



protein 1 (chaperonin

CH10_MOUSE


31981679
heat shock protein 1 (chaperonin); heat shock protein,

HHMS60

A32800



60 kDa; heat shock 60 kDa


6680305
heat shock protein 1, beta; heat shock protein, 84 kDa



1; heat shock 90 kDa


31560686
heat shock protein 2; heat shock protein, 70 kDa 2; heat



B45871



shock 70 kDa protein 2


6754256
heat shock protein, A; heat shock protein cognate 74;
6754256
A48127
24234688
B48127



heat shock protein, 74
25024532


6680277
heat-responsive protein 12 [Mus musculus]


7305137
heme binding protein 1; heme-binding protein; p22



HBP; heme-binding protein 1


6680175
hemoglobin alpha, adult chain 1; alpha 1 globin [Mus




musculus]



122513
Hemoglobin beta-1 chain (B1) (Major)


31982300
hemoglobin, beta adult major chain; beta major globin;



beta maj [Mus musculus]


6754206
hexokinase 1; downeast anemia [Mus musculus]

A35244

A31869 JC2025


20982837
holocarboxylase synthetase; biotin- [propriony-



BPL1_HUMAN



Coenzyme A-carboxylase


31542950
holocytochrome c synthetase [Mus musculus]
6680181
CCHL_MOUSE

G02133


6754160
HS1 binding protein [Mus musculus]
6754160

13435356


12963539
HSCO protein [Mus musculus]


7949047
hydroxyacyl-Coenzyme A dehydrogenase type II;



hydroxyacyl-Coenzyme A


21704100
hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-


4504327
JC2109



Coenzyme A


33859811
hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-


20127408
JC2108



Coenzyme A


31982273
hydroxysteroid (17-beta) dehydrogenase 4;



hydroxysteroid 17-beta dehydrogenase


6680291
hydroxysteroid dehydrogenase-4, delta-3-beta; 3-beta-
20874991
I49762

DEHUHS DEHUH2



hydroxysteroid
23397415
3BH3_MOUSE




23621517
3BH4_MOUSE




6680289
3BH5_MOUSE




6680291
3BH6_MOUSE




6680293
3BH2_MOUSE




7305167




25046137


27754071
hypothetical protein 4833421E05Rik [Mus musculus]


21311867
hypothetical protein D11Ertd99e [Mus musculus]


21312020
hypothetical protein D4Ertd765e [Mus musculus]


22122743
hypothetical protein MGC37245 [Mus musculus]


21313262
inner membrane protein, mitochondrial [Mus musculus]


22203753
inorganic pyrophosphatase 2 [Mus musculus]


14916467
inositol polyphosphate-5-phosphatase E; inositol
14916467



polyphosphate-5-phosphatase, 72


27370516
isocitrate dehydrogenase 2 (NADP+), mitochondrial
6680343
IDHP_MOUSE
4504575
S57499



[Mus musculus]


18250284
isocitrate dehydrogenase 3 (NAD+) alpha [Mus


5031777
S55282




musculus]



6680345
isocitrate dehydrogenase 3 (NAD+), gamma [Mus
6680345


IDHG_HUMAN




musculus]



18700024
isocitrate dehydrogenase 3, beta subunit; isocitrate


5901982
IDHB_HUMAN



dehydrogenase 3 beta; N14A


9789985
isovaleryl coenzyme A dehydrogenase; isovaleryl


4504799
A37033



dehydrogenase precursor [Mus


6754482
keratin complex 1, acidic, gene 18; keratin 18 [Mus




musculus]



6754488
keratin complex 2, basic, gene 6b [Mus musculus]


19482166
kidney expressed gene 1 [Mus musculus]


25031694
kinesin family member 1B [Mus musculus]
20850523




25031694


19527030
kynurenine 3-monooxygenase (kynurenine 3-



hydroxylase) [Mus musculus]


6754408
kynurenine aminotransferase II [Mus musculus]


6680163
L-3-hydroxyacyl-Coenzyme A dehydrogenase, short
6680163
JC4210
4885387
JC4879



chain; hydroxylacyl-Coenzyme A


21703764
lactamase, beta 2 [Mus musculus]


13507666
lactamase, beta; serine beta lactamase-like protein;
13507666



mitochondrial ribosomal


31981147
leucine aminopeptidase 3; leucine aminopeptidase [Mus




musculus]



9789997
leucine zipper-EF-hand containing transmembrane



protein 1; leucine


21389320
leucine-rich PPR motif-containing protein; leucine rich



protein LRP130 [Mus


23346617
leucyl-tRNA synthetase [Mus musculus]



SYLM_HUMAN


13277380
lipoic acid synthetase [Mus musculus]
13277380


6678716
low density lipoprotein receptor-related protein 5; low



density


21539585
low molecular mass ubiquinone-binding protein;
21539585



ubiquinol-cytochrome c reductase


31541815
L-specific multifunctional beta-oxdiation protein [Mus




musculus]



6678760
lysophospholipase 1; phospholipase 1a;



lysophopholipase 1 [Mus musculus]


8393739
lysozyme [Mus musculus]


13654245
major urinary protein 1 [Mus musculus]


31982186
malate dehydrogenase, mitochondrial [Mus musculus]
6678916
DEMSMM

MDHM_HUMAN


21703972
malic enzyme 2, NAD(+)-dependent, mitochondrial


4505145
A39503



[Mus musculus]


31542169
malic enzyme 3, NADP(+)-dependent, mitochondrial



S53351



[Mus musculus]


9910434
malonyl-CoA decarboxylase [Mus musculus]


6912498
DCMC_HUMAN


6754760
mature T-cell proliferation 1 [Mus musculus]
6754760


7305291
metaxin 1; metaxin [Mus musculus]
7305291


MTXN_HUMAN


31543274
metaxin 2 [Mus musculus]
7949084


31981013
methionine sulfoxide reductase A [Mus musculus]


31980706
methylcrotonoyl-Coenzyme A carboxylase 1 (alpha)
12965187



[Mus musculus]


6678952
methylenetetrahydrofolate dehydrogenase (NAD+
6678952
A33267
5729935
DEHUMT



dependent),


20270275
methylenetetrahydrofolate dehydrogenase 1; C1-


13699868
A31903



tetrahydrofolate synthase [Mus


6678970
methylmalonyl-Coenzyme A mutase [Mus musculus]
6678970
S08680
4557767
S40622


31981068
microsomal glutathione S-transferase 1 [Mus musculus]



B28083


30794474
mitchondrial ribosomal protein S7; ribosomal protein,



JC7165



mitochondrial, S7 [Mus


19527402
mitochondrial acyl-CoA thioesterase 1 [Mus musculus]
19527402


13386040
mitochondrial ATP synthase regulatory component
13386040



factor B [Mus musculus]


15011842
mitochondrial capsule selenoprotein; sperm
15011842
A37199

MCS_HUMAN



mitochondria associated cysteine-rich


9790055
mitochondrial carrier homolog 2 [Mus musculus]


28076953
mitochondrial intermediate peptidase [Mus musculus]


5174567


27502349
mitochondrial matrix processing protease, alpha subunit



Q10713



[Mus musculus]


31559891
mitochondrial Rho 1 [Mus musculus]


22164792
mitochondrial ribosomal protein L12 [Mus musculus]



RM12_HUMAN



phosphorylase; gliostatin; platelet


7949037
enoyl coenzyme A hydratase 1, peroxisomal;
7949037



peroxisomal/mitochondrial dienoyl-CoA


29789289
enoyl Coenzyme A hydratase, short chain, 1,


12707570
ECHM_HUMAN



mitochondrial [Mus musculus]


7305125
estradiol 17 beta-dehydrogenase 8; 17-beta-



hydroxysteroid dehydrogenase 8;


18079334
ethanol induced 6 [Mus musculus]


6679078
expressed in non-metastatic cells 2, protein; expressed



in non-metastatic cells


9790123
expressed in non-metastatic cells 4, protein; nucleoside
9790123

4826862
NDKM_HUMAN



diphosphate kinase


21618729
Facl5 protein [Mus musculus]


31560705
fatty acid Coenzyme A ligase, long chain 2; acetyl-



LCFA_HUMAN



Coenzyme A synthetase;



JX0202


6679765
ferredoxin 1; ADRENODOXIN [Mus musculus]
6679765
S53524
4758352
AXHU


6679767
ferredoxin reductase [Mus musculus]
6679767
S60028
4758354
A40487






13435350


13385780
ferritin heavy chain 3; mitochondrial ferritin [Mus
13385780




musculus]



20452466
ferrochelatase [Mus musculus]
20452466
A37972

A36403


10946808
fibroblast growth factor (acidic) intracellular binding


7262378



protein; aFGF


33469107
folylpolyglutamyl synthetase [Mus musculus]
20824150
S65755
22024385
A46281


9507187
fractured callus expressed transcript 1; Fracture Callus
9507187



1; small zinc


6679863
frataxin [Mus musculus]
6679863

4503785


33859554
fumarate hydratase 1 [Mus musculus]
20831568

19743875
UFHUM


20070402
G elongation factor; mitochondrial [Mus musculus]


12963633
genes associated with retinoid-IFN-induced mortality 19



[Mus musculus]


6679957
glioblastoma amplified [Mus musculus]


31982798
glucokinase; hexokinase 4 [Mus musculus]



A46157 C46157


6680027
glutamate dehydrogenase [Mus musculus]
6680027
S16239
27485958
A53719 DEHUE






4885281






6912392


6754036
glutamate oxaloacetate transaminase 2, mitochondrial;
6754036
S01174
4504069
XNHUDM



mitochondrial aspartate


31982332
glutamate-ammonia ligase (glutamine synthase);



glutamine synthetase [Mus


31982847
glutamic acid decarboxylase 1 [Mus musculus]


6679959
glutaryl-Coenzyme A dehydrogenase [Mus musculus]
6679959
GCDH_MOUSE
4503943
GCDH_HUMAN






7669494


6680075
glutathione peroxidase 1; cellular GPx [Mus musculus]
6680075


13540480
glutathione peroxidase 4; sperm nuclei glutathione
13540480

4504107



peroxidase; phospholipid


34328489
glutathione reductase 1 [Mus musculus]
13775154


21313138
glutathione S-transferase class kappa [Mus musculus]


6754092
glutathione transferase zeta 1 (maleylacetoacetate



isomerase);


6679937
glyceraldehyde-3-phosphate dehydrogenase [Mus




musculus]



6680139
glycerol kinase [Mus musculus]



GKP2_HUMAN







GLPK_HUMAN


34536827
glycerol-3-phosphate acyltransferase, mitochondrial
6680057



[Mus musculus]


31981769
glycerol-3-phosphate dehydrogenase 2; glycerol
6753970

4504085
GPDM_HUMAN



phosphate dehydrogenase 1,


13385454
glycine amidinotransferase (L-arginine: glycine
13385454

4503933
S41734



amidinotransferase) [Mus


31560488
glycine C-acetyltransferase (2-amino-3-ketobutyrate-
7305083



coenzyme A ligase);


20070408
glycine decarboxylase [Mus musculus]



B39521


6806917
GM2 ganglioside activator protein [Mus musculus]


6680107
granulin; acrogranulin; progranulin; PC cell-derived



growth factor [Mus


12746414
growth factor, erv1 (S. cerevisiae)-like (augmenter of



liver regeneration);


13277394
GrpE-like 1, mitochondrial [Mus musculus]
13277394


29789124
GrpE-like 2, mitochondrial [Mus musculus]
20878923


3766203
GTP-specific succinyl-CoA synthetase beta subunit
20828815


T08812



[Mus musculus]


2137368
H+-transporting two-sector ATPase (EC 3.6.3.14) chain

S58660



c - mouse (fragments)


6680309
heat shock protein 1 (chaperonin 10); heat shock 10 kDa
6680309
A55075

S47532



protein 1 (chaperonin

CH10_MOUSE


31981679
heat shock protein 1 (chaperonin); heat shock protein,

HHMS60

A32800



60 kDa; heat shock 60 kDa


6680305
heat shock protein 1, beta; heat shock protein, 84 kDa



1; heat shock 90 kDa


31560686
heat shock protein 2; heat shock protein, 70 kDa 2; heat



B45871



shock 70 kDa protein 2


6754256
heat shock protein, A; heat shock protein cognate 74;
6754256
A48127
24234688
B48127



heat shock protein, 74
25024532


6680277
heat-responsive protein 12 [Mus musculus]


7305137
heme binding protein 1; heme-binding protein; p22



HBP; heme-binding protein 1


6680175
hemoglobin alpha, adult chain 1; alpha 1 globin [Mus




musculus]



122513
Hemoglobin beta-1 chain (B1) (Major)


31982300
hemoglobin, beta adult major chain; beta major globin;



beta maj [Mus musculus]


6754206
hexokinase 1; downeast anemia [Mus musculus]

A35244

A31869 JC2025


20982837
holocarboxylase synthetase; biotin- [propriony-



BPL1_HUMAN



Coenzyme A-carboxylase


31542950
holocytochrome c synthetase [Mus musculus]
6680181
CCHL_MOUSE

G02133


6754160
HS1 binding protein [Mus musculus]
6754160

13435356


12963539
HSCO protein [Mus musculus]


7949047
hydroxyacyl-Coenzyme A dehydrogenase type II;



hydroxyacyl-Coenzyme A


21704100
hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-


4504327
JC2109



Coenzyme A


33859811
hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-


20127408
JC2108



Coenzyme A


31982273
hydroxysteroid (17-beta) dehydrogenase 4;



hydroxysteroid 17-beta dehydrogenase


6680291
hydroxysteroid dehydrogenase-4, delta-3-beta; 3-beta-
20874991
I49762

DEHUHS DEHUH2



hydroxysteroid
23397415
3BH3_MOUSE




23621517
3BH4_MOUSE




6680289
3BH5_MOUSE




6680291
3BH6_MOUSE




6680293
3BH2_MOUSE




7305167




25046137


27754071
hypothetical protein 4833421E05Rik [Mus musculus]


21311867
hypothetical protein D11Ertd99e [Mus musculus]


21312020
hypothetical protein D4Ertd765e [Mus musculus]


22122743
hypothetical protein MGC37245 [Mus musculus]


21313262
inner membrane protein, mitochondrial [Mus musculus]


22203753
inorganic pyrophosphatase 2 [Mus musculus]


14916467
inositol polyphosphate-5-phosphatase E; inositol
14916467



polyphosphate-5-phosphatase, 72


27370516
isocitrate dehydrogenase 2 (NADP+), mitochondrial
6680343
IDHP_MOUSE
4504575
S57499



[Mus musculus]


18250284
isocitrate dehydrogenase 3 (NAD+) alpha [Mus


5031777
S55282




musculus]



6680345
isocitrate dehydrogenase 3 (NAD+), gamma [Mus
6680345


IDHG_HUMAN




musculus]



18700024
isocitrate dehydrogenase 3, beta subunit; isocitrate


5901982
IDHB_HUMAN



dehydrogenase 3 beta; N14A


9789985
isovaleryl coenzyme A dehydrogenase; isovaleryl


4504799
A37033



dehydrogenase precursor [Mus


6754482
keratin complex 1, acidic, gene 18; keratin 18 [Mus




musculus]



6754488
keratin complex 2, basic, gene 6b [Mus musculus]


19482166
kidney expressed gene 1 [Mus musculus]


25031694
kinesin family member 1B [Mus musculus]
20850523




25031694


19527030
kynurenine 3-monooxygenase (kynurenine 3-



hydroxylase) [Mus musculus]


6754408
kynurenine aminotransferase II [Mus musculus]


6680163
L-3-hydroxyacyl-Coenzyme A dehydrogenase, short
6680163
JC4210
4885387
JC4879



chain; hydroxylacyl-Coenzyme A


21703764
lactamase, beta 2 [Mus musculus]


13507666
lactamase, beta; serine beta lactamase-like protein;
13507666



mitochondrial ribosomal


31981147
leucine aminopeptidase 3; leucine aminopeptidase [Mus




musculus]



9789997
leucine zipper-EF-hand containing transmembrane



protein 1; leucine


21389320
leucine-rich PPR motif-containing protein; leucine rich



protein LRP130 [Mus


23346617
leucyl-tRNA synthetase [Mus musculus]



SYLM_HUMAN


13277380
lipoic acid synthetase [Mus musculus]
13277380


6678716
low density lipoprotein receptor-related protein 5; low



density


21539585
low molecular mass ubiquinone-binding protein;
21539585



ubiquinol-cytochrome c reductase


31541815
L-specific multifunctional beta-oxdiation protein [Mus




musculus]



6678760
lysophospholipase 1; phospholipase 1a;



lysophopholipase 1 [Mus musculus]


8393739
lysozyme [Mus musculus]


13654245
major urinary protein 1 [Mus musculus]


31982186
malate dehydrogenase, mitochondrial [Mus musculus]
6678916
DEMSMM

MDHM_HUMAN


21703972
malic enzyme 2, NAD(+)-dependent, mitochondrial


4505145
A39503



[Mus musculus]


31542169
malic enzyme 3, NADP(+)-dependent, mitochondrial



S53351



[Mus musculus]


9910434
malonyl-CoA decarboxylase [Mus musculus]


6912498
DCMC_HUMAN


6754760
mature T-cell proliferation 1 [Mus musculus]
6754760


7305291
metaxin 1; metaxin [Mus musculus]
7305291


MTXN_HUMAN


31543274
metaxin 2 [Mus musculus]
7949084


31981013
methionine sulfoxide reductase A [Mus musculus]


31980706
methylcrotonoyl-Coenzyme A carboxylase 1 (alpha)
12965187



[Mus musculus]


6678952
methylenetetrahydrofolate dehydrogenase (NAD+
6678952
A33267
5729935
DEHUMT



dependent),


20270275
methylenetetrahydrofolate dehydrogenase 1; C1-


13699868
A31903



tetrahydrofolate synthase [Mus


6678970
methylmalonyl-Coenzyme A mutase [Mus musculus]
6678970
S08680
4557767
S40622


31981068
microsomal glutathione S-transferase 1 [Mus musculus]



B28083


30794474
mitchondrial ribosomal protein S7; ribosomal protein,



JC7165



mitochondrial, S7 [Mus


19527402
mitochondrial acyl-CoA thioesterase 1 [Mus musculus]
19527402


13386040
mitochondrial ATP synthase regulatory component
13386040



factor B [Mus musculus]


15011842
mitochondrial capsule selenoprotein; sperm
15011842
A37199

MCS_HUMAN



mitochondria associated cysteine-rich


9790055
mitochondrial carrier homolog 2 [Mus musculus]


28076953
mitochondrial intermediate peptidase [Mus musculus]


5174567


27502349
mitochondrial matrix processing protease, alpha subunit



Q10713



[Mus musculus]


31559891
mitochondrial Rho 1 [Mus musculus]


22164792
mitochondrial ribosomal protein L12 [Mus musculus]



RM12_HUMAN


16716447
mitochondrial ribosomal protein L27 [Mus musculus]
16716447


31981470
mitochondrial ribosomal protein L3 [Mus musculus]



R5HUL3 R5HUL3


13385266
mitochondrial ribosomal protein L33 [Mus musculus]


16716449
mitochondrial ribosomal protein L34 [Mus musculus]
16716449


31560438
mitochondrial ribosomal protein L39; ribosomal protein,
8393021



mitochondrial, L5 [Mus


13385752
mitochondrial ribosomal protein L49; neighbor of fau 1
13385752



[Mus musculus]


30519921
mitochondrial ribosomal protein L50 [Mus musculus]


29789253
mitochondrial ribosomal protein L9 [Mus musculus]
20874698


17157979
mitochondrial ribosomal protein S11 [Mus musculus]
17157979


6755360
mitochondrial ribosomal protein S12; ribosomal protein,
6755360


RT12_HUMAN



mitochondrial, S12;


13384894
mitochondrial ribosomal protein S14 [Mus musculus]


13384968
mitochondrial ribosomal protein S15 [Mus musculus]
13384968


13384844
mitochondrial ribosomal protein S16 [Mus musculus]
13384844


13384854
mitochondrial ribosomal protein S17 [Mus musculus]
13384854


31543265
mitochondrial ribosomal protein S2 [Mus musculus]


17505220
mitochondrial ribosomal protein S21 [Mus musculus]
17505220


31981257
mitochondrial ribosomal protein S25 [Mus musculus]
13385024


10181116
mitochondrial ribosomal protein S31; islet mitochondrial
10181116

5031787



antigen, 38 kD [Mus


17157985
mitochondrial ribosomal protein S5 [Mus musculus]


23956244
mitochondrial ribosomal protein S6 [Mus musculus]
23956244


19526984
mitochondrial translational initiation factor 2 [Mus


4505277
A55628




musculus]



31981857
mitochondrial translational release factor 1 [Mus


4758744
RF1M_HUMAN




musculus]



27804325
monoamine oxidase A [Mus musculus]
20983270
I48342

A36175




27804325


19073795
MTO1 [Mus musculus]
19073795


6754732
myeloperoxidase [Mus musculus]



OPHUM


22003874
N-acetylglutamate synthase; amino-acid N-
22003874



acetyltransferase [Mus musculus]


9055168
N-acylsphingosine amidohydrolase 2; neutral/alkaline;


9845267



neutral/alkaline


13195624
NADH dehydrogenase (ubiquinone) 1 alpha



O95299



subcomplex 10 [Mus musculus]


9506911
NADH dehydrogenase (ubiquinone) 1 alpha
9506911


O15239



subcomplex, 1 (7.5 kD, MWFE); NADH


31981600
NADH dehydrogenase (ubiquinone) 1 alpha



O43678



subcomplex, 2; NADH dehydrogenase


33563266
NADH dehydrogenase (ubiquinone) 1 alpha

NUML_MOUSE

NUML_HUMAN



subcomplex, 4; NADH dehydrogenase


13386100
NADH dehydrogenase (ubiquinone) 1 alpha



NUFM_Human



subcomplex, 5 [Mus musculus]


13385492
NADH dehydrogenase (ubiquinone) 1 alpha



P56556



subcomplex, 6 (B14); NADH dehydrogenase


12963571
NADH dehydrogenase (ubiquinone) 1 alpha



AAD05427



subcomplex, 7 (B14.5a); NADH


21312012
NADH dehydrogenase (ubiquinone) 1 alpha


7657369
NUPM_HUMAN



subcomplex, 8 [Mus musculus]


13384720
NADH dehydrogenase (ubiquinone) 1 alpha



NUEM_HUMAN



subcomplex, 9 [Mus musculus]


31980802
NADH dehydrogenase (ubiquinone) 1 alpha
27229088



subcomplex, assembly factor 1; NADH


13385054
NADH dehydrogenase (ubiquinone) 1 beta subcomplex


4505361
O43676



3 [Mus musculus]


13385558
NADH dehydrogenase (ubiquinone) 1 beta subcomplex



JE0382



8 [Mus musculus]


13386096
NADH dehydrogenase (ubiquinone) 1 beta subcomplex,



2 [Mus musculus]


27754144
NADH dehydrogenase (ubiquinone) 1 beta subcomplex,



O43674



5; NADH dehydrogenase


13385322
NADH dehydrogenase (ubiquinone) 1 beta subcomplex,



NB8M_HUMAN



7 [Mus musculus]


29789148
NADH dehydrogenase (ubiquinone) 1 beta subcomplex,



9 [Mus musculus]


27754007
NADH dehydrogenase (ubiquinone) 1, alpha/beta



T00741



subcomplex, 1 [Mus musculus]


13384946
NADH dehydrogenase (ubiquinone) 1, subcomplex



O43677



unknown, 1 [Mus musculus]


21704020
NADH dehydrogenase (ubiquinone) Fe—S protein 1



S17854



[Mus musculus]


23346461
NADH dehydrogenase (ubiquinone) Fe—S protein 2;



JE0193



NADH-coenzyme Q reductase [Mus


6754814
NADH dehydrogenase (ubiquinone) Fe—S protein 4;



NUYM_HUMAN



NADH dehydrogenase (ubiquinone)


19527334
NADH dehydrogenase (ubiquinone) Fe—S protein 5;



O43920



NADH dehydrogenase Fe—S protein


21312950
NADH dehydrogenase (ubiquinone) Fe—S protein 7



O75251



[Mus musculus]


21450107
NADH dehydrogenase (ubiquinone) Fe—S protein 8



NUIM_HUMAN



[Mus musculus]


19526814
NADH dehydrogenase (ubiquinone) flavoprotein 1;



A44362



NADH dehydrogenase flavoprotein


20900762
NADH dehydrogenase (ubiquinone) flavoprotein 2 [Mus
20900762


A30113




musculus]



5834954
NADH dehydrogenase subunit 1 [Mus musculus]
5834954
QXMS1M

DNHUN1


5834955
NADH dehydrogenase subunit 2 [Mus musculus]
5834955
QXMS2M

DNHUN2


5834961
NADH dehydrogenase subunit 3 [Mus musculus]
5834961
QXMS3M

DNHUN3


5834963
NADH dehydrogenase subunit 4 [Mus musculus]
5834963
QXMS4M

DNHUN4


5834962
NADH dehydrogenase subunit 4L [Mus musculus]
5834962
QXMS4L

DNHUNL


7770109
NADH dehydrogenase subunit 5 [Mus musculus



DNHUN5



domesticus]


5834964
NADH dehydrogenase subunit 5 [Mus musculus]
5834964
QXMS5M


5834965
NADH dehydrogenase subunit 6 [Mus musculus]
5834965
DEMSN6
27754188
DEHUN6


21314826
NADH: ubiquinone oxidoreductase B15 subunit [Mus



O95168




musculus]



21539587
NADH-ubiquinone oxidoreductase B9 subunit; Complex
21539587


O95167



I-B9; Cl-B9 [Mus musculus]


13507612
NADPH-dependent retinol dehydrogenase/reductase



[Mus musculus]


6754870
neighbor of Cox4 [Mus musculus]


5174615


200022
neurofilament protein


9506933
neuronal protein 15.6 [Mus musculus]


31543330
nicotinamide nucleotide transhydrogenase [Mus
6679088
S54876

G02257




musculus]



13385084
NIPSNAP-related protein [Mus musculus]


12963555
Nit protein 2 [Mus musculus]


21313484
nitrogen fixation cluster-like [Mus musculus]


6754846
nitrogen fixation gene, yeast homolog 1; nifS-like (sic)
25058437

26006849



[Mus musculus]
6754846


6679146
nth (endonuclease III)-like 1; thymine glycol DNA
6679146



glycosylase/AP lyase [Mus


31543343
nuclear respiratory factor 1 [Mus musculus]



A54868


27753998
nudix (nucleoside diphosphate linked moiety X)-type
27753998



motif 9 [Mus musculus]


19526960
optic atrophy 1 homolog [Mus musculus]
19526960


T00336


8393866
ornithine aminotransferase [Mus musculus]
8393866
XNMSO
4557809
XNHUO


6679184
ornithine transcarbamylase; sparse fur [Mus musculus]
6679184
OWMS
9257234
OWHU


33563270
oxoglutarate dehydrogenase (lipoamide); alpha-
20853413
I48884

A38234



ketoglutarate dehydrogenase [Mus
25025547
ODO1_MOUSE


11528520
p53 apoptosis effector related to Pmp22; p53 apoptosis-
11528520



associated target [Mus


19527310
peptidylprolyl isomerase F (cyclophilin F); peptidyl-prolyl
19527310


A41581



cis-trans isomerase;


6680690
peroxiredoxin 3; anti-oxidant protein 1; mitochondrial
6680690
JQ0064

TDXM_HUMAN



Trx dependent peroxide


7948999
peroxiredoxin 4; antioxidant enzyme AOE372; Prx IV



[Mus musculus]


6755114
peroxiredoxin 5 precursor; peroxiredoxin 6; peroxisomal
6755114

6912238



membrane protein 20;


18875408
peroxisomal acyl-CoA thioesterase 1 [Mus musculus]


31980804
peroxisomal trans 2-enoyl CoA reductase; perosisomal



2-enoyl-CoA reductase [Mus


21450279
PET112-like [Mus musculus]


4758894
GATB_HUMAN


10946832
phorbol-12-myristate-13-acetate-induced protein 1;
10946832



Noxa protein [Mus musculus]


33667036
phosphatidylethanolamine N-methyltransferase [Mus
7110685


PEMT_HUMAN




musculus]



6755090
phospholipase A2, group IB, pancreas [Mus musculus]



PSHU


7242175
phospholipase A2, group IIA (platelets, synovial fluid);

I48342



modifier of Min1;


6679369
phospholipase A2, group IVA (cytosolic, calcium-



A39329



dependent); phospholipase A2,


7657467
polymerase (DNA directed), gamma 2, accessory
7657467



subunit; mitochondrial polymerase


8567392
polymerase (DNA directed), gamma; polymerase,
8567392
DPOG_MOUSE
4505937
G02750



gamma; Pol gamma; polymerase


14780884
polymerase delta interacting protein 38 [Mus musculus]


6755004
programmed cell death 8; programmed cell death 8
6755004

4757732



(apoptosis inducing factor);


22202629






22202631


6679299
prohibitin [Mus musculus]


6755178
proline dehydrogenase [Mus musculus]
25053948




6755178


13385310
propionyl Coenzyme A carboxylase, beta polypeptide


4557044
A53020



[Mus musculus]


21450241
propionyl-Coenzyme A carboxylase, alpha polypeptide;


4557833
A27883



propionyl CoA-carboxylase


34328185
prosaposin [Mus musculus]


31980991
protease, serine, 25; serine protease OMI [Mus
9790135




musculus]



6679437
protective protein for beta-galactosidase [Mus




musculus]



6679445
protoporphyrinogen oxidase [Mus musculus]
6679445
S68367
4506001
PPOX_HUMAN


21553115
putative mitochondrial solute carrier [Mus musculus]
21553115


31543280
putative prostate cancer tumor suppressor; cDNA



sequence BC003311 [Mus musculus]


21450149
pyrroline-5-carboxylate reductase 1; hypothetical



A41770



protein MGC11688 [Mus


24025659
pyrroline-5-carboxylate synthetase; glutamate gamma-
9790061



semialdehyde synthetase [Mus
24025659


6679237
pyruvate carboxylase; pyruvate decarboxylase [Mus
6679237
A47255
11761615
JC2460




musculus]



4505627


18152793
pyruvate dehydrogenase (lipoamide) beta [Mus


4505687
DEHUPB




musculus]



28201978
pyruvate dehydrogenase complex, component X;


4505699



dihydrolipoamide


6679261
pyruvate dehydrogenase E1 alpha 1; pyruvate
6679263
S23507 S23506
4505685
DEHUPA DEHUPT



dehydrogenase E1alpha subunit [Mus
6679261


19526816
pyruvate dehydrogenase kinase, isoenzyme 2; pyruvate
19526816


I70159



dehydrogenase 2 [Mus


21704122
pyruvate dehydrogenase kinase, isoenzyme 3 [Mus


4885545
I70160




musculus]



7305375
pyruvate dehydrogenase kinase, isoenzyme 4; pyruvate
7305375

4505693
Q16654



dehydrogenase kinase 4 [Mus


31981562
pyruvate kinase 3 [Mus musculus]


31543608
reticulon 4 interacting protein 1; NOGO-interacting
18700036



mitochondrial protein;


22267464
retinoic acid inducible protein 3 [Mus musculus]


6755334
ribonuclease H1 [Mus musculus]


12584986
ribosomal protein L23 [Mus musculus]



RL23_HUMAN


13384904
ribosomal protein, mitochondrial, S22 [Mus musculus]
13384904


21311883
RIKEN cDNA 0610007O07 [Mus musculus]


21311967
RIKEN cDNA 0610008C08 [Mus musculus]


21536220
RIKEN cDNA 0610008F14 [Mus musculus]



S22348


21313679
RIKEN cDNA 0610009D10 [Mus musculus]


21312004
RIKEN cDNA 0610009I16 [Mus musculus]



S32482


13385656
RIKEN cDNA 0610010D20 [Mus musculus]


21311853
RIKEN cDNA 0610012H03 [Mus musculus]


21313618
RIKEN cDNA 0610041L09 [Mus musculus]


13385662
RIKEN cDNA 0610042E07 [Mus musculus]


27754146
RIKEN cDNA 0710001P09 [Mus musculus]


21312028
RIKEN cDNA 1110006I11 [Mus musculus]


13384742
RIKEN cDNA 1110018B13 [Mus musculus]


13384766
RIKEN cDNA 1110021D01 [Mus musculus]


12963697
RIKEN cDNA 1110025H10 [Mus musculus]


13385298
RIKEN cDNA 1300002A08 [Mus musculus]
13385298


21311845
RIKEN cDNA 1300006L01 [Mus musculus]
21311845


33859744
RIKEN cDNA 1500032D16 [Mus musculus]



NUOM_HUMAN


18859597
RIKEN cDNA 1810004I06 [Mus musculus]



O95298


20876012
RIKEN cDNA 1810020M02 [Mus musculus]



I38079


20897872
RIKEN cDNA 1810058I14 [Mus musculus]


21624609
RIKEN cDNA 2010012D11 [Mus musculus]


13385436
RIKEN cDNA 2010100O12 [Mus musculus]


21312554
RIKEN cDNA 2010107E04 [Mus musculus]
21312554
P56379

68MP_HUMAN


13385042
RIKEN cDNA 2010309E21 [Mus musculus]


27370092
RIKEN cDNA 2300002G02 [Mus musculus]

PD0441
21359837
I53499 S62767


31980955
RIKEN cDNA 2310005D12 [Mus musculus]


33859690
RIKEN cDNA 2310005O14 [Mus musculus]


21312348
RIKEN cDNA 2310020P08 [Mus musculus]
21312348


13384950
RIKEN cDNA 2310039H17 [Mus musculus]


21313468
RIKEN cDNA 2310050B20 [Mus musculus]
21313468

21361280
I84606


13385998
RIKEN cDNA 2410002K23 [Mus musculus]
13385998


31560255
RIKEN cDNA 2410005O16 [Mus musculus]


27228985
RIKEN cDNA 2410011G03 [Mus musculus]


30794396
RIKEN cDNA 2410021P16 [Mus musculus]


21312594
RIKEN cDNA 2610205H19; EST AA108335 [Mus




musculus]



13195670
RIKEN cDNA 2610207I16 [Mus musculus]


21313080
RIKEN cDNA 2700085E05 [Mus musculus]


22267456
RIKEN cDNA 2810431B21 [Mus musculus]


5729820


21312204
RIKEN cDNA 2810435D12 [Mus musculus]


19526848
RIKEN cDNA 2810484M10 [Mus musculus]


31541932
RIKEN cDNA 2900026G05 [Mus musculus]


17921985






17921987


21312153
RIKEN cDNA 2900070E19 [Mus musculus]


13386046
RIKEN cDNA 3010027G13 [Mus musculus]
13386046


27229021
RIKEN cDNA 3110001M13 [Mus musculus]


4506865
DHSD_HUMAN


20822904
RIKEN cDNA 3110004O18 [Mus musculus]
20822904

4758734
O75439




25031957


30424808
RIKEN cDNA 3110021G18 [Mus musculus]


15011910
A40141


25072051
RIKEN cDNA 3110065L21 [Mus musculus]


21312006
RIKEN cDNA 3632410G24 [Mus musculus]
21312006

4759286
UCP4_HUMAN


21311988
RIKEN cDNA 4121402D02 [Mus musculus]


13385168
RIKEN cDNA 4430402G14 [Mus musculus]



UCRI_HUMAN


31981207
RIKEN cDNA 4432405K22 [Mus musculus]


19527276
RIKEN cDNA 4921526O06 [Mus musculus]


21312894
RIKEN cDNA 4930483N21 [Mus musculus]


30424611
RIKEN cDNA 4932416F07 [Mus musculus]


13386066
RIKEN cDNA 5730591C18 [Mus musculus]
13386066

4758424
GCHUH


27370158
RIKEN cDNA 6430520C02 [Mus musculus]


5454070
Q92581


28077029
RIKEN cDNA 9130022B02 [Mus musculus]


4758886
S69546


13386062
RIKEN cDNA 9430083G14 [Mus musculus]


27369922
RIKEN cDNA 9630020E24 [Mus musculus]


27370474
RIKEN cDNA 9630038C02 [Mus musculus]



GABT_HUMAN


22122359
RIKEN cDNA A330009E03 [Mus musculus]


5031709


21450203
RIKEN cDNA A330035H04; long-chain acyl-CoA



synthetase [Mus musculus]


21704204
RIKEN cDNA A930031O08 [Mus musculus]


4759068


34328415
RIKEN cDNA A930035F14 gene [Mus musculus]



PUT2_HUMAN


21311919
RIKEN cDNA B430104H02 [Mus musculus]


27369966
RIKEN cDNA D530020C15 [Mus musculus]


4505689
I55465


27369748
RIKEN cDNA D630032B01 [Mus musculus]


19527384
RIKEN cDNA D930010J01 [Mus musculus]


28893421
RIKEN cDNA E430012M05 gene [Mus musculus]


22267442
RIKubiquinol cytochrome c reductase core protein 2
22267442


A32629



[Mus musculus]


31982720
SA rat hypertension-associated homolog [Mus




musculus]



20149748
sarcosine dehydrogenase [Mus musculus]


15030102
Sdha protein [Mus musculus]


4759080


984837
secretory group II phospholipase A2



PSHUYF


6677943
serine hydroxymethyl transferase 1 (soluble) [Mus




musculus]



21312298
serine hydroxymethyl transferase 2 (mitochondrial)


19923315
B46746



[Mus musculus]


15147224
sideroflexin 1; flexed tail [Mus musculus]
15147224




16716499


31981486
sideroflexin 2 [Mus musculus]
16716497


16716501
sideroflexin 4 [Mus musculus]
16716501


20895140
similar to aminomethyltransferase [Mus musculus]


4502083
I54192


25052664
similar to Cytochrome c oxidase assembly protein


4758034
COXZ_HUMAN



COX11, mitochondrial precursor


28478945
similar to Glutaminase, kidney isoform, mitochondrial


20336214



precursor (GLS)


28526374
similar to NADH2 dehydrogenase (ubiquinone) (EC

NUMM_MOUSE

O75380



1.6.5.3) complex I 13K-A chain


20825073
similar to NADH-ubiquinone oxidoreductase B17



O95139



subunit (Complex I-B17) (Cl-B17)


20916351
single-stranded DNA binding protein 1 [Mus musculus]


4507231
JN0568


27229283
small fragment nuclease [Mus musculus]



T14770


13540709
sodium channel, voltage-gated, type 1, alpha



polypeptide; sodium channel,


6678001
solute carrier family 1, member 1 [Mus musculus]

EAT3_MOUSE


7106409
solute carrier family 1, member 2; glial high affinity



EAT2_HUMAN



glutamate transporter


24233554
solute carrier family 1, member 3; glial high affinity



JC2084



glutamate transporter


9790129
solute carrier family 22 member 4; solute carrier family



(organic cation


28544699
solute carrier family 25 (mitochondrial carrier), member
20342202



18 [Mus musculus]
20831383




25022813


6755544
solute carrier family 25 (mitochondrial carrier, brain),
6755544

4507009
O95258



member 14; solute
13385736

13259543


7657583
solute carrier family 25 (mitochondrial carrier; adenine
7657583

21361103
Y14494



nucleotide


7657581


7305501
solute carrier family 25 (mitochondrial carrier;
7305501



dicarboxylate transporter),


6754952
solute carrier family 25 (mitochondrial carrier; ornithine
6754952



transporter), member


21312994
solute carrier family 25 (mitochondrial carrier;
21312994


A56650



oxoglutarate carrier), member


29789024
solute carrier family 25 (mitochondrial carrier;
20902883



peroxisomal membrane protein),


19526818
solute carrier family 25 (mitochondrial carrier;
19526818

6031192
A53737 B53737



phosphate carrier), member 3;


4505775


21313024
solute carrier family 25 (mitochondrial deoxynucleotide
21313024



carrier), member 19 [Mus


23943838
solute carrier family 25, member 1; DiGeorge syndrome
20346164


TXTP_HUMAN



gene j; solute carrier
20891945




23943838




25025453


22094075
solute carrier family 25, member 5; adenine nucleotide
20863388
S31814 S37210
4502097
A29132 A44778



translocator 2,
22094075


S03894


6755548
solute carrier family 27 (fatty acid transporter), member



2; very long-chain


31981977
spastic paraplegia 7 homolog; paraplegin; spastic


4507173



paraplegia 7 [Mus musculus]


13507712
sphingosine-1-phosphate phosphatase 1; sphingosine-
13507712



1-phosphate phosphatase [Mus


10946984
START domain containing 3; es64 protein;



S60682



steroidogenic acute regulatory protein


31543776
steroidogenic acute regulatory protein [Mus musculus]
19920319
A55455
4507251
I38896


28545662
sterol carrier protein 2, liver [Mus musculus]
20841062
JU0157 A40015

B40407


12963591
stomatin-like protein 2 [Mus musculus]


13384690
succinate dehydrogenase complex, subunit C, integral
13384690

4506863



membrane protein [Mus


20908717
succinate dehydrogenase Fp subunit [Mus musculus]



JX0336


34328286
succinate dehydrogenase Ip subunit [Mus musculus]

PT0094
9257242
A34045


9845299
succinate-CoA ligase, GDP-forming, alpha subunit;
9845299

11321581
P53597



succinyl-CoA synthetase [Mus


31981549
sulfide quinone reductase-like; flavo-binding protein;



sulfide


30424565
sulfite oxidase [Mus musculus]



S55874


31980762
superoxide dismutase 2, mitochondrial; manganese
7305511
I57023
10835187
DSHUN



SOD; manganese superoxide


31088872
suppressor of var1, 3-like 1 [Mus musculus]


4507315


7363455
surfeit gene 1 [Mus musculus]
7363455
B25394

S57749


6678179
syntaxin binding protein 1; unc18 homolog (C. elegans);



UNC-18 homolog (C.


15809030
synuclein, beta [Mus musculus]


31442416
tafazzin [Mus musculus]



TFZ_HUMAN


13384998
tetratricopeptide repeat domain 11 [Mus musculus]


13385260
thioesterase superfamily member 2 [Mus musculus]


6755911
thioredoxin 1; thioredoxin [Mus musculus]


9903609
thioredoxin 2; thioredoxin nuclear gene encoding
9903609


THI2_HUMAN



mitochondrial protein;


7305603
thioredoxin reductase 2; human EST 573010; EST
7305603

22035672



AA118373; TR beta [Mus musculus]


22035670






22035668


6678449
thiosulfate sulfurtransferase, mitochondrial [Mus
6678449
THTR_MOUSE




musculus]



6678357
thymidine kinase 1 [Mus musculus]



KIHUT


10835111
thymidine kinase 2, mitochondrial; thymidine kinase 2
10835111

10281330



[Mus musculus]


6678417
thyroid peroxidase [Mus musculus]



OPHUIT


6678303
transcription factor A, mitochondrial [Mus musculus]
6678303


JC1496


26006865
transcription termination factor, mitochondrial-like [Mus


5902010




musculus]



7305573
translocase of inner mitochondrial membrane 10



homolog [Mus musculus]


7305575
translocase of inner mitochondrial membrane 13



homolog a [Mus musculus]


12025536
translocase of inner mitochondrial membrane 23
12025536



homolog [Mus musculus]


7305577
translocase of inner mitochondrial membrane 8
7305577


U66035



homolog a [Mus musculus]


7305579
translocase of inner mitochondrial membrane 8



homolog b [Mus musculus]


7305581
translocase of inner mitochondrial membrane 9



homolog [Mus musculus]


13324686
translocase of outer mitochondrial membrane 20



S66619



homolog [Mus musculus]


8394480
translocase of outer mitochondrial membrane 40
8394480



homolog; mitochondrial outer


19705563
translocator of inner mitochondrial membrane 44 [Mus
19705563


IM44_HUMAN




musculus]

25024735




25070554


33468943
translocator of inner mitochondrial membrane a;
25030423


IM17_HUMAN



translocator of inner
20910363


20270297
trimethyllysine hydroxylase, epsilon; epsilon-
20270297



trimethyllysine 2-oxoglutarate


33859692
tRNA nucleotidyl transferase, CCA-adding, 1; tRNA
20829254



adenylyltransferase,


16716569
trypsinogen 16 [Mus musculus]


31543952
tryptophanyl tRNA synthetase 2 (mitochondrial) [Mus
21362271

7710154




musculus]



6678469
tubulin, alpha 6; tubulin alpha 6 [Mus musculus]


12963615
tubulin, beta 3 [Mus musculus]


31981925
tyrosine 3-monooxygenase/tryptophan 5-



143E_HUMAN



monooxygenase activation protein, epsilon


6756041
tyrosine 3-monooxygenase/tryptophan 5-

JC5384

PSHUAM



monooxygenase activation protein, zeta


22122769
tyrosine aminotransferase [Mus musculus]



S10887


21539599
ubiquinol cytochrome c reductase hinge protein;
21539599


S00219



mitochondrial hinge protein;


13385726
ubiquinol-cytochrome c reductase binding protein [Mus
13385726


A32450




musculus]



13384794
ubiquinol-cytochrome c reductase core protein 1 [Mus
13384794


A48043




musculus]

25030421


13385112
ubiquinol-cytochrome c reductase subunit [Mus




musculus]



21070950
ubiquitin C; polyubiquitin C [Mus musculus]


6678497
uncoupling protein 1, mitochondrial; uncoupling protein,
6678497
A31106
11225256
A60793



mitochondrial [Mus


31543920
uncoupling protein 2, mitochondrial [Mus musculus]
6755933


UCP2_HUMAN


6678495
uncoupling protein 3, mitochondrial [Mus musculus]
6678495


12836291
unnamed protein product [Mus musculus]


21396489
S42366


12832533
unnamed protein product [Mus musculus]



O75489


12832556
unnamed protein product [Mus musculus]



O96000


26343407
unnamed protein product [Mus musculus]


14790138


26346947
unnamed protein product [Mus musculus]



S63453


12834221
unnamed protein product [Mus musculus]


12834781
unnamed protein product [Mus musculus]


12835668
unnamed protein product [Mus musculus]


12835711
unnamed protein product [Mus musculus]


12836533
unnamed protein product [Mus musculus]


12836798
unnamed protein product [Mus musculus]


12841269
unnamed protein product [Mus musculus]


12842244
unnamed protein product [Mus musculus]


12845262
unnamed protein product [Mus musculus]


12846164
unnamed protein product [Mus musculus]


12855263
unnamed protein product [Mus musculus]


12855887
unnamed protein product [Mus musculus]


12860092
unnamed protein product [Mus musculus]


12861374
unnamed protein product [Mus musculus]


26363071
unnamed protein product [Mus musculus]


13128954
upregulated during skeletal muscle growth 5 [Mus




musculus]



6755941
uracil-DNA glycosylase [Mus musculus]
6755941
UNG_MOUSE

A60472


6678509
urate oxidase; uricase [Mus musculus]


6678519
uroporphyrinogen III synthase; URO-synthase;



A40483



uroporphyrinogen-III synthase;


34328204
valyl-tRNA synthetase 2 [Mus musculus]


31559883
very-long-chain acyl-CoA dehydrogenase VLCAD



homolog [Mus musculus]


6755963
voltage-dependent anion channel 1 [Mus musculus]
6755963

4507879
MMHUP3


6755965
voltage-dependent anion channel 2 [Mus musculus]
6755965


B44422


6755967
voltage-dependent anion channel 3 [Mus musculus]



S59547


31980962
WW-domain oxidoreductase [Mus musculus]
9625012
















TABLE 5










Tiers of evidence supporting the 163 newly identified mito-A proteins. The protein accession and description of each of the newly


identified mito-A proteins is shown along with each of the GenPept accessions of the proteins identified in the tissue proteomics experiments.


For each mito-A protein cluster, the top scoring human homologue from the study, the PSORT targeting prediction, the mitochondrial


neighborhood index, and the results of epitope tagging experiments, when available, are shown. For the BLASTP analyses, only the top scoring


match from the study by MitoKor is provided, using a threshold of E < 1 × 10−5. The PSORT targeting prediction and probability were obtained for


the exemplar protein sequence. The neighborhood indices (N50, N100, and N250) are provided, when available. Due to probe-set duplicity, some


proteins have more than one corresponding probe-set, and others have no probe-set. An N50 ≧ 6, N100 ≧ 10, and N250 ≧ 19 each correspond to a


nominal P = 0.001, assuming that mito-A genes are randomly distributed in expression space. In the final column, the subcellular localization


based on immunofluorescence microscopy is indicated for the five proteins shown in FIG. 2









Exemplar Protein for the Cluster
Proteomics
BLASTP against MitoKor















Accession
Description
Liver
Brain
Heart
Kidney
Match
Score
Expect


















21313679
RIKEN cDNA 0610009D10 [Mus musculus]
12832313
12832313
12832313
12832313
5453559
283
1.00E−78




220904


220904


21312594
RIKEN cDNA 2610205H19; EST AA108335
12848292
12848292
12848292
730248
7661602
249
2.00E−68



[Mus musculus]
730248

730248


13128954
upregulated during skeletal muscle growth 5 [Mus
12842476
13128954
12842476
12842476
14249376
105
2.00E−25




musculus]

6851054
12842476


6671622
B-cell receptor-associated protein 37; repressor of
6005854
6005854
6005854
6005854
6005854
568
e−164



estrogen receptor activity
6671622


27228985
RIKEN cDNA 2410011G03 [Mus musculus]
10092657
13384978
13384978
13384978
10092657
297
6.00E−83




13384978


13384766
RIKEN cDNA 1110021D01 [Mus musculus]
13384766
13384766
12842709
13384766
NO




12842709



MATCH


19354491
1110020P15Rik protein [Mus musculus]
136701
9297078
136701
136701
9297078
116
5.00E−29





136701





3891857





6094658


9789997
leucine zipper-EF-hand containing transmembrane
9789997
9789997
9789997
9789997
6912482
1209
0



protein 1; leucine


13385260
thioesterase superfamily member 2 [Mus musculus]
13385260
13385260
13385260
13385260
4210351
209
2.00E−56


19527228
DNA segment, Chr 10, ERATO Doi 214, expressed
8923930
8923930
8923930
8923930
8923930
206
1.00E−55



[Mus musculus]


12842244
unnamed protein product [Mus musculus]
12842244
12842244
12842244
12842244
17455445
210
1.00E−56


12963633
genes associated with retinoid-IFN-induced
12963633
12963633
12963633
12963633
12005918
260
1.00E−71



mortality 19 [Mus musculus]
12833386
12833406
12833386
12833386




12833406

12833406
7705734







12833406


6679066
4-nitrophenylphosphatase domain and non-
6679066
4505399
6679066
12803135
4503937
429
e−122



neuronal SNAP25-like protein homolog 1
12850319
6679066

4505399





12850319

6679066







12850319


7949047
hydroxyacyl-Coenzyme A dehydrogenase type II;
7949047
7949047
7949047
7949047
14764202
421
e−120



hydroxyacyl-Coenzyme A
12850643

12850643
13182962




13182962

13182962




3183025


23956104
adenylate kinase 3 alpha-like; adenylate kinase 3
12837588

12837588
12836369
12735226
428
e−122



alpha like [Mus musculus]
6978479


12837588




6707707


6707707


20149748
sarcosine dehydrogenase [Mus musculus]
13097441

13097441
13097441
13775158
185
3.00E−48




3283373


3283373




4928113


31980804
peroxisomal trans 2-enoyl CoA reductase;
12963715

12963715
12845570
4503301
143
5.00E−36



perosisomal 2-enoyl-CoA reductase [Mus
13506791


12963715







13506791


21624609
RIKEN cDNA 2010012D11 [Mus musculus]
12833236

12857234
12833236
NO




12857234


4757862
MATCH


21389320
leucine-rich PPR motif-containing protein; leucine
12851540

1730078
12851540
1730078
1938
0



rich protein LRP130 [Mus


12851540


21313618
RIKEN cDNA 0610041L09 [Mus musculus]

12839842
12832121
12832121
8923390
411
e−117






8923390


30424611
RIKEN cDNA 4932416F07 [Mus musculus]
7513021

7513021
7513021
NO








MATCH


27369748
RIKEN cDNA D630032B01 [Mus musculus]
1711535
1711535

1711535
13630862
608
e−176


34328379
D-lactate dehydrogenase [Mus musculus]
12852638

12852638
12852638
NO








MATCH


19526848
RIKEN cDNA 2810484M10 [Mus musculus]
3747107
3747107

3747107
NO








MATCH


19482166
kidney expressed gene 1 [Mus musculus]
12832283

12832283
12832283
NO








MATCH


6754092
glutathione transferase zeta 1 (maleylacetoacetate
6754092

6754092
6754092
NO



isomerase);




MATCH


21312153
RIKEN cDNA 2900070E19[Mus musculus]
12851249
12851249

12851249
12735430
101
6.00E−24


13384742
RIKEN cDNA 1110018B13 [Mus musculus]

13384742
13384742
13384742
15150811
175
2.00E−46


12835711
unnamed protein product[Mus musculus]
12835711

12835711
12835711
14211923
290
1.00E−80


13507612
NADPH-dependent retinol
13097510

13507612
11559414
12804319
51
1.00E−08



dehydrogenase/reductase [Mus musculus]


12832859


34328185
prosaposin [Mus musculus]
7242191
6981424

91281
NO




91281
881390

881390
MATCH




557967




6981424




881390




9438805




1360694




11386147


13540709
sodium channel, voltage-gated, type 1, alpha
13540709

13540709

NO



polypeptide; sodium channel,




MATCH


21070950
ubiquitin C; polyubiquitin C [Mus musculus]
9790277
9790277


11024714
449
e−128





1050930





136670


31980703
aminoadipate-semialdehyde synthase; lysine
13529344


13027640
NO



oxoglutarate reductase, saccharopine
8393730


13529344
MATCH







4938304







8393730


6753272
catalase; catalase 1 [Mus musculus]
6753272


115704
NO







6753272
MATCH







115698







229299


31541815
L-specific multifunctional beta-oxdiation protein
12836375


1706569
14730775
293
9.00E−81



[Mus musculus]



11434714







12836375


7656855
acyl-Coenzyme A oxidase 1, palmitoyl; acyl-
6429156


6429156
13653049
55
3.00E−09



Coenzyme A oxidase; Acyl-CoA oxidase
7656855


7656855


9790129
solute carrier family 22 member 4; solute carrier
9790129
9790129


NO



family (organic cation




MATCH


6680756
ATPase, H+ transporting, V1 subunit E isoform 1;

6680756

6680756
NO



ATPase, H+ transporting

313014


MATCH


201006
Cu/Zn-superoxide dismutase
201006


134614
1237406
266
2.00E−73







1351080







226471







7433299


9055178
brain protein 44-like; apoptosis-regulating basic
12852262
12852262


14755192
216
1.00E−58



protein [Mus musculus]
7706369
12852283




9055178


7305125
estradiol 17 beta-dehydrogenase 8; 17-beta-
7305125


1103844
14041699
418
e−119



hydroxysteroid dehydrogenase 8;
1103844


12963539
HSCO protein [Mus musculus]
12832819


12963539
4885389
70
3.00E−14







12832819


21312020
hypothetical protein D4Ertd765e [Mus musculus]
12836667


12836667
4502327
300
2.00E−83







12847441


12963697
RIKEN cDNA 1110025H10 [Mus musculus]
12963697


12963697
NO







12834868
MATCH


6681137
diazepam binding inhibitor; acyl-CoA binding
13937379


13937379
12052810
76
1.00E−16



protein; diazepam-binding inhibitor
6681137


13507620
ankycorbin; NORPEG-like protein [Mus musculus]

13507620
13507620

14771689
100
2.00E−22


16905127
butyryl Coenzyme A synthetase 1; acetyl-
5019275


15487300
6996429
137
6.00E−34



Coenzyme A synthetase 3 [Mus musculus]


22122743
hypothetical protein MGC37245 [Mus musculus]


3127193
3127193
6996429
123
7.00E−30


22203753
inorganic pyrophosphatase 2 [Mus musculus]
12834464


12834464
11526789
525
e−151


13385656
RIKEN cDNA 0610010D20 [Mus musculus]
13385656


13385656
NO




12846589



MATCH


33859690
RIKEN cDNA 2310005O14 [Mus musculus]
3252827

3252827

3252827
578
e−167


21311919
RIKEN cDNA B430104H02 [Mus musculus]
7705608


12836847
NO








MATCH


21703764
lactamase, beta 2 [Mus musculus]
13278495


13278495
NO








MATCH


13385662
RIKEN cDNA 0610042E07 [Mus musculus]
13376007


13376007
NO








MATCH


10946936
adenylate kinase 1; cytosolic adenylate kinase [Mus


729865
125152
4502011
347
6.00E−98




musculus]



6680277
heat-responsive protein 12 [Mus musculus]
6680277


6680277
5032215
226
3.00E−61


21312028
RIKEN cDNA 1110006I11 [Mus musculus]
12834206


12834206
NO








MATCH


13385436
RIKEN cDNA 2010100O12 [Mus musculus]
13385436


13385436
NO








MATCH


12836533
unnamed protein product [Mus musculus]


12836533
12836533
NO








MATCH


6677943
serine hydroxymethyl transferase 1 (soluble) [Mus
232178
232178


NO




musculus]





MATCH


12834221
unnamed protein product [Mus musculus]
12834221


12834221
14211939
283
1.00E−78


6681097
cytochrome P450, family 17, subfamily a,
2148066

2506241

NO



polypeptide 1; cytochrome P450, 17;




MATCH


6753676
dihydropyrimidinase-like 2; collapsin response

1351260


13645618
825
0



mediator protein 2 [Mus musculus]

3122018


79937
glyceraldehyde-3-phosphate dehydrogenase [Mus
6679937



7669492
637
0




musculus]

229279




65987




9838358


13435924
aldolase 3, C isoform [Mus musculus]

11231095


312137
716
0





12836758


31982332
glutamate-ammonia ligase (glutamine synthase);

2144562


NO



glutamine synthetase [Mus

4504027


MATCH





6680023





2144563


6681079
cathepsin B preproprotein [Mus musculus]
227293



NO




6681079



MATCH




12832453




3929817


13654245
major urinary protein 1 [Mus musculus]
13276755



NO




127531



MATCH


27369922
RIKEN cDNA 9630020E24 [Mus musculus]

12052944


7513022
108
4.00E−25


6680305
heat shock protein 1, beta; heat shock protein, 84 kDa

1170383


72222
1415
0



1; heat shock 90 kDa

3642691


31982847
glutamic acid decarboxylase 1 [Mus musculus]
416884



NO




1082397



MATCH




1352214


31981147
leucine aminopeptidase 3; leucine aminopeptidase
12845995



NO



[Mus musculus]
7705688



MATCH




12833083


6753556
cathepsin D [Mus musculus]
6753556



4503143
697
0




115720




8886526


31560731
ATPase, H+ transporting, V1 subunit A, isoform 1;

108733


114549
116
1.00E−27



ATPase, H+ transporting,

6680752


6680107
granulin; acrogranulin; progranulin; PC cell-derived
191767



1335064
57
8.00E−10



growth factor [Mus
6680107


31982720
SA rat hypertension-associated homolog [Mus



2135243
6996429
161
2.00E−41




musculus]




5032065


6753448
ceroid-lipofuscinosis, neuronal 2 [Mus musculus]
13786206



NO




6753448



MATCH


6754408
kynurenine aminotransferase II [Mus musculus]



6754408
NO







8393641
MATCH


14780884
polymerase delta interacting protein 38 [Mus
7661672



NO




musculus]

12834531



MATCH


31543280
putative prostate cancer tumor suppressor; cDNA



1353701
NO



sequence BC003311 [Mus musculus]




MATCH


12963555
Nit protein 2 [Mus musculus]



12963555
NO







12835765
MATCH


27754146
RIKEN cDNA 0710001P09 [Mus musculus]

12853604


14150134
301
8.00E−84





12839157


27754071
hypothetical protein 4833421E05Rik [Mus



12837739
NO




musculus]




12847330
MATCH


31981013
methionine sulfoxide reductase A [Mus musculus]



12844852
NO







12857997
MATCH


13384998
tetratricopeptide repeat domain 11 [Mus musculus]



13384998
14747249
288
4.00E−80







7705632


9506933
neuronal protein 15.6 [Mus musculus]


9506933

13938442
220
8.00E−60


21311867
hypothetical protein D11Ertd99e [Mus musculus]



12859025
7661732
174
4.00E−46







7661732


6678716
low density lipoprotein receptor-related protein 5;


7513560

1335064
53
3.00E−08



low density


34328204
valyl-tRNA synthetase 2 [Mus musculus]



6755953
7678804
191
5.00E−50


30794396
RIKEN cDNA 2410021P16 [Mus musculus]



12846107
13653049
141
6.00E−35


31982273
hydroxysteroid (17-beta) dehydrogenase 4;



12836373
14041699
100
1.00E−22



hydroxysteroid 17-beta dehydrogenase


21450203
RIKEN cDNA A330035H04; long-chain acyl-CoA
4336604



11276083
981
0



synthetase [Mus musculus]


31981207
RIKEN cDNA 4432405K22 [Mus musculus]


12232451

NO








MATCH


6680612
ATP-binding cassette, sub-family D, member 3;



105161
NO



peroxisomal membrane protein, 70




MATCH


31559883
very-long-chain acyl-CoA dehydrogenase VLCAD

12849737


10436258
1056
0



homolog [Mus musculus]


6755548
solute carrier family 27 (fatty acid transporter),



3087820
15559516
61
4.00E−11



member 2; very long-chain


21311988
RIKEN cDNA 4121402D02 [Mus musculus]



12853862
NO








MATCH


6678179
syntaxin binding protein 1; unc18 homolog (C. elegans);

6981602


NO



UNC-18 homolog (C.




MATCH


30725845
AAA-ATPase TOB3 [Mus musculus]



13752413
11095436
57
8.00E−10


31981562
pyruvate kinase 3 [Mus musculus]

6755074


107554
1032
0


11968160
3-oxoacid CoA transferase 2A; haploid germ cell



11968160
4557817
709
0



specific succinyl CoA


20070418
aldehyde dehydrogenase family 7, member A1;
12836597



12803387
953
0



aldehyde dehydrogenase 7 family,


13195670
RIKEN cDNA 2610207I16 [Mus musculus]
13195670



14150062
374
e−105


19527030
kynurenine 3-monooxygenase (kynurenine 3-
11024672



NO



hydroxylase) [Mus musculus]




MATCH


6679437
protective protein for beta-galactosidase [Mus



12860234
NO




musculus]





MATCH


31981549
sulfide quinone reductase-like; flavo-binding



12842384
10864011
812
0



protein; sulfide


6753074
adaptor protein complex AP-2, mu1; adaptor-

6753074


NO



related protein complex AP-2, mu1;




MATCH


28893421
RIKEN cDNA E430012M05 gene [Mus musculus]

12654733


NO








MATCH


19527276
RIKEN cDNA 4921526O06 [Mus musculus]



7705586
NO








MATCH


27659728
aldo-keto reductase family 7, member A5 (aflatoxin
13384704



NO



aldehyde reductase);




MATCH


14861848
DNA segment, Chr 7, Roswell Park 2 complex,



14861848
NO



expressed; androgen regulated gene




MATCH


12963591
stomatin-like protein 2 [Mus musculus]
12963591



7513076
603
e−174


6753058
annexin A10 [Mus musculus]

6274497


4826643
271
1.00E−74


12834781
unnamed protein product [Mus musculus]
12834781



NO




12856019



MATCH


18875408
peroxisomal acyl-CoA thioesterase 1 [Mus



4885565
NO




musculus]





MATCH


11968166
cathepsin Z preproprotein; cathepsin Z precursor;
12835144



NO



cathepsin X [Mus musculus]




MATCH


31560255
RIKEN cDNA 2410005O16 [Mus musculus]
13384896



16307164
511
e−147


6678509
urate oxidase; uricase [Mus musculus]
6678509



NO








MATCH


31980955
RIKEN cDNA 2310005D12 [Mus musculus]
13195640



12654521
474
e−136


21313080
RIKEN cDNA 2700085E05 [Mus musculus]
12840992



NO








MATCH


6755334
ribonuclease H1 [Mus musculus]



3004981
NO








MATCH


6679957
glioblastoma amplified [Mus musculus]


6679957

4503937
540
e−156


7948999
peroxiredoxin 4; antioxidant enzyme AOE372; Prx
12407849



14768743
464
e−133



IV [Mus musculus]


13386062
RIKEN cDNA 9430083G14 [Mus musculus]



13386062
17461670
414
e−118


21311883
RIKEN cDNA 0610007O07 [Mus musculus]
12858578



NO








MATCH


21312204
RIKEN cDNA 2810435D12 [Mus musculus]
12850490



13654294
400
e−113


13385084
NIPSNAP-related protein [Mus musculus]
13385084



14743031
416
e−118


19527384
RIKEN cDNA D930010J01 [Mus musculus]


12653017

12653017
458
e−131


6678760
lysophospholipase 1; phospholipase 1a;



6678760
14747375
249
3.00E−68



lysophopholipase 1 [Mus musculus]


21312894
RIKEN cDNA 4930483N21 [Mus musculus]

12854111


8922629
56
5.00E−10


21313138
glutathione S-transferase class kappa [Mus
12832811



7705704
350
1.00E−98




musculus]



21311853
RIKEN cDNA 0610012H03 [Mus musculus]



12832709
NO








MATCH


21311967
RIKEN cDNA 0610008C08 [Mus musculus]



12832215
12001992
287
1.00E−79


13384950
RIKEN cDNA 2310039H17 [Mus musculus]


13384950

NO








MATCH


12746414
growth factor, erv1 (S. cerevisiae)-like (augmenter
7670387



NO



of liver regeneration);




MATCH


6806917
GM2 ganglioside activator protein [Mus musculus]



479912
NO








MATCH


7305137
heme binding protein 1; heme-binding protein; p22



4886904
NO



HBP; heme-binding protein 1




MATCH


25092662
DNA segment, Chr 11, Wayne State University 68,



13386160
NO



expressed [Mus musculus]




MATCH


21313484
nitrogen fixation cluster-like [Mus musculus]



12843563
NO








MATCH


18079334
ethanol induced 6 [Mus musculus]



12834045
NO








MATCH


6679078
expressed in non-metastatic cells 2, protein;

13929192


1421609
311
5.00E−87



expressed in non-metastatic cells


13385042
RIKEN cDNA 2010309E21 [Mus musculus]
13385042



NO








MATCH


15809030
synuclein, beta [Mus musculus]

464424


NO








MATCH


6755911
thioredoxin 1; thioredoxin [Mus musculus]



12841560
14740403
196
1.00E−52


20841184
acetyl-Coenzyme A carboxylase beta [Mus


3080546

NO




musculus]





MATCH


25072051
RIKEN cDNA 3110065L21 [Mus musculus]

4758012


NO








MATCH


20071710
2010002H18Rik protein [Mus musculus]


7678804

7678804
954
0


200022
neurofilament protein



205686
14742600
301
4.00E−83


21618729
Facl5 protein [Mus musculus]



10800088
7706449
1193
0


17505907
DEAD (Asp-Glu-Ala-Asp) box polypeptide 31


12232467

NO



isoform 1; DEAD/DEXH helicase DDX31




MATCH


12855263
unnamed protein product [Mus musculus]



12855263
NO








MATCH


12855887
unnamed protein product [Mus musculus]
12855887



NO








MATCH


26363071
unnamed protein product [Mus musculus]

12843537


14771689
107
4.00E−25


12836798
unnamed protein product [Mus musculus]


12836798

NO








MATCH


12846164
unnamed protein product [Mus musculus]
12846164



NO








MATCH


12845262
unnamed protein product [Mus musculus]



12845262
14770968
326
3.00E−91


12860092
unnamed protein product [Mus musculus]
12860092



11545863
316
2.00E−88


20897872
RIKEN cDNA 1810058I14 [Mus musculus]



12841742
NO








MATCH


12841269
unnamed protein product [Mus musculus]
12841269



NO








MATCH


12835668
unnamed protein product [Mus musculus]
12835668



NO








MATCH


12861374
unnamed protein product [Mus musculus]



12861374
NO








MATCH


22267464
retinoic acid inducible protein 3 [Mus musculus]



13436248
NO








MATCH
















TABLE 6










The ordered gene list for FIGS. 7 and 8. The list is ordered based on FIGS. 7 and 8, and each row includes the corresponding


Affymetrix probe-set ID, protein accession, the gene symbol, evidence (white, previously annotated; gray, detected in


proteomics; black, previously annotated and detected in proteomics), the module annotation, and the description













Protein




Row
Probe Set
Exemplar
Description
Symbol














1
104560_at
21553115
putative mitochondrial solute carrier [Mus musculus]
Mrs3/4-pending


2
97868_at
31560085
DnaJ (Hsp40) homolog, subfamily A, member 3 [Mus musculus]
Dnaja3


3
95608_at
6681079
cathepsin B preproprotein [Mus musculus]
Ctsb


4
95359_at
6680305
heat shock protein 1, beta; heat shock protein, 84 kDa 1; heat shock 90 kDa
Hspcb


5
104103_at
30725845
AAA-ATPase TOB3 [Mus musculus]
TOB3


6
96861_at
30519921
mitochondrial ribosomal protein L50 [Mus musculus]
D4Wsu125e


7
95438_at
31559891
mitochondrial Rho 1 [Mus musculus]
2210403N23Rik


8
95431_at
27552760
DNA segment, Chr 16, Indiana University Medical 22, expressed [Mus
D16lum22e






musculus]



9
93808_at
6671688
carbonyl reductase 2; lung carbonyl reductase [Mus musculus]
Cbr2


10
103044_g_at
6754760
mature T-cell proliferation 1 [Mus musculus]
Mtcp1


11
104747_at
6678001
solute carrier family 1, member 1 [Mus musculus]
Slc1a1


12
104748_s_at
6678001
solute carrier family 1, member 1 [Mus musculus]
Slc1a1


13
104700_at
6677943
serine hydroxymethyl transferase 1 (soluble) [Mus musculus]
Shmt1


14
98470_at
6755544
solute carrier family 25 (mitochondrial carrier, brain), member 14; solute
Slc25a14


15
97935_at
21311988
RIKEN cDNA 4121402D02 [Mus musculus]



16
103061_at
31982847
glutamic acid decarboxylase 1 [Mus musculus]
Gad1


17
95432_f_at
27552760
DNA segment, Chr 16, Indiana University Medical 22, expressed [Mus
D16lum22e






musculus]



18
95746_at
31560731
ATPase, H+ transporting, V1 subunit A, isoform 1; ATPase, H+ transporting,
B230379M23Rik


19
93126_at
10946574
creatine kinase, brain [Mus musculus]
Ckb


20
97983_s_at
6678179
syntaxin binding protein 1; unc18 homolog (C. elegans); UNC-18 homolog
Stxbp1





(C.


21
100510_at
15809030
synuclein, beta [Mus musculus]
Sncb


22
93362_at
6753074
adaptor protein complex AP-2, mu1; adaptor-related protein complex AP-2,
Ap2m1





mu1;





tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein,


23
97544_at
6756041
zeta
Ywhaz



AFFX-GapdhMur/-


24
M32599_3_st
6679937
glyceraldehyde-3-phosphate dehydrogenase [Mus musculus]


25
100551_r_at
16716343
cytochrome c oxidase, subunit VIc [Mus musculus]
Cox6c


26
99124_at
9507187
fractured callus expressed transcript 1; Fracture Callus 1; small zinc
Fxc1


27
92876_at
6754814
NADH dehydrogenase (ubiquinone) Fe—S protein 4; NADH dehydrogenase
Ndufs4





(ubiquinone)


28
96760_at
7305573
translocase of inner mitochondrial membrane 10 homolog [Mus musculus]
Timm10


29
94421_r_at
6681031
cryptochrome 1 (photolyase-like) [Mus musculus]
Cry1


30
93359_at
18859597
RIKEN cDNA 1810004I06 [Mus musculus]
1810004I06Rik


31
98832_at
6678417
thyroid peroxidase [Mus musculus]
Tpo


32
96857_at
6680816
complement component 1, q subcomponent binding protein [Mus musculus]
C1qbp


33
98117_at
9506911
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1 (7.5 kD, MWFE);
Ndufa1





NADH


34
100046_at
6678952
methylenetetrahydrofolate dehydrogenase (NAD+ dependent),
Mthfd2


35
103806_at
6678716
low density lipoprotein receptor-related protein 5; low density
Lrp5


36
97372_at
18875324
DAZ associated protein 1 [Mus musculus]
Dazap1


37
102416_at
6681097
cytochrome P450, family 17, subfamily a, polypeptide 1; cytochrome P450,
Cyp17





17;


38
94850_at
12331400
acyl-Coenzyme A thioesterase 3, mitochondrial; MT-ACT48, p48 [Mus
Acate3-pending






musculus]



39
103471_at
31981207
RIKEN cDNA 4432405K22 [Mus musculus]
4432405K22Rik


40
92810_at
21704122
pyruvate dehydrogenase kinase, isoenzyme 3 [Mus musculus]
Pdk3


41
93062_at
31560438
mitochondrial ribosomal protein L39; ribosomal protein, mitochondrial, L5
Mrpl39





[Mus


42
97884_at
17157979
mitochondrial ribosomal protein S11 [Mus musculus]
Mrps11


43
94420_f_at
6681031
cryptochrome 1 (photolyase-like) [Mus musculus]
Cry1


44
99027_at
31981887
Bcl2-like [Mus musculus]
Bcl2l


45
100619_r_at
22094075
solute carrier family 25, member 5; adenine nucleotide translocator 2,
Slc25a5


46
102007_at
31542950
holocytochrome c synthetase [Mus musculus]
Hccs


47
95354_at
7657583
solute carrier family 25 (mitochondrial carrier; adenine nucleotide
Slc25a13


48
99543_s_at
7304999
deoxyguanosine kinase [Mus musculus]
Dguok


49
98903_at
21312028
RIKEN cDNA 1110006I11 [Mus musculus]
1110006I11Rik


50
96032_at
31982497
ATP synthase, H+ transporting, mitochondrial F0 complex, subunit c (subunit
Atp5g1





9),


51
95734_at
31981470
mitochondrial ribosomal protein L3 [Mus musculus]
Mrpl3


52
102128_f_at
31981257
mitochondrial ribosomal protein S25 [Mus musculus]
Mrps25


53
94210_at
7305581
translocase of inner mitochondrial membrane 9 homolog [Mus musculus]
Timm9


54
103622_at
9910434
malonyl-CoA decarboxylase [Mus musculus]
Mlycd


55
96289_at
12963591
stomatin-like protein 2 [Mus musculus]
Stoml2


56
AFFX-
6679237
pyruvate carboxylase; pyruvate decarboxylase [Mus musculus]



PyruCarbMur/-



L09192_5_at


57
95645_at
21313484
nitrogen fixation cluster-like [Mus musculus]
2310020H20Rik


58
96916_at
13385266
mitochondrial ribosomal protein L33 [Mus musculus]
Mrpl33


59
94012_at
7305575
translocase of inner mitochondrial membrane 13 homolog a [Mus musculus]
Timm13a


60
93859_at
19526984
mitochondrial translational initiation factor 2 [Mus musculus]
2410112O06Rik


61
96202_at
7106409
solute carrier family 1, member 2; glial high affinity glutamate transporter
Slc1a2


62
96650_at
7709988
AU RNA-binding enoyl-coenzyme A hydratase; AU RNA-binding
Auh





protein/enoyl-coenzyme


63
98120_at
16716447
mitochondrial ribosomal protein L27 [Mus musculus]
Mrpl27


64
93048_at
8393156
caseinolytic protease, ATP-dependent, proteolytic subunit homolog;
Clpp





caseinolytic


65
94852_at
31982332
glutamate-ammonia ligase (glutamine synthase); glutamine synthetase [Mus
Glul


66
98909_at
13277380
lipoic acid synthetase [Mus musculus]
Lias


67
103646_at
6681009
carnitine acetyltransferase [Mus musculus]
Crat


68
98984_f_at
31981769
glycerol-3-phosphate dehydrogenase 2; glycerol phosphate dehydrogenase
Gpd2





1,


69
98099_at
27753998
nudix (nucleoside diphosphate linked moiety X)-type motif 9 [Mus musculus]
Nudt9


70
94897_at
13540480
glutathione peroxidase 4; sperm nuclei glutathione peroxidase; phospholipid
Gpx4


71
97369_g_at
6753030
A-kinase anchor protein 1; A kinase anchor protein [Mus musculus]
Akap1


72
99636_at
14780884
polymerase delta interacting protein 38 [Mus musculus]
1300003F06Rik


73
95215_f_at
21070950
ubiquitin C; polyubiquitin C [Mus musculus]
Ubc


74
96095_i_at
13195670
RIKEN cDNA 2610207I16 [Mus musculus]
2610207I16Rik


75
93114_at
10181184
ATP synthase, H+ transporting, mitochondrial F0 complex, subunit f, isoform
Atp5j2





2;


76
100527_at
21311867
hypothetical protein D11Ertd99e [Mus musculus]
D11Ertd99e


77
92625_at
6679078
expressed in non-metastatic cells 2, protein; expressed in non-metastatic
Nme2





cells


78
96653_at
21311883
RIKEN cDNA 0610007O07 [Mus musculus]
0610007O07Rik


79
96856_at
6680816
complement component 1, q subcomponent binding protein [Mus musculus]
C1qbp


80
98545_at
6671622
B-cell receptor-associated protein 37; repressor of estrogen receptor activity
Bcap37


81
96858_at
6755004
programmed cell death 8; programmed cell death 8 (apoptosis inducing
Pdcd8





factor);


82
94855_at
6679299
prohibitin [Mus musculus]
Phb


83
99148_at
33859554
fumarate hydratase 1 [Mus musculus]
Fh1


84
96898_at
33859512
ATP synthase, H+ transporting, mitochondrial F0 complex, subunit b,
Atp5f1





isoform 1


85
AFFX-GapdhMur/-
6679937
glyceraldehyde-3-phosphate dehydrogenase [Mus musculus]



M32599_5_st


86
AFFX-GapdhMur/-
6679937
glyceraldehyde-3-phosphate dehydrogenase [Mus musculus]



M32599_M_st


87
93392_at
6678495
uncoupling protein 3, mitochondrial [Mus musculus]
Ucp3


88
94379_at
25031694
kinesin family member 1B [Mus musculus]
Kif1b


89
102426_at
6753290
calsequestrin 1 [Mus musculus]
Casq1


90
96801_at
10946936
adenylate kinase 1; cytosolic adenylate kinase [Mus musculus]
Ak1


91
96066_s_at
31981562
pyruvate kinase 3 [Mus musculus]
Pkm2


92
101214_f_at
6679937
glyceraldehyde-3-phosphate dehydrogenase [Mus musculus]
Gapd


93
AFFX-GapdhMur/-
6679937
glyceraldehyde-3-phosphate dehydrogenase [Mus musculus]



M32599_3_at


94
AFFX-GapdhMur/-
6679937
glyceraldehyde-3-phosphate dehydrogenase [Mus musculus]



M32599_5_at


95
AFFX-GapdhMur/-
6679937
glyceraldehyde-3-phosphate dehydrogenase [Mus musculus]



M32599_M_at


96
94279_at
21536220
RIKEN cDNA 0610008F14 [Mus musculus]
0610008F14Rik


97
95498_at
13384968
mitochondrial ribosomal protein S15 [Mus musculus]
Mrps15


98
98130_at
9903609
thioredoxin 2; thioredoxin nuclear gene encoding mitochondrial protein;
Txn2


99
96626_at
27370092
RIKEN cDNA 2300002G02 [Mus musculus]
2300002G02Rik


100
99658_f_at
12963697
RIKEN cDNA 1110025H10 [Mus musculus]
1110025H10Rik


101
97342_at
13384894
mitochondrial ribosomal protein S14 [Mus musculus]
Mrps14


102
95472_f_at
13385726
ubiquinol-cytochrome c reductase binding protein [Mus musculus]
2210415M14Rik


103
94062_at
20900762
NADH dehydrogenase (ubiquinone) flavoprotein 2 [Mus musculus]
Ndufv2


104
99661_r_at
6680991
cytochrome c oxidase, subunit VIIc; cytochrome c oxidase subunit VIIc [Mus
Cox7c


105
95718_f_at
13128954
upregulated during skeletal muscle growth 5 [Mus musculus]
Usmg5


106
101580_at
13384754
cytochrome c oxidase subunit VIIb [Mus musculus]
Cox7b


107
96887_at
9506933
neuronal protein 15.6 [Mus musculus]
Np15


108
96280_at
31981600
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2; NADH
Ndufa2





dehydrogenase


109
95131_f_at
13386096
NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 2 [Mus musculus]
1810011O01Rik


110
95132_r_at
13386096
NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 2 [Mus musculus]
1810011O01Rik


111
99660_f_at
6680991
cytochrome c oxidase, subunit VIIc; cytochrome c oxidase subunit VIIc [Mus
Cox7c


112
93014_at
31980744
ATP synthase, H+ transporting, mitochondrial F0 complex, subunit g; F1F0-
Atp5l





ATP


113
99678_f_at
31980744
ATP synthase, H+ transporting, mitochondrial F0 complex, subunit g; F1F0-
Atp5l





ATP


114
97512_at
21312554
RIKEN cDNA 2010107E04 [Mus musculus]
2010107E04Rik


115
100550_f_at
16716343
cytochrome c oxidase, subunit VIc [Mus musculus]
Cox6c


116
93820_at
31981830
cytochrome c oxidase, subunit VIIa 2; cytochrome c oxidase subunit VIIa 3;
Cox7a2


117
99115_at
21539599
ubiquinol cytochrome c reductase hinge protein; mitochondrial hinge protein;
2610041P16Rik


118
94909_at
13384854
mitochondrial ribosomal protein S17 [Mus musculus]
Mrps17


119
96686_i_at
13385436
RIKEN cDNA 2010100O12 [Mus musculus]
2010100O12Rik


120
96687_f_at
13385436
RIKEN cDNA 2010100O12 [Mus musculus]
2010100O12Rik


121
94526_at
19527228
DNA segment, Chr 10, ERATO Doi 214, expressed [Mus musculus]
D10Ertd214e


122
97880_at
21313536
dihydrolipoamide S-succinyltransferase (E2 component of 2-oxo-glutarate
4930529O08Rik





complex)


123
96096_f_at
13195670
RIKEN cDNA 2610207I16 [Mus musculus]
2610207I16Rik


124
94866_at
13384844
mitochondrial ribosomal protein S16 [Mus musculus]
Mrps16


125
93582_at
20587962
demethyl-Q 7 [Mus musculus]
Coq7


126
94860_at
33468943
translocator of inner mitochondrial membrane a; translocator of inner
Timm17a


127
100892_at
31980802
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly factor 1;
Ndufaf1





NADH


128
102097_f_at
21539587
NADH-ubiquinone oxidoreductase B9 subunit; Complex I-B9; CI-B9 [Mus
1010001M12Rik






musculus]



129
97874_at
33859744
RIKEN cDNA 1500032D16 [Mus musculus]
1500032D16Rik


130
93562_at
13385054
NADH dehydrogenase (ubiquinone) 1 beta subcomplex 3 [Mus musculus]
2700033I16Rik


131
94534_at
18250284
isocitrate dehydrogenase 3 (NAD+) alpha [Mus musculus]
Idh3a


132
98929_at
13384742
RIKEN cDNA 1110018B13 [Mus musculus]
1110018B13Rik


133
95058_f_at
21312594
RIKEN cDNA 2610205H19; EST AA108335 [Mus musculus]
2610205H19Rik


134
99666_at
13385942
citrate synthase [Mus musculus]
Cs


135
94080_at
20908717
succinate dehydrogenase Fp subunit [Mus musculus]
Sdha


136
93029_at
6680345
isocitrate dehydrogenase 3 (NAD+), gamma [Mus musculus]
Idh3g


137
94912_at
17505220
mitochondrial ribosomal protein S21 [Mus musculus]
Mrps21


138
93531_at
21312012
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8 [Mus musculus]
0610033L03Rik


139
93754_at
7949037
enoyl coenzyme A hydratase 1, peroxisomal; peroxisomal/mitochondrial
Ech1





dienoyl-CoA


140
92581_at
6680618
acetyl-Coenzyme A dehydrogenase, medium chain [Mus musculus]
Acadm


141
96112_at
31981826
electron transferring flavoprotein, alpha polypeptide; Alpha-ETF [Mus
Etfa






musculus]



142
97869_at
21313290
electron transferring flavoprotein, dehydrogenase [Mus musculus]
0610010I20Rik


143
95072_at
13385006
cytochrome c-1 [Mus musculus]
Cyc1


144
96267_at
19526814
NADH dehydrogenase (ubiquinone) flavoprotein 1; NADH dehydrogenase
Ndufv1





flavoprotein


145
101989_at
13384794
ubiquinol-cytochrome c reductase core protein 1 [Mus musculus]
Uqcrc1


146
94806_at
18152793
pyruvate dehydrogenase (lipoamide) beta [Mus musculus]
Pdhb


147
93815_at
21313618
RIKEN cDNA 0610041L09 [Mus musculus]
0610041L09Rik


148
96268_at
9845299
succinate-CoA ligase, GDP-forming, alpha subunit; succinyl-CoA synthetase
Suclg1





[Mus


149
102749_at
6753504
cytochrome c oxidase, subunit VIIa 1; cytochrome c oxidase subunit VIIa 1
Cox7a1





[Mus


150
95698_at
13385322
NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 7 [Mus musculus]
1110002H15Rik


151
93119_at
6753500
cytochrome c oxidase, subunit Vb [Mus musculus]
Cox5b


152
96909_at
27754007
NADH dehydrogenase (ubiquinone)1, alpha/beta subcomplex, 1 [Mus
2610003B19Rik






musculus]



153
99128_at
20070412
ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit [Mus
Atp5o


154
100753_at
6680748
ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit,
Atp5a1





isoform


155
93596_i_at
13385484
ATP synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit;
2410043G19Rik





ATP


156
93844_at
21539585
low molecular mass ubiquinone-binding protein; ubiquinol-cytochrome c
Uqcrb





reductase


157
96915_f_at
21539587
NADH-ubiquinone oxidoreductase B9 subunit; Complex I-B9; CI-B9 [Mus
1010001M12Rik






musculus]



158
99618_at
13385112
ubiquinol-cytochrome c reductase subunit [Mus musculus]
0710008D09Rik


159
100079_at
29789148
NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9 [Mus musculus]
Ndufb9


160
93581_at
13385558
NADH dehydrogenase (ubiquinone) 1 beta subcomplex 8 [Mus musculus]
2900010I05Rik


161
96870_at
18079339
aconitase 2, mitochondrial [Mus musculus]
Aco2


162
98102_at
6679261
pyruvate dehydrogenase E1 alpha 1; pyruvate dehydrogenase E1alpha
Pdha1





subunit [Mus


163
95425_at
31982520
acetyl-Coenzyme A dehydrogenase, long-chain [Mus musculus]
Acadl


164
96913_at
21704100
hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A
4930479F15Rik


165
93972_at
23346461
NADH dehydrogenase (ubiquinone) Fe—S protein 2; NADH-coenzyme Q
Ndufs2





reductase [Mus


166
94216_at
13384690
succinate dehydrogenase complex, subunit C, integral membrane protein
0610010E03Rik





[Mus


167
97502_at
31982856
dihydrolipoamide dehydrogenase [Mus musculus]
Dld


168
92574_at
27229021
RIKEN cDNA 3110001M13 [Mus musculus]
3110001M13Rik


169
102000_f_at
22267442
RIKubiquinol cytochrome c reductase core protein 2 [Mus musculus]
1500004O06Rik


170
96321_at
13384720
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9 [Mus musculus]
1010001N11Rik


171
97201_s_at
13386100
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5 [Mus musculus]
2900002J19Rik


172
93764_at
12963633
genes associated with retinoid-IFN-induced mortality 19 [Mus musculus]
Grim19-pending


173
97307_f_at
27754144
NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 5; NADH
Ndufb5





dehydrogenase


174
92798_at
11602916
ATP synthase, H+ transporting, mitochondrial F1 complex, gamma
Atp5c1





polypeptide 1; F1


175
92799_g_at
11602916
ATP synthase, H+ transporting, mitochondrial F1 complex, gamma
Atp5c1





polypeptide 1; F1


176
93572_at
21704020
NADH dehydrogenase (ubiquinone) Fe—S protein 1 [Mus musculus]



177
93780_at
13385260
thioesterase superfamily member 2 [Mus musculus]
0610006O17Rik


178
99593_at
19527334
NADH dehydrogenase (ubiquinone) Fe—S protein 5; NADH dehydrogenase
Ndufs5





Fe—S protein


179
96746_at
31542559
dihydrolipoamide S-acetyltransferase (E2 component of pyruvate
Dlat





dehydrogenase


180
95441_at
12025536
translocase of inner mitochondrial membrane 23 homolog [Mus musculus]
Timm23


181
102049_at
7305375
pyruvate dehydrogenase kinase, isoenzyme 4; pyruvate dehydrogenase
Pdk4





kinase 4 [Mus


182
95485_at
6680163
L-3-hydroxyacyl-Coenzyme A dehydrogenase, short chain; hydroxylacyl-
Hadhsc





Coenzyme A


183
95426_at
29789289
enoyl Coenzyme A hydratase, short chain, 1, mitochondrial [Mus musculus]
Echs1


184
95064_at
29126205
acetyl-Coenzyme A acyltransferase 2 (mitochondrial 3-oxoacyl-Coenzyme A
D18Ertd240e


185
96947_at
21312004
RIKEN cDNA 0610009I16 [Mus musculus]
0610009I16Rik


186
96757_at
20070420
DNA segment, Chr 10, Johns Hopkins University 81 expressed [Mus
D10Jhu81e






musculus]



187
98128_at
7949005
ATP synthase, H+ transporting, mitochondrial F0 complex, subunit F;
Atp5j


188
94531_at
33859690
RIKEN cDNA 2310005O14 [Mus musculus]
2310005O14Rik


189
99667_at
6753502
cytochrome c oxidase, subunit VI a, polypeptide 2; subunit VIaH (heart-type)
Cox6a2


190
102402_at
6679957
glioblastoma amplified [Mus musculus]
Gbas


191
99631_f_at
6680988
cytochrome c oxidase, subunit VI a, polypeptide 1; subunit VIaL (liver-type)
Cox6a1


192
96670_at
21313138
glutathione S-transferase class kappa [Mus musculus]
0610025I19Rik


193
94940_at
31980706
methylcrotonoyl-Coenzyme A carboxylase 1 (alpha) [Mus musculus]
Mccc1


194
AFFX-
6679237
pyruvate carboxylase; pyruvate decarboxylase [Mus musculus]



PyruCarbMur/-



L09192_MB_at


195
AFFX-
6679237
pyruvate carboxylase; pyruvate decarboxylase [Mus musculus]



PyruCarbMur/-



L09192_3_at


196
93308_s_at
6679237
pyruvate carboxylase; pyruvate decarboxylase [Mus musculus]
Pcx


197
103401_at
31982522
acyl-Coenzyme A dehydrogenase, short chain; acetyl-Coenzyme A
Acads





dehydrogenase,


198
94807_at
23943838
solute carrier family 25, member 1; DiGeorge syndrome gene j; solute carrier
Slc25a1


199
97248_at
6681137
diazepam binding inhibitor; acyl-CoA binding protein; diazepam-binding
Dbi





inhibitor


200
94507_at
31560705
fatty acid Coenzyme A ligase, long chain 2; acetyl-Coenzyme A synthetase;
Facl2


201
104057_at
13277394
GrpE-like 1, mitochondrial [Mus musculus]
Grpel1


202
97279_at
21704140
3-hydroxyisobutyrate dehydrogenase, mitochondrial precursor; EST
AI265272





AI265272;


203
99613_at
6678970
methylmalonyl-coenzyme A mutase [Mus musculus]
Mut


204
96035_at
31982494
branched chain ketoacid dehydrogenase E1, alpha polypeptide; BCKAD
Bckdha





E1[a] [Mus


205
101045_at
7949047
hydroxyacyl-Coenzyme A dehydrogenase type II; hydroxyacyl-Coenzyme A
Hadh2


206
98966_at
6753610
dihydrolipoamide branched chain transacylase E2; BCKAD E2 [Mus
Dbt






musculus]



207
104212_at
21389320
leucine-rich PPR motif-containing protein; leucine rich protein LRP130 [Mus
3110001K13Rik


208
92845_at
18266680
3-oxoacid CoA transferase [Mus musculus]
Oxct


209
99009_at
31543330
nicotinamide nucleotide transhydrogenase [Mus musculus]
Nnt


210
97367_at
6753030
A-kinase anchor protein 1; A kinase anchor protein [Mus musculus]
Akap1


211
93042_at
31981875
benzodiazepine receptor, peripheral [Mus musculus]
Bzrp


212
92754_at
6679767
ferredoxin reductase [Mus musculus]
Fdxr


213
92587_at
6679765
ferredoxin 1; ADRENODOXIN [Mus musculus]
Fdx1


214
92213_at
31543776
steroidogenic acute regulatory protein [Mus musculus]
Star


215
96256_at
6680690
peroxiredoxin 3; anti-oxidant protein 1; mitochondrial Trx dependent peroxide
Prdx3


216
92829_at
6680309
heat shock protein 1 (chaperonin 10); heat shock 10 kDa protein 1
Hspe1





(chaperonin


217
93277_at
31981679
heat shock protein 1 (chaperonin); heat shock protein, 60 kDa; heat shock
Hspd1





60 kDa


218
100977_at
27369966
RIKEN cDNA D530020C15 [Mus musculus]
D530020C15Rik


219
101096_s_at
6754160
HS1 binding protein [Mus musculus]
Hs1bp1


220
95065_at
6754846
nitrogen fixation gene, yeast homolog 1; nifS-like (sic) [Mus musculus]
Nfs1


221
AFFX-
6679237
pyruvate carboxylase; pyruvate decarboxylase [Mus musculus]



PyruCarbMur/-



L09192_MA_at


222
98137_at
6671680
carbonic anhydrase 5a, mitochondrial; carbonic anhydrase 5, mitochondrial;
Car5a


223
98459_at
6677943
serine hydroxymethyl transferase 1 (soluble) [Mus musculus]
Shmt1


224
92586_at
6680027
glutamate dehydrogenase [Mus musculus]
Glud


225
97450_s_at
20070418
aldehyde dehydrogenase family 7, member A1; aldehyde dehydrogenase 7
Aldh7a1





family,


226
97515_at
31982273
hydroxysteroid (17-beta) dehydrogenase 4; hydroxysteroid 17-beta
Hsd17b4





dehydrogenase


227
103085_at
7305137
heme binding protein 1; heme-binding protein; p22 HBP; heme-binding
Hebp1





protein 1


228
98533_at
13385268
cytochrome b-5 [Mus musculus]
Cyb5


229
104086_at
21311901
dimethylglycine dehydrogenase precursor [Mus musculus]
1200014D15Rik


230
96890_at
13385298
RIKEN cDNA 1300002A08 [Mus musculus]
1300002A08Rik


231
93026_at
31981068
microsomal glutathione S-transferase 1 [Mus musculus]
Mgst1


232
96763_at
20149748
sarcosine dehydrogenase [Mus musculus]
Sardh


233
93278_at
28545662
sterol carrier protein 2, liver [Mus musculus]
Scp2


234
101515_at
7656855
acyl-Coenzyme A oxidase 1, palmitoyl; acyl-Coenzyme A oxidase; Acyl-CoA
Acox1





oxidase


235
93625_at
7709978
alanine-glyoxylate aminotransferase; alanine-glyoxylate aminotransferase 1
Agxt





[Mus


236
96326_at
22122769
tyrosine aminotransferase [Mus musculus]
Tat


237
101910_f_at
13654245
major urinary protein 1 [Mus musculus]
Mup1


238
92606_at
6678509
urate oxidase; uricase [Mus musculus]
Uox


239
102096_f_at
13654245
major urinary protein 1 [Mus musculus]
Mup1


240
93320_at
27804309
carnitine palmitoyltransferase 1, liver; L-CPT I [Mus musculus]
Cpt1a


241
96057_at
6753036
aldehyde dehydrogenase 2, mitochondrial [Mus musculus]
Aldh2


242
96058_s_at
6753036
aldehyde dehydrogenase 2, mitochondrial [Mus musculus]
Aldh2


243
92800_i_at
11602916
ATP synthase, H+ transporting, mitochondrial F1 complex, gamma
Atp5c1





polypeptide 1; F1


244
100617_at
22094075
solute carrier family 25, member 5; adenine nucleotide translocator 2,
Slc25a5


245
100618_f_at
22094075
solute carrier family 25, member 5; adenine nucleotide translocator 2,
Slc25a5


246
97207_f_at
6678760
lysophospholipase 1; phospholipase 1a; lysophopholipase 1 [Mus musculus]
Lypla1


247
98473_at
6753110
arginase type II [Mus musculus]
Arg2


248
98112_r_at
31981147
leucine aminopeptidase 3; leucine aminopeptidase [Mus musculus]
Lap3


249
100633_at
19526848
RIKEN cDNA 2810484M10 [Mus musculus]
2810484M10Rik


250
92848_at
8393866
ornithine aminotransferase [Mus musculus]
Oat


251
104007_at
6754952
solute carrier family 25 (mitochondrial carrier; ornithine transporter), member
Slc25a15


252
96336_at
13385454
glycine amidinotransferase (L-arginine:glycine amidinotransferase) [Mus
Gatm


253
93595_at
6753448
ceroid-lipofuscinosis neuronal 2 [Mus musculus]
Cln2


254
104153_at
9789985
isovaleryl coenzyme A dehydrogenase; isovaleryl dehydrogenase precursor
Ivd





[Mus


255
94005_at
20822904
RIKEN cDNA 3110004O18 [Mus musculus]
3110004O18Rik


256
103881_at
22203753
inorganic pyrophosphatase 2 [Mus musculus]
1110013G13Rik


257
101944_at
6678760
lysophospholipase 1; phospholipase 1a; lysophopholipase 1 [Mus musculus]
Lypla1


258
101945_g_at
6678760
lysophospholipase 1; phospholipase 1a; lysophopholipase 1 [Mus musculus]
Lypla1


259
101946_at
6678760
lysophospholipase 1; phospholipase 1a; lysophopholipase 1 [Mus musculus]
Lypla1


260
99112_at
7305501
solute carrier family 25 (mitochondrial carrier; dicarboxylate transporter),
Slc25a10


261
99521_at
6753022
adenylate kinase 4 [Mus musculus]
Ak4


262
96069_at
27659728
aldo-keto reductase family 7, member A5 (aflatoxin aldehyde reductase);
Afar


263
96231_at
21624609
RIKEN cDNA 2010012D11 [Mus musculus]
2010012D11Rik


264
97525_at
6680139
glycerol kinase [Mus musculus]
Gyk


265
102192_r_at
31982720
SA rat hypertension-associated homolog [Mus musculus]
Sah


266
93435_at
6753572
cytochrome P450, family 24, subfamily a, polypeptide 1; cytochrome P450,
Cyp24





24;


267
99959_at
6753022
adenylate kinase 4 [Mus musculus]
Ak4


268
98123_at
6754408
kynurenine aminotransferase II [Mus musculus]
Kat2


269
96629_at
14861848
DNA segment, Chr 7, Roswell Park 2 complex, expressed; androgen
D7Rp2e





regulated gene


270
92869_at
6680291
hydroxysteroid dehydrogenase-4, delta-3-beta; 3-beta-hydroxysteroid
Hsd3b4


271
96910_at
22122743
hypothetical protein MGC37245 [Mus musculus]
MGC37245


272
96938_at
19482166
kidney expressed gene 1 [Mus musculus]
Keg1


273
95588_at
6678766
alpha-methylacyl-CoA racemase; alpha-methylacyl-Coenzyme A racemase;
Amacr


274
97316_at
31541815
L-specific multifunctional beta-oxdiation protein [Mus musculus]
1300002P22Rik


275
97258_at
21703764
lactamase, beta 2 [Mus musculus]
Cgi-83-pending


276
97257_at
21703764
lactamase, beta 2 [Mus musculus]
Cgi-83-pending


277
96048_at
6680277
heat-responsive protein 12 [Mus musculus]
Hrsp12


278
103389_at
31980703
aminoadipate-semialdehyde synthase; lysine oxoglutarate reductase,
Aass





saccharopine


279
100967_at
6755548
solute carrier family 27 (fatty acid transporter), member 2; very long-chain
Slc27a2


280
96678_at
13507612
NADPH-dependent retinol dehydrogenase/reductase [Mus musculus]
D14Ucla2


281
92492_at
23956104
adenylate kinase 3 alpha-like; adenylate kinase 3 alpha like [Mus musculus]
Ak3l


282
99659_r_at
12963697
RIKEN cDNA 1110025H10 [Mus musculus]
1110025H10Rik


283
102761_at
29789124
GrpE-like 2, mitochondrial [Mus musculus]
Grpel2


284
94961_at
6753454
caseinolytic protease X [Mus musculus]
Clpx


285
103354_at
10181116
mitochondrial ribosomal protein S31; islet mitochondrial antigen, 38 kD [Mus
Mrps31


286
93506_at
19526818
solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 3;
Slc25a3


287
93495_at
7948999
peroxiredoxin 4; antioxidant enzyme AOE372; Prx IV [Mus musculus]
Prdx4


288
97477_at
7305579
translocase of inner mitochondrial membrane 8 homolog b [Mus musculus]
Timm8b


289
94515_at
31981549
sulfide quinone reductase-like; flavo-binding protein; sulfide
Sqrdl


290
95660_at
12963539
HSCO protein [Mus musculus]
0610025L15Rik


291
92807_at
6755911
thioredoxin 1; thioredoxin [Mus musculus]
Txn1


292
93749_at
27804325
monoamine oxidase A [Mus musculus]
Maoa


293
93984_at
31982864
ATPase inhibitor [Mus musculus]
Atpi


294
96849_at
7305577
translocase of inner mitochondrial membrane 8 homolog a [Mus musculus]
Timm8a


295
104283_at
31981207
RIKEN cDNA 4432405K22 [Mus musculus]
4432405K22Rik


296
99513_at
6679369
phospholipase A2, group IVA (cytosolic, calcium-dependent); phospholipase
Pla2g4a





A2,


297
100957_at
20916351
single-stranded DNA binding protein 1 [Mus musculus]



298
99335_at
6754206
hexokinase 1; downeast anemia [Mus musculus]
Hk1


299
92735_at
7242175
phospholipase A2, group IIA (platelets, synovial fluid); modifier of Min1;
Pla2g2a


300
98902_at
21312028
RIKEN cDNA 1110006I11 [Mus musculus]
1110006I11Rik


301
94284_at
19745150
diaphorase 1 (NADH) [Mus musculus]
Dia1


302
92792_at
31543920
uncoupling protein 2, mitochondrial [Mus musculus]
Ucp2


303
95676_at
18700024
isocitrate dehydrogenase 3, beta subunit; isocitrate dehydrogenase 3 beta;
Idh3b





N14A


304
99176_at
10946808
fibroblast growth factor (acidic) intracellular binding protein; aFGF
Fibp


305
98613_at
21313080
RIKEN cDNA 2700085E05 [Mus musculus]
2700085E05Rik


306
96641_at
6754870
neighbor of Cox4 [Mus musculus]
Noc4


307
97825_at
11528520
p53 apoptosis effector related to Pmp22; p53 apoptosis-associated target
Perp-pending





[Mus


308
92860_at
6680993
cytochrome c oxidase, subunit VIIIa; COX VIII-L [Mus musculus]
Cox8a


309
99172_at
6678303
transcription factor A, mitochondrial [Mus musculus]
Tfam


310
99836_at
20867579
cytochrome P450, 40 (25-hydroxyvitamin D3 1 alpha-hydroxylase) [Mus
Cyp40






musculus]



311
103043_at
6754760
mature T-cell proliferation 1 [Mus musculus]
Mtcp1


312
104102_at
31980991
protease, serine, 25; serine protease OMI [Mus musculus]
Prss25


313
97398_at
28077029
RIKEN cDNA 9130022B02 [Mus musculus]
9130022B02Rik


314
96353_at
13384766
RIKEN cDNA 1110021D01 [Mus musculus]
11100021D01Rik


315
100300_at
31542440
cytochrome b-245, beta polypeptide [Mus musculus]
Cybb


316
99114_r_at
13385090
cytochrome c oxidase, subunit VIb [Mus musculus]
2010000G05Rik


317
96255_at
6753200
BCL2/adenovirus E1B 19 kDa-interacting protein 3-like; BCL2/adenovirus
Bnip3l





E1B 19


318
92768_s_at
33859502
aminolevulinic acid synthase 2, erythroid; erythroid-specific ALAS;
Alas2


319
100414_s_at
6754732
myeloperoxidase [Mus musculus]
Mpo


320
92595_r_at
20452466
ferrochelatase [Mus musculus]
Fech


321
98505_i_at
6681007
coproporphyrinogen oxidase; clone 560 [Mus musculus]
Cpo


322
98506_r_at
6681007
coproporphyrinogen oxidase; clone 560 [Mus musculus]
Cpo


323
104234_at
31981257
mitochondrial ribosomal protein S25 [Mus musculus]
Mrps25


324
97373_at
21313024
solute carrier family 25 (mitochondrial deoxynucleotide carrier), member 19
Slc25a19





[Mus


325
94501_at
13507712
sphingosine-1-phosphate phosphatase 1; sphingosine-1-phosphate






phosphatase [Mus


326
101557_at
6753164
branched chain ketoacid dehydrogenase kinase; branched chain keto acid
Bckdk


327
100443_at
33859514
branched chain aminotransferase 2, mitochondrial [Mus musculus]
Bcat2


328
94034_at
27229283
small fragment nuclease [Mus musculus]
Smfn


329
102058_at
29789253
mitochondrial ribosomal protein L9 [Mus musculus]
Mrpl9


330
103045_at
6754760
mature T-cell proliferation 1 [Mus musculus]
Mtcp1


331
93836_at
6753198
BCL2/adenovirus E1B 19 kDa-interacting protein 1, NIP3; BCL2/adenovirus
Bnip3





E1B 19


332
99544_at
7304999
deoxyguanosine kinase [Mus musculus]
Dguok


333
96848_at
14916467
inositol polyphosphate-5-phosphatase E; inositol polyphosphate-5-
Inpp5e





phosphatase, 72


334
102659_at
31560609
ceroid lipofuscinosis, neuronal 3, juvenile (Batten, Spielmeyer-Vogt disease)
Cln3


335
94541_at
21314826
NADH: ubiquinone oxidoreductase B15 subunit [Mus musculus]
0610006N12Rik


336
97368_at
6753030
A-kinase anchor protein 1; A kinase anchor protein [Mus musculus]
Akap1


337
96745_at
31542559
dihydrolipoamide S-acetyltransferase (E2 component of pyruvate
Dlat





dehydrogenase


338
95607_at
10946984
START domain containing 3; es64 protein; steroidogenic acute regulatory
Stard3





protein


339
101407_at
6679863
frataxin [Mus musculus]
Frda


340
95896_at
6680991
cytochrome c oxidase, subunit VIIc; cytochrome c oxidase subunit VIIc [Mus



341
101356_at
10835111
thymidine kinase 2, mitochondrial; thymidine kinase 2 [Mus musculus]
Tk2


342
100059_at
22094077
cytochrome b-245, alpha polypeptide; cytochrome beta-558; p22 phox [Mus
Cyba


343
93536_at
6680770
Bcl2-associated X protein [Mus musculus]
Bax


344
101036_at
13324686
translocase of outer mitochondrial membrane 20 homolog [Mus musculus]
1810060K07Rik


345
97472_at
29789024
solute carrier family 25 (mitochondrial carrier; peroxisomal membrane
Slc25a17





protein),


346
92494_at
6753058
annexin A10 [Mus musculus]
Anxa10


347
96028_at
9055178
brain protein 44-like; apoptosis-regulating basic protein [Mus musculus]
Brp44l


348
94254_at
7304963
chloride intracellular channel 4 (mitochondrial) [Mus musculus]
Clic4


349
94255_g_at
7304963
chloride intracellular channel 4 (mitochondrial) [Mus musculus]
Clic4


350
94256_at
7304963
chloride intracellular channel 4 (mitochondrial) [Mus musculus]
Clic4


351
99141_at
6806917
GM2 ganglioside activator protein [Mus musculus]
Gm2a


352
101055_at
6679437
protective protein for beta-galactosidase [Mus musculus]
Ppgb


353
92633_at
11968166
cathepsin Z preproprotein; cathepsin Z precursor; cathepsin X [Mus
Ctsz






musculus]



354
102328_at
20847456
caspase 8 [Mus musculus]
Casp8


355
103608_at
22267456
RIKEN cDNA 2810431B21 [Mus musculus]
2810431B21Rik


356
93699_at
7657467
polymerase (DNA directed), gamma 2, accessory subunit; mitochondrial
Polg2





polymerase


357
96287_at
21281687
deoxyuridine triphosphatase [Mus musculus]
Dutp


358
94283_at
13385752
mitochondrial ribosomal protein L49; neighbor of fau 1 [Mus musculus]
Mrpl49


359
98547_at
6755360
mitochondrial ribosomal protein S12; ribosomal protein, mitochondrial, S12;
Mrps12


360
93251_at
6679066
4-nitrophenylphosphatase domain and non-neuronal SNAP25-like protein
Nipsnap1





homolog 1


361
100589_at
21313262
inner membrane protein, mitochondrial [Mus musculus]
Immt


362
104132_at
6754870
neighbor of Cox4 [Mus musculus]
Noc4


363
94368_at
31088872
suppressor of var1, 3-like 1 [Mus musculus]



364
96036_at
13384998
tetratricopeptide repeat domain 11 [Mus musculus]
2010003O14Rik


365
100335_at
6680758
ATPase, Cu++ transporting, beta polypeptide; Wilson protein; toxic milk [Mus
Atp7b


366
103683_at
9910194
dihydroorotate dehydrogenase [Mus musculus]
Dhodh


367
97256_at
27228985
RIKEN cDNA 2410011G03 [Mus musculus]
2410011G03Rik


368
102031_at
6755334
ribonuclease H1 [Mus musculus]
Rnaseh1


369
96906_at
18079334
ethanol induced 6 [Mus musculus]
Etohi6


370
93561_at
27754146
RIKEN cDNA 0710001P09 [Mus musculus]
0710001P09Rik


371
94962_g_at
6753454
caseinolytic protease X [Mus musculus]
Clpx


372
98433_at
31542228
BH3 interacting domain death agonist [Mus musculus]
Bid


373
96904_at
30794474
mitchondrial ribosomal protein S7; ribosomal protein, mitochondrial, S7 [Mus
Mrps7


374
103386_at
18875408
peroxisomal acyl-CoA thioesterase 1 [Mus musculus]
Pte1


375
93355_at
6754036
glutamate oxaloacetate transaminase 2, mitochondrial; mitochondrial
Got2





aspartate


376
98139_at
6755963
voltage-dependent anion channel 1 [Mus musculus]
Vdac1


377
95738_at
24025659
pyrroline-5-carboxylate synthetase; glutamate gamma-semialdehyde
Pycs





synthetase [Mus


378
98298_at
6753676
dihydropyrimidinase-like 2; collapsin response mediator protein 2 [Mus
Dpysl2






musculus]



379
95603_at
20070408
glycine decarboxylase [Mus musculus]
D19Wsu57e


380
97993_at
6678519
uroporphyrinogen III synthase; URO-synthase; uroporphyrinogen-III
Uros





synthase;


381
99159_at
19527310
peptidylprolyl isomerase F (cyclophilin F); peptidyl-prolyl cis-trans isomerase;
AW457192


382
98118_at
9506911
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1 (7.5 kD, MWFE);
Ndufa1





NADH


383
98106_at
19705563
translocator of inner mitochondrial membrane 44 [Mus musculus]
Timm44


384
103625_at
16905099
AFG3(ATPase family gene 3)-like 1 [Mus musculus]
Afg3l1


385
92497_at
9790129
solute carrier family 22 member 4; solute carrier family (organic cation
Slc22a4


386
93385_at
6679146
nth (endonuclease III)-like 1; thymine glycol DNA glycosylase/AP lyase [Mus
Nthl1
















TABLE 7










The 643 genes in the mitochondria expression neighborhood. For each gene, the Affymetrix probe-set ID, neighborhood index (N100),


protein exemplar (if the gene was in mito-A), gene symbol, description, and electronic annotations are provided.













Electronic



mito-A
Gene
Annotations













Probe Set
N100
Exemplar
Symbol
Title
INTERPRO
PFAM
















97201_s_at
69
13386100
2900002J19Rik
RIKEN cDNA 2900002J19 gene




102561_at
68







92574_at
68
27229021
3110001M13Rik
RIKEN cDNA 3110001M13 gene




96321_at
68
13384720
1010001N11Rik
RIKEN cDNA 1010001N11 gene




99128_at
68
20070412
Atp5o
ATP synthase, H+ transporting,
IPR000711 // H+-
OSCP // ATP






mitochondrial F1 complex, O
transporting two-
synthase delta






subunit
sector ATPase, delta
(OSCP) subunit; 5.6e−64







(OSCP) subunit


100892_at
67
31980802
Ndufaf1
NADH dehydrogenase








(ubiquinone) 1 alpha subcomplex,






assembly factor 1


102000_f_at
67
22267442
1500004O06Rik
RIKEN cDNA 1500004O06 gene
IPR001431 //
Peptidase_M16 //







Insulinase-like
Insulinase (Peptidase







peptidase, family
family M16); 1.5e−40







M16 /// IPR001478 //







PDZ/DHR/GLGF







domain


93764_at
67
12963633
Grim 19-pending
genes associated with retinoid-








IFN-induced mortality 19


96112_at
67
31981826
Etfa
electron transferring flavoprotein,
IPR001308 //
ETF_alpha // Electron






alpha polypeptide
Electron transfer
transfer flavoprotein







flavoprotein, alpha
alpha subuni; 3.5e−149







subunit


96611_at
67

2010012C24Rik
RIKEN cDNA 2010012C24 gene




97502_at
67
31982856
Dld
dihydrolipoamide dehydrogenase
IPR001327 // FAD-
pyr_redox_dim //







dependent pyridine
Pyridine nucleotide-







nucleotide-disulphide
disulphide







oxidoreductase ///
oxidored; 2.5e−61 ///







IPR004099 //
pyr_redox // Pyridine







Pyridine nucleotide-
nucleotide-disulphide







disulphide
oxidored; 1.2e−92







oxidoreductase







dimerisation domain







/// IPR000815 //







Mercuric reductase ///







IPR001100 //







Pyridine nucleotide-







disulphide







oxidoreductase, class I


99106_at
67

Cops6
COP9 (constitutive
IPR003640 // Mov34







photomorphogenic) homolog,
family, subtype 2 ///






subunit 6 (Arabidopsis thaliana)
IPR000555 // Mov34







family


99618_at
67
13385112
0710008D09Rik
RIKEN cDNA 0710008D09 gene




100753_at
66
6680748
Atp5a1
ATP synthase, H+ transporting,
IPR005294 // ATP
ATP-synt_ab_N // ATP






mitochondrial F1 complex, alpha
synthase F1, alpha
synthase alpha/beta






subunit, isoform 1
subunit /// IPR000793
family, beta-ba; 8.4e−19







// H+-transporting
/// ATP-synt_ab //







two-sector ATPase,
ATP synthase







alpha/beta subunit,
alpha/beta family,







C-terminal ///
nucleot; 3e−162 ///







IPR004100 // H+-
ATP-synt_ab_C // ATP







transporting two-
synthase alpha/beta







sector ATPase,
chain, C termin; 4e−37







alpha/beta subunit, N-







terminal ///







IPR000790 // H+-







transporting two-







sector ATPase, alpha







subunit, C-terminal ///







IPR000194 // H+-







transporting two-







sector ATPase,







alpha/beta subunit,







central region


102228_at
66

Lat
linker for activation of T cells




92581_at
66
6680618
Acadm
acetyl-Coenzyme A
IPR006089 // Acyl-
Acyl-CoA_dh_M //






dehydrogenase, medium chain
CoA dehydrogenase
Acyl-CoA







/// IPR006092 // Acyl-
dehydrogenase,







CoA dehydrogenase,
middle domain; 3.1e−66







N-terminal ///
/// Acyl-CoA_dh //







IPR006091 // Acyl-
Acyl-CoA







CoA dehydrogenase,
dehydrogenase, C-







middle domain ///
terminal doma; 4.5e−68







IPR006090 // Acyl-
/// Acyl-CoA_dh_N //







CoA dehydrogenase,
Acyl-CoA







C-terminal
dehydrogenase, N-








terminal doma; 2.1e−53


94912_at
66
17505220
Mrps21
mitochondrial ribosomal protein
IPR001911 //







S21
Ribosomal protein







S21


97307_f_at
66
27754144
Ndufb5
NADH dehydrogenase








(ubiquinone) 1 beta subcomplex, 5


97914_at
66

Hspa9a
heat shock protein, A
IPR002048 //
HSP70 // Hsp70







Calcium-binding EF-
protein; 0







hand /// IPR001023 //







Heat shock protein







Hsp70


99666_at
66
13385942
Cs
citrate synthase
IPR002020 // Citrate
citrate_synt // Citrate







synthase
synthase; 4.4e−233


100079_at
65
29789148
Ndufb9
NADH dehydrogenase








(ubiquinone) 1 beta subcomplex, 9


93991_at
65

Mor1
malate dehydrogenase,
IPR001236 //
ldh_C // lactate/malate






mitochondrial
Lactate/malate
dehydrogenase,







dehydrogenase ///
alpha/beta C-t; 2e−72







IPR001252 // Malate
/// ldh // lactate/malate







dehydrogenase
dehydrogenase, NAD








binding do; 3.1e−73


94461_at
65

Pbef-pending
pre-B-cell colony-enhancing factor
IPR002088 // Protein








prenyltransferase,







alpha subunit


94907_f_at
65

1110001J03Rik
RIKEN cDNA 1110001J03 gene




95053_s_at
65

0710008N11Rik
RIKEN cDNA 0710008N11 gene
IPR006058 // 2Fe—2S
fer2 // 2Fe—2S iron-







Ferredoxin ///
sulfur cluster binding







IPR001450 // 4Fe—4S
domain; 0.057







ferredoxin, iron-sulfur







binding domain ///







IPR001041 //







Ferredoxin ///







IPR004489 //







Succinate







dehydrogenase/fumarate







reductase iron-







sulfur protein


95072_at
65
13385006
Cyc1
cytochrome c-1
IPR002326 //
Cytochrome_C1 //







Cytochrome c1 ///
Cytochrome C1







IPR000345 //
family; 6.4e−165







Cytochrome c heme-







binding site


98132_at
65

Cycs
cytochrome c, somatic

cytochrome_c //








Cytochrome c; 3.9e−38


99140_at
65

Mrpl16
mitochondrial ribosomal protein
IPR000114 //
Ribosomal_L16 //






L16
Ribosomal protein
Ribosomal protein







L16
L16; 1.9e−07


92799_g_at
64
11602916
Atp5c1
ATP synthase, H+ transporting,
IPR000131 // H+-
ATP-synt // ATP






mitochondrial F1 complex, gamma
transporting two-
synthase; 6.9e−132






polypeptide 1
sector ATPase,







gamma subunit


93119_at
64
6753500
Cox5b
cytochrome c oxidase, subunit Vb
IPR002124 //
COX5B // Cytochrome







Cytochrome c
c oxidase subunit







oxidase, subunit Vb
Vb; 2.4e−58


93562_at
64
13385054
2700033I16Rik
RIKEN cDNA 2700033I16 gene




94080_at
64
20908717
Sdha
succinate dehydrogenase
IPR003952 //







complex, subunit A, flavoprotein
Fumarate






(Fp)
reductase/succinate







dehydrogenase,







FAD-binding site ///







IPR001327 // FAD-







dependent pyridine







nucleotide-disulphide







oxidoreductase ///







IPR004112 //







Fumarate







reductase/succinate







dehydrogenase







flavoprotein, C-







terminal ///







IPR001100 //







Pyridine nucleotide-







disulphide







oxidoreductase, class







I /// IPR003953 //







Fumarate







reductase/succinate







dehydrogenase







flavoprotein, N-







terminal


95058_f_at
64
21312594
2610205H19Rik
RIKEN cDNA 2610205H19 gene
IPR005336 // Protein
UPF0041 //







of unknown function
Uncharacterised







UPF0041
protein family








(UPF0041); 1.5e−33


95132_r_at
64
13386096
1810011O01Rik
RIKEN cDNA 1810011O01 gene




96291_f_at
64


ESTs, Highly similar to








NUMM_MOUSE NADH-






ubiquinone oxidoreductase 13 kDa-






A subunit (Complex I-13 KD-






A) (CI-13 KD-A) [M. musculus]


96899_at
64

Ndufs3
NADH dehydrogenase
IPR001268 // NADH







(ubiquinone) Fe—S protein 3
dehydrogenase







(ubiquinone), 30 kDa







subunit


96909_at
64
27754007
2610003B19Rik
RIKEN cDNA 2610003B19 gene
IPR003231 // Acyl
pp-binding //







carrier protein (ACP)
Phosphopantetheine







/// IPR002048 //
attachment site; 1.6e−17







Calcium-binding EF-







hand /// IPR006162 //







Phosphopantetheine







attachment site ///







IPR006163 //







Phosphopantetheine-







binding domain


97869_at
64
21313290
0610010I20Rik
RIKEN cDNA 0610010I20 gene
IPR000103 //








Pyridine nucleotide-







disulphide







oxidoreductase,







class-II


100432_f_at
63

Mdfi
MyoD family inhibitor




100628_at
63

Ndufc1
NADH dehydrogenase








(ubiquinone) 1, subcomplex






unknown, 1


101525_at
63

0610011B04Rik
RIKEN cDNA 0610011B04 gene




101989_at
63
13384794
Uqcrc1
ubiquinol-cytochrome c reductase
IPR001431 //
Peptidase_M16 //






core protein 1
Insulinase-like
Insulinase (Peptidase







peptidase, family
family M16); 2e−71







M16


93581_at
63
13385558
2900010I05Rik
RIKEN cDNA 2900010I05 gene




93582_at
63
20587962
Coq7
demethyl-Q 7
IPR004916 //
COQ7 // Ubiquinone







Ubiquinone
biosynthesis protein







biosyntheis protein
COQ7; 2.9e−107







COQ7


93815_at
63
21313618
0610041L09Rik
RIKEN cDNA 0610041L09 gene




93972_at
63
23346461
Ndufs2
NADH dehydrogenase
IPR001135 // NADH-
complex1_49 Kd //






(ubiquinone) Fe—S protein 2
ubiquinone
Respiratory-chain







oxidoreductase,
NADH







chain 49 kDa
dehydrogenase,








4; 3.2e−205


94078_at
63

1110020P15Rik
RIKEN cDNA 1110020P15 gene




94216_at
63
13384690
0610010E03Rik
RIKEN cDNA 0610010E03 gene
IPR000701 //
Sdh_cyt // Succinate







Succinate
dehydrogenase







dehydrogenase,
cytochrome b







cytochrome b subunit
subunit; 1.6e−44


94526_at
63
19527228
D10Ertd214e
DNA segment, Chr 10, ERATO








Doi 214, expressed


94566_at
63

G2a-pending
G protein-coupled receptor G2A
IPR005388 // G2A
7tm_1 // 7







lysophosphatidylcholine
transmembrane







receptor ///
receptor (rhodopsin







IPR000276 //
family); 6.7e−38







Rhodopsin-like







GPCR superfamily


95517_i_at
63

BC004004
cDNA sequence BC004004




95652_at
63

Ndufa7
NADH dehydrogenase








(ubiquinone) 1 alpha subcomplex,






7 (B14.5a)


96042_at
63

Sod2
superoxide dismutase 2,
IPR001189 //
sodfe_C //






mitochondrial
Manganese and iron
Iron/manganese







superoxide
superoxide







dismutase
dismutases, C-








term; 1.8e−77 /// sodfe








// Iron/manganese








superoxide








dismutases, alpha-;








1.5e−47


96082_at
63

Mrpl30
mitochondrial ribosomal protein
IPR000517 //







L30
Ribosomal protein







L30


96267_at
63
19526814
Ndufv1
NADH dehydrogenase
IPR001949 //
Complex1_51K //






(ubiquinone) flavoprotein 1
Respiratory-chain
Respiratory-chain







NADH
NADH dehydrogenase







dehydrogenase, 51 kDa
51; 5.4e−183







subunit


96292_r_at
63


ESTs, Highly similar to








NUMM_MOUSE NADH-






ubiquinone oxidoreductase 13 kDa-






A subunit (Complex I-13 KD-






A) (CI-13 KD-A) [M. musculus]


96900_at
63

AI267078
expressed sequence AI267078




96913_at
63
21704100
4930479F15Rik
RIKEN cDNA 4930479F15 gene
IPR002155 //
thiolase_C // Thiolase,







Thiolase ///
C-terminal







IPR000408 //
domain; 1.1e−78 ///







Regulator of
thiolase // Thiolase, N-







chromosome
terminal domain; 1.4e−131







condensation, RCC1


96915_f_at
63
21539587
1010001M12Rik
RIKEN cDNA 1010001M12 gene




97874_at
63
33859744
1500032D16Rik
RIKEN cDNA 1500032D16 gene




99150_at
63

Ict1
immature colon carcinoma
IPR000352 // Class I
RF-1 // Peptidyl-tRNA






transcript 1
peptide chain release
hydrolase domain; 7e−30







factor domain


93029_at
62
6680345
Idh3g
isocitrate dehydrogenase 3
IPR001804 //
isodh //






(NAD+), gamma
Isocitrate/isopropylmalate
Isocitrate/isopropylmalate







dehydrogenase
dehydrogenase; 4.7e−85







/// IPR004434 //







Isocitrate







dehydrogenase NAD-







dependent,







mitochondrial


93844_at
62
21539585
Uqcrb
ubiquinol-cytochrome c reductase
IPR004205 // UcrQ
UcrQ // UcrQ






binding protein
family
family; 1.9e−45


94005_at
62
20822904
3110004O18Rik
RIKEN cDNA 3110004O18 gene
IPR001431 //








Insulinase-like







peptidase, family







M16


95472_f_at
62
13385726
2210415M14Rik
RIKEN cDNA 2210415M14 gene
IPR003197 //
UCR_14 kD //







Cytochrome bd
Ubiquinol-cytochrome







ubiquinol oxidase, 14 kDa
C reductase complex







subunit
14k; 4.3e−58


96268_at
62
9845299
Suclg1
succinate-CoA ligase, GDP-
IPR005811 // ATP-
ligase-CoA // CoA-






forming, alpha subunit
citrate lyase/succinyl-
ligase; 3.9e−65 ///







CoA ligase ///
CoA_binding // CoA







IPR005810 //
binding domain; 5e−72







Succinyl-CoA ligase,







alpha subunit ///







IPR003781 // CoA







Binding Domain


96626_at
62
27370092
2300002G02Rik
RIKEN cDNA 2300002G02 gene

GTP_EFTU_D2 //








Elongation factor Tu








domain 2; 3.2e−24 ///








GTP_EFTU_D3 //








Elongation factor Tu








C-terminal








domain; 6.1e−41 ///








GTP_EFTU //








Elongation factor Tu








GTP binding








domain; 1.4e−89


96652_at
62

Mrpl28
mitochondrial ribosomal protein








L28


98102_at
62
6679261
Pdha1
pyruvate dehydrogenase E1 alpha 1
IPR001017 //
E1_dehydrog //







Dehydrogenase, E1
Dehydrogenase E1







component
component; 3.6e−183


102749_at
61
6753504
Cox7a1
cytochrome c oxidase,
IPR003177 //
COX7a // Cytochrome






subunit VIIa 1
Cytochrome c
c oxidase subunit







oxidase, subunit VIIa
VIIa; 7.4e−56


103001_at
61

Vegfb
vascular endothelial growth
IPR002400 // Growth
PDGF // Platelet-






factor B
factor, cystine knot ///
derived growth factor







IPR000072 //
(PDGF); 4.3e−20







Platelet-derived







growth factor (PDGF)


93455_s_at
61

Bmp4
bone morphogenetic protein 4
IPR001111 //
TGF-beta //







Transforming growth
Transforming growth







factor beta (TGFb),
factor beta like; 1.8e−62







N-terminal ///
///







IPR001839 //
TGFb_propeptide //







Transforming growth
TGF-beta







factor beta (TGFb)
propeptide; 2.4e−95


93501_f_at
61

Sucla2
succinate-Coenzyme A ligase,
IPR005811 // ATP-







ADP-forming, beta subunit
citrate lyase/succinyl-







CoA ligase ///







IPR005809 //







Succinyl-CoA







synthetase, beta







subunit /// IPR003135







// ATP-dependent







carboxylate-amine







ligase-like, ATP-







grasp


94062_at
61
20900762
Ndufv2
NADH dehydrogenase
IPR002023 // NADH







(ubiquinone) flavoprotein 2
dehydrogenase







(ubiquinone), 24 kDa







subunit


94806_at
61
18152793
Pdhb
pyruvate dehydrogenase
IPR005476 //
transketolase_C //






(lipoamide) beta
Transketolase, C
Transketolase, C-







terminal ///
terminal domain; 4.1e−55







IPR005475 //
/// transket_pyr //







Transketolase,
Transketolase,







central region
pyridine binding








domai; 1.5e−73


95698_at
61
13385322
1110002H15Rik
RIKEN cDNA 1110002H15 gene




99593_at
61
19527334
Ndufs5
NADH dehydrogenase








(ubiquinone) Fe—S protein 5


100307_at
60



Mus musculus 4 days neonate









male adipose cDNA, RIKEN full-






length enriched library,






clone: B430214H24






product: nuclear factor I/X, full






insert sequence.


102097_f_at
60
21539587
1010001M12Rik
RIKEN cDNA 1010001M12 gene




103406_at
60

2410004J02Rik
RIKEN cDNA 2410004J02 gene
IPR003593 // AAA
ATP-bind // Conserved







ATPase ///
hypothetical ATP







IPR004130 //
binding protein; 6.4e−114







Conserved







hypothetical ATP







binding protein


92798_at
60
11602916
Atp5c1
ATP synthase, H+ transporting,
IPR000131 // H+-
ATP-synt // ATP






mitochondrial F1 complex, gamma
transporting two-
synthase; 6.9e−132






polypeptide 1
sector ATPase,







gamma subunit


93502_r_at
60

Sucla2
succinate-Coenzyme A ligase,
IPR005811 // ATP-







ADP-forming, beta subunit
citrate lyase/succinyl-







CoA ligase ///







IPR005809 //







Succinyl-CoA







synthetase, beta







subunit /// IPR003135







// ATP-dependent







carboxylate-amine







ligase-like, ATP-







grasp


93572_at
60
21704020


Mus musculus, clone

IPR001467 //
fer2 // 2Fe—2S iron-






IMAGE: 1380460, mRNA
Prokaryotic
sulfur cluster binding







molybdopterin
domain; 1.7e−11







oxidoreductase ///







IPR001041 //







Ferredoxin ///







IPR000283 //







Respiratory-chain







NADH







dehydrogenase 75 Kd







subunit


94537_at
60

1500001M02Rik
RIKEN cDNA 1500001M02 gene
IPR002048 //
efhand // EF







Calcium-binding EF-
hand; 1.3e−13







hand


94860_at
60
33468943
Timm17a
translocator of inner mitochondrial
IPR005678 //







membrane 17 kDa, a
Mitochondrial import







inner membrane







translocase, subunit







Tim17 /// IPR003397







// Mitochondrial







import inner







membrane







translocase, subunit







Tim17/22


95483_at
60

Psmd1
proteasome (prosome, macropain)








26S subunit, non-ATPase, 1


96686_i_at
60
13385436
2010100O12Rik
RIKEN cDNA 2010100O12 gene




99658_f_at
60
12963697
1110025H10Rik
RIKEN cDNA 1110025H10 gene
IPR002529 //
FAA_hydrolase //







Fumarylacetoacetate
Fumarylacetoacetate







(FAA) hydrolase
(FAA) hydrolase








fam; 5.8e−79


99660_f_at
60
6680991
Cox7c
cytochrome c oxidase, subunit VIIc
IPR004202 //
COX7C // Cytochrome







Cytochrome c
c oxidase subunit







oxidase subunit VIIc
VIIc; 4e−33


101023_f_at
59

0610010E21Rik
RIKEN cDNA 0610010E21 gene




101094_at
59

Hig1-pending
hypoxia induced gene 1




102022_at
59

1110007A04Rik
RIKEN cDNA 1110007A04 gene
IPR004360 //








Glyoxalase/Bleomycin







resistance







protein/dioxygenase







domain


92615_at
59

2010003O02Rik
RIKEN cDNA 2010003O02 gene




93596_i_at
59
13385484
2410043G19Rik
RIKEN cDNA 2410043G19 gene




95485_at
59
6680163
Hadhsc
L-3-hydroxyacyl-Coenzyme A
IPR006180 // 3-
3HCDH_N // 3-






dehydrogenase, short chain
hydroxyacyl-CoA
hydroxyacyl-CoA







dehydrogenase ///
dehydrogenase, NAD







IPR000205 // NAD
binding; 8.9e−105 ///







binding site ///
3HCDH // 3-







IPR006108 // 3-
hydroxyacyl-CoA







hydroxyacyl-CoA
dehydrogenase, C-







dehydrogenase, C-
terminal; 2e−45







terminal domain ///







IPR006176 // 3-







hydroxyacyl-CoA







dehydrogenase, NAD







binding domain


96879_at
59

Ogdh
oxoglutarate dehydrogenase
IPR001017 //







(lipoamide)
Dehydrogenase, E1







component ///







IPR005475 //







Transketolase,







central region


103331_at
58

C030006K11Rik
RIKEN cDNA C030006K11 gene
IPR000834 // Zinc








carboxypeptidase A







metalloprotease







(M14) /// IPR002086







// Aldehyde







dehydrogenase


92568_at
58

Hkp1
house-keeping protein 1
IPR001737 //
RrnaAD // Ribosomal







Ribosomal RNA
RNA adenine







adenine dimethylase
dimethylase; 8.2e−06


93531_at
58
21312012
0610033L03Rik
RIKEN cDNA 0610033L03 gene




93787_f_at
58

1010001C05Rik
RIKEN cDNA 1010001C05 gene




95736_at
58

Mrpl4
mitochondrial ribosomal protein L4
IPR002136 //
Ribosomal_L4 //







Ribosomal protein
Ribosomal protein







L4/L1e
L4/L1 family; 5.1e−07


96687_f_at
58
13385436
2010100O12Rik
RIKEN cDNA 2010100O12 gene




96757_at
58
20070420
D10Jhu81e
DNA segment, Chr 10, Johns
IPR002818 // Family
DJ-1_PfpI // DJ-1/PfpI






Hopkins University 81 expressed
of unknown function
family; 2.3e−28







ThiJ/PfpI


99166_at
58

0610012G03Rik
RIKEN cDNA 0610012G03 gene




102124_f_at
57

Cox4a
cytochrome c oxidase, subunit IVa
IPR004203 //
COX4 // Cytochrome c







Cytochrome c
oxidase subunit







oxidase subunit IV
IV; 1.2e−68


95105_at
57

2010110M21Rik
RIKEN cDNA 2010110M21 gene




95131_f_at
57
13386096
1810011O01Rik
RIKEN cDNA 1810011O01 gene




95425_at
57
31982520
Acadl
acetyl-Coenzyme A
IPR006089 // Acyl-
Acyl-CoA_dh_N //






dehydrogenase, long-chain
CoA dehydrogenase
Acyl-CoA







/// IPR006092 // Acyl-
dehydrogenase, N-







CoA dehydrogenase,
terminal doma; 9.6e−47







N-terminal ///
/// Acyl-CoA_dh //







IPR006091 // Acyl-
Acyl-CoA







CoA dehydrogenase,
dehydrogenase, C-







middle domain ///
terminal doma; 1.2e−62







IPR006090 // Acyl-
/// Acyl-CoA_dh_M //







CoA dehydrogenase,
Acyl-CoA







C-terminal
dehydrogenase,








middle domain; 5.4e−61


96870_at
57
18079339
Aco2
aconitase 2, mitochondrial
IPR000573 //
aconitase // Aconitase







Aconitate hydratase,
family (aconitate







C-terminal ///
hydratase); 2.1e−272







IPR002155 //
/// Aconitase_C //







Thiolase ///
Aconitase C-terminal







IPR001030 //
domain; 1.8e−86







Aconitate hydratase,







N-terminal


97880_at
57
21313536
4930529O08Rik
RIKEN cDNA 4930529O08 gene
IPR001078 //
biotin_lipoyl // Biotin-







Catalytic domain of
requiring







components of
enzyme; 1.7e−27 /// 2-







various
oxoacid_dh // 2-oxo







dehydrogenase
acid dehydrogenases







complexes ///
acyltransfera; 1.8e−132







IPR003016 // 2-oxo







acid dehydrogenase,







acyltransferase







component, lipoyl-







binding /// IPR000089







// Biotin/lipoyl







attachment


99471_at
57

AL022671
expressed sequence AL022671
IPR002913 // Lipid-
START // START







binding START
domain; 1.5e−07


104212_at
56
21389320
3110001K13Rik
RIKEN cDNA 3110001K13 gene
IPR002885 // PPR
PPR // PPR repeat; 3e−30







repeat


92763_at
56

Abcb7
ATP-binding cassette, sub-family
IPR003439 // ABC







B (MDR/TAP), member 7
transporter ///







IPR003593 // AAA







ATPase ///







IPR001140 // ABC







transporter,







transmembrane







region


94534_at
56
18250284
Idh3a
isocitrate dehydrogenase 3
IPR001804 //
isodh //






(NAD+) alpha
Isocitrate/isopropylmalate
Isocitrate/isopropylmalate







dehydrogenase
dehydrogenase; 2.5e−173







/// IPR004434 //







Isocitrate







dehydrogenase NAD-







dependent,







mitochondrial


94780_at
56

Zfp288
zinc finger protein 288
IPR000210 //
zf-C2H2 // Zinc finger,







BTB/POZ domain ///
C2H2 type; 9.7e−32 ///







IPR000822 // Zn-
BTB // BTB/POZ







finger, C2H2 type
domain; 3.9e−27


95441_at
56
12025536
Timm23
translocase of inner mitochondrial
IPR005681 //







membrane 23 homolog (yeast)
Mitochondrial import







inner membrane







translocase, subunit







Tim23


95690_at
56

1110030L07Rik
RIKEN cDNA 1110030L07 gene




96280_at
56
31981600
Ndufa2
NADH dehydrogenase








(ubiquinone) 1 alpha






subcomplex, 2


96746_at
56
31542559
Dlat
dihydrolipoamide S-
IPR004167 // E3
2-oxoacid_dh // 2-oxo






acetyltransferase (E2 component
binding domain ///
acid dehydrogenases






of pyruvate dehydrogenase
IPR001078 //
acyltransfera; 3.8e−127






complex)
Catalytic domain of
/// e3_binding // e3







components of
binding domain; 2.9e−19







various
/// biotin_lipoyl //







dehydrogenase
Biotin-requiring







complexes ///
enzyme; 3.8e−29







IPR001412 //







Aminoacyl-tRNA







synthetase, class I ///







IPR003016 // 2-oxo







acid dehydrogenase,







acyltransferase







component, lipoyl-







binding /// IPR000089







// Biotin/lipoyl







attachment


96945_at
56

Snap23
synaptosomal-associated protein,
IPR000928 // SNAP-
SNAP-25 // SNAP-25






23 kD
25 family ///
family; 1.3e−24







IPR000727 // Target







SNARE coiled-coil







domain


101472_s_at
55

Pklr
pyruvate kinase liver and red blood
IPR001697 //
PK_C // Pyruvate






cell
Pyruvate kinase
kinase, alpha/beta








domain; 5.9e−71 /// PK








// Pyruvate kinase,








barrel domain; 1e−252


103261_at
55

Gspt2
G1 to phase transition 2
IPR004160 //
GTP_EFTU //







Elongation factor Tu,
Elongation factor Tu







C-terminal ///
GTP binding







IPR004161 //
domain; 8.1e−93 ///







Elongation factor Tu,
GTP_EFTU_D3 //







domain 2 ///
Elongation factor Tu







IPR000795 //
C-terminal







Elongation factor,
domain; 1.4e−30 ///







GTP-binding
GTP_EFTU_D2 //








Elongation factor Tu








domain 2; 7.5e−11


103849_at
55

Crkl
v-crk sarcoma virus CT10
IPR001452 // SH3
SH2 // SH2






oncogene homolog (avian)-like
domain /// IPR000980
domain; 5.7e−31 ///







// SH2 motif
SH3 // SH3








domain; 1.2e−20


93014_at
55
31980744
Atp5l
ATP synthase, H+ transporting,








mitochondrial F0 complex,






subunit g


93780_at
55
13385260
0610006O17Rik
RIKEN cDNA 0610006O17 gene
IPR003736 //
DUF157 //







Phenylacetic acid
Uncharacterized







degradation-related
protein Paal,







protein
COG2050; 2.9e−10


94562_at
55

Gnpat
glyceronephosphate O-
IPR002123 //
Acyltransferase //






acyltransferase
Phospholipid/glycerol
Acyltransferase; 6.2e−33







acyltransferase


95611_at
55

Lpl
lipoprotein lipase
IPR002330 //
lipase // Lipase; 1.1e−173







Lipoprotein lipase ///
/// PLAT //







IPR001024 //
PLAT/LH2







Lipoxygenase, LH2
domain; 5.8e−37







domain /// IPR000734







// Lipase ///







IPR000379 //







Esterase/lipase/thioesterase,







active site


95658_at
55

Murr1
U2af1-rs1 region 1




97422_at
55

2010002H18Rik
RIKEN cDNA 2010002H18 gene
IPR002300 //








Aminoacyl-tRNA







synthetase, class Ia


94279_at
54
21536220
0610008F14Rik
RIKEN cDNA 0610008F14 gene
IPR001469 // H+-
ATP-synt_DE // ATP







transporting two-
synthase,







sector ATPase,
Delta/Epsilon chain,







delta/epsilon subunit
long; 0.011 /// ATP-








synt_DE_N // ATP








synthase,








Delta/Epsilon chain,








beta; 4.5e−31


94908_r_at
54

1110001J03Rik
RIKEN cDNA 1110001J03 gene




98130_at
54
9903609
Txn2
thioredoxin 2
IPR000063 //
thiored //







Thioredoxin type
Thioredoxin; 3.4e−28







domain /// IPR005746







// Thioredoxin


98539_at
54

Cops2
COP9 (constitutive
IPR000717 // Domain
PCI // PCI






photomorphogenic) homolog,
in components of the
domain; 3.4e−25






subunit 2 (Arabidopsis thaliana)
proteasome, COP9-







complex and eIF3







(PCI)


98929_at
54
13384742
1110018B13Rik
RIKEN cDNA 111018B13 gene




99237_at
54

U55872
cDNA sequence U55872
IPR001288 //
IF3 // Translation







Initiation factor 3
initiation factor IF-








3; 2.5e−34


101045_at
53
7949047
Hadh2
hydroxyacyl-Coenzyme A
IPR002198 // Short-
adh_short // short






dehydrogenase type II
chain
chain







dehydrogenase/reductase
dehydrogenase; 7.4e−49







SDR ///







IPR002347 //







Glucose/ribitol







dehydrogenase


92625_at
53
6679078
Nme2
expressed in non-metastatic cells
IPR000834 // Zinc
NDK // Nucleoside






2, protein (NM23B) (nucleoside
carboxypeptidase A
diphosphate






diphosphate kinase)
metalloprotease
kinase; 1.9e−116







(M14) /// IPR001564







// Nucleoside







diphosphate kinase







/// IPR003599 //







Immunoglobulin







subtype ///







IPR003598 //







Immunoglobulin C-2







type /// IPR003006 //







Immunoglobulin/major







histocompatibility







complex ///







IPR003596 //







Immunoglobulin V-







type


93754_at
53
7949037
Ech1
enoyl coenzyme A hydratase 1,
IPR001753 // Enoyl-
ECH // Enoyl-CoA






peroxisomal
CoA
hydratase/isomerase







hydratase/isomerase
family; 1.4e−43


94829_at
53

1110020A09Rik
RIKEN cDNA 1110020A09 gene




95646_at
53

Cpt2
carnitine palmitoyltransferase 2
IPR000542 //
Carn_acyltransf //







Acyltransferase
Choline/Carnitine o-







ChoActase/COT/CPT
acyltransferase; 4.4e−289


99594_at
53

Mrpl51
mitochondrial ribosomal protein








L51


100886_f_at
52

Mrpl45
mitochondrial ribosomal protein








L45


94866_at
52
13384844
Mrps16
mitochondrial ribosomal protein
IPR000307 //
Ribosomal_S16 //






S16
Ribosomal protein
Ribosomal protein







S16
S16; 5.4e−17


94909_at
52
13384854
Mrps17
mitochondrial ribosomal protein
IPR000266 //
Ribosomal_S17 //






S17
Ribosomal protein
Ribosomal protein







S17
S17; 0.0021


95941_at
52

AI853514
expressed sequence AI853514
IPR000569 // HECT








domain (Ubiquitin-







protein ligase)


99613_at
52
6678970
Mut
methylmalonyl-Coenzyme A
IPR006100 //
MM_CoA_mutase //






mutase
Methylmalonyl-CoA
Methylmalonyl-CoA







mutase subfamily ///
mutase; 0 /// B12-







IPR006159 //
binding // B12 binding







Methylmalonyl-CoA
domain; 1.7e−20







mutase, C-terminal ///







IPR006158 //







Coenzyme B12-







binding /// IPR006099







// Methylmalonyl-CoA







mutase /// IPR006098







// Methylmalonyl-CoA







mutase, N-terminal







domain


102624_at
51

Stc2
stanniocalcin 2
IPR004978 //
Stanniocalcin //







Stanniocalcin
Stanniocalcin








family; 5.7e−193


94327_at
51

Mrps18a
mitochondrial ribosomal protein
IPR001648 //
Ribosomal_S18 //






S18A
Ribosomal protein
Ribosomal protein







S18
S18; 0.0013


94667_at
51


ESTs




94940_at
51
31980706
Mccc1
methylcrotonoyl-Coenzyme A
IPR005482 // Biotin
CPSase_L_chain //






carboxylase 1 (alpha)
carboxylase, C-
Carbamoyl-phosphate







terminal ///
synthase L







IPR005481 //
chain,; 2.9e−53 ///







Carbamoyl-
biotin_lipoyl // Biotin-







phosphate
requiring







synthetase large
enzyme; 3.5e−14 ///







chain, N-terminal ///
Biotin_carb_C // Biotin







IPR001882 // Biotin-
carboxylase C-







requiring enzyme,
terminal domain; 1e−43







attachment site ///
/// CPSase_L_D2 //







IPR000089 //
Carbamoyl-phosphate







Biotin/lipoyl
synthase L







attachment ///
chain,; 2.2e−100







IPR005479 //







Carbamoyl-







phosphate synthase







L chain, ATP-binding


96756_at
51

1110007M04Rik
RIKEN cDNA 1110007M04 gene




96871_at
51

2310042G06Rik
RIKEN cDNA 2310042G06 gene




98892_at
51

Lpin1
lipin 1




101867_at
50

Gpam
glycerol-3-phosphate
IPR002123 //
Acyltransferase //






acyltransferase, mitochondrial
Phospholipid/glycerol
Acyltransferase; 5.3e−36







acyltransferase


94855_at
50
6679299
Phb
prohibitin
IPR001107 // Band 7
Band_7 // SPFH







protein /// IPR000163
domain/Band 7







// Prohibitin
family; 3.7e−61


96744_at
50

Acp6
acid phosphatase 6,
IPR000560 //
acid_phosphat //






lysophosphatidic
Histidine acid
Histidine acid







phosphatase
phosphatase; 2.4e−07


96858_at
50
6755004
Pdcd8
programmed cell death 8
IPR001327 // FAD-
pyr_redox // Pyridine







dependent pyridine
nucleotide-disulphide







nucleotide-disulphide
oxidoreducta; 2.6e−52







oxidoreductase ///







IPR001100 //







Pyridine nucleotide-







disulphide







oxidoreductase, class I


96898_at
50
33859512
Atp5f1
ATP synthase, H+ transporting,








mitochondrial F0 complex, subunit






b, isoform 1


100550_f_at
49
16716343
Cox6c
cytochrome c oxidase, subunit VIc
IPR004204 //
COX6C // Cytochrome







Cytochrome c
c oxidase subunit







oxidase subunit VIc
VIc; 2.5e−50


103780_at
49

1700021F05Rik
RIKEN cDNA 1700021F05 gene




104153_at
49
9789985
Ivd
isovaleryl coenzyme A
IPR006089 // Acyl-
Acyl-CoA_dh_N //






dehydrogenase
CoA dehydrogenase
Acyl-CoA







/// IPR006092 // Acyl-
dehydrogenase, N-







CoA dehydrogenase,
terminal doma; 4.7e−58







N-terminal ///
/// Acyl-CoA_dh //







IPR006091 // Acyl-
Acyl-CoA







CoA dehydrogenase,
dehydrogenase, C-







middle domain ///
terminal doma; 3e−55







IPR006090 // Acyl-
/// Acyl-CoA_dh_M //







CoA dehydrogenase,
Acyl-CoA







C-terminal
dehydrogenase,








middle domain; 9.3e−71


92364_at
49

Celsr2
cadherin EGF LAG seven-pass G-
IPR002126 //
laminin_G // Laminin






type receptor 2
Cadherin ///
G domain; 1.2e−18 ///







IPR001881 // EGF-
EGF // EGF-like







like calcium-binding
domain; 1.6e−21 ///







/// IPR001368 //
GPS // Latrophilin/CL-







TNFR/CD27/30/40/95
1-like GPS







cysteine-rich region
domain; 1.3e−26 ///







/// IPR000561 // EGF-
cadherin // Cadherin







like domain ///
domain; 2.9e−209 ///







IPR000742 // EGF-
7tm_2 // 7







like domain, subtype
transmembrane







2 /// IPR000203 //
receptor (Secretin







GPS domain ///
family); 1.8e−58 ///







IPR000152 //
HRM // Hormone







Aspartic acid and
receptor domain; 6.2e−17







asparagine







hydroxylation site ///







IPR002049 //







Laminin-type EGF-







like domain ///







IPR000832 // G-







protein coupled







receptors family 2







(secretin-like) ///







IPR001791 // Laminin







G /// IPR001879 //







Hormone receptor,







extracellular


93399_at
49

Rai2
retinoic acid induced 2




93611_at
49

Tbx6
T-box 6
IPR001699 //
T-box // T-box; 1.1e−125







Transcription factor,







T-box /// IPR002070







// Transcription factor,







Brachyury


94531_at
49
33859690
2310005O14Rik
RIKEN cDNA 2310005O14 gene




96096_f_at
49
13195670
2610207I16Rik
RIKEN cDNA 2610207I16 gene
IPR002198 // Short-
adh_short // short







chain
chain







dehydrogenase/reductase
dehydrogenase; 1.2e−29







SDR ///
/// SCP2 // SCP-2







IPR003033 // Sterol-
sterol transfer







binding /// IPR002347
family; 1.5e−27







// Glucose/ribitol







dehydrogenase


96261_at
49

2310028O11Rik
RIKEN cDNA 2310028O11 gene




99148_at
49
33859554
Fh1
fumarate hydratase 1
IPR000362 //








Fumarate lyase


104710_at
48

Bak1
BCL2-antagonist/killer 1
IPR000712 //
Bcl-2 // Apoptosis







Apoptosis regulator
regulator proteins, Bcl-







Bcl-2 protein, BH ///
2 family; 2.3e−39







IPR002475 // BCL2-







like apoptosis







inhibitor


96095_i_at
48
13195670
2610207I16Rik
RIKEN cDNA 2610207I16 gene
IPR002198 // Short-
adh_short // short







chain
chain







dehydrogenase/reductase
dehydrogenase; 1.2e−29







SDR ///
/// SCP2 // SCP-2







IPR003033 // Sterol-
sterol transfer







binding /// IPR002347
family; 1.5e−27







// Glucose/ribitol







dehydrogenase


97397_at
48

D5Ertd33e
DNA segment, Chr 5, ERATO Doi
IPR004033 //
Ubie_methyltran //






33, expressed
UbiE/COQ5
ubiE/COQ5







methyltransferase ///
methyltransferase







IPR000051 // SAM
family; 1.4e−116







(and some other







nucleotide) binding







motif /// IPR004034 //







Ubiquinone/menaquinone







biosynthesis







methyltransferase ///







IPR001601 // Generic







methyltransferase


103294_at
47

Rgs5
regulator of G-protein signaling 5
IPR000342 //








Regulator of G







protein


103646_at
47
6681009
Crat
carnitine acetyltransferase
IPR000542 //
Carn_acyltransf //







Acyltransferase
Choline/Carnitine o-







ChoActase/COT/CPT
acyltransferase; 0


94508_at
47

1810020E01Rik
RIKEN cDNA 1810020E01 gene




95939_i_at
47

9830126M18
hypothetical protein 9830126M18




96035_at
47
31982494
Bckdha
branched chain ketoacid
IPR001017 //
E1_dehydrog //






dehydrogenase E1, alpha
Dehydrogenase, E1
Dehydrogenase E1






polypeptide
component
component; 1.8e−162


96296_at
47

Mrpl15
mitochondrial ribosomal protein
IPR001196 //







L15
Ribosomal protein







L15


96670_at
47
21313138
0610025I19Rik
RIKEN cDNA 0610025I19 gene
IPR004287 // 2-
HCCA_isomerase // 2-







hydroxychromene-2-
hydroxychromene-2-







carboxylate
carboxylate







isomerase
isomer; 1.8e−110


97796_at
47

Crsp2
cofactor required for Sp1








transcriptional activation subunit 2


98128_at
47
7949005
Atp5j
ATP synthase, H+ transporting,








mitochondrial F0 complex,






subunit F


100527_at
46
21311867
D11Ertd99e
DNA segment, Chr 11, ERATO








Doi 99, expressed


101027_s_at
46

Pttg1
pituitary tumor-transforming 1




104215_at
46

9130025P16Rik
RIKEN cDNA 9130025P16 gene




104767_f_at
46

Mrps18a
mitochondrial ribosomal protein
IPR001648 //
Ribosomal_S18 //






S18A
Ribosomal protein
Ribosomal protein







S18
S18; 0.0013


93346_at
46

Pgk1
phosphoglycerate kinase 1
IPR001576 //
PGK //







Phosphoglycerate
Phosphoglycerate







kinase
kinase; 8.4e−296


93539_at
46

1810004D07Rik
RIKEN cDNA 1810004D07 gene




95498_at
46
13384968
Mrps15
mitochondrial ribosomal protein
IPR005290 //
Ribosomal_S15 //






S15
Ribosomal protein
Ribosomal protein







S15, bacterial
S15; 1.1e−08







chloroplast and







mitochondrial type ///







IPR000589 //







Ribosomal protein







S15


96947_at
46
21312004
0610009I16Rik
RIKEN cDNA 0610009I16 gene
IPR000049 //
ETF_beta // Electron







Electron transfer
transfer flavoprotein







flavoprotein beta-
beta subunit; 3.3e−124







subunit /// IPR006162







//







Phosphopantetheine







attachment site


103401_at
45
31982522
Acads
acetyl-Coenzyme A
IPR006089 // Acyl-
Acyl-CoA_dh_M //






dehydrogenase, short chain
CoA dehydrogenase
Acyl-CoA







/// IPR006092 // Acyl-
dehydrogenase,







CoA dehydrogenase,
middle domain; 9e−64







N-terminal ///
/// Acyl-CoA_dh_N //







IPR006091 // Acyl-
Acyl-CoA







CoA dehydrogenase,
dehydrogenase, N-







middle domain ///
terminal doma; 1.9e−60







IPR006090 // Acyl-
/// Acyl-CoA_dh //







CoA dehydrogenase,
Acyl-CoA







C-terminal
dehydrogenase, C-








terminal doma; 3.9e−77


104057_at
45
13277394
Grpel1
GrpE-like 1, mitochondrial
IPR000740 // GrpE
GrpE // GrpE; 3.8e−76







protein


95064_at
45
29126205
D18Ertd240e
DNA segment, Chr 18, ERATO








Doi 240, expressed


96180_at
45

Rgs5
regulator of G-protein signaling 5
IPR000342 //








Regulator of G







protein


96887_at
45
9506933
Np15
nuclear protein 15.6




97706_at
45


ESTs




96322_at
44

Edf1
endothelial differentiation-related
IPR001387 // Helix-
HTH_3 // Helix-turn-






factor 1
turn-helix motif
helix; 1.2e−10


98527_at
44







102193_at
43

Sah
SA rat hypertension-associated
IPR000873 // AMP-
AMP-binding // AMP-






homolog
dependent
binding enzyme; 1.2e−102







synthetase and ligase


93332_at
43

Cd36
CD36 antigen
IPR002159 // CD36
CD36 // CD36







antigen /// IPR005428
family; 1e−208







// Adhesion molecule







CD36


93528_s_at
43

Klf9
Kruppel-like factor 9
IPR000822 // Zn-
zf-C2H2 // Zinc finger,







finger, C2H2 type
C2H2 type; 2.4e−21


93994_at
43

Sycp3
synaptonemal complex protein 3




95730_at
43

Tce2
T-complex expressed gene 2




96676_at
43

1810049H20Rik
RIKEN cDNA 1810049H20 gene




97512_at
43
21312554
2010107E04Rik
RIKEN cDNA 2010107E04 gene




101078_at
42

Bsg
basigin
IPR003599 //








Immunoglobulin







subtype ///







IPR003006 //







Immunoglobulin/major







histocompatibility







complex


94365_at
42

1190005L05Rik
RIKEN cDNA 1190005L05 gene
IPR001310 //








Histidine triad (HIT)







protein


94485_at
42

Peci
peroxisomal delta3, delta2-enoyl-
IPR001753 // Enoyl-
ECH // Enoyl-CoA






Coenzyme A isomerase
CoA
hydratase/isomerase







hydratase/isomerase
family; 3.2e−22 ///







/// IPR000582 // Acyl-
ACBP // Acyl CoA







coA-binding protein,
binding protein; 9.2e−41







ACBP


95056_r_at
42

Tcte1l
t-complex-associated-testis-
IPR005334 // Tctex-1
Tctex-1 // Tctex-1






expressed 1-like
family
family; 5.5e−55


98966_at
42
6753610
Dbt
dihydrolipoamide branched chain
IPR004167 // E3
e3_binding // e3






transacylase E2
binding domain ///
binding domain; 6.3e−18







IPR001078 //
/// 2-oxoacid_dh //







Catalytic domain of
2-oxo acid







components of
dehydrogenases







various
acyltransfera; 5.4e−108







dehydrogenase
/// biotin_lipoyl //







complexes ///
Biotin-requiring







IPR003016 // 2-oxo
enzyme; 2e−25







acid dehydrogenase,







acyltransferase







component, lipoyl-







binding /// IPR000089







// Biotin/lipoyl







attachment


100963_at
41

2810403H05Rik
RIKEN cDNA 2810403H05 gene




102049_at
41
7305375
Pdk4
pyruvate dehydrogenase kinase,
IPR005467 //
HATPase_c //






isoenzyme 4
Histidine kinase ///
Histidine kinase-, DNA







IPR004358 //
gyrase B-, and







Bacterial sensor
HSP90; 5e−19







protein C-terminal ///







IPR003594 // ATP-







binding protein,







ATPase-like


103319_at
41

Psmd10
proteasome (prosome, macropain)
IPR002110 // Ankyrin
ank // Ankyrin






26S subunit, non-ATPase, 10

repeat; 8.1e−49


93040_at
41

Fxyd1
FXYD domain-containing ion
IPR000272 //
ATP1G1_PLM_MAT8






transport regulator 1
ATP1G1/PLM/MAT8
// ATP1G1/PLM/MAT8







family
family; 4e−35


93948_at
41

Nck2
non-catalytic region of tyrosine
IPR001452 // SH3
SH3 // SH3






kinase adaptor protein 2
domain /// IPR000980
domain; 1.4e−57 ///







// SH2 motif
SH2 // SH2








domain; 6e−29


96388_at
41


EST




98924_at
41

4930569O04Rik
RIKEN cDNA 4930569O04 gene
IPR000768 //








NAD:arginine ADP-







ribosyltransferase,







ART


100099_at
40

Smpd1
sphingomyelin phosphodiesterase
IPR000004 //
Metallophos //






1, acid lysosomal
Saposin type B ///
Calcineurin-like







IPR004843 // Metallo-
phosphoesterase; 6.9e−17







phosphoesterase


100756_r_at
40

Tyms-ps
thymidylate synthase, pseudogene




95149_at
40

Copz1
coatomer protein complex, subunit
IPR000804 // Clathrin
Clat_adaptor_s //






zeta 1
adaptor complex,
Clathrin adaptor







small chain
complex small








chain; 3.8e−76


95695_at
40







95721_at
40

Mapkapk2
MAP kinase-activated protein
IPR002290 //







kinase 2
Serine/Threonine







protein kinase ///







IPR000719 //







Eukaryotic protein







kinase


99661_r_at
40
6680991
Cox7c
cytochrome c oxidase, subunit VIIc
IPR004202 //
COX7C // Cytochrome







Cytochrome c
c oxidase subunit







oxidase subunit VIIc
VIIc; 4e−33


100991_at
39

Itgb1bp1
integrin beta 1 binding protein 1
IPR006020 //








Phosphotyrosine







interaction domain


93786_i_at
39

1010001C05Rik
RIKEN cDNA 1010001C05 gene




95468_at
39

Egln1
EGL nine homolog 1 (C. elegans)
IPR002893 // Zn-
2OG-Fell_Oxy // 2OG-







finger, MYND type ///
Fe(II) oxygenase







IPR005123 // 2OG-
superfamily; 3.4e−10







Fe(II) oxygenase







superfamily


103492_at
38

Cpxm1
carboxypeptidase X 1 (M14
IPR000834 // Zinc
F5_F8_type_C // F5/8






family)
carboxypeptidase A
type C domain; 3.2e−70







metalloprotease
/// Zn_carbOpept //







(M14) /// IPR000421
Zinc







// Coagulation factor
carboxypeptidase; 8.8e−21







5/8 type C domain







(FA58C) ///







IPR001993 //







Mitochondrial







substrate carrier


95653_at
38

Mrpl37
mitochondrial ribosomal protein








L37


95718_f_at
38
13128954
Usmg5
upregulated during skeletal muscle








growth 5


98545_at
38
6671622
Bcap37
B-cell receptor-associated protein
IPR001107 // Band 7
Band_7 // SPFH






37
protein /// IPR000163
domain/Band 7







// Prohibitin
family; 6e−56


98616_f_at
38

Myh7
myosin, heavy polypeptide 7,
IPR004009 // Myosin
myosin_head //






cardiac muscle, beta
N-terminal SH3-like
Myosin head (motor







domain /// IPR000048
domain); 0 ///







// IQ calmodulin-
Myosin_N // Myosin N-







binding region ///
terminal SH3-like







IPR002928 // Myosin
domain; 4.3e−18 /// IQ







tail /// IPR001609 //
// IQ calmodulin-







Myosin head (motor
binding motif; 0.01 ///







domain)
Myosin_tail // Myosin








tail; 0


99678_f_at
38
31980744
Atp5l
ATP synthase, H+ transporting,








mitochondrial F0 complex,






subunit g


100592_at
37

Ghitm
growth hormone inducible
IPR002199 // Bax







transmembrane protein
inhibitor 1


92845_at
37
18266680
Oxct
3-oxoacid CoA transferase
IPR004165 //
CoA_trans //







Coenzyme A
Coenzyme A







transferase ///
transferase; 2.9e−197







IPR004164 //







Coenzyme A







transferase 2 ///







IPR004163 //







Coenzyme A







transferase 1


93277_at
37
31981679
Hspd1
heat shock protein 1 (chaperonin)
IPR002423 //
cpn60_TCP1 // TCP-







Chaperonin
1/cpn60 chaperonin







Cpn60/TCP-1 ///
family; 2.3e−190







IPR001844 //







Chaperonin Cpn60


93551_at
37

2510029B14Rik
RIKEN cDNA 2510029B14 gene
IPR000268 // RNA








polymerases N/8 Kd







subunits


95076_at
37

1500032L24Rik
RIKEN cDNA 1500032L24 gene




95426_at
37
29789289
Echs1
enoyl Coenzyme A hydratase,
IPR001753 // Enoyl-







short chain, 1, mitochondrial
CoA







hydratase/isomerase


98561_at
37

Tnni1
troponin I, skeletal, slow 1
IPR001978 //
Troponin //







Troponin
Troponin; 2e−59


99536_at
37

Kip2-pending
kinase interacting protein 2
IPR002048 //
efhand // EF







Calcium-binding EF-
hand; 3.4e−06







hand


102145_f_at
36

Esrra
estrogen related receptor, alpha
IPR001628 // Zn-
zf-C4 // Zinc finger, C4







finger, C4-type
type (two







steroid receptor ///
domains); 3.1e−51 ///







IPR000324 // Vitamin
hormone_rec //







D receptor ///
Ligand-binding domain







IPR001723 // Steroid
of nuclear







hormone receptor ///
hormone; 4.2e−32







IPR000536 // Ligand-







binding domain of







nuclear hormone







receptor ///







IPR000515 //







Binding-protein-







dependent transport







systems inner







membrane







component


93459_s_at
36

Fzd4
frizzled homolog 4 (Drosophila)
IPR000539 // Frizzled
Fz // Fz domain; 2.2e−65







protein /// IPR000024
/// Frizzled //







// Frizzled CRD
Frizzled/Smoothened







region /// IPR000832
family membrane







// G-protein coupled
region; 1.7e−206







receptors family 2







(secretin-like)


95693_at
36

Idh2
isocitrate dehydrogenase 2
IPR001804 //
isodh //






(NADP+), mitochondrial
Isocitrate/isopropylmalate
Isocitrate/isopropylmalate







dehydrogenase
dehydrogenase; 4.3e−116







/// IPR004790 //
/// isodh //







Isocitrate
Isocitrate/isopropylmalate







dehydrogenase
dehydrogenase; 1.1e−102







NADP-dependent,







eukaryotic


97279_at
36
21704140
AI265272
EST AI265272
IPR002204 // 3-
NAD_binding_2 //







hydroxyisobutyrate
NAD binding domain







dehydrogenase ///
of 6-







IPR006115 // 6-
phosphogluconat; 0.0053







phosphogluconate







dehydrogenase, NAD







binding domain ///







IPR006183 // 6-







phosphogluconate







dehydrogenase


102378_at
35

Sspn
sarcospan




93114_at
35
10181184
Atp5j2
ATP synthase, H+ transporting,








mitochondrial F0 complex, subunit






f, isoform 2


94375_at
35

Hk2
hexokinase 2
IPR001312 //
hexokinase2 //







Hexokinase
Hexokinase; 0 ///








hexokinase //








Hexokinase; 7.2e−290


100574_f_at
34

Gpi1
glucose phosphate isomerase 1
IPR001672 //
PGI //







Phosphoglucose
Phosphoglucose







isomerase (PGI)
isomerase; 0


93740_at
34

Nsep1
nuclease sensitive element binding
IPR002059 // Cold-
CSD // ‘Cold-shock’






protein 1
shock DNA-binding
DNA-binding







domain
domain; 4.7e−36


101347_at
33

Igk-V8
immunoglobulin kappa chain
IPR003600 //







variable 8 (V8)
Immunoglobulin-like







/// IPR003599 //







Immunoglobulin







subtype ///







IPR001865 //







Ribosomal protein S2







/// IPR003006 //







Immunoglobulin/major







histocompatibility







complex ///







IPR003597 //







Immunoglobulin C-







type /// IPR003596 //







Immunoglobulin V-







type


101588_at
33

Slc16a1
solute carrier family 16
IPR004743 //







(monocarboxylic acid
Monocarboxylate






transporters), member 1
transporter


101991_at
33

Fmo1
flavin containing monooxygenase 1
IPR002253 // Flavin-
FMO-like // Flavin-







containing
binding







monooxygenase
monooxygenase-like; 0







(FMO) 1 ///







IPR001327 // FAD-







dependent pyridine







nucleotide-disulphide







oxidoreductase ///







IPR000759 //







Adrenodoxin







reductase ///







IPR000960 // Flavin-







containing







monooxygenase







FMO /// IPR000566 //







Lipocalin-related







protein and







Bos/Can/Equ







allergen


92646_at
33

Mrpl23
mitochondrial ribosomal protein
IPR001014 //







L23
Ribosomal L23







protein


93325_at
33

Polr2e
polymerase (RNA) || (DNA








directed) polypeptide E (25 kDa)


94507_at
33
31560705
Facl2
fatty acid Coenzyme A ligase, long
IPR000873 // AMP-
AMP-binding // AMP-






chain 2
dependent
binding enzyme; 1.6e−103







synthetase and ligase


96122_at
33

2310016A09Rik
RIKEN cDNA 2310016A09 gene
IPR002925 //








Dienelactone







hydrolase ///







IPR001064 // Beta







and gamma crystallin







/// IPR000379 //







Esterase/lipase/thioe







sterase, active site


96256_at
33
6680690
Prdx3
peroxiredoxin 3
IPR000866 // Alkyl
AhpC-TSA //







hydroperoxide
AhpC/TSA







reductase/Thiol
family; 3.1e−83







specific antioxidant/







Mal allergen


96678_at
33
13507612
D14Ucla2
DNA segment, Chr 14, University
IPR001092 // Basic
adh_short // short






of California at Los Angeles 2
helix-loop-helix
chain







dimerization domain
dehydrogenase; 1.9e−12







bHLH /// IPR002198







// Short-chain







dehydrogenase/reductase







SDR ///







IPR002347 //







Glucose/ribitol







dehydrogenase


100538_at
32

Sod1
superoxide dismutase 1, soluble
IPR001424 //








Copper/Zinc







superoxide







dismutase


101990_at
32

Ldh2
lactate dehydrogenase 2, B chain
IPR001236 //
ldh // lactate/malate







Lactate/malate
dehydrogenase, NAD







dehydrogenase ///
binding do; 2.6e−81 ///







IPR001557 // L-
ldh_C // lactate/malate







lactate
dehydrogenase,







dehydrogenase
alpha/beta C-t; 3.3e−85


102302_at
32

Bckdhb
branched chain ketoacid








dehydrogenase E1, beta






polypeptide


93589_at
32

Lysal1
lysosomal apyrase-like 1
IPR000407 //
GDA1_CD39 //







GDA1/CD39 family of
GDA1/CD39







nucleoside
(nucleoside







phosphatase
phosphatase)








family; 2.2e−93


101541_at
31


ESTs, Weakly similar to S50828








hypothetical protein —Escherichia






coil [E. coil]


101580_at
31
13384754
Cox7b
cytochrome c oxidase subunit VIIb




102128_f_at
31
31981257
Mrps25
mitochondrial ribosomal protein








S25


92333_at
31

Sirt1
sirtuin 1 ((silent mating type
IPR003000 // Silent
SIR2 // Sir2






information regulation 2, homolog)
information regulator
family; 1.7e−99






1 (S. cerevisiae)
protein Sir2


94489_at
31

Ptp4a1
protein tyrosine phosphatase 4a1
IPR000387 //
Y_phosphatase //







Tyrosine specific
Protein-tyrosine







protein phosphatase
phosphatase; 4.2e−07







and dual specificity







protein phosphatase







/// IPR000242 //







Tyrosine specific







protein phosphatase







/// IPR001230 //







Prenyl group binding







site (CAAX box) ///







IPR000340 // Dual







specificity protein







phosphatase


95016_at
31

Nrp
neuropilin
IPR000998 // MAM
F5_F8_type_C // F5/8







domain /// IPR000421
type C domain; 1.5e−128







// Coagulation factor
/// CUB // CUB







5/8 type C domain
domain; 9.7e−93 ///







(FA58C) ///
MAM // MAM







IPR000859 // CUB
domain; 1.6e−69







domain


99009_at
31
31543330
Nnt
nicotinamide nucleotide
IPR004003 // NAD(P)
PNTB // NAD(P)






transhydrogenase
transhydrogenase
transhydrogenase







beta subunit ///
beta subunit; 0 ///







IPR004571 // NAD(P)
AlaDh_PNT // Alanine







transhydrogenase,
dehydrogenase/pyridine







alpha subunit ///
nucleotide t; 1.1e−74







IPR004002 // Alanine







dehydrogenase and







pyridine nucleotide







transhydrogenase


102402_at
30
6679957
Gbas
glioblastoma amplified sequence




92371_at
30

Hrc
histidine rich calcium binding
IPR000561 // EGF-







protein
like domain ///







IPR002049 //







Laminin-type EGF-







like domain


93308_s_at
30
6679237
Pcx
pyruvate carboxylase
IPR005482 // Biotin
HMGL-like // HMGL-







carboxylase, C-
like; 3.5e−43 ///







terminal ///
biotin_lipoyl // Biotin-







IPR005930 //
requiring







Pyruvate carboxylase
enzyme; 1.7e−26 ///







/// IPR005481 //
CPSase_L_D2 //







Carbamoyl-
Carbamoyl-phosphate







phosphate
synthase L







synthetase large
chain,; 1.7e−100 ///







chain, N-terminal ///
Biotin_carb_C // Biotin







IPR003379 //
carboxylase C-







Conserved
terminal domain; 2.3e−61







carboxylase region ///
///







IPR001882 // Biotin-
CPSase_L_chain //







requiring enzyme,
Carbamoyl-phosphate







attachment site ///
synthase L







IPR000089 //
chain,; 2.4e−43 ///







Biotin/lipoyl
PYC_OADA //







attachment ///
Conserved







IPR005479 //
carboxylase







Carbamoyl-
domain; 4.4e−121







phosphate synthase







L chain, ATP-binding







/// IPR000891 //







HMG-CoA lyase-like


94668_at
30


ESTs




95067_at
30

Mrpl2
mitochondrial ribosomal protein L2
IPR002171 //
Ribosomal_L2_C //







Ribosomal protein L2
Ribosomal Proteins








L2, C-terminal








doma; 4.6e−46 ///








Ribosomal_L2 //








Ribosomal Proteins








L2, RNA binding








dom; 9.2e−29


97410_at
30

D130005A03
hypothetical protein D130005A03




98610_at
30

1500012D08Rik
RIKEN cDNA 1500012D08 gene
IPR003029 // RNA








binding S1


99507_at
30

Ucp1
uncoupling protein 1,
IPR002030 //
mito_carr //






mitochondrial
Mitochondrial brown
Mitochondrial carrier







fat uncoupling protein
protein; 2e−79







/// IPR002113 //







Adenine nucleotide







translocator 1 ///







IPR001993 //







Mitochondrial







substrate carrier


AFFX-
30
6679937


GapdhMur/


M32599_3_at


100671_at
29







102668_at
29

Ppara
peroxisome proliferator activated
IPR001628 // Zn-
zf-C4 // Zinc finger, C4






receptor alpha
finger, C4-type
type (two







steroid receptor ///
domains); 1.1e−46 ///







IPR003074 //
hormone_rec //







Peroxisome
Ligand-binding domain







proliferator-activated
of nuclear







receptor ///
hormone; 3.1e−38







IPR001723 // Steroid







hormone receptor ///







IPR003076 //







Peroxisome







proliferator-activated







receptor, alpha ///







IPR000536 // Ligand-







binding domain of







nuclear hormone







receptor


103881_at
29
22203753
1110013G13Rik
RIKEN cDNA 1110013G13 gene
IPR001596 //
Pyrophosphatase //







Inorganic
Inorganic







pyrophosphatase
pyrophosphatase; 1.1e−107


104577_at
29

Mlh1
mutL homolog 1 (E. coli)
IPR002099 // DNA
DNA_mis_repair //







mismatch repair
DNA mismatch repair







protein /// IPR003594
protein, C-







// ATP-binding
termina; 1.7e−43 ///







protein, ATPase-like
HATPase_c //








Histidine kinase-, DNA








gyrase B-,








and; 0.00044


92592_at
29

Gpd1
glycerol-3-phosphate
IPR0006109 // NAD-
NAD_Gly3P_dh //






dehydrogenase 1 (soluble)
dependent glycerol-3-
NAD-dependent







phosphate
glycerol-3-phosphate







dehydrogenase
dehyd; 5.8e−204







domain /// IPR006168







// NAD-dependent







glycerol-3-phosphate







dehydrogenase


93050_at
29

Mylpc
myosin light chain,
IPR002048 //
efhand // EF






phosphorylatable, cardiac
Calcium-binding EF-
hand; 1.7e−12






ventricles
hand


93646_at
29

Ptk9
PTK9 protein tyrosine kinase 9
IPR002108 // Actin-
cofilin_ADF //







binding,
Cofilin/tropomyosin-







cofilin/tropomyosin
type actin-binding


94902_at
29

Sod3
superoxide dismutase 3,
type
pr; 3.8e−08






extracellular
IPR001424 //
sodcu // Copper/zinc







Copper/Zinc
superoxide dismutase







superoxide
(SODC); 1e−67







dismutase


96856_at
29
6680816
C1qbp
complement component 1, q
IPR003428 //
MAM33 //






subcomponent binding protein
Mitochondrial
Mitochondrial







glycoprotein
glycoprotein; 2e−108


98056_at
29

Phlda3
pleckstrin homology-like domain,
IPR001849 //







family A, member 3
Pleckstrin-like


98876_at
29

Mrpl11
mitochondrial ribosomal protein
IPR000911 //
Ribosomal_L11 //






L11
Ribosomal protein
Ribosomal protein







L11
L11, RNA binding








do; 3.7e−18 ///








Ribosomal_L11_N //








Ribosomal protein








L11, N-terminal








dom; 7.1e−25


99604_at
29

1810015H18Rik
RIKEN cDNA 1810015H18 gene




99667_at
29
6753502
Cox6a2
cytochrome c oxidase, subunit VIa,
IPR001349 //
COX6A // Cytochrome






polypeptide 2
Cytochrome c
c oxidase subunit







oxidase, subunit VIa
VIa; 1.9e−51


AFFX-
29
6679937


GapdhMur/


M32599_5_st


AFEX-
29
6679237


PyruCarbMur/


L09192_MA_at


101063_at
28

Tncc
troponin C, cardiac/slow skeletal
IPR002048 //
efhand // EF







Calcium-binding EF-
hand; 1.5e−25







hand /// IPR001125 //







Recoverin


92553_at
28

Es10
esterase 10
IPR000801 //
Esterase // Putative







Putative esterase ///
esterase; 5.5e−107







IPR000379 //







Esterase/lipase/thioesterase,







active site


93514_at
28







94166_g_at
28

Ccl1
chemokine (C-C motif) ligand 1
IPR001811 // Small
IL8 // Small cytokines







chemokine,
(intecrine/chemokine),







interleukin-8 like ///
inter; 2.2e−23







IPR000827 // Small







chemokine, C-C







subfamily


96003_at
28

Mta1l1
metastasis associated 1-like 1
IPR001005 // Myb
myb_DNA-binding //







DNA-binding domain
Myb-like DNA-binding







/// IPR000949 //
domain; 3.2e−09 ///







ELM2 domain ///
ELM2 // ELM2







IPR000679 // Zn-
domain; 1.4e−21 ///







finger, GATA type ///
BAH // BAH







IPR000345 //
domain; 5.7e−20 ///







Cytochrome c heme-
GATA // GATA zinc







binding site ///
finger; 2.9e−14







IPR001025 // Bromo







adjacent region


97265_at
28

1810013D10Rik
RIKEN cDNA 1810013D10 gene




97319_at
28

Rrad
Ras-related associated with
IPR003575 // Ras
ras // Ras family; 1.8e−16






diabetes
small GTPase ///







IPR005225 // Small







GTP-binding protein







domain /// IPR001806







// Ras GTPase







superfamily


97951_s_at
28

Tsc2
tuberous sclerosis 2
IPR003913 // Tuberin
Tuberin // Tuberin; 0 ///







/// IPR000331 //
Rap_GAP // Rap/ran-







Rap/ran-GAP
GAP; 2.4e−84


98039_at
28

2410015M20Rik
RIKEN cDNA 2410015M20 gene




99532_at
28

Tob1
transducer of ErbB-2.1

Anti_proliferat // BTG1








family; 3.1e−100


100535_at
27

Eif4g2
eukaryotic translation initiation
IPR000504 // RNA-
W2 // eIF4-






factor 4, gamma 2
binding region RNP-1
gamma/eIF5/eIF2-







(RNA recognition
epsilon; 7.1e−33 ///







motif) /// IPR003890
MA3 // MA3







// Initiation factor eIF-
domain; 4.5e−33 ///







4 gamma, middle ///
MIF4G // MIF4G







IPR003891 //
domain; 2.7e−61







Initiation factor eIF-4







gamma, MA3 ///







IPR003307 // eIF4-







gamma/eIF5/eIF2-







epsilon


101028_i_at
27

Actc1
actin, alpha, cardiac
IPR004000 //
actin // Actin; 1.2e−276







Actin/actin-like ///







IPR004001 // Actin


101409_at
27

Lgtn
ligatin
IPR004521 //








Uncharacterized







domain 2 ///







IPR001950 //







Translation initiation







factor SUI1 ///







IPR002478 // PUA







domain


101946_at
27
6678760
Lypla1
lysophospholipase 1
IPR003140 //
abhydrolase_2 //







Phospholipase/
Phospholipase/







Carboxylesterase ///
Carboxylesterase;







IPR000379 //
2.2e−121







Esterase/lipase/thioesterase,







active site


102560_at
27







103559_at
27

Prkaca
protein kinase, cAMP dependent,
IPR000961 // Protein
pkinase_C // Protein






catalytic, alpha
kinase-C-terminal
kinase C terminal







domain /// IPR002290
domain; 0.00063 ///







// Serine/Threonine
pkinase // Protein







protein kinase ///
kinase domain; 1.5e−84







IPR000719 //







Eukaryotic protein







kinase


92831_at
27

Sfxn1
sideroflexin 1
IPR004686 //
Mtc // Tricarboxylate







Tricarboxylate/iron
carrier; 2e−200







carrier


93196_at
27

D8Ertd531e
DNA segment, Chr 8, ERATO Doi








531, expressed


94192_at
27

Gdap10
ganglioside-induced








differentiation-






associated-protein 10


94381_at
27

Umpk
uridine monophosphate kinase
IPR000764 // Uridine








kinase /// IPR006083







//







Phosphoribulokinase/







uridine kinase


94925_at
27

1810055D05Rik
RIKEN cDNA 1810055D05 gene
IPR001623 // Heat
DnaJ // DnaJ







shock protein DnaJ,
domain; 2.3e−05







N-terminal


95469_at
27

Btd
biotinidase
IPR003010 //
CN_hydrolase //







Nitrilase/cyanide
Carbon-nitrogen







hydratase
hydrolase; 2.4e−05


95587_at
27



Mus musculus adult male adrenal









gland cDNA, RIKEN full-length






enriched library,






clone: B330005C17






product: hypothetical Arginine-rich






region containing protein,






full insert sequence.


95869_at
27


ESTs




95943_at
27


ESTs




96243_f_at
27

Aldh9a1
aldehyde dehydrogenase 9,
IPR002086 //
aldedh // Aldehyde






subfamily A1
Aldehyde
dehydrogenase







dehydrogenase
family; 3.9e−212


96348_at
27

0610039C21Rik
RIKEN cDNA 0610039C21 gene
IPR002641 // Patatin
Patatin // Patatin-like








phospholipase; 7.7e−34


96355_at
27

2900055D03Rik
RIKEN cDNA 2900055003 gene




97777_at
27

Nkx2-5
NK2 transcription factor related,
IPR001356 //
homeobox //






locus 5 (Drosophila)
Homeobox
Homeobox








domain; 8.9e−27


99331_at
27

Apeg1
aortic preferentially expressed
IPR003006 //
ig // Immunoglobulin






gene 1
Immunoglobulin/major
domain; 0.00073







histocompatibility







complex ///







IPR002290 //







Serine/Threonine







protein kinase ///







IPR003599 //







Immunoglobulin







subtype ///







IPR003600 //







Immunoglobulin-like







/// IPR003961 //







Fibronectin, type III ///







IPR001245 //







Tyrosine protein







kinase /// IPR002965







// Praline-rich







extensin ///







IPR000719 //







Eukaryotic protein







kinase /// IPR003598







// Immunoglobulin C-







2 type


99994_at
27

Cidea
cell death-inducing DNA
IPR003508 //
CIDE-N // CIDE-N






fragmentation factor, alpha
Caspase-activated
domain; 7.7e−51






subunit-like effector A
nuclease CIDE-N


100614_at
26

Mb
myoglobin

globin // Globin; 1.4e−36


100921_at
26

Tnni3
troponin I, cardiac
IPR001978 //
Troponin //







Troponin
Troponin; 7.3e−59


101015_s_at
26

Ifnar2
interferon (alpha and beta)
IPR000282 //







receptor 2
Cytokine receptor







class 2


101490_at
26

1810010A06Rik
RIKEN cDNA 1810010A06 gene
IPR000361 // Protein
HesB-like // HesB-like







of unknown function,
domain; 4e−42







HesB/YadR/YfhF


102653_at
26

Ryr2
ryanodine receptor 2, cardiac
IPR005821 // Ion
RyR // RyR







transport protein ///
domain; 8.8e−227 ///







IPR003877 //
MIR // MIR







SPla/RYanodine
domain; 3.1e−40 ///







receptor SPRY ///
SPRY // SPRY







IPR003608 // MIR
domain; 6.9e−116 ///







domain /// IPR002048
RYDR_ITPR // RIH







// Calcium-binding
domain; 1.4e−179 ///







EF-hand ///
ion_trans // Ion







IPR000699 //
transport protein; 2.1e−05







Intracellular calcium-
/// efhand // EF







release channel ///
hand; 0.0053







IPR003032 //







Ryanodine receptor







Ryr /// IPR001215 //







Ryanodine receptor







/// IPR001682 //







Ca2+/Na+ channel,







pore region


103939_at
26

2610509I15Rik
RIKEN cDNA 2610509I15 gene
IPR001753 // Enoyl-
ECH // Enoyl-CoA







CoA
hydratase/isomerase







hydratase/isomerase
family; 6.2e−20


104325_at
26

1110025G12Rik
RIKEN cDNA 1110025G12 gene




104743_at
26

Cdh13
cadherin 13
IPR002126 //
cadherin // Cadherin







Cadherin
domain; 1e−114


94554_at
26

4021401A16Rik
RIKEN cDNA 4021401A16 gene

TRAPP_Bet3 //








Transport protein








particle (TRAPP)








compone; 2.3e−123


96089_at
26

4931406C07Rik
RIKEN cDNA 4931406C07 gene




96237_at
26

SMAF1
SMAF1




97248_at
26
6681137
Dbi
diazepam binding inhibitor
IPR000582 // Acyl-
ACBP // Acyl CoA







coA-binding protein,
binding protein; 1.8e−52







ACBP


97430_at
26

G6pt1
glucose-6-phosphatase, transport
IPR000849 // GlpT
sugar_tr // Sugar (and






protein 1
family of transporters
other)







/// IPR005828 //
transporter; 0.00018







General substrate







transporter


98984_f_at
26
31981769
Gpd2
glycerol phosphate
IPR002048 //
efhand // EF






dehydrogenase 1, mitochondrial
Calcium-binding EF-
hand; 9.4e−09 /// DAO







hand /// IPR006076 //
// FAD dependent







FAD dependent
oxidoreductase; 3.6e−158







oxidoreductase ///







IPR000447 // FAD-







dependent glycerol-3-







phosphate







dehydrogenase


99154_s_at
26


Mus musculus, Similar to PTD015








protein, clone MGC: 36240






IMAGE: 5027461, mRNA,






complete cds


99570_s_at
26

Atp2a2
ATPase, Ca++ transporting,
IPR004014 // Cation
Cation_ATPase_N //






cardiac muscle, slow twitch 2
transporting ATPase,
Cation







N terminal ///
transporter/ATPase,







IPR001757 //
N-terminus; 2.2e−26 ///







ATPase, E1-E2 type
E1-E2_ATPase // E1-







/// IPR006069 //
E2 ATPase; 2.5e−123







Cation transporting
/// Cation_ATPase_C







ATPase ///
// Cation transporting







IPR005834 //
ATPase, C-







haloacid
terminu; 6.5e−84 ///







dehalogenase-like
Hydrolase // haloacid







hydrolase ///
dehalogenase-like







IPR006068 // Cation
hydrolase; 6.1e−12







transporting ATPase,







C-terminal ///







IPR000695 // H+







transporting ATPase,







proton pump


100400_at
25

4921531G14Rik
RIKEN cDNA 4921531G14 gene
IPR001440 // TPR
TPR // TPR







repeat
Domain; 0.005


100726_at
25

Grin2a
glutamate receptor, ionotropic,
IPR001311 // Solute-
lig_chan // Ligand-






NMDA2A (epsilon 1)
binding
gated ion







protein/glutamate
channel; 4.4e−107







receptor ///







IPR001508 // NMDA







receptor ///







IPR001320 //







Ionotropic glutamate







receptor


101071_at
25

Myhca
myosin heavy chain, cardiac
IPR004009 // Myosin
myosin_head //






muscle, adult
N-terminal SH3-like
Myosin head (motor







domain /// IPR000048
domain); 0 ///







// IQ calmodulin-
Myosin_N // Myosin N-







binding region ///
terminal SH3-like







IPR002928 // Myosin
domain; 2.5e−17 /// IQ







tail /// IPR000533 //
// IQ calmodulin-







Tropomyosin ///
binding motif; 0.0029







IPR001609 // Myosin
/// Myosin_tail //







head (motor domain)
Myosin tail; 0


101082_at
25

Mod1
malic enzyme, supernatant
IPR001891 // Malic
malic_N // Malic







oxidoreductase
enzyme, NAD binding








domain; 8.6e−126 ///








malic // Malic enzyme,








N-terminal








domain; 1.1e−123


101605_at
25


ESTs




101844_at
25

Pso
peroxisomal sarcosine oxidase




102314_at
25

Slc2a4
solute carrier family 2 (facilitated
IPR003663 // Sugar
sugar_tr // Sugar (and






glucose transporter), member 4
transporter ///
other)







IPR005829 // Sugar
transporter; 1.9e−185







transporter







superfamily ///







IPR005828 // General







substrate transporter







/// IPR000803 //







Facilitated glucose







transporter family ///







IPR002441 //







Glucose transporter,







type 4 (GLUT4)


103084_at
25

Csrp3
cysteine-rich protein 3
IPR001781 // Zn-
LIM // LIM







binding protein, LIM
domain; 1.4e−32


103422_at
25

Cd1d1
CD1d1 antigen
IPR003006 //








Immunoglobulin/major







histocompatibility







complex ///







IPR003597 //







Immunoglobulin C-







type


103495_at
25


ESTs




104725_at
25

Tc10-pending
ras-like protein
IPR003577 // Ras
ras // Ras family; 1.8e−79







small GTPase, Ras







type /// IPR003578 //







Ras small GTPase,







Rho type ///







IPR001230 // Prenyl







group binding site







(CAAX box) ///







IPR003579 // Ras







small GTPase, Rab







type /// IPR001806 //







Ras GTPase







superfamily


92241_at
25

1500041O16Rik
RIKEN cDNA 1500041O16 gene




95908_at
25

Klra1
killer cell lectin-like receptor,
IPR001304 // C-type
lectin_c // Lectin C-






subfamily A, member 1
lectin
type domain; 1.5e−09


96803_at
25

Gbe1
glucan (1,4-alpha-), branching
IPR004193 //
isoamylase_N //






enzyme 1
Glycoside hydrolase,
Isoamylase N-terminal







family 13, N-terminal
domain; 1e−27 ///







/// IPR006047 //
alpha-amylase //







Alpha amylase,
Alpha amylase,







catalytic domain
catalytic domain; 4.3e−07


97207_f_at
25
6678760
Lypla1
lysophospholipase 1
IPR003140 //
abhydrolase_2 //







Phospholipase/
Phospholipase/







Carboxylesterase ///
Carboxylesterase;







IPR000379 //
2.2e−121







Esterase/lipase/thioesterase,







active site


97302_at
25

Nd1-pending
Nd1
IPR000210 //
Kelch // Kelch







BTB/POZ domain ///
motif; 2.1e−98 /// BTB







IPR001798 // Kelch
// BTB/POZ







repeat
domain; 6.8e−28


98497_at
25

Eps15-rs
epidermal growth factor receptor
IPR002048 //
efhand // EF






pathway substrate 15, related
Calcium-binding EF-
hand; 5.6e−15






sequence
hand /// IPR000261 //







EPS15 homology







(EH) /// IPR005613 //







Actin interacting







protein 3 ///







IPR003903 //







Ubiquitin interacting







motif


99108_s_at
25







99631_f_at
25
6680988
Cox6a1
cytochrome c oxidase, subunit VI
IPR001349 //
COX6A // Cytochrome






a, polypeptide 1
Cytochrome c
c oxidase subunit







oxidase, subunit VIa
VIa; 1.9e−53


AFFX-
25
6679937


GapdhMur/


M32599_M_at


100136_at
24

Lamp2
lysosomal membrane
IPR002000 //
Lamp // Lysosome-






glycoprotein 2
Lysosome-associated
associated membrane







membrane
glycoprotein (L; 7.6e−241







glycoprotein







(Lamp)/CD68 ///







IPR001412 //







Aminoacyl-tRNA







synthetase, class I


100403_at
24

Mylc2a
myosin light chain, regulatory A

efhand // EF








hand; 1.8e−08


100593_at
24

Tnnt2
troponin T2, cardiac
IPR001978 //
Troponin //







Troponin
Troponin; 1.7e−38


101214_f_at
24
6679937
Gapd
glyceraldehyde-3-phosphate
IPR000173 //
gpdh //






dehydrogenase
Glyceraldehyde 3-
Glyceraldehyde 3-







phosphate
phosphate







dehydrogenase
dehydrogenase,








NA; 2.5e−102 ///








gpdh_C //








Glyceraldehyde 3-








phosphate








dehydrogenase, C-;








1.3e−123


101532_g_at
24

Aldo2
aldolase 2, B isoform
IPR000741 //
glycolytic_enzy //







Fructose-
Fructose-







bisphosphate
bisphosphate aldolase







aldolase, class-I
class-; 3.7e−243


101538_i_at
24

Ces3
carboxylesterase 3
IPR002018 //
COesterase //







Carboxylesterase,
Carboxylesterase; 2.5e−206







type B /// IPR000379







//







Esterase/lipase/thioesterase,







active site


101676_at
24

Gpx3
glutathione peroxidase 3
IPR000889 //
GSHPx // Glutathione







Glutathione
peroxidase; 7.9e−68







peroxidase


102048_at
24

Crap
cardiac responsive adriamycin
IPR002110 // Ankyrin
ank // Ankyrin






protein

repeat; 2e−35


103255_at
24

Traf5
Tnf receptor-associated factor 5
IPR003007 // Meprin
zf-TRAF // TRAF-type







A, C-terminal TRAF
zinc finger; 1.1e−45 ///







/// IPR001293 /// Zn-
MATH // MATH







finger, TRAF type ///
domain; 2.7e−36







IPR001841 // Zn-







finger, RING ///







IPR000345 //







Cytochrome c heme-







binding site ///







IPR002083 //







Meprin/TRAF-like







MATH


103442_at
24

LOC216820
similar to DKFZP566O084 protein
IPR001986 // EPSP
adh_short // short







synthase (3-
chain







phosphoshikimate 1-
dehydrogenase; 1e−52







carboxyvinyltransferase)







/// IPR002198 //







Short-chain







dehydrogenase/reductase







SDR ///







IPR002347 //







Glucose/ribitol







dehydrogenase


103719_at
24

Msh5
mutS homolog 5 (E. coli)
IPR002863 // DNA
MutS_N // MutS







mismatch repair
family, N-terminal







protein MutS, N-
putative DNA







terminal ///
binding; 0.00025 ///







IPR000432 // DNA
MutS_C // DNA







mismatch repair
mismatch repair







protein MutS, C-
proteins, mutS







terminal
family; 5.6e−55


103782_at
24

Clcnk1
chloride channel K1
IPR000644 // CBS
voltage_CLC //







domain /// IPR002250
Voltage gated chloride







// Chloride channel
channel; 5e−155 ///







CLC-K /// IPR001807
CBS // CBS







// Cl-channel, voltage
domain; 4.3e−10







gated


104161_at
24

Cpsf2
cleavage and polyadenylation








specific factor 2


104338_r_at
24

1200008D14Rik
RIKEN cDNA 1200008D14 gene
IPR000225 //
Armadillo_seg //







Armadillo repeat
Armadillo/beta-








catenin-like








repeat; 6.6e−36


104648_at
24

Pacs1
phosphofurin acidic cluster sorting








protein 1


92637_at
24

Pfkl
phosphofructokinase, liver, B-type
IPR000023 //
PFK //







Phosphofructokinase
Phosphofructokinase;








8.2e−274


93143_at
24

1190005I06Rik
RIKEN cDNA 1190005I06 gene




93304_at
24

Slc3a1
solute carrier family 3, member 1
IPR006047 // Alpha
alpha-amylase //







amylase, catalytic
Alpha amylase,







domain
catalytic domain; 2.1e−64


96048_at
24
6680277
Hrsp12
heat-responsive protein 12
IPR006056 // YjgF-
ribonuc_L-PSP //







like protein ///
Endoribonuclease L-







IPR006175 //
PSP; 6.6e−65







Endoribonuclease L-







PSP


96956_at
24

0610038D11Rik
RIKEN cDNA 0610038D11 gene
IPR005651 // Protein
DUF343 // Protein of







of unknown function
unknown function







DUF343 ///
(DUF343); 5.7e−63 ///







IPR000866 // Alkyl
AhpC-TSA //







hydroperoxide
AhpC/TSA







reductase/Thiol
family; 3.5e−08







specific antioxidant/







Mal allergen


97316_at
24
31541815
1300002P22Rik
RIKEN cDNA 1300002P22 gene
IPR006180 // 3-
3HCDH // 3-







hydroxyacyl-CoA
hydroxyacyl-CoA







dehydrogenase ///
dehydrogenase, C-







IPR006109 // NAD-
terminal; 2.2e−42







dependent glycerol-3-







phosphate







dehydrogenase







domain /// IPR001101







// Plectin repeat ///







IPR001753 // Enoyl-







CoA







hydratase/isomerase







/// IPR006108 // 3-







hydroxyacyl-CoA







dehydrogenase, C-







terminal domain ///







IPR006176 // 3-







hydroxyacyl-CoA







dehydrogenase, NAD







binding domain ///







IPR001993 //







Mitochondrial







substrate carrier


98353_at
24

Cyp4a10
cytochrome P450, 4a10
IPR001230 // Prenyl








group binding site







(CAAX box) ///







IPR002402 // E-class







P450, group II ///







IPR001128 //







Cytochrome P450 ///







IPR002401 // E-class







P450, group I


99581_at
24

Hint
histidine triad nucleotide binding
IPR001310 //







protein
Histidine triad (HIT)







protein


99894_at
24

Ptgfrn
prostaglandin F2 receptor negative
IPR003600 //
ig // Immunoglobulin






regulator
Immunoglobulin-like
domain; 3e−33







/// IPR003006 //







Immunoglobulin/major







histocompatibility







complex ///







IPR003596 //







Immunoglobulin V-







type


AFFX-
24
6679937


GapdhMur/


M32599_M_st


100828_at
23

Myla
myosin light chain, alkali, cardiac
IPR002048 //







atria
Calcium-binding EF-







hand


100967_at
23
6755548
Slc27a2
solute carrier family 27 (fatty acid
IPR000873 // AMP-
AMP-binding // AMP-






transporter), member 2
dependent
binding enzyme; 2.3e−54







synthetase and ligase


101006_at
23

Tcp1-rs1
t-complex protein 1, related
IPR002155 //







sequence 1
Thiolase


101531_at
23

Aldo2
aldolase 2, B isoform
IPR000741 //
glycolytic_enzy //







Fructose-
Fructose-







bisphosphate
bisphosphate aldolase







aldolase, class-I
class-; 3.7e−243


101758_at
23

Cktsf1b1
cysteine knot superfamily 1, BMP
IPR000359 //
DAN // DAN






antagonist 1
Cystine-knot domain
domain; 6.7e−79







/// IPR004133 // DAN







domain


102035_at
23

Tpmt
thiopurine methyltransferase




102636_at
23

Klc2
kinesin light chain 2
IPR001440 // TPR
TPR // TPR







repeat /// IPR002151
Domain; 5.2e−20







// Kinesin light chain


102944_at
23



Mus musculus 9 days embryo









whole body cDNA, RIKEN full-






length enriched library,






clone: D030073N12






product: unknown EST, full insert






sequence.


103333_at
23

G6pc
glucose-6-phosphatase, catalytic
IPR000326 // PA-
PAP2 // PAP2







phosphatase related
superfamily; 8.4e−31







phosphoesterase


103618_at
23

Ckmt2
creatine kinase, mitochondrial 2




103703_f_at
23

C730048C13Rik
RIKEN cDNA C730048C13 gene




104255_at
23


ESTs, Weakly similar to








DIA3_MOUSE Diaphanous






protein






homolog 3 (Diaphanous-related






formin 3) (DRF3) (mDIA2)






(p134mDIA2) [M. musculus]


92826_at
23

Gdap3
ganglioside-induced








differentiation-associated-






protein 3


92835_at
23

Cml1
camello-like 1
IPR000182 // GCN5-
Acetyltransf //







related N-
Acetyltransferase







acetyltransferase
(GNAT) family; 6.1e−16


93820_at
23
31981830
Cox7a2
cytochrome c oxidase,
IPR003177 //
COX7a // Cytochrome






subunit VIIa 2
Cytochrome c
c oxidase subunit







oxidase, subunit VIIa
VIIa; 3.6e−52


94549_at
23

1200003O06Rik
RIKEN cDNA 1200003O06 gene
IPR005828 // General
sugar_tr // Sugar (and







substrate transporter
other)








transporter; 0.0036


95588_at
23
6678766
Amacr
alpha-methylacyl-CoA racemase
IPR003673 // L-
CAIB-BAIF //







carnitine
CAIB/BAIF







dehydratase/bile
family; 6.6e−99







acid-inducible protein F


96072_at
23

Ldh1
lactate dehydrogenase 1, A chain
IPR001236 //
ldh // lactate/malate







Lactate/malate
dehydrogenase, NAD







dehydrogenase ///
binding do; 6.4e−82 ///







IPR001557 // L-
ldh_C // lactate/malate







lactate
dehydrogenase,







dehydrogenase
alpha/beta C-t; 2.4e−87


96090_g_at
23

4931406C07Rik
RIKEN cDNA 4931406C07 gene




96629_at
23
14861848
D7Rp2e
DNA segment, Chr 7, Roswell
IPR000086 // NUDIX
NUDIX // NUDIX






Park 2 complex, expressed
hydrolase
domain; 1.9e−14


97204_s_at
23

1110003P16Rik
RIKEN cDNA 1110003P16 gene
IPR001623 // Heat
DnaJ // DnaJ







shock protein DnaJ,
domain; 4.8e−05







N-terminal


98457_at
23

Slc4a4
solute carrier family 4 (anion
IPR003020 // HCO3−
HCO3_cotransp //






exchanger), member 4
transporter ///
HCO3− transporter







IPR003024 //
family; 0







Na+/HCO3− co-







transporter ///







IPR001717 // Anion







exchange protein


98904_at
23

1110066C01Rik
RIKEN cDNA 1110066C01 gene
IPR001706 //








Ribosomal protein







L35


100916_at
22

Slc22a1
solute carrier family 22 (organic
IPR005829 // Sugar
sugar_tr // Sugar (and






cation transporter), member 1
transporter
other)







superfamily ///
transporter; 3.9e−10







IPR005828 // General







substrate transporter







/// IPR004749 //







Organic cation







transport protein


101897_g_at
22

Cd1d2
CD1d2 antigen
IPR003006 //
ig // Immunoglobulin







Immunoglobulin/major
domain; 1.2e−05







histocompatibility







complex ///







IPR003597 //







Immunoglobulin C-







type


101964_at
22

Tkt
transketolase
IPR005476 //
transketolase_C //







Transketolase, C
Transketolase, C-







terminal ///
terminal domain; 2.4e−34







IPR005475 //
/// transket_pyr //







Transketolase,
Transketolase,







central region ///
pyridine binding







IPR005474 //
domai; 3.4e−55 ///







Transketolase, N
transketolase //







terminal
Transketolase,








thiamine diphosphate








b; 3.2e−154


102861_at
22

Slc22a1l
solute carrier family 22 (organic
IPR001958 //







cation transporter), member 1-like
Tetracycline







resistance protein ///







IPR001226 //







Flavodoxin


102947_at
22

Slc22a2
solute carrier family 22 (organic
IPR005829 // Sugar
sugar_tr // Sugar (and






cation transporter), member 2
transporter
other)







superfamily ///
transporter; 7.3e−13







IPR005828 // General







substrate transporter







/// IPR004749 //







Organic cation







transport protein


103389_at
22
31980703
Aass
aminoadipate-semialdehyde
IPR005097 //
AlaDh_PNT // Alanine






synthase
Saccharopine
dehydrogenase/pyridine







dehydrogenase ///
nucleotid; 1.9e−215







IPR004002 // Alanine
/// Saccharop_dh //







dehydrogenase and
Saccharopine







pyridine nucleotide
dehydrogenase; 0







transhydrogenase ///







IPR002016 // Haem







peroxidase


103580_at
22

LOC215751
similar to hypothetical protein
IPR001950 //







BC014320
Translation initiation







factor SUI1


104583_at
22

2400007G07Rik
RIKEN cDNA 2400007G07 gene
IPR001452 // SH3
zf-DHHC // DHHC zinc







domain /// IPR001594
finger domain; 2.5e−27







// Zn-finger, DHHC







type


104584_f_at
22



Mus musculus 8 days embryo









whole body cDNA, RIKEN full-






length enriched library,






clone: 5730439B18






product: hypothetical protein, full






insert sequence.


93045_at
22

Abcd3
ATP-binding cassette, sub-family
IPR003439 // ABC
ABC_tran // ABC






D (ALD), member 3
transporter ///
transporter; 6.1e−27







IPR003593 // AAA







ATPase ///







IPR005283 //







Peroxysomal long







chain fatty acyl







transporter


93048_at
22
8393156
Clpp
caseinolytic protease, ATP-
IPR001907 // Clp
CLP_protease // Clp






dependent, proteolytic subunit
protease
protease; 2.3e−98






homolog (E. coli)


93084_at
22

Slc25a4
solute carrier family 25
IPR002030 //







(mitochondrial carrier; adenine
Mitochondrial brown






nucleotide translocator), member 4
fat uncoupling protein







/// IPR002113 //







Adenine nucleotide







translocator 1 ///







IPR001993 //







Mitochondrial







substrate carrier ///







IPR002067 //







Mitochondrial carrier







protein


93431_at
22

Dm15
dystrophia myotonica kinase, B15

pkinase // Protein








kinase domain; 4.1e−57


93570_at
22

Slc12a3
solute carrier family 12, member 3
IPR002948 //








Thiazide-sensitive







Na/Cl co-transporter







/// IPR004842 // K—Cl







cotransporter







superfamily ///







IPR002293 // Amino







acid/polyamine







transporter, family I


93736_at
22

Tcn2
transcobalamin 2
IPR002157 //
Cobalamin_bind //







Eukaryotic
Eukaryotic cobalamin-







cobalamin-binding
binding protein; 2.1e−289







protein


93775_at
22

D12Ertd647e
DNA segment, Chr 12, ERATO








Doi 647, expressed


93826_at
22

2310028N02Rik
RIKEN cDNA 2310028N02 gene
IPR002554 // Protein
B56 // Protein







phosphatase 2A,
phosphatase 2A







regulatory B subunit
regulatory B







(B56 family)
subunit; 8.7e−15


93832_at
22

5730443G10
hypothetical protein 5730443G10

R3H // R3H








domain; 1.5e−15


93833_s_at
22

Hist1h2bc
histone 1, H2bc
IPR000558 // Histone








H2B /// IPR004822 //







Histone-fold/TFIID-







TAF/NF-Y domain


93851_at
22

Rabggta
Rab geranylgeranyl transferase, a
IPR002088 // Protein
PPTA // Protein






subunit
prenyltransferase,
prenyltransferase







alpha subunit ///
alpha subunit







IPR001611 //
repe; 6.3e−56 /// LRR







Leucine-rich repeat
// Leucine Rich








Repeat; 2.5e−07


94419_at
22

Slc19a1
solute carrier family 19
IPR002666 //
Folate_carrier //






(sodium/hydrogen exchanger),
Reduced folate
Reduced folate






member 1
carrier
carrier; 1.8e−290


95119_at
22

1110038D17Rik
RIKEN cDNA 111003D17 gene




95478_at
22

Deb1
differentially expressed








in B16F101


95620_at
22

2310016E22Rik
RIKEN cDNA 2310016E22 gene
IPR002198 // Short-
adh_short // short







chain
chain







dehydrogenase/reductase
dehydrogenase; 3.5e−45







SDR ///







IPR002347 //







Glucose/ribitol







dehydrogenase


95725_at
22

0610006H10Rik
RIKEN cDNA 0610006H10 gene




96231_at
22
21624609
2010012D11Rik
RIKEN cDNA 2010012D11 gene
IPR000073 //
abhydrolase //







Alpha/beta hydrolase
alpha/beta hydrolase







fold /// IPR003089 //
fold; 1.3e−19







Alpha/beta hydrolase







/// IPR000734 //







Lipase /// IPR000379







//







Esterase/lipase/thioesterase,







active site


97525_at
22
6680139
Gyk
glycerol kinase
IPR005999 //
FGGY_C // FGGY







Glycerol kinase ///
family of carbohydrate







IPR000577 //
kinases, C-termi; 3.5e−110







Carbohydrate kinase,
/// FGGY // FGGY







FGGY
family of carbohydrate








kinases, N-termi; 6.5e−135


97533_at
22

Fcgrt
Fc receptor, IgG, alpha chain
IPR001220 //
MHC_I // Class I






transporter
Legume lectin, beta
Histocompatibility







domain /// IPR001039
antigen,







// Major
domains; 2.7e−72







histocompatibility







complex protein,







class I /// IPR003006







//







Immunoglobulin/major







histocompatibility







complex ///







IPR003597 //







Immunoglobulin C-







type


98124_at
22

0610011F06Rik
RIKEN cDNA 0610011F06 gene




98482_at
22

Pthr1
parathyroid hormone receptor 1
IPR002170 //
7tm_2 // 7







Parathyroid hormone
transmembrane







receptor ///
receptor (Secretin







IPR001879 //
family); 2.8e−129 ///







Hormone receptor,
HRM // Hormone







extracellular ///
receptor domain; 9.1e−26







IPR000832 // G-







protein coupled







receptors family 2







(secretin-like)


99112_at
22
7305501
Slc25a10
solute carrier family 25
IPR002030 //
mito_carr //






(mitochondrial carrier;
Mitochondrial brown
Mitochondrial carrier






dicarboxylate transporter),
fat uncoupling protein
protein; 4.3e−70






member 10
/// IPR001993 //







Mitochondrial







substrate carrier


99115_at
22
21539599
2610041P16Rik
RIKEN cDNA 2610041P16 gene
IPR003422 //
UCR_hinge //







Ubiquinol-cytochrome
Ubiquinol-cytochrome







C reductase hinge
C reductase hinge







protein
prot; 2.6e−42


99959_at
22
6753022
Ak4
adenylate kinase 4
IPR000850 //
adenylatekinase //







Adenylate kinase
Adenylate








kinase; 2.3e−102


99974_at
22

Kcnj15
potassium inwardly-rectifying
IPR001622 // K+
IRK // Inward rectifier






channel, subfamily J, member 15
channel, pore region
potassium







/// IPR001838 // K+
channel; 2.2e−221







channel, inward







rectifier ///







IPR003270 // Kir1.3







inward rectifier K+







channel


AFFX-
22
6679237


PyruCarbMur/


L09192_3_at


100567_at
21

Fabp4
fatty acid binding protein 4,
IPR000463 //
lipocalin // Lipocalin/






adipocyte
Cytosolic fatty-acid
cytosolic fatty-acid







binding protein ///
binding pr; 3e−39







IPR000566 //







Lipocalin-related







protein and







Bos/Can/Equ







allergen


100986_at
21

Fhl2
four and a half LIM domains 2
IPR001781 // Zn-
LIM // LIM







binding protein, LIM
domain; 1.2e−34


101029_f_at
21

Actc1
actin, alpha, cardiac
IPR004000 //
actin // Actin; 1.2e−276







Actin/actin-like ///







IPR004001 // Actin


101299_at
21







101394_at
21

Sgcg
sarcoglycan, gamma (35 kD








dystrophin-associated






glycoprotein)


101872_at
21

Gsta2
glutathione S-transferase, alpha 2
IPR004045 //
GST_N // Glutathione






(Yc2)
Glutathione S-
S-transferase, N-







transferase, N-
terminal domain; 2.4e−25







terminal ///
/// GST_C //







IPR003080 //
Glutathione S-







Glutathione S-
transferase, C-terminal







transferase, alpha
domain; 3.3e−30







class /// IPR004046







// Glutathione S-







transferase, C-







terminal


102114_f_at
21

Angptl4
angiopoietin-like 4
IPR002181 //
fibrinogen_C //







Fibrinogen,
Fibrinogen beta and







beta/gamma chain,
gamma chains, C-







C-terminal globular
term; 4.8e−58


102886_at
21

Gpc4
glypican 4
IPR001863 //
Glypican // Glypican; 0







Glypican


103602_at
21

Dao1
D-amino acid oxidase
IPR006181 // D-
DAO // FAD







amino acid oxidase ///
dependent







IPR006076 // FAD
oxidoreductase; 1.7e−133







dependent







oxidoreductase ///







IPR001412 //







Aminoacyl-tRNA







synthetase, class I


103879_at
21

LOC235169
hypothetical protein LOC235169
IPR006076 // FAD
DAO // FAD







dependent
dependent







oxidoreductase
oxidoreductase; 0.0011


103955_at
21

Cryl1
crystallin, lamda 1
IPR006180 // 3-
3HCDH // 3-







hydroxyacyl-CoA
hydroxyacyl-CoA







dehydrogenase ///
dehydrogenase, C-







IPR006109 // NAD-
terminal; 3.5e−22 ///







dependent glycerol-3-
3HCDH_N // 3-







phosphate
hydroxyacyl-CoA







dehydrogenase
dehydrogenase, NAD







domain /// IPR000205
binding; 1.2e−86







// NAD binding site ///







IPR006108 // 3-







hydroxyacyl-CoA







dehydrogenase, C-







terminal domain ///







IPR006176 // 3-







hydroxyacyl-CoA







dehydrogenase, NAD







binding domain


104258_at
21

Acyp2
acylphosphatase 2, muscle type
IPR002048 //
Acylphosphatase //







Calcium-binding EF-
Acylphosphatase; 2.9e−59







hand /// IPR001792 //







Acylphosphatase


104387_at
21

Slc23a2
solute carrier family 23
IPR006043 //
xan_ur_permease //






(nucleobase transporters),
Xanthine/uracil/vitamin
Permease family; 9.2e−94






member 2
C permease family


104706_at
21

Pex7
peroxisome biogenesis factor 7
IPR001680 // G-
WD40 // WD domain,







protein beta WD-40
G-beta repeat; 3.9e−49







repeat


92814_at
21

Cyp2j5
cytochrome P450, 2j5
IPR001128 //
p450 // Cytochrome







Cytochrome P450 ///
P450; 1.5e−165







IPR002401 // E-class







P450, group I


92869_at
21
6680291
Hsd3b4
hydroxysteroid dehydrogenase-4,
IPR002225 // 3-beta
3Beta_HSD // 3-beta






delta<5>-3-beta
hydroxysteroid
hydroxysteroid







dehydrogenase/isomerase
dehydrogenase/isomera;








1.8e−203


93221_at
21

4921540P06Rik
RIKEN cDNA 4921540P06 gene
IPR001356 //








Homeobox ///







IPR001827 //







Homeobox protein,







antennapedia type


93542_at
21

Pter
phosphotriesterase related
IPR001559 //
PTE //







Aryldialkylphosphatase
Phosphotriesterase








family; 8.9e−239


93629_s_at
21

Folh1
folate hydrolase
IPR003137 //
PA // PA domain; 8.6e−21







Protease-associated
/// TFR_dimer //







PA
Transferring receptor-








like dimerisation








dom; 3.8e−65


93696_at
21

Nr1i2
nuclear receptor subfamily 1,
IPR001628 // Zn-







group I, member 2
finger, C4-type







steroid receptor ///







IPR000324 // Vitamin







D receptor ///







IPR001723 // Steroid







hormone receptor ///







IPR000536 // Ligand-







binding domain of







nuclear hormone







receptor


93781_at
21

Aldrl6
aldehyde reductase (aldose
IPR001395 //







reductase)-like 6
Aldo/keto reductase


94199_at
21

Kap
kidney androgen regulated protein




94241_at
21

1300003G02Rik
RIKEN cDNA 1300003G02 gene
IPR001977 //
CoaE // Dephospho-







Dephospho-CoA
CoA kinase; 3.1e−87







kinase
/// CTP_transf_2 //








Cytidylyltransferase;








2.3e−08


94435_at
21

D10Ertd438e
DNA segment, Chr 10, ERATO








Doi 438, expressed


95028_r_at
21







95074_at
21

Pxf
peroxisomal farnesylated protein
IPR001230 // Prenyl








group binding site







(CAAX box)


95539_at
21

Gtpat12
gene trap PAT 12




96069_at
21
27659728
Afar
aflatoxin B1 aldehyde reductase
IPR001395 //
aldo_ket_red //







Aldo/keto reductase
Aldo/keto reductase








family; 3e−14


96078_g_at
21

Slc17a1
solute carrier family 17 vesicular
IPR005828 // General







glutamate transporter), member 1
substrate transporter







/// IPR004745 //







Na(+)-dependent







inorganic phosphate







cotransporter


96888_at
21

Akr1a4
aldo-keto reductase family 1,
IPR001395 //
aldo_ket_red //






member A4 (aldehyde reductase)
Aldo/keto reductase
Aldo/keto reductase








family; 1.1e−147


97001_r_at
21

Olfr37c
olfactory receptor 37c

7tm_1 // 7








transmembrane








receptor (rhodopsin








family); 2.2e−38


97089_at
21

Folh1
folate hydrolase
IPR003137 //
PA // PA domain; 8.6e−21







Protease-associated
/// TFR_dimer //







PA
Transferring receptor-








like dimerisation








dom; 3.8e−65


97287_at
21

4933412D19Rik
RIKEN cDNA 4933412D19 gene




97342_at
21
13384894
Mrps14
mitochondrial ribosomal protein
IPR001209 //
Ribosomal_S14 //






S14
Ribosomal protein
Ribosomal protein







S14
S14p/S29e; 1.6e−18


97514_at
21

1810063B05Rik
RIKEN cDNA 1810063B05 gene




98131_at
21

Cryz
crystallin, zeta
IPR002085 // Zinc-








containing alcohol







dehydrogenase







superfamily ///







IPR002364 //







Quinone







oxidoreductase/zeta-







crystallin


99107_at
21

Ghr
growth hormone receptor
IPR002996 //








Cytokine receptor,







common beta/gamma







chain /// IPR003528 //







Long hematopoietin







receptor, single chain


99402_at
21

Art2b
ADP-ribosyltransferase 2b
IPR000768 //
ART // NAD:arginine







NAD:arginine ADP-
ADP-







ribosyltransferase,
ribosyltransferase;







ART
1.3e−147


100085_at
20

Ggtp
gamma-glutamyl transpeptidase
IPR000101 //
G_glu_transpept //







Gamma-
Gamma-







glutamyltranspeptidase
glutamyltranspeptidase;








3.1e−273


100909_at
20

Prss8
protease, serine, 8 (prostasin)
IPR001314 //
trypsin // Trypsin; 4.6e−90







Chymotrypsin serine







protease, family S1 ///







IPR001254 // Serine







protease, trypsin







family


100913_at
20

Thea
thioesterase, adipose associated
IPR002590 // Acyl-
START // START







CoA thioester
domain; 6.4e−25 ///







hydrolase, cytosolic
Acyl-CoA_hydro //







long chain ///
Cytosolic long-chain







IPR002913 // Lipid-
acyl-CoA







binding START
thioeste; 1.4e−34


100956_at
20

Kl
klotho
IPR001360 //
Glyco_hydro_1 //







Glycoside hydrolase,
Glycosyl hydrolase







family 1
family 1; 1e−203


101539_f_at
20

Ces3
carboxylesterase 3
IPR002018 //
COesterase //







Carboxylesterase,
Carboxylesterase; 2.5e−206







type B /// IPR000379







//







Esterase/lipase/thioesterase,







active site


101659_at
20

Hsd3b2
hydroxysteroid dehydrogenase-2,
IPR002225 // 3-beta
3Beta_HSD // 3-beta






delta<5>-3-beta
hydroxysteroid
hydroxysteroid







dehydrogenase/isomerase
dehydrogenase/isomera;








2.3e−209


101907_s_at
20

Ceacam2
CEA-related cell adhesion
IPR003599 //
ig // Immunoglobulin






molecule 2
Immunoglobulin
domain; 6.6e−05







subtype ///







IPR003598 //







Immunoglobulin C-2







type /// IPR003006 //







Immunoglobulin/major







histocompatibility







complex


101972_at
20

Kdap
kidney-derived aspartic protease-
IPR001969 //
asp // Eukaryotic






like protein
Eukaryotic/viral
aspartyl







aspartic protease,
protease; 7.6e−147







active site ///







IPR001461 //







Aspartic protease A1,







pepsin


102192_r_at
20
31982720
Sah
SA rat hypertension-associated
IPR000873 // AMP-
AMP-binding // AMP-






homolog
dependent
binding enzyme; 1.2e−102







synthetase and ligase


102429_at
20

Slc22al2
solute carrier family 22 (organic
IPR005828 // General
sugar_tr // Sugar (and






cation transporter)-like 2
substrate transporter
other)








transporter; 8.2e−08


103353_f_at
20

Cyp4b1
cytochrome P450, subfamily IV B,
IPR001128 //
p450 // Cytochrome






polypeptide 1
Cytochrome P450 ///
P450; 2.9e−144







IPR002401 // E-class







P450, group I


103377_at
20

Lrp2
low density lipoprotein receptor-
IPR000033 // Low-







related protein 2
density lipoprotein







receptor, YWTD







repeat


103570_at
20

Cors-pending
collagenous repeat-containing
IPR000087 //
Collagen // Collagen






sequence
Collagen triple helix
triple helix repeat (20







repeat /// IPR001073
copies); 1e−10 /// C1q







// Complement C1q
// C1q domain; 7.7e−18







protein


103973_at
20

Kcnj1
potassium inwardly-rectifying
IPR001622 // K+
IRK // Inward rectifier






channel, subfamily J, member 1
channel, pore region
potassium







/// IPR001838 // K+
channel; 1.4e−231







channel, inward







rectifier ///







IPR003268 // Kir1.1







inward rectifier K+







channel


103984_at
20



Mus musculus 0 day neonate









kidney cDNA, RIKEN full-length






enriched library,






clone: D630026G14






product: hypothetical protein, full






insert sequence.


104164_at
20

1300019N10Rik
RIKEN cDNA 1300019N10 gene
IPR000126 // Serine








proteases, V8 family







/// IPR001254 //







Serine protease,







trypsin family


104381_at
20

Nr1h3
nuclear receptor subfamily 1,
IPR001628 // Zn-
zf-C4 // Zinc finger, C4






group H, member 3
finger, C4-type
type (two







steroid receptor ///
domains); 5.5e−38 ///







IPR003069 //
hormone_rec //







Ecdysteroid receptor
Ligand-binding domain







/// IPR001723 //
of nuclear







Steroid hormone
hormone; 4.8e−52







receptor ///







IPR000536 // Ligand-







binding domain of







nuclear hormone







receptor ///







IPR000923 // Blue







(type 1) copper







domain


104565_at
20

Ap4s1
adaptor-related protein complex
IPR000804 // Clathrin
Clat_adaptor_s //






AP-4, sigma 1
adaptor complex,
Clathrin adaptor







small chain
complex small








chain; 1.7e−49


92375_at
20

1810015P09Rik
RIKEN cDNA 1810015P09 gene
IPR004088 // KH








domain, type 1 ///







IPR004087 // KH







domain


92561_at
20

Entpd5
ectonucleoside triphosphate
IPR000407 //
GDA1_CD39 //






diphosphohydrolase 5
GDA1/CD39 family of
GDA1/CD39







nucleoside
(nucleoside







phosphatase
phosphatase)








family; 7.3e−44


93515_at
20

Cdh16
cadherin 16
IPR002126 //
cadherin // Cadherin







Cadherin ///
domain; 2.3e−54







IPR001412 //







Aminoacyl-tRNA







synthetase, class I


94126_at
20

Wnt2b
wingless related MMTV
IPR005817 // Wnt
wnt // wnt family; 4.8e−194






integration
superfamily ///






site 2b
IPR005816 //







Secreted growth







factor Wnt protein


94337_at
20

Gas2
growth arrest specific 2
IPR003108 // Growth-
GAS2 // Growth-







arrest-specific protein
Arrest-Specific Protein







2 /// IPR001715 //
2 Domain; 3.5e−53 ///







Calponin-like actin-
CH // Calponin







binding
homology (CH)








domain; 9.4e−08


94338_g_at
20

Gas2
growth arrest specific 2
IPR003108 // Growth-
GAS2 // Growth-







arrest-specific protein
Arrest-Specific Protein







2 /// IPR001715 //
2 Domain; 3.5e−53 ///







Calponin-like actin-
CH // Calponin







binding
homology (CH)








domain; 9.4e−08


94424_at
20

Scd1
stearoyl-Coenzyme A desaturase 1
IPR001522 // Fatty
FA_desaturase // Fatty







acid desaturase, type
acid desaturase; 5.2e−80







1 // IPR005804 //







Fatty acid desaturase







family


94518_at
20

0610033H09Rik
RIKEN cDNA 0610033H09 gene




94827_at
20

Fxyd2
FXYD domain-containing ion

ATP1G1_PLM_MAT8






transport regulator 2

// ATP1G1/PLM/MAT8








family; 2.9e−33


95594_at
20

6330416C07Rik
RIKEN cDNA 6330416C07 gene




96605_at
20

0610011I04Rik
RIKEN cDNA 0610011I04 gene




96684_at
20

D5Wsu31e
DNA segment, Chr 5, Wayne State








University 31, expressed


96790_f_at
20

A530057M15Rik
RIKEN cDNA A530057M15 gene




96935_at
20

Map17-pending
membrane-associated protein 17




97288_at
20

Pdzk1
PDZ domain containing 1
IPR001478 //
PDZ // PDZ domain







PDZ/DHR/GLGF
(Also known as DHR







domain
or GLGF); 8.8e−50


97886_at
20

Spr
sepiapterin reductase
IPR002198 // Short-
adh_short // short







chain
chain







dehydrogenase/reductase
dehydrogenase; 1e−07







SDR ///







IPR002347 //







Glucose/ribitol







dehydrogenase


98123_at
20
6754408
Kat2
kynurenine aminotransferase II




98575_at
20

Fasn
fatty acid synthase
IPR001031 //








Thioesterase ///







IPR000051 // SAM







(and some other







nucleotide) binding







motif /// IPR002085 //







Zinc-containing







alcohol







dehydrogenase







superfamily ///







IPR000794 // Beta-







ketoacyl synthase ///







IPR006162 //







Phosphopantetheine







attachment site ///







IPR001227 // Acyl







transferase ///







IPR006163 //







Phosphopantetheine-







binding domain


99019_at
20

Por
P450 (cytochrome) oxidoreductase
IPR001094 //
NAD_binding_1 //







Flavodoxin-like
Oxidoreductase NAD-







domain /// IPR003097
binding domain; 7.8e−44







// FAD-binding ///
/// FAD_binding_1







IPR001433 //
// FAD binding







Oxidoreductase
domain; 5e−121 ///







FAD/NAD(P)-binding
flavodoxin //







/// IPR001709 //
Flavodoxin; 1e−55







Flavoprotein pyridine







nucleotide







cytochrome







reductase ///







IPR001226 //







Flavodoxin


99070_at
20

Chuk
conserved helix-loop-helix
IPR001245 //
pkinase // Protein






ubiquitous kinase
Tyrosine protein
kinase domain; 1.3e−48







kinase /// IPR002290







// Serine/Threonine







protein kinase ///







IPR000719 //







Eukaryotic protein







kinase


99094_at
20

Slc12a1
solute carrier family 12, member 1
IPR004841 // Domain
aa_permeases //







found in permeases
Amino acid







/// IPR002443 //
permease; 0.56







Na—K—Cl







co-transporter ///







IPR002445 // Na—K—Cl







co-transporter 2 ///







IPR004842 // K—Cl







cotransporter







superfamily ///







IPR002293 // Amino







acid/polyamine







transporter, family I


99521_at
20
6753022
Ak4
adenylate kinase 4
IPR000850 //
adenylatekinase //







Adenylate kinase
Adenylate








kinase; 2.3e−102


99525_at
20

Slc8a1
solute carrier family 8
IPR004836 //
Na_Ca_Ex //






(sodium/calcium exchanger),
Sodium/calcium
Sodium/calcium






member 1
exchanger protein ///
exchanger







IPR002987 //
protein; 4.8e−70 ///







Sodium/calcium
Calx-beta // Calx-beta







exchanger, isoform 1
domain; 2.2e−84







/// IPR001623 // Heat







shock protein DnaJ,







N-terminal ///







IPR003644 // Na—Ca







exchanger/integrin-







beta4 /// IPR004837







// Sodium/calcium







exchanger







membrane region


99966_at
20



Mus musculus 2 days neonate









thymus thymic






cells cDNA, RIKEN






full-length enriched library,






clone: E430007C20






product: weakly






similar to ACTIN INTERACTING






PROTEIN [Arabidopsis thaliana],






full insert sequence.


AFFX-
20
6679937


GapdhMur/


M32599_5_at


AFFX-
20
6679237


PyruCarbMur/


L09192_MB_at


100040_at
19

Mrpl17
mitochondrial ribosomal protein
IPR000456 //
Ribosomal_L17 //






L17
Ribosomal protein
Ribosomal protein







L17
L17; 5.3e−20


100491_at
19

Slc16a2
solute carrier family 16








(monocarboxylic acid






transporters), member 2


100542_at
19

Mep1a
meprin 1 alpha
IPR001506 // Astacin
Astacin // Astacin







/// IPR000998 // MAM
(Peptidase family







domain /// IPR003007
M12A); 8.1e−93 ///







// Meprin A, C-
MAM // MAM







terminal TRAF ///
domain; 1.4e−62 ///







IPR006025 // Neutral
EGF // EGF-like







zinc
domain; 1.3e−10 ///







metallopeptidases,
MATH // MATH







zinc-binding region ///
domain; 6.4e−24







IPR000561 // EGF-







like domain ///







IPR006026 // Neutral







zinc metallopeptidase







/// IPR003006 //







Immunoglobulin/major







histocompatibility







complex ///







IPR002083 //







Meprin/TRAF-like







MATH


101086_f_at
19

Cnbp
cellular nucleic acid
IPR001878 // Zn-
zf-CCHC // Zinc






binding protein
finger, CCHC type
knuckle; 1.4e−51


101396_at
19

Tcf2
transcription factor 2
IPR001356 //








Homeobox


101552_at
19

Slc34a1
solute carrier family 34 (sodium
IPR003841 // Na+/Pi−
Na_Pi_cotrans //






phosphate), member 1
cotransporter
Na+/Pi−








cotransporter; 5.4e−209


102053_at
19

Plscr2
phospholipid scramblase 2
IPR005552 //
Scramblase //







Scramblase
Scramblase; 4.7e−130


103083_at
19

Lipe
lipase, hormone sensitive
IPR002168 //








Lipolytic enzyme ///







IPR000379 //







Esterase/lipase/thioe







sterase, active site


103972_at
19

Kcnj1
potassium inwardly-rectifying
IPR001622 // K+
IRK // Inward rectifier






channel, subfamily J, member 1
channel, pore region
potassium







/// IPR001838 // K+
channel; 1.4e−231







channel, inward







rectifier ///







IPR003268 // Kir1.1







inward rectifier K+







channel


104060_at
19

2700088M22Rik
RIKEN cDNA 2700088M22 gene
IPR000504 // RNA-
zf-CCHC // Zinc







binding region RNP-1
knuckle; 0.00063 ///







(RNA recognition
rrm // RNA recognition







motif) /// IPR001878
motif. (a.k.a. RRM,







// Zn-finger, CCHC
RBD, or; 8.6e−22







type


104076_at
19

1190017O12Rik
RIKEN cDNA 1190017O12 gene




104138_at
19

2310074E22Rik
RIKEN cDNA 2310074E22 gene




104603_at
19

Gstt2
glutathione S-transferase, theta 2
IPR004045 //
GST_N // Glutathione







Glutathione S-
S-transferase, N-







transferase, N-
terminal domain; 3.7e−11







terminal ///
/// GST_C //







IPR004046 //
Glutathione S-







Glutathione S-
transferase, C-terminal







transferase, C-
domain; 1.3e−24







terminal


92382_at
19

Myo6
myosin VI
IPR000048 // IQ
myosin_head //







calmodulin-binding
Myosin head (motor







region /// IPR001609
domain); 6.4e−249







// Myosin head (motor







domain)


92605_at
19

Umod
uromodulin
IPR001881 // EGF-
zona_pellucida // Zona







like calcium-binding
pellucida-like







/// IPR000152 //
domain; 3.4e−93 ///







Aspartic acid and
EGF // EGF-like







asparagine
domain; 2.5e−12







hydroxylation site ///







IPR001507 //







Endoglin/CD105







antigen /// IPR000561







// EGF-like domain ///







IPR000345 //







Cytochrome c heme-







binding site


93053_at
19

Casq2
calsequestrin 2
IPR001393 //
Calsequestrin //







Calsequestrin
Calsequestrin; 1.6e−267


93320_at
19
27804309
Cpt1a
carnitine palmitoyltransferase 1,
IPR000542 //







liver
Acyltransferase







ChoActase/COT/CPT


93365_s_at
19

2410174K12Rik
RIKEN cDNA 2410174K12 gene
IPR001440 // TPR
TPR // TPR







repeat
Domain; 3.2e−10


93435_at
19
6753572
Cyp24
cytochrome P450, 24
IPR001128 //
p450 // Cytochrome







Cytochrome P450 ///
P450; 3.2e−102







IPR002401 // E-class







P450, group I


93595_at
19
6753448
Cln2
ceroid-lipofuscinosis, neuronal 2




93671_at
19

Erf
Est2 repressor factor

Ets // Ets-








domain; 1.1e−54


93760_at
19

Cript-pending
postsynaptic protein Cript




94418_at
19

Lce-pending
long chain fatty acyl elongase
IPR002076 //
GNS1_SUR4 //







GNS1/SUR4
GNS1/SUR4







membrane protein
family; 3.7e−48


94807_at
19
23943838
Slc25a1
solute carrier family 25

mito_carr //






(mitochondrial carrier; citrate

Mitochondrial carrier






transporter), member 1

protein; 1.6e−83


94906_at
19

Adh1
alcohol dehydrogenase 1 (class I)
IPR002085 // Zinc-
adh_zinc // Zinc-







containing alcohol
binding







dehydrogenase
dehydrogenase; 2.6e−143







superfamily ///







IPR002328 // Zinc-







containing alcohol







dehydrogenase


96910_at
19
22122743
MGC37245
hypothetical protein MGC37245
IPR000873 // AMP-
AMP-binding // AMP-







dependent
binding enzyme; 7.1e−95







synthetase and ligase


96938_at
19
19482166
Keg1
kidney expressed gene 1




97257_at
19
21703764
Cgi-83-pending
CGI-83 protein
IPR001279 // Beta-
lactamase_B //







lactamase-like
Metallo-beta-








lactamase








superfamily; 1.9e−23


97258_at
19
21703764
Cgi-83-pending
CGI-83 protein
IPR001279 // Beta-
lactamase_B //







lactamase-like
Metallo-beta-








lactamase








superfamily; 1.9e−23


97431_at
19

Slc22a6
solute carrier family 22 (organic
IPR005828 // General
sugar_tr // Sugar (and






anion transporter), member 6
substrate transporter
other)







/// IPR004749 //
transporter; 1.8e−16







Organic cation







transport protein


97707_at
19


ESTs, Weakly similar to RIKEN








cDNA 5730493B19 [Mus







musculus] [M. musculus]



AFFX-
19
6679237


PyruCarbMur/


L09192_5_at


100285_at
18

Col4a3
procollagen, type IV, alpha 3
IPR000504 // RNA-
Collagen // Collagen







binding region RNP-1
triple helix repeat (20







(RNA recognition
copies); 2e−176 /// C4







motif) /// IPR000087
// C-terminal tandem







// Collagen triple helix
repeated domain in







repeat /// IPR001442
type 4; 3.4e−146







// Type 4 procollagen,







C-terminal repeat


101666_at
18

Nr5a1
nuclear receptor subfamily 5,
IPR001628 // Zn-
hormone_rec //






group A, member 1
finger, C4-type
Ligand-binding domain







steroid receptor ///
of nuclear







IPR000324 // Vitamin
hormone; 2.7e−48 ///







D receptor ///
hormone_rec //







IPR001723 // Steroid
Ligand-binding domain







hormone receptor ///
of nuclear







IPR000536 // Ligand-
hormone; 2.4e−48 ///







binding domain of
zf-C4 // Zinc finger, C4







nuclear hormone
type (two







receptor
domains); 3.3e−52


101757_at
18

Nfe2l1
nuclear factor, erythroid
IPR004827 // Basic-







derived 2, - like 1
leucine zipper (bZIP)







transcription factor


102329_at
18

Cideb
cell death-inducing DNA
IPR003508 //
CIDE-N // CIDE-N






fragmentation factor, alpha
Caspase-activated
domain; 9.6e−46






subunit-like effector B
nuclease CIDE-N


103647_at
18

Glb1
galactosidase, beta 1
IPR001944 //
Glyco_hydro_35 //







Glycoside hydrolase,
Glycosyl hydrolases







family 35
family 35; 0


104184_at
18

Nppb
natriuretic peptide precursor type B

ANP // Atrial natriuretic








peptide; 3.9e−29


104605_at
18

1110001I14Rik
RIKEN cDNA 1110001I14 gene




104748_s_at
18
6678001
Slc1a1
solute carrier family 1, member 1
IPR001991 //
SDF //







Sodium: dicarboxylate
Sodium: dicarboxylate







symporter
symporter family; 2.7e−248


92407_at
18

Myom1
myomesin 1
IPR003600 //
ig // Immunoglobulin







Immunoglobulin-like
domain; 1.2e−22 /// fn3







/// IPR000097 // AP
// Fibronectin type III







endonuclease, family
domain; 3e−100







1 /// IPR003961 //







Fibronectin, type III ///







IPR003962 //







Fibronectin, type III







repeat /// IPR003598







// Immunoglobulin C-







2 type /// IPR003006







//







Immunoglobulin/major







histocompatibility







complex


92600_f_at
18

Cyp4a10
cytochrome P450, 4a10
IPR001230 // Prenyl








group binding site







(CAAX box) ///







IPR002402 // E-class







P450, group II ///







IPR001128 //







Cytochrome P450 ///







IPR002401 // E-class







P450, group I


93500_at
18

Alas1
aminolevulinic acid synthase 1
IPR001917 //
aminotran_1_2 //







Aminotransferase,
Aminotransferase







class-II /// IPR003408
class I and II; 6.3e−59







// Aminolevulinic acid
/// ALA_synthase //







synthase ///
Aminolevulinic acid







IPR004839 //
synthase domain; 1.3e−45







Aminotransferase,







class I and II


93603_at
18

Mrpl40
mitochondrial ribosomal protein








L40


93776_at
18

1500001L15Rik
RIKEN cDNA 1500001L15 gene




93868_at
18

Nsdhl
NAD(P) dependent steroid
IPR002225 // 3-beta
3Beta_HSD // 3-beta






dehydrogenase-like
hydroxysteroid
hydroxysteroid







dehydrogenase/isomerase
dehydrogenase/isomera;








4.4e−95


93933_at
18

Ppp1r3c
protein phosphatase 1, regulatory
IPR005036 //







(inhibitor) subunit 3C
Putative phosphatase







regulatory subunit


94330_at
18

Npl
N-acetylneuraminate pyruvate
IPR002220 //
DHDPS //






lyase
Dihydrodipicolinate
Dihydrodipicolinate







synthetase
synthetase








family; 4.5e−30


95000_g_at
18

Cubn
cubilin (intrinsic factor-cobalamin
IPR001412 //







receptor)
Aminoacyl-tRNA







synthetase, class I ///







IPR000859 // CUB







domain


95066_at
18

Taldo1
transaldolase 1
IPR004730 //








Transaldolase AB ///







IPR001585 //







Transaldolase


96077_at
18

Slc17a1
solute carrier family 17 vesicular
IPR005828 // General







glutamate transporter), member 1
substrate transporter







/// IPR004745 //







Na(+)-dependent







inorganic phosphate







cotransporter


97172_s_at
18

Abcc9
ATP-binding cassette, sub-family
IPR003439 // ABC
ABC_tran // ABC






C (CFTR/MRP), member 9
transporter ///
transporter; 9.5e−87 ///







IPR000388 //
ABC_membrane //







Sulphonylurea
ABC transporter







receptor ///
transmembrane







IPR003593 // AAA
region; 2.7e−68 ///







ATPase ///
ABC_tran // ABC







IPR001140 // ABC
transporter; 2.1e−87 ///







transporter,
ABC_tran // ABC







transmembrane
transporter; 1.4e−89







region /// IPR001475







// Sulphonylurea







receptor, type 2


97281_at
18

AA420407
expressed sequence AA420407
IPR002618 // UTP-
UDPGP // UTP-







glucose-1-phosphate
glucose-1-phosphate







uridylyltransferase
uridylyltransferase;








1.3e−234


97477_at
18
7305579
Timm8b
translocase of inner mitochondrial
IPR004217 // Zn-
zf-Tim10_DDP //






membrane 8 homolog b (yeast)
finger, Tim10/DDP
Tim10/DDP family zinc







type
finger; 3.2e−28


97521_at
18

Ass1
argininosuccinate synthetase 1
IPR001518 //
Arginosuc_synth //







Argininosuccinate
Arginosuccinate







synthase
synthase; 2.3e−262


97751_f_at
18


ESTs, Moderately similar to








G3P_MOUSE Glyceraldehyde 3-






phosphate dehydrogenase






(GAPDH) [M. musculus]


98626_at
18

1810017G16Rik
RIKEN cDNA 1810017G16 gene




99184_at
18

Csad
cysteine sulfinic acid

pyridoxal_deC //






decarboxylase

Pyridoxal-dependent








decarboxylase








conse; 1.4e−125


99580_s_at
18

Ugt1a1
UDP-glucuronosyltransferase 1
IPR002213 // UDP-







family, member 1
glucoronosyl/UDP-







glucosyl transferase


100573_f_at
17

Gpi1
glucose phosphate isomerase 1
IPR001672 //
PGI //







Phosphoglucose
Phosphoglucose







isomerase (PGI)
isomerase; 0


101695_at
17

Eif3s6
eukaryotic translation initiation
IPR000717 // Domain







factor 3, subunit 6
in components of the







proteasome, COP9-







complex and elF3







(PCI)


101822_at
17

Mc3r
melanocortin 3 receptor

7tm_1 // 7








transmembrane








receptor (rhodopsin








family); 2.4e−54


103484_at
17

Pop3-pending
popeye 3




103702_i_at
17

C730048C13Rik
RIKEN cDNA C730048C13 gene




103833_at
17

Hipk2
homeodomain interacting protein
IPR001245 //
pkinase // Protein






kinase 2
Tyrosine protein
kinase domain; 1.3e−49







kinase /// IPR002290







// Serine/Threonine







protein kinase ///







IPR000719 //







Eukaryotic protein







kinase


103899_at
17

4930558F19Rik
RIKEN cDNA 4930558F19 gene




104438_at
17

Zfp30
zinc finger protein 30
IPR001909 // KRAB
zf-C2H2 // Zinc finger,







box /// IPR000822 //
C2H2 type; 8e−80 ///







Zn-finger, C2H2 type
KRAB // KRAB








box; 5.6e−23


92650_at
17

Man1b
mannosidase 1, beta
IPR001382 //
Glyco_hydro_47 //







Glycoside hydrolase,
Glycosyl hydrolase







family 47
family 47; 6.8e−286


92829_at
17
6680309
Hspe1
heat shock protein 1 (chaperonin
IPR001476 //
cpn10 // Chaperonin






10)
Chaperonin Cpn10
10 Kd subunit; 2.8e−46


93798_at
17

Atp1a1
ATPase, Na+/K+ transporting,
IPR004014 // Cation
Cation_ATPase_N //






alpha 1 polypeptide
transporting ATPase,
Cation







N terminal ///
transporter/ATPase,







IPR001757 //
N-terminus; 1.1e−37 ///







ATPase, E1-E2 type
Hydrolase // haloacid







/// IPR006069 //
dehalogenase-like







Cation transporting
hydrolase; 4.2e−15 ///







ATPase ///
E1-E2_ATPase // E1-







IPR005834 //
E2 ATPase; 1.3e−113







haloacid
/// Cation_ATPase_C







dehalogenase-like
// Cation transporting







hydrolase ///
ATPase, C-







IPR005775 // Na+/K+
terminu; 1.3e−68







ATPase, alpha







subunit /// IPR006068







// Cation transporting







ATPase, C-terminal


94262_at
17

B230333E16Rik
RIKEN cDNA B230333E16 gene




96336_at
17
13385454
Gatm
glycine amidinotransferase (L-
IPR003198 //
Amidinotransf //






arginine:glycine
Amidinotransferase
Amidinotransferase;






amidinotransferase)
/// IPR000531 //
3.6e−06







TonB-dependent







receptor protein


96918_at
17

Fbp1
fructose bisphosphatase 1
IPR000146 // Inositol
FBPase // Fructose-1-







phosphatase/fructose-
6-







1,6-bisphosphatase
bisphosphatase; 4.4e−197


97515_at
17
31982273
Hsd17b4
hydroxysteroid (17-beta)
IPR002539 // MaoC-
SCP2 // SCP-2 sterol






dehydrogenase 4
like dehydratase ///
transfer family; 7.9e−48







IPR002198 // Short-
/// MaoC_dehydratas //







chain
MaoC like







dehydrogenase/reductase
domain; 1.3e−50 ///







SDR ///
adh_short // short







IPR003033 // Sterol-
chain







binding /// IPR002347
dehydrogenase; 2.4e−65







// Glucose/ribitol







dehydrogenase


97758_at
17

Prdx1
peroxiredoxin 1
IPR000866 // Alkyl
AhpC-TSA //







hydroperoxide
AhpC/TSA family; 8e−89







reductase/Thiol







specific antioxidant/







Mal allergen


97926_s_at
17

Pparg
peroxisome proliferator activated
IPR001628 // Zn-
hormone_rec //






receptor gamma
finger, C4-type
Ligand-binding domain







steroid receptor ///
of nuclear







IPR003077 //
hormone; 7.7e−40 ///







Peroxisome
zf-C4 // Zinc finger, C4







proliferator-activated
type (two







receptor, gamma ///
domains); 2.3e−45







IPR003074 //







Peroxisome







proliferator-activated







receptor ///







IPR001723 // Steroid







hormone receptor ///







IPR000536 // Ligand-







binding domain of







nuclear hormone







receptor


98322_at
17

Slc22a5
solute carrier family 22 (organic
IPR005829 // Sugar
sugar_tr // Sugar (and






cation transporter), member 5
transporter
other)







superfamily ///
transporter; 1.4e−07







IPR005828 // General







substrate transporter







/// IPR004749 //







Organic cation







transport protein


98496_at
17

Gys3
glycogen synthase 3, brain




98552_at
17

2600009M07Rik
RIKEN cDNA 2600009M07 gene




99587_at
17

Rab7
RAB7, member RAS oncogene
IPR002078 // Sigma-
ras // Ras family; 6.3e−94






family
54 factor interaction







domain /// IPR005225







// Small GTP-binding







protein domain ///







IPR003579 // Ras







small GTPase, Rab







type /// IPR001806 //







Ras GTPase







superfamily


99872_s_at
17

Ftl1
ferritin light chain 1
IPR001519 // Ferritin
ferritin // Ferritin-like








domain; 2.2e−53


99973_s_at
17

Kcnj15
potassium inwardly-rectifying
IPR001622 // K+
IRK // Inward rectifier






channel, subfamily J, member 15
channel, pore region
potassium







/// IPR001838 // K+
channel; 2.2e−221







channel, inward







rectifier ///







IPR003270 // Kir1.3







inward rectifier K+







channel


100041_at
16

3010027G13Rik
RIKEN cDNA 3010027G13 gene
IPR001993 //
mito_carr //







Mitochondrial
Mitochondrial carrier







substrate carrier
protein; 1.3e−65


101013_at
16

Oaz1
ornithine decarboxylase anitizyme
IPR002993 //
ODC_AZ // Ornithine







Ornithine
decarboxylase







decarboxylase
antizyme; 1.6e−158







antizyme


101913_at
16


ESTs, Highly similar to








CLC5_MOUSE Chloride channel






protein 5 (CIC-5) [M. musculus]


102899_at
16

Siat7c
sialyltransferase 7 ((alpha-N-
IPR001675 //
Glyco_transf_29 //






acetylneuraminyl 2,3-
Glycosyl transferase,
Glycosyltransferase






betagalactosyl-1,3)-N-acetyl
family 29
family 29 (sialyl; 1.2e−104






galactosaminide alpha-2,6-






sialyltransferase) C


104014_at
16

Hfe
hemochromatosis
IPR001039 // Major
ig // Immunoglobulin







histocompatibility
domain; 8.8e−05 ///







complex protein,
MHC_I // Class I







class I /// IPR003006
Histocompatibility







//
antigen,







Immunoglobulin/major
domains; 5.4e−49







histocompatibility







complex ///







IPR003597 //







Immunoglobulin C-







type


104101_at
16

1200006P13Rik
RIKEN cDNA 1200006P13 gene
IPR004709 //
Na_H_Exchanger //







Sodium/hydrogen
Sodium/hydrogen







exchanger subfamily
exchanger family; 1.5e−103







/// IPR006153 //







Sodium/hydrogen







exchanger


104745_at
16

Arl6ip2
ADP-ribosylation-like factor 6








interacting protein 2


93051_at
16

Ephx2
epoxide hydrolase 2, cytoplasmic
IPR005833 //
abhydrolase //







Haloacid
alpha/beta hydrolase







dehalogenase/epoxide
fold; 8.2e−50 ///







hydrolase ///
Hydrolase // haloacid







IPR000073 //
dehalogenase-like







Alpha/beta hydrolase
hydrolase; 2.3e−16







fold /// IPR003089 //







Alpha/beta hydrolase







/// IPR005834 //







haloacid







dehalogenase-like







hydrolase ///







IPR000639 //







Epoxide hydrolase ///







IPR000379 //







Esterase/lipase/thioesterase,







active site


94042_f_at
16

Gng5
guanine nucleotide binding protein
IPR001770 // G-







(G protein), gamma 5 subunit
protein, gamma







subunit


94057_g_at
16

Scd1
stearoyl-Coenzyme A desaturase 1
IPR001522 // Fatty
FA_desaturase // Fatty







acid desaturase, type
acid desaturase; 5.2e−80







1 /// IPR005804 //







Fatty acid desaturase







family


94276_at
16

Hsd17b12
hydroxysteroid (17-beta)
IPR002198 // Short-
adh_short // short






dehydrogenase 12
chain
chain







dehydrogenase/reductase
dehydrogenase; 1.7e−37







SDR ///







IPR002347 //







Glucose/ribitol







dehydrogenase


95518_at
16

1810015C04Rik
RIKEN cDNA 1810015C04 gene




96068_at
16

1500034J20Rik
RIKEN cDNA 1500034J20 gene
IPR000508 // Signal
Peptidase_S26 //







peptidase ///
Signal peptidase







IPR000223 //
I; 7.7e−06







Bacterial signal







peptidase S26A


96346_at
16

Cdo1
cysteine dioxygenase 1, cytosolic




97402_at
16

Temt
thioether S-methyltransferase
IPR000940 //
NNMT_PNMT_TEMT







Methyltransferase,
// NNMT/PNMT/TEMT







NNMT/PNMT/TEMT
family; 2.6e−176







family /// IPR001601







// Generic







methyltransferase


97450_s_at
16
20070418
Aldh7a1
aldehyde dehydrogenase family 7,
IPR002086 //
aldedh // Aldehyde






member A1
Aldehyde
dehydrogenase







dehydrogenase
family; 9.5e−166


97800_at
16

Fastk
Fas-activated serine/threonine








kinase


100424_at
15

Ercc1
excision repair cross-
IPR000445 // Helix-
HHH // Helix-hairpin-






complementing rodent repair
hairpin-helix motif ///
helix motif; 1.5e−09 ///






deficiency, complementation
IPR003583 // Helix-
Rad10 // DNA repair






group 1
hairpin-helix DNA-
protein rad10; 3.5e−47







binding, class 1 ///







IPR004579 // DNA







repair protein rad10


100597_at
15

Gyg1
glycogenin 1
IPR002495 //
Glyco_transf_8 //







Glycosyl transferase,
Glycosyl transferase







family 8
family 8; 0.00077


100959_at
15

S100a13
S100 calcium binding protein A13
IPR002048 //
S_100 // S-100/ICaBP







Calcium-binding EF-
type calcium binding







hand /// IPR001751 //
domain; 2.7e−13







Calcium-binding







protein, S-100/ICaBP







type


102041_at
15

Myom2
myomesin 2
IPR003600 //
fn3 // Fibronectin type







Immunoglobulin-like
III domain; 1.7e−105 ///







/// IPR003961 //
ig // Immunoglobulin







Fibronectin, type III ///
domain; 4e−21







IPR003962 //







Fibronectin, type III







repeat /// IPR003598







// Immunoglobulin C-







2 type /// IPR003006







//







Immunoglobulin/major







histocompatibility







complex


102671_at
15

Creb1
cAMP responsive element binding
IPR004827 // Basic-
pKID // pKID






protein 1
leucine zipper (bZIP)
domain; 4.7e−24 ///







transcription factor ///
bZIP // bZIP







IPR001630 // cAMP
transcription







response element
factor; 6.4e−20 /// bZIP







binding (CREB)
// bZIP transcription







protein /// IPR003102
factor; 7.2e−21







// Coactivator CBP,







pKID


103845_at
15

Slc31a1
solute carrier family 31, member 1




92726_at
15

Sox6
SRY-box containing gene 6
IPR000910 //
HMG_box // HMG







HMG1/2 (high
(high mobility group)







mobility group) box
box; 9e−27


92775_at
15

Pabpc4
poly(A) binding protein,
IPR002004 // Poly-
rrm // RNA recognition






cytoplasmic 4 (inducible form)
adenylate-binding
motif. (a.k.a. RRM,







protein/HECT-
RBD, or; 3.5e−111 ///







associated ///
PABP // Poly-







IPR000504 // RNA-
adenylate binding







binding region RNP-1
protein, unique







(RNA recognition
domai; 2.3e−45







motif)


94012_at
15
7305575
Timm13a
translocase of inner mitochondrial
IPR004217 // Zn-
zf-Tim10_DDP //






membrane 13 homolog a (yeast)
finger, Tim10/DDP
Tim10/DDP family zinc







type
finger; 2.7e−25


94056_at
15

Scd1
stearoyl-Coenzyme A desaturase 1
IPR001522 // Fatty
FA_desaturase // Fatty







acid desaturase, type
acid desaturase; 5.2e−80







1 /// IPR005804 //







Fatty acid desaturase







family


94922_i_at
15

4930431L18Rik
RIKEN cDNA 4930431L18 gene




95026_at
15

0610039N19Rik
RIKEN cDNA 0610039N19 gene




95407_at
15

Pah
phenylalanine hydroxylase
IPR002912 // Amino
biopterin_H //







acid-binding ACT ///
Biopterin-dependent







IPR001273 //
aromatic amino acid







Aromatic amino acid
h; 3.7e−294 /// ACT //







hydroxylase ///
ACT domain; 5.5e−11







IPR005961 //







Phenylalanine-4-







hydroxylase,







tetrameric form


96934_at
15

1110002M09Rik
RIKEN cDNA 1110002M09 gene




97334_at
15

Hes6
hairy and enhancer of split 6,
IPR003650 // Orange
HLH // Helix-loop-helix






(Drosophila)
/// IPR001092 // Basic
DNA-binding







helix-loop-helix
domain; 8.3e−09







dimerization domain







bHLH


97449_at
15

Aldh7a1
aldehyde dehydrogenase family 7,
IPR002086 //
aldedh // Aldehyde






member A1
Aldehyde
dehydrogenase







dehydrogenase
family; 9.5e−166


98447_at
15

Cebpa
CCAAT/enhancer binding protein
IPR004827 // Basic-







(C/EBP), alpha
leucine zipper (bZIP)







transcription factor


98871_at
15

Oa1
mouse homolog of human ocular
IPR001414 // Ocular
Ocular_alb // Ocular






albinism 1 (Nettleship-Falls)
albinism protein, type 1
albinism type 1








protein; 0


99056_at
15

Pcbd
6-pyruvoyl-tetrahydropterin
IPR001533 //
Pterin_4a // Pterin 4






synthase/dimerization cofactor of
Transcriptional
alpha carbinolamine






hepatocyte nuclear factor 1 alpha
coactivator/pterin
dehydratase; 6.4e−61






(TCF1)
dehydratase


99164_at
15

Mapbpip-
mitogen activated protein binding
IPR004942 //
Robl_LC7 //





pending
protein interacting protein
Roadblock/LC7
Roadblock/LC7







family
domain; 2e−25


99988_at
15

4933427L07Rik
RIKEN cDNA 4933427L07 gene











Table 8 shows motifs associated with differential expression on days 1, 2, and 3.

Nominal P-AdjustedDayMotifFrequencyvalueP-valueAnnotationReference1TGACCTTG0.073.15E−112.06E−06Errα(22)TGACCTTGA0.024.59E−101.20E−04Errα2TGACCTTG0.074.44E−142.91E−09Errα(22)TGACCTT0.163.62E−125.93E−08ErrαTGACCT0.451.46E−115.97E−08NR half-site(35)GACCTTG0.167.92E−111.30E−06ErrαGACCTT0.411.42E−095.81E−06ErrαTTGACC0.272.42E−079.92E−04Errα3CTTCCG0.332.19E−128.97E−09Gabpa(36)TGACCTTG0.071.17E−117.66E−07Errα(22)TGACCTT0.161.23E−102.02E−06ErrαCCCGCC0.542.04E−088.36E−05GCGGCG0.433.78E−081.55E−04AGGTCA0.423.90E−081.60E−04NR half-site(35)CTTCCGG0.161.95E−083.19E−04GabpaTTCCGG0.311.09E−074.46E−04GabpaGGGGCG0.541.24E−075.08E−04TTCCGCT0.073.30E−085.41E−04GabpaGCCGGC0.421.57E−076.44E−04ACTTCCG0.095.11E−088.38E−04Gabpa
motifADE was performed using the mouse promoter database on each of days 1, 2, and 3. All motifs achieving a Bonferroni-corrected P-value < 1 × 10−3 are shown. Annotations of the motif and the literature references, when available, are indicated.









TABLE 9










motifs discovered using the mouse promoter database achieving


P < 0.05















Adjusted P-


Day
Motif
Frequency
P-value
value





1
TGACCTTG
0.07
3.15E−11
2.06E−06



TGACCTTGA
0.02
4.59E−10
1.20E−04



GACCTTGA
0.05
5.76E−08
3.77E−03



GACCTTG
0.16
1.54E−06
2.53E−02



GTCACG
0.18
8.04E−06
3.29E−02


2
TGACCTTG
0.07
4.44E−14
2.91E−09



TGACCTT
0.16
3.62E−12
5.93E−08



TGACCT
0.45
1.46E−11
5.97E−08



GACCTTG
0.16
7.92E−11
1.30E−06



GACCTT
0.41
1.42E−09
5.81E−06



TTGACC
0.27
2.42E−07
9.92E−04



GTGACCTT
0.05
3.86E−08
2.53E−03



GTGACCT
0.15
3.91E−07
6.41E−03



GTGACCTTG
0.02
3.97E−08
1.04E−02



TGACCTTGA
0.02
4.63E−08
1.21E−02



AGGTCA
0.42
3.46E−06
1.42E−02



CGCTGAGG
0.04
3.06E−07
2.01E−02



GACCTTGA
0.05
3.33E−07
2.19E−02



AGGTCAC
0.13
1.99E−06
3.26E−02



GTGACC
0.40
8.80E−06
3.61E−02


3
CTTCCG
0.33
2.19E−12
8.97E−09



TGACCTTG
0.07
1.17E−11
7.66E−07



TGACCTT
0.16
1.23E−10
2.02E−06



CCCGCC
0.54
2.04E−08
8.36E−05



GCGGCG
0.43
3.78E−08
1.55E−04



AGGTCA
0.42
3.90E−08
1.60E−04



CTTCCGG
0.16
1.95E−08
3.19E−04



TTCCGG
0.31
1.09E−07
4.46E−04



GGGGCG
0.54
1.24E−07
5.08E−04



TTCCGCT
0.07
3.30E−08
5.41E−04



GCCGGC
0.42
1.57E−07
6.44E−04



ACTTCCG
0.09
5.11E−08
8.38E−04



GACCTT
0.41
2.72E−07
1.11E−03



CGGGGC
0.51
4.86E−07
1.99E−03



ATGGCGGC
0.05
4.76E−08
3.12E−03



GACCTTG
0.16
1.90E−07
3.12E−03



CTTCCGGC
0.05
7.34E−08
4.81E−03



ATGGCGG
0.11
3.24E−07
5.31E−03



AAGATGGCG
0.03
2.07E−08
5.43E−03



CCGGGG
0.47
1.43E−06
5.85E−03



GCGGAC
0.24
1.52E−06
6.23E−03



GGCGGC
0.48
1.55E−06
6.35E−03



TCACGG
0.19
1.79E−06
7.31E−03



GTGACCTT
0.05
1.23E−07
8.07E−03



CCGGCT
0.39
2.23E−06
9.13E−03



GGCCGG
0.47
2.24E−06
9.16E−03



TCACCG
0.21
2.79E−06
1.14E−02



GCCGGG
0.49
2.81E−06
1.15E−02



CGCCTT
0.30
2.93E−06
1.20E−02



CGGACC
0.24
3.33E−06
1.36E−02



TTCCGC
0.23
3.42E−06
1.40E−02



CGCTGA
0.26
3.44E−06
1.41E−02



CCCCGC
0.51
3.55E−06
1.46E−02



CGCGAG
0.24
3.71E−06
1.52E−02



GTCACG
0.18
4.14E−06
1.69E−02



CGTCCT
0.25
4.15E−06
1.70E−02



AAGGTCA
0.15
1.28E−06
2.10E−02



GCCCGG
0.49
5.14E−06
2.11E−02



CCGCCG
0.36
5.25E−06
2.15E−02



TCCGGG
0.42
5.75E−06
2.35E−02



AAGATGGC
0.08
3.93E−07
2.57E−02



GGCGGA
0.40
6.56E−06
2.69E−02



GGGCGG
0.58
7.63E−06
3.12E−02



CGGGCG
0.38
7.77E−06
3.18E−02



ACCCCG
0.31
8.07E−06
3.30E−02



CGCGCC
0.37
8.13E−06
3.33E−02



CGCCTC
0.41
9.12E−06
3.74E−02



TTCCCG
0.34
9.44E−06
3.86E−02



GGGTCGTGG
0.01
1.56E−07
4.09E−02



CGGCGG
0.40
1.01E−05
4.15E−02



CCGGAA
0.30
1.14E−05
4.68E−02



CGTCGC
0.16
1.15E−05
4.73E−02







motif ADE was performed using the mouse promoter database on each of days 1, 2, and 3. Motifs achieving a Bonferroni corrected P value <0.05 are shown. Motif ADE was performed using the mouse promoter database on each of days 1, 2, and 3. Motifs achieving a Bonferroni corrected P







Table 10 shows motifs discovered using the masked promoter database achieving P<0.05,

DayMotifFrequencyP-valueAdjusted P-value1TGACCTTG0.047.30E−114.78E−06TGACCTT0.092.65E−074.34E−03AAGGTC0.207.83E−063.21E−02CTTCCGG0.122.56E−064.20E−022TGACCT0.261.43E−135.84E−10TGACCTT0.091.74E−122.85E−08TGACCTTG0.042.59E−091.70E−04GACCTT0.234.88E−082.00E−04GTGACCTT0.033.23E−092.12E−04GTGACCT0.091.58E−082.59E−04AGGTCA0.252.04E−078.37E−04GACCTTG0.087.65E−081.25E−03GTGACCTTG0.023.02E−087.93E−03GGTCAC0.242.00E−068.17E−03ACCTTG0.222.05E−068.38E−03AGGTCAC0.088.57E−071.40E−02TTTTCGT0.021.96E−063.22E−023TGACCTT0.097.77E−161.27E−11CTTCCG0.257.59E−143.11E−10TGACCTTG0.048.68E−135.69E−08GTGACCTT0.038.75E−135.74E−08CTTCCGG0.126.12E−121.00E−07GTGACCT0.093.96E−116.48E−07GACCTT0.231.39E−095.71E−06ATGGCGGC0.052.59E−101.70E−05GACCTTG0.081.23E−092.01E−05TTCCGG0.241.79E−087.34E−05CTTCCGGC0.041.66E−091.09E−04TGACCT0.263.58E−081.47E−04CCTTCCG0.081.67E−082.74E−04AAGATGGCG0.031.17E−093.07E−04ATGGCGGCG0.031.28E−093.37E−04CCGGGG0.381.03E−074.23E−04GGCGGG0.521.33E−075.47E−04GTGACCTTG0.024.87E−091.28E−03ACTTCCG0.089.04E−081.48E−03AGATGGCG0.043.79E−082.48E−03ATGGCGG0.101.66E−072.72E−03AGATGGCGG0.021.11E−082.90E−03AGGTCA0.251.04E−064.25E−03CCCGCC0.471.29E−065.30E−03CGGTGA0.201.38E−065.66E−03GGCGGC0.431.55E−066.34E−03GCGGCG0.391.83E−067.51E−03TTCCGCT0.054.87E−077.98E−03GCGTCA0.112.30E−069.41E−03ACTTCCGG0.041.89E−071.24E−02TTCCGC0.183.93E−061.61E−02CGTCCT0.174.00E−061.64E−02CTGCGG0.354.81E−061.97E−02CGGGGC0.434.86E−061.99E−02GCCGGC0.336.24E−062.56E−02CCGGCT0.276.34E−062.60E−02GACCTTCC0.034.71E−073.09E−02GGGCGG0.518.43E−063.45E−02CCGGCTT0.072.15E−063.52E−02CGGAAGT0.082.22E−063.63E−02TGGCGGC0.152.52E−064.13E−02AAGATGGC0.056.97E−074.57E−02
motif ADE was performed using the masked promoter database, consisting of regions of the promoters aligned and conserved between mouse and human. Motifs achieving a Bonferroni-corrected P-value < 0.05 are shown.









TABLE 11








Genes having an Errα binding site motif















1: NM_000065, “Homo sapiens complement component 6 (C6), mRNA”,


gi|4559405|ref|NM_000065.1|[4559405]; 2: NM_000067, “Homo sapiens carbonic anhydrase II


(CA2), mRNA”, gi|4557394|ref|NM_000067.1|[4557394]; 3: NM_000152, “Homo sapiens


glucosidase, alpha; acid (Pompe disease, glycogen storage disease”, “type II) (GAA), mRNA”,


gi|11496988|ref|NM_000152.2|[11496988]; 4: NM_000155, “Homo sapiens galactose-1-


phosphate uridylyltransferase (GALT), transcript”, “variant 1, mRNA”,


gi|22165415|ref|NM_000155.2|[22165415]; 5: NM_000164, “Homo sapiens gastric inhibitory


polypeptide receptor (GIPR), mRNA”, gi|4503998|ref|NM_000164.1|[4503998]; 6: NM_000183,



Homo sapiens hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A,



“thiolase/enoyl-Coenzyme A hydratase (trifunctional protein), beta subunit”, “(HADHB),


mRNA”, gi|4504326|ref|NM_000183.1|[4504326]; 7: NM_000186, “Homo sapiens H factor 1


(complement) (HF1), mRNA”, gi|4504374|ref|NM_000186.1|[4504374]; 8: NM_000196,


Homo sapiens hydroxysteroid (11-beta) dehydrogenase 2 (HSD11B2), mRNA”,


gi|31542940|ref|NM_000196.2|[31542940]; 9: NM_000219, “Homo sapiens potassium voltage-


gated channel, Isk-related family, member 1”, “(KCNE1), mRNA”,


gi|4557686|ref|NM_000219.1|[4557686]; 10: NM_000226, “Homo sapiens keratin 9


(epidermolytic palmoplantar keratoderma) (KRT9), mRNA”,


gi|4557704|ref|NM_000226.1|[4557704]; 11: NM_000236, “Homo sapiens lipase, hepatic


(LIPC), mRNA”, gi|4557722|ref|NM_000236.1|[4557722]; 12: NM_000249, “Homo sapiens


mutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli) (MLH1),”, mRNA,


gi|28559089|ref|NM_000249.2|[28559089]; 13: NM_000274, “Homo sapiens ornithine


aminotransferase (gyrate atrophy) (OAT), nuclear gene”, “encoding mitochondrial protein,


mRNA”, gi|4557808|ref|NM_000274.1|[4557808]; 14: NM_000297, “Homo sapiens polycystic


kidney disease 2 (autosomal dominant) (PKD2), mRNA”,


gi|33286447|ref|NM_00297.2|[33286447]; 15: NM_000343, “Homo sapiens solute carrier


family 5 (sodium/glucose cotransporter), member 1”, “(SLC5A1), mRNA”,


gi|4507030|ref|NM_000343.1|[4507030]; 16: NM_000347, “Homo sapiens spectrin, beta,


erythrocytic (includes spherocytosis, clinical type”, “I) (SPTB), mRNA”,


gi|22507315|ref|NM_000347.3|[22507315]; 17: NM_000349, “Homo sapiens steroidogenic


acute regulatory protein (STAR), mRNA”, gi|4507250|ref|NM_000349.1|[4507250]; 18:


NM_000364, “Homo sapiens troponin T2, cardiac (TNNT2), mRNA”,


gi|4507626|ref|NM_000364.1|[4507626]; 19: NM_000372, “Homo sapiens tyrosinase


(oculocutaneous albinism IA) (TYR), mRNA”, gi|24475623|ref|NM_000372.2|[24475623]; 20:


NM_000403, “Homo sapiens galactose-4-epimerase, UDP (GALE), mRNA”,


gi|9945333|ref|NM_000403.2|[9945333]; 21: NM_000433, “Homo sapiens neutrophil cytosolic


factor 2 (65 kDa, chronic granulomatous”, “disease, autosomal 2) (NCF2), mRNA”,


gi|4557786|ref|NM_000433.1|[4557786]; 22: NM_000474, Homo sapiens twist homolog 1


(acrocephalosyndactyly 3; Saethre-Chotzen syndrome), “(Drosophila) (TWIST1), mRNA”,


gi|17978464|ref|NM_000474.2|[17978464]; 23: NM_000478, “Homo sapiens alkaline


phosphatase, liver/bone/kidney (ALPL), mRNA”, gi|13787192|ref|NM_000478.2|[13787192];


24: NM_000481,, ref|NM_000481.2|[44662837]; 25: NM_000483, “Homo sapiens


apolipoprotein C-II (APOC2), mRNA”, gi|32130517|ref|NM_000483.3|[32130517]; 26:


NM_000499, “Homo sapiens cytochrome P450, family 1, subfamily A, polypeptide 1


(CYP1A1),”, mRNA, gi|13325053|ref|NM_000499.2|[13325053]; 27: NM_000526, “Homo



sapiens keratin 14 (epidermolysis bullosa simplex, Dowling-Meara, Koebner)”, “(KRT14),



mRNA”, gi|15431309|ref|NM_000526.3|[15431309]; 28: NM_000532, “Homo sapiens


propionyl Coenzyme A carboxylase, beta polypeptide (PCCB), mRNA”,


gi|24475879|ref|NM_000532.2|[24475879]; 29: NM_000536, “Homo sapiens recombination


activating gene 2 (RAG2), mRNA”, gi|28629867|ref|NM_000536.1|[28629867]; 30:


NM_000593, “Homo sapiens transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)


(TAP1),”, mRNA, gi|24797159|ref|NM_000593.4|[24797159]; 31: NM_000603, “Homo sapiens


nitric oxide synthase 3 (endothelial cell) (NOS3), mRNA”,


gi|40254421|ref|NM_000603.2|[40254421]; 32: NM_000614, “Homo sapiens ciliary


neurotrophic factor (CNTF), mRNA”, gi|25952136|ref|NM_000614.2|[25952136]; 33:


NM_000616, “Homo sapiens CD4 antigen (p55) (CD4), mRNA”,


gi|21314613|ref|NM_000616.2|[21314613]; 34: NM_000628, “Homo sapiens interleukin 10


receptor, beta (IL10RB), mRNA”, gi|24430214|ref|NM_000628.3|[24430214]; 35: NM_000634,


Homo sapiens interleukin 8 receptor, alpha (IL8RA), mRNA”,


gi|29171679|ref|NM_000634.2|[29171679]; 36: NM_000666, “Homo sapiens aminoacylase 1


(ACY1), mRNA”, gi|4501900|ref|NM_000666.1|[4501900]; 37: NM_000688, “Homo sapiens


aminolevulinate, delta-, synthase 1 (ALAS1), transcript variant 1,”, mRNA,


gi|40316942|ref|NM_000688.4|[40316942]; 38: NM_000711,,


ref|NM_000711.1|BGLAP[4502400], This record was replaced or removed. See revision history


for details.,, 39: NM_000735, “Homo sapiens glycoprotein hormones, alpha polypeptide


(CGA), mRNA”, gi|10800407|ref|NM_000735.2|[10800407]; 40: NM_000741, “Homo sapiens


cholinergic receptor, muscarinic 4 (CHRM4), mRNA”, gi|4502820|ref|NM_000741.1|[4502820];


41: NM_000742, “Homo sapiens cholinergic receptor, nicotinic, alpha polypeptide 2


(neuronal)”, “(CHRNA2), mRNA”, gi|4502822|ref|NM_000742.1|[4502822]; 42: NM_000747,


Homo sapiens cholinergic receptor, nicotinic, beta polypeptide 1 (muscle)”, “(CHRNB1),


mRNA”, gi|41327725|ref|NM_000747.2|[41327725]; 43: NM_000759, “Homo sapiens colony


stimulating factor 3 (granulocyte) (CSF3), transcript”, “variant 1, mRNA”,


gi|27437047|ref|NM_000759.2|[27437047]; 44: NM_000781, “Homo sapiens cytochrome P450,


family 11, subfamily A, polypeptide 1 (CYP11A1),”, “nuclear gene encoding mitochondrial


protein, mRNA”, gi|4503188|ref|NM_000781.1|[4503188]; 45: NM_000783, “Homo sapiens


cytochrome P450, family 26, subfamily A, polypeptide 1 (CYP26A1),”, “transcript variant 1,


mRNA”, gi|16933529|ref|NM_000783.2|[16933529]; 46: NM_000806, “Homo sapiens gamma-


aminobutyric acid (GABA) A receptor, alpha 1 (GABRA1), mRNA”,


gi|38327553|ref|NM_000806.3|[38327553]; 47: NM_000808, “Homo sapiens gamma-


aminobutyric acid (GABA) A receptor, alpha 3 (GABRA3), mRNA”,


gi|34734069|ref|NM_000808.2|[34734069]; 48: NM_000813, “Homo sapiens gamma-


aminobutyric acid (GABA) A receptor, beta 2 (GABRB2),”, “transcript variant 2, mRNA”,


gi|4503864|ref|NM_000813.1|[4503864]; 49: NM_000835, “Homo sapiens glutamate receptor,


ionotropic, N-methyl D-aspartate 2C (GRIN2C),”, mRNA,


gi|6006004|ref|NM_000835.2|[6006004]; 50: NM_000884, “Homo sapiens IMP (inosine


monophosphate) dehydrogenase 2 (IMPDH2), mRNA”,


gi|4504688|ref|NM_000884.1|[4504688]; 51: NM_000887, “Homo sapiens integrin, alpha X


(antigen CD11C (p150), alpha polypeptide)”, “(ITGAX), mRNA”,


gi|34452172|ref|NM_000887.3|[34452172]; 52: NM_000909, “Homo sapiens neuropeptide Y


receptor Y1 (NPY1R), mRNA”, gi|41350310|ref|NM_000909.4|[41350310]; 53: NM_000911,


Homo sapiens opioid receptor, delta 1 (OPRD1), mRNA”,


gi|27734716|ref|NM_000911.2|[27734716]; 54: NM_000915, “Homo sapiens oxytocin, prepro-


(neurophysin I) (OXT), mRNA”, gi|12707574|ref|NM_000915.2|[12707574]; 55: NM_000916,


Homo sapiens oxytocin receptor (OXTR), mRNA”, gi|32307151|ref|NM_000916.3|[32307151];


56: NM_000920, “Homo sapiens pyruvate carboxylase (PC), nuclear gene encoding


mitochondrial”, “protein, transcript variant A, mRNA”,


gi|11761622|ref|NM_000920.2|[11761622]; 57: NM_000928, “Homo sapiens phospholipase A2,


group IB (pancreas) (PLA2G1B), mRNA”, gi|38016927|ref|NM_000928.2|[38016927]; 58:


NM_000932, “Homo sapiens phospholipase C, beta 3 (phosphatidylinositol-specific)


(PLCB3),”, mRNA, gi|11386138|ref|NM_000932.1|[11386138]; 59: NM_000960, “Homo



sapiens prostaglandin I2 (prostacyclin) receptor (IP) (PTGIR), mRNA”,



gi|39995095|ref|NM_000960.3|[39995095]; 60: NM_001040, “Homo sapiens sex hormone-


binding globulin (SHBG), mRNA”, gi|7382459|ref|NM_001040.2|[7382459]; 61: NM_001041,


Homo sapiens sucrase-isomaltase (SI), mRNA”, gi|4506944|ref|NM_001041.1|[4506944]; 62:


NM_001087, “Homo sapiens angio-associated, migratory cell protein (AAMP), mRNA”,


gi|4557228|ref|NM_001087.1|[4557228]; 63: NM_001094, “Homo sapiens amiloride-sensitive


cation channel 1, neuronal (degenerin) (ACCN1),”, “transcript variant 2, mRNA”,


gi|34452696|ref|NM_001094.4|[34452696]; 64: NM_001099, “Homo sapiens acid phosphatase,


prostate (ACPP), mRNA”, gi|6382063|ref|NM_001099.2|[6382063]; 65: NM_001104, “Homo



sapiens actinin, alpha 3 (ACTN3), mRNA”, gi|4557240|ref|NM_001104.1|[4557240]; 66:



NM_001118, Homo sapiens adenylate cyclase activating polypeptide 1 (pituitary) receptor,


“type I (ADCYAP1R1), mRNA”, gi|34398688|ref|NM_001118.3|[34398688]; 67: NM_001152,



Homo sapiens solute carrier family 25 (mitochondrial carrier; adenine nucleotide, “translocator),



member 5 (SLC25A5), mRNA”, gi|4502098|ref|NM_001152.1|[4502098]; 68: NM_001158,


Homo sapiens amine oxidase, copper containing 2 (retina-specific) (AOC2),”, “transcript


variant 1, mRNA”, gi|6806880|ref|NM_001158.2|[6806880]; 69: NM_001164, “Homo sapiens


amyloid beta (A4) precursor protein-binding, family B, member 1”, “(Fe65) (APBB1), transcript


variant 1, mRNA”, gi|22035552|ref|NM_001164.2|[22035552]; 70: NM_001165, “Homo



sapiens baculoviral IAP repeat-containing 3 (BIRC3), transcript variant 1,”, mRNA,



gi|33946283|ref|NM_001165.3|[33946283]; 71: NM_001188, “Homo sapiens BCL2-


antagonist/killer 1 (BAK1), mRNA”, gi|33457353|ref|NM_001188.2|[33457353]; 72:


NM_001215, “Homo sapiens carbonic anhydrase VI (CA6), mRNA”,


gi|4557396|ref|NM_001215.1|[4557396]; 73: NM_001257, “Homo sapiens cadherin 13, H-


cadherin (heart) (CDH13), mRNA”, gi|16507956|ref|NM_001257.2|[16507956]; 74:


NM_001261, “Homo sapiens cyclin-dependent kinase 9 (CDC2-related kinase) (CDK9),


mRNA”, gi|17017983|ref|NM_001261.2|[17017983]; 75: NM_001346, “Homo sapiens


diacylglycerol kinase, gamma 90 kDa (DGKG), mRNA”,


gi|4503314|ref|NM_001346.1|[4503314]; 76: NM_001405, “Homo sapiens ephrin-A2 (EFNA2),


mRNA”, gi|27894380|ref|NM_001405.2|[27894380]; 77: NM_001425, “Homo sapiens


epithelial membrane protein 3 (EMP3), mRNA”, gi|4503562|ref|NM_001425.1|[4503562]; 78:


NM_001501, “Homo sapiens gonadotropin-releasing hormone 2 (GNRH2), transcript variant


1,”, mRNA, gi|4504056|ref|NM_001501.1|[4504056]; 79: NM_001507, “Homo sapiens G


protein-coupled receptor 38 (GPR38), mRNA”, gi|4504094|ref|NM_001507.1|[4504094]; 80:


NM_001525, “Homo sapiens hypocretin (orexin) receptor 1 (HCRTR1), mRNA”,


gi|4557636|ref|NM_001525.1|[4557636]; 81: NM_001542, “Homo sapiens immunoglobulin


superfamily, member 3 (IGSF3), mRNA”, gi|4504626|ref|NM_001542.1|[4504626]; 82:


NM_001662, “Homo sapiens ADP-ribosylation factor 5 (ARF5), mRNA”,


gi|6995999|ref|NM_001662.2|[6995999]; 83: NM_001665, “Homo sapiens ras homolog gene


family, member G (rho G) (ARHG), mRNA”, gi|4502218|ref|NM_001665.1|[4502218]; 84:


NM_001666, “Homo sapiens Rho GTPase activating protein 4 (ARHGAP4), mRNA”,


gi|41327157|ref|NM_001666.2|[41327157]; 85: NM_001702, “Homo sapiens brain-specific


angiogenesis inhibitor 1 (BAI1), mRNA”, gi|4502354|ref|NM_001702.1|[4502354]; 86:


NM_001722, “Homo sapiens polymerase (RNA) III (DNA directed) polypeptide D, 44 kDa


(POLR3D),”, mRNA, gi|4502436|ref|NM_001722.1|[4502436]; 87: NM_001766, “Homo



sapiens CD1D antigen, d polypeptide (CD1D), mRNA”,



gi|34419629|ref|NM_001766.2|[34419629]; 88: NM_001795, “Homo sapiens cadherin 5, type 2,


VE-cadherin (vascular epithelium) (CDH5), mRNA”,


gi|14589894|ref|NM_001795.2|[14589894]; 89: NM_001805, “Homo sapiens CCAAT/enhancer


binding protein (C/EBP), epsilon (CEBPE), mRNA”,


gi|28872799|ref|NM_001805.2|[28872799]; 90: NM_001807, “Homo sapiens carboxyl ester


lipase (bile salt-stimulated lipase) (CEL), mRNA”, gi|27894374|ref|NM_001807.2|[27894374];


91: NM_001823, “Homo sapiens creatine kinase, brain (CKB), mRNA”,


gi|34335231|ref|NM_001823.3|[34335231]; 92: NM_001859, “Homo sapiens solute carrier


family 31 (copper transporters), member 1 (SLC31A1),”, mRNA,


gi|40254457|ref|NM_001859.2|[40254457]; 93: NM_001864, “Homo sapiens cytochrome c


oxidase subunit VIIa polypeptide 1 (muscle) (COX7A1),”, mRNA,


gi|18105034|ref|NM_001864.2|[18105034]; 94: NM_001887, “Homo sapiens crystallin, beta B1


(CRYBB1), mRNA”, gi|21536279|ref|NM_001887.3|[21536279]; 95: NM_001888, “Homo



sapiens crystallin, mu (CRYM), mRNA”, gi|4503064|ref|NM_001888.1|[4503064]; 96:



NM_001893, “Homo sapiens casein kinase 1, delta (CSNK1D), transcript variant 1, mRNA”,


gi|20544143|ref|NM_001893.3|[20544143]; 97: NM_001895, “Homo sapiens casein kinase 2,


alpha 1 polypeptide (CSNK2A1), transcript variant”, “2, mRNA”,


gi|29570794|ref|NM_001895.2|[29570794]; 98: NM_001923, “Homo sapiens damage-specific


DNA binding protein 1, 127 kDa (DDB1), mRNA”, gi|13435358|ref|NM_001923.2|[13435358];


99: NM_001958, “Homo sapiens eukaryotic translation elongation factor 1 alpha 2 (EEF1A2),


mRNA”, gi|25453470|ref|NM_001958.2|[25453470]; 100: NM_001982, Homo sapiens v-erb-b2


erythroblastic leukemia viral oncogene homolog 3 (avian), “(ERBB3), mRNA”,


gi|4503596|ref|NM_001982.1|[4503596]; 101: NM_001998, “Homo sapiens fibulin 2 (FBLN2),


mRNA”, gi|4503664|ref|NM_001998.1|[4503664]; 102: NM_002010, “Homo sapiens fibroblast


growth factor 9 (glia-activating factor) (FGF9), mRNA”,


gi|4503706|ref|NM_002010.1|[4503706]; 103: NM_002012, “Homo sapiens fragile histidine


triad gene (FHIT), mRNA”, gi|4503718|ref|NM_002012.1|[4503718]; 104: NM_002036,,


ref|NM_002036.2|[42822886]; 105: NM_002054, “Homo sapiens glucagon (GCG), mRNA”,


gi|20302161|ref|NM_002054.2|[20302161]; 106: NM_002073, “Homo sapiens guanine


nucleotide binding protein (G protein), alpha z polypeptide”, “(GNAZ), mRNA”,


gi|4504050|ref|NM_002073.1|[4504050]; 107: NM_002083, “Homo sapiens glutathione


peroxidase 2 (gastrointestinal) (GPX2), mRNA”, gi|32967606|ref|NM_002083.2|[32967606];


108: NM_002139, “Homo sapiens RNA binding motif protein, X-linked (RBMX), mRNA”,


gi|4504450|ref|NM_002139.1|[4504450]; 109: NM_002151, “Homo sapiens hepsin


(transmembrane protease, serine 1) (HPN), transcript variant”, “2, mRNA”,


gi|4504480|ref|NM_002151.1|[4504480]; 110: NM_002157, “Homo sapiens heat shock 10 kDa


protein 1 (chaperonin 10) (HSPE1), mRNA”, gi|4504522|ref|NM_002157.1|[4504522]; 111:


NM_002193, “Homo sapiens inhibin, beta B (activin AB beta polypeptide) (INHBB), mRNA”,


gi|9257224|ref|NM_002193.1|[9257224]; 112: NM_002208, “Homo sapiens integrin, alpha E


(antigen CD103, human mucosal lymphocyte antigen”, “1; alpha polypeptide) (ITGAE),


mRNA”, gi|6007850|ref|NM_002208.3|[6007850]; 113: NM_002217, “Homo sapiens pre-alpha


(globulin) inhibitor, H3 polypeptide (ITIH3), mRNA”,


gi|10092578|ref|NM_002217.1|[10092578]; 114: NM_002220, “Homo sapiens inositol 1,4,5-


trisphosphate 3-kinase A (ITPKA), mRNA”, gi|4504788|ref|NM_002220.1|[4504788]; 115:


NM_002236, “Homo sapiens potassium voltage-gated channel, subfamily F, member 1


(KCNF1),”, mRNA, gi|27436998|ref|NM_002236.4|[27436998]; 116: NM_002238, “Homo



sapiens potassium voltage-gated channel, subfamily H (eag-related), member”, “1 (KCNH1),



transcript variant 2, mRNA”, gi|27436999|ref|NM_002238.2|[27436999]; 117: NM_002246,


Homo sapiens potassium channel, subfamily K, member 3 (KCNK3), mRNA”,


gi|4504848|ref|NM_002246.1|[4504848]; 118: NM_002257, “Homo sapiens kallikrein 1,


renal/pancreas/salivary (KLK1), mRNA”, gi|22027643|ref|NM_002257.2|[22027643]; 119:


NM_002274, “Homo sapiens keratin 13 (KRT13), transcript variant 2, mRNA”,


gi|24234693|ref|NM_002274.2|[24234693]; 120: NM_002279, “Homo sapiens keratin, hair,


acidic, 3B (KRTHA3B), mRNA”, gi|15022816|ref|NM_002279.3|[15022816]; 121: NM_002280,


Homo sapiens keratin, hair, acidic, 5 (KRTHA5), mRNA”,


gi|15431313|ref|NM_002280.3|[15431313]; 122: NM_002343, “Homo sapiens lactotransferrin


(LTF), mRNA”, gi|4505042|ref|NM_002343.1|[4505042]; 123: NM_002374, “Homo sapiens


microtubule-associated protein 2 (MAP2), transcript variant 1, mRNA”,


gi|14195623|ref|NM_002374.2|[14195623]; 124: NM_002378, “Homo sapiens megakaryocyte-


associated tyrosine kinase (MATK), transcript variant”, “2, mRNA”,


gi|21450841|ref|NM_002378.2|[21450841]; 125: NM_002380, “Homo sapiens matrilin 2


(MATN2), transcript variant 1, mRNA”, gi|13518036|ref|NM_002380.2|[13518036]; 126:


NM_002418, “Homo sapiens motilin (MLN), mRNA”,


gi|4557033|ref|NM_002418.1|[4557033]; 127: NM_002419, “Homo sapiens mitogen-activated


protein kinase kinase kinase 11 (MAP3K11), mRNA”,


gi|21735553|ref|NM_002419.2|[21735553]; 128: NM_002437, “Homo sapiens MpV17


transgene, murine homolog, glomerulosclerosis (MPV17), mRNA”,


gi|37059781|ref|NM_002437.3|[37059781]; 129: NM_002469, “Homo sapiens myogenic factor


6 (herculin) (MYF6), mRNA”, gi|4505298|ref|NM_002469.1|[4505298]; 130: NM_002479,


Homo sapiens myogenin (myogenic factor 4) (MYOG), mRNA”,


gi|18765726|ref|NM_002479.2|[18765726]; 131: NM_002492, “Homo sapiens NADH


dehydrogenase (ubiquinone) 1 beta subcomplex, 5, 16 kDa”, “(NDUFB5), nuclear gene encoding


mitochondrial protein, mRNA”, gi|33519467|ref|NM_002492.2|[33519467]; 132: NM_002506,


Homo sapiens nerve growth factor, beta polypeptide (NGFB), mRNA”,


gi|4505390|ref|NM_002506.1|[4505390]; 133: NM_002527, “Homo sapiens neurotrophin 3


(NTF3), mRNA”, gi|9845503|ref|NM_002527.2|[9845503]; 134: NM_002558, “Homo sapiens


purinergic receptor P2X, ligand-gated ion channel, 1 (P2RX1), mRNA”,


gi|27894283|ref|NM_002558.2|[27894283]; 135: NM_002590, “Homo sapiens protocadherin 8


(PCDH8), transcript variant 1, mRNA”, gi|6631101|ref|NM_002590.2|[6631101]; 136:


NM_002599, “Homo sapiens phosphodiesterase 2A, cGMP-stimulated (PDE2A), mRNA”,


gi|4505656|ref|NM_002599.1|[4505656]; 137: NM_002621, “Homo sapiens properdin P factor,


complement (PFC), mRNA”, gi|4505736|ref|NM_002621.1|[4505736]; 138: NM_002630,


Homo sapiens progastricsin (pepsinogen C) (PGC), mRNA”,


gi|4505756|ref|NM_002630.1|[4505756]; 139: NM_002644, “Homo sapiens polymeric


immunoglobulin receptor (PIGR), mRNA”, gi|31377805|ref|NM_002644.2|[31377805]; 140:


NM_002646, “Homo sapiens phosphoinositide-3-kinase, class 2, beta polypeptide (PIK3C2B),”,


mRNA, gi|15451925|ref|NM_002646.2|[15451925]; 141: NM_002788, “Homo sapiens


proteasome (prosome, macropain) subunit, alpha type, 3 (PSMA3),”, “transcript variant 1,


mRNA”, gi|23110937|ref|NM_002788.2|[23110937]; 142: NM_002831, “Homo sapiens protein


tyrosine phosphatase, non-receptor type 6 (PTPN6),”, “transcript variant 1, mRNA”,


gi|34328900|ref|NM_002831.3|[34328900]; 143: NM_002832, “Homo sapiens protein tyrosine


phosphatase, non-receptor type 7 (PTPN7),”, “transcript variant 1, mRNA”,


gi|18375657|ref|NM_002832.2|[18375657]; 144: NM_002894, “Homo sapiens retinoblastoma


binding protein 8 (RBBP8), transcript variant 1,”, mRNA,


gi|42718012|ref|NM_002894.2|[42718012]; 145: NM_002904, “Homo sapiens RD RNA


binding protein (RDBP), mRNA”, gi|20631983|ref|NM_002904.4|[20631983]; 146: NM_002912,


Homo sapiens REV3-like, catalytic subunit of DNA polymerase zeta (yeast)”, “(REV3L),


mRNA”, gi|4506482|ref|NM_002912.1|[4506482]; 147: NM_002930, “Homo sapiens Ras-like


without CAAX 2 (RIT2), mRNA”, gi|4506532|ref|NM_002930.1|[4506532]; 148: NM_002938,


Homo sapiens ring finger protein 4 (RNF4), mRNA”,


gi|34305289|ref|NM_002938.2|[34305289]; 149: NM_002965, “Homo sapiens S100 calcium


binding protein A9 (calgranulin B) (S100A9), mRNA”, gi|9845520|ref|NM_002965.2|[9845520];


150: NM_002981, “Homo sapiens chemokine (C—C motif) ligand 1 (CCL1), mRNA”,


gi|4506832|ref|NM_002981.1|[4506832]; 151: NM_003002, “Homo sapiens succinate


dehydrogenase complex, subunit D, integral membrane”, “protein (SDHD), nuclear gene


encoding mitochondrial protein, mRNA”, gi|4506864|ref|NM_003002.1|[4506864]; 152:


NM_003015, “Homo sapiens secreted frizzled-related protein 5 (SFRP5), mRNA”,


gi|8400734|ref|NM_003015.2|[8400734]; 153: NM_003021, “Homo sapiens small glutamine-


rich tetratricopeptide repeat (TPR)-containing,”, “alpha (SGTA), mRNA”,


gi|38788107|ref|NM_003021.3|[38788107]; 154: NM_003042, “Homo sapiens solute carrier


family 6 (neurotransmitter transporter, GABA),”, “member 1 (SLC6A1), mRNA”,


gi|40254466|ref|NM_003042.2|[40254466]; 155: NM_003047, “Homo sapiens solute carrier


family 9 (sodium/hydrogen exchanger), isoform 1”, “(antiporter, Na+/H+, amiloride sensitive)


(SLC9A1), mRNA”, gi|27777631|ref|NM_003047.2|[27777631]; 156: NM_003055, “Homo



sapiens solute carrier family 18 (vesicular acetylcholine), member 3”, “(SLC18A3), mRNA”,



gi|4506990|ref|NM_003055.1|[4506990]; 157: NM_003059, “Homo sapiens solute carrier


family 22 (organic cation transporter), member 4”, “(SLC22A4), mRNA”,


gi|24497489|ref|NM_003059.2|[24497489]; 158: NM_003063, “Homo sapiens sarcolipin (SLN),


mRNA”, gi|4507062|ref|NM_003063.1|[4507062]; 159: NM_003085, “Homo sapiens synuclein,


beta (SNCB), mRNA”, gi|6466453|ref|NM_003085.2|[6466453]; 160: NM_003097, “Homo



sapiens small nuclear ribonucleoprotein polypeptide N (SNRPN), transcript”, “variant 1,



mRNA”, gi|29540556|ref|NM_003097.3|[29540556]; 161: NM_003105, “Homo sapiens sortilin-


related receptor, L(DLR class) A repeats-containing”, “(SORL1), mRNA”,


gi|18379347|ref|NM_003105.3|[18379347]; 162: NM_003115, “Homo sapiens UDP-N-


acteylglucosamine pyrophosphorylase 1 (UAP1), mRNA”,


gi|34147515|ref|NM_003115.3|[34147515]; 163: NM_003159, “Homo sapiens cyclin-dependent


kinase-like 5 (CDKL5), mRNA”, gi|4507280|ref|NM_003159.1|[4507280]; 164: NM_003212,


Homo sapiens teratocarcinoma-derived growth factor 1 (TDGF1), mRNA”,


gi|4507424|ref|NM_003212.1|[4507424]; 165: NM_003216, “Homo sapiens thyrotrophic


embryonic factor (TEF), mRNA”, gi|34486096|ref|NM_003216.2|[34486096]; 166: NM_003239,


Homo sapiens transforming growth factor, beta 3 (TGFB3), mRNA”,


gi|4507464|ref|NM_003239.1|[4507464]; 167: NM_003240, “Homo sapiens endometrial


bleeding associated factor (left-right determination,”, “factor A; transforming growth factor beta


superfamily) (EBAF), mRNA”, gi|27436880|ref|NM_003240.2|[27436880]; 168: NM_003249,


Homo sapiens thimet oligopeptidase 1 (THOP1), mRNA”,


gi|34222291|ref|NM_003249.3|[34222291]; 169: NM_003259, “Homo sapiens intercellular


adhesion molecule 5, telencephalin (ICAM5), mRNA”,


gi|12545403|ref|NM_003259.2|[12545403]; 170: NM_003279, “Homo sapiens troponin C2, fast


(TNNC2), mRNA”, gi|40807466|ref|NM_003279.2|[40807466]; 171: NM_003325, Homo



sapiens HIR histone cell cycle regulation defective homolog A (S., “cerevisiae) (HIRA),



mRNA”, gi|21536484|ref|NM_003325.3|[21536484]; 172: NM_003334, Homo sapiens


ubiquitin-activating enzyme E1 (A1S9T and BN75 temperature, “sensitivity complementing)


(UBE1), transcript variant 1, mRNA”, gi|23510337|ref|NM_003334.2|[23510337]; 173:


NM_003341, “Homo sapiens ubiquitin-conjugating enzyme E2E 1 (UBC4/5 homolog, yeast)”,


“(UBE2E1), transcript variant 1, mRNA”, gi|33359692|ref|NM_003341.3|[33359692]; 174:


NM_003361, “Homo sapiens uromodulin (uromucoid, Tamm-Horsfall glycoprotein) (UMOD),


mRNA”, gi|4507832|ref|NM_003361.1|[4507832]; 175: NM_003364, “Homo sapiens uridine


phosphorylase 1 (UPP1), transcript variant 1, mRNA”,


gi|31742506|ref|NM_003364.2|[31742506]; 176: NM_003374, “Homo sapiens voltage-


dependent anion channel 1 (VDAC1), mRNA”, gi|4507878|ref|NM_003374.1|[4507878]; 177:


NM_003384, “Homo sapiens vaccinia related kinase 1 (VRK1), mRNA”,


gi|4507902|ref|NM_003384.1|[4507902]; 178: NM_003418, Homo sapiens zinc finger protein 9


(a cellular retroviral nucleic acid binding, “protein) (ZNF9), mRNA”,


gi|4827070|ref|NM_003418.1|[4827070]; 179: NM_003458, “Homo sapiens bassoon


(presynaptic cytomatrix protein) (BSN), mRNA”, gi|4508018|ref|NM_003458.1|[4508018]; 180:


NM_003459, “Homo sapiens solute carrier family 30 (zinc transporter), member 3


(SLC30A3),”, mRNA, gi|34222155|ref|NM_003459.3|[34222155]; 181: NM_003485, “Homo



sapiens G protein-coupled receptor 68 (GPR68), mRNA”,



gi|40217828|ref|NM_003485.2|[40217828]; 182: NM_003490, “Homo sapiens synapsin III


(SYN3), transcript variant IIIa, mRNA”, gi|19924104|ref|NM_003490.2|[19924104]; 183:


NM_003492, “Homo sapiens chromosome X open reading frame 12 (CXorf12), mRNA”,


gi|4504738|ref|NM_003492.1|[4504738]; 184: NM_003524, “Homo sapiens histone 1, H2bh


(HIST1H2BH), mRNA”, gi|21166386|ref|NM_003524.2|[21166386]; 185: NM_003526, “Homo



sapiens histone 1, H2bc (HIST1H2BC), mRNA”, gi|21166388|ref|NM_003526.2|[21166388];



186: NM_003531, “Homo sapiens histone 1, H3c (HIST1H3C), mRNA”,


gi|21071022|ref|NM_003531.2|[21071022]; 187: NM_003549, “Homo sapiens


hyaluronoglucosaminidase 3 (HYAL3), mRNA”, gi|15208650|ref|NM_003549.2|[15208650];


188: NM_003554, “Homo sapiens olfactory receptor, family 1, subfamily E, member 2


(OR1E2), mRNA”, gi|11386152|ref|NM_003554.1|[11386152]; 189: NM_003571, “Homo



sapiens beaded filament structural protein 2, phakinin (BFSP2), mRNA”,



gi|21536442|ref|NM_003571.2|[21536442]; 190: NM_003594, “Homo sapiens transcription


termination factor, RNA polymerase II (TTF2), mRNA”,


gi|40807470|ref|NM_003594.3|[40807470]; 191: NM_003602, “Homo sapiens FK506 binding


protein 6, 36 kDa (FKBP6), mRNA”, gi|17149848|ref|NM_003602.2|[17149848]; 192:


NM_003627, “Homo sapiens solute carrier family 43, member 1 (SLC43A1), mRNA”,


gi|42476323|ref|NM_003627.4|[42476323]; 193: NM_003632, “Homo sapiens contactin


associated protein 1 (CNTNAP1), mRNA”, gi|4505462|ref|NM_003632.1|[4505462]; 194:


NM_003691, “Homo sapiens serine/threonine kinase 16 (STK16), mRNA”,


gi|4505836|ref|NM_003691.1|[4505836]; 195: NM_003860, “Homo sapiens barrier to


autointegration factor 1 (BANF1), mRNA”, gi|11038645|ref|NM_003860.2|[11038645]; 196:


NM_003897, “Homo sapiens immediate early response 3 (IER3), transcript variant short,


mRNA”, gi|16554595|ref|NM_003897.2|[16554595]; 197: NM_003915, “Homo sapiens copine


I (CPNE1), transcript variant 3, mRNA”, gi|23397694|ref|NM_003915.2|[23397694]; 198:


NM_003922, Homo sapiens hect (homologous to the E6-AP (UBE3A) carboxyl terminus)


domain and, “RCC1 (CHC1)-like domain (RLD) 1 (HERC1), mRNA”,


gi|4557025|ref|NM_003922.1|[4557025]; 199: NM_003947, “Homo sapiens huntingtin-


associated protein interacting protein (duo) (HAPIP),”, mRNA,


gi|4504334|ref|NM_003947.1|[4504334]; 200: NM_003954, “Homo sapiens mitogen-activated


protein kinase kinase kinase 14 (MAP3K14), mRNA”, gi|4505396|ref|NM_003954.1|[4505396];


201: NM_003957, “Homo sapiens serine/threonine kinase 29 (STK29), mRNA”,


gi|27501463|ref|NM_003957.1|[27501463]; 202: NM_003961, “Homo sapiens rhomboid,


veinlet-like 1 (Drosophila) (RHBDL1), mRNA”, gi|4506524|ref|NM_003961.1|[4506524]; 203:


NM_003974, “Homo sapiens docking protein 2, 56 kDa (DOK2), transcript variant 1, mRNA”,


gi|41406049|ref|NM_003974.2|[41406049]; 204: NM_004051,, ref|NM_004051.3|[44680134];


205: NM_004056, “Homo sapiens carbonic anhydrase VIII (CA8), mRNA”,


gi|22027499|ref|NM_004056.3|[22027499]; 206: NM_004062, “Homo sapiens cadherin 16,


KSP-cadherin (CDH16), mRNA”, gi|16507958|ref|NM_004062.2|[16507958]; 207: NM_004074,


Homo sapiens cytochrome c oxidase subunit VIII (COX8), mRNA”,


gi|4758043|ref|NM_004074.1|[4758043]; 208: NM_004077, “Homo sapiens citrate synthase


(CS), nuclear gene encoding mitochondrial protein,”, “transcript variant 1, mRNA”,


gi|38327624|ref|NM_004077.2|[38327624]; 209: NM_004078, “Homo sapiens cysteine and


glycine-rich protein 1 (CSRP1), mRNA”, gi|4758085|ref|NM_004078.1|[4758085]; 210:


NM_004088, “Homo sapiens deoxynucleotidyltransferase, terminal (DNTT), mRNA”,


gi|29788761|ref|NM_004088.2|[29788761]; 211: NM_004091, “Homo sapiens E2F transcription


factor 2 (E2F2), mRNA”, gi|34485718|ref|NM_004091.2|[34485718]; 212: NM_004100,


Homo sapiens eyes absent homolog 4 (Drosophila) (EYA4), transcript variant 1,”, mRNA,


gi|26667248|ref|NM_004100.2|[26667248]; 213: NM_004106, “Homo sapiens Fc fragment of


IgE, high affinity I, receptor for; gamma”, “polypeptide (FCER1G), mRNA”,


gi|4758343|ref|NM_004106.1|[4758343]; 214: NM_004174, “Homo sapiens solute carrier


family 9 (sodium/hydrogen exchanger), isoform 3”, “(SLC9A3), mRNA”,


gi|6806920|ref|NM_004174.1|[6806920]; 215: NM_004176, “Homo sapiens sterol regulatory


element binding transcription factor 1 (SREBF1),”, mRNA,


gi|22547194|ref|NM_004176.2|[22547194]; 216: NM_004178, “Homo sapiens TAR (HIV)


RNA binding protein 2 (TARBP2), transcript variant 3,”, mRNA,


gi|19743837|ref|NM_004178.3|[19743837]; 217: NM_004260, “Homo sapiens RecQ protein-


like 4 (RECQL4), mRNA”, gi|4759029|ref|NM_004260.1|[4759029]; 218: NM_004267, “Homo



sapiens carbohydrate (N-acetylglucosamine-6-O) sulfotransferase 2 (CHST2),”, mRNA,



gi|27369496|ref|NM_004267.2|[27369496]; 219: NM_004271, “Homo sapiens lymphocyte


antigen 86 (LY86), mRNA”, gi|4758707|ref|NM_004271.1|[4758707]; 220: NM_004294,


Homo sapiens mitochondrial translational release factor 1 (MTRF1), nuclear gene”, “encoding


mitochondrial protein, mRNA”, gi|34577119|ref|NM_004294.2|[34577119]; 221: NM_004333,


Homo sapiens v-raf murine sarcoma viral oncogene homolog B1 (BRAF), mRNA”,


gi|33188458|ref|NM_004333.2|[33188458]; 222: NM_004344, “Homo sapiens centrin, EF-hand


protein, 2 (CETN2), mRNA”, gi|4757901|ref|NM_004344.1|[4757901]; 223: NM_004358,


Homo sapiens cell division cycle 25B (CDC25B), transcript variant 1, mRNA”,


gi|11641416|ref|NM_004358.2|[11641416]; 224: NM_004374, “Homo sapiens cytochrome c


oxidase subunit VIc (COX6C), mRNA”, gi|17999531|ref|NM_004374.2|[17999531]; 225:


NM_004427, “Homo sapiens polyhomeotic-like 2 (Drosophila) (PHC2), transcript variant 2,


mRNA”, gi|37595529|ref|NM_004427.2|[37595529]; 226: NM_004455, “Homo sapiens


exostoses (multiple)-like 1 (EXTL1), mRNA”, gi|4758317|ref|NM_004455.1|[4758317]; 227:


NM_004470, “Homo sapiens FK506 binding protein 2, 13 kDa (FKBP2), transcript variant 1,


mRNA”, gi|17149841|ref|NM_004470.2|[17149841]; 228: NM_004484, “Homo sapiens


glypican 3 (GPC3), mRNA”, gi|5360213|ref|NM_004484.2|[5360213]; 229: NM_004514,


Homo sapiens interleukin enhancer binding factor 1 (ILF1), transcript variant 1,”, mRNA,


gi|31563337|ref|NM_004514.2|[31563337]; 230: NM_004528, “Homo sapiens microsomal


glutathione S-transferase 3 (MGST3), mRNA”, gi|22035640|ref|NM_004528.2|[22035640]; 231:


NM_004550, “Homo sapiens NADH dehydrogenase (ubiquinone) Fe—S protein 2, 49 kDa”,


“(NADH-coenzyme Q reductase) (NDUFS2), mRNA”,


gi|34147556|ref|NM_004550.3|[34147556]; 232: NM_004590, “Homo sapiens chemokine (C—C


motif) ligand 16 (CCL16), mRNA”, gi|22538800|ref|NM_004590.2|[22538800]; 233:


NM_004604, “Homo sapiens syntaxin 4A (placental) (STX4A), mRNA”,


gi|34147603|ref|NM_004604.3|[34147603]; 234: NM_004616, “Homo sapiens transmembrane 4


superfamily member 3 (TM4SF3), mRNA”, gi|21265107|ref|NM_004616.2|[21265107]; 235:


NM_004647, “Homo sapiens D4, zinc and double PHD fingers family 1 (DPF1), mRNA”,


gi|4758797|ref|NM_004647.1|[4758797]; 236: NM_004656, Homo sapiens BRCA1 associated


protein-1 (ubiquitin carboxy-terminal hydrolase), “(BAP1), mRNA”,


gi|19718752|ref|NM_004656.2|[19718752]; 237: NM_004672, “Homo sapiens mitogen-


activated protein kinase kinase kinase 6 (MAP3K6),”, “transcript variant 1, mRNA”,


gi|24497521|ref|NM_004672.2|[24497521]; 238: NM_004704, “Homo sapiens RNA, U3 small


nucleolar interacting protein 2 (RNU3IP2), mRNA”, gi|31543556|ref|NM_004704.2|[31543556];


239: NM_004753, “Homo sapiens dehydrogenase/reductase (SDR family) member 3 (DHRS3),


mRNA”, gi|34222303|ref|NM_004753.3|[34222303]; 240: NM_004794, “Homo sapiens


RAB33A, member RAS oncogene family (RAB33A), mRNA”,


gi|34485717|ref|NM_004794.2|[34485717]; 241: NM_004798, “Homo sapiens kinesin family


member 3B (KIF3B), mRNA”, gi|31742486|ref|NM_004798.2|[31742486]; 242: NM_004810,


Homo sapiens GRB2-related adaptor protein 2 (GRAP2), mRNA”,


gi|19913386|ref|NM_004810.2|[19913386]; 243: NM_004840, “Homo sapiens Rac/Cdc42


guanine nucleotide exchange factor (GEF) 6 (ARHGEF6),”, mRNA,


gi|22027524|ref|NM_004840.1|[22027524]; 244: NM_004858, “Homo sapiens solute carrier


family 4, sodium bicarbonate cotransporter, member 8”, “(SLC4A8), mRNA”,


gi|4759133|ref|NM_004858.1|[4759133]; 245: NM_004861, Homo sapiens cerebroside (3′-


phosphoadenylylsulfate:galactosylceramide 3′), “sulfotransferase (CST), mRNA”,


gi|4758087|ref|NM_004861.1|[4758087]; 246: NM_004870, “Homo sapiens mannose-P-


dolichol utilization defect 1 (MPDU1), mRNA”, gi|4759109|ref|NM_004870.1|[4759109]; 247:


NM_004904, “Homo sapiens cAMP responsive element binding protein 5 (CREB5), mRNA”,


gi|4758499|ref|NM_004904.1|[4758499]; 248: NM_004913, “Homo sapiens chromosome 16


open reading frame 7 (C16orf7), mRNA”, gi|4757805|ref|NM_004913.1|[4757805]; 249:


NM_004927, “Homo sapiens mitochondrial ribosomal protein L49 (MRPL49), nuclear gene


encoding”, “mitochondrial protein, mRNA”, gi|27436906|ref|NM_004927.2|[27436906]; 250:


NM_004941, “Homo sapiens DEAH (Asp-Glu-Ala-His) box polypeptide 8 (DHX8), mRNA”,


gi|4826689|ref|NM_004941.1|[4826689]; 251: NM_004959, “Homo sapiens nuclear receptor


subfamily 5, group A, member 1 (NR5A1), mRNA”, gi|24432033|ref|NM_004959.3|[24432033];


252: NM_004964, “Homo sapiens histone deacetylase 1 (HDAC1), mRNA”,


gi|13128859|ref|NM_004964.2|[13128859]; 253: NM_004987, “Homo sapiens LIM and


senescent cell antigen-like domains 1 (LIMS1), mRNA”,


gi|13518025|ref|NM_004987.2|[13518025]; 254: NM_004994, “Homo sapiens matrix


metalloproteinase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa”, “type IV collagenase) (MMP9),


mRNA”, gi|4826835|ref|NM_004994.1|[4826835]; 255: NM_004997, “Homo sapiens myosin


binding protein H (MYBPH), mRNA”, gi|4826841|ref|NM_004997.1|[4826841]; 256:


NM_005006, “Homo sapiens NADH dehydrogenase (ubiquinone) Fe—S protein 1, 75 kDa”,


“(NADH-coenzyme Q reductase) (NDUFS1), nuclear gene encoding mitochondrial”, “protein,


mRNA”, gi|33519474|ref|NM_005006.5|[33519474]; 257: NM_005023, “Homo sapiens protein


geranylgeranyltransferase type I, beta subunit (PGGT1B),”, mRNA,


gi|27597101|ref|NM_005023.2|[27597101]; 258: NM_005027, “Homo sapiens


phosphoinositide-3-kinase, regulatory subunit, polypeptide 2 (p85”, “beta) (PIK3R2), mRNA”,


gi|4826907|ref|NM_005027.1|[4826907]; 259: NM_005055, “Homo sapiens receptor-associated


protein of the synapse, 43 kD (RAPSN),”, “transcript variant 1, mRNA”,


gi|38045929|ref|NM_005055.3|[38045929]; 260: NM_005070, “Homo sapiens solute carrier


family 4, anion exchanger, member 3 (SLC4A3), mRNA”,


gi|4827015|ref|NM_005070.1|[4827015]; 261: NM_005124, “Homo sapiens nucleoporin


153 kDa (NUP153), mRNA”, gi|24430145|ref|NM_005124.2|[24430145]; 262: NM_005125,


Homo sapiens copper chaperone for superoxide dismutase (CCS), mRNA”,


gi|4826664|ref|NM_005125.1|[4826664]; 263: NM_005154, “Homo sapiens ubiquitin specific


protease 8 (USP8), mRNA”, gi|41281375|ref|NM_005154.2|[41281375]; 264: NM_005161,


Homo sapiens angiotensin II receptor-like 1 (AGTRL1), mRNA”,


gi|34577064|ref|NM_005161.2|[34577064]; 265: NM_005163, “Homo sapiens v-akt murine


thymoma viral oncogene homolog 1 (AKT1), mRNA”, gi|4885060|ref|NM_005163.1|[4885060];


266: NM_005165, “Homo sapiens aldolase C, fructose-bisphosphate (ALDOC), mRNA”,


gi|4885062|ref|NM_005165.1|[4885062]; 267: NM_005182, “Homo sapiens carbonic anhydrase


VII (CA7), mRNA”, gi|4885100|ref|NM_005182.1|[4885100]; 268: NM_005186, “Homo



sapiens calpain 1, (mu/I) large subunit (CAPN1), mRNA”,



gi|12408655|ref|NM_005186.2|[12408655]; 269: NM_005194, “Homo sapiens


CCAAT/enhancer binding protein (C/EBP), beta (CEBPB), mRNA”,


gi|28872795|ref|NM_005194.2|[28872795]; 270: NM_005210, “Homo sapiens crystallin,


gamma B (CRYGB), mRNA”, gi|13376999|ref|NM_005210.2|[13376999]; 271: NM_005223,


Homo sapiens deoxyribonuclease I (DNASE1), mRNA”,


gi|21361253|ref|NM_005223.2|[21361253]; 272: NM_005260, “Homo sapiens growth


differentiation factor 9 (GDF9), mRNA”, gi|6715598|ref|NM_005260.2|[6715598]; 273:


NM_005261, “Homo sapiens GTP binding protein overexpressed in skeletal muscle (GEM),”,


“transcript variant 1, mRNA”, gi|32483372|ref|NM_005261.2|[32483372]; 274: NM_005286,


Homo sapiens G protein-coupled receptor 8 (GPR8), mRNA”,


gi|30581163|ref|NM_005286.2|[30581163]; 275: NM_005288, “Homo sapiens G protein-


coupled receptor 12 (GPR12), mRNA”, gi|4885294|ref|NM_005288.1|[4885294]; 276:


NM_005301, “Homo sapiens G protein-coupled receptor 35 (GPR35), mRNA”,


gi|33695096|ref|NM_005301.2|[33695096]; 277: NM_005302, Homo sapiens G protein-coupled


receptor 37 (endothelin receptor type B-like), “(GPR37), mRNA”,


gi|31377788|ref|NM_005302.2|[31377788]; 278: NM_005306, “Homo sapiens G protein-


coupled receptor 43 (GPR43), mRNA”, gi|4885332|ref|NM_005306.1|[4885332]; 279:


NM_005326, “Homo sapiens hydroxyacylglutathione hydrolase (HAGH), mRNA”,


gi|38327035|ref|NM_005326.3|[38327035]; 280: NM_005335, “Homo sapiens hematopoietic


cell-specific Lyn substrate 1 (HCLS1), mRNA”, gi|37059786|ref|NM_005335.3|[37059786];


281: NM_005341, “Homo sapiens GLI-Kruppel family member HKR3 (HKR3), mRNA”,


gi|4885418|ref|NM_005341.1|[4885418]; 282: NM_005393, “Homo sapiens plexin B3


(PLXNB3), mRNA”, gi|10864080|ref|NM_005393.1|[10864080]; 283: NM_005398, “Homo



sapiens protein phosphatase 1, regulatory (inhibitor) subunit 3C (PPP1R3C),”, mRNA,



gi|42476161|ref|NM_005398.3|[42476161]; 284: NM_005410, “Homo sapiens selenoprotein P,


plasma, 1 (SEPP1), mRNA”, gi|4885590|ref|NM_005410.1|[4885590]; 285: NM_005418,


Homo sapiens suppression of tumorigenicity 5 (ST5), transcript variant 1, mRNA”,


gi|21264611|ref|NM_005418.2|[21264611]; 286: NM_005453, “Homo sapiens zinc finger


protein 297 (ZNF297), mRNA”, gi|20070223|ref|NM_005453.3|[20070223]; 287: NM_005468,


Homo sapiens N-acetylated alpha-linked acidic dipeptidase-like 1 (NAALADL1),”, mRNA,


gi|4885506|ref|NM_005468.1|[4885506]; 288: NM_005475, “Homo sapiens lymphocyte adaptor


protein (LNK), mRNA”, gi|4885454|ref|NM_005475.1|[4885454]; 289: NM_005485, Homo



sapiens ADP-ribosyltransferase (NAD+; poly (ADP-ribose) polymerase)-like 3, “(ADPRTL3),



mRNA”, gi|11496992|ref|NM_005485.2|[11496992]; 290: NM_005550, “Homo sapiens kinesin


family member C3 (KIFC3), mRNA”, gi|19923320|ref|NM_005550.2|[19923320]; 291:


NM_005557, Homo sapiens keratin 16 (focal non-epidermolytic palmoplantar keratoderma),


“(KRT16), mRNA”, gi|24430191|ref|NM_005557.2|[24430191]; 292: NM_005560, “Homo



sapiens laminin, alpha 5 (LAMA5), mRNA”, gi|21264601|ref|NM_005560.3|[21264601]; 293:



NM_005563, “Homo sapiens stathmin 1/oncoprotein 18 (STMN1), mRNA”,


gi|13518023|ref|NM_005563.2|[13518023]; 294: NM_005593, “Homo sapiens myogenic factor


5 (MYF5), mRNA”, gi|5031928|ref|NM_005593.1|[5031928]; 295: NM_005598, “Homo



sapiens nescient helix loop helix 1 (NHLH1), mRNA”,



gi|19923328|ref|NM_005598.2|[19923328]; 296: NM_005606, “Homo sapiens legumain


(LGMN), mRNA”, gi|21914880|ref|NM_005606.3|[21914880]; 297: NM_005626, “Homo



sapiens splicing factor, arginine/serine-rich 4 (SFRS4), mRNA”,



gi|34147660|ref|NM_005626.3|[34147660]; 298: NM_005630, “Homo sapiens solute carrier


organic anion transporter family, member 2A1”, “(SLCO2A1), mRNA”,


gi|5032094|ref|NM_005630.1|[5032094]; 299: NM_005634, “Homo sapiens SRY (sex


determining region Y)-box 3 (SOX3), mRNA”, gi|30061555|ref|NM_005634.2|[30061555]; 300:


NM_005684, “Homo sapiens G protein-coupled receptor 52 (GPR52), mRNA”,


gi|5031720|ref|NM_005684.1|[5031720]; 301: NM_005698, “Homo sapiens secretory carrier


membrane protein 3 (SCAMP3), transcript variant”, “1, mRNA”,


gi|16445418|ref|NM_005698.2|[16445418]; 302: NM_005716, Homo sapiens regulator of G-


protein signalling 19 interacting protein 1, “(RGS19IP1), transcript variant 1, mRNA”,


gi|42544147|ref|NM_005716.2|[42544147]; 303: NM_005726, “Homo sapiens Ts translation


elongation factor, mitochondrial (TSFM), mRNA”, gi|21361279|ref|NM_005726.2|[21361279];


304: NM_005727, “Homo sapiens tetraspan 1 (TSPAN-1), mRNA”,


gi|21264577|ref|NM_005727.2|[21264577]; 305: NM_005747, “Homo sapiens elastase 3A,


pancreatic (protease E) (ELA3A), mRNA”, gi|21361297|ref|NM_005747.2|[21361297]; 306:


NM_005777, “Homo sapiens RNA binding motif protein 6 (RBM6), mRNA”,


gi|5032032|ref|NM_005777.1|[5032032]; 307: NM_005822, “Homo sapiens Down syndrome


critical region gene 1-like 1 (DSCR1L1), mRNA”, gi|5032234|ref|NM_005822.1|[5032234];


308: NM_005845, “Homo sapiens ATP-binding cassette, sub-family C (CFTR/MRP), member 4


(ABCC4),”, mRNA, gi|34452699|ref|NM_005845.2|[34452699]; 309: NM_005860, “Homo



sapiens follistatin-like 3 (secreted glycoprotein) (FSTL3), mRNA”,



gi|5031700|ref|NM_005860.1|[5031700]; 310: NM_005892, “Homo sapiens formin-like 1


(FMNL1), mRNA”, gi|33356147|ref|NM_005892.3|[33356147]; 311: NM_005893, “Homo



sapiens calicin (CCIN), mRNA”, gi|17738311|ref|NM_005893.1|[17738311]; 312: NM_005909,



Homo sapiens microtubule-associated protein 1B (MAP1B), transcript variant 1,”, mRNA,


gi|14165457|ref|NM_005909.2|[14165457]; 313: NM_005959, “Homo sapiens melatonin


receptor 1B (MTNR1B), mRNA”, gi|14141172|ref|NM_005959.2|[14141172]; 314: NM_005965,


Homo sapiens myosin, light polypeptide kinase (MYLK), transcript variant 6, mRNA”,


gi|16950600|ref|NM_005965.2|[16950600]; 315: NM_005972, “Homo sapiens pancreatic


polypeptide receptor 1 (PPYR1), mRNA”, gi|40254824|ref|NM_005972.2|[40254824]; 316:


NM_005984, Homo sapiens solute carrier family 25 (mitochondrial carrier; citrate,


“transporter), member 1 (SLC25A1), mRNA”, gi|21389314|ref|NM_005984.1|[21389314]; 317:


NM_006017, “Homo sapiens prominin 1 (PROM1), mRNA”,


gi|5174386|ref|NM_006017.1|[5174386]; 318: NM_006019, “Homo sapiens T-cell, immune


regulator 1, ATPase, H+ transporting, lysosomal V0”, “protein a isoform 3 (TCIRG1), transcript


variant 1, mRNA”, gi|19924144|ref|NM_006019.2|[19924144]; 319: NM_006067, “Homo



sapiens neighbor of COX4 (NOC4), mRNA”, gi|34147520|ref|NM_006067.3|[34147520]; 320:



NM_006090, “Homo sapiens choline/ethanolaminephosphotransferase (CEPT1), mRNA”,


gi|21735567|ref|NM_006090.2|[21735567]; 321: NM_006091, “Homo sapiens coronin, actin


binding protein, 2B (CORO2B), mRNA”, gi|24307902|ref|NM_006091.1|[24307902]; 322:


NM_006114, Homo sapiens translocase of outer mitochondrial membrane 40 homolog (yeast),


“(TOMM40), mRNA”, gi|5174722|ref|NM_006114.1|[5174722]; 323: NM_006120, “Homo



sapiens major histocompatibility complex, class II, DM alpha (HLA-DMA),”, mRNA,



gi|18765714|ref|NM_006120.2|[18765714]; 324: NM_006157, “Homo sapiens NEL-like 1


(chicken) (NELL1), mRNA”, gi|5453763|ref|NM_006157.1|[5453763]; 325: NM_006163,


Homo sapiens nuclear factor (erythroid-derived 2), 45 kDa (NFE2), mRNA”,


gi|5453773|ref|NM_006163.1|[5453773]; 326: NM_006170, “Homo sapiens nucleolar protein 1,


120 kDa (NOL1), mRNA”, gi|5453791|ref|NM_006170.1|[5453791]; 327: NM_006172, “Homo



sapiens natriuretic peptide precursor A (NPPA), mRNA”,



gi|23510318|ref|NM_006172.1|[23510318]; 328: NM_006174, “Homo sapiens neuropeptide Y


receptor Y5 (NPY5R), mRNA”, gi|31377784|ref|NM_006174.2|[31377784]; 329: NM_006196,


Homo sapiens poly(rC) binding protein 1 (PCBP1), mRNA”,


gi|14141164|ref|NM_006196.2|[14141164]; 330: NM_006198, “Homo sapiens Purkinje cell


protein 4 (PCP4), mRNA”, gi|5453857|ref|NM_006198.1|[5453857]; 331: NM_006205, “Homo



sapiens phosphodiesterase 6H, cGMP-specific, cone, gamma (PDE6H), mRNA”,



gi|5453867|ref|NM_006205.1|[5453867]; 332: NM_006215, “Homo sapiens serine (or cysteine)


proteinase inhibitor, clade A (alpha-1”, “antiproteinase, antitrypsin), member 4 (SERPINA4),


mRNA”, gi|21361301|ref|NM_006215.2|[21361301]; 333: NM_006228, “Homo sapiens


prepronociceptin (PNOC), mRNA”, gi|11079650|ref|NM_006228.2|[11079650]; 334:


NM_006252, “Homo sapiens protein kinase, AMP-activated, alpha 2 catalytic subunit


(PRKAA2),”, mRNA, gi|5453965|ref|NM_006252.1|[5453965]; 335: NM_006261, “Homo



sapiens prophet of Pit1, paired-like homeodomain transcription factor”, “(PROP1), mRNA”,



gi|40254838|ref|NM_006261.2|[40254838]; 336: NM_006274, “Homo sapiens chemokine (C—C


motif) ligand 19 (CCL19), mRNA”, gi|22165424|ref|NM_006274.2|[22165424]; 337:


NM_006289, “Homo sapiens talin 1 (TLN1), mRNA”,


gi|16753232|ref|NM_006289.2|[16753232]; 338: NM_006365, “Homo sapiens transcriptional


activator of the c-fos promoter (CROC4), mRNA”, gi|5453624|ref|NM_006365.1|[5453624];


339: NM_006368, “Homo sapiens cAMP responsive element binding protein 3 (CREB3),


mRNA”, gi|38327637|ref|NM_006368.4|[38327637]; 340: NM_006399, “Homo sapiens basic


leucine zipper transcription factor, ATF-like (BATF), mRNA”,


gi|18375640|ref|NM_006399.2|[18375640]; 341: NM_006442, “Homo sapiens DR1-associated


protein 1 (negative cofactor 2 alpha) (DRAP1), mRNA”,


gi|18426972|ref|NM_006442.2|[18426972]; 342: NM_006466, “Homo sapiens polymerase


(RNA) III (DNA directed) polypeptide F, 39 kDa (POLR3F),”, mRNA,


gi|33598951|ref|NM_006466.2|[33598951]; 343: NM_006477, “Homo sapiens RAS-related on


chromosome 22 (RRP22), mRNA”, gi|42476128|ref|NM_006477.2|[42476128]; 344:


NM_006565, “Homo sapiens CCCTC-binding factor (zinc finger protein) (CTCF), mRNA”,


gi|5729789|ref|NM_006565.1|[5729789]; 345: NM_006614, Homo sapiens cell adhesion


molecule with homology to L1CAM (close homolog of L1), “(CHL1), mRNA”,


gi|27894375|ref|NM_006614.2|[27894375]; 346: NM_006637, “Homo sapiens olfactory


receptor, family 5, subfamily I, member 1 (OR5I1), mRNA”,


gi|5729959|ref|NM_006637.1|[5729959]; 347: NM_006650, “Homo sapiens complexin 2


(CPLX2), mRNA”, gi|17738306|ref|NM_006650.2|[17738306]; 348: NM_006698, “Homo



sapiens bladder cancer associated protein (BLCAP), mRNA”,



gi|5729737|ref|NM_006698.1|[5729737]; 349: NM_006703, Homo sapiens nudix (nucleoside


diphosphate linked moiety X)-type motif 3, “(NUDT3), mRNA”,


gi|37622350|ref|NM_006703.2|[37622350]; 350: NM_006747, “Homo sapiens signal-induced


proliferation-associated gene 1 (SIPA1), transcript”, “variant 2, mRNA”,


gi|24497626|ref|NM_006747.2|[24497626]; 351: NM_006764, “Homo sapiens interferon-related


developmental regulator 2 (IFRD2), mRNA”, gi|21361365|ref|NM_006764.2|[21361365]; 352:


NM_006794, “Homo sapiens G protein-coupled receptor 75 (GPR75), mRNA”,


gi|5803024|ref|NM_006794.1|[5803024]; 353: NM_006810, “Homo sapiens for protein disulfide


isomerase-related (PDIR), mRNA”, gi|5803120|ref|NM_006810.1|[5803120]; 354: NM_006813,


Homo sapiens proline-rich nuclear receptor coactivator 1 (PNRC1), mRNA”,


gi|5802981|ref|NM_006813.1|[5802981]; 355: NM_006823, “Homo sapiens protein kinase


(cAMP-dependent, catalytic) inhibitor alpha (PKIA),”, “transcript variant 1, mRNA”,


gi|32483387|ref|NM_006823.2|[32483387]; 356: NM_006841, “Homo sapiens solute carrier


family 38, member 3 (SLC38A3), mRNA”, gi|40795668|ref|NM_006841.3|[40795668]; 357:


NM_006876, “Homo sapiens UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase


6”, “(B3GNT6), mRNA”, gi|5802983|ref|NM_006876.1|[5802983]; 358: NM_006917, “Homo



sapiens retinoid X receptor, gamma (RXRG), mRNA”,



gi|21361386|ref|NM_006917.2|[21361386]; 359: NM_006923, “Homo sapiens stromal cell-


derived factor 2 (SDF2), mRNA”, gi|14141194|ref|NM_006923.2|[14141194]; 360: NM_006946,


Homo sapiens spectrin, beta, non-erythrocytic 2 (SPTBN2), mRNA”,


gi|5902121|ref|NM_006946.1|[5902121]; 361: NM_006982, “Homo sapiens cartilage paired-


class homeoprotein 1 (CART1), mRNA”, gi|5901917|ref|NM_006982.1|[5901917]; 362:


NM_006998, “Homo sapiens secretagogin, EF-hand calcium binding protein (SCGN), mRNA”,


gi|15055536|ref|NM_006998.2|[15055536]; 363: NM_007000, “Homo sapiens uroplakin 1A


(UPK1A), mRNA”, gi|21264372|ref|NM_007000.2|[21264372]; 364: NM_007022, “Homo



sapiens putative tumor suppressor 101F6 (101F6), mRNA”,



gi|31541779|ref|NM_007022.3|[31541779]; 365: NM_007023, “Homo sapiens cAMP-regulated


guanine nucleotide exchange factor II (CGEF2), mRNA”,


gi|5901913|ref|NM_007023.1|[5901913]; 366: NM_007046, “Homo sapiens elastin microfibril


interfacer 1 (EMILIN1), mRNA”, gi|5901943|ref|NM_007046.1|[5901943]; 367: NM_007076,,


ref|NM_007076.2|[42794619]; 368: NM_007112, “Homo sapiens thrombospondin 3 (THBS3),


mRNA”, gi|40317629|ref|NM_007112.3|[40317629]; 369: NM_007149, “Homo sapiens zinc


finger protein 184 (Kruppel-like) (ZNF184), mRNA”,


gi|24307934|ref|NM_007149.1|[24307934]; 370: NM_007182, “Homo sapiens Ras association


(RalGDS/AF-6) domain family 1 (RASSF1), transcript”, “variant A, mRNA”,


gi|25777678|ref|NM_007182.4|[25777678]; 371: NM_007194, “Homo sapiens CHK2


checkpoint homolog (S. pombe) (CHEK2), transcript variant 1,”, mRNA,


gi|22209010|ref|NM_007194.2|[22209010]; 372: NM_007238, “Homo sapiens peroxisomal


membrane protein 4, 24 kDa (PXMP4), transcript variant”, “1, mRNA”,


gi|34452733|ref|NM_007238.3|[34452733]; 373: NM_007272, “Homo sapiens chymotrypsin C


(caldecrin) (CTRC), mRNA”, gi|11321627|ref|NM_007272.1|[11321627]; 374: NM_007312,


Homo sapiens hyaluronoglucosaminidase 1 (HYAL1), transcript variant 1, mRNA”,


gi|24497560|ref|NM_007312.3|[24497560]; 375: NM_007357, “Homo sapiens component of


oligomeric golgi complex 2 (COG2), mRNA”, gi|6678675|ref|NM_007357.1|[6678675]; 376:


NM_012093, “Homo sapiens adenylate kinase 5 (AK5), transcript variant 2, mRNA”,


gi|28144898|ref|NM_012093.2|[28144898]; 377: NM_012105, “Homo sapiens beta-site APP-


cleaving enzyme 2 (BACE2), transcript variant a, mRNA”,


gi|21040358|ref|NM_012105.3|[21040358]; 378: NM_012109, “Homo sapiens chromosome 19


open reading frame 4 (C19orf4), mRNA”, gi|6912273|ref|NM_012109.1|[6912273]; 379:


NM_012164, “Homo sapiens F-box and WD-40 domain protein 2 (FBXW2), mRNA”,


gi|7549806|ref|NM_012164.2|[7549806]; 380: NM_012168, “Homo sapiens F-box only protein


2 (FBXO2), mRNA”, gi|15812197|ref|NM_012168.2|[15812197]; 381: NM_012191, “Homo



sapiens putative tumor suppressor (FUS2), mRNA”, gi|6912379|ref|NM_012191.1|[6912379];



382: NM_012193, “Homo sapiens frizzled homolog 4 (Drosophila) (FZD4), mRNA”,


gi|22547160|ref|NM_012193.2|[22547160]; 383: NM_012204, “Homo sapiens general


transcription factor IIIC, polypeptide 4, 90 kDa (GTF3C4),”, mRNA,


gi|6912399|ref|NM_012204.1|[6912399]; 384: NM_012225, “Homo sapiens nucleotide binding


protein 2 (MinD homolog, E. coli) (NUBP2), mRNA”, gi|6912539|ref|NM_012225.1|[6912539];


385: NM_012236, “Homo sapiens sex comb on midleg homolog 1 (Drosophila) (SCMH1),


mRNA”, gi|6912641|ref|NM_012236.1|[6912641]; 386: NM_012285, “Homo sapiens potassium


voltage-gated channel, subfamily H (eag-related), member”, “4 (KCNH4), mRNA”,


gi|6912445|ref|NM_012285.1|[6912445]; 387: NM_012311, “Homo sapiens KIN, antigenic


determinant of recA protein homolog (mouse) (KIN),”, mRNA,


gi|40068516|ref|NM_012311.2|[40068516]; 388: NM_012409, “Homo sapiens prion protein 2


(dublet) (PRND), mRNA”, gi|34335267|ref|NM_012409.2|[34335267]; 389: NM_012430,


Homo sapiens SEC22 vesicle trafficking protein-like 2 (S. cerevisiae) (SEC22L2),”, mRNA,


gi|14591918|ref|NM_012430.2|[14591918]; 390: NM_012459, Homo sapiens translocase of


inner mitochondrial membrane 8 homolog B (yeast), “(TIMM8B), mRNA”,


gi|6912711|ref|NM_012459.1|[6912711]; 391: NM_012460, Homo sapiens translocase of inner


mitochondrial membrane 9 homolog (yeast), “(TIMM9), mRNA”,


gi|21359892|ref|NM_012460.2|[21359892]; 392: NM_012482, “Homo sapiens zinc finger


protein 281 (ZNF281), mRNA”, gi|40255235|ref|NM_012482.3|[40255235]; 393: NM_013235,


Homo sapiens nuclear RNase III Drosha (RNASE3L), mRNA”,


gi|21359821|ref|NM_013235.2|[21359821]; 394: NM_013246, “Homo sapiens cardiotrophin-


like cytokine (CLC), mRNA”, gi|7019350|ref|NM_013246.1|[7019350]; 395: NM_013314,


Homo sapiens B-cell linker (BLNK), mRNA”, gi|40353774|ref|NM_013314.2|[40353774]; 396:


NM_013333, “Homo sapiens epsin 1 (EPN1), mRNA”,


gi|41350200|ref|NM_013333.2|[41350200]; 397: NM_013335, “Homo sapiens GDP-mannose


pyrophosphorylase A (GMPPA), mRNA”, gi|31881778|ref|NM_013335.2|[31881778]; 398:


NM_013343, “Homo sapiens loss of heterozygosity, 3, chromosomal region 2, gene A


(LOH3CR2A),”, mRNA, gi|7106370|ref|NM_013343.1|[7106370]; 399: NM_013387, “Homo



sapiens ubiquinol-cytochrome c reductase complex (7.2 kD) (HSPC051), mRNA”,



gi|41281884|ref|NM_013387.2|[41281884]; 400: NM_013403, “Homo sapiens striatin,


calmodulin binding protein 4 (STRN4), nRNA”, gi|7019572|ref|NM_013403.1|[7019572]; 401:


NM_013441, “Homo sapiens Down syndrome critical region gene 1-like 2 (DSCR1L2),


mRNA”, gi|38455419|ref|NM_013441.2|[38455419]; 402: NM_013450, “Homo sapiens


bromodomain adjacent to zinc finger domain, 2B (BAZ2B), mRNA”,


gi|7304922|ref|NM_013450.1|[7304922]; 403: NM_014015, “Homo sapiens dexamethasone-


induced transcript (DEXI), mRNA”, gi|33620720|ref|NM_014015.3|[33620720]; 404:


NM_014099,, ref|NM_014099.1|[7662610], This record was temporarily removed by RefSeq


staff for additional review.,, 405: NM_014123,, ref|NM_014123.1|[7662539], This record was


temporarily removed by RefSeq staff for additional review.,, 406: NM_014124,,


ref|NM_014124.1|[7662541], This record was temporarily removed by RefSeq staff for


additional review.,, 407: NM_014165, “Homo sapiens chromosome 6 open reading frame 66


(C6orf66), mRNA”, gi|7661785|ref|NM_014165.1|[7661785]; 408: NM_014222, “Homo



sapiens NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8, 19 kDa”, “(NDUFA8),



nuclear gene encoding mitochondrial protein, mRNA”,


gi|33519464|ref|NM_014222.2|[33519464]; 409: NM_014236, “Homo sapiens


glyceronephosphate O-acyltransferase (GNPAT), mRNA”,


gi|7657133|ref|NM_014236.1|[7657133]; 410: NM_014301, “Homo sapiens nitrogen fixation


cluster-like (NIFU), mRNA”, gi|24307952|ref|NM_014301.1|[24307952]; 411: NM_014332,


Homo sapiens small muscle protein, X-linked (SMPX), mRNA”,


gi|10047089|ref|NM_014332.1|[10047089]; 412: NM_014342, “Homo sapiens mitochondrial


carrier homolog 2 (C. elegans) (MTCH2), nuclear gene”, “encoding mitochondrial protein,


mRNA”, gi|40254847|ref|NM_014342.2|[40254847]; 413: NM_014348, “Homo sapiens


POM121 membrane glycoprotein-like 1 (rat) (POM121L1), mRNA”,


gi|7657468|ref|NM_014348.1|[7657468]; 414: NM_014393, “Homo sapiens staufen, RNA


binding protein, homolog 2 (Drosophila) (STAU2), mRNA”,


gi|7657624|ref|NM_014393.1|[7657624]; 415: NM_014433, “Homo sapiens rhabdoid tumor


deletion region gene 1 (RTDR1), mRNA”, gi|22209005|ref|NM_014433.2|[22209005]; 416:


NM_014453, “Homo sapiens putative breast adenocarcinoma marker (32 kD) (BC-2),


transcript”, “variant 1, mRNA”, gi|38372936|ref|NM_014453.2|[38372936]; 417: NM_014548,


Homo sapiens tropomodulin 2 (neuronal) (TMOD2), mRNA”,


gi|40789262|ref|NM_014548.2|[40789262]; 418: NM_014576, “Homo sapiens apobec-1


complementation factor (ACF), transcript variant 1, mRNA”,


gi|20357571|ref|NM_014576.2|[20357571]; 419: NM_014606,, ref|NM_014606.1|[7657151],


This record was temporarily removed by RefSeq staff for additional review.,, 420: NM_014617,


Homo sapiens crystallin, gamma A (CRYGA), mRNA”,


gi|13376998|ref|NM_014617.2|[13376998]; 421: NM_014662,, ref|NM_014662.1|[7662221],


This record was temporarily removed by RefSeq staff for additional review.,, 422: NM_014674,,


ref|NM_014674.1|[7662001], This record was temporarily removed by RefSeq staff for


additional review.,, 423: NM_014685, “Homo sapiens homocysteine-inducible, endoplasmic


reticulum stress-inducible,”, “ubiquitin-like domain member 1 (HERPUD1), mRNA”,


gi|7661869|ref|NM_014685.1|[7661869]; 424: NM_014702,, ref|NM_014702.1|[7662095], This


record was temporarily removed by RefSeq staff for additional review.,, 425: NM_014731,


Homo sapiens ProSAPiP1 protein (ProSAPiP1), mRNA”,


gi|35493938|ref|NM_014731.2|[35493938]; 426: NM_014745, “Homo sapiens KIAA0233 gene


product (KIAA0233), mRNA”, gi|7662013|ref|NM_014745.1|[7662013]; 427: NM_014748,


Homo sapiens sorting nexin 17 (SNX17), mRNA”, gi|23238249|ref|NM_014748.2|[23238249];


428: NM_014766, “Homo sapiens secernin 1 (SCRN1), mRNA”,


gi|28461170|ref|NM_014766.2|[28461170]; 429: NM_014786, “Homo sapiens Rho guanine


nucleotide exchange factor (GEF) 17 (ARHGEF17), mRNA”,


gi|21361457|ref|NM_014786.2|[21361457]; 430: NM_014813,, ref|NM_014813.1|[7662319],


This record was temporarily removed by RefSeq staff for additional review.,, 431: NM_014814,


Homo sapiens proteasome regulatory particle subunit p44S10 (p44S10), mRNA”,


gi|7661913|ref|NM_014814.1|[7661913]; 432: NM_014849, “Homo sapiens synaptic vesicle


glycoprotein 2A (SV2A), mRNA”, gi|41281523|ref|NM_014849.2|[41281523]; 433:


NM_014901, “Homo sapiens ring finger protein 44 (RNF44), mRNA”,


gi|42718018|ref|NM_014901.4|[42718018]; 434: NM_014907, “Homo sapiens FERM and PDZ


domain containing 1 (FRMPD1), mRNA”, gi|7662415|ref|NM_014907.1|[7662415]; 435:


NM_014912, “Homo sapiens cytoplasmic polyadenylation element binding protein 3 (CPEB3),


mRNA”, gi|41281549|ref|NM_014912.2|[41281549]; 436: NM_014926, “Homo sapiens slit and


trk like gene 3 (SLITRK3), mRNA”, gi|40217819|ref|NM_014926.2|[40217819]; 437:


NM_014952, “Homo sapiens bromo adjacent homology domain containing 1 (BAHD1),


mRNA”, gi|41281572|ref|NM_014952.2|[41281572]; 438: NM_015084, “Homo sapiens


mitochondrial ribosomal protein S27 (MRPS27), nuclear gene encoding”, “mitochondrial


protein, mRNA”, gi|16950608|ref|NM_015084.1|[16950608]; 439: NM_015089, “Homo sapiens


p53-associated parkin-like cytoplasmic protein (PARC), mRNA”,


gi|24307990|ref|NM_015089.1|[24307990]; 440: NM_015163, “Homo sapiens tripartite motif-


containing 9 (TRIM9), transcript variant 1, mRNA”, gi|29543553|ref|NM_015163.3|[29543553];


441: NM_015229, “Homo sapiens KIAA0664 protein (KIAA0664), mRNA”,


gi|40254858|ref|NM_015229.2|[40254858]; 442: NM_015343, “Homo sapiens dullard homolog


(Xenopus laevis) (DULLARD), mRNA”, gi|34222318|ref|NM_015343.3|[34222318]; 443:


NM_015362,, ref|NM_015362.3|[44662829]; 444: NM_015372, “Homo sapiens hypothetical


protein HSN44A4A (HSN44A4A), mRNA”, gi|7661723|ref|NM_015372.1|[7661723]; 445:


NM_015480, “Homo sapiens poliovirus receptor-related 3 (PVRL3), mRNA”,


gi|11386198|ref|NM_015480.1|[11386198]; 446: NM_015623,, ref|NM_015623.2|[32306520],


This record was temporarily removed by RefSeq staff for additional review.,, 447: NM_015671,,


ref|NM_015671.2|[34147332], This record was replaced or removed. See revision history for


details.,, 448: NM_015710, “Homo sapiens glioma tumor suppressor candidate region gene 2


(GLTSCR2), mRNA”, gi|21359905|ref|NM_015710.2|[21359905]; 449: NM_015926, “Homo



sapiens putative secreted protein ZSIG11 (ZSIG11), mRNA”,



gi|34147580|ref|NM_015926.3|[34147580]; 450: NM_015957, “Homo sapiens likely ortholog of


mouse monocyte macrophage 19 (MMRP19), mRNA”, gi|7705723|ref|NM_015957.1|[7705723];


451: NM_015964, “Homo sapiens brain specific protein (CGI-38), mRNA”,


gi|7706275|ref|NM_015964.1|[7706275]; 452: NM_016004, “Homo sapiens chromosome 20


open reading frame 9 (C20orf9), mRNA”, gi|7705768|ref|NM_016004.1|[7705768]; 453:


NM_016067, “Homo sapiens mitochondrial ribosomal protein S18C (MRPS18C), nuclear


gene”, “encoding mitochondrial protein, mRNA”, gi|7705629|ref|NM_016067.1|[7705629]; 454:


NM_016082, “Homo sapiens CDK5 regulatory subunit associated protein 1 (CDK5RAP1),


transcript”, “variant 2, mRNA”, gi|28872783|ref|NM_016082.3|[28872783]; 455: NM_016090,


Homo sapiens RNA binding motif protein 7 (RBM7), mRNA”,


gi|31543547|ref|NM_016090.2|[31543547]; 456: NM_016187, “Homo sapiens bridging


integrator 2 (BIN2), mRNA”, gi|7705295|ref|NM_016187.1|[7705295]; 457: NM_016210,


Homo sapiens g20 protein (LOC51161), mRNA”, gi|31543080|ref|NM_016210.2|[31543080];


458: NM_016231, “Homo sapiens nemo like kinase (NLK), mRNA”,


gi|42734431|ref|NM_016231.2|[42734431]; 459: NM_016239, “Homo sapiens myosin XVA


(MYO15A), mRNA”, gi|22547228|ref|NM_016239.2|[22547228]; 460: NM_016292, “Homo



sapiens heat shock protein 75 (TRAP1), mRNA”, gi|7706484|ref|NM_016292.1|[7706484]; 461:



NM_016298, “Homo sapiens muscle disease-related protein (LOC51725), mRNA”,


gi|7706492|ref|NM_016298.1|[7706492]; 462: NM_016324, “Homo sapiens zinc finger protein


274 (ZNF274), transcript variant ZNF274b, mRNA”,


gi|19743797|ref|NM_016324.2|[19743797]; 463: NM_016331, “Homo sapiens zinc finger


protein ANC_2H01 (ANC_2H01), mRNA”, gi|7705934|ref|NM_016331.1|[7705934]; 464:


NM_016352, “Homo sapiens carboxypeptidase A4 (CPA4), mRNA”,


gi|10047105|ref|NM_016352.1|[10047105]; 465: NM_016368, “Homo sapiens myo-inositol 1-


phosphate synthase A1 (ISYNA1), mRNA”, gi|21902536|ref|NM_016368.3|[21902536]; 466:


NM_016388, “Homo sapiens T-cell receptor interacting molecule (TRIM), mRNA”,


gi|7706744|ref|NM_016388.1|[7706744]; 467: NM_016649, “Homo sapiens chromosome 20


open reading frame 6 (C20orf6), mRNA”, gi|22507381|ref|NM_016649.3|[22507381]; 468:


NM_017409, “Homo sapiens homeo box C10 (HOXC10), mRNA”,


gi|24497532|ref|NM_017409.2|[24497532]; 469: NM_017410, “Homo sapiens homeo box C13


(HOXC13), mRNA”, gi|24497535|ref|NM_017410.2|[24497535]; 470: NM_017418, “Homo



sapiens deleted in esophageal cancer 1 (DEC1), mRNA”,



gi|8393249|ref|NM_017418.1|[8393249]; 471: NM_017509, “Homo sapiens kallikrein 15


(KLK15), transcript variant 4, mRNA”, gi|20302142|ref|NM_017509.2|[20302142]; 472:


NM_017528, “Homo sapiens Williams Beuren syndrome chromosome region 22 (WBSCR22),


mRNA”, gi|23199994|ref|NM_017528.2|[23199994]; 473: NM_017534, “Homo sapiens myosin,


heavy polypeptide 2, skeletal muscle, adult (MYH2), mRNA”,


gi|42476189|ref|NM_017534.2|[42476189]; 474: NM_017582, “Homo sapiens ubiquitin-


conjugating enzyme E2Q (putative) (UBE2Q), mRNA”,


gi|38045949|ref|NM_017582.5|[38045949]; 475: NM_017704, “Homo sapiens fetal globin-


inducing factor (FGIF), mRNA”, gi|41350197|ref|NM_017704.2|[41350197]; 476: NM_017705,


Homo sapiens membrane progestin receptor gamma (MPRG), mRNA”,


gi|31377751|ref|NM_017705.2|[31377751]; 477: NM_017738, “Homo sapiens chromosome 9


open reading frame 39 (C9orf39), mRNA”, gi|8923250|ref|NM_017738.1|[8923250]; 478:


NM_017740, “Homo sapiens zinc finger, DHHC domain containing 7 (ZDHHC7), mRNA”,


gi|8923254|ref|NM_017740.1|[8923254]; 479: NM_017745, “Homo sapiens BCL6 co-repressor


(BCOR), transcript variant 1, mRNA”, gi|21071036|ref|NM_017745.4|[21071036]; 480:


NM_017746, “Homo sapiens testis expressed gene 10 (TEX10), mRNA”,


gi|8923268|ref|NM_017746.1|[8923268]; 481: NM_017786, “Homo sapiens hypothetical


protein FLJ20366 (FLJ20366), mRNA”, gi|8923340|ref|NM_017786.1|[8923340]; 482:


NM_017793, “Homo sapiens RNase P protein subunit p25 (Rpp25), mRNA”,


gi|8923354|ref|NM_017793.1|[8923354]; 483: NM_017806, “Homo sapiens hypothetical


protein FLJ20406 (FLJ20406), mRNA”, gi|8923377|ref|NM_17806.1|[8923377]; 484:


NM_017815, “Homo sapiens chromosome 14 open reading frame 94 (C14orf94), mRNA”,


gi|8923395|ref|NM_017815.1|[8923395]; 485: NM_017847, “Homo sapiens chromosome 1


open reading frame 27 (C1orf27), mRNA”, gi|20127566|ref|NM_017847.2|[20127566]; 486:


NM_017865, “Homo sapiens hypothetical protein FLJ20531 (FLJ20531), mRNA”,


gi|21361765|ref|NM_017865.2|[21361765]; 487: NM_017893, “Homo sapiens sema domain,


immunoglobulin domain (Ig), transmembrane domain (TM)”, “and short cytoplasmic domain,


(semaphorin) 4G (SEMA4G), mRNA”, gi|28872813|ref|NM_017893.2|[28872813]; 488:


NM_017901, “Homo sapiens two pore segment channel 1 (TPCN1), mRNA”,


gi|29725621|ref|NM_017901.3|[29725621]; 489: NM_017915, “Homo sapiens hypothetical


protein FLJ20641 (FLJ20641), mRNA”, gi|8923595|ref|NM_017915.1|[8923595]; 490:


NM_017941, “Homo sapiens lung cancer-related protein 8 (HLC-8), mRNA”,


gi|34222156|ref|NM_017941.3|[34222156]; 491: NM_017961,, ref|NM_017961.3|[31982883],


This record was temporarily removed by RefSeq staff for additional review.,, 492: NM_017991,


Homo sapiens hypothetical protein FLJ10081 (FLJ10081), mRNA”,


gi|21361733|ref|NM_017991.3|[21361733]; 493: NM_018005,, ref|NM_018005.1|[8922245],


This record was replaced or removed. See revision history for details.,, 494: NM_018019,


Homo sapiens mediator subunit 25 (MED25), mRNA”,


gi|22907057|ref|NM_018019.2|[2290705]; 495: NM_018026, “Homo sapiens phosphofurin


acidic cluster sorting protein 1 (PACS1), mRNA”, gi|30089915|ref|NM_018026.2|[30089915];


496: NM_018058, “Homo sapiens cartilage acidic protein 1 (CRTAC1), mRNA”,


gi|42415498|ref|NM_018058.2|[42415498]; 497: NM_018125, “Homo sapiens hypothetical


protein FLJ10521 (FLJ10521), mRNA”, gi|33354274|ref|NM_018125.2|[33354274]; 498:


NM_018157, “Homo sapiens brain synembryn (hSyn), mRNA”,


gi|8922554|ref|NM_018157.1|[8922554]; 499: NM_018163, “Homo sapiens hypothetical


protein FLJ10634 (FLJ10634), mRNA”, gi|8922562|ref|NM_018163.1|[8922562]; 500:


NM_018176, “Homo sapiens leucine-rich repeat LGI family, member 2 (LGI2), mRNA”,


gi|21313637|ref|NM_018176.2|[21313637]; 501: NM_018180, “Homo sapiens DEAH (Asp-


Glu-Ala-His) box polypeptide 32 (DHX32), mRNA”,


gi|20336299|ref|NM_018180.2|[20336299]; 502: NM_018192, “Homo sapiens myxoid


liposarcoma associated protein 4 (MLAT4), mRNA”,


gi|27764881|ref|NM_018192.2|[27764881]; 503: NM_018195, “Homo sapiens hypothetical


protein FLJ10726 (FLJ10726), mRNA”, gi|40254918|ref|NM_018195.2|[40254918]; 504:


NM_018206, “Homo sapiens vacuolar protein sorting 35 (yeast) (VPS35), mRNA”,


gi|41352714|ref|NM_018206.3|[41352714]; 505: NM_018233, “Homo sapiens hypothetical


protein FLJ10826 (FLJ10826), mRNA”, gi|42476029|ref|NM_018233.2|[42476029]; 506:


NM_018245, “Homo sapiens hypothetical protein FLJ10851 (FLJ10851), mRNA”,


gi|8922715|ref|NM_018245.1|[8922715]; 507: NM_018261, “Homo sapiens SEC3-like 1 (S. cerevisiae)


(SEC3L1), transcript variant 1, mRNA”, gi|30410719|ref|NM_018261.2|[30410719];


508: NM_018303, “Homo sapiens SEC5-like 1 (S. cerevisiae) (SEC5L1), mRNA”,


gi|30581133|ref|NM_018303.41|[30581133]; 509: NM_018306, “Homo sapiens hypothetical


protein FLJ11036 (FLJ11036), mRNA”, gi|31542666|ref|NM_018306.2|[31542666]; 510:


NM_018327, “Homo sapiens chromosome 20 open reading frame 38 (C20orf38), mRNA”,


gi|8922874|ref|NM_018327.1|[8922874]; 511: NM_018330, “Homo sapiens KIAA1598 protein


(KIAA1598), mRNA”, gi|21314680|ref|NM_018330.2|[21314680]; 512: NM_018404, “Homo



sapiens centaurin, alpha 2 (CENTA2), mRNA”, gi|8923762|ref|NM_018404.1|[8923762]; 513:



NM_018430, “Homo sapiens translin-associated factor X interacting protein 1 (TSNAXIP1),


mRNA”, gi|8923845|ref|NM_018430.1|[8923845]; 514: NM_018431, “Homo sapiens docking


protein 5 (DOK5), transcript variant 1, mRNA”, gi|29544725|ref|NM_018431.2|[29544725];


515: NM_018459,, ref|NM_018459.1|[8922103], This record was replaced or removed. See


revision history for details.,, 516: NM_018465, “Homo sapiens chromosome 9 open reading


frame 46 (C9orf46), mRNA”, gi|8923931|ref|NM_018465.1|[8923931]; 517: NM_018484,


Homo sapiens solute carrier family 22 (organic anion/cation transporter), member”, “11


(SLC22A11), mRNA”, gi|24497483|ref|NM_018484.2|[24497483]; 518: NM_018518, Homo



sapiens MCM10 minichromosome maintenance deficient 10 (S. cerevisiae), “(MCM10),



transcript variant 2, mRNA”, gi|33383234|ref|NM_018518.3|[33383234]; 519: NM_018558,


Homo sapiens gamma-aminobutyric acid (GABA) receptor, theta (GABRQ), mRNA”,


gi|8924257|ref|NM_018558.1|[8924257]; 520: NM_018562,, ref|NM_018562.1|[8923971], This


record was temporarily removed by RefSeq staff for additional review.,, 521: NM_018584,


Homo sapiens calcium/calmodulin-dependent protein kinase II (CaMKIINalpha), mRNA”,


gi|31324542|ref|NM_018584.4|[31324542]; 522: NM_018608,, ref|NM_018608.1|[8924095],


This record was temporarily removed by RefSeq staff for additional review.,, 523: NM_018641,


Homo sapiens carbohydrate (chondroitin 4) sulfotransferase 12 (CHST12), mRNA”,


gi|20070291|ref|NM_018641.2|[20070291]; 524: NM_018947, “Homo sapiens cytochrome c,


somatic (CYCS), nuclear gene encoding mitochondrial”, “protein, mRNA”,


gi|34328939|ref|NM_018947.4|[34328939]; 525: NM_018957, “Homo sapiens SH3-domain


binding protein 1 (SH3BP1), mRNA”, gi|15147251|ref|NM_018957.2|[15147251]; 526:


NM_018959, “Homo sapiens DAZ associated protein 1 (DAZAP1), transcript variant 2,


mRNA”, gi|25470885|ref|NM_018959.2|[25470885]; 527: NM_018970, “Homo sapiens G


protein-coupled receptor 85 (GPR85), mRNA”, gi|31377760|ref|NM_018970.3|[31377760]; 528:


NM_018993, “Homo sapiens Ras and Rab interactor 2 (RIN2), mRNA”,


gi|35493905|ref|NM_018993.2|[35493905]; 529: NM_019028, “Homo sapiens HIP14-related


protein (HIP14L), mRNA”, gi|9506622|ref|NM_019028.1|[9506622]; 530: NM_019044, “Homo



sapiens hypothetical protein FLJ10996 (FLJ10996), mRNA”,



gi|21361622|ref|NM_019044.2|[21361622]; 531: NM_019063, “Homo sapiens echinoderm


microtubule associated protein like 4 (EML4), mRNA”,


gi|19923496|ref|NM_019063.2|[19923496]; 532: NM_019099, “Homo sapiens hypothetical


protein LOC55924 (LOC55924), transcript variant 1,”, mRNA,


gi|39545578|ref|NM_019099.3|[39545578]; 533: NM_019617, “Homo sapiens gastrokine 1


(GKN1), mRNA”, gi|27894363|ref|NM_019617.2|[27894363]; 534: NM_019618, “Homo



sapiens interleukin 1 family, member 9 (IL1F9), mRNA”,



gi|27894314|ref|NM_019618.2|[27894314]; 535: NM_020170, “Homo sapiens hypothetical


protein from EUROIMAGE 2021883 (LOC56926), mRNA”,


gi|24308184|ref|NM_020170.1|[24308184]; 536: NM_020188, “Homo sapiens DC13 protein


(DC13), mRNA”, gi|42476040|ref|NM_020188.2|[42476040]; 537: NM_020228, “Homo



sapiens PR domain containing 10 (PRDM10), transcript variant 1, mRNA”,



gi|41349457|ref|NM_020228.2|[41349457]; 538: NM_020237, “Homo sapiens chromosome 8


open reading frame 17 (C8orf17), mRNA”, gi|9910447|ref|NM_020237.1|[9910447]; 539:


NM_020346, Homo sapiens solute carrier family 17 (sodium-dependent inorganic phosphate,


“cotransporter), member 6 (SLC17A6), mRNA”, gi|9966810|ref|NM_020346.1|[9966810]; 540:


NM_020418, “Homo sapiens poly(rC) binding protein 4 (PCBP4), transcript variant 1, mRNA”,


gi|14670367|ref|NM_020418.2|[14670367]; 541: NM_020456, “Homo sapiens chromosome 13


open reading frame 1 (C13orf1), mRNA”, gi|20531764|ref|NM_020456.1|[20531764]; 542:


NM_020465, “Homo sapiens NDRG family member 4 (NDRG4), mRNA”,


gi|14165263|ref|NM_020465.1|[14165263]; 543: NM_020470, “Homo sapiens Yip1 interacting


factor homolog (S. cerevisiae) (YIF1), mRNA”, gi|9994168|ref|NM_020470.1|[9994168]; 544:


NM_020547, “Homo sapiens anti-Mullerian hormone receptor, type II (AMHR2), mRNA”,


gi|10198655|ref|NM_020547.1|[10198655]; 545: NM_020990, “Homo sapiens creatine kinase,


mitochondrial 1 (ubiquitous) (CKMT1), nuclear gene”, “encoding mitochondrial protein,


mRNA”, gi|11641403|ref|NM_020990.2|[11641403]; 546: NM_020999, “Homo sapiens


neurogenin 3 (NEUROG3), mRNA”, gi|10337610|ref|NM_020999.1|[10337610]; 547:


NM_021018, “Homo sapiens histone 1, H3f (HIST1H3F), mRNA”,


gi|21396497|ref|NM_021018.2|[21396497]; 548: NM_021025, “Homo sapiens T-cell leukemia,


homeobox 3 (TLX3), mRNA”, gi|10440563|ref|NM_021025.1|[10440563]; 549: NM_021062,


Homo sapiens histone 1, H2bb (HIST1H2BB), mRNA”,


gi|19924303|ref|NM_021062.2|[19924303]; 550: NM_021067,, ref|NM_021067.1|[10800147],


This record was temporarily removed by RefSeq staff for additional review.,, 551: NM_021082,


Homo sapiens solute carrier family 15 (H+/peptide transporter), member 2”, “(SLC15A2),


mRNA”, gi|31543623|ref|NM_021082.2|[31543623]; 552: NM_021161, “Homo sapiens


potassium channel, subfamily K, member 10 (KCNK10), transcript”, “variant 1, mRNA”,


gi|20143942|ref|NM_021161.3|[20143942]; 553: NM_021174, “Homo sapiens p30 DBC protein


(DBC-1), transcript variant 1, mRNA”, gi|40548406|ref|NM_021174.4|[40548406]; 554:


NM_021176, Homo sapiens islet-specific glucose-6-phosphatase catalytic subunit-related,


“protein (IGRP), mRNA”, gi|10863974|ref|NM_021176.1|[10863974]; 555: NM_021184,


Homo sapiens chromosome 6 open reading frame 47 (C6orf47), mRNA”,


gi|10863984|ref|NM_021184.1|[10863984]; 556: NM_021198, “Homo sapiens CTD (carboxy-


terminal domain, RNA polymerase II, polypeptide A)”, “small phosphatase 1 (CTDSP1),


mRNA”, gi|10864008|ref|NM_021198.1|[10864008]; 557: NM_021249, “Homo sapiens sorting


nexin 6 (SNX6), transcript variant 1, mRNA”, gi|23111048|ref|NM_021249.2|[23111048]; 558:


NM_021259, “Homo sapiens transmembrane protein 8 (five membrane-spanning domains)


(TMEM8),”, mRNA, gi|10864068|ref|NM_021259.1|[10864068]; 559: NM_021639, “Homo



sapiens hypothetical protein SP192 (SP192), mRNA”,



gi|40255032|ref|NM_021639.3|[40255032]; 560: NM_021812, “Homo sapiens


blepharophimosis, epicanthus inversus and ptosis, candidate 1”, “(BPESC1), mRNA”,


gi|11141882|ref|NM_021812.1|[11141882]; 561: NM_021815, “Homo sapiens solute carrier


family 5 (choline transporter), member 7 (SLC5A7),”, mRNA,


gi|21361898|ref|NM_021815.2|[21361898]; 562: NM_021819, “Homo sapiens lectin, mannose-


binding, 1 like (LMAN1L), mRNA”, gi|11141890|ref|NM_021819.1|[11141890]; 563:


NM_021830, “Homo sapiens progressive external ophthalmoplegia 1 (PEO1), mRNA”,


gi|39725941|ref|NM_021830.3|[39725941]; 564: NM_021833, “Homo sapiens uncoupling


protein 1 (mitochondrial, proton carrier) (UCP1),”, “nuclear gene encoding mitochondrial


protein, mRNA”, gi|21614550|ref|NM_021833.3|[21614550]; 565: NM_021926, “Homo sapiens


aristaless-like homeobox 4 (ALX4), mRNA”, gi|11496266|ref|NM_021926.1|[11496266]; 566:


NM_021934, “Homo sapiens hypothetical protein FLJ11773 (FLJ11773), mRNA”,


gi|34222337|ref|NM_021934.3|[34222337]; 567: NM_021969, “Homo sapiens nuclear receptor


subfamily 0, group B, member 2 (NR0B2), mRNA”, gi|13259502|ref|NM_021969.1|[13259502];


568: NM_021981,, ref|NM_021981.1|[11415055], This record was temporarily removed by


RefSeq staff for additional review.,, 569: NM_022039, “Homo sapiens split hand/foot


malformation (ectrodactyly) type 3 (SHFM3), mRNA”,


gi|24475655|ref|NM_022039.2|[24475655]; 570: NM_022054, “Homo sapiens potassium


channel, subfamily K, member 13 (KCNK13), mRNA”,


gi|16306554|ref|NM_022054.2|[16306554]; 571: NM_022064, “Homo sapiens ring finger


protein 123 (RNF123), mRNA”, gi|37588868|ref|NM_022064.2|[37588868]; 572: NM_022082,


Homo sapiens chromosome 20 open reading frame 59 (C20orf59), mRNA”,


gi|31542262|ref|NM_022082.2|[31542262]; 573: NM_022114, “Homo sapiens PR domain


containing 16 (PRDM16), transcript variant 1, mRNA”,


gi|41349469|ref|NM_022114.2|[41349469]; 574: NM_022120, “Homo sapiens 3-oxoacid CoA


transferase 2 (OXCT2), mRNA”, gi|11545840|ref|NM_022120.1|[11545840]; 575: NM_022131,


Homo sapiens calsyntenin 2 (CLSTN2), mRNA”, gi|11545860|ref|NM_022131.1|[11545860];


576: NM_022135, “Homo sapiens popeye domain containing 2 (POPDC2), mRNA”,


gi|22209003|ref|NM_022135.2|[22209003]; 577: NM_022168, “Homo sapiens melanoma


differentiation associated protein-5 (MDA5), mRNA”,


gi|27886567|ref|NM_022168.2|[27886567]; 578: NM_022354, “Homo sapiens spermatogenesis


associated 1 (SPATA1), mRNA”, gi|11641266|ref|NM_022354.1|[11641266]; 579: NM_022449,


Homo sapiens RAB17, member RAS oncogene family (RAB17), mRNA”,


gi|11967980|ref|NM_022449.1|[11967980]; 580: NM_022452, “Homo sapiens fibrosin 1


(FBS1), mRNA”, gi|11967986|ref|NM_022452.1|[11967986]; 581: NM_022489, “Homo sapiens


hypothetical protein FLJ22056 (FLJ22056), mRNA”,


gi|11968044|ref|NM_022489.1|[11968044]; 582: NM_022494, “Homo sapiens zinc finger,


DHHC domain containing 6 (ZDHHC6), mRNA”, gi|11968052|ref|NM_022494.1|[11968052];


583: NM_022568, “Homo sapiens aldehyde dehydrogenase 8 family, member A1 (ALDH8A1),


transcript”, “variant 1, mRNA”, gi|25952149|ref|NM_022568.2|[25952149]; 584: NM_022569,


Homo sapiens N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 4 (NDST4),”, mRNA,


gi|12007649|ref|NM_022569.1|[12007649]; 585: NM_022727, “Homo sapiens HpaII tiny


fragments locus 9C (HTF9C), transcript variant 2, mRNA”,


gi|21361611|ref|NM_022727.3|[21361611]; 586: NM_022748, “Homo sapiens tensin-like SH2


domain-containing 1 (TENS1), mRNA”, gi|17511208|ref|NM_022748.6|[17511208]; 587:


NM_022751, “Homo sapiens chromosome 18 open reading frame 11 (C18orf11), mRNA”,


gi|12232414|ref|NM_022751.1|[12232414]; 588: NM_022754, “Homo sapiens sideroflexin 1


(SFXN1), mRNA”, gi|40255158|ref|NM_022754.4|[40255158]; 589: NM_022765, Homo



sapiens NEDD9 interacting protein with calponin homology and LIM domains, “(NICAL),



mRNA”, gi|20127615|ref|NM_022765.2|[20127615]; 590: NM_022766, “Homo sapiens


ceramide kinase (CERK), transcript variant 1, mRNA”,


gi|32967301|ref|NM_022766.4|[32967301]; 591: NM_022771, “Homo sapiens TBC1 domain


family, member 15 (TBC1D15), mRNA”, gi|37059748|ref|NM_022771.3|[37059748]; 592:


NM_022779, “Homo sapiens DEAD (Asp-Glu-Ala-Asp) box polypeptide 31 (DDX31),


transcript”, “variant 1, mRNA”, gi|20336296|ref|NM_022779.7|[20336296]; 593: NM_023009,


Homo sapiens MARCKS-like protein (MLP), mRNA”,


gi|32401423|ref|NM_023009.4|[32401423]; 594: NM_023112, “Homo sapiens chromosome 14


open reading frame 137 (C14orf137), mRNA”, gi|31881722|ref|NM_023112.2|[31881722]; 595:


NM_023933, “Homo sapiens hypothetical protein MGC2494 (MGC2494), mRNA”,


gi|13027599|ref|NM_023933.1|[13027599]; 596: NM_024034, Homo sapiens ganglioside-


induced differentiation-associated protein 1-like 1, “(GDAP1L1), mRNA”,


gi|30581159|ref|NM_024034.3|[30581159]; 597: NM_024057, “Homo sapiens nucleoporin


Nup37 (Nup37), mRNA”, gi|34222120|ref|NM_024057.2|[34222120]; 598: NM_024294,


Homo sapiens hypothetical protein MGC4614 (MGC4614), mRNA”,


gi|13236513|ref|NM_024294.1|[13236513]; 599: NM_024323, “Homo sapiens hypothetical


protein MGC11271 (MGC11271), mRNA”, gi|31543147|ref|NM_024323.3|[31543147]; 600:


NM_024334, “Homo sapiens hypothetical protein MGC3222 (MGC3222), mRNA”,


gi|13236586|ref|NM_024334.1|[13236586]; 601: NM_024493, “Homo sapiens zinc finger


protein 306 (ZNF306), mRNA”, gi|24308296|ref|NM_024493.1|[24308296]; 602: NM_024506,


Homo sapiens galactosidase, beta 1-like (GLB1L), mRNA”,


gi|40255042|ref|NM_024506.3|[40255042]; 603: NM_024515, “Homo sapiens hypothetical


protein MGC4645 (MGC4645), mRNA”, gi|34147381|ref|NM_024515.2|[34147381]; 604:


NM_024523, “Homo sapiens GRIP and coiled-coil domain-containing 1 (GCC1), mRNA”,


gi|34305454|ref|NM_024523.5|[34305454]; 605: NM_024546, “Homo sapiens chromosome 13


open reading frame 7 (C13orf7), mRNA”, gi|21362045|ref|NM_024546.2|[21362045]; 606:


NM_024560, “Homo sapiens FLJ21963 protein (FLJ21963), mRNA”,


gi|38505216|ref|NM_024560.2|[38505216]; 607: NM_024589, “Homo sapiens leucine zipper


domain protein (FLJ22386), mRNA”, gi|13375778|ref|NM_024589.1|[13375778]; 608:


NM_024604, “Homo sapiens hypothetical protein FLJ21908 (FLJ21908), mRNA”,


gi|13375808|ref|NM_024604.1|[13375808]; 609: NM_024624, Homo sapiens SMC6 structural


maintenance of chromosomes 6-like 1 (yeast), “(SMC6L1), mRNA”,


gi|31543646|ref|NM_024624.2|[31543646]; 610: NM_024626, “Homo sapiens immune


costimulatory protein B7-H4 (B7-H4), mRNA”, gi|13375849|ref|NM_024626.1|[13375849];


611: NM_024630, “Homo sapiens zinc finger, DHHC domain containing 14 (ZDHHC14),


mRNA”, gi|24371240|ref|NM_024630.2|[24371240]; 612: NM_024643, “Homo sapiens


chromosome 14 open reading frame 140 (C14orf140), mRNA”,


gi|13375882|ref|NM_024643.1|[13375882]; 613: NM_024671, “Homo sapiens hypothetical


protein FLJ23436 (FLJ23436), mRNA”, gi|20127628|ref|NM_024671.2|[20127628]; 614:


NM_024696, “Homo sapiens hypothetical protein FLJ23058 (FLJ23058), mRNA”,


gi|13375978|ref|NM_024696.1|[13375978]; 615: NM_024713, “Homo sapiens hypothetical


protein FLJ22557 (FLJ22557), mRNA”, gi|13376012|ref|NM_024713.1|[13376012]; 616:


NM_024728, “Homo sapiens chromosome 7 open reading frame 10 (C7orf10), mRNA”,


gi|13376041|ref|NM_024728.1|[13376041]; 617: NM_024731, “Homo sapiens chromosome 16


open reading frame 44 (C16orf44), mRNA”, gi|31542245|ref|NM_024731.2|[31542245]; 618:


NM_024734, “Homo sapiens calmin (calponin-like, transmembrane) (CLMN), mRNA”,


gi|19923598|ref|NM_024734.2|[19923598]; 619: NM_024754, “Homo sapiens hypothetical


protein FLJ12598 (FLJ12598), mRNA”, gi|20127633|ref|NM_024754.2|[20127633]; 620:


NM_024778, “Homo sapiens ring finger protein 127 (RNF127), mRNA”,


gi|37622895|ref|NM_024778.3|[37622895]; 621: NM_024783, “Homo sapiens hypothetical


protein FLJ23598 (FLJ23598), mRNA”, gi|31657118|ref|NM_024783.2|[31657118]; 622:


NM_024799, “Homo sapiens hypothetical protein FLJ13224 (FLJ13224), mRNA”,


gi|13376172|ref|NM_024799.1|[13376172]; 623: NM_024807, “Homo sapiens chromosome 6


open reading frame 76 (C6orf76), mRNA”, gi|13376188|ref|NM_024807.1|[13376188]; 624:


NM_024820, “Homo sapiens KIAA1608 (KIAA1608), mRNA”,


gi|13449264|ref|NM_024820.1|[13449264]; 625: NM_024827, “Homo sapiens histone


deacetylase 11 (HDAC11), mRNA”, gi|13376227|ref|NM_024827.1|[13376227]; 626:


NM_024874, “Homo sapiens polycystic kidney disease 1-like (PKD1-like), transcript variant


1,”, mRNA, gi|33359220|ref|NM_024874.3|[33359220]; 627: NM_024882, “Homo sapiens


chromosome 6 open reading frame 155 (C6orf155), mRNA”,


gi|13376326|ref|NM_024882.1|[13376326]; 628: NM_024912,, ref|NM_024912.1|[13376375],


This record was temporarily removed by RefSeq staff for additional review.,, 629: NM_024958,


Homo sapiens chromosome 20 open reading frame 98 (C20orf98), mRNA”,


gi|13376446|ref|NM_024958.1|[13376446]; 630: NM_024969, “Homo sapiens TGF-beta


induced apotosis protein 2 (TAIP-2), mRNA”, gi|23346411|ref|NM_024969.2|[23346411]; 631:


NM_025026, “Homo sapiens hypothetical protein FLJ14107 (FLJ14107), mRNA”,


gi|13376547|ref|NM_025026.1|[13376547]; 632: NM_025079, “Homo sapiens hypothetical


protein FLJ23231 (FLJ23231), mRNA”, gi|13376631|ref|NM_025079.1|[13376631]; 633:


NM_025093,, ref|NM_025093.1|[13376653], This record was temporarily removed by RefSeq


staff for additional review.,, 634: NM_025100, “Homo sapiens chromosome 14 open reading


frame 157 (C14orf157), mRNA”, gi|13376666|ref|NM_025100.1|[13376666]; 635: NM_025137,


Homo sapiens hypothetical protein FLJ21439 (FLJ21439), mRNA”,


gi|33636747|ref|NM_025137.2|[33636747]; 636: NM_025140, “Homo sapiens limkain beta 2


(FLJ22471), mRNA”, gi|13376724|ref|NM_025140.1|[13376724]; 637: NM_025152, “Homo



sapiens chromosome 14 open reading frame 127 (C14orf127), mRNA”,



gi|13376746|ref|NM_025152.1|[13376746]; 638: NM_025212, “Homo sapiens CXXC finger 4


(CXXC4), mRNA”, gi|13376815|ref|NM_025212.1|[13376815]; 639: NM_025236, “Homo



sapiens ring finger protein 39 (RNF39), transcript variant 1, mRNA”,



gi|25777714|ref|NM_025236.2|[25777714]; 640: NM_030769, Homo sapiens N-


acetylneuraminate pyruvate lyase (dihydrodipicolinate synthase), “(NPL), mRNA”,


gi|13540532|ref|NM_030769.1|[13540532]; 641: NM_030785, “Homo sapiens radial


spokehead-like 1 (RSHL1), mRNA”, gi|13540558|ref|NM_030785.1|[13540558]; 642:


NM_030786, “Homo sapiens intermediate filament protein syncoilin (SYNCOILIN), mRNA”,


gi|13540560|ref|NM_030786.1|[13540560]; 643: NM_030804,, ref|NM_030804.1|[13540591],


This record was temporarily removed by RefSeq staff for additional review.,, 644: NM_030818,


Homo sapiens hypothetical protein MGC10471 (MGC10471), mRNA”,


gi|34147391|ref|NM_030818.2|[34147391]; 645: NM_030903, “Homo sapiens olfactory


receptor, family 2, subfamily W, member 1 (OR2W1), mRNA”,


gi|13624328|ref|NM_030903.1|[13624328]; 646: NM_030981, “Homo sapiens RAB1B, member


RAS oncogene family (RAB1B), mRNA”, gi|13569961|ref|NM_030981.1|[13569961]; 647:


NM_031219, “Homo sapiens hypothetical protein MGC12904 (MGC12904), mRNA”,


gi|31377665|ref|NM_031219.2|[31377665]; 648: NM_031269,, ref|NM_031269.1|[13775169],


This record was temporarily removed by RefSeq staff for additional review.,, 649: NM_031284,


Homo sapiens ATP-dependent glucokinase (ADP-GK), mRNA”,


gi|31542508|ref|NM_031284.3|[31542508]; 650: NM_031294, “Homo sapiens hypothetical


protein DKFZp586M1120 (DKFZP586M1120), mRNA”,


gi|33636688|ref|NM_031294.2|[33636688]; 651: NM_031298, “Homo sapiens hypothetical


protein MGC2963 (MGC2963), mRNA”, gi|13775219|ref|NM_031298.1|[13775219]; 652:


NM_031450, “Homo sapiens hypothetical protein p5326 (P5326), mRNA”,


gi|31543378|ref|NM_031450.2[31543378]; 653: NM_032042, “Homo sapiens hypothetical


protein DKFZp564D172 (DKFZP564D172), mRNA”,


gi|37059749|ref|NM_032042.3|[37059749]; 654: NM_032179, “Homo sapiens hypothetical


protein FLJ20542 (FLJ20542), mRNA”, gi|14149862|ref|NM_032179.1|[14149862]; 655:


NM_032204, “Homo sapiens ASC-1 complex subunit P100 (ASC1p100), mRNA”,


gi|34147616|ref|NM_032204.3|[34147616]; 656: NM_032209, “Homo sapiens hypothetical


protein FLJ21777 (FLJ21777), mRNA”, gi|14149905|ref|NM_032209.1|[14149905]; 657:


NM_032338, “Homo sapiens hypothetical protein MGC14817 (MGC14817), mRNA”,


gi|31543151|ref|NM_032338.2|[31543151]; 658: NM_032348, “Homo sapiens hypothetical


protein MGC3047 (MGC3047), mRNA”, gi|39725651|ref|NM_032348.2|[39725651]; 659:


NM_032389, “Homo sapiens zinc finger protein 289, ID1 regulated (ZNF289), mRNA”,


gi|31543982|ref|NM_032389.2|[31543982]; 660: NM_032842, “Homo sapiens hypothetical


protein FLJ14803 (FLJ14803), mRNA”, gi|14249557|ref|NM_032842.1|[14249557]; 661:


NM_033100, “Homo sapiens protocadherin 21 (PCDH21), mRNA”,


gi|16933564|ref|NM_033100.1|[16933564]; 662: NM_033184, “Homo sapiens keratin


associated protein 2-4 (KRTAP2-4), mRNA”, gi|15743557|ref|NM_033184.2|[15743557]; 663:


NM_080284, “Homo sapiens ATP-binding cassette, sub-family A (ABC1), member 6


(ABCA6),”, “transcript variant 1, mRNA”, gi|27436952|ref|NM_080284.2|[27436952]; 664:


NM_080603, “Homo sapiens zinc finger, SWIM domain containing 1 (ZSWIM1), mRNA”,


gi|29126221|ref|NM_080603.2|[29126221]; 665: NM_130463, “Homo sapiens ATPase, H+


transporting, lysosomal 13 kDa, V1 subunit G isoform 2”, “(ATP6V1G2), transcript variant 1,


mRNA”, gi|20357536|ref|NM_130463.2|[20357536]; 666: NM_138340, “Homo sapiens


abhydrolase domain containing 3 (ABHD3), mRNA”,


gi|34304337|ref|NM_138340.3|[34304337]; 667: NM_138967, “Homo sapiens secretory carrier


membrane protein 5 (SCAMP5), mRNA”, gi|42544128|ref|NM_138967.2|[42544128]; 668:


NM_144563, Homo sapiens ribose 5-phosphate isomerase A (ribose 5-phosphate epimerase),


“(RPIA), mRNA”, gi|21389336|ref|NM_144563.1|[21389336]; 669: NM_144718, “Homo



sapiens hypothetical protein AY099107 (LOC152185), mRNA”,



gi|40255074|ref|NM_144718.2|[40255074]; 670: NM_145021, “Homo sapiens c-mir, cellular


modulator of immune recognition (MIR), mRNA”, gi|34222177|ref|NM_145021.2|[34222177];


671: NM_145804, “Homo sapiens ankyrin repeat and BTB (POZ) domain containing 2


(ABTB2), mRNA”, gi|21956638|ref|NM_145804.1|[21956638]; 672: NM_152344, “Homo



sapiens hypothetical protein FLJ30656 (FLJ30656), mRNA”,



gi|22748746|ref|NM_152344.1|[22748746]; 673: NM_152470, “Homo sapiens hypothetical


protein FLJ34218 (FLJ34218), mRNA”, gi|22748990|ref|NM_152470.1|[22748990]; 674:


NM_153045, “Homo sapiens DKFZp547P234 protein (DKFZp547P234), mRNA”,


gi|33356141|ref|NM_153045.2|[33356141]; 675: NM_153354, “Homo sapiens hypothetical


protein MGC33214 (MGC33214), mRNA”, gi|34222213|ref|NM_153354.2|[34222213]; 676:


NM_174975, “Homo sapiens SEC14-like 3 (S. cerevisiae) (SEC14L3), mRNA”,


gi|30410717|ref|NM_174975.2|[30410717]; 677: NM_174977, “Homo sapiens SEC14-like 4 (S. cerevisiae)


(SEC14L4), mRNA”, gi|30410718|ref|NM_174977.2|[30410718]; 678: NM_175852,


Homo sapiens taxilin (DKFZp451J0118), mRNA”, gi|39725959|ref|NM_175852.3|[39725959],
















TABLE 12








Genes having an Gabpa binding site motif















1: NM_000028, “Homo sapiens amylo-1, 6-glucosidase, 4-alpha-glucanotransferase (glycogen”,


“debranching enzyme, glycogen storage disease type III) (AGL), transcript variant”, “4, mRNA”,


gi|4557274|ref|NM_000028.1|[4557274]; 2: NM_000029, “Homo sapiens angiotensinogen


(serine (or cysteine) proteinase inhibitor, clade A”, “(alpha-1 antiproteinase, antitrypsin),


member 8) (AGT), mRNA”, gi|4557286|ref|NM_000029.1|[4557286]; 3: NM_000033, “Homo



sapiens ATP-binding cassette, sub-family D (ALD), member 1 (ABCD1), mRNA”,



gi|7262392|ref|NM_000033.2|[7262392]; 4: NM_000040, “Homo sapiens apolipoprotein C-III


(APOC3), mRNA”, gi|4557322|ref|NM_000040.1|[4557322]; 5: NM_000045, “Homo sapiens


arginase, liver (ARG1), mRNA”, gi|10947138|ref|NM_000045.2|[10947138]; 6: NM_000049,


Homo sapiens aspartoacylase (aminoacylase 2, Canavan disease) (ASPA), mRNA”,


gi|4557334|ref|NM_000049.1|[4557334]; 7: NM_000053, “Homo sapiens ATPase, Cu++


transporting, beta polypeptide (Wilson disease)”, “(ATP7B), mRNA”,


gi|4502322|ref|NM_000053.1|[4502322]; 8: NM_000055, “Homo sapiens butyrylcholinesterase


(BCHE), mRNA”, gi|4557350|ref|NM_000055.1|[4557350]; 9: NM_000057, “Homo sapiens


Bloom syndrome (BLM), mRNA”, gi|4557364|ref|NM_000057.1|[4557364]; 10: NM_000063,


Homo sapiens complement component 2 (C2), mRNA”,


gi|20631970|ref|NM_000063.3|[20631970]; 11: NM_000069, “Homo sapiens calcium channel,


voltage-dependent, L type, alpha 1S subunit”, “(CACNA1S), mRNA”,


gi|4557400|ref|NM_000069.1|[4557400]; 12: NM_000075, “Homo sapiens cyclin-dependent


kinase 4 (CDK4), mRNA”, gi|16936531|ref|NM_000075.2|[16936531]; 13: NM_000092,


Homo sapiens collagen, type IV, alpha 4 (COL4A4), mRNA”,


gi|15890083|ref|NM_000092.2|[15890083]; 14: NM_000103, “Homo sapiens cytochrome P450,


family 19, subfamily A, polypeptide 1 (CYP19A1),”, “transcript variant 1, mRNA”,


gi|13904857|ref|NM_000103.2|[13904857]; 15: NM_000110, “Homo sapiens dihydropyrimidine


dehydrogenase (DPYD), mRNA”, gi|4557874|ref|NM_000110.2|[4557874]; 16: NM_000122,


Homo sapiens excision repair cross-complementing rodent repair deficiency,”,


“complementation group 3 (xeroderma pigmentosum group B complementing) (ERCC3),”,


mRNA, gi|4557562|ref|NM_000122.1|[4557562]; 17: NM_000123, “Homo sapiens excision


repair cross-complementing rodent repair deficiency,”, “complementation group 5 (xeroderma


pigmentosum, complementation group G”, “(Cockayne syndrome)) (ERCC5), mRNA”,


gi|4503600|ref|NM_000123.1|[4503600]; 18: NM_000124, “Homo sapiens excision repair


cross-complementing rodent repair deficiency,”, “complementation group 6 (ERCC6), mRNA”,


gi|4557564|ref|NM_000124.1|[4557564]; 19: NM_000127, “Homo sapiens exostoses (multiple)


1 (EXT1), mRNA”, gi|4557570|ref|NM_000127.1|[4557570]; 20: NM_000129, “Homo sapiens


coagulation factor XIII, A1 polypeptide (F13A1), mRNA”,


gi|9961355|ref|NM_000129.2|[9961355]; 21: NM_000147, “Homo sapiens fucosidase, alpha-L-


1, tissue (FUCA1), mRNA”, gi|24475878|ref|NM_000147.2|[24475878]; 22: NM_000148,



Homo sapiens fucosyltransferase 1 (galactoside 2-alpha-L-fucosyltransferase), “(FUT1),



mRNA”, gi|4503804|ref|NM_000148.1|[4503804]; 23: NM_000158, “Homo sapiens glucan


(1,4-alpha-), branching enzyme 1 (glycogen branching enzyme,”, “Andersen disease, glycogen


storage disease type IV) (GBE1), mRNA”, gi|4557618|ref|NM_000158.1|[4557618]; 24:


NM_000164, “Homo sapiens gastric inhibitory polypeptide receptor (GIPR), mRNA”,


gi|4503998|ref|NM_000164.1|[4503998]; 25: NM_000168, Homo sapiens GLI-Kruppel family


member GLI3 (Greig cephalopolysyndactyly, “syndrome) (GLI3), mRNA”,


gi|13518031|ref|NM_000168.2|[13518031]; 26: NM_000174, “Homo sapiens glycoprotein IX


(platelet) (GP9), mRNA”, gi|4504076|ref|NM_000174.1|[4504076]; 27: NM_000183, Homo



sapiens hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A, “thiolase/enoyl-



Coenzyme A hydratase (trifunctional protein), beta subunit”, “(HADHB), mRNA”,


gi|4504326|ref|NM_000183.1|[4504326]; 28: NM_000188, “Homo sapiens hexokinase 1 (HK1),


nuclear gene encoding mitochondrial protein,”, “transcript variant 1, mRNA”,


gi|4504390|ref|NM_000188.1|[4504390]; 29: NM_000190, “Homo sapiens


hydroxymethylbilane synthase (HMBS), mRNA”, gi|20149499|ref|NM_000190.2|[20149499];


30: NM_000191, Homo sapiens 3-hydroxymethyl-3-methylglutaryl-Coenzyme A lyase,


“(hydroxymethylglutaricaciduria) (HMGCL), mRNA”, gi|4504426|ref|NM_000191.1|[4504426];


31: NM_000193, “Homo sapiens sonic hedgehog homolog (Drosophila) (SHH), mRNA”,


gi|21071042|ref|NM_000193.2|[21071042]; 32: NM_000230, “Homo sapiens leptin (obesity


homolog, mouse) (LEP), mRNA”, gi|4557714|ref|NM_000230.1|[4557714]; 33: NM_000234,


Homo sapiens ligase I, DNA, ATP-dependent (LIG1), mRNA”,


gi|4557718|ref|NM_000234.1|[4557718]; 34: NM_000248, “Homo sapiens microphthalmia-


associated transcription factor (MITF), transcript”, “variant 4, mRNA”,


gi|38156695|ref|NM_000248.2|[38156695]; 35: NM_000249, “Homo sapiens mutL homolog 1,


colon cancer, nonpolyposis type 2 (E. coli) (MLH1),”, mRNA,


gi|28559089|ref|NM_000249.2|[28559089]; 36: NM_000251, “Homo sapiens mutS homolog 2,


colon cancer, nonpolyposis type 1 (E. coli) (MSH2),”, mRNA,


gi|4557760|ref|NM_000251.1|[4557760]; 37: NM_000254, “Homo sapiens 5-


methyltetrahydrofolate-homocysteine methyltransferase (MTR), mRNA”,


gi|4557764|ref|NM_000254.1|[4557764]; 38: NM_000261, “Homo sapiens myocilin, trabecular


meshwork inducible glucocorticoid response”, “(MYOC), mRNA”,


gi|4557778|ref|NM_000261.1|[4557778]; 39: NM_000274, “Homo sapiens ornithine


aminotransferase (gyrate atrophy) (OAT), nuclear gene”, “encoding mitochondrial protein,


mRNA”, gi|4557808|ref|NM_000274.1|[4557808]; 40: NM_000277, “Homo sapiens


phenylalanine hydroxylase (PAH), mRNA”, gi|4557818|ref|NM_000277.1|[4557818]; 41:


NM_000278, “Homo sapiens paired box gene 2 (PAX2), transcript variant b, mRNA”,


gi|34878700|ref|NM_000278.2|[34878700]; 42: NM_000280, “Homo sapiens paired box gene 6


(aniridia, keratitis) (PAX6), mRNA”, gi|4505614|ref|NM_000280.1|[4505614]; 43: NM_000286,


Homo sapiens peroxisomal biogenesis factor 12 (PEX12), mRNA”,


gi|4505720|ref|NM_000286.1|[4505720]; 44: NM_000294, “Homo sapiens phosphorylase


kinase, gamma 2 (testis) (PHKG2), mRNA”, gi|4505784|ref|NM_000294.1|[4505784]; 45:


NM_000297, “Homo sapiens polycystic kidney disease 2 (autosomal dominant) (PKD2),


mRNA”, gi|33286447|ref|NM_000297.2|[33286447]; 46: NM_000300, “Homo sapiens


phospholipase A2, group IIA (platelets, synovial fluid) (PLA2G2A),”, mRNA,


gi|20149501|ref|NM_000300.2|[20149501]; 47: NM_000302, “Homo sapiens procollagen-


lysine, 2-oxoglutarate 5-dioxygenase (lysine”, “hydroxylase, Ehlers-Danlos syndrome type VI)


(PLOD), mRNA”, gi|32307143|ref|NM_000302.2|[32307143]; 48: NM_000304, “Homo sapiens


peripheral myelin protein 22 (PMP22), transcript variant 1, mRNA”,


gi|24430161|ref|NM_000304.2|[24430161]; 49: NM_000308, Homo sapiens protective protein


for beta-galactosidase (galactosialidosis), “(PPGB), mRNA”,


gi|4505988|ref|NM_000308.1|[4505988]; 50: NM_000316, “Homo sapiens parathyroid hormone


receptor 1 (PTHR1), mRNA”, gi|39995096|ref|NM_000316.2|[39995096]; 51: NM_000317,


Homo sapiens 6-pyruvoyltetrahydropterin synthase (PTS), mRNA”,


gi|4506330|ref|NM_000317.1|[4506330]; 52: NM_000318, “Homo sapiens peroxisomal


membrane protein 3, 35 kDa (Zellweger syndrome) (PXMP3),”, mRNA,


gi|4506342|ref|NM_000318.1|[4506342]; 53: NM_000328, “Homo sapiens retinitis pigmentosa


GTPase regulator (RPGR), mRNA”, gi|4506580|ref|NM_000328.1|[4506580]; 54: NM_000347,


Homo sapiens spectrin, beta, erythrocytic (includes spherocytosis, clinical type”, “I) (SPTB),


mRNA”, gi|22507315|ref|NM_000347.3|[22507315]; 55: NM_000348, “Homo sapiens steroid-


5-alpha-reductase, alpha polypeptide 2 (3-oxo-5”, “alpha-steroid delta 4-dehydrogenase alpha 2)


(SRD5A2), mRNA”, gi|39812446|ref|NM_000348.2|[39812446]; 56: NM_000359, “Homo



sapiens transglutaminase 1 (K polypeptide epidermal type I,”, “protein-glutamine-gamma-



glutamyltransferase) (TGM1), mRNA”, gi|4507474|ref|NM_000359.1|[4507474]; 57:


NM_000364, “Homo sapiens troponin T2, cardiac (TNNT2), mRNA”,


gi|4507626|ref|NM_000364.1|[4507626]; 58: NM_000368, “Homo sapiens tuberous sclerosis 1


(TSC1), mRNA”, gi|24475626|ref|NM_000368.2|[24475626]; 59: NM_000375, Homo sapiens


uroporphyrinogen III synthase (congenital erythropoietic porphyria), “(UROS), mRNA”,


gi|4557872|ref|NM_000375.1|[4557872]; 60: NM_000383, Homo sapiens autoimmune regulator


(autoimmune polyendocrinopathy candidiasis, “ectodermal dystrophy) (AIRE), transcript variant


AIRE-1, mRNA”, gi|4557290|ref|NM_000383.1|[4557290]; 61: NM_000387, “Homo sapiens


solute carrier family 25 (carnitine/acylcarnitine translocase),”, “member 20 (SLC25A20), nuclear


gene encoding mitochondrial protein, mRNA”, gi|6006040|ref|NM_000387.2|[6006040]; 62:


NM_000389, “Homo sapiens cyclin-dependent kinase inhibitor 1A (p21, Cip1) (CDKN1A),”,


“transcript variant 1, mRNA”, gi|7978496|ref|NM_000389.2|[17978496]; 63: NM_000396,


Homo sapiens cathepsin K (pycnodysostosis) (CTSK), mRNA”,


gi|23110958|ref|NM_000396.2|[23110958]; 64: NM_000399, “Homo sapiens early growth


response 2 (Krox-20 homolog, Drosophila) (EGR2), mRNA”,


gi|9845523|ref|NM_000399.2|[9845523]; 65: NM_000402, “Homo sapiens glucose-6-phosphate


dehydrogenase (G6PD), nuclear gene encoding”, “mitochondrial protein, mRNA”,


gi|21614519|ref|NM_000402.2|[21614519]; 66: NM_000403, “Homo sapiens galactose-4-


epimerase, UDP (GALE), mRNA”, gi|9945333|ref|NM_000403.2|[9945333]; 67: NM_000429,


Homo sapiens methionine adenosyltransferase I, alpha (MAT1A), mRNA”,


gi|4557736|ref|NM_000429.1|[4557736]; 68: NM_000434, “Homo sapiens sialidase 1


(lysosomal sialidase) (NEU1), mRNA”, gi|40806202|ref|NM_000434.2|[40806202]; 69:


NM_000474, Homo sapiens twist homolog 1 (acrocephalosyndactyly 3; Saethre-Chotzen


syndrome), “(Drosophila) (TWIST1), mRNA”, gi|17978464|ref|NM_000474.2|[17978464]; 70:


NM_000483, “Homo sapiens apolipoprotein C-II (APOC2), mRNA”,


gi|32130517|ref|NM_000483.3|[32130517]; 71: NM_000499, “Homo sapiens cytochrome P450,


family 1, subfamily A, polypeptide 1 (CYP1A1),”, mRNA,


gi|13325053|ref|NM_000499.2|[13325053]; 72: NM_000503, “Homo sapiens eyes absent


homolog 1 (Drosophila) (EYA1), transcript variant 3,”, mRNA,


gi|26667213|ref|NM_000503.3|[26667213]; 73: NM_000512, “Homo sapiens galactosamine (N-


acetyl)-6-sulfate sulfatase (Morquio syndrome,”, “mucopolysaccharidosis type IVA) (GALNS),


mRNA”, gi|9945384|ref|NM_000512.2|[9945384]; 74: NM_000514, “Homo sapiens glial cell


derived neurotrophic factor (GDNF), transcript variant”, “1, mRNA”,


gi|40549401|ref|NM_000514.2|[40549401]; 75: NM_000524, “Homo sapiens 5-


hydroxytryptamine (serotonin) receptor 1A (HTR1A), mRNA”,


gi|4504530|ref|NM_000524.1|[4504530]; 76: NM_000526, “Homo sapiens keratin 14


(epidermolysis bullosa simplex, Dowling-Meara, Koebner)”, “(KRT14), mRNA”,


gi|15431309|ref|NM_000526.3|[15431309]; 77: NM_000528, “Homo sapiens mannosidase,


alpha, class 2B, member 1 (MAN2B1), mRNA”, gi|10834967|ref|NM_000528.1|[10834967]; 78:


NM_000534, “Homo sapiens PMS1 postmeiotic segregation increased 1 (S. cerevisiae)


(PMS1),”, mRNA, gi|11496979|ref|NM_000534.2|[11496979]; 79: NM_000547, “Homo sapiens


thyroid peroxidase (TPO), transcript variant 1, mRNA”,


gi|28558981|ref|NM_000547.3|[28558981]; 80: NM_000548, “Homo sapiens tuberous sclerosis


2 (TSC2), transcript variant 1, mRNA”, gi|10938006|ref|NM_000548.2|[10938006]; 81:


NM_000581, “Homo sapiens glutathione peroxidase 1 (GPX1), transcript variant 1, mRNA”,


gi|41406083|ref|NM_000581.2|[41406083]; 82: NM_000582, “Homo sapiens secreted


phosphoprotein 1 (osteopontin, bone sialoprotein I, early”, “T-lymphocyte activation 1) (SPP1),


mRNA”, gi|38146097|ref|NM_000582.2|[38146097]; 83: NM_000585, “Homo sapiens


interleukin 15 (IL15), transcript variant 3, mRNA”, gi|26787979|ref|NM_000585.2|[26787979];


84: NM_000588, “Homo sapiens interleukin 3 (colony-stimulating factor, multiple) (IL3),


mRNA”, gi|28416914|ref|NM_000588.3|[28416914]; 85: NM_000592, “Homo sapiens


complement component 4B (C4B), mRNA”, gi|14577920|ref|NM_000592.3|[14577920]; 86:


NM_000593, “Homo sapiens transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)


(TAP1),”, mRNA, gi|24797159|ref|NM_000593.4|[24797159]; 87: NM_000594, “Homo sapiens


tumor necrosis factor (TNF superfamily, member 2) (TNF), mRNA”,


gi|25952110|ref|NM_000594.2|[25952110]; 88: NM_000595, “Homo sapiens lymphotoxin


alpha (TNF superfamily, member 1) (LTA), mRNA”, gi|6806892|ref|NM_000595.2|[6806892];


89: NM_000600, “Homo sapiens interleukin 6 (interferon, beta 2) (IL6), mRNA”,


gi|10834983|ref|NM_000600.1|[10834983]; 90: NM_000603, “Homo sapiens nitric oxide


synthase 3 (endothelial cell) (NOS3), mRNA”, gi|40254421|ref|NM_000603.2|[40254421]; 91:


NM_000606, “Homo sapiens complement component 8, gamma polypeptide (C8G), mRNA”,


gi|4557392|ref|NM_000606.1|[4557392]; 92: NM_000623, “Homo sapiens bradykinin receptor


B2 (BDKRB2), mRNA”, gi|17352499|ref|NM_000623.2|[17352499]; 93: NM_000626, “Homo



sapiens CD79B antigen (immunoglobulin-associated beta) (CD79B), transcript”, “variant 1,



mRNA”, gi|11038673|ref|NM_000626.1|[11038673]; 94: NM_000628, “Homo sapiens


interleukin 10 receptor, beta (IL10RB), mRNA”, gi|24430214|ref|NM_000628.3|[24430214]; 95:


NM_000635, “Homo sapiens regulatory factor X, 2 (influences HLA class II expression)


(RFX2),”, “transcript variant 1, mRNA”, gi|19743880|ref|NM_000635.2|[19743880]; 96:


NM_000637, “Homo sapiens glutathione reductase (GSR), mRNA”,


gi|10835188|ref|NM_000637.1|[10835188]; 97: NM_000638, “Homo sapiens vitronectin (serum


spreading factor, somatomedin B, complement”, “S-protein) (VTN), mRNA”,


gi|18201910|ref|NM_000638.2|[18201910]; 98: NM_000661, “Homo sapiens ribosomal protein


L9 (RPL9), mRNA”, gi|15431302|ref|NM_000661.2|[15431302]; 99: NM_000673, “Homo



sapiens alcohol dehydrogenase 7 (class IV), mu or sigma polypeptide (ADH7),”, mRNA,



gi|11496969|ref|NM_000673.2|[11496969]; 100: NM_000679, “Homo sapiens adrenergic,


alpha-1B-, receptor (ADRA1B), mRNA”, gi|15451783|ref|NM_000679.2|[15451783]; 101:


NM_000681, “Homo sapiens adrenergic, alpha-2A-, receptor (ADRA2A), mRNA”,


gi|15718669|ref|NM_000681.2|[15718669]; 102: NM_000682, “Homo sapiens adrenergic,


alpha-2B-, receptor (ADRA2B), mRNA”, gi|33598959|ref|NM_000682.3|[33598959]; 103:


NM_000684, “Homo sapiens adrenergic, beta-1-, receptor (ADRB1), mRNA”,


gi|4557264|ref|NM_000684.1|[4557264]; 104: NM_000687, “Homo sapiens S-


adenosylhomocysteine hydrolase (AHCY), mRNA”, gi|9951914|ref|NM_000687.1|[9951914];


105: NM_000688, “Homo sapiens aminolevulinate, delta-, synthase 1 (ALAS1), transcript


variant 1,”, mRNA, gi|40316942|ref|NM_000688.4|[40316942]; 106: NM_000697, “Homo



sapiens arachidonate 12-lipoxygenase (ALOX12), mRNA”,



gi|4502050|ref|NM_000697.1|[4502050]; 107: NM_000721, “Homo sapiens calcium channel,


voltage-dependent, alpha 1E subunit (CACNALE),”, mRNA,


gi|4502528|ref|NM_000721.1|[4502528]; 108: NM_000747, “Homo sapiens cholinergic


receptor, nicotinic, beta polypeptide 1 (muscle)”, “(CHRNB1), mRNA”,


gi|41327725|ref|NM_000747.2|[41327725]; 109: NM_000751, “Homo sapiens cholinergic


receptor, nicotinic, delta polypeptide (CHRND), mRNA”,


gi|4557460|ref|NM_000751.1|[4557460]; 110: NM_000760, “Homo sapiens colony stimulating


factor 3 receptor (granulocyte) (CSF3R),”, “transcript variant 1, mRNA”,


gi|27437046|ref|NM_000760.2|[27437046]; 111: NM_000781, “Homo sapiens cytochrome


P450, family 11, subfamily A, polypeptide 1 (CYP11A1),”, “nuclear gene encoding


mitochondrial protein, mRNA”, gi|4503188|ref|NM_000781.1|[4503188]; 112: NM_000782,


Homo sapiens cytochrome P450, family 24, subfamily A, polypeptide 1 (CYP24A1),”, “nuclear


gene encoding mitochondrial protein, mRNA”, gi|13904862|ref|NM_000782.2|[13904862]; 113:


NM_000784, “Homo sapiens cytochrome P450, family 27, subfamily A, polypeptide 1


(CYP27A1),”, “nuclear gene encoding mitochondrial protein, mRNA”,


gi|13904863|ref|NM_000784.2|[13904863]; 114: NM_000785, “Homo sapiens cytochrome


P450, family 27, subfamily B, polypeptide 1 (CYP27B1),”, “nuclear gene encoding


mitochondrial protein, mRNA”, gi|13904864|ref|NM_000785.2|[13904864]; 115: NM_000794,


Homo sapiens dopamine receptor D1 (DRD1), mRNA”,


gi|16445404|ref|NM_000794.2|[16445404]; 116: NM_000798, “Homo sapiens dopamine


receptor D5 (DRD5), mRNA”, gi|34328907|ref|NM_000798.3|[34328907]; 117: NM_000806,


Homo sapiens gamma-aminobutyric acid (GABA) A receptor, alpha 1 (GABRA1), mRNA”,


gi|38327553|ref|NM_000806.3|[38327553]; 118: NM_000809, “Homo sapiens gamma-


aminobutyric acid (GABA) A receptor, alpha 4 (GABRA4), mRNA”,


gi|34452722|ref|NM_000809.2|[34452722]; 119: NM_000813, “Homo sapiens gamma-


aminobutyric acid (GABA) A receptor, beta 2 (GABRB2),”, “transcript variant 2, mRNA”,


gi|4503864|ref|NM_000813.1|[4503864]; 120: NM_000831, “Homo sapiens glutamate receptor,


ionotropic, kainate 3 (GRIK3), mRNA”, gi|28605144|ref|NM_000831.2|[28605144]; 121:


NM_000835, “Homo sapiens glutamate receptor, ionotropic, N-methyl D-aspartate 2C


(GRIN2C),”, mRNA, gi|6006004|ref|NM_000835.2|[6006004]; 122: NM_000839, “Homo



sapiens glutamate receptor, metabotropic 2 (GRM2), mRNA”,



gi|4504136|ref|NM_000839.1|[4504136]; 123: NM_000841, “Homo sapiens glutamate receptor,


metabotropic 4 (GRM4), mRNA”, gi|4504140|ref|NM_000841.1|[4504140]; 124: NM_000849,


Homo sapiens glutathione S-transferase M3 (brain) (GSTM3), mRNA”,


gi|39995110|ref|NM_000849.3|[39995110]; 125: NM_000863, “Homo sapiens 5-


hydroxytryptamine (serotonin) receptor 1B (HTR1B), mRNA”,


gi|4504532|ref|NM_000863.1|[4504532]; 126: NM_000880, “Homo sapiens interleukin 7 (IL7),


mRNA”, gi|28610152|ref|NM_000880.2|[28610152]; 127: NM_000883, “Homo sapiens IMP


(inosine monophosphate) dehydrogenase 1 (IMPDH1), transcript”, “variant 1, mRNA”,


gi|34328929|ref|NM_000883.2|[34328929]; 128: NM_000894, “Homo sapiens luteinizing


hormone beta polypeptide (LHB), mRNA”, gi|15431286|ref|NM_000894.2|[15431286]; 129:


NM_000901, “Homo sapiens nuclear receptor subfamily 3, group C, member 2 (NR3C2),


mRNA”, gi|4505198|ref|NM_000901.1|[4505198]; 130: NM_000905, “Homo sapiens


neuropeptide Y (NPY), mRNA”, gi|31542152|ref|NM_000905.2|[31542152]; 131: NM_000915,


Homo sapiens oxytocin, prepro-(neurophysin I) (OXT), mRNA”,


gi|12707574|ref|NM_000915.2|[12707574]; 132: NM_000932, “Homo sapiens phospholipase C,


beta 3 (phosphatidylinositol-specific) (PLCB3),”, mRNA,


gi|11386138|ref|NM_000932.1|[11386138]; 133: NM_000939, Homo sapiens


proopiomelanocortin (adrenocorticotropin/beta-lipotropin/, alpha-melanocyte stimulating


hormone/beta-melanocyte stimulating hormone/, “beta-endorphin) (POMC), mRNA”,


gi|4505948|ref|NM_000939.1|[4505948]; 134: NM_000951, “Homo sapiens proline-rich Gla


(G-carboxyglutamic acid) polypeptide 2 (PRRG2),”, mRNA,


gi|4506136|ref|NM_000951.1|[4506136]; 135: NM_000963, Homo sapiens prostaglandin-


endoperoxide synthase 2 (prostaglandin G/H synthase, “and cyclooxygenase) (PTGS2), mRNA”,


gi|4506264|ref|NM_000963.1|[4506264]; 136: NM_000970, “Homo sapiens ribosomal protein


L6 (RPL6), mRNA”, gi|16753226|ref|NM_000970.2|[16753226]; 137: NM_000973, “Homo



sapiens ribosomal protein L8 (RPL8), transcript variant 1, mRNA”,



gi|15431304|ref|NM_000973.2|[15431304]; 138: NM_000975, “Homo sapiens ribosomal


protein L11 (RPL11), mRNA”, gi|15431289|ref|NM_000975.2|[15431289]; 139: NM_000980,


Homo sapiens ribosomal protein L18a (RPL18A), mRNA”,


gi|15431299|ref|NM_000980.2|[15431299]; 140: NM_000981, “Homo sapiens ribosomal


protein L19 (RPL19), mRNA”, gi|17158042|ref|NM_000981.2|[17158042]; 141: NM_000982,


Homo sapiens ribosomal protein L21 (RPL21), mRNA”,


gi|18104947|ref|NM_000982.2|[18104947]; 142: NM_000993, “Homo sapiens ribosomal


protein L31 (RPL31), mRNA”, gi|15812219|ref|NM_000993.2|[15812219]; 143: NM_000994,


Homo sapiens ribosomal protein L32 (RPL32), mRNA”,


gi|15812220|ref|NM_000994.2|[15812220]; 144: NM_000995, “Homo sapiens ribosomal


protein L34 (RPL34), transcript variant 1, mRNA”, gi|16117786|ref|NM_000995.2|[16117786];


145: NM_000997, “Homo sapiens ribosomal protein L37 (RPL37), mRNA”,


gi|16306560|ref|NM_000997.2|[16306560]; 146: NM_001000, “Homo sapiens ribosomal


protein L39 (RPL39), mRNA”, gi|16306563|ref|NM_001000.2|[16306563]; 147: NM_001001,


Homo sapiens ribosomal protein L36a-like (RPL36AL), mRNA”,


gi|34335143|ref|NM_001001.3|[34335143]; 148: NM_001003, “Homo sapiens ribosomal


protein, large, P1 (RPLP1), mRNA”, gi|16905511|ref|NM_001003.2|[16905511]; 149:


NM_001009, “Homo sapiens ribosomal protein S5 (RPS5), mRNA”,


gi|13904869|ref|NM_001009.2|[13904869]; 150: NM_001018, “Homo sapiens ribosomal


protein S15 (RPS15), mRNA”, gi|14591911|ref|NM_001018.2|[14591911]; 151: NM_001019,


Homo sapiens ribosomal protein S15a (RPS15A), mRNA”,


gi|34335150|ref|NM_001019.3|[34335150]; 152: NM_001026, “Homo sapiens ribosomal


protein S24 (RPS24), transcript variant 2, mRNA”, gi|14916502|ref|NM_001026.2|[14916502];


153: NM_001028, “Homo sapiens ribosomal protein S25 (RPS25), mRNA”,


gi|14591916|ref|NM_001028.2|[14591916]; 154: NM_001029, “Homo sapiens ribosomal


protein S26 (RPS26), mRNA”, gi|15011935|ref|NM_001029.2|[15011935]; 155: NM_001030,


Homo sapiens ribosomal protein S27 (metallopanstimulin 1) (RPS27), mRNA”,


gi|1501937|ref|NM_001030.2|[15011937]; 156: NM_001031, “Homo sapiens ribosomal


protein S28 (RPS28), mRNA”, gi|15011938|ref|NM_001031.2|[15011938]; 157: NM_001040,


Homo sapiens sex hormone-binding globulin (SHBG), mRNA”,


gi|7382459|ref|NM_001040.2|[7382459]; 158: NM_001046, “Homo sapiens solute carrier


family 12 (sodium/potassium/chloride transporters),”, “member 2 (SLC12A2), mRNA”,


gi|38569461|ref|NM_001046.2|[38569461]; 159: NM_101049, “Homo sapiens somatostatin


receptor 1 (SSTR1), mRNA”, gi|33946330|ref|NM_001049.2|[33946330]; 160: NM_001051,


Homo sapiens somatostatin receptor 3 (SSTR3), mRNA”,


gi|4557860|ref|NM_001051.1|[4557860]; 161: NM_001057, “Homo sapiens tachykinin receptor


2 (TACR2), mRNA”, gi|4507344|ref|NM_001057.1|[4507344]; 162: NM_001068, “Homo



sapiens topoisomerase (DNA) II beta 180 kDa (TOP2B), mRNA”,



gi|19913407|ref|NM_001068.2|[19913407]; 163: NM_001083, “Homo sapiens


phosphodiesterase 5A, cGMP-specific (PDE5A), transcript variant 1,”, mRNA,


gi|15812210|ref|NM_001083.2|[15812210]; 164: NM_001087, “Homo sapiens angio-associated,


migratory cell protein (AAMP), mRNA”, gi|4557228|ref|NM_001087.1|[4557228]; 165:


NM_001090, “Homo sapiens ATP-binding cassette, sub-family F (GCN20), member 1


(ABCF1), mRNA”, gi|10947134|ref|NM_001090.1|[10947134]; 166: NM_001094, “Homo



sapiens amiloride-sensitive cation channel 1, neuronal (degenerin) (ACCN1),”, “transcript



variant 2, mRNA”, gi|34452696|ref|NM_001094.4|[34452696]; 167: NM_001098, “Homo



sapiens aconitase 2, mitochondrial (ACO2), nuclear gene encoding”, “mitochondrial protein,



mRNA”, gi|4501866|ref|NM_001098.1|[4501866]; 168: NM_001099, “Homo sapiens acid


phosphatase, prostate (ACPP), mRNA”, gi|6382063|ref|NM_001099.2|[6382063]; 169:


NM_001104, “Homo sapiens actinin, alpha 3 (ACTN3), mRNA”,


gi|4557240|ref|NM_001104.1|[4557240]; 170: NM_001105, “Homo sapiens activin A receptor,


type I (ACVR1), mRNA”, gi|10862690|ref|NM_001105.2|[10862690]; 171: NM_001117,


Homo sapiens adenylate cyclase activating polypeptide 1 (pituitary) (ADCYAP1),”, mRNA,


gi|10947062|ref|NM_001117.2|[10947062]; 172: NM_001120, “Homo sapiens tetracycline


transporter-like protein (TETRAN), mRNA”, gi|20127439|ref|NM_001120.2|[20127439]; 173:


NM_001124, “Homo sapiens adrenomedullin (ADM), mRNA”,


gi|4501944|ref|NM_001124.1|[4501944]; 174: NM_001125, “Homo sapiens ADP-


ribosylarginine hydrolase (ADPRH), mRNA”, gi|40549393|ref|NM_001125.2|[40549393]; 175:


NM_001126, “Homo sapiens adenylosuccinate synthase (ADSS), mRNA”,


gi|34577062|ref|NM_001126.2|[34577062]; 176: NM_001127, “Homo sapiens adaptor-related


protein complex 1, beta 1 subunit (AP1B1),”, “transcript variant 1, mRNA”,


gi|22027650|ref|NM_001127.2|[22027650]; 177: NM_001129, “Homo sapiens AE binding


protein 1 (AEBP1), mRNA”, gi|4755145|ref|NM_001129.2|[4755145]; 178: NM_001138,


Homo sapiens agouti related protein homolog (mouse) (AGRP), transcript variant”, “1, mRNA”,


gi|4501994|ref|NM_001138.1|[4501994]; 179: NM_001151, Homo sapiens solute carrier family


25 (mitochondrial carrier; adenine nucleotide, “translocator), member 4 (SLC25A4), mRNA”,


gi|4502096|ref|NM_001151.1|[4502096]; 180: NM_001158, “Homo sapiens amine oxidase,


copper containing 2 (retina-specific) (AOC2),”, “transcript variant 1, mRNA”,


gi|6806880|ref|NM_001158.2|[6806880]; 181: NM_001161, Homo sapiens nudix (nucleoside


diphosphate linked moiety X)-type motif 2, “(NUDT2), transcript variant 1, mRNA”,


gi|22265329|ref|NM_001161.3|[22265329]; 182: NM_001164, “Homo sapiens amyloid beta


(A4) precursor protein-binding, family B, member 1”, “(Fe65) (APBB1), transcript variant 1,


mRNA”, gi|22035552|ref|NM_001164.2|[22035552]; 183: NM_001166, “Homo sapiens


baculoviral IAP repeat-containing 2 (BIRC2), mRNA”,


gi|41349435|ref|NM_001166.3|[41349435]; 184: NM_001170, “Homo sapiens aquaporin 7


(AQP7), mRNA”, gi|4502186|ref|NM_001170.1|[4502186]; 185: NM_001188, “Homo sapiens


BCL2-antagonist/killer 1 (BAK1), mRNA”, gi|33457353|ref|NM_001188.2|[33457353]; 186:


NM_001197, “Homo sapiens BCL2-interacting killer (apoptosis-inducing) (BIK), mRNA”,


gi|21536418|ref|NM_001197.3|[21536418]; 187: NM_001211, Homo sapiens BUB1 budding


uninhibited by benzimidazoles 1 homolog beta (yeast), “(BUB1B), mRNA”,


gi|20149508|ref|NM_001211.3|[20149508]; 188: NM_001231, “Homo sapiens calsequestrin 1


(fast-twitch, skeletal muscle) (CASQ1), nuclear”, “gene encoding mitochondrial protein,


mRNA”, gi|21536273|ref|NM_001231.2|[21536273]; 189: NM_001237, “Homo sapiens cyclin


A2 (CCNA2), mRNA”, gi|16950653|ref|NM_001237.2|[16950653]; 190: NM_001239, “Homo



sapiens cyclin H (CCNH), mRNA”, gi|17738313|ref|NM_001239.2|[17738313]; 191:



NM_001242, “Homo sapiens tumor necrosis factor receptor superfamily, member 7


(TNFRSF7),”, mRNA, gi|23510435|ref|NM_001242.3|[23510435]; 192: NM_001246, “Homo



sapiens ectonucleoside triphosphate diphosphohydrolase 2 (ENTPD2), mRNA”,



gi|4557420|ref|NM_001246.1|[4557420]; 193: NM_001255, “Homo sapiens CDC20 cell


division cycle 20 homolog (S. cerevisiae) (CDC20), mRNA”,


gi|4557436|ref|NM_001255.1|[4557436]; 194: NM_001257, “Homo sapiens cadherin 13, H-


cadherin (heart) (CDH13), mRNA”, gi|16507956|ref|NM_001257.2|[16507956]; 195:


NM_001261, “Homo sapiens cyclin-dependent kinase 9 (CDC2-related kinase) (CDK9),


mRNA”, gi|17017983|ref|NM_001261.2|[17017983]; 196: NM_001265, “Homo sapiens caudal


type homeo box transcription factor 2 (CDX2), mRNA”,


gi|24431948|ref|NM_001265.2|[24431948]; 197: NM_001278, “Homo sapiens conserved helix-


loop-helix ubiquitous kinase (CHUK), mRNA”, gi|19923133|ref|NM_001278.2|[19923133]; 198:


NM_001286, “Homo sapiens chloride channel 6 (CLCN6), transcript variant ClC-6a, mRNA”,


gi|4502872|ref|NM_001286.1|[4502872]; 199: NM_001288, “Homo sapiens chloride


intracellular channel 1 (CLIC1), mRNA”, gi|14251208|ref|NM_001288.3|[14251208]; 200:


NM_001291, “Homo sapiens CDC-like kinase 2 (CLK2), transcript variant phclk2/139,


mRNA”, gi|4557476|ref|NM_001291.1|[4557476]; 201: NM_001293, “Homo sapiens chloride


channel, nucleotide-sensitive, 1A (CLNS1A), mRNA”, gi|4502890|ref|NM_001293.1|[4502890];


202: NM_001303, “Homo sapiens COX10 homolog, cytochrome c oxidase assembly protein,


heme A:”, “farnesyltransferase (yeast) (COX10), nuclear gene encoding mitochondrial”,


“protein, mRNA”, gi|17921981|ref|NM_001303.2|[17921981]; 203: NM_001307, “Homo



sapiens claudin 7 (CLDN7), mRNA”, gi|34222214|ref|NM_001307.3|[34222214]; 204:



NM_001311, “Homo sapiens cysteine-rich protein 1 (intestinal) (CRIP1), mRNA”,


gi|39725694|ref|NM_001311.3|[39725694]; 205: NM_001313, “Homo sapiens collapsin


response mediator protein 1 (CRMP1), mRNA”, gi|21359849|ref|NM_001313.2|[21359849];


206: NM_001320, “Homo sapiens casein kinase 2, beta polypeptide (CSNK2B), mRNA”,


gi|26787971|ref|NM_001320.5|[26787971]; 207: NM_001326, “Homo sapiens cleavage


stimulation factor, 3′ pre-RNA, subunit 3, 77 kDa (CSTF3),”, mRNA,


gi|4557494|ref|NM_001326.1|[4557494]; 208: NM_001338, “Homo sapiens coxsackie virus and


adenovirus receptor (CXADR), mRNA”, gi|20149514|ref|NM_001338.2|[20149514]; 209:


NM_001347, “Homo sapiens diacylglycerol kinase, theta 110 kDa (DGKQ), mRNA”,


gi|40806174|ref|NM_001347.2|[40806174]; 210: NM_001362, “Homo sapiens deiodinase,


iodothyronine, type III (DIO3), mRNA”, gi|4503334|ref|NM_001362.1|[4503334]; 211:


NM_001374, “Homo sapiens deoxyribonuclease I-like 2 (DNASE1L2), mRNA”,


gi|41393584|ref|NM_001374.2|[41393584]; 212: NM_001378, “Homo sapiens dynein,


cytoplasmic, intermediate polypeptide 2 (DNCI2), mRNA”,


gi|24307878|ref|NM_001378.1|[24307878]; 213: NM_001382,, ref|NM_001382.2|[42794008];


214: NM_001384, “Homo sapiens DPH2-like 2 (S. cerevisiae) (DPH2L2), transcript variant 1,


mRNA”, gi|41352701|ref|NM_001384.3|[41352701]; 215: NM_001386, “Homo sapiens


dihydropyrimidinase-like 2 (DPYSL2), mRNA”, gi|19923654|ref|NM_001386.3|[19923654];


216: NM_001389, “Homo sapiens Down syndrome cell adhesion molecule (DSCAM), mRNA”,


gi|20127421|ref|NM_001389.2|[20127421]; 217: NM_001395, “Homo sapiens dual specificity


phosphatase 9 (DUSP9), mRNA”, gi|4503420|ref|NM_001395.1|[4503420]; 218: NM_001414,


Homo sapiens eukaryotic translation initiation factor 2B, subunit 1 alpha, 26 kDa”, “(EIF2B1),


mRNA”, gi|4503502|ref|NM_001414.1|[4503502]; 219: NM_001415, “Homo sapiens


eukaryotic translation initiation factor 2, subunit 3 gamma, 52 kDa”, “(EIF2S3), mRNA”,


gi|21314612|ref|NM_001415.2|[21314612]; 220: NM_001420, “Homo sapiens ELAV


(embryonic lethal, abnormal vision, Drosophila)-like 3 (Hu”, “antigen C) (ELAVL3), mRNA”,


gi|5231299|ref|NM_001420.2|[5231299]; 221: NM_001424, “Homo sapiens epithelial


membrane protein 2 (EMP2), mRNA”, gi|42716292|ref|NM_001424.3|[42716292]; 222:


NM_001425, “Homo sapiens epithelial membrane protein 3 (EMP3), mRNA”,


gi|4503562|ref|NM_001425.1|[4503562]; 223: NM_001426, “Homo sapiens engrailed homolog


1 (EN1), mRNA”, gi|7710118|ref|NM_001426.2|[7710118]; 224: NM_001430, “Homo sapiens


endothelial PAS domain protein 1 (EPAS1), mRNA”,


gi|41327154|ref|NM_001430.3|[41327154]; 225: NM_001433, “Homo sapiens ER to nucleus


signalling 1 (ERN1), mRNA”, gi|4557568|ref|NM_001433.1|[4557568]; 226: NM_001436,


Homo sapiens fibrillarin (FBL), mRNA”, gi|12056464|ref|NM_001436.2|[12056464]; 227:


NM_001450, “Homo sapiens four and a half LIM domains 2 (FHL2), transcript variant 1,


mRNA”, gi|42403584|ref|NM_001450.3|[42403584]; 228: NM_001451, “Homo sapiens


forkhead box F1 (FOXF1), mRNA”, gi|4503732|ref|NM_001451.1|[4503732]; 229: NM_001454,


Homo sapiens forkhead box J1 (FOXJ1), mRNA”, gi|4557023|ref|NM_001454.1|[4557023];


230: NM_001467, “Homo sapiens solute carrier family 37 (glycerol-6-phosphate transporter),


member”, “4 (SLC37A4), mRNA”, gi|21361125|ref|NM_001467.2|[21361125]; 231:


NM_001469, “Homo sapiens thyroid autoantigen 70 kDa (Ku antigen) (G22P1), mRNA”,


gi|20070134|ref|NM_001469.2|[20070134]; 232: NM_001481, “Homo sapiens growth arrest-


specific 8 (GAS8), mRNA”, gi|4503916|ref|NM_001481.1|[4503916]; 233: NM_001485,


Homo sapiens gastrulation brain homeo box 2 (GBX2), mRNA”,


gi|4503940|ref|NM_001485.1|[4503940]; 234: NM_001486, “Homo sapiens glucokinase


(hexokinase 4) regulatory protein (GCKR), mRNA”, gi|30795244|ref|NM_001486.2|[30795244];


235: NM_001487, Homo sapiens GCN5 general control of amino-acid synthesis 5-like 1


(yeast), “(GCN5L1), mRNA”, gi|4503954|ref|NM_001487.1|[4503954]; 236: NM_001491,


Homo sapiens glucosaminyl (N-acetyl) transferase 2, I-branching enzyme (GCNT2),”,


“transcript variant 2, mRNA”, gi|30061504|ref|NM_001491.2|[30061504]; 237: NM_001501,


Homo sapiens gonadotropin-releasing hormone 2 (GNRH2), transcript variant 1,”, mRNA,


gi|4504056|ref|NM_001501.1|[4504056]; 238: NM_001511, Homo sapiens chemokine


(C—X—C motif) ligand 1 (melanoma growth stimulating, “activity, alpha) (CXCL1), mRNA”,


gi|4504152|ref|NM_001511.1|[4504152]; 239: NM_001513, Homo sapiens glutathione


transferase zeta 1 (maleylacetoacetate isomerase), “(GSTZ1), transcript variant 3, mRNA”,


gi|22202621|ref|NM_001513.2|[22202621]; 240: NM_001516, “Homo sapiens general


transcription factor IIH, polypeptide 3, 34 kDa (GTF2H3),”, mRNA,


gi|28376643|ref|NM_001516.3|[28376643]; 241: NM_001517,, ref|NM_001517.3|[34222289],


This record was temporarily removed by RefSeq staff for additional review.,, 242: NM_001523,


Homo sapiens hyaluronan synthase 1 (HAS1), mRNA”,


gi|4504338|ref|NM_001523.1|[4504338]; 243: NM_001527, “Homo sapiens histone deacetylase


2 (HDAC2), mRNA”, gi|4557640|ref|NM_001527.1|[4557640]; 244: NM_001528, “Homo



sapiens HGF activator (HGFAC), mRNA”, gi|32455241|ref|NM_001528.2|[32455241]; 245:



NM_001536, “Homo sapiens HMT1 hnRNP methyltransferase-like 2 (S. cerevisiae)


(HRMT1L2),”, “transcript variant 1, mRNA”, gi|38195088|ref|NM_001536.2|[38195088]; 246:


NM_001538, “Homo sapiens heat shock transcription factor 4 (HSF4), mRNA”,


gi|4557650|ref|NM_001538.1|[4557650]; 247: NM_001542, “Homo sapiens immunoglobulin


superfamily, member 3 (IGSF3), mRNA”, gi|4504626|ref|NM_001542.1|[4504626]; 248:


NM_001544, “Homo sapiens intercellular adhesion molecule 4, Landsteiner-Wiener blood


group”, “(ICAM4), transcript variant 1, mRNA”, gi|12545400|ref|NM_001544.2|[12545400];


249: NM_001545, “Homo sapiens immature colon carcinoma transcript 1 (ICT1), mRNA”,


gi|4557656|ref|NM_001545.1|[4557656]; 250: NM_001562, “Homo sapiens interleukin 18


(interferon-gamma-inducing factor) (IL18), mRNA”, gi|27502389|ref|NM_001562.2|[27502389];


251: NM_001567, “Homo sapiens inositol polyphosphate phosphatase-like 1 (INPPL1),


mRNA”, gi|4755141|ref|NM_001567.2|[4755141]; 252: NM_001569, “Homo sapiens


interleukin-1 receptor-associated kinase 1 (IRAK1), mRNA”,


gi|4755143|ref|NM_001569.2|[4755143]; 253: NM_001571, “Homo sapiens interferon


regulatory factor 3 (IRF3), mRNA”, gi|4504724|ref|NM_001571.1|[4504724]; 254: NM_001585,


Homo sapiens chromosome 22 open reading frame 1 (C22orf1), mRNA”,


gi|31542268|ref|NM_001585.2|[31542268]; 255: NM_001610, “Homo sapiens acid phosphatase


2, lysosomal (ACP2), mRNA”, gi|4557009|ref|NM_001610.1|[4557009]; 256: NM_001615,


Homo sapiens actin, gamma 2, smooth muscle, enteric (ACTG2), mRNA”,


gi|11038625|ref|NM_001615.2|[11038625]; 257: NM_001616, “Homo sapiens activin A


receptor, type II (ACVR2), mRNA”, gi|10862696|ref|NM_001616.2|[10862696]; 258:


NM_001618, Homo sapiens ADP-ribosyltransferase (NAD+; poly (ADP-ribose) polymerase),


“(ADPRT), mRNA”, gi|11496989|ref|NM_001618.2|[11496989]; 259: NM_001621, “Homo



sapiens aryl hydrocarbon receptor (AHR), mRNA”, gi|5016091|ref|NM_001621.2|[5016091];



260: NM_001622, “Homo sapiens alpha-2-HS-glycoprotein (AHSG), mRNA”,


gi|4502004|ref|NM_001622.1|[4502004]; 261: NM_001628, “Homo sapiens aldo-keto reductase


family 1, member B1 (aldose reductase)”, “(AKR1B1), mRNA”,


gi|24497579|ref|NM_001628.2|[24497579]; 262: NM_001629, “Homo sapiens arachidonate 5-


lipoxygenase-activating protein (ALOX5AP), mRNA”,


gi|15718674|ref|NM_001629.2|[15718674]; 263: NM_001637, “Homo sapiens acyloxyacyl


hydrolase (neutrophil) (AOAH), mRNA”, gi|4502114|ref|NM_001637.1|[4502114]; 264:


NM_001649, “Homo sapiens apical protein-like (Xenopus laevis) (APXL), mRNA”,


gi|18375508|ref|NM_001649.2|[18375508]; 265: NM_001654, “Homo sapiens v-raf murine


sarcoma 3611 viral oncogene homolog 1 (ARAF1), mRNA”,


gi|4502192|ref|NM_001654.1|[4502192]; 266: NM_001655, “Homo sapiens archain 1


(ARCN1), mRNA”, gi|21626463|ref|NM_001655.3|[21626463]; 267: NM_001662, “Homo



sapiens ADP-ribosylation factor 5 (ARF5), mRNA”, gi|6995999|ref|NM_001662.2|[6995999];



268: NM_001664, “Homo sapiens ras homolog gene family, member A (ARHA), mRNA”,


gi|10835048|ref|NM_001664.1|[10835048]; 269: NM_001666, “Homo sapiens Rho GTPase


activating protein 4 (ARHGAP4), mRNA”, gi|41327157|ref|NM_001666.2|[41327157]; 270:


NM_001671, “Homo sapiens asialoglycoprotein receptor 1 (ASGR1), mRNA”,


gi|18426870|ref|NM_001671.2|[18426870]; 271: NM_001673, “Homo sapiens asparagine


synthetase (ASNS), transcript variant 2, mRNA”, gi|19718771|ref|NM_001673.2|[19718771];


272: NM_001674, “Homo sapiens activating transcription factor 3 (ATF3), mRNA”,


gi|4502262|ref|NM_001674.1|[4502262]; 273: NM_001675, Homo sapiens activating


transcription factor 4 (tax-responsive enhancer element, “B67) (ATF4), transcript variant 1,


mRNA”, gi|33469975|ref|NM_001675.2|[33469975]; 274: NM_001678, “Homo sapiens


ATPase, Na+/K+ transporting, beta 2 polypeptide (ATP1B2), mRNA”,


gi|40254453|ref|NM_001678.2|[40254453]; 275: NM_001688, “Homo sapiens ATP synthase,


H+ transporting, mitochondrial F0 complex, subunit b,”, “isoform 1 (ATP5F1), mRNA”,


gi|21361564|ref|NM_001688.2|[21361564]; 276: NM_001702, “Homo sapiens brain-specific


angiogenesis inhibitor 1 (BAI1), mRNA”, gi|4502354|ref|NM_001702.1|[4502354]; 277:


NM_001722, “Homo sapiens polymerase (RNA) III (DNA directed) polypeptide D, 44 kDa


(POLR3D),”, mRNA, gi|4502436|ref|NM_001722.1|[4502436]; 278: NM_001724, “Homo



sapiens 2,3-bisphosphoglycerate mutase (BPGM), transcript variant 1, mRNA”,



gi|40353767|ref|NM_001724.3|[40353767]; 279: NM_001725, “Homo sapiens


bactericidal/permeability-increasing protein (BPI), mRNA”,


gi|4502446|ref|NM_001725.1|[4502446]; 280: NM_001739, “Homo sapiens carbonic anhydrase


VA, mitochondrial (CA5A), nuclear gene encoding”, “mitochondrial protein, mRNA”,


gi|4502520|ref|NM_001739.1|[4502520]; 281: NM_001744, “Homo sapiens


calcium/calmodulin-dependent protein kinase IV (CAMK4), mRNA”,


gi|27477118|ref|NM_001744.3|[27477118]; 282: NM_001747, “Homo sapiens capping protein


(actin filament), gelsolin-like (CAPG), mRNA”, gi|4502560|ref|NM_001747.1|[4502560]; 283:


NM_001760, “Homo sapiens cyclin D3 (CCND3), mRNA”,


gi|16950657|ref|NM_001760.2|[16950657]; 284: NM_001769, “Homo sapiens CD9 antigen


(p24) (CD9), mRNA”, gi|21237762|ref|NM_001769.2|[21237762]; 285: NM_001780, “Homo



sapiens CD63 antigen (melanoma 1 antigen) (CD63), mRNA”,



gi|34328936|ref|NM_001780.3|[34328936]; 286: NM_001796, “Homo sapiens cadherin 8, type


2 (CDH8), mRNA”, gi|16306538|ref|NM_001796.2|[16306538]; 287: NM_001799, “Homo



sapiens cyclin-dependent kinase 7 (MO15 homolog, Xenopus laevis,”, “cdk-activating kinase)



(CDK7), mRNA”, gi|16950659|ref|NM_001799.2|[16950659]; 288: NM_001806, “Homo



sapiens CCAAT/enhancer binding protein (C/EBP), gamma (CEBPG), mRNA”,



gi|34452718|ref|NM_001806.2|[34452718]; 289: NM_001810, “Homo sapiens centromere


protein B, 80 kDa (CENPB), mRNA”, gi|26105977|ref|NM_001810.4|[26105977]; 290:


NM_001821, “Homo sapiens choroideremia-like (Rab escort protein 2) (CHML), mRNA”,


gi|4502810|ref|NM_001821.1|[4502810]; 291: NM_001823, “Homo sapiens creatine kinase,


brain (CKB), mRNA”, gi|34335231|ref|NM_001823.3|[34335231]; 292: NM_001841, “Homo



sapiens cannabinoid receptor 2 (macrophage) (CNR2), mRNA”,



gi|4502928|ref|NM_001841.1|[4502928]; 293: NM_001842, “Homo sapiens ciliary neurotrophic


factor receptor (CNTFR), transcript variant 2,”, mRNA,


gi|22212916|ref|NM_001842.3|[22212916]; 294: NM_001843, “Homo sapiens contactin 1


(CNTN1), transcript variant 1, mRNA”, gi|28373116|ref|NM_001843.2|[28373116]; 295:


NM_001853, “Homo sapiens collagen, type IX, alpha 3 (COL9A3), mRNA”,


gi|17921994|ref|NM_001853.2|[17921994]; 296: NM_001855, “Homo sapiens collagen, type


XV, alpha 1 (COL15A1), mRNA”, gi|18641349|ref|NM_001855.2|[18641349]; 297:


NM_001856, “Homo sapiens collagen, type XVI, alpha 1 (COL16A1), mRNA”,


gi|18641351|ref|NM_001856.2|[18641351]; 298: NM_001859, “Homo sapiens solute carrier


family 31 (copper transporters), member 1 (SLC31A1),”, mRNA,


gi|40254457|ref|NM_001859.2|[40254457]; 299: NM_001863, “Homo sapiens cytochrome c


oxidase subunit VIb (COX6B), mRNA”, gi|17999530|ref|NM_001863.3|[17999530]; 300:


NM_001864, “Homo sapiens cytochrome c oxidase subunit VIIa polypeptide 1 (muscle)


(COX7A1),”, mRNA, gi|18105034|ref|NM_001864.2|[18105034]; 301: NM_001878, “Homo



sapiens cellular retinoic acid binding protein 2 (CRABP2), mRNA”,



gi|6382069|ref|NM_001878.2|[6382069]; 302: NM_001880, “Homo sapiens activating


transcription factor 2 (ATF2), mRNA”, gi|22538421|ref|NM_001880.2|[22538421]; 303:


NM_001885, “Homo sapiens crystallin, alpha B (CRYAB), mRNA”,


gi|4503056|ref|NM_001885.1|[4503056]; 304: NM_001887, “Homo sapiens crystallin, beta B1


(CRYBB1), mRNA”, gi|21536279|ref|NM_001887.3|[21536279]; 305: NM_001889, “Homo



sapiens crystallin, zeta (quinone reductase) (CRYZ), mRNA”,



gi|14251216|ref|NM_001889.2|[14251216]; 306: NM_001893, “Homo sapiens casein kinase 1,


delta (CSNK1D), transcript variant 1, mRNA”, gi|20544143|ref|NM_001893.3|[20544143]; 307:


NM_001895, “Homo sapiens casein kinase 2, alpha 1 polypeptide (CSNK2A1), transcript


variant”, “2, mRNA”, gi|29570794|ref|NM_001895.2|[29570794]; 308: NM_001905, “Homo



sapiens CTP synthase (CTPS), mRNA”, gi|4503132|ref|NM_001905.1|[4503132]; 309:



NM_001917, “Homo sapiens D-amino-acid oxidase (DAO), mRNA”,


gi|21536469|ref|NM_001917.3|[21536469]; 310: NM_001923, “Homo sapiens damage-specific


DNA binding protein 1, 127 kDa (DDB1), mRNA”, gi|13435358|ref|NM_001923.2|[13435358];


311: NM_001924, “Homo sapiens growth arrest and DNA-damage-inducible, alpha


(GADD45A), mRNA”, gi|9790904|ref|NM_001924.2|[9790904]; 312: NM_001928, “Homo



sapiens D component of complement (adipsin) (DF), mRNA”,



gi|42544238|ref|NM_001928.2|[42544238]; 313: NM_001932, “Homo sapiens membrane


protein, palmitoylated 3 (MAGUK p55 subfamily member 3)”, “(MPP3), mRNA”,


gi|21536463|ref|NM_001932.2|[21536463]; 314: NM_001933, Homo sapiens dihydrolipoamide


S-succinyltransferase (E2 component of, “2-oxo-glutarate complex) (DLST), mRNA”,


gi|32307170|ref|NM_001933.3|[32307170]; 315: NM_001944, “Homo sapiens desmoglein 3


(pemphigus vulgaris antigen) (DSG3), mRNA”, gi|4503404|ref|NM_001944.1|[4503404]; 316:


NM_001955, “Homo sapiens endothelin 1 (EDN1), mRNA”,


gi|21359861|ref|NM_001955.2|[21359861]; 317: NM_001958, “Homo sapiens eukaryotic


translation elongation factor 1 alpha 2 (EEF1A2), mRNA”,


gi|25453470|ref|NM_001958.2|[25453470]; 318: NM_001959, “Homo sapiens eukaryotic


translation elongation factor 1 beta 2 (EEF1B2),”, “transcript variant 1, mRNA”,


gi|16519564|ref|NM_001959.2|[16519564]; 319: NM_001962, “Homo sapiens ephrin-A5


(EFNA5), mRNA”, gi|4503486|ref|NM_001962.1|[4503486]; 320: NM_001967, “Homo sapiens


eukaryotic translation initiation factor 4A, isoform 2 (EIF4A2),”, mRNA,


gi|9945313|ref|NM_001967.2|[9945313]; 321: NM_001974, “Homo sapiens egf-like module


containing, mucin-like, hormone receptor-like 1”, “(EMR1), mRNA”,


gi|40807488|ref|NM_001974.3|[40807488]; 322: NM_001978, “Homo sapiens erythrocyte


membrane protein band 4.9 (dematin) (EPB49), mRNA”,


gi|4503580|ref|NM_001978.1|[4503580]; 323: NM_001985, “Homo sapiens electron-transfer-


flavoprotein, beta polypeptide (ETFB), mRNA”, gi|4503608|ref|NM_001985.1|[4503608]; 324:


NM_001989, “Homo sapiens eve, even-skipped homeo box homolog 1 (Drosophila) (EVX1),


mRNA”, gi|24497610|ref|NM_001989.2|[24497610]; 325: NM_001990, “Homo sapiens eyes


absent homolog 3 (Drosophila) (EYA3), transcript variant 1,”, mRNA,


gi|26667242|ref|NM_001990.2|[26667242]; 326: NM_001992, “Homo sapiens coagulation


factor II (thrombin) receptor (F2R), mRNA”, gi|6031164|ref|NM_001992.2|[6031164]; 327:


NM_002004, “Homo sapiens farnesyl diphosphate synthase (farnesyl pyrophosphate


synthetase,”, “dimethylallyltranstransferase, geranyltranstransferase) (FDPS), mRNA”,


gi|41281370|ref|NM_002004.2|[41281370]; 328: NM_002005, “Homo sapiens feline sarcoma


oncogene (FES), mRNA”, gi|13376997|ref|NM_002005.2|[13376997]; 329: NM_002010,


Homo sapiens fibroblast growth factor 9 (glia-activating factor) (FGF9), mRNA”,


gi|4503706|ref|NM_002010.1|[4503706]; 330: NM_002012, “Homo sapiens fragile histidine


triad gene (FHIT), mRNA”, gi|4503718|ref|NM_002012.1|[4503718]; 331: NM_002020, “Homo



sapiens fms-related tyrosine kinase 4 (FLT4), transcript variant 2, mRNA”,



gi|4503752|ref|NM_002020.1|[4503752]; 332: NM_002022, “Homo sapiens flavin containing


monooxygenase 4 (FMO4), mRNA”, gi|4503758|ref|NM_002022.1|[4503758]; 333:


NM_002032, “Homo sapiens ferritin, heavy polypeptide 1 (FTH1), mRNA”,


gi|4503794|ref|NM_002032.1|[4503794]; 334: NM_002041, “Homo sapiens GA binding protein


transcription factor, beta subunit 2, 47 kDa”, “(GABPB2), transcript variant gamma-1, mRNA”,


gi|8051596|ref|NM_002041.2|[8051596]; 335: NM_002044, “Homo sapiens galactokinase 2


(GALK2), mRNA”, gi|4503896|ref|NM_002044.1|[4503896]; 336: NM_002047, “Homo sapiens


glycyl-tRNA synthetase (GARS), mRNA”, gi|6996009|ref|NM_002047.1|[6996009]; 337:


NM_002052, “Homo sapiens GATA binding protein 4 (GATA4), mRNA”,


gi|33188460|ref|NM_002052.2|[33188460]; 338: NM_002083, “Homo sapiens glutathione


peroxidase 2 (gastrointestinal) (GPX2), mRNA”, gi|32967606|ref|NM_002083.2|[32967606];


339: NM_002086, “Homo sapiens growth factor receptor-bound protein 2 (GRB2), mRNA”,


gi|34452726|ref|NM_002086.2|[34452726]; 340: NM_002093, “Homo sapiens glycogen


synthase kinase 3 beta (GSK3B), mRNA”, gi|21361339|ref|NM_002093.2|[21361339]; 341:


NM_002095, “Homo sapiens general transcription factor IIE, polypeptide 2, beta 34 kDa”,


“(GTF2E2), mRNA”, gi|34222295|ref|NM_002095.3|[34222295]; 342: NM_002110, “Homo



sapiens hemopoietic cell kinase (HCK), mRNA”, gi|30795228|ref|NM_002110.2|[30795228];



343: NM_002115, “Homo sapiens hexokinase 3 (white cell) (HK3), nuclear gene encoding”,


“mitochondrial protein, mRNA”, gi|4504394|ref|NM_002115.1|[4504394]; 344: NM_002137,


Homo sapiens heterogeneous nuclear ribonucleoprotein A2/B1 (HNRPA2B1),”, “transcript


variant A2, mRNA”, gi|14043073|ref|NM_002137.2|[14043073]; 345: NM_002148, “Homo



sapiens homeo box D10 (HOXD10), mRNA”, gi|23510365|ref|NM_002148.2|[23510365]; 346:



NM_002151, “Homo sapiens hepsin (transmembrane protease, serine 1) (HPN), transcript


variant”, “2, mRNA”, gi|4504480|ref|NM_002151.1|[4504480]; 347: NM_002152, “Homo



sapiens histidine rich calcium binding protein (HRC), mRNA”,



gi|4504486|ref|NM_002152.1|[4504486]; 348: NM_002157, “Homo sapiens heat shock 10 kDa


protein 1 (chaperonin 10) (HSPE1), mRNA”, gi|4504522|ref|NM_002157.1|[45045221]; 349:


NM_002158, “Homo sapiens human T-cell leukemia virus enhancer factor (HTLF), mRNA”,


gi|40549453|ref|NM_002158.2|[40549453]; 350: NM_002162, “Homo sapiens intercellular


adhesion molecule 3 (ICAM3), mRNA”, gi|12545399|ref|NM_002162.2|[12545399]; 351:


NM_002193, “Homo sapiens inhibin, beta B (activin AB beta polypeptide) (INHBB), mRNA“;


gi|9257224|ref|NM_002193.1|[9257224]; 352: NM_002194, “Homo sapiens inositol


polyphosphate-1-phosphatase (INPP1), mRNA”, gi|4755138|ref|NM_002194.2|[4755138]; 353:


NM_002196, “Homo sapiens insulinoma-associated 1 (INSM1), mRNA”,


gi|4504712|ref|NM_002196.1|[4504712]; 354: NM_002198, “Homo sapiens interferon


regulatory factor 1 (IRF1), mRNA”, gi|4504720|ref|NM_002198.1|[4504720]; 355: NM_002199,


Homo sapiens interferon regulatory factor 2 (IRF2), mRNA”,


gi|4755144|ref|NM_002199.2|[4755144]; 356: NM_002210, “Homo sapiens integrin, alpha V


(vitronectin receptor, alpha polypeptide, antigen”, “CD51) (ITGAV), mRNA”,


gi|40217844|ref|NM_002210.2|[40217844]; 357: NM_002212, “Homo sapiens integrin beta 4


binding protein (ITGB4BP), transcript variant 1,”, mRNA,


gi|31563381|ref|NM_002212.2|[31563381]; 358: NM_002217, “Homo sapiens pre-alpha


(globulin) inhibitor, H3 polypeptide (ITIH3), mRNA”,


gi|10092578|ref|NM_002217.1|[10092578]; 359: NM_002221, “Homo sapiens inositol 1,4,5-


trisphosphate 3-kinase B (ITPKB), mRNA”, gi|38569399|ref|NM_002221.2|[38569399]; 360:


NM_002229, “Homo sapiens jun B proto-oncogene (JUNB), mRNA”,


gi|4504808|ref|NM_002229.1|[4504808]; 361: NM_002231, “Homo sapiens kangai 1


(suppression of tumorigenicity 6, prostate; CD82 antigen”, “(R2 leukocyte antigen, antigen


detected by monoclonal and antibody IA4)) (KAI1),”, mRNA,


gi|13259537|ref|NM_002231.2|[13259537]; 362: NM_002232, “Homo sapiens potassium


voltage-gated channel, shaker-related subfamily, member 3”, “(KCNA3), mRNA”,


gi|25952081|ref|NM_002232.2|[25952081]; 363: NM_002238, “Homo sapiens potassium


voltage-gated channel, subfamily H (eag-related), member”, “1 (KCNH1), transcript variant 2,


mRNA”, gi|27436999|ref|NM_002238.2|[27436999]; 364: NM_002241, “Homo sapiens


potassium inwardly-rectifying channel, subfamily J, member 10”, “(KCNJ10), mRNA”,


gi|25121965|ref|NM_002241.2|[25121965]; 365: NM_002248, “Homo sapiens potassium


intermediate/small conductance calcium-activated channel,”, “subfamily N, member 1 (KCNN1),


mRNA”, gi|25777642|ref|NM_002248.3|[25777642]; 366: NM_002252, “Homo sapiens


potassium voltage-gated channel, delayed-rectifier, subfamily S,”, “member 3 (KCNS3),


mRNA”, gi|25952107|ref|NM_002252.3|[25952107]; 367: NM_002257, “Homo sapiens


kallikrein 1, renal/pancreas/salivary (KLK1), mRNA”,


gi|22027643|ref|NM_002257.2|[22027643]; 368: NM_002268, “Homo sapiens karyopherin


alpha 4 (importin alpha 3) (KPNA4), mRNA”, gi|27477125|ref|NM_002268.3|[27477125]; 369:


NM_002277, “Homo sapiens keratin, hair, acidic, 1 (KRTHA1), mRNA”,


gi|14917114|ref|NM_002277.2|[14917114]; 370: NM_002280, “Homo sapiens keratin, hair,


acidic, 5 (KRTHA5), mRNA”, gi|15431313|ref|NM_002280.3|[15431313]; 371: NM_002283,


Homo sapiens keratin, hair, basic, 5 (KRTHB5), mRNA”,


gi|15431324|ref|NM_002283.2|[15431324]; 372: NM_002286, “Homo sapiens lymphocyte-


activation gene 3 (LAG3), mRNA”, gi|15718681|ref|NM_002286.4|[15718681]; 373:


NM_002298, “Homo sapiens lymphocyte cytosolic protein 1 (L-plastin) (LCP1), mRNA”,


gi|7382490|ref|NM_002298.2|[7382490]; 374: NM_002305, “Homo sapiens lectin, galactoside-


binding, soluble, 1 (galectin 1) (LGALS1), mRNA”, gi|6006015|ref|NM_002305.2|[6006015];


375: NM_002309, Homo sapiens leukemia inhibitory factor (cholinergic differentiation factor),


“(LIF), mRNA”, gi|6006018|ref|NM_002309.2|[6006018]; 376: NM_002312, “Homo sapiens


ligase IV, DNA, ATP-dependent (LIG4), mRNA”, gi|23199992|ref|NM_002312.2|[23199992];


377: NM_002316, “Homo sapiens LIM homeobox transcription factor 1, beta (LMX1B),


mRNA”, gi|4505006|ref|NM_002316.1|[4505006]; 378: NM_002335, “Homo sapiens low


density lipoprotein receptor-related protein 5 (LRP5), mRNA”,


gi|4505018|ref|NM_002335.1|[4505018]; 379: NM_002339, “Homo sapiens lymphocyte-


specific protein 1 (LSP1), mRNA”, gi|10880978|ref|NM_002339.1|[10880978]; 380:


NM_002342, “Homo sapiens lymphotoxin beta receptor (TNFR superfamily, member 3)


(LTBR), mRNA”, gi|4505038|ref|NM_002342.1|[4505038]; 381: NM_002347, “Homo sapiens


lymphocyte antigen 6 complex, locus H (LY6H), mRNA”,


gi|4505050|ref|NM_002347.1|[4505050]; 382: NM_002357, “Homo sapiens MAX dimerization


protein 1 (MAD), mRNA”, gi|4505068|ref|NM_002357.1|[4505068]; 383: NM_002372, “Homo



sapiens mannosidase, alpha, class 2A, member 1 (MAN2A1), mRNA”,



gi|4758697|ref|NM_002372.1|[4758697]; 384: NM_002378, “Homo sapiens megakaryocyte-


associated tyrosine kinase (MATK), transcript variant”, “2, mRNA”,


gi|21450841|ref|NM_002378.2|[21450841]; 385: NM_002381, “Homo sapiens matrilin 3


(MATN3), mRNA”, gi|13518040|ref|NM_002381.2|[13518040]; 386: NM_002386, Homo



sapiens melanocortin 1 receptor (alpha melanocyte stimulating hormone, “receptor) (MC1R),



mRNA”, gi|27477128|ref|NM_002386.2|[27477128]; 387: NM_002388, “Homo sapiens MCM3


minichromosome maintenance deficient 3 (S. cerevisiae) (MCM3),”, mRNA,


gi|33356548|ref|NM_002388.3|[33356548]; 388: NM_002390, “Homo sapiens a disintegrin and


metalloproteinase domain 11 (ADAM11), transcript”, “variant 1, mRNA”,


gi|4585709|ref|NM_002390.2|[4585709]; 389: NM_002391, “Homo sapiens midkine (neurite


growth-promoting factor 2) (MDK), mRNA”, gi|24475622|ref|NM_002391.2|[24475622]; 390:


NM_002393, “Homo sapiens Mdm4, transformed 3T3 cell double minute 4, p53 binding


protein”, “(mouse) (MDM4), mRNA”, gi|4505138|ref|NM_002393.1|[4505138]; 391:


NM_002398, “Homo sapiens Meis1, myeloid ecotropic viral integration site 1 homolog


(mouse)”, “(MEIS1), mRNA”, gi|4505150|ref|NM_002398.1|[4505150]; 392: NM_002399,


Homo sapiens Meis1, myeloid ecotropic viral integration site 1 homolog 2 (mouse)”, “(MEIS2),


transcript variant f, mRNA”, gi|27502374|ref|NM_002399.2|[27502374]; 393: NM_002401,,


ref|NM_002401.3|[42794764]; 394: NM_002406, “Homo sapiens mannosyl (alpha-1,3-)-


glycoprotein”, “beta-1,2-N-acetylglucosaminyltransferase (MGAT1), mRNA”,


gi|6031182|ref|NM_002406.2|[6031182]; 395: NM_002412, “Homo sapiens O-6-


methylguanine-DNA methyltransferase (MGMT), mRNA”,


gi|4505176|ref|NM_002412.1|[4505176]; 396: NM_002419, “Homo sapiens mitogen-activated


protein kinase kinase kinase 11 (MAP3K11), mRNA”,


gi|21735553|ref|NM_002419.2|[21735553]; 397: NM_002427, “Homo sapiens matrix


metalloproteinase 13 (collagenase 3) (MMP13), mRNA”,


gi|13027796|ref|NM_002427.2|[13027796]; 398: NM_002428, “Homo sapiens matrix


metalloproteinase 15 (membrane-inserted) (MMP15), mRNA”,


gi|4505210|ref|NM_002428.1|[4505210]; 399: NM_002434, “Homo sapiens N-methylpurine-


DNA glycosylase (MPG), mRNA”, gi|4505232|ref|NM_002434.1|[4505232]; 400: NM_002437,


Homo sapiens MpV17 transgene, murine homolog, glomerulosclerosis (MPV17), mRNA”,


gi|37059781|ref|NM_002437.3|[37059781]; 401: NM_002446, “Homo sapiens mitogen-


activated protein kinase kinase kinase 10 (MAP3K10), mRNA”,


gi|21735549|ref|NM_002446.2|[21735549]; 402: NM_002447, Homo sapiens macrophage


stimulating 1 receptor (c-met-related tyrosine kinase), “(MST1R), mRNA”,


gi|4505264|ref|NM_002447.1|[4505264]; 403: NM_002452, Homo sapiens nudix (nucleoside


diphosphate linked moiety X)-type motif 1, “(NUDT1), transcript variant 1, mRNA”,


gi|40288273|ref|NM_002452.3|[40288273]; 404: NM_002453, “Homo sapiens mitochondrial


translational initiation factor 2 (MTIF2), nuclear”, “gene encoding mitochondrial protein,


mRNA”, gi|4505276|ref|NM_002453.1|[4505276]; 405: NM_002461, “Homo sapiens


mevalonate (diphospho) decarboxylase (MVD), mRNA”,


gi|4505288|ref|NM_002461.1|[4505288]; 406: NM_002470, “Homo sapiens myosin, heavy


polypeptide 3, skeletal muscle, embryonic (MYH3),”, mRNA,


gi|11342671|ref|NM_002470.1|[11342671]; 407: NM_002471, “Homo sapiens myosin, heavy


polypeptide 6, cardiac muscle, alpha (cardiomyopathy,”, “hypertrophic 1) (MYH6), mRNA”,


gi|27764860|ref|NM_002471.1|[27764860]; 408: NM_002475, “Homo sapiens myosin light


chain 1 slow a (MLC1SA), mRNA”, gi|17986280|ref|NM_002475.2|[17986280]; 409:


NM_002487, “Homo sapiens necdin homolog (mouse) (NDN), mRNA”,


gi|10800414|ref|NM_002487.2|[10800414]; 410: NM_002492, “Homo sapiens NADH


dehydrogenase (ubiquinone) 1 beta subcomplex, 5, 16 kDa”, “(NDUFB5), nuclear gene encoding


mitochondrial protein, mRNA”, gi|33519467|ref|NM_002492.2|[33519467]; 411: NM_002500,


Homo sapiens neurogenic differentiation 1 (NEUROD1), mRNA”,


gi|4505376|ref|NM_002500.1|[4505376]; 412: NM_002506, “Homo sapiens nerve growth


factor, beta polypeptide (NGFB), mRNA”, gi|4505390|ref|NM_002506.1|[4505390]; 413:


NM_002513, “Homo sapiens non-metastatic cells 3, protein expressed in (NME3), mRNA”,


gi|37693992|ref|NM_002513.2|[37693992]; 414: NM_002522, “Homo sapiens neuronal


pentraxin I (NPTX1), mRNA”, gi|4505442|ref|NM_002522.1|[4505442]; 415: NM_002525,


Homo sapiens nardilysin (N-arginine dibasic convertase) (NRD1), mRNA”,


gi|4505452|ref|NM_002525.1|[4505452]; 416: NM_002528, “Homo sapiens nth endonuclease


III-like 1 (E. coli) (NTHL1), mRNA”, gi|38455392|ref|NM_002528.4|[38455392]; 417:


NM_002529, “Homo sapiens neurotrophic tyrosine kinase, receptor, type 1 (NTRK1), mRNA”,


gi|4585711|ref|NM_002529.2|[4585711]; 418: NM_002531, “Homo sapiens neurotensin


receptor 1 (high affinity) (NTSR1), mRNA”, gi|4505476|ref|NM_002531.1|[4505476]; 419:


NM_002555, “Homo sapiens solute carrier family 22 (organic cation transporter), member 18”,


“(SLC22A18), transcript variant 1, mRNA”, gi|34734074|ref|NM_002555.3|[34734074]; 420:


NM_002559, “Homo sapiens purinergic receptor P2X, ligand-gated ion channel, 3 (P2RX3),


mRNA”, gi|28416924|ref|NM_002559.2|[28416924]; 421: NM_002560, “Homo sapiens


purinergic receptor P2X, ligand-gated ion channel, 4 (P2RX4),”, “transcript variant 1, mRNA”,


gi|28416926|ref|NM_002560.2|[28416926]; 422: NM_002562, “Homo sapiens purinergic


receptor P2X, ligand-gated ion channel, 7 (P2RX7),”, “transcript variant 1, mRNA”,


gi|34335273|ref|NM_002562.4|[34335273]; 423: NM_002563, “Homo sapiens purinergic


receptor P2Y, G-protein coupled, 1 (P2RY1), mRNA”,


gi|28872741|ref|NM_002563.2|[28872741]; 424: NM_002566, “Homo sapiens purinergic


receptor P2Y, G-protein coupled, 11 (P2RY11), mRNA”,


gi|29029602|ref|NM_002566.3|[29029602]; 425: NM_002568, “Homo sapiens poly(A) binding


protein, cytoplasmic 1 (PABPC1), mRNA”, gi|4505574|ref|NM_002568.1|[4505574]; 426:


NM_002569, “Homo sapiens furin (paired basic amino acid cleaving enzyme) (FURIN),


mRNA”, gi|20336193|ref|NM_002569.2|[20336193]; 427: NM_002572, “Homo sapiens


platelet-activating factor acetylhydrolase, isoform Ib, beta”, “subunit 30 kDa (PAFAH1B2),


mRNA”, gi|4505584|ref|NM_002572.1|[4505584]; 428: NM_002576,,


ref|NM_002576.3|[42794768]; 429: NM_002582, “Homo sapiens poly(A)-specific ribonuclease


(deadenylation nuclease) (PARN), mRNA”, gi|4505610|ref|NM_002582.1|[4505610]; 430:


NM_002584, “Homo sapiens paired box gene 7 (PAX7), transcript variant 1, mRNA”,


gi|4505618|ref|NM_002584.1|[4505618]; 431: NM_002590, “Homo sapiens protocadherin 8


(PCDH8), transcript variant 1, mRNA”, gi|6631101|ref|NM_002590.2|[6631101]; 432:


NM_002591, “Homo sapiens phosphoenolpyruvate carboxykinase 1 (soluble) (PCK1), mRNA”,


gi|32483400|ref|NM_002591.2|[32483400]; 433: NM_002599, “Homo sapiens


phosphodiesterase 2A, cGMP-stimulated (PDE2A), mRNA”,


gi|4505656|ref|NM_002599.1|[4505656]; 434: NM_002615, “Homo sapiens serine (or cysteine)


proteinase inhibitor, clade F (alpha-2”, “antiplasmin, pigment epithelium derived factor),


member 1 (SERPINF1), mRNA”, gi|39725933|ref|NM_002615.3|[39725933]; 435: NM_002618,


Homo sapiens peroxisome biogenesis factor 13 (PEX13), mRNA”,


gi|4505722|ref|NM_002618.1|[4505722]; 436: NM_002620, “Homo sapiens platelet factor 4


variant 1 (PF4V1), mRNA”, gi|4505734|ref|NM_002620.1|[4505734]; 437: NM_002628,


Homo sapiens profilin 2 (PFN2), transcript variant 2, mRNA”,


gi|16753216|ref|NM_002628.2|[16753216]; 438: NM_002630, “Homo sapiens progastricsin


(pepsinogen C) (PGC), mRNA”, gi|4505756|ref|NM_002630.1|[4505756]; 439: NM_002635,



Homo sapiens solute carrier family 25 (mitochondrial carrier; phosphate, “carrier), member 3



(SLC25A3), nuclear gene encoding mitochondrial protein,”, “transcript variant 1b, mRNA”,


gi|4505774|ref|NM_002635.1|[4505774]; 440: NM_002639, “Homo sapiens serine (or cysteine)


proteinase inhibitor, clade B (ovalbumin),”, “member 5 (SERPINB5), mRNA”,


gi|4505788|ref|NM_002639.1|[4505788]; 441: NM_002640, “Homo sapiens serine (or cysteine)


proteinase inhibitor, clade B (ovalbumin),”, “member 8 (SERPINB8), transcript variant 1,


mRNA”, gi|38504672|ref|NM_002640.3|[38504672]; 442: NM_002641, “Homo sapiens


phosphatidylinositol glycan, class A (paroxysmal nocturnal”, “hemoglobinuria) (PIGA),


transcript variant 1, mRNA”, gi|11863129|ref|NM_002641.1|[11863129]; 443: NM_002648,


Homo sapiens pim-1 oncogene (PIM1), mRNA”, gi|31543400|ref|NM_002648.2|[31543400];


444: NM_002654, “Homo sapiens pyruvate kinase, muscle (PKM2), transcript variant 1,


mRNA”, gi|33286417|ref|NM_002654.3|[33286417]; 445: NM_002655, “Homo sapiens


pleiomorphic adenoma gene 1 (PLAG1), mRNA”, gi|4505854|ref|NM_002655.1|[4505854]; 446:


NM_002676, “Homo sapiens phosphomannomutase 1 (PMM1), mRNA”,


gi|4505904|ref|NM_002676.1|[4505904]; 447: NM_002692, “Homo sapiens polymerase (DNA


directed), epsilon 2 (p59 subunit) (POLE2), mRNA”,


gi|32189368|ref|NM_002692.2|[32189368]; 448: NM_002697, “Homo sapiens POU domain,


class 2, transcription factor 1 (POU2F1), mRNA”, gi|42476163|ref|NM_002697.2|[42476163];


449: NM_002707, “Homo sapiens protein phosphatase 1G (formerly 2C), magnesium-


dependent, gamma”, “isoform (PPM1G), transcript variant 2, mRNA”,


gi|29826283|ref|NM_002707.3|[29826283]; 450: NM_002708, “Homo sapiens protein


phosphatase 1, catalytic subunit, alpha isoform (PPP1CA),”, mRNA,


gi|31543430|ref|NM_002708.2|[31543430]; 451: NM_002715, “Homo sapiens protein


phosphatase 2 (formerly 2A), catalytic subunit, alpha”, “isoform (PPP2CA), mRNA”,


gi|4506016|ref|NM_002715.1|[4506016]; 452: NM_002728, “Homo sapiens proteoglycan 2,


bone marrow (natural killer cell activator,”, “eosinophil granule major basic protein) (PRG2),


mRNA”, gi|32261294|ref|NM_002728.3|[32261294]; 453: NM_002739, “Homo sapiens protein


kinase C, gamma (PRKCG), mRNA”, gi|31377808|ref|NM_002739.2|[31377808]; 454:


NM_002763, “Homo sapiens prospero-related homeobox 1 (PROX1), mRNA”,


gi|34147628|ref|NM_002763.3|[34147628]; 455: NM_002766, Homo sapiens phosphoribosyl


pyrophosphate synthetase-associated protein 1, “(PRPSAP1), mRNA”,


gi|4506130|ref|NM_002766.1|[4506130]; 456: NM_002768, “Homo sapiens procollagen (type


III) N-endopeptidase (PCOLN3), mRNA”, gi|4506138|ref|NM_002768.1|[4506138]; 457:


NM_002774, “Homo sapiens kallikrein 6 (neurosin, zyme) (KLK6), mRNA”,


gi|21327702|ref|NM_002774.2|[21327702]; 458: NM_002779, “Homo sapiens pleckstrin and


Sec7 domain protein (PSD), mRNA”, gi|28626518|ref|NM_002779.2|[28626518]; 459:


NM_002789, “Homo sapiens proteasome (prosome, macropain) subunit, alpha type, 4


(PSMA4),”, mRNA, gi|23110940|ref|NM_002789.3|[23110940]; 460: NM_002790, “Homo



sapiens proteasome (prosome, macropain) subunit, alpha type, 5 (PSMA5),”, mRNA,



gi|23110941|ref|NM_002790.2|[23110941]; 461: NM_002791, “Homo sapiens proteasome


(prosome, macropain) subunit, alpha type, 6 (PSMA6),”, mRNA,


gi|23110943|ref|NM_002791.1|[23110943]; 462: NM_002795, “Homo sapiens proteasome


(prosome, macropain) subunit, beta type, 3 (PSMB3), mRNA”,


gi|22538464|ref|NM_002795.2|[22538464]; 463: NM_002799, “Homo sapiens proteasome


(prosome, macropain) subunit, beta type, 7 (PSMB7), mRNA”,


gi|23110926|ref|NM_002799.2|[23110926]; 464: NM_002800, “Homo sapiens proteasome


(prosome, macropain) subunit, beta type, 9 (large”, “multifunctional protease 2) (PSMB9),


transcript variant 1, mRNA”, gi|23110930|ref|NM_002800.3|[23110930]; 465: NM_002802,


Homo sapiens proteasome (prosome, macropain) 26S subunit, ATPase, 1 (PSMC1),”, mRNA,


gi|24430150|ref|NM_002802.2|[24430150]; 466: NM_002805, “Homo sapiens proteasome


(prosome, macropain) 26S subunit, ATPase, 5 (PSMC5),”, mRNA,


gi|24497434|ref|NM_002805.4|[24497434]; 467: NM_002818, “Homo sapiens proteasome


(prosome, macropain) activator subunit 2 (PA28 beta)”, “(PSME2), mRNA”,


gi|30410791|ref|NM_002818.2|[30410791]; 468: NM_002821, “Homo sapiens PTK7 protein


tyrosine kinase 7 (PTK7), transcript variant PTK7-1,”, mRNA,


gi|27886610|ref|NM_002821.3|[27886610]; 469: NM_002826, “Homo sapiens quiescin Q6


(QSCN6), mRNA”, gi|13325074|ref|NM_002826.2|[13325074]; 470: NM_002831, “Homo



sapiens protein tyrosine phosphatase, non-receptor type 6 (PTPN6),”, “transcript variant 1,



mRNA”, gi|34328900|ref|NM_002831.3|[34328900]; 471: NM_002832, “Homo sapiens protein


tyrosine phosphatase, non-receptor type 7 (PTPN7),”, “transcript variant 1, mRNA”,


gi|18375657|ref|NM_002832.2|[18375657]; 472: NM_002833, “Homo sapiens protein tyrosine


phosphatase, non-receptor type 9 (PTPN9), mRNA”, gi|18375663|ref|NM_002833.2|[18375663];


473: NM_002837, “Homo sapiens protein tyrosine phosphatase, receptor type, B (PTPRB),


mRNA”, gi|18491009|ref|NM_002837.2|[18491009]; 474: NM_002841, “Homo sapiens protein


tyrosine phosphatase, receptor type, G (PTPRG), mRNA”,


gi|18860897|ref|NM_002841.2|[18860897]; 475: NM_002845, “Homo sapiens protein tyrosine


phosphatase, receptor type, M (PTPRM), mRNA”, gi|18860903|ref|NM_002845.2|[18860903];


476: NM_002851, “Homo sapiens protein tyrosine phosphatase, receptor-type, Z polypeptide


1”, “(PTPRZ1), mRNA”, gi|4506328|ref|NM_002851.1|[4506328]; 477: NM_002854, “Homo



sapiens parvalbumin (PVALB), mRNA”, gi|4506334|ref|NM_002854.1|[4506334]; 478:



NM_002856, Homo sapiens poliovirus receptor-related 2 (herpesvirus entry mediator B),


“(PVRL2), mRNA”, gi|5360209|ref|NM_002856.1|[5360209]; 479: NM_002860, Homo sapiens


pyrroline-5-carboxylate synthetase (glutamate gamma-semialdehyde, “synthetase) (PYCS),


mRNA”, gi|21361367|ref|NM_002860.2|[21361367]; 480: NM_002863, “Homo sapiens


phosphorylase, glycogen; liver (Hers disease, glycogen storage”, “disease type VI) (PYGL),


mRNA”, gi|42476165|ref|NM_002863.2|[42476165]; 481: NM_002868, “Homo sapiens


RAB5B, member RAS oncogene family (RAB5B), mRNA”,


gi|33943097|ref|NM_002868.2|[33943097]; 482: NM_002887, “Homo sapiens arginyl-tRNA


synthetase (RARS), mRNA”, gi|40068503|ref|NM_002887.3|[40068503]; 483: NM_002891,



Homo sapiens Ras protein-specific guanine nucleotide-releasing factor 1, “(RASGRF1),



transcript variant 1, mRNA”, gi|24797098|ref|NM_002891.3|[24797098]; 484: NM_002892,


Homo sapiens AT rich interactive domain 4A (RBP1-like) (ARID4A), transcript”, “variant 1,


mRNA”, gi|13259496|ref|NM_002892.2|[13259496]; 485: NM_002900, “Homo sapiens retinol


binding protein 3, interstitial (RBP3), mRNA”, gi|4506452|ref|NM_002900.1|[4506452]; 486:


NM_002901, “Homo sapiens reticulocalbin 1, EF-hand calcium binding domain (RCN1),


mRNA”, gi|4506454|ref|NM_002901.1|[4506454]; 487: NM_002904, “Homo sapiens RD RNA


binding protein (RDBP), mRNA”, gi|20631983|ref|NM_002904.4|[20631983]; 488: NM_002912,


Homo sapiens REV3-like, catalytic subunit of DNA polymerase zeta (yeast)”, “(REV3L),


mRNA”, gi|4506482|ref|NM_002912.1|[4506482]; 489: NM_002916, “Homo sapiens


replication factor C (activator 1) 4, 37 kDa (RFC4), transcript”, “variant 1, mRNA”,


gi|31881681|ref|NM_002916.3|[31881681]; 490: NM_002919, “Homo sapiens regulatory factor


X, 3 (influences HLA class II expression) (RFX3),”, “transcript variant 1, mRNA”,


gi|19743882|ref|NM_002919.2|[19743882]; 491: NM_002921,“Homo sapiens retinal G protein


coupled receptor (RGR), xmRNA”, gi|21361328|ref|NM_002921.2|[21361328]; 492: NM_002923,


Homo sapiens regulator of G-protein signalling 2, 24 kDa (RGS2), mRNA”,


gi|4506516|ref|NM_002923.1|[4506516]; 493: NM_002930, “Homo sapiens Ras-like without


CAAX 2 (RIT2), mRNA”, gi|4506532|ref|NM_002930.1|[4506532]; 494: NM_002938, “Homo



sapiens ring finger protein 4 (RNF4), mRNA”, gi|34305289|ref|NM_002938.2|[34305289]; 495:



NM_002941, “Homo sapiens roundabout, axon guidance receptor, homolog 1 (Drosophila)


(ROBO1),”, “transcript variant 1, mRNA”, gi|19743804|ref|NM_002941.2|[19743804]; 496:


NM_002946, “Homo sapiens replication protein A2, 32 kDa (RPA2), mRNA”,


gi|34147622|ref|NM_002946.3|[34147622]; 497: NM_002954, “Homo sapiens ribosomal


protein S27a (RPS27A), mRNA”, gi|27436941|ref|NM_002954.3|[27436941]; 498: NM_002965,


Homo sapiens S100 calcium binding protein A9 (calgranulin B) (S100A9), mRNA”,


gi|9845520|ref|NM_002965.2|[9845520]; 499: NM_002966, “Homo sapiens S100 calcium


binding protein A10 (annexin II ligand, calpactin I,”, “light polypeptide (p11)) (S100A10),


mRNA”, gi|4506760|ref|NM_002966.1|[4506760]; 500: NM_002968, “Homo sapiens sal-like 1


(Drosophila) (SALL1), mRNA”, gi|6997248|ref|NM_002968.1|[6997248]; 501: NM_002971,



Homo sapiens special AT-rich sequence binding protein 1 (binds to nuclear, “matrix/scaffold-



associating DNA's) (SATB1), mRNA”, gi|33356175|ref|NM_002971.2|[33356175]; 502:


NM_002973, “Homo sapiens spinocerebellar ataxia 2 (olivopontocerebellar ataxia 2,


autosomal”, “dominant, ataxin 2) (SCA2), mRNA”, gi|4506794|ref|NM_002973.1|[4506794];


503: NM_002987, “Homo sapiens chemokine (C—C motif) ligand 17 (CCL17), mRNA”,


gi|22538801|ref|NM_002987.2|[22538801]; 504: NM_003002, “Homo sapiens succinate


dehydrogenase complex, subunit D, integral membrane”, “protein (SDHD), nuclear gene


encoding mitochondrial protein, mRNA”, gi|4506864|ref|NM_003002.1|[4506864]; 505:


NM_003025, “Homo sapiens SH3-domain GRB2-like 1 (SH3GL1), mRNA”,


gi|42476326|ref|NM_003025.2|[42476326]; 506: NM_003028, “Homo sapiens SUB (Src


homology 2 domain containing) adaptor protein B (SUB),”, mRNA,


gi|4506934|ref|NM_003028.1|[4506934]; 507: NM_003034, Homo sapiens sialyltransferase 8A


(alpha-N-acetylneuraminate:, “alpha-2,8-sialyltransferase, GD3 synthase) (SIAT8A), mRNA”,


gi|28373095|ref|NM_003034.2|[28373095]; 508: NM_003035, “Homo sapiens TAL1 (SCL)


interrupting locus (SIL), mRNA”, gi|4506958|ref|NM_003035.1|[4506958]; 509: NM_003040,


Homo sapiens solute carrier family 4, anion exchanger, member 2 (erythrocyte”, “membrane


protein band 3-like 1) (SLC4A2), mRNA”, gi|21361550|ref|NM_003040.2|[21361550]; 510:


NM_003042, “Homo sapiens solute carrier family 6 (neurotransmitter transporter, GABA),”,


“member 1 (SLC6A1), mRNA”, gi|40254466|ref|NM_003042.2|[40254466]; 511: NM_003054,


Homo sapiens solute carrier family 18 (vesicular monoamine), member 2 (SLC18A2),”,


mRNA, gi|42476324|ref|NM_003054.2|[42476324]; 512: NM_003055, “Homo sapiens solute


carrier family 18 (vesicular acetylcholine), member 3”, “(SLC18A3), mRNA”,


gi|4506990|ref|NM_003055.1|[4506990]; 513: NM_003058, “Homo sapiens solute carrier


family 22 (organic cation transporter), member 2”, “(SLC22A2), transcript variant 1, mRNA”,


gi|23510411|ref|NM_003058.2|[23510411]; 514: NM_003068, “Homo sapiens snail homolog 2


(Drosophila) (SNAI2), mRNA”, gi|24497625|ref|NM_003068.3|[24497625]; 515: NM_003077,


Homo sapiens SWI/SNF related, matrix associated, actin dependent regulator of”, “chromatin,


subfamily d, member 2 (SMARCD2), mRNA”, gi|21264350|ref|NM_003077.2|[21264350]; 516:


NM_003092, “Homo sapiens small nuclear ribonucleoprotein polypeptide B″ (SNRPB2),”,


“transcript variant 1, mRNA”, gi|38149917|ref|NM_003092.3|[38149917]; 517: NM_003093,


Homo sapiens small nuclear ribonucleoprotein polypeptide C (SNRPC), mRNA”,


gi|4507126|ref|NM_003093.1|[4507126]; 518: NM_003096, “Homo sapiens small nuclear


ribonucleoprotein polypeptide G (SNRPG), mRNA”, gi|21359839|ref|NM_003096.2|[21359839];


519: NM_003115, “Homo sapiens UDP-N-acteylglucosamine pyrophosphorylase 1 (UAP1),


mRNA”, gi|34147515|ref|NM_003115.3|[34147515]; 520: NM_003132, “Homo sapiens


spermidine synthase (SRM), mRNA”, gi|4507208|ref|NM_003132.1|[4507208]; 521:


NM_003134, Homo sapiens signal recognition particle 14 kDa (homologous Alu RNA binding,


“protein) (SRP14), mRNA”, gi|31543652|ref|NM_003134.2|[31543652]; 522: NM_003135,


Homo sapiens signal recognition particle 19 kDa (SRP19), mRNA”,


gi|4507212|ref|NM_003135.1|[4507212]; 523: NM_003140, “Homo sapiens sex determining


region Y (SRY), mRNA”, gi|4507224|ref|NM_003140.1|[4507224]; 524: NM_003141, “Homo



sapiens Sjogren syndrome antigen A1 (52 kDa, ribonucleoprotein autoantigen”, “SS-A/Ro)



(SSA1), mRNA”, gi|15208659|ref|NM_003141.2|[15208659]; 525: NM_003149, “Homo



sapiens src homology three (SH3) and cysteine rich domain (STAC), mRNA”,



gi|4507246|ref|NM_003149.1|[4507246]; 526: NM_003150, Homo sapiens signal transducer


and activator of transcription 3 (acute-phase, “response factor) (STAT3), transcript variant 2,


mRNA”, gi|21618337|ref|NM_003150.2|[21618337]; 527: NM_003156, “Homo sapiens stromal


interaction molecule 1 (STIM1), mRNA”, gi|21070996|ref|NM_003156.2|[21070996]; 528:


NM_003159, “Homo sapiens cyclin-dependent kinase-like 5 (CDKL5), mRNA”,


gi|4507280|ref|NM_003159.1|[4507280]; 529: NM_003162, “Homo sapiens striatin, calmodulin


binding protein (STRN), mRNA”, gi|4507282|ref|NM_003162.1|[4507282]; 530: NM_003165,


Homo sapiens syntaxin binding protein 1 (STXBP1), mRNA”,


gi|4507296|ref|NM_003165.1|[4507296]; 531: NM_003181, “Homo sapiens T, brachyury


homolog (mouse) (T), mRNA”, gi|19743811|ref|NM_003181.2|[19743811]; 532: NM_003184,


Homo sapiens TAF2 RNA polymerase II, TATA box binding protein (TBP)-associated”,


“factor, 150 kDa (TAF2), mRNA”, gi|20357590|ref|NM_003184.2|[20357590]; 533: NM_003186,


Homo sapiens transgelin (TAGLN), mRNA”, gi|12621918|ref|NM_003186.2|[12621918]; 534:


NM_003192, “Homo sapiens tubulin-specific chaperone c (TBCC), mRNA”,


gi|4507372|ref|NM_003192.1|[4507372]; 535: NM_003194, “Homo sapiens TATA box binding


protein (TBP), mRNA”, gi|20544178|ref|NM_003194.2|[20544178]; 536: NM_003216, “Homo



sapiens thyrotrophic embryonic factor (TEF), mRNA”,



gi|34486096|ref|NM_003216.2|[34486096]; 537: NM_003223, Homo sapiens transcription


factor AP-4 (activating enhancer binding protein 4), “(TFAP4), mRNA”,


gi|4507446|ref|NM_003223.1|[4507446]; 538: NM_003239, “Homo sapiens transfonning


growth factor, beta 3 (TGFB3), mRNA”, gi|4507464|ref|NM_003239.1|[4507464]; 539:


NM_003245, “Homo sapiens transglutaminase 3 (E polypeptide,”, “protein-glutamine-gamma-


glutamyltransferase) (TGM3), mRNA”, gi|39777600|ref|NM_003245.2|[39777600]; 540:


NM_003256, “Homo sapiens tissue inhibitor of metalloproteinase 4 (TIMP4), mRNA”,


gi|4507514|ref|NM_003256.1|[4507514]; 541: NM_003259, “Homo sapiens intercellular


adhesion molecule 5, telencephalin (ICAM5), mRNA”,


gi|12545403|ref|NM_003259.2|[12545403]; 542: NM_003269, “Homo sapiens nuclear receptor


subfamily 2, group E, member 1 (NR2E1), mRNA”, gi|21361108|ref|NM_003269.2|[21361108];


543: NM_003273, “Homo sapiens transmembrane 7 superfamily member 2 (TM7SF2),


mRNA”, gi|4507546|ref|NM_003273.1|[4507546]; 544: NM_003277, Homo sapiens claudin 5


(transmembrane protein deleted in velocardiofacial, “syndrome) (CLDN5), mRNA”,


gi|38570041|ref|NM_003277.2|[38570041]; 545: NM_003280, “Homo sapiens troponin C, slow


(TNNC1), mRNA”, gi|4507614|ref|NM_003280.1|[4507614]; 546: NM_003281, “Homo sapiens


troponin I, skeletal, slow (TNNI1), mRNA”, gi|21361554|ref|NM_003281.2|[21361554]; 547:


NM_003282, “Homo sapiens troponin I, skeletal, fast (TNNI2), mRNA”,


gi|4507620|ref|NM_003282.1|[4507620]; 548: NM_003288, “Homo sapiens tumor protein D52-


like 2 (TPD52L2), transcript variant 5, mRNA”, gi|40805859|ref|NM_003288.2|[40805859];


549: NM_003291, “Homo sapiens tripeptidyl peptidase II (TPP2), mRNA”,


gi|4507656|ref|NM_003291.1|[4507656]; 550: NM_003296, “Homo sapiens cysteine-rich


secretory protein 2 (CRISP2), mRNA”, gi|4507670|ref|NM_003296.1|[4507670]; 551:


NM_003298, “Homo sapiens nuclear receptor subfamily 2, group C, member 2 (NR2C2),


mRNA”, gi|36950990|ref|NM_003298.2|[36950990]; 552: NM_003312, “Homo sapiens


thiosulfate sulfurtransferase (rhodanese) (TST), nuclear gene”, “encoding mitochondrial protein,


mRNA”, gi|34335291|ref|NM_003312.4|[34335291]; 553: NM_003314, “Homo sapiens


tetratricopeptide repeat domain 1 (TTC1), mRNA”, gi|4507710|ref|NM_003314.1|[4507710];


554: NM_003315, “Homo sapiens DnaJ (Hsp40) homolog, subfamily C, member 7 (DNAJC7),


mRNA”, gi|4507712|ref|NM_003315.1|[4507712]; 555: NM_003323, “Homo sapiens tubby like


protein 2 (TULP2), mRNA”, gi|4507736|ref|NM_003323.1|[4507736]; 556: NM_003325, Homo



sapiens HIR histone cell cycle regulation defective homolog A (S., “cerevisiae) (HIRA),



mRNA”, gi|21536484|ref|NM_003325.3|[21536484]; 557: NM_003328, “Homo sapiens TXK


tyrosine kinase (TXK), mRNA”, gi|4507742|ref|NM_003328.1|[4507742]; 558: NM_003331,


Homo sapiens tyrosine kinase 2 (TYK2), mRNA”, gi|34222294|ref|NM_003331.3|[34222294];


559: NM_003333, “Homo sapiens ubiquitin A-52 residue ribosomal protein fusion product 1


(UBA52),”, mRNA, gi|15451941|ref|NM_003333.2|[15451941]; 560: NM_003334, Homo



sapiens ubiquitin-activating enzyme E1 (A1S9T and BN75 temperature, “sensitivity



complementing) (UBE1), transcript variant 1, mRNA”,


gi|23510337|ref|NM_003334.2|[23510337]; 561: NM_003341, “Homo sapiens ubiquitin-


conjugating enzyme E2E 1 (UBC4/5 homolog, yeast)”, “(UBE2E1), transcript variant 1,


mRNA”, gi|33359692|ref|NM_003341.3|[33359692]; 562: NM_003350, “Homo sapiens


ubiquitin-conjugating enzyme E2 variant 2 (UBE2V2), mRNA”,


gi|12025664|ref|NM_003350.2|[12025664]; 563: NM_003369, “Homo sapiens UV radiation


resistance associated gene (UVRAG), mRNA”, gi|21687211|ref|NM_003369.2|[21687211]; 564:


NM_003374, “Homo sapiens voltage-dependent anion channel 1 (VDAC1), mRNA”,


gi|4507878|ref|NM_003374.1|[4507878]; 565: NM_003375, “Homo sapiens voltage-dependent


anion channel 2 (VDAC2), mRNA”, gi|42476280|ref|NM_003375.2|[42476280]; 566:


NM_003383, “Homo sapiens very low density lipoprotein receptor (VLDLR), mRNA”,


gi|40254472|ref|NM_003383.2|[40254472]; 567: NM_003389, “Homo sapiens coronin, actin


binding protein, 2A (CORO2A), transcript variant 1,”, mRNA,


gi|16554582|ref|NM_003389.2|[16554582]; 568: NM_003391, “Homo sapiens wingless-type


MMTV integration site family member 2 (WNT2), mRNA”,


gi|4507926|ref|NM_003391.1|[4507926]; 569: NM_003399, “Homo sapiens X-prolyl


aminopeptidase (aminopeptidase P) 2, membrane-bound”, “(XPNPEP2), mRNA”,


gi|10880125|ref|NM_003399.3|[10880125]; 570: NM_003400, “Homo sapiens exportin 1


(CRM1 homolog, yeast) (XPO1), mRNA”, gi|8051634|ref|NM_003400.2|[8051634]; 571:


NM_003404, Homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase


activation, “protein, beta polypeptide (YWHAB), transcript variant 1, mRNA”,


gi|31742479|ref|NM_003404.3|[31742479]; 572: NM_003407, “Homo sapiens zinc finger


protein 36, C3H type, homolog (mouse) (ZFP36), mRNA”,


gi|4507960|ref|NM_003407.1|[4507960]; 573: NM_003408, “Homo sapiens zinc finger protein


37 homolog (mouse) (ZFP37), mRNA”, gi|4507962|ref|NM_003408.1|[4507962]; 574:


NM_003412, “Homo sapiens Zic family member 1 (odd-paired homolog, Drosophila) (ZIC1),


mRNA”, gi|22547181|ref|NM_003412.2|[22547181]; 575: NM_003413, “Homo sapiens Zic


family member 3 heterotaxy 1 (odd-paired homolog, Drosophila)”, “(ZIC3), mRNA”,


gi|22547199|ref|NM_003413.2|[22547199]; 576: NM_003418, Homo sapiens zinc finger protein


9 (a cellular retroviral nucleic acid binding, “protein) (ZNF9), mRNA”,


gi|4827070|ref|NM_003418.1|[4827070]; 577: NM_003441, “Homo sapiens zinc finger protein


141 (clone pHZ-44) (ZNF141), mRNA”, gi|4507992|ref|NM_003441.1|[4507992]; 578:


NM_003446, “Homo sapiens zinc finger protein 157 (HZF22) (ZNF157), mRNA”,


gi|23510453|ref|NM_003446.2|[23510453]; 579: NM_003449, “Homo sapiens tripartite motif-


containing 26 (TRIM26), mRNA”, gi|16445440|ref|NM_003449.2|[16445440]; 580:


NM_003460, “Homo sapiens zona pellucida glycoprotein 2 (sperm receptor) (ZP2), mRNA”,


gi|4508044|ref|NM_003460.1|[4508044]; 581: NM_003462, “Homo sapiens dynein, axonemal,


light intermediate polypeptide 1 (DNALI1), mRNA”,


gi|37595559|ref|NM_003462.3|[37595559]; 582: NM_003468, “Homo sapiens frizzled homolog


5 (Drosophila) (FZD5), mRNA”, gi|27894384|ref|NM_003468.2|[27894384]; 583: NM_003472,


Homo sapiens DEK oncogene (DNA binding) (DEK), mRNA”,


gi|31542502|ref|NM_003472.2|[31542502]; 584: NM_003473, Homo sapiens signal transducing


adaptor molecule (SH3 domain and ITAM motif) 1, “(STAM), mRNA”,


gi|21265027|ref|NM_003473.2|[21265027]; 585: NM_003483, “Homo sapiens high mobility


group AT-hook 2 (HMGA2), mRNA”, gi|14141182|ref|NM_003483.3|[14141182]; 586:


NM_003491, “Homo sapiens ARD1 homolog, N-acetyltransferase (S. cerevisiae) (ARD1),


mRNA”, gi|34222259|ref|NM_003491.2|[34222259]; 587: NM_003492, “Homo sapiens


chromosome X open reading frame 12 (CXorf12), mRNA”,


gi|4504738|ref|NM_003492.1|[4504738]; 588: NM_003495, “Homo sapiens histone 1, H4i


(HIST1H4I), mRNA”, gi|18105065|ref|NM_003495.2|[18105065]; 589: NM_003502, “Homo



sapiens axin 1 (AXIN1), transcript variant 1, mRNA”,



gi|31083149|ref|NM_003502.2|[31083149]; 590: NM_003504, “Homo sapiens CDC45 cell


division cycle 45-like (S. cerevisiae) (CDC45L), mRNA”,


gi|34335230|ref|NM_003504.3|[34335230]; 591: NM_003509, “Homo sapiens histone 1, H2ai


(HIST1H2AI), mRNA”, gi|15718713|ref|NM_003509.2|[15718713]; 592: NM_003524, “Homo



sapiens histone 1, H2bh (HIST1H2BH), mRNA”, gi|21166386|ref|NM_003524.2|[21166386];



593: NM_003529, “Homo sapiens histone 1, H3a (HIST1H3A), mRNA”,


gi|19743828|ref|NM_003529.2|[19743828]; 594: NM_003532, “Homo sapiens histone 1, H3e


(HIST1H3E), mRNA”, gi|21264566|ref|NM_003532.2|[21264566]; 595: NM_003536, “Homo



sapiens histone 1, H3h (HIST1H3H), mRNA”, gi|15718725|ref|NM_003536.2|[15718725]; 596:



NM_003538, “Homo sapiens histone 1, H4a (HIST1H4A), mRNA”,


gi|21166390|ref|NM_003538.3|[21166390]; 597: NM_003549, “Homo sapiens


hyaluronoglucosaminidase 3 (HYAL3), mRNA”, gi|15208650|ref|NM_003549.2|[15208650];


598: NM_003550, “Homo sapiens MAD1 mitotic arrest deficient-like 1 (yeast) (MAD1L1),


mRNA”, gi|4505064|ref|NM_003550.1|[4505064]; 599: NM_003553, “Homo sapiens olfactory


receptor, family 1, subfamily E, member 1 (OR1E1), mRNA”,


gi|11496274|ref|NM_003553.1|[11496274]; 600: NM_003554, “Homo sapiens olfactory


receptor, family 1, subfamily E, member 2 (OR1E2), mRNA”,


gi|11386152|ref|NM_003554.1|[11386152]; 601: NM_003581, “Homo sapiens NCK adaptor


protein 2 (NCK2), mRNA”, gi|4505346|ref|NM_003581.1|[4505346]; 602: NM_003582, Homo



sapiens dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 3, “(DYRK3), mRNA”,



gi|4503428|ref|NM_003582.1|[4503428]; 603: NM_003585, “Homo sapiens double C2-like


domains, beta (DOC2B), mRNA”, gi|6005996|ref|NM_003585.1|[6005996]; 604: NM_003587,


Homo sapiens DEAH (Asp-Glu-Ala-His) box polypeptide 16 (DHX16), mRNA”,


gi|21237727|ref|NM_003587.3|[21237727]; 605: NM_003592, “Homo sapiens cullin 1 (CUL1),


mRNA”, gi|32307160|ref|NM_003592.2|[32307160]; 606: NM_003594, “Homo sapiens


transcription termination factor, RNA polymerase II (TTF2), mRNA”,


gi|40807470|ref|NM_003594.3|[40807470]; 607: NM_003608, “Homo sapiens G protein-


coupled receptor 65 (GPR65), mRNA”, gi|33695103|ref|NM_003608.2|[33695103]; 608:


NM_003611, “Homo sapiens oral-facial-digital syndrome 1 (OFD1), mRNA”,


gi|4503178|ref|NM_003611.1|[4503178]; 609: NM_003614, “Homo sapiens galanin receptor 3


(GALR3), mRNA”, gi|4503906|ref|NM_003614.1|[4503906]; 610: NM_003618, “Homo sapiens


mitogen-activated protein kinase kinase kinase kinase 3 (MAP4K3),”, mRNA,


gi|15451901|ref|NM_003618.2|[15451901]; 611: NM_003625, “Homo sapiens protein tyrosine


phosphatase, receptor type, f polypeptide (PTPRF),”, “interacting protein (liprin), alpha 2


(PPFIA2), mRNA”, gi|29171754|ref|NM_003625.2|[29171754]; 612: NM_003627, “Homo



sapiens solute carrier family 43, member 1 (SLC43A1), mRNA”,



gi|42476323|ref|NM_003627.4|[42476323]; 613: NM_003632, “Homo sapiens contactin


associated protein 1 (CNTNAP1), mRNA”, gi|4505462|ref|NM_003632.1|[4505462]; 614:


NM_003635, “Homo sapiens N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 2


(NDST2),”, mRNA, gi|31377809|ref|NM_003635.2|[31377809]; 615: NM_003642, “Homo



sapiens histone acetyltransferase 1 (HAT1), mRNA”, gi|4504340|ref|NM_003642.1|[4504340];



616: NM_003646, “Homo sapiens diacylglycerol kinase, zeta 104 kDa (DGKZ), transcript


variant 2,”, mRNA, gi|41872506|ref|NM_003646.2|[41872506]; 617: NM_003648, “Homo



sapiens diacylglycerol kinase, delta 130 kDa (DGKD), transcript variant 1,”, mRNA,



gi|25777595|ref|NM_003648.2|[25777595]; 618: NM_003653, Homo sapiens COP9 constitutive


photomorphogenic homolog subunit 3 (Arabidopsis), “(COPS3), mRNA”,


gi|23238221|ref|NM_003653.2|[23238221]; 619: NM_003654, “Homo sapiens carbohydrate


(keratan sulfate Gal-6) sulfotransferase 1 (CHST1),”, mRNA,


gi|31542307|ref|NM_003654.2|[31542307]; 620: NM_003655, “Homo sapiens chromobox


homolog 4 (Pc class homolog, Drosophila) (CBX4), mRNA”,


gi|4502602|ref|NM_003655.1|[4502602]; 621: NM_003656, “Homo sapiens


calcium/calmodulin-dependent protein kinase I (CAMK1), mRNA”,


gi|21536281|ref|NM_003656.3|[21536281]; 622: NM_003658, “Homo sapiens BarH-like


homeobox 2 (BARX2), mRNA”, gi|21536440|ref|NM_003658.3|[21536440]; 623: NM_003669,


Homo sapiens inactivation escape 1 (INE1), mRNA”, gi|4504692|ref|NM_003669.1|[4504692];


624: NM_003680, “Homo sapiens tyrosyl-tRNA synthetase (YARS), mRNA”,


gi|38202242|ref|NM_003680.2|[38202242]; 625: NM_003684, “Homo sapiens MAP kinase-


interacting serine/threonine kinase 1 (MKNK1), mRNA”,


gi|34147650|ref|NM_003684.3|[34147650]; 626: NM_003686, “Homo sapiens exonuclease 1


(EXO1), transcript variant 3, mRNA”, gi|39995068|ref|NM_003686.3|[39995068]; 627:


NM_003691, “Homo sapiens serine/threonine kinase 16 (STK16), mRNA”,


gi|4505836|ref|NM_003691.1|[4505836]; 628: NM_003693, “Homo sapiens scavenger receptor


class F, member 1 (SCARF1), transcript variant”, “1, mRNA”,


gi|33598928|ref|NM_003693.2|[33598928]; 629: NM_003710, “Homo sapiens serine protease


inhibitor, Kunitz type 1 (SPINT1), transcript”, “variant 2, mRNA”,


gi|32313604|ref|NM_003710.2|[32313604]; 630: NM_003721, “Homo sapiens regulatory factor


X-associated ankyrin-containing protein (RFXANK),”, “transcript variant 1, mRNA”,


gi|19924154|ref|NM_003721.2|[19924154]; 631: NM_003729, “Homo sapiens RNA terminal


phosphate cyclase domain 1 (RTCD1), mRNA”, gi|4506588|ref|NM_003729.1|[4506588]; 632:


NM_003731, “Homo sapiens Sjogren's syndrome nuclear autoantigen 1 (SSNA1), mRNA”,


gi|4505324|ref|NM_003731.1|[4505324]; 633: NM_003733, “Homo sapiens 2′-5′-oligoadenylate


synthetase-like (OASL), transcript variant 1,”, mRNA,


gi|38016933|ref|NM_003733.2|[38016933]; 634: NM_003753, “Homo sapiens eukaryotic


translation initiation factor 3, subunit 7 zeta,”, “66/67 kDa (EIF3S7), mRNA”,


gi|23238220|ref|NM_003753.2|[23238220]; 635: NM_003755, “Homo sapiens eukaryotic


translation initiation factor 3, subunit 4 delta, 44 kDa”, “(EIF3S4), mRNA”,


gi|4503516|ref|NM_003755.1|[4503516]; 636: NM_003756, “Homo sapiens eukaryotic


translation initiation factor 3, subunit 3 gamma, 40 kDa”, “(EIF3S3), mRNA”,


gi|4503514|ref|NM_003756.1|[4503514]; 637: NM_003757, “Homo sapiens eukaryotic


translation initiation factor 3, subunit 2 beta, 36 kDa”, “(EIF3S2), mRNA”,


gi|4503512|ref|NM_003757.1|[4503512]; 638: NM_003764, “Homo sapiens syntaxin 11


(STX11), mRNA”, gi|33667037|ref|NM_003764.2|[33667037]; 639: NM_003765, “Homo



sapiens syntaxin 10 (STX10), mRNA”, gi|4507284|ref|NM_003765.1|[4507284]; 640:



NM_003771, “Homo sapiens keratin, hair, acidic, 6 (KRTHA6), mRNA”,


gi|6678648|ref|NM_003771.3|[6678648]; 641: NM_003773, “Homo sapiens


hyaluronoglucosaminidase 2 (HYAL2), transcript variant 1, mRNA”,


gi|15022800|ref|NM_003773.2|[15022800]; 642: NM_003776, “Homo sapiens mitochondrial


ribosomal protein L40 (MRPL40), nuclear gene encoding”, “mitochondrial protein, mRNA”,


gi|26638658|ref|NM_003776.2|[26638658]; 643: NM_003802, “Homo sapiens myosin, heavy


polypeptide 13, skeletal muscle (MYH13), mRNA”, gi|11321578|ref|NM_003802.1|[11321578];


644: NM_003807, “Homo sapiens tumor necrosis factor (ligand) superfamily, member 14


(TNFSF14),”, “transcript variant 1, mRNA”, gi|25952143|ref|NM_003807.2|[25952143]; 645:


NM_003815, Homo sapiens a disintegrin and metalloproteinase domain 15 (metargidin),


“(ADAM15), mRNA”, gi|11497001|ref|NM_003815.2|[11497001]; 646: NM_003816, Homo



sapiens a disintegrin and metalloproteinase domain 9 (meltrin gamma), “(ADAM9), mRNA”,



gi|4501914|ref|NM_003816.1|[4501914]; 647: NM_003819, “Homo sapiens poly(A) binding


protein, cytoplasmic 4 (inducible form) (PABPC4),”, mRNA,


gi|6552335|ref|NM_003819.2|[6552335]; 648: NM_003836, “Homo sapiens delta-like 1


homolog (Drosophila) (DLK1), mRNA”, gi|34147651|ref|NM_003836.3|[34147651]; 649:


NM_003843, “Homo sapiens sciellin (SCEL), transcript variant 1, mRNA”,


gi|21536305|ref|NM_003843.2|[21536305]; 650: NM_003849, “Homo sapiens succinate-CoA


ligase, GDP-forming, alpha subunit (SUCLG1), mRNA”,


gi|11321580|ref|NM_003849.1|[11321580]; 651: NM_003859, “Homo sapiens dolichyl-


phosphate mannosyltransferase polypeptide 1, catalytic”, “subunit (DPM1), mRNA”,


gi|4503362|ref|NM_003859.1|[4503362]; 652: NM_003860, “Homo sapiens barrier to


autointegration factor 1 (BANF1), mRNA”, gi|11038645|ref|NM_003860.2|[11038645]; 653:


NM_003863, “Homo sapiens dolichyl-phosphate mannosyltransferase polypeptide 2,


regulatory”, “subunit (DPM2), transcript variant 1, mRNA”,


gi|24497593|ref|NM_003863.2|[24497593]; 654: NM_003875, “Homo sapiens guanine


monphosphate synthetase (GMPS), mRNA”, gi|4504034|ref|NM_003875.1|[4504034]; 655:


NM_003890, “Homo sapiens Fc fragment of IgG binding protein (FCGBP), mRNA”,


gi|4503680|ref|NM_003890.1|[4503680]; 656: NM_003904, “Homo sapiens zinc finger protein


259 (ZNF259), mRNA”, gi|4508020|ref|NM_003904.1|[4508020]; 657: NM_003914, “Homo



sapiens cyclin A1 (CCNA1), mRNA”, gi|16306528|ref|NM_003914.2|[16306528]; 658:



NM_003917, “Homo sapiens adaptor-related protein complex 1, gamma 2 subunit (AP1G2),”,


“transcript variant 1, mRNA”, gi|18104994|ref|NM_003917.2|[18104994]; 659: NM_003923,


Homo sapiens forkhead box H1 (FOXH1), mRNA”, gi|4503656|ref|NM_003923.1|[4503656];


660: NM_003924, “Homo sapiens paired-like homeobox 2b (PHOX2B), mRNA”,


gi|12707579|ref|NM_003924.2|[12707579]; 661: NM_003931, “Homo sapiens WAS protein


family, member 1 (WASF1), mRNA”, gi|4507912|ref|NM_003931.1|[4507912]; 662:


NM_003936, “Homo sapiens cyclin-dependent kinase 5, regulatory subunit 2 (p39)


(CDK5R2),”, mRNA, gi|42741664|ref|NM_003936.3|[42741664]; 663: NM_003943, “Homo



sapiens genethonin 1 (GENX-3414), mRNA”, gi|4503976|ref|NM_003943.1|[4503976]; 664:



NM_003952, “Homo sapiens ribosomal protein S6 kinase, 70 kDa, polypeptide 2 (RPS6KB2),


mRNA”, gi|4506738|ref|NM_003952.1|[4506738]; 665: NM_003957, “Homo sapiens


serine/threonine kinase 29 (STK29), mRNA”, gi|27501463|ref|NM_003957.1|[27501463]; 666:


NM_003969, “Homo sapiens ubiquitin-conjugating enzyme E2M (UBC12 homolog, yeast)


(UBE2M),”, mRNA, gi|37577133|ref|NM_003969.2|[37577133]; 667: NM_003972, “Homo



sapiens BTAF1 RNA polymerase II, B-TFIID transcription factor-associated,”, “170 kDa (Mot1



homolog, S. cerevisiae) (BTAF1), mRNA”, gi|27477069|ref|NM_003972.1|[27477069]; 668:


NM_003975, “Homo sapiens SH2 domain protein 2A (SH2D2A), mRNA”,


gi|31543620|ref|NM_003975.2|[31543620]; 669: NM_003977, “Homo sapiens aryl hydrocarbon


receptor interacting protein (AIP), mRNA”, gi|4502008|ref|NM_003977.1|[4502008]; 670:


NM_003999, “Homo sapiens oncostatin M receptor (OSMR), mRNA”,


gi|4557039|ref|NM_003999.1|[4557039]; 671: NM_004037, “Homo sapiens adenosine


monophosphate deaminase 2 (isoform L) (AMPD2), mRNA”,


gi|22507370|ref|NM_004037.5|[22507370]; 672: NM_004047, “Homo sapiens ATPase, H+


transporting, lysosomal 21 kDa, V0 subunit c″ (ATP6V0B),”, mRNA,


gi|19913434|ref|NM_004047.2|[19913434]; 673: NM_004054, “Homo sapiens complement


component 3a receptor 1 (C3AR1), mRNA”, gi|21314629|ref|NM_004054.2|[21314629]; 674:


NM_004055, “Homo sapiens calpain 5 (CAPN5), mRNA”,


gi|37577156|ref|NM_004055.3|[37577156]; 675: NM_004064, “Homo sapiens cyclin-dependent


kinase inhibitor 1B (p27, Kip1) (CDKN1B), mRNA”,


gi|17978497|ref|NM_004064.2|[17978497]; 676: NM_004073, “Homo sapiens polo-like kinase


3 (Drosophila) (PLK3), mRNA”, gi|41872373|ref|NM_004073.2|[41872373]; 677: NM_004074,


Homo sapiens cytochrome c oxidase subunit VIII (COX8), mRNA”,


gi|4758043|ref|NM_004074.1|[4758043]; 678: NM_004078, “Homo sapiens cysteine and


glycine-rich protein 1 (CSRP1), mRNA”, gi|4758085|ref|NM_004078.1|[4758085]; 679:


NM_004083, “Homo sapiens DNA-damage-inducible transcript 3 (DDIT3), mRNA”,


gi|34147657|ref|NM_004083.3|[34147657]; 680: NM_004100, “Homo sapiens eyes absent


homolog 4 (Drosophila) (EYA4), transcript variant 1,”, mRNA,


gi|26667248|ref|NM_004100.2|[26667248]; 681: NM_004106, “Homo sapiens Fc fragment of


IgE, high affinity I, receptor for; gamma”, “polypeptide (FCER1G), mRNA”,


gi|4758343|ref|NM_004106.1|[4758343]; 682: NM_004107, “Homo sapiens Fc fragment of IgG,


receptor, transporter, alpha (FCGRT), mRNA”, gi|34222296|ref|NM_004107.3|[34222296]; 683:


NM_004110, “Homo sapiens ferredoxin reductase (FDXR), nuclear gene encoding


mitochondrial”, “protein, transcript variant 2, mRNA”,


gi|13435351|ref|NM_004110.2|[13435351]; 684: NM_004114, “Homo sapiens fibroblast growth


factor 13 (FGF13), transcript variant 1A, mRNA”, gi|16306544|ref|NM_004114.2|[16306544];


685: NM_004115, “Homo sapiens fibroblast growth factor 14 (FGF14), transcript variant 1,


mRNA”, gi|28872754|ref|NM_004115.2|[28872754]; 686: NM_004117, “Homo sapiens FK506


binding protein 5 (FKBP5), mRNA”, gi|17149847|ref|NM_004117.2|[17149847]; 687:


NM_004120, “Homo sapiens guanylate binding protein 2, interferon-inducible (GBP2),


mRNA”, gi|38327557|ref|NM_004120.3|[38327557]; 688: NM_004125, “Homo sapiens guanine


nucleotide binding protein (G protein), gamma 10 (GNG10),”, mRNA,


gi|21361096|ref|NM_004125.2|[21361096]; 689: NM_004127, “Homo sapiens G protein


pathway suppressor 1 (GPS1), mRNA”, gi|13435380|ref|NM_004127.3|[13435380]; 690:


NM_004153, “Homo sapiens origin recognition complex, subunit 1-like (yeast) (ORC1L),


mRNA”, gi|31795543|ref|NM_004153.2|[31795543]; 691: NM_004154, “Homo sapiens


pyrimidinergic receptor P2Y, G-protein coupled, 6 (P2RY6),”, “transcript variant 4, mRNA”,


gi|29029606|ref|NM_004154.3|[29029606]; 692: NM_004159, “Homo sapiens proteasome


(prosome, macropain) subunit, beta type, 8 (large”, “multifunctional protease 7) (PSMB8),


transcript variant 1, mRNA”, gi|34335277|ref|NM_004159.3|[34335277]; 693: NM_004178,


Homo sapiens TAR (HIV) RNA binding protein 2 (TARBP2), transcript variant 3,”, mRNA,


gi|19743837|ref|NM_004178.3|[19743837]; 694: NM_004182, “Homo sapiens ubiquitously-


expressed transcript (UXT), transcript variant 2, mRNA”,


gi|24041015|ref|NM_004182.2|[24041015]; 695: NM_004188, “Homo sapiens growth factor


independent 1B (potential regulator of CDKN1A,”, “translocated in CML) (GFI1B), mRNA”,


gi|40254479|ref|NM_004188.2|[40254479]; 696: NM_004189, “Homo sapiens SRY (sex


determining region Y)-box 14 (SOX14), mRNA”, gi|31563384|ref|NM_004189.2|[31563384];


697: NM_004196, “Homo sapiens cyclin-dependent kinase-like 1 (CDC2-related kinase)


(CDKL1), mRNA”, gi|37596296|ref|NM_004196.3|[37596296]; 698: NM_004202, “Homo



sapiens thymosin, beta 4, Y-linked (TMSB4Y), mRNA”,



gi|34328944|ref|NM_004202.2|[34328944]; 699: NM_004203, Homo sapiens membrane-


associated tyrosine- and threonine-specific, “cdc2-inhibitory kinase (PKMYT1), transcript


variant 1, mRNA”, gi|33383240|ref|NM_004203.3|[33383240]; 700: NM_004204, “Homo



sapiens phosphatidylinositol glycan, class Q (PIGQ), transcript variant 2,”, mRNA,



gi|22538449|ref|NM_004204.2|[22538449]; 701: NM_004214, Homo sapiens fibroblast growth


factor (acidic) intracellular binding protein, “(FIBP), transcript variant 2, mRNA”,


gi|38683847|ref|NM_004214.4|[38683847]; 702: NM_004217, “Homo sapiens aurora kinase B


(AURKB), mRNA”, gi|4759177|ref|NM_004217.1|[4759177]; 703: NM_004219, “Homo



sapiens pituitary tumor-transforming 1 (PTTG1), mRNA”,



gi|11038651|ref|NM_004219.2|[11038651]; 704: NM_004223, “Homo sapiens ubiquitin-


conjugating enzyme E2L 6 (UBE2L6), transcript variant 1,”, mRNA,


gi|38157980|ref|NM_004223.3|[38157980]; 705: NM_004224, “Homo sapiens G protein-


coupled receptor 50 (GPR50), mRNA”, gi|4758467|ref|NM_004224.1|[4758467]; 706:


NM_004226, “Homo sapiens serine/threonine kinase 17b (apoptosis-inducing) (STK17B),


mRNA”, gi|31543661|ref|NM_004226.2|[31543661]; 707: NM_004227, “Homo sapiens


pleckstrin homology, Sec7 and coiled-coil domains 3 (PSCD3), mRNA”,


gi|33946275|ref|NM_004227.3|[33946275]; 708: NM_004233, “Homo sapiens CD83 antigen


(activated B lymphocytes, immunoglobulin superfamily)”, “(CD83), mRNA”,


gi|24475618|ref|NM_004233.2|[24475618]; 709: NM_004237, “Homo sapiens thyroid hormone


receptor interactor 13 (TRIP13), mRNA”, gi|20149561|ref|NM_004237.2|[20149561]; 710:


NM_004238,, ref|NM_004238.1|[10863902], This record was temporarily removed by RefSeq


staff for additional review.,, 711: NM_004257, “Homo sapiens transforming growth factor, beta


receptor associated protein 1”, “(TGFBRAP1), mRNA”,


gi|34222146|ref|NM_004257.3|[34222146]; 712: NM_004260, “Homo sapiens RecQ protein-


like 4 (RECQL4), mRNA”, gi|4759029|ref|NM_004260.1|[4759029]; 713: NM_004261, “Homo



sapiens 15 kDa selenoprotein (SEP15), transcript variant 1, mRNA”,



gi|42741647|ref|NM_004261.3|[42741647]; 714: NM_004267, “Homo sapiens carbohydrate (N-


acetylglucosamine-6-O) sulfotransferase 2 (CHST2),”, mRNA,


gi|27369496|ref|NM_004267.2|[27369496]; 715: NM_004272, “Homo sapiens homer homolog


1 (Drosophila) (HOMER1), mRNA”, gi|20127465|ref|NM_004272.2|[20127465]; 716:


NM_004281, “Homo sapiens BCL2-associated athanogene 3 (BAG3), mRNA”,


gi|14043023|ref|NM_004281.2|[14043023]; 717: NM_004285, “Homo sapiens hexose-6-


phosphate dehydrogenase (glucose 1-dehydrogenase) (H6PD),”, mRNA,


gi|4758497|ref|NM_004285.1|[4758497]; 718: NM_004294, “Homo sapiens mitochondrial


translational release factor 1 (MTRF1), nuclear gene”, “encoding mitochondrial protein, mRNA”,


gi|34577119|ref|NM_004294.2|[34577119]; 719: NM_004298, “Homo sapiens nucleoporin


155 kDa (NUP155), transcript variant 2, mRNA”, gi|24430147|ref|NM_004298.2|[24430147];


720: NM_004314, “Homo sapiens ADP-ribosyltransferase 1 (ART1), mRNA”,


gi|4757783|ref|NM_004314.1|[4757783]; 721: NM_004330, “Homo sapiens BCL2/adenovirus


E1B 19 kDa interacting protein 2 (BNIP2), mRNA”, gi|4757855|ref|NM_004330.1|[4757855];


722: NM_004339, “Homo sapiens pituitary tumor-transforming 1 interacting protein


(PTTG1IP), mRNA”, gi|11038670|ref|NM_004339.2|[11038670]; 723: NM_004341, “Homo



sapiens carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and”, “dihydroorotase



(CAD), mRNA”, gi|18105006|ref|NM_004341.2|[18105006]; 724: NM_004344, “Homo sapiens


centrin, EF-hand protein, 2 (CETN2), mRNA”, gi|4757901|ref|NM_004344.1|[4757901]; 725:


NM_004346, “Homo sapiens caspase 3, apoptosis-related cysteine protease (CASP3),


transcript”, “variant alpha, mRNA”, gi|14790118|ref|NM_004346.2|[14790118]; 726:


NM_004356, “Homo sapiens CD81 antigen (target of antiproliferative antibody 1) (CD81),


mRNA”, gi|21237760|ref|NM_004356.2|[21237760]; 727: NM_004357, “Homo sapiens CD151


antigen (CD151), transcript variant 1, mRNA”, gi|34328913|ref|NM_004357.3|[34328913]; 728:


NM_004358, “Homo sapiens cell division cycle 25B (CDC25B), transcript variant 1, mRNA”,


gi|11641416|ref|NM_004358.2|[11641416]; 729: NM_004359, “Homo sapiens cell division


cycle 34 (CDC34), mRNA”, gi|16357476|ref|NM_004359.1|[16357476]; 730: NM_004365,


Homo sapiens centrin, EF-hand protein, 3 (CDC31 homolog, yeast) (CETN3), mRNA”,


gi|4757975|ref|NM_004365.1|[4757975]; 731: NM_004366, “Homo sapiens chloride channel 2


(CLCN2), mRNA”, gi|5803001|ref|NM_004366.2|[5803001]; 732: NM_004367, “Homo sapiens


chemokine (C—C motif) receptor 6 (CCR6), transcript variant 1, mRNA”,


gi|37187859|ref|NM_004367.3|[37187859]; 733: NM_004374, “Homo sapiens cytochrome c


oxidase subunit VIc (COX6C), mRNA”, gi|17999531|ref|NM_004374.2|[17999531]; 734:


NM_004383, “Homo sapiens c-src tyrosine kinase (CSK), mRNA”,


gi|4758077|ref|NM_004383.1|[4758077]; 735: NM_004396, “Homo sapiens DEAD (Asp-Glu-


Ala-Asp) box polypeptide 5 (DDX5), mRNA”, gi|13514826|ref|NM_004396.2|[13514826]; 736:


NM_004398, “Homo sapiens DEAD (Asp-Glu-Ala-Asp) box polypeptide 10 (DDX10),


mRNA”, gi|13514830|ref|NM_004398.2|[13514830]; 737: NM_004401, “Homo sapiens DNA


fragmentation factor, 45 kDa, alpha polypeptide (DFFA), mRNA”,


gi|4758147|ref|NM_004401.1|[4758147]; 738: NM_004402, “Homo sapiens DNA


fragmentation factor, 40 kDa, beta polypeptide”, “(caspase-activated DNase) (DFFB), mRNA”,


gi|4758149|ref|NM_004402.1|[4758149]; 739: NM_004411, “Homo sapiens dynein,


cytoplasmic, intermediate polypeptide 1 (DNCI1), mRNA”,


gi|4758177|ref|NM_004411.1|[4758177]; 740: NM_004415, “Homo sapiens desmoplakin


(DSP), mRNA”, gi|4758199|ref|NM_004415.1|[4758199]; 741: NM_004418, “Homo sapiens


dual specificity phosphatase 2 (DUSP2), mRNA”, gi|12707563|ref|NM_004418.2|[12707563];


742: NM_004420, “Homo sapiens dual specificity phosphatase 8 (DUSP8), mRNA”,


gi|4758211|ref|NM_004420.1|[4758211]; 743: NM_004426, “Homo sapiens polyhomeotic-like


1 (Drosophila) (PHC1), mRNA”, gi|11038623|ref|NM_004426.1|[11038623]; 744: NM_004427,


Homo sapiens polyhomeotic-like 2 (Drosophila) (PHC2), transcript variant 2, mRNA”,


gi|37595529|ref|NM_004427.2|[37595529]; 745: NM_004432, “Homo sapiens ELAV


(embryonic lethal, abnormal vision, Drosophila)-like 2 (Hu”, “antigen B) (ELAVL2), mRNA”,


gi|4758261|ref|NM_004432.1|[4758261]; 746: NM_004438, “Homo sapiens EphA4 (EPHA4),


mRNA”, gi|32967315|ref|NM_004438.2|[32967315]; 747: NM_004445, “Homo sapiens EphB6


(EPHB6), mRNA”, gi|4758291|ref|NM_004445.1|[4758291]; 748: NM_004447, “Homo sapiens


epidermal growth factor receptor pathway substrate 8 (EPS8), mRNA”,


gi|34222299|ref|NM_004447.3|[34222299]; 749: NM_004450, “Homo sapiens enhancer of


rudimentary homolog (Drosophila) (ERH), mRNA”, gi|4758301|ref|NM_004450.1|[4758301];


750: NM_004456, “Homo sapiens enhancer of zeste homolog 2 (Drosophila) (EZH2), transcript


variant”, “1, mRNA”, gi|23510382|ref|NM_004456.3|[23510382]; 751: NM_004466, “Homo



sapiens glypican 5 (GPC5), mRNA”, gi|34106705|ref|NM_004466.3|[34106705]; 752:



NM_004469, Homo sapiens c-fos induced growth factor (vascular endothelial growth factor D),


“(FIGF), mRNA”, gi|19924297|ref|NM_004469.2|[19924297]; 753: NM_004470, “Homo



sapiens FK506 binding protein 2, 13 kDa (FKBP2), transcript variant 1, mRNA”,



gi|17149841|ref|NM_004470.2|[17149841]; 754: NM_004473, “Homo sapiens forkhead box E1


(thyroid transcription factor 2) (FOXE1), mRNA”, gi|21618324|ref|NM_004473.3|[21618324];


755: NM_004474, “Homo sapiens forkhead box D2 (FOXD2), mRNA”,


gi|4758387|ref|NM_004474.1|[4758387]; 756: NM_004480, “Homo sapiens fucosyltransferase


8 (alpha (1,6) fucosyltransferase) (FUT8),”, “transcript variant 4, mRNA”,


gi|30410721|ref|NM_004480.3|[30410721]; 757: NM_004485, “Homo sapiens guanine


nucleotide binding protein (G protein), gamma 4 (GNG4),”, mRNA,


gi|21314630|ref|NM_004485.2|[21314630]; 758: NM_004487, “Homo sapiens golgi


autoantigen, golgin subfamily b, macrogolgin (with”, “transmembrane signal), 1 (GOLGB1),


mRNA”, gi|4758453|ref|NM_004487.1|[4758453]; 759: NM_004490, “Homo sapiens growth


factor receptor-bound protein 14 (GRB14), mRNA”, gi|4758477|ref|NM_004490.1|[4758477];


760: NM_004492, “Homo sapiens general transcription factor IIA, 2 (12 kD subunit) (GTF2A2),


mRNA”, gi|4758485|ref|NM_004492.1|[4758485]; 761: NM_004496, “Homo sapiens forkhead


box A1 (FOXA1), mRNA”, gi|24497500|ref|NM_004496.2|[24497500]; 762: NM_004498,


Homo sapiens one cut domain, family member 1 (ONECUT1), mRNA”,


gi|24307886|ref|NM_004498.1|[24307886]; 763: NM_004499, “Homo sapiens heterogeneous


nuclear ribonucleoprotein A/B (HNRPAB), transcript”, “variant 2, mRNA”,


gi|14110401|ref|NM_004499.2|[14110401]; 764: NM_004503, “Homo sapiens homeo box C6


(HOXC6), transcript variant 1, mRNA”, gi|24497542|ref|NM_004503.2|[24497542]; 765:


NM_004512, “Homo sapiens interleukin 11 receptor, alpha (IL11RA), transcript variant 1,


mRNA”, gi|22212920|ref|NM_004512.3|[22212920]; 766: NM_004524, “Homo sapiens lethal


giant larvae homolog 2 (Drosophila) (LLGL2), mRNA”,


gi|4758679|ref|NM_004524.1|[4758679]; 767: NM_004525, “Homo sapiens low density


lipoprotein-related protein 2 (LRP2), mRNA”, gi|6806918|ref|NM_004525.1|[6806918]; 768:


NM_004527, “Homo sapiens mesenchyme homeo box 1 (MEOX1), transcript variant 1,


mRNA”, gi|21396477|ref|NM_004527.2|[21396477]; 769: NM_004528, “Homo sapiens


microsomal glutathione S-transferase 3 (MGST3), mRNA”,


gi|22035640|ref|NM_004528.2|[22035640]; 770: NM_004540, “Homo sapiens neural cell


adhesion molecule 2 (NCAM2), mRNA”, gi|33519480|ref|NM_004540.2|[33519480]; 771:


NM_004542, “Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 3,


9 kDa”, “(NDUFA3), mRNA”, gi|4758771|ref|NM_004542.1|[4758771]; 772: NM_004543,


Homo sapiens nebulin (NEB), mRNA”, gi|8400716|ref|NM_004543.2|[8400716]; 773:


NM_004550, “Homo sapiens NADH dehydrogenase (ubiquinone) Fe—S protein 2, 49 kDa”,


“(NADH-coenzyme Q reductase) (NDUFS2), mRNA”,


gi|34147556|ref|NM_004550.3|[34147556]; 774: NM_004551, “Homo sapiens NADH


dehydrogenase (ubiquinone) Fe—S protein 3, 30 kDa”, “(NADH-coenzyme Q reductase)


(NDUFS3), mRNA”, gi|4758787|ref|NM_004551.1|[4758787]; 775: NM_004552, “Homo



sapiens NADH dehydrogenase (ubiquinone) Fe—S protein 5, 15 kDa”, “(NADH-coenzyme Q



reductase) (NDUFS5), mRNA”, gi|4758789|ref|NM_004552.1|[4758789]; 776: NM_004561,


Homo sapiens ovo-like 1(Drosophila) (OVOL1), mRNA”,


gi|38570157|ref|NM_004561.2|[38570157]; 777: NM_004567, “Homo sapiens 6-phosphofructo-


2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4),”, mRNA,


gi|19923257|ref|NM_004567.2|[19923257]; 778: NM_004568, “Homo sapiens serine (or


cysteine) proteinase inhibitor, clade B (ovalbumin),”, “member 6 (SERPINB6), mRNA”,


gi|41152085|ref|NM_004568.4|[41152085]; 779: NM_004569, “Homo sapiens


phosphatidylinositol glycan, class H (PIGH), mRNA”,


gi|24430187|ref|NM_004569.2|[24430187]; 780: NM_004575, “Homo sapiens POU domain,


class 4, transcription factor 2 (POU4F2), mRNA”, gi|4758947|ref|NM_004575.1|[4758947]; 781:


NM_004579, “Homo sapiens mitogen-activated protein kinase kinase kinase kinase 2


(MAP4K2),”, mRNA, gi|22035599|ref|NM_004579.2|[22035599]; 782: NM_004581, “Homo



sapiens Rab geranylgeranyltransferase, alpha subunit (RABGGTA), transcript”, “variant 2,



mRNA”, gi|33469948|ref|NM_004581.2|[33469948]; 783: NM_004584, “Homo sapiens RAD9


homolog A (S. pombe) (RAD9A), mRNA”, gi|19924112|ref|NM_004584.2|[19924112]; 784:


NM_004586, “Homo sapiens ribosomal protein S6 kinase, 90 kDa, polypeptide 3 (RPS6KA3),


mRNA”, gi|4759049|ref|NM_004586.1|[4759049]; 785: NM_004597, “Homo sapiens small


nuclear ribonucleoprotein D2 polypeptide 16.5 kDa (SNRPD2),”, “transcript variant 1, mRNA”,


gi|29294622|ref|NM_004597.4|[29294622]; 786: NM_004604, “Homo sapiens syntaxin 4A


(placental) (STX4A), mRNA”, gi|34147603|ref|NM_004604.3|[34147603]; 787: NM_004609,


Homo sapiens transcription factor 15 (basic helix-loop-helix) (TCF15), mRNA”,


gi|38505157|ref|NM_004609.2|[38505157]; 788: NM_004612, “Homo sapiens transforming


growth factor, beta receptor I (activin A receptor”, “type II-like kinase, 53 kDa) (TGFBR1),


mRNA”, gi|4759225|ref|NM_004612.1|[4759225]; 789: NM_004619, “Homo sapiens TNF


receptor-associated factor 5 (TRAF5), transcript variant 1,”, mRNA,


gi|22027625|ref|NM_004619.2|[22027625]; 790: NM_004620, “Homo sapiens TNF receptor-


associated factor 6 (TRAF6), transcript variant 2,”, mRNA,


gi|22027628|ref|NM_004620.2|[22027628]; 791: NM_004626, “Homo sapiens wingless-type


MMTV integration site family, member 11 (WNT11), mRNA”,


gi|17017973|ref|NM_004626.2|[17017973]; 792: NM_004653, “Homo sapiens Jumonji, AT rich


interactive domain 1D (RBP2-like) (JARID1D), mRNA”,


gi|33356559|ref|NM_004653.2|[33356559]; 793: NM_004656, Homo sapiens BRCA1


associated protein-1 (ubiquitin carboxy-terminal hydrolase), “(BAP1), mRNA”,


gi|19718752|ref|NM_004656.2|[19718752]; 794: NM_004664, “Homo sapiens lin-7 homolog A


(C. elegans) (LIN7A), mRNA”, gi|4759305|ref|NM_004664.1|[4759305]; 795: NM_004666,


Homo sapiens vanin 1 (VNN1), mRNA”, gi|4759311|ref|NM_004666.1|[4759311]; 796:


NM_004667, “Homo sapiens hect domain and RLD 2 (HERC2), mRNA”,


gi|5729867|ref|NM_004667.2|[5729867]; 797: NM_004669, “Homo sapiens chloride


intracellular channel 3 (CLIC3), mRNA”, gi|40288289|ref|NM_004669.2|[40288289]; 798:


NM_004672, “Homo sapiens mitogen-activated protein kinase kinase kinase 6 (MAP3K6),”,


“transcript variant 1, mRNA”, gi|24497521|ref|NM_004672.2|[24497521]; 799: NM_004691,


Homo sapiens ATPase, H+ transporting, lysosomal 38 kDa, V0 subunit d isoform 1”,


“(ATP6V0D1), mRNA”, gi|34335257|ref|NM_004691.3|[34335257]; 800: NM_004693, “Homo



sapiens cytokeratin type II (K6HF), mRNA”, gi|4758617|ref|NM_004693.1|[4758617]; 801:



NM_004694, “Homo sapiens solute carrier family 16 (monocarboxylic acid transporters),


member”, “6 (SLC16A6), mRNA”, gi|40789260|ref|NM_004694.2|[40789260]; 802:


NM_004698, “Homo sapiens PRP3 pre-mRNA processing factor 3 homolog (yeast) (PRPF3),


mRNA”, gi|4758555|ref|NM_004698.1|[4758555]; 803: NM_004699, Homo sapiens DNA


segment on chromosome X (unique) 9928 expressed sequence, “(DXS9928E), mRNA”,


gi|4758219|ref|NM_004699.1|[4758219]; 804: NM_004700, “Homo sapiens potassium voltage-


gated channel, KQT-like subfamily, member 4”, “(KCNQ4), transcript variant 1, mRNA”,


gi|26638652|ref|NM_004700.2|[26638652]; 805: NM_004701, “Homo sapiens cyclin B2


(CCNB2), mRNA”, gi|10938017|ref|NM_004701.2|[10938017]; 806: NM_004704, “Homo



sapiens RNA, U3 small nucleolar interacting protein 2 (RNU3IP2), mRNA”,



gi|31543556|ref|NM_004704.2|[31543556]; 807: NM_004713, “Homo sapiens serologically


defined colon cancer antigen 1 (SDCCAG1), mRNA”,


gi|32130515|ref|NM_004713.2|[32130515]; 808: NM_004714, Homo sapiens dual-specificity


tyrosine-(Y)-phosphorylation regulated kinase 1B, “(DYRK1B), transcript variant a, mRNA”,


gi|4758221|ref|NM_004714.1|[4758221]; 809: NM_004716, “Homo sapiens proprotein


convertase subtilisin/kexin type 7 (PCSK7), mRNA”,


gi|20336247|ref|NM_004716.2|[20336247]; 810: NM_004717, “Homo sapiens diacylglycerol


kinase, iota (DGKI), mRNA”, gi|32483395|ref|NM_004717.2|[32483395]; 811: NM_004728,


Homo sapiens DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 (DDX21), mRNA”,


gi|13787208|ref|NM_004728.1|[13787208]; 812: NM_004732, “Homo sapiens potassium


voltage-gated channel, shaker-related subfamily, beta”, “member 3 (KCNAB3), mRNA”,


gi|27436970|ref|NM_004732.2|[27436970]; 813: NM_004742, “Homo sapiens BAI1-associated


protein 1 (BAIAP1), mRNA”, gi|9257194|ref|NM_004742.1|[9257194]; 814: NM_004761,


Homo sapiens RAB2, member RAS oncogene family-like (RAB2L), mRNA”,


gi|21361071|ref|NM_004761.2|[21361071]; 815: NM_004766, “Homo sapiens coatomer protein


complex, subunit beta 2 (beta prime) (COPB2), mRNA”,


gi|4758031|ref|NM_004766.1|[4758031]; 816: NM_004767, “Homo sapiens endothelin type b


receptor-like protein 2 (ET(B)R-LP-2), mRNA”, gi|31377792|ref|NM_004767.2|[31377792];


817: NM_004784, “Homo sapiens N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 3


(NDST3),”, mRNA, gi|4758765|ref|NM_004784.1|[4758765]; 818: NM_004785, “Homo



sapiens solute carrier family 9 (sodium/hydrogen exchanger), isoform 3”, “regulatory factor 2



(SLC9A3R2), mRNA”, gi|4759141|ref|NM_004785.1|[4759141]; 819: NM_004787, “Homo



sapiens slit homolog 2 (Drosophila) (SLIT2), mRNA”, gi|4759145|ref|NM_004787.1|[4759145];



820: NM_004788, “Homo sapiens ubiquitination factor E4A (UFD2 homolog, yeast) (UBE4A),


mRNA”, gi|38327028|ref|NM_004788.2|[38327028]; 821: NM_004793, “Homo sapiens


protease, serine, 15 (PRSS15), nuclear gene encoding mitochondrial”, “protein, mRNA”,


gi|21396488|ref|NM_004793.2|[21396488]; 822: NM_004800, “Homo sapiens transmembrane 9


superfamily member 2 (TM9SF2), mRNA”, gi|4758873|ref|NM_004800.1|[4758873]; 823:


NM_004804, “Homo sapiens WD40 protein Ciao1 (CIAO1), mRNA”,


gi|38570089|ref|NM_004804.2|[38570089]; 824: NM_004826, “Homo sapiens endothelin


converting enzyme-like 1 (ECEL1), mRNA”, gi|4758231|ref|NM_004826.1|[4758231]; 825:


NM_004830, “Homo sapiens cofactor required for Sp1 transcriptional activation, subunit 3,”,


“130 kDa (CRSP3), transcript variant 1, mRNA”, gi|28558970|ref|NM_004830.2|[28558970];


826: NM_004834, “Homo sapiens mitogen-activated protein kinase kinase kinase kinase 4


(MAP4K4),”, “transcript variant 1, mRNA”, gi|22035601|ref|NM_004834.2|[22035601]; 827:


NM_004836, Homo sapiens eukaryotic translation initiation factor 2-alpha kinase 3,


“(EIF2AK3), mRNA”, gi|21361154|ref|NM_004836.2|[21361154]; 828: NM_004854, “Homo



sapiens carbohydrate sulfotransferase 10 (CHST10), mRNA”,



gi|20127466|ref|NM_004854.2|[20127466]; 829: NM_004855, “Homo sapiens


phosphatidylinositol glycan, class B (PIGB), mRNA”,


gi|22538447|ref|NM_004855.3|[22538447]; 830: NM_004856, “Homo sapiens kinesin family


member 23 (KIF23), transcript variant 2, mRNA”, gi|20143965|ref|NM_004856.4|[20143965];


831: NM_004857, “Homo sapiens A kinase (PRKA) anchor protein 5 (AKAP5), mRNA”,


gi|21493042|ref|NM_004857.2|[21493042]; 832: NM_004865, “Homo sapiens TBP-like 1


(TBPL1), mRNA”, gi|21071068|ref|NM_004865.2|[21071068]; 833: NM_004869, “Homo



sapiens vacuolar protein sorting 4B (yeast) (VPS4B), mRNA”,



gi|17865801|ref|NM_004869.2|[17865801]; 834: NM_004870, “Homo sapiens mannose-P-


dolichol utilization defect 1 (MPDU1), mRNA”, gi|4759109|ref|NM_004870.1|[4759109]; 835:


NM_004872, “Homo sapiens chromosome 1 open reading frame 8 (C1orf8), mRNA”,


gi|27545320|ref|NM_004872.3|[27545320]; 836: NM_004874, “Homo sapiens BCL2-associated


athanogene 4 (BAG4), mRNA”, gi|14574569|ref|NM_004874.2|[14574569]; 837: NM_004882,


Homo sapiens CBF1 interacting corepressor (CIR), transcript variant 1, mRNA”,


gi|40068058|ref|NM_004882.3|[40068058]; 838: NM_004891, “Homo sapiens mitochondrial


ribosomal protein L33 (MRPL33), nuclear gene encoding”, “mitochondrial protein, transcript


variant 1, mRNA”, gi|21735607|ref|NM_004891.2|[21735607]; 839: NM_004897, “Homo



sapiens multiple inositol polyphosphate histidine phosphatase, 1 (MINPP1),”, mRNA,



gi|19923760|ref|NM_004897.2|[19923760]; 840: NM_004898, “Homo sapiens clock homolog


(mouse) (CLOCK), mRNA”, gi|25777594|ref|NM_004898.2|[25777594]; 841: NM_004907,


Homo sapiens immediate early response 2 (IER2), mRNA”,


gi|4758313|ref|NM_004907.1|[4758313]; 842: NM_004910, “Homo sapiens


phosphatidylinositol transfer protein, membrane-associated 1”, “(PITPNM1), mRNA”,


gi|4758925|ref|NM_004910.1|[4758925]; 843: NM_004913, “Homo sapiens chromosome 16


open reading frame 7 (C16orf7), mRNA”, gi|4757805|ref|NM_004913.1|[4757805]; 844:


NM_004918, “Homo sapiens T-cell leukemia/lymphoma 1B (TCL1B), transcript variant 1,


mRNA”, gi|40548373|ref|NM_004918.2|[40548373]; 845: NM_004922, “Homo sapiens SEC24


related gene family, member C (S. cerevisiae) (SEC24C),”, “transcript variant 1, mRNA”,


gi|38373668|ref|NM_004922.2|[38373668]; 846: NM_004927, “Homo sapiens mitochondrial


ribosomal protein L49 (MRPL49), nuclear gene encoding”, “mitochondrial protein, mRNA”,


gi|27436906|ref|NM_004927.2|[27436906]; 847: NM_004935, “Homo sapiens cyclin-dependent


kinase 5 (CDK5), mRNA”, gi|38454327|ref|NM_004935.2|[38454327]; 848: NM_004941,


Homo sapiens DEAH (Asp-Glu-Ala-His) box polypeptide 8 (DHX8), mRNA”,


gi|4826689|ref|NM_004941.1|[4826689]; 849: NM_004944, “Homo sapiens deoxyribonuclease


I-like 3 (DNASE1L3), mRNA”, gi|4826697|ref|NM_004944.1|[4826697]; 850: NM_004959,


Homo sapiens nuclear receptor subfamily 5, group A, member 1 (NR5A1), mRNA”,


gi|24432033|ref|NM_004959.3|[24432033]; 851: NM_004966, “Homo sapiens heterogeneous


nuclear ribonucleoprotein F (HNRPF), mRNA”, gi|14141150|ref|NM_004966.2|[14141150];


852: NM_004970, “Homo sapiens insulin-like growth factor binding protein, acid labile


subunit”, “(IGFALS), mRNA”, gi|4826771|ref|NM_004970.1|[4826771]; 853: NM_004974,


Homo sapiens potassium voltage-gated channel, shaker-related subfamily, member 2”,


“(KCNA2), mRNA”, gi|25952079|ref|NM_004974.2|[25952079]; 854: NM_004975, “Homo



sapiens potassium voltage-gated channel, Shab-related subfamily, member 1”, “(KCNB1),



mRNA”, gi|27436972|ref|NM_004975.2|[27436972]; 855: NM_004978, “Homo sapiens


potassium voltage-gated channel, Shaw-related subfamily, member 4”, “(KCNC4), transcript


variant 1, mRNA”, gi|24497461|ref|NM_004978.2|[24497461]; 856: NM_004984, “Homo



sapiens kinesin family member 5A (KIF5A), mRNA”, gi|4826807|ref|NM_004984.1|[4826807];



857: NM_004987, “Homo sapiens LIM and senescent cell antigen-like domains 1 (LIMS1),


mRNA”, gi|13518025|ref|NM_004987.2|[13518025]; 858: NM_004991, “Homo sapiens


myelodysplasia syndrome 1 (MDS1), mRNA”, gi|4826827|ref|NM_004991.1|[4826827]; 859:


NM_004994, “Homo sapiens matrix metalloproteinase 9 (gelatinase B, 92 kDa gelatinase,


92 kDa”, “type IV collagenase) (MMP9), mRNA”, gi|4826835|ref|NM_004994.1|[4826835]; 860:


NM_004998, “Homo sapiens myosin IE (MYO1E), mRNA”,


gi|4826843|ref|NM_004998.1|[4826843]; 861: NM_005006, “Homo sapiens NADH


dehydrogenase (ubiquinone) Fe—S protein 1, 75 kDa”, “(NADH-coenzyme Q reductase)


(NDUFS1), nuclear gene encoding mitochondrial”, “protein, mRNA”,


gi|33519474|ref|NM_005006.5|[33519474]; 862: NM_005007, Homo sapiens nuclear factor of


kappa light polypeptide gene enhancer in B-cells, “inhibitor-like 1 (NFKBIL1), mRNA”,


gi|26787990|ref|NM_005007.2|[26787990]; 863: NM_005012, “Homo sapiens receptor tyrosine


kinase-like orphan receptor 1 (ROR1), mRNA”, gi|4826867|ref|NM_005012.1|[4826867]; 864:


NM_005017, “Homo sapiens phosphate cytidylyltransferase 1, choline, alpha isoform


(PCYT1A),”, mRNA, gi|31543384|ref|NM_005017.2|[31543384]; 865: NM_005023, “Homo



sapiens protein geranylgeranyltransferase type I, beta subunit (PGGT1B),”, mRNA,



gi|27597101|ref|NM_005023.2|[27597101]; 866: NM_005025, “Homo sapiens serine (or


cysteine) proteinase inhibitor, clade I (neuroserpin),”, “member 1 (SERPINI1), mRNA”,


gi|4826903|ref|NM_005025.1|[4826903]; 867: NM_005027, “Homo sapiens phosphoinositide-3-


kinase, regulatory subunit, polypeptide 2 (p85”, “beta) (PIK3R2), mRNA”,


gi|4826907|ref|NM_005027.1|[4826907]; 868: NM_005028, “Homo sapiens


phosphatidylinositol-4-phosphate 5-kinase, type II, alpha”, “(PIP5K2A), mRNA”,


gi|20302162|ref|NM_005028.3|[20302162]; 869: NM_005037, “Homo sapiens peroxisome


proliferative activated receptor, gamma (PPARG),”, “transcript variant 4, mRNA”,


gi|20336230|ref|NM_005037.3|[20336230]; 870: NM_005041, “Homo sapiens perforin 1 (pore


forming protein) (PRF1), mRNA”, gi|40254807|ref|NM_005041.2|[40254807]; 871:


NM_005048, “Homo sapiens parathyroid hormone receptor 2 (PTHR2), mRNA”,


gi|39995097|ref|NM_005048.2|[39995097]; 872: NM_005049, “Homo sapiens PWP2 periodic


tryptophan protein homolog (yeast) (PWP2H), mRNA”,


gi|4826955|ref|NM_005049.1|[4826955]; 873: NM_005051, “Homo sapiens glutaminyl-tRNA


synthetase (QARS), mRNA”, gi|4826959|ref|NM_005051.1|[4826959]; 874: NM_005074,


Homo sapiens solute carrier family 17 (sodium phosphate), member 1 (SLC17A1),”, mRNA,


gi|4827009|ref|NM_005074.1|[4827009]; 875: NM_005076, “Homo sapiens contactin 2 (axonal)


(CNTN2), mRNA”, gi|28373120|ref|NM_005076.2|[28373120]; 876: NM_005084, “Homo



sapiens phospholipase A2, group VII (platelet-activating factor”, “acetylhydrolase, plasma)



(PLA2G7), mRNA”, gi|31543409|ref|NM_005084.2|[31543409]; 877: NM_005092, “Homo



sapiens tumor necrosis factor (ligand) superfamily, member 18 (TNFSF18),”, mRNA,



gi|40354198|ref|NM_005092.2|[40354198]; 878: NM_005097, “Homo sapiens leucine-rich,


glioma inactivated 1 (LGI1), mRNA”, gi|4826815|ref|NM_005097.1|[4826815]; 879:


NM_005098, “Homo sapiens musculin (activated B-cell factor-1) (MSC), mRNA”,


gi|6996017|ref|NM_005098.2|[6996017]; 880: NM_005113, “Homo sapiens golgi autoantigen,


golgin subfamily a, 5 (GOLGA5), mRNA”, gi|30260187|ref|NM_005113.2|[30260187]; 881:


NM_005124, “Homo sapiens nucleoporin 153 kDa (NUP153), mRNA”,


gi|24430145|ref|NM_005124.2|[24430145]; 882: NM_005125, “Homo sapiens copper


chaperone for superoxide dismutase (CCS), mRNA”, gi|4826664|ref|NM_005125.1|[4826664];


883: NM_005132, “Homo sapiens REC8-like 1 (yeast) (REC8L1), mRNA”,


gi|9845292|ref|NM_005132.1|[9845292]; 884: NM_005139, “Homo sapiens annexin A3


(ANXA3), mRNA”, gi|4826642|ref|NM_005139.1|[4826642]; 885: NM_005146, “Homo



sapiens squamous cell carcinoma antigen recognised by T cells (SART1), mRNA”,



gi|38788009|ref|NM_005146.3|[38788009]; 886: NM_005147, “Homo sapiens DnaJ (Hsp40)


homolog, subfamily A, member 3 (DNAJA3), mRNA”,


gi|40786390|ref|NM_005147.3|[40786390]; 887: NM_005154, “Homo sapiens ubiquitin specific


protease 8 (USP8), mRNA”, gi|41281375|ref|NM_005154.2|[41281375]; 888: NM_005161,


Homo sapiens angiotensin II receptor-like 1 (AGTRL1), mRNA”,


gi|34577064|ref|NM_005161.2|[34577064]; 889: NM_005164, “Homo sapiens ATP-binding


cassette, sub-family D (ALD), member 2 (ABCD2), mRNA”,


gi|21536379|ref|NM_005164.2|[21536379]; 890: NM_005169, “Homo sapiens paired-like


(aristaless) homeobox 2a (PHOX2A), mRNA”, gi|4885070|ref|NM_005169.1|[4885070]; 891:


NM_005170, “Homo sapiens achaete-scute complex-like 2 (Drosophila) (ASCL2), mRNA”,


gi|42716308|ref|NM_005170.2|[42716308]; 892: NM_005171, “Homo sapiens activating


transcription factor 1 (ATF1), mRNA”, gi|38261963|ref|NM_005171.2|[38261963]; 893:


NM_005182, “Homo sapiens carbonic anhydrase VII (CA7), mRNA”,


gi|4885100|ref|NM_005182.1|[4885100]; 894: NM_005186, “Homo sapiens calpain 1, (mu/I)


large subunit (CAPN1), mRNA”, gi|12408655|ref|NM_005186.2|[12408655]; 895: NM_005198,


Homo sapiens choline kinase-like (CHKL), transcript variant 1, mRNA”,


gi|23238259|ref|NM_005198.3|[23238259]; 896: NM_005209, “Homo sapiens crystallin, beta


A2 (CRYBA2), transcript variant 1, mRNA”, gi|7019356|ref|NM_005209.1|[7019356]; 897:


NM_005215, “Homo sapiens deleted in colorectal carcinoma (DCC), mRNA”,


gi|4885174|ref|NM_005215.1|[4885174]; 898: NM_005221, “Homo sapiens distal-less homeo


box 5 (DLX5), mRNA”, gi|41352719|ref|NM_005221.4|[41352719]; 899: NM_005222,,


ref|NM_005222.1|DLX6[4885188], This record was temporarily removed by RefSeq staff for


additional review.,, 900: NM_005223, “Homo sapiens deoxyribonuclease I (DNASE1),


mRNA”, gi|21361253|ref|NM_005223.2|[21361253]; 901: NM_005224, “Homo sapiens AT rich


interactive domain 3A (BRIGHT-like) (ARID3A), mRNA”,


gi|4885192|ref|NM_005224.1|[4885192]; 902: NM_005227, “Homo sapiens ephrin-A4


(EFNA4), transcript variant 1, mRNA”, gi|33359684|ref|NM_005227.2|[33359684]; 903:


NM_005236, “Homo sapiens excision repair cross-complementing rodent repair deficiency,”,


“complementation group 4 (ERCC4), mRNA”, gi|4885216|ref|NM_005236.1|[4885216]; 904:


NM_005238, “Homo sapiens v-ets erythroblastosis virus E26 oncogene homolog 1 (avian)


(ETS1),”, mRNA, gi|41393580|ref|NM_005238.2|[41393580]; 905: NM_005239, “Homo



sapiens v-ets erythroblastosis virus E26 oncogene homolog 2 (avian) (ETS2),”, mRNA,



gi|20127471|ref|NM_005239.2|[20127471]; 906: NM_005245, “Homo sapiens FAT tumor


suppressor homolog 1 (Drosophila) (FAT), mRNA”, gi|4885228|ref|NM_005245.1|[4885228];


907: NM_005246, “Homo sapiens fer (fps/fes related) tyrosine kinase (phosphoprotein NCP94)


(FER),”, mRNA, gi|4885230|ref|NM_005246.1|[4885230]; 908: NM_005251, “Homo sapiens


forkhead box C2 (MFH-1, mesenchyme forkhead 1) (FOXC2), mRNA”,


gi|4885236|ref|NM_005251.1|[4885236]; 909: NM_005256, “Homo sapiens growth arrest-


specific 2 (GAS2), transcript variant 1, mRNA”, gi|29540560|ref|NM_005256.2|[29540560];


910: NM_005257, “Homo sapiens GATA binding protein 6 (GATA6), mRNA”,


gi|40288196|ref|NM_005257.3|[40288196]; 911: NM_005258, “Homo sapiens GTP


cyclohydrolase I feedback regulatory protein (GCHFR), mRNA”,


gi|6382072|ref|NM_005258.2|[6382072]; 912: NM_005260, “Homo sapiens growth


differentiation factor 9 (GDF9), mRNA”, gi|6715598|ref|NM_005260.2|[6715598]; 913:


NM_005264, “Homo sapiens GDNF family receptor alpha 1 (GFRA1), transcript variant 1,


mRNA”, gi|22035690|ref|NM_005264.2|[22035690]; 914: NM_005266, “Homo sapiens gap


junction protein, alpha 5, 40 kDa (connexin 40) (GJA5),”, “transcript variant A, mRNA”,


gi|32483413|ref|NM_005266.4|[32483413]; 915: NM_005268, “Homo sapiens gap junction


protein, beta 5 (connexin 31.1) (GJB5), mRNA”, gi|31542847|ref|NM_005268.2|[31542847];


916: NM_005272, “Homo sapiens guanine nucleotide binding protein (G protein), alpha


transducing”, “activity polypeptide 2 (GNAT2), mRNA”,


gi|22027523|ref|NM_005272.2|[22027523]; 917: NM_005275, “Homo sapiens guanine


nucleotide binding protein-like 1 (GNL1), mRNA”, gi|38788318|ref|NM_005275.2|[38788318];


918: NM_005281, “Homo sapiens G protein-coupled receptor 3 (GPR3), mRNA”,


gi|31377791|ref|NM_005281.2|[31377791]; 919: NM_005286, “Homo sapiens G protein-


coupled receptor 8 (GPR8), mRNA”, gi|30581163|ref|NM_005286.2|[30581163]; 920:


NM_005288, “Homo sapiens G protein-coupled receptor 12 (GPR12), mRNA”,


gi|4885294|ref|NM_005288.1|[4885294]; 921: NM_005299, “Homo sapiens G protein-coupled


receptor 31 (GPR31), mRNA”, gi|4885316|ref|NM_005299.1|[4885316]; 922: NM_005302,



Homo sapiens G protein-coupled receptor 37 (endothelin receptor type B-like), “(GPR37),



mRNA”, gi|31377788|ref|NM_005302.2|[31377788]; 923: NM_005306, “Homo sapiens G


protein-coupled receptor 43 (GPR43), mRNA”, gi|4885332|ref|NM_005306.1|[4885332]; 924:


NM_005309, “Homo sapiens glutamic-pyruvate transaminase (alanine aminotransferase)


(GPT),”, mRNA, gi|4885350|ref|NM_005309.1|[4885350]; 925: NM_005312, Homo sapiens


guanine nucleotide-releasing factor 2 (specific for crk, “proto-oncogene) (GRF2), transcript


variant 1, mRNA”, gi|38373674|ref|NM_005312.2|[38373674]; 926: NM_005313, “Homo



sapiens glucose regulated protein, 58 kDa (GRP58), mRNA”,



gi|21361656|ref|NM_005313.3|[21361656]; 927: NM_005318, “Homo sapiens H1 histone


family, member 0 (H1F0), mRNA”, gi|20336758|ref|NM_005318.2|[20336758]; 928:


NM_005321, “Homo sapiens histone 1, H1e (HIST1H1E), mRNA”,


gi|20544164|ref|NM_005321.2|[20544164]; 929: NM_005325, “Homo sapiens histone 1, H1a


(HIST1H1A), mRNA”, gi|21264571|ref|NM_005325.2|[21264571]; 930: NM_005330, “Homo



sapiens hemoglobin, epsilon 1 (HBE1), mRNA”, gi|28302129|ref|NM_005330.3|[28302129];



931: NM_005341, “Homo sapiens GLI-Kruppel family member HKR3 (HKR3), mRNA”,


gi|4885418|ref|NM_005341.1|[4885418]; 932: NM_005370, “Homo sapiens RAB8A, member


RAS oncogene family (RAB8A), mRNA”, gi|40548385|ref|NM_005370.4|[40548385]; 933:


NM_005379, “Homo sapiens myosin IA (MYO1A), mRNA”,


gi|29544746|ref|NM_005379.2|[29544746]; 934: NM_005381, “Homo sapiens nucleolin (NCL),


mRNA”, gi|4885510|ref|NM_005381.1|[4885510]; 935: NM_005382, “Homo sapiens


neurofilament 3 (150 kDa medium) (NEF3), mRNA”, gi|4885512|ref|NM_005382.1|[4885512];


936: NM_005386, “Homo sapiens neuronatin (NNAT), transcript variant 1, mRNA”,


gi|32307134|ref|NM_005386.2|[32307134]; 937: NM_005390, “Homo sapiens pyruvate


dehydrogenase (lipoamide) alpha 2 (PDHA2), mRNA”,


gi|38492354|ref|NM_005390.3|[38492354]; 938: NM_005393, “Homo sapiens plexin B3


(PLXNB3), mRNA”, gi|10864080|ref|NM_005393.1|[10864080]; 939: NM_005398, “Homo



sapiens protein phosphatase 1, regulatory (inhibitor) subunit 3C (PPP1R3C),”, mRNA,



gi|42476161|ref|NM_005398.3|[42476161]; 940: NM_005401, “Homo sapiens protein tyrosine


phosphatase, non-receptor type 14 (PTPN14), mRNA”,


gi|34328898|ref|NM_005401.3|[34328898]; 941: NM_005402, Homo sapiens v-ral simian


leukemia viral oncogene homolog A (ras related), “(RALA), mRNA”,


gi|33946328|ref|NM_005402.2|[33946328]; 942: NM_005418, “Homo sapiens suppression of


tumorigenicity 5 (ST5), transcript variant 1, mRNA”,


gi|21264611|ref|NM_005418.2|[21264611]; 943: NM_005423, “Homo sapiens trefoil factor 2


(spasmolytic protein 1) (TFF2), mRNA”, gi|38488723|ref|NM_005423.2|[38488723]; 944:


NM_005424, Homo sapiens tyrosine kinase with immunoglobulin and epidermal growth factor,


“homology domains (TIE), mRNA”, gi|31543809|ref|NM_005424.2|[31543809]; 945:


NM_005426, “Homo sapiens tumor protein p53 binding protein, 2 (TP53BP2), mRNA”,


gi|4885642|ref|NM_005426.1|[4885642]; 946: NM_005427, “Homo sapiens tumor protein p73


(TP73), mRNA”, gi|4885644|ref|NM_005427.1|[4885644]; 947: NM_005428, “Homo sapiens


vav 1 oncogene (VAV1), mRNA”, gi|7108366|ref|NM_005428.2|[7108366]; 948: NM_005429,


Homo sapiens vascular endothelial growth factor C (VEGFC), mRNA”,


gi|19924300|ref|NM_005429.2|[19924300]; 949: NM_005431, Homo sapiens X-ray repair


complementing defective repair in Chinese hamster, “cells 2 (XRCC2), mRNA”,


gi|4885656|ref|NM_005431.1|[4885656]; 950: NM_005432, Homo sapiens X-ray repair


complementing defective repair in Chinese hamster, “cells 3 (XRCC3), mRNA”,


gi|12408644|ref|NM_005432.2|[12408644]; 951: NM_005436, “Homo sapiens coiled-coil


domain containing 6 (CCDC6), mRNA”, gi|4885172|ref|NM_005436.1|[4885172]; 952:


NM_005439, “Homo sapiens myeloid leukemia factor 2 (MLF2), mRNA”,


gi|4885486|ref|NM_005439.1|[4885486]; 953: NM_005441, “Homo sapiens chromatin


assembly factor 1, subunit B (p60) (CHAF1B), mRNA”,


gi|4885104|ref|NM_005441.1|[4885104]; 954: NM_005452, “Homo sapiens chromosome 6


open reading frame 11 (C6orf11), mRNA”, gi|39725662|ref|NM_005452.4|[39725662]; 955:


NM_005453, “Homo sapiens zinc finger protein 297 (ZNF297), mRNA”,


gi|20070223|ref|NM_005453.3|[20070223]; 956: NM_005460, “Homo sapiens synuclein, alpha


interacting protein (synphilin) (SNCAIP), mRNA”, gi|4885602|ref|NM_005460.1|[4885602];


957: NM_005461, Homo sapiens v-maf musculoaponeurotic fibrosarcoma oncogene homolog B


(avian), “(MAFB), mRNA”, gi|31652256|ref|NM_005461.3|[31652256]; 958: NM_005469,


Homo sapiens peroxisomal acyl-CoA thioesterase (PTE1), transcript variant 1,”, mRNA,


gi|34577074|ref|NM_005469.2|[34577074]; 959: NM_005474, “Homo sapiens histone


deacetylase 5 (HDAC5), transcript variant 1, mRNA”,


gi|21237796|ref|NM_005474.3|[21237796]; 960: NM_005475, “Homo sapiens lymphocyte


adaptor protein (LNK), mRNA”, gi|4885454|ref|NM_005475.1|[4885454]; 961: NM_005477,



Homo sapiens hyperpolarization activated cyclic nucleotide-gated potassium, “channel 4



(HCN4), mRNA”, gi|4885406|ref|NM_005477.1|[4885406]; 962: NM_005479, “Homo sapiens


frequently rearranged in advanced T-cell lymphomas (FRAT1),”, “transcript variant 1, mRNA”,


gi|31317235|ref|NM_005479.2|[31317235]; 963: NM_005485, Homo sapiens ADP-


ribosyltransferase (NAD+; poly (ADP-ribose) polymerase)-like 3, “(ADPRTL3), mRNA”,


gi|11496992|ref|NM_005485.2|[11496992]; 964: NM_005490, “Homo sapiens SH2 domain


containing 3A (SH2D3A), mRNA”, gi|4885524|ref|NM_005490.1|[4885524]; 965: NM_005499


Homo sapiens SUMO-1 activating enzyme subunit 2 (UBA2), mRNA”,


gi|4885648|ref|NM_005499.1|[4885648]; 966: NM_005505, “Homo sapiens scavenger receptor


class B, member 1 (SCARB1), mRNA”, gi|33620766|ref|NM_005505.3|[33620766]; 967:


NM_005507, “Homo sapiens cofilin 1 (non-muscle) (CFL1), mRNA”,


gi|5031634|ref|NM_005507.1|[5031634]; 968: NM_005517, “Homo sapiens high-mobility


group nucleosomal binding domain 2 (HMGN2), mRNA”,


gi|5031748|ref|NM_005517.1|[5031748]; 969: NM_005522, “Homo sapiens homeo box A1


(HOXA1), transcript variant 1, mRNA”, gi|24497507|ref|NM_005522.3|[24497507]; 970:


NM_005527, “Homo sapiens heat shock 70 kDa protein 1-like (HSPA1L), mRNA”,


gi|27436928|ref|NM_005527.2|[27436928]; 971: NM_005534, Homo sapiens interferon gamma


receptor 2 (interferon gamma transducer 1), “(IFNGR2), mRNA”,


gi|5031782|ref|NM_005534.1|[5031782]; 972: NM_005536, “Homo sapiens inositol(myo)-1(or


4)-monophosphatase 1 (IMPA1), mRNA”, gi|8393607|ref|NM_005536.2|[8393607]; 973:


NM_005539, “Homo sapiens inositol polyphosphate-5-phosphatase, 40 kDa (INPP5A), mRNA”,


gi|38327536|ref|NM_005539.2|[38327536]; 974: NM_005545, “Homo sapiens immunoglobulin


superfamily containing leucine-rich repeat (ISLR),”, “transcript variant 1, mRNA”,


gi|41582237|ref|NM_005545.3|[41582237]; 975: NM_005550, “Homo sapiens kinesin family


member C3 (KIFC3), mRNA”, gi|19923320|ref|NM_005550.2|[19923320]; 976: NM_005560,


Homo sapiens laminin, alpha 5 (LAMA5), mRNA”, gi|21264601|ref|NM_005560.3|[21264601];


977: NM_005563, “Homo sapiens stathmin 1/oncoprotein 18 (STMN1), mRNA”,


gi|13518023|ref|NM_005563.2|[13518023]; 978: NM_005567, “Homo sapiens lectin,


galactoside-binding, soluble, 3 binding protein (LGALS3BP),”, mRNA,


gi|6006016|ref|NM_005567.2|[6006016]; 979: NM_005574, “Homo sapiens LIM domain only 2


(rhombotin-like 1) (LMO2), mRNA”, gi|6633806|ref|NM_005574.2|[6633806]; 980:


NM_005575, “Homo sapiens leucyl/cystinyl aminopeptidase (LNPEP), mRNA”,


gi|5031880|ref|NM_005575.1|[5031880]; 981: NM_005583, “Homo sapiens lymphoblastic


leukemia derived sequence 1 (LYL1), mRNA”, gi|34147557|ref|NM_005583.3|[34147557]; 982:


NM_005584, “Homo sapiens mab-21-like 1 (C. elegans) (MAB21L1), mRNA”,


gi|18765719|ref|NM_005584.2|[18765719]; 983: NM_005608, “Homo sapiens protein tyrosine


phosphatase, receptor type, C-associated protein”, “(PTPRCAP), mRNA”,


gi|5032004|ref|NM_005608.1|[5032004]; 984: NM_005620, “Homo sapiens S100 calcium


binding protein A11 (calgizzarin) (S100A11), mRNA”, gi|5032056|ref|NM_005620.1|[5032056];


985: NM_005626, “Homo sapiens splicing factor, arginine/serine-rich 4 (SFRS4), mRNA”,


gi|34147660|ref|NM_005626.3|[34147660]; 986: NM_005627, “Homo sapiens


serum/glucocorticoid regulated kinase (SGK), mRNA”,


gi|25168262|ref|NM_005627.2|[25168262]; 987: NM_005628, “Homo sapiens solute carrier


family 1 (neutral amino acid transporter), member 5”, “(SLC1A5), mRNA”,


gi|5032092|ref|NM_005628.1|[5032092]; 988: NM_005632, “Homo sapiens small optic lobes


homolog (Drosophila) (SOLH), mRNA”, gi|41406087|ref|NM_005632.2|[41406087]; 989:


NM_005634, “Homo sapiens SRY (sex determining region Y)-box 3 (SOX3), mRNA”,


gi|30061555|ref|NM_005634.2|[30061555]; 990: NM_005643, “Homo sapiens TAF11 RNA


polymerase II, TATA box binding protein (TBP)-associated”, “factor, 28 kDa (TAF11), mRNA”,


gi|21269863|ref|NM_005643.2|[21269863]; 991: NM_005644, “Homo sapiens TAF12 RNA


polymerase II, TATA box binding protein (TBP)-associated”, “factor, 20 kDa (TAF12), mRNA”,


gi|9943840|ref|NM_005644.2|[9943840]; 992: NM_005652, “Homo sapiens telomeric repeat


binding factor 2 (TERF2), mRNA”, gi|21536372|ref|NM_005652.2|[21536372]; 993:


NM_005655, “Homo sapiens TGFB inducible early growth response (TIEG), mRNA”,


gi|5032176|ref|NM_005655.1|[5032176]; 994: NM_005657, “Homo sapiens tumor protein p53


binding protein, 1 (TP53BP1), mRNA”, gi|5032188|ref|NM_005657.1|[5032188]; 995:


NM_005659, “Homo sapiens ubiquitin fusion degradation 1-like (UFD1L), mRNA”,


gi|34222257|ref|NM_005659.3|[34222257]; 996: NM_005664, “Homo sapiens makorin, ring


finger protein, 3 (MKRN3), mRNA”, gi|5032242|ref|NM_005664.1|[5032242]; 997:


NM_005671, “Homo sapiens reproduction 8 (D8S2298E), mRNA”,


gi|5031650|ref|NM_005671.1|[5031650]; 998: NM_005688, “Homo sapiens ATP-binding


cassette, sub-family C (CFTR/MRP), member 5 (ABCC5),”, mRNA,


gi|5032100|ref|NM_005688.1|[5032100]; 999: NM_005690, “Homo sapiens dynamin 1-like


(DNM1L), transcript variant 3, mRNA”, gi|6996008|ref|NM_005690.2|[6996008]; 1000:


NM_005694, “Homo sapiens COX17 homolog, cytochrome c oxidase assembly protein


(yeast)”, “(COX17), nuclear gene encoding mitochondrial protein, mRNA”,


gi|5031644|ref|NM_005694.1|[5031644]; 1001: NM_005697, “Homo sapiens secretory carrier


membrane protein 2 (SCAMP2), mRNA”, gi|16445417|ref|NM_005697.3|[16445417]; 1002:


NM_005698, “Homo sapiens secretory carrier membrane protein 3 (SCAMP3), transcript


variant”, “1, mRNA”, gi|16445418|ref|NM_005698.2|[16445418]; 1003: NM_005700, “Homo



sapiens dipeptidylpeptidase 3 (DPP3), transcript variant 1, mRNA”,



gi|18491023|ref|NM_005700.2|[18491023]; 1004: NM_005705, “Homo sapiens pan-


hematopoietic expression (PHEMX), transcript variant 2, mRNA”,


gi|37595533|ref|NM_005705.3|[37595533]; 1005: NM_005706, “Homo sapiens tumor


suppressing subtransferable candidate 4 (TSSC4), mRNA”,


gi|21071005|ref|NM_005706.2|[21071005]; 1006: NM_005713, “Homo sapiens collagen, type


IV, alpha 3 (Goodpasture antigen) binding protein”, “(COL4A3BP), transcript variant 1,


mRNA”, gi|5031716|ref|NM_005713.1|[5031716]; 1007: NM_005714, “Homo sapiens


potassium channel, subfamily K, member 7 (KCNK7), transcript”, “variant C, mRNA”,


gi|5031820|ref|NM_005714.1|[5031820]; 1008: NM_005716, Homo sapiens regulator of G-


protein signalling 19 interacting protein 1, “(RGS19IP1), transcript variant 1, mRNA”,


gi|42544147|ref|NM_005716.2|[42544147]; 1009: NM_005717, “Homo sapiens actin related


protein 2/3 complex, subunit 5, 16 kDa (ARPC5), mRNA”,


gi|23238212|ref|NM_005717.2|[23238212]; 1010: NM_005719, “Homo sapiens actin related


protein 2/3 complex, subunit 3, 21 kDa (ARPC3), mRNA”,


gi|23397667|ref|NM_005719.2|[23397667]; 1011: NM_005726, “Homo sapiens Ts translation


elongation factor, mitochondrial (TSFM), mRNA”, gi|21361279|ref|NM_005726.2|[21361279];


1012: NM_005727, “Homo sapiens tetraspan 1 (TSPAN-1), mRNA”,


gi|21264577|ref|NM_005727.2|[21264577]; 1013: NM_005738, “Homo sapiens ADP-


ribosylation factor-like 4 (ARL4), mRNA”, gi|5031602|ref|NM_005738.1|[5031602]; 1014:


NM_005740, “Homo sapiens dynein, axonemal, light polypeptide 4 (DNAL4), mRNA”,


gi|5031666|ref|NM_005740.1|[5031666]; 1015: NM_005745, “Homo sapiens B-cell receptor-


associated protein 31 (BCAP31), mRNA”, gi|32171185|ref|NM_005745.5|[32171185]; 1016:


NM_005755, “Homo sapiens Epstein-Barr virus induced gene 3 (EBI3), mRNA”,


gi|14577916|ref|NM_005755.2|[14577916]; 1017: NM_005756, “Homo sapiens G protein-


coupled receptor 64 (GPR64), mRNA”, gi|5031732|ref|NM_005756.1|[5031732]; 1018:


NM_005764, “Homo sapiens membrane-associated protein 17 (MAP17), mRNA”,


gi|41152089|ref|NM_005764.3|[41152089]; 1019: NM_005770, “Homo sapiens small EDRK-


rich factor 2 (SERF2), mRNA”, gi|42475556|ref|NM_005770.3|[42475556]; 1020: NM_005772,


Homo sapiens RNA terminal phosphate cyclase-like 1 (RCL1), mRNA”,


gi|21361284|ref|NM_005772.2|[21361284]; 1021: NM_005780, “Homo sapiens lipoma HMGIC


fusion partner (LHFP), mRNA”, gi|5031864|ref|NM_005780.1|[5031864]; 1022: NM_005787,


Homo sapiens asparagine-linked glycosylation 3 homolog (yeast,”, “alpha-1,3-


mannosyltransferase) (ALG3), mRNA”, gi|39725713|ref|NM_005787.3|[39725713]; 1023:


NM_005792, “Homo sapiens M-phase phosphoprotein 6 (MPHOSPH6), mRNA”,


gi|5031918|ref|NM_005792.1|[5031918]; 1024: NM_005796, “Homo sapiens nuclear transport


factor 2 (NUTF2), mRNA”, gi|5031984|ref|NM_005796.1|[5031984]; 1025: NM_005798,


Homo sapiens ret finger protein 2 (RFP2), transcript variant 1, mRNA”,


gi|16445410|ref|NM_005798.2|[16445410]; 1026: NM_005805, “Homo sapiens proteasome


(prosome, macropain) 26S subunit, non-ATPase, 14”, “(PSMD14), mRNA”,


gi|42734423|ref|NM_005805.2|[42734423]; 1027: NM_005833, “Homo sapiens Rab9 effector


p40 (RAB9P40), mRNA”, gi|33695108|ref|NM_005833.2|[33695108]; 1028: NM_005835,


Homo sapiens solute carrier family 17 (sodium phosphate), member 2 (SLC17A2),”, mRNA,


gi|5031954|ref|NM_005835.1|[5031954]; 1029: NM_005836, “Homo sapiens translational


inhibitor protein p14.5 (UK114), mRNA”, gi|5032214|ref|NM_005836.1|[5032214]; 1030:


NM_005842, “Homo sapiens sprouty homolog 2 (Drosophila) (SPRY2), mRNA”,


gi|22209007|ref|NM_005842.2|[22209007]; 1031: NM_005845, “Homo sapiens ATP-binding


cassette, sub-family C (CFTR/MRP), member 4 (ABCC4),”, mRNA,


gi|34452699|ref|NM_005845.2|[34452699]; 1032: NM_005850, “Homo sapiens splicing factor


3b, subunit 4, 49 kDa (SF3B4), mRNA”, gi|23111059|ref|NM_005850.3|[23111059]; 1033:


NM_005851, “Homo sapiens tumor suppressor deleted in oral cancer-related 1 (DOC-1R),


mRNA”, gi|39725675|ref|NM_005851.3|[39725675]; 1034: NM_005853, “Homo sapiens


iroquois homeobox protein 5 (IRX5), mRNA”, gi|42415493|ref|NM_005853.3|[42415493];


1035: NM_005856, “Homo sapiens receptor (calcitonin) activity modifying protein 3 (RAMP3),


mRNA”, gi|5032022|ref|NM_005856.1|[5032022]; 1036: NM_005857, “Homo sapiens zinc


metalloproteinase (STE24 homolog, yeast) (ZMPSTE24), mRNA”,


gi|18379365|ref|NM_005857.2|[18379365]; 1037: NM_005860, “Homo sapiens follistatin-like 3


(secreted glycoprotein) (FSTL3), mRNA”, gi|5031700|ref|NM_005860.1|[5031700]; 1038:


NM_005861, “Homo sapiens STIP1 homology and U-Box containing protein 1 (STUB1),


mRNA”, gi|5031962|ref|NM_005861.1|[5031962]; 1039: NM_005873, “Homo sapiens regulator


of G-protein signalling 19 (RGS19), mRNA”, gi|5031704|ref|NM_005873.1|[5031704]; 1040:


NM_005876, “Homo sapiens aortic preferentially expressed protein 1 (APEG1), mRNA”,


gi|37577150|ref|NM_005876.3|[37577150]; 1041: NM_005879, “Homo sapiens TRAF


interacting protein (TRIP), mRNA”, gi|40807468|ref|NM_005879.2|[40807468]; 1042:


NM_005881, “Homo sapiens branched chain alpha-ketoacid dehydrogenase kinase (BCKDK),


mRNA”, gi|5031608|ref|NM_005881.1|[5031608]; 1043: NM_005882, “Homo sapiens


macrophage erythroblast attacher (MAEA), mRNA”, gi|9257203|ref|NM_005882.2|[9257203];


1044: NM_005891, Homo sapiens acetyl-Coenzyme A acetyltransferase 2 (acetoacetyl


Coenzyme A, “thiolase) (ACAT2), mRNA”, gi|5174388|ref|NM_005891.1|[5174388]; 1045:


NM_005895, “Homo sapiens golgi autoantigen, golgin subfamily a, 3 (GOLGA3), mRNA”,


gi|30089939|ref|NM_005895.2|[30089939]; 1046: NM_005900, “Homo sapiens MAD, mothers


against decapentaplegic homolog 1 (Drosophila)”, “(MADH1), mRNA”,


gi|5174508|ref|NM_005900.1|[5174508]; 1047: NM_005904, “Homo sapiens MAD, mothers


against decapentaplegic homolog 7 (Drosophila)”, “(MADH7), mRNA”,


gi|5174516|ref|NM_005904.1|[5174516]; 1048: NM_005908, “Homo sapiens mannosidase, beta


A, lysosomal (MANBA), mRNA”, gi|24797157|ref|NM_005908.2|[24797157]; 1049:


NM_005909, “Homo sapiens microtubule-associated protein 1B (MAP1B), transcript variant


1,”, mRNA, gi|14165457|ref|NM_005909.2|[14165457]; 1050: NM_005912 “Homo sapiens


melanocortin 4 receptor (MC4R), mRNA”, gi|5174532|ref|NM_005912.1|[5174532]; 1051:


NM_005915, “Homo sapiens MCM6 minichromosome maintenance deficient 6 (MIS5


homolog, S.”, “pombe) (S. cerevisiae) (MCM6), mRNA”,


gi|33469920|ref|NM_005915.4|[33469920]; 1052: NM_005917, “Homo sapiens malate


dehydrogenase 1, NAD (soluble) (MDH1), mRNA”, gi|21735619|ref|NM_005917.2|[21735619];


1053: NM_005953, “Homo sapiens metallothionein 2A (MT2A), mRNA”,


gi|31543214|ref|NM_005953.2|[31543214]; 1054: NM_005956, “Homo sapiens


methylenetetrahydrofolate dehydrogenase (NADP+ dependent),”, “methenyltetrahydrofolate


cyclohydrolase, formyltetrahydrofolate synthetase”, “(MTHFD1), mRNA”,


gi|13699867|ref|NM_005956.2|[13699867]; 1055: NM_005958, “Homo sapiens melatonin


receptor 1A (MTNR1A), mRNA”, gi|14141171|ref|NM_005958.2|[14141171]; 1056:


NM_005965, “Homo sapiens myosin, light polypeptide kinase (MYLK), transcript variant 6,


mRNA”, gi|16950600|ref|NM_005965.2|[16950600]; 1057: NM_005975, “Homo sapiens PTK6


protein tyrosine kinase 6 (PTK6), mRNA”, gi|27886594|ref|NM_005975.2|[27886594]; 1058:


NM_005984, Homo sapiens solute carrier family 25 (mitochondrial carrier; citrate,


“transporter), member 1 (SLC25A1), mRNA”, gi|21389314|ref|NM_005984.1|[21389314]; 1059:


NM_005985, “Homo sapiens snail homolog 1 (Drosophila) (SNAI1), mRNA”,


gi|18765740|ref|NM_005985.2|[18765740]; 1060: NM_005996, “Homo sapiens T-box 3 (ulnar


mammary syndrome) (TBX3), transcript variant 1, mRNA”,


gi|18375606|ref|NM_005996.2|[18375606]; 1061: NM_005997, “Homo sapiens transcription


factor-like 1 (TCFL1), mRNA”, gi|5174714|ref|NM_005997.1|[5174714]; 1062: NM_006002,



Homo sapiens ubiquitin carboxyl-terminal esterase L3 (ubiquitin thiolesterase), “(UCHL3),



mRNA”, gi|37059734|ref|NM_006002.3|[37059734]; 1063: NM_006003, “Homo sapiens


ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1”, “(UQCRFS1), mRNA”,


gi|5174742|ref|NM_006003.1|[5174742]; 1064: NM_006004, “Homo sapiens ubiquinol-


cytochrome c reductase hinge protein (UQCRH, mRNA”,


gi|5174744|ref|NM_006004.1|[5174744]; 1065: NM_006010, “Homo sapiens arginine-rich,


mutated in early stage tumors (ARMET), mRNA”, gi|5174392|ref|NM_006010.1|[5174392];


1066: NM_006011, “Homo sapiens sialyltransferase 8B (alpha-2,8-sialyltransferase) (SIAT8B),


mRNA”, gi|28373096|ref|NM_006011.21|[28373096]; 1067: NM_006012, “Homo sapiens ClpP


caseinolytic protease, ATP-dependent, proteolytic subunit”, “homolog (E. coli) (CLPP), nuclear


gene encoding mitochondrial protein, mRNA”, gi|5174418|ref|NM_006012.1|[5174418]; 1068:


NM_006017, “Homo sapiens prominin 1 (PROM1), mRNA”,


gi|5174386|ref|NM_006017.1|[5174386]; 1069: NM_006020, “Homo sapiens alkB, alkylation


repair homolog (E. coli) (ALKBH), mRNA”, gi|5174384|ref|NM_006020.1|[5174384]; 1070:


NM_006023, “Homo sapiens chromosome 10 open reading frame 7 (C10orf7), mRNA”,


gi|5174422|ref|NM_006023.1|[5174422]; 1071: NM_006035, “Homo sapiens CDC42 binding


protein kinase beta (DMPK-like) (CDC42BPB), mRNA”,


gi|16357473|ref|NM_006035.2|[16357473]; 1072: NM_006037, “Homo sapiens histone


deacetylase 4 (HDAC4), mRNA”, gi|13259519|ref|NM_006037.2|[13259519]; 1073:


NM_006041, “Homo sapiens heparan sulfate (glucosamine) 3-O-sulfotransferase 3B1


(HS3ST3B1),”, mRNA, gi|5174466|ref|NM_006041.1|[5174466]; 1074: NM_006042, “Homo



sapiens heparan sulfate (glucosamine) 3-O-sulfotransferase 3A1 (HS3ST3A1),”, mRNA,



gi|5174464|ref|NM_006042.1|[5174464]; 1075: NM_006056, “Homo sapiens G protein-coupled


receptor 66 (GPR66), mRNA”, gi|24432088|ref|NM_006056.2|[24432088]; 1076: NM_006061,


Homo sapiens cysteine-rich secretory protein 3 (CRISP3), mRNA”,


gi|5174674|ref|NM_006061.1|[5174674]; 1077: NM_006067, “Homo sapiens neighbor of COX4


(NOC4), mRNA”, gi|34147520|ret|NM_006067.3|[34147520]; 1078: NM_006070, “Homo



sapiens TRK-fused gene (TFG), mRNA”, gi|34147663|ref|NM_006070.3|[34147663]; 1079:



NM_006080, “Homo sapiens sema domain, immunoglobulin domain (Ig), short basic domain,”,


“secreted, (semaphorin) 3A (SEMA3A), mRNA”, gi|5174672|ref|NM_006080.1|[5174672];


1080: NM_006084, “Homo sapiens interferon-stimulated transcription factor 3, gamma 48 kDa


(ISGF3G),”, mRNA, gi|25282406|ref|NM_006084.3|[25282406]; 1081: NM_006089, “Homo



sapiens sex comb on midleg-like 2 (Drosophila) (SCML2), mRNA”,



gi|5174668|ref|NM_006089.1|[5174668]; 1082: NM_006090, “Homo sapiens


choline/ethanolaminephosphotransferase (CEPT1), mRNA”,


gi|21735567|ref|NM_006090.2|[21735567]; 1083: NM_006091, “Homo sapiens coronin, actin


binding protein, 2B (CORO2B), mRNA”, gi|24307902|ref|NM_006091.1|[24307902]; 1084:


NM_006094, “Homo sapiens deleted in liver cancer 1 (DLC1), transcript variant 2, mRNA”,


gi|33188436|ref|NM_006094.3|[33188436]; 1085: NM_006096, “Homo sapiens N-myc


downstream regulated gene 1 (NDRG1), mRNA”, gi|37655182|ref|NM_006096.2|[37655182];


1086: NM_006097, “Homo sapiens myosin, light polypeptide 9, regulatory (MYL9), transcript


variant”, “1, mRNA”, gi|31563522|ref|NM_006097.3|[31563522]; 1087: NM_006101, “Homo



sapiens kinetochore associated 2 (KNTC2), mRNA”, gi|5174456|ref|NM_006101.1|[5174456];



1088: NM_006103, “Homo sapiens WAP four-disulfide core domain 2 (WFDC2), transcript


variant 1,”, mRNA, gi|18379363|ref|NM_006103.2|[18379363]; 1089: NM_006114, Homo



sapiens translocase of outer mitochondrial membrane 40 homolog (yeast), “(TOMM40),



mRNA”, gi|5174722|ref|NM_006114.1|[5174722]; 1090: NM_006119, “Homo sapiens


fibroblast growth factor 8 (androgen-induced) (FGF8), transcript”, “variant B, mRNA”,


gi|15147351|ref|NM_006119.2|[15147351]; 1091: NM_006122, “Homo



sapiens mannosidase,



alpha, class 2A, member 2 (MAN2A2), mRNA”, gi|5540099|ref|NM_006122.1|[5540099]; 1092:


NM_006133, “Homo sapiens chromosome 11 open reading frame 11 (C11orf11), mRNA”,


gi|27262631|ref|NM_006133.1|[27262631]; 1093: NM_006135, “Homo sapiens capping protein


(actin filament) muscle Z-line, alpha 1 (CAPZA1),”, mRNA,


gi|5453596|ref|NM_006135.1|[5453596]; 1094: NM_006148, “Homo sapiens LIM and SH3


protein 1 (LASP1), mRNA”, gi|5453709|ref|NM_006148.1|[5453709]; 1095: NM_006156,


Homo sapiens neural precursor cell expressed, developmentally down-regulated 8”, “(NEDD8),


mRNA”, gi|5453759|ref|NM_006156.1|[5453759]; 1096: NM_006157, “Homo sapiens NEL-


like 1 (chicken) (NELL1), mRNA”, gi|5453763|ref|NM_006157.1|[5453763]; 1097: NM_006164


Homo sapiens nuclear factor (erythroid-derived 2)-like 2 (NFE2L2), mRNA”,


gi|20149575|ref|NM_006164.2|[20149575]; 1098: NM_006168, “Homo sapiens NK6


transcription factor related, locus 1 (Drosophila) (NKX6-1),”, mRNA,


gi|5453787|ref|NM_006168.1|[5453787]; 1099: NM_006172, “Homo sapiens natriuretic peptide


precursor A (NPPA), mRNA”, gi|23510318|ref|NM_006172.1|[23510318]; 1100: NM_006181,


Homo sapiens netrin 2-like (chicken) (NTN2L), mRNA”,


gi|5453809|ref|NM_006181.1|[5453809]; 1101: NM_006194, “Homo sapiens paired box gene 9


(PAX9), mRNA”, gi|7242166|ref|NM_006194.1|[7242166]; 1102: NM_006195, “Homo sapiens


pre-B-cell leukemia transcription factor 3 (PBX3), mRNA”,


gi|24475894|ref|NM_006195.2|[24475894]; 1103: NM_006196, “Homo sapiens poly(rC)


binding protein 1 (PCBP1), mRNA”, gi|14141164|ref|NM_006196.2|[14141164]; 1104:


NM_006204, “Homo sapiens phosphodiesterase 6C, cGMP-specific, cone, alpha prime


(PDE6C),”, mRNA, gi|21361307|ref|NM_006204.2|[21361307]; 1105: NM_006205, “Homo



sapiens phosphodiesterase 6H, cGMP-specific, cone, gamma (PDE6H), mRNA”,



gi|5453867|ref|NM_006205.1|[5453867]; 1106: NM_006221, Homo sapiens protein (peptidyl-


prolyl cis/trans isomerase) NIMA-interacting 1, “(PIN1), mRNA”,


gi|5453897|ref|NM_006221.1|[5453897]; 1107: NM_006228, “Homo sapiens prepronociceptin


(PNOC), mRNA”, gi|11079650|ref|NM_006228.2|[11079650]; 1108: NM_006232, “Homo



sapiens polymerase (RNA) II (DNA directed) polypeptide H (POLR2H), mRNA”,



gi|14589952|ref|NM_006232.2|[14589952]; 1109: NM_006236, “Homo sapiens POU domain,


class 3, transcription factor 3 (POU3F3), mRNA”, gi|5453935|ref|NM_006236.1|[5453935];


1110: NM_006240, “Homo sapiens protein phosphatase, EF hand calcium-binding domain 1


(PPEF1),”, “transcript variant 1, mRNA”, gi|23312379|ref|NM_006240.2|[23312379]; 1111:


NM_006246, “Homo sapiens protein phosphatase 2, regulatory subunit B (B56), epsilon


isoform”, “(PPP2R5E), mRNA”, gi|31083295|ref|NM_006246.2|[31083295]; 1112: NM_006254


Homo sapiens protein kinase C, delta (PRKCD), mRNA”,


gi|31377781|ref|NM_006254.2|[31377781]; 1113: NM_006259, “Homo sapiens protein kinase,


cGMP-dependent, type II (PRKG2), mRNA”, gi|5453977|ref|NM_006259.1|[5453977]; 1114:


NM_006261, “Homo sapiens prophet of Pit1, paired-like homeodomain transcription factor”,


“(PROP1), mRNA”, gi|40254838|ref|NM_006261.2|[40254838]; 1115: NM_006262, “Homo



sapiens peripherin (PRPH), mRNA”, gi|21264344|ref|NM_006262.2|[21264344]; 1116:



NM_006263, “Homo sapiens proteasome (prosome, macropain) activator subunit 1 (PA28


alpha)”, “(PSME1), transcript variant 1, mRNA”, gi|30581139|ref|NM_006263.2|[30581139];


1117: NM_006270, “Homo sapiens related RAS viral (r-ras) oncogene homolog (RRAS),


mRNA”, gi|20127497|ref|NM_006270.2|[20127497]; 1118: NM_006280, “Homo sapiens signal


sequence receptor, delta (translocon-associated protein”, “delta) (SSR4), mRNA”,


gi|5454089|ref|NM_006280.1|[5454089]; 1119: NM_006284, “Homo sapiens TAF10 RNA


polymerase II, TATA box binding protein (TBP)-associated”, “factor, 30 kDa (TAF10), mRNA”,


gi|21166374|ref|NM_006284.2|[21166374]; 1120: NM_006285, “Homo sapiens testis-specific


kinase 1 (TESK1), mRNA”, gi|5454109|ref|NM_006285.1|[5454109]; 1121: NM_006289,


Homo sapiens talin 1 (TLN1), mRNA”, gi|16753232|ref|NM_006289.2|[16753232]; 1122:


NM_006292, “Homo sapiens tumor susceptibility gene 101 (TSG101), mRNA”,


gi|18765712|ref|NM_006292.2|[18765712]; 1123: NM_006298, “Homo sapiens zinc finger


protein 192 (ZNF192), mRNA”, gi|5454177|ref|NM_006298.1|[5454177]; 1124: NM_006302,


Homo sapiens glucosidase I (GCS1), mRNA”, gi|5453661|ref|NM_006302.1|[5453661]; 1125:


NM_006315, “Homo sapiens ring finger protein 3 (RNF3), mRNA”,


gi|34305288|ref|NM_006315.3|[34305288]; 1126: NM_006329, “Homo sapiens fibulin 5


(FBLN5), mRNA”, gi|19743802|ref|NM_006329.2|[19743802]; 1127: NM_006331, “Homo



sapiens C2f protein (C2F), mRNA”, gi|31652261|ref|NM_006331.3|[31652261]; 1128:



NM_006333, “Homo sapiens nuclear DNA-binding protein (C1D), transcript variant 1, mRNA”,


gi|27894371|ref|NM_006333.2|[27894371]; 1129: NM_006338, “Homo sapiens leucine rich


repeat neuronal 5 (LRRN5), transcript variant 1, mRNA”,


gi|42544230|ref|NM_006338.2|[42544230]; 1130: NM_006342, “Homo sapiens transforming,


acidic coiled-coil containing protein 3 (TACC3), mRNA”,


gi|5454101|ref|NM_006342.1|[5454101]; 1131: NM_006344, “Homo sapiens C-type (calcium


dependent, carbohydrate-recognition domain) lectin,”, “superfamily member 13 (macrophage-


derived) (CLECSF13), transcript variant 2,”, mRNA, gi|5453683|ref|NM_006344.1|[5453683];


1132: NM_006345, “Homo sapiens solute carrier family 30 (zinc transporter), member 9


(SLC30A9),”, mRNA, gi|7656945|ref|NM_006345.2|[7656945]; 1133: NM_006346, “Homo



sapiens progesterone-induced blocking factor 1 (PIBF1), mRNA”,



gi|5453889|ref|NM_006346.1|[5453889]; 1134: NM_006347, “Homo sapiens peptidyl prolyl


isomerase H (cyclophilin H) (PPIH), mRNA”, gi|19224661|ref|NM_006347.2|[19224661]; 1135:


NM_006356, “Homo sapiens ATP synthase, H+ transporting, mitochondrial F0 complex,


subunit d”, “(ATP5H), mRNA”, gi|5453558|ref|NM_006356.1|[5453558]; 1136: NM_006357,


Homo sapiens ubiquitin-conjugating enzyme E2E 3 (UBC4/5 homolog, yeast)”, “(UBE2E3),


transcript variant 1, mRNA”, gi|33359695|ref|NM_006357.2|[33359695]; 1137: NM_006365,


Homo sapiens transcriptional activator of the c-fos promoter (CROC4), mRNA”,


gi|5453624|ref|NM_006365.1|[5453624]; 1138: NM_006368, “Homo sapiens cAMP responsive


element binding protein 3 (CREB3), mRNA”, gi|38327637|ref|NM_006368.4|[38327637]; 1139:


NM_006370, Homo sapiens vesicle transport through interaction with t-SNAREs homolog 1B,


“(yeast) (VTI1B), mRNA”, gi|5454165|ref|NM_006370.1|[5454165]; 1140: NM_006374,


Homo sapiens serine/threonine kinase 25 (STE20 homolog, yeast) (STK25), mRNA”,


gi|34147665|ref|NM_006374.3|[34147665]; 1141: NM_006389, “Homo sapiens hypoxia up-


regulated 1 (HYOU1), mRNA”, gi|13699861|ref|NM_006389.2|[13699861]; 1142: NM_006390,


Homo sapiens importin 8 (IPO8), mRNA”, gi|5453999|ref|NM_006390.1|[5453999]; 1143:


NM_006395, “Homo sapiens APG7 autophagy 7-like (S. cerevisiae) (APG7L), mRNA”,


gi|5453667|ref|NM_006395.1|[5453667]; 1144: NM_006396, “Homo sapiens Sjogren's


syndrome/scleroderma autoantigen 1 (SSSCA1), mRNA”,


gi|5453837|ref|NM_006396.1|[5453837]; 1145: NM_006397, “Homo sapiens ribonuclease H2,


large subunit (RNASEH2A), mRNA”, gi|38455390|ref|NM_006397.2|[38455390]; 1146:


NM_006399, “Homo sapiens basic leucine zipper transcription factor, ATF-like (BATF),


mRNA”, gi|18375640|ref|NM_006399.2|[18375640]; 1147: NM_006408, “Homo sapiens


anterior gradient 2 homolog (Xenopus laevis) (AGR2), mRNA”,


gi|20070225|ref|NM_006408.2|[20070225]; 1148: NM_006422, “Homo sapiens A kinase


(PRKA) anchor protein 3 (AKAP3), mRNA”, gi|21493040|ref|NM_006422.2|[21493040]; 1149:


NM_006428, “Homo sapiens mitochondrial ribosomal protein L28 (MRPL28), nuclear gene


encoding”, “mitochondrial protein, mRNA”, gi|39812062|ref|NM_006428.3|[39812062]; 1150:


NM_006447, “Homo sapiens ubiquitin specific protease 16 (USP16), mRNA”,


gi|5454155|ref|NM_006447.1|[5454155]; 1151: NM_006453, “Homo sapiens transducin (beta)-


like 3 (TBL3), mRNA”, gi|19913368|ref|NM_006453.2|[19913368]; 1152: NM_006455, “Homo



sapiens synaptonemal complex protein SC65 (SC65), mRNA”,



gi|39812427|ref|NM_006455.2|[39812427]; 1153: NM_006465, “Homo sapiens AT rich


interactive domain 3B (BRIGHT-like) (ARID3B), mRNA”,


gi|5453637|ref|NM_006465.1|[5453637]; 1154: NM_006467, “Homo sapiens polymerase


(RNA) III (DNA directed) (32 kD) (RPC32), mRNA”, gi|5454017|ref|NM_006467.1|[5454017];


1155: NM_006477, “Homo sapiens RAS-related on chromosome 22 (RRP22), mRNA”,


gi|42476128|ref|NM_006477.2|[42476128]; 1156: NM_006479, “Homo sapiens RAD51-


interacting protein (PIR51), mRNA”, gi|19923778|ref|NM_006479.2|[19923778]; 1157:


NM_006492, “Homo sapiens aristaless-like homeobox 3 (ALX3), mRNA”,


gi|5729727|ref|NM_006492.1|[5729727]; 1158: NM_006495, “Homo sapiens ecotropic viral


integration site 2B (EVI2B), mRNA”, gi|20070234|ref|NM_006495.2|[20070234]; 1159:


NM_006497, “Homo sapiens hypermethylated in cancer 1 (HIC1), mRNA”,


gi|5729870|ref|NM_006497.1|[5729870]; 1160: NM_006502, “Homo sapiens polymerase (DNA


directed), eta (POLH), mRNA”, gi|5729981|ref|NM_006502.1|[5729981]; 1161: NM_006503,


Homo sapiens proteasome (prosome, macropain) 26S subunit, ATPase, 4 (PSMC4),”,


“transcript variant 1, mRNA”, gi|24430156|ref|NM_006503.2|[24430156]; 1162: NM_006513,


Homo sapiens seryl-tRNA synthetase (SARS), mRNA”,


gi|16306547|ref|NM_006513.2|[16306547]; 1163: NM_006515, “Homo sapiens SET domain


and mariner transposase fusion gene (SETMAR), mRNA”,


gi|5730038|ref|NM_006515.1|[5730038]; 1164: NM_006530, “Homo sapiens glioma-amplified


sequence-41 (GAS41), mRNA”, gi|29337287|ref|NM_006530.2|[29337287]; 1165: NM_006531


Homo sapiens Probe hTg737 (polycystic kidney disease, autosomal recessive)”, “(TG737),


transcript variant 2, mRNA”, gi|28329438|ref|NM_006531.2|[28329438]; 1166: NM_006537,


Homo sapiens ubiquitin specific protease 3 (USP3), mRNA”,


gi|5730109|ref|NM_006537.1|[5730109]; 1167: NM_006538, “Homo sapiens BCL2-like 11


(apoptosis facilitator) (BCL2L11), transcript variant”, “6, mRNA”,


gi|5729739|ref|NM_006538.1|[5729739]; 1168: NM_006539, “Homo sapiens calcium channel,


voltage-dependent, gamma subunit 3 (CACNG3), mRNA”,


gi|22027545|ref|NM_006539.2|[22027545]; 1169: NM_006548, “Homo sapiens IGF-II mRNA-


binding protein 2 (IMP-2), mRNA”, gi|34222220|ref|NM_006548.3|[34222220]; 1170:


NM_006554, “Homo sapiens metaxin 2 (MTX2), mRNA”,


gi|5729936|ref|NM_006554.1|[5729936]; 1171: NM_006556, “Homo sapiens


phosphomevalonate kinase (PMVK), mRNA”, gi|20127505|ref|NM_006556.2|[20127505]; 1172:


NM_006570, “Homo sapiens Ras-related GTP binding A (RRAGA), mRNA”,


gi|34147579|ref|NM_006570.3|[34147579]; 1173: NM_006577, “Homo sapiens UDP-


GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 1”, “(B3GNT1), transcript variant 1,


mRNA”, gi|15451893|ref|NM_006577.3|[15451893]; 1174: NM_006582, “Homo sapiens


glucocorticoid modulatory element binding protein 1 (GMEB1),”, “transcript variant 1, mRNA”,


gi|13435376|ref|NM_006582.2|[13435376]; 1175: NM_006584, “Homo sapiens chaperonin


containing TCP1, subunit 6B (zeta 2) (CCT6B), mRNA”,


gi|5729760|ref|NM_006584.1|[5729760]; 1176: NM_006585,,


ref|NM_006585.1|CCT8[6005726], This record was temporarily removed by RefSeq staff for


additional review.,, 1177: NM_006586, “Homo sapiens trinucleotide repeat containing 5


(TNRC5), mRNA”, gi|33942071|ref|NM_006586.2|[33942071]; 1178: NM_006589, “Homo



sapiens chromosome 1 open reading frame 2 (C1orf2), transcript variant 1,”, mRNA,



gi|38146115|ref|NM_006589.2|[38146115]; 1179: NM_006593, “Homo sapiens T-box, brain, 1


(TBR1), mRNA”, gi|22547231|ref|NM_006593.2|[22547231]; 1180: NM_006604, “Homo



sapiens ret finger protein-like 3 (RFPL3), mRNA”, gi|5730012|ref|NM_006604.1|[5730012];



1181: NM_006611, “Homo sapiens killer cell lectin-like receptor subfamily A, member 1


(KLRA1),”, mRNA, gi|5729898|ref|NM_006611.1|[5729898]; 1182: NM_006622, “Homo



sapiens polo-like kinase 2 (Drosophila) (PLK2), mRNA”,



gi|5730054|ref|NM_006622.1|[5730054]; 1183: NM_006626, “Homo sapiens zinc finger protein


482 (ZNF482), mRNA”, gi|34222260|ref|NM_006626.3|[34222260]; 1184: NM_006627,


Homo sapiens POP4 (processing of precursor, S. cerevisiae) homolog (POP4), mRNA”,


gi|5729985|ref|NM_006627.1|[5729985]; 1185: NM_006631, “Homo sapiens zinc finger protein


266 (ZNF266), mRNA”, gi|37622348|ref|NM_006631.2|[37622348]; 1186: NM_006633,


Homo sapiens IQ motif containing GTPase activating protein 2 (IQGAP2), mRNA”,


gi|5729886|ref|NM_006633.1|[5729886]; 1187: NM_006638, “Homo sapiens ribonuclease P1


(RNASEP1), mRNA”, gi|5730016|ref|NM_006638.1|[5730016]; 1188: NM_006642, “Homo



sapiens serologically defined colon cancer antigen 8 (SDCCAG8), mRNA”,



gi|28269671|ref|NM_006642.1|[28269671]; 1189: NM_006654, “Homo sapiens fibroblast


growth factor receptor substrate 2 (FRS2), mRNA”, gi|21314643|ref|NM_006654.2|[21314643];


1190: NM_006664, “Homo sapiens chemokine (C—C motif) ligand 27 (CCL27), mRNA”,


gi|22165428|ref|NM_006664.2|[22165428]; 1191: NM_006666, “Homo sapiens RuvB-like 2 (E. coli)


(RUVBL2), mRNA”, gi|5730022|ref|NM_006666.1|[5730022]; 1192: NM_006670, “Homo



sapiens trophoblast glycoprotein (TPBG), mRNA”, gi|34222307|ref|NM_006670.3|[34222307];



1193: NM_006675, “Homo sapiens transmembrane 4 superfamily member tetraspan NET-5


(NET-5), mRNA”, gi|21264572|ref|NM_006675.2|[21264572]; 1194: NM_006697, “Homo



sapiens cisplatin resistance associated (CRA), mRNA”, gi|5870890|ref|NM_006697.1|[5870890];



1195: NM_006698, “Homo sapiens bladder cancer associated protein (BLCAP), mRNA”,


gi|5729737|ref|NM_006698.1|[5729737]; 1196: NM_006702, “Homo sapiens neuropathy target


esterase (NTE), mRNA”, gi|31543298|ref|NM_006702.2|[31543298]; 1197: NM_006715,


Homo sapiens mannosidase, alpha, class 2C, member 1 (MAN2C1), mRNA”,


gi|6631092|ref|NM_006715.1|[6631092]; 1198: NM_006730, “Homo sapiens deoxyribonuclease


I-like 1 (DNASE1L1), mRNA”, gi|5803006|ref|NM_006730.1|[5803006]; 1199: NM_006735,


Homo sapiens homeo box A2 (HOXA2), mRNA”, gi|37596298|ref|NM_006735.3|[37596298];


1200: NM_006736, “Homo sapiens DnaJ (Hsp40) homolog, subfamily B, member 2 (DNAJB2),


mRNA”, gi|34222304|ref|NM_006736.4|[34222304]; 1201: NM_006744, “Homo sapiens retinol


binding protein 4, plasma (RBP4), mRNA”, gi|8400727|ref|NM_006744.2|[8400727]; 1202:


NM_006745, “Homo sapiens sterol-C4-methyl oxidase-like (SC4MOL), mRNA”,


gi|9257238|ref|NM_006745.2|[9257238]; 1203: NM_006747, “Homo sapiens signal-induced


proliferation-associated gene 1 (SIPA1), transcript”, “variant 2, mRNA”,


gi|24497626|ref|NM_006747.2|[24497626]; 1204: NM_006749, “Homo sapiens solute carrier


family 20 (phosphate transporter), member 2”, “(SLC20A2), mRNA”,


gi|34222154|ref|NM_006749.3|[34222154]; 1205: NM_006751, “Homo sapiens sperm specific


antigen 2 (SSFA2), mRNA”, gi|34222128|ref|NM_006751.3|[34222128]; 1206: NM_006756,


Homo sapiens transcription elongation factor A (SII), 1 (TCEA1), mRNA”,


gi|5803190|ref|NM_006756.1|[5803190]; 1207: NM_006759, “Homo sapiens UDP-glucose


pyrophosphorylase 2 (UGP2), mRNA”, gi|13027637|ref|NM_006759.2|[13027637]; 1208:


NM_006764, “Homo sapiens interferon-related developmental regulator 2 (IFRD2), mRNA”,


gi|21361365|ref|NM_006764.2|[21361365]; 1209: NM_006777, “Homo sapiens kaiso (ZNF-


kaiso), mRNA”, gi|41152068|ref|NM_006777.3|[41152068]; 1210: NM_006784, “Homo sapiens


WD repeat domain 3 (WDR3), mRNA”, gi|5803220|ref|NM_006784.1|[5803220]; 1211:


NM_006793, “Homo sapiens peroxiredoxin 3 (PRDX3), nuclear gene encoding mitochondrial”,


“protein, transcript variant 1, mRNA”, gi|32483378|ref|NM_006793.2|[32483378]; 1212:


NM_006801, Homo sapiens KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein


retention, “receptor 1 (KDELR1), mRNA”, gi|32307173|ref|NM_006801.2|[32307173]; 1213:


NM_006802, “Homo sapiens splicing factor 3a, subunit 3, 60 kDa (SF3A3), mRNA”,


gi|5803166|ref|NM_006802.1|[5803166]; 1214: NM_006804, “Homo sapiens START domain


containing 3 (STARD3), mRNA”, gi|31543656|ref|NM_006804.2|[31543656]; 1215:


NM_006809, “Homo sapiens translocase of outer mitochondrial membrane 34 (TOMM34),


mRNA”, gi|40807467|ref|NM_006809.4|[40807467]; 1216: NM_006813, “Homo sapiens


proline-rich nuclear receptor coactivator 1 (PNRC1), mRNA”,


gi|5802981|ref|NM_006813.1|[5802981]; 1217: NM_006816, “Homo sapiens lectin, mannose-


binding 2 (LMAN2), mRNA”, gi|5803022|ref|NM_006816.1|[5803022]; 1218: NM_006817,


Homo sapiens chromosome 12 open reading frame 8 (C12orf8), mRNA”,


gi|13124889|ref|NM_006817.2|[13124889]; 1219: NM_006818, “Homo sapiens ALL1-fused


gene from chromosome 1q (AF1Q), mRNA”, gi|21626459|ref|NM_006818.2|[21626459]; 1220:


NM_006824, “Homo sapiens EBNA1 binding protein 2 (EBNA1BP2), mRNA”,


gi|5803110|ref|NM_006824.1|[5803110]; 1221: NM_006828, “Homo sapiens helicase, ATP


binding 1 (HELIC1), mRNA”, gi|24307916|ref|NM_006828.1|[24307916]; 1222: NM_006830,


Homo sapiens ubiquinol-cytochrome c reductase (6.4 kD) subunit (UQCR), mRNA”,


gi|19923785|ref|NM_006830.2|[19923785]; 1223: NM_006831, “Homo sapiens ATP/GTP-


binding protein (HEAB), mRNA”, gi|5803028|ref|NM_006831.1|[5803028]; 1224: NM_006837



Homo sapiens COP9 constitutive photomorphogenic homolog subunit 5 (Arabidopsis),



“(COPS5), mRNA”, gi|38027922|ref|NM_006837.2|[38027922]; 1225: NM_006839, “Homo



sapiens inner membrane protein, mitochondrial (mitofilin) (IMMT), mRNA”,



gi|5803114|ref|NM_006839.1|[5803114]; 1226: NM_006841, “Homo sapiens solute carrier


family 38, member 3 (SLC38A3), mRNA”, gi|40795668|ref|NM_006841.3|[40795668]; 1227:


NM_006843, “Homo sapiens serine dehydratase (SDS), mRNA”,


gi|33469957|ref|NM_006843.2|[33469957]; 1228: NM_006876, “Homo sapiens UDP-


GlcNAc: betaGal beta-1,3-N-acetylglucosaminyltransferase 6”, “(B3GNT6), mRNA”,


gi|5802983|ref|NM_006876.1|[5802983]; 1229: NM_006886, “Homo sapiens ATP synthase, H+


transporting, mitochondrial F1 complex, epsilon”, “subunit (ATP5E), nuclear gene encoding


mitochondrial protein, mRNA”, gi|21327678|ref|NM_006886.2|[21327678]; 1230: NM_006901,


Homo sapiens myosin IXA (MYO9A), mRNA”, gi|5902011|ref|NM_006901.1|[5902011];


1231: NM_006913, “Homo sapiens ring finger protein 5 (RNF5), mRNA”,


gi|34305290|ref|NM_006913.2|[34305290]; 1232: NM_006917, “Homo sapiens retinoid X


receptor, gamma (RXRG), mRNA”, gi|21361386|ref|NM_006917.2|[21361386]; 1233:


NM_006923, “Homo sapiens stromal cell-derived factor 2 (SDF2), mRNA”,


gi|14141194|ref|NM_006923.2|[14141194]; 1234: NM_006928, “Homo sapiens silver homolog


(mouse) (SILV), mRNA”, gi|42542384|ref|NM_006928.3|[42542384]; 1235: NM_006929,


Homo sapiens superkiller viralicidic activity 2-like (S. cerevisiae) (SKIV2L),”, mRNA,


gi|20631986|ref|NM_006929.3|[20631986]; 1236: NM_006934, “Homo sapiens solute carrier


family 6 (neurotransmitter transporter, glycine),”, “member 9 (SLC6A9), transcript variant 1,


mRNA”, gi|5902093|ref|NM_006934.1|[5902093]; 1237: NM_006946, “Homo sapiens spectrin,


beta, non-erythrocytic 2 (SPTBN2), mRNA”, gi|5902121|ref|NM_006946.1|[5902121]; 1238:


NM_006949, “Homo sapiens syntaxin binding protein 2 (STXBP2), mRNA”,


gi|5902127|ref|NM_006949.1|[5902127]; 1239: NM_006950, “Homo sapiens synapsin I


(SYN1), transcript variant Ia, mRNA”, gi|19924098|ref|NM_006950.2|[19924098]; 1240:


NM_006973, “Homo sapiens zinc finger protein 32 (KOX 30) (ZNF32), mRNA”,


gi|24307924|ref|NM_006973.1|[24307924]; 1241: NM_006977, “Homo sapiens zinc finger


protein 46 (KUP) (ZNF46), mRNA”, gi|40217848|ref|NM_006977.2|[40217848]; 1242:


NM_006979, “Homo sapiens solute carrier family 39 (zinc transporter), member 7


(SLC39A7),”, mRNA, gi|5901935|ref|NM_006979.1|[5901935]; 1243: NM_006980, “Homo



sapiens transcription termination factor, mitochondrial (MTERF), nuclear”, “gene encoding



mitochondrial protein, mRNA”, gi|14790134|ref|NM_006980.2|[14790134]; 1244: NM_006982,


Homo sapiens cartilage paired-class homeoprotein 1 (CART1), mRNA”,


gi|5901917|ref|NM_006982.1|[5901917]; 1245: NM_006984, “Homo sapiens claudin 10


(CLDN10), transcript variant 2, mRNA”, gi|38570070|ref|NM_006984.3|[38570070]; 1246:


NM_006987, “Homo sapiens rabphilin 3A-like (without C2 domains) (RPH3AL), mRNA”,


gi|31543557|ref|NM_006987.2|[31543557]; 1247: NM_006988, Homo sapiens a disintegrin-like


and metalloprotease (reprolysin type) with, “thrombospondin type 1 motif, 1 (ADAMTS1),


mRNA”, gi|11038653|ref|NM_006988.2|[11038653]; 1248: NM_006992, “Homo sapiens B7


gene (B7), transcript variant 2, mRNA”, gi|42542401|ref|NM_006992.2|[42542401]; 1249:


NM_006993, “Homo sapiens nucleophosmin/nucleoplasmin, 3 (NPM3), mRNA”,


gi|6857817|ref|NM_006993.1|[6857817]; 1250: NM_006998, “Homo sapiens secretagogin, EF-


hand calcium binding protein (SCGN), mRNA”, gi|15055536|ref|NM_006998.2|[15055536];


1251: NM_007002, “Homo sapiens adhesion regulating molecule 1 (ADRM1), transcript variant


1, mRNA”, gi|28373191|ref|NM_007002.2|[28373191]; 1252: NM_007006, “Homo sapiens


cleavage and polyadenylation specific factor 5, 25 kDa (CPSF5),”, mRNA,


gi|5901925|ref|NM_007006.1|[5901925]; 1253: NM_007007, “Homo sapiens cleavage and


polyadenylation specific factor 6, 68 kDa (CPSF6), mRNA”,


gi|5901927|ref|NM_007007.1|[5901927]; 1254: NM_007009, “Homo sapiens zona pellucida


binding protein (ZPBP), mRNA”, gi|5902115|ref|NM_007009.1|[5902115]; 1255: NM_007019,


Homo sapiens ubiquitin-conjugating enzyme E2C (UBE2C), transcript variant 1,”, mRNA,


gi|32967292|ref|NM_007019.2|[32967292]; 1256: NM_007022, “Homo sapiens putative tumor


suppressor 101F6 (101F6), mRNA”, gi|31541779|ref|NM_007022.3|[31541779]; 1257:


NM_007024, “Homo sapiens placental protein 6 (PL6), mRNA”,


gi|40795669|ref|NM_007024.4|[40795669]; 1258: NM_007027, “Homo sapiens topoisomerase


(DNA) II binding protein (TOPBP1), mRNA”, gi|20143948|ref|NM_007027.2|[20143948]; 1259:


NM_007031, “Homo sapiens heat shock transcription factor 2 binding protein (HSF2BP),


mRNA”, gi|5901979|ref|NM_007031.1|[5901979]; 1260: NM_007038, Homo sapiens a


disintegrin-like and metalloprotease (reprolysin type) with, “thrombospondin type 1 motif, 5


(aggrecanase-2) (ADAMTS5), mRNA”, gi|5901887|ref|NM_007038.1|[5901887]; 1261:


NM_007046, “Homo sapiens elastin microfibril interfacer 1 (EMILIN1), mRNA”,


gi|5901943|ref|NM_007046.1|[5901943]; 1262: NM_007050, “Homo sapiens protein tyrosine


phosphatase, receptor type, T (PTPRT), transcript”, “variant 2, mRNA”,


gi|19743928|ref|NM_007050.3|[19743928]; 1263: NM_007051, “Homo sapiens Fas (TNFRSF6)


associated factor 1 (FAF1), transcript variant 1,”, mRNA,


gi|19528653|ref|NM_007051.2|[19528653]; 1264: NM_007056, “Homo sapiens splicing factor,


arginine/serine-rich 16”, “(suppressor-of-white-apricot homolog, Drosophila) (SFRS16),


mRNA”, gi|5902129|ref|NM_007056.1|[5902129]; 1265: NM_007059, “Homo sapiens kaptin


(actin binding protein) (KPTN), mRNA”, gi|5901993|ref|NM_007059.1|[5901993]; 1266:


NM_007064, Homo sapiens serine/threonine kinase with Dbl- and pleckstrin homology


domains, “(TRAD), mRNA”, gi|5902139|ref|NM_007064.1|[5902139]; 1267: NM_007065,


Homo sapiens CDC37 cell division cycle 37 homolog (S. cerevisiae) (CDC37), mRNA”,


gi|39995072|ref|NM_007065.3|[39995072]; 1268: NM_007066, “Homo sapiens protein kinase


(cAMP-dependent, catalytic) inhibitor gamma (PKIG),”, “transcript variant 2, mRNA”,


gi|32483384|ref|NM_007066.3|[32483384]; 1269: NM_007069, “Homo sapiens HRAS-like


suppressor 3 (HRASLS3), mRNA”, gi|5901975|ref|NM_007069.1|[5901975]; 1270: NM_007072,


Homo sapiens HERV-H LTR-associating 2 (HHLA2), mRNA”,


gi|31542933|ref|NM_007072.2|[31542933]; 1271: NM_007076,, ref|NM_007076.2|[42794619];


1272: NM_007081, “Homo sapiens RAB, member of RAS oncogene family-like 2B


(RABL2B), m2RNA”, gi|5902039|ref|NM_007081.1|[5902039]; 1273: NM_007082, “Homo



sapiens RAB, member of RAS oncogene family-like 2A (RABL2A), transcript”, “variant 2,



mRNA”, gi|7549818|ref|NM_007082.2|[7549818]; 1274: NM_007083, Homo sapiens nudix


(nucleoside diphosphate linked moiety X)-type motif 6, “(NUDT6), transcript variant 1, mRNA”,


gi|37594465|ref|NM_007083.3|[37594465]; 1275: NM_007107, “Homo sapiens signal sequence


receptor, gamma (translocon-associated protein”, “gamma) (SSR3), mRNA”,


gi|28416942|ref|NM_007107.2|[28416942]; 1276: NM_007114, “Homo sapiens TATA element


modulatory factor 1 (TMF1), mRNA”, gi|6005903|ref|NM_007114.1|[6005903]; 1277:


NM_007117, “Homo sapiens thyrotropin-releasing hormone (TRH), mRNA”,


gi|6005919|ref|NM_007117.1|[6005919]; 1278: NM_007130, “Homo sapiens zinc finger protein


41 (ZNF41), transcript variant 1, mRNA”, gi|23510456|ref|NM_007130.1|[23510456]; 1279:


NM_007136, “Homo sapiens zinc finger protein 80 (pT17) (ZNF80), mRNA”,


gi|6005981|ref|NM_007136.1|[6005981]; 1280: NM_007147, “Homo sapiens zinc finger protein


175 (ZNF175), mRNA”, gi|37594438|ref|NM_007147.2|[37594438]; 1281: NM_007149,


Homo sapiens zinc finger protein 184 (Kruppel-like) (ZNF184), mRNA”,


gi|24307934|ref|NM_007149.1|[24307934]; 1282: NM_007152, “Homo sapiens zinc finger


protein 195 (ZNF195), mRNA”, gi|6005973|ref|NM_007152.1|[6005973]; 1283: NM_007158,


Homo sapiens NRAS-related gene (D1S155E), mRNA”,


gi|41282241|ref|NM_007158.3|[41282241]; 1284: NM_007180, “Homo sapiens trehalase


(brush-border membrane glycoprotein) (TREH), mRNA”,


gi|6005913|ref|NM_007180.1|[6005913]; 1285: NM_007191, “Homo sapiens WNT inhibitory


factor 1 (WIF1), mRNA”, gi|18379354|ref|NM_007191.2|[18379354]; 1286: NM_007192,


Homo sapiens suppressor of Ty 16 homolog (S. cerevisiae) (SUPT16H), mRNA”,


gi|19924176|ref|NM_007192.2|[19924176]; 1287: NM_007195, “Homo sapiens polymerase


(DNA directed) iota (POLI), mRNA”, gi|6005847|ref|NM_007195.1|[6005847]; 1288:


NM_007208, “Homo sapiens mitochondrial ribosomal protein L3 (MRPL3), nuclear gene


encoding”, “mitochondrial protein, mRNA”, gi|21265090|ref|NM_007208.2|[21265090]; 1289:


NM_007211, “Homo sapiens chromosome 12 open reading frame 2 (C12orf2), mRNA”,


gi|23503242|ref|NM_007211.2|[23503242]; 1290: NM_007212, “Homo sapiens ring finger


protein 2 (RNF2), mRNA”, gi|34305287|ref|NM_007212.2|[34305287]; 1291: NM_007215,


Homo sapiens polymerase (DNA directed), gamma 2, accessory subunit (POLG2), mRNA”,


gi|6005837|ref|NM_007215.1|[6005837]; 1292: NM_007216, “Homo sapiens Hermansky-


Pudlak syndrome 5 (HPS5), transcript variant 2, mRNA”,


gi|31657126|ref|NM_007216.3|[31657126]; 1293: NM_007217, “Homo sapiens programmed


cell death 10 (PDCD10), transcript variant 1, mRNA”,


gi|22538790|ref|NM_007217.3|[22538790]; 1294: NM_007221, “Homo sapiens polyamine-


modulated factor 1 (PMF1), mRNA”, gi|6005831|ref|NM_007221.1|[6005831]; 1295:


NM_007229, Homo sapiens protein kinase C and casein kinase substrate in neurons 2,


“(PACSIN2), mRNA”, gi|6005825|ref|NM_007229.1|[6005825]; 1296: NM_007231, “Homo



sapiens solute carrier family 6 (neurotransmitter transporter), member 14”, “(SLC6A14),



mRNA”, gi|6005714|ref|NM_007231.1|[6005714]; 1297: NM_007234, “Homo sapiens dynactin


3 (p22) (DCTN3), transcript variant 1, mRNA”, gi|22165423|ref|NM_007234.3|[22165423];


1298: NM_007235, “Homo sapiens exportin, tRNA (nuclear export receptor for tRNAs)


(XPOT), mRNA”, gi|40217845|ref|NM_007235.3|[40217845]; 1299: NM_007246, “Homo



sapiens kelch-like 2, Mayven (Drosophila) (KLHL2), mRNA”,



gi|21359895|ref|NM_007246.2|[21359895]; 1300: NM_007252, “Homo sapiens POU domain,


class 6, transcription factor 2 (POU6F2), mRNA”, gi|6005855|ref|NM_007252.1|[6005855];


1301: NM_007254, “Homo sapiens polynucleotide kinase 3′-phosphatase (PNKP), mRNA”,


gi|31543418|ref|NM_007254.2|[31543418]; 1302: NM_007262, “Homo sapiens Parkinson


disease (autosomal recessive, early onset) 7 (PARK7),”, mRNA,


gi|34222306|ref|NM_007262.3|[34222306]; 1303: NM_007263, “Homo sapiens coatomer


protein complex, subunit epsilon (COPE), transcript”, “variant 1, mRNA”,


gi|40805821|ref|NM_007263.3|[40805821]; 1304: NM_007264, “Homo sapiens adrenomedullin


receptor (ADMR), mRNA”, gi|6466448|ref|NM_007264.2|[6466448]; 1305: NM_007265,


Homo sapiens suppressor of S. cerevisiae gcr2 (HSGT1), mRNA”,


gi|6005783|ref|NM_007265.1|[6005783]; 1306: NM_007270, “Homo sapiens FK506 binding


protein 9, 63 kDa (FKBP9), mRNA”, gi|33469984|ref|NM_007270.2|[33469984]; 1307:


NM_007273, “Homo sapiens repressor of estrogen receptor activity (REA), mRNA”,


gi|31543548|ref|NM_007273.3|[31543548]; 1308: NM_007277, “Homo sapiens SEC6-like 1 (S. cerevisiae)


(SEC6L1), mRNA”, gi|38148698|ref|NM_007277.3|[38148698]; 1309: NM_007278,


Homo sapiens GABA(A) receptor-associated protein (GABARAP), mRNA”,


gi|6005763|ref|NM_007278.1|[6005763]; 1310: NM_007280, “Homo sapiens Opa-interacting


protein 5 (OIP5), mRNA”, gi|24307928|ref|NM_007280.1|[24307928]; 1311: NM_007285,


Homo sapiens GABA(A) receptor-associated protein-like 2 (GABARAPL2), mRNA”,


gi|27374999|ref|NM_007285.6|[27374999]; 1312: NM_007353, “Homo sapiens guanine


nucleotide binding protein (G protein) alpha 12 (GNA12),”, mRNA,


gi|42476110|ref|NM_007353.2|[42476110]; 1313: NM_007357, “Homo sapiens component of


oligomeric golgi complex 2 (COG2), mRNA”, gi|6678675|ref|NM_007357.1|[6678675]; 1314:


NM_007364, “Homo sapiens integral type I protein (P24B), mRNA”,


gi|6679188|ref|NM_007364.1|[6679188]; 1315: NM_007365, “Homo sapiens peptidyl arginine


deiminase, type II (PADI2), mRNA”, gi|15042936|ref|NM_007365.1|[15042936]; 1316:


NM_007367, “Homo sapiens RNA binding protein (autoantigenic, hnRNP-associated with


lethal”, “yellow) (RALY), transcript variant 2, mRNA”,


gi|21396479|ref|NM_007367.2|[21396479]; 1317: NM_007373, “Homo sapiens soc-2


suppressor of clear homolog (C. elegans) (SHOC2), mRNA”,


gi|41281397|ref|NM_007373.2|[41281397]; 1318: NM_007374, “Homo sapiens sine oculis


homeobox homolog 6 (Drosophila) (SIX6), mRNA”, gi|6677978|ref|NM_007374.1|[6677978];


1319: NM_012083, “Homo sapiens frequently rearranged in advanced T-cell lymphomas 2


(FRAT2), mRNA”, gi|31317237|ref|NM_012083.2|[31317237]; 1320: NM_012086, “Homo



sapiens general transcription factor IIIC, polypeptide 3, 102 kDa (GTF3C3),”, mRNA,



gi|6912397|ref|NM_012086.1|[6912397]; 1321: NM_012087, “Homo sapiens general


transcription factor IIIC, polypeptide 5, 63 kDa (GTF3C5),”, mRNA,


gi|6912401|ref|NM_012087.1|[6912401]; 1322: NM_012096, “Homo sapiens adaptor protein


containing pH domain, PTB domain and leucine zipper”, “motif (APPL), mRNA”,


gi|6912241|ref|NM_012096.1|[6912241]; 1323: NM_012097, “Homo sapiens ADP-ribosylation


factor-like 5 (ARL5), transcript variant 1, mRNA”, gi|29542733|ref|NM_012097.2|[29542733];


1324: NM_012103, “Homo sapiens ancient ubiquitous protein 1 (AUP1), transcript variant 1,


mRNA”, gi|32313582|ref|NM_012103.2|[32313582]; 1325: NM_012104, “Homo sapiens beta-


site APP-cleaving enzyme (BACE), transcript variant a, mRNA”,


gi|21040369|ref|NM_012104.2|[21040369]; 1326: NM_012105, “Homo sapiens beta-site APP-


cleaving enzyme 2 (BACE2), transcript variant a, mRNA”,


gi|21040358|ref|NM_012105.3|[21040358]; 1327: NM_012111,“Homo sapiens AHA1,


activator of heat shock 90 kDa protein ATPase homolog 1”, “(yeast) (AHSA1), mRNA”,


gi|6912279|ref|NM_012111.1|[6912279]; 1328: NM_012112, “Homo sapiens TPX2,


microtubule-associated protein homolog (Xenopus laevis)”, “(TPX2), mRNA”,


gi|40354199|ref|NM_012112.4|[40354199]; 1329: NM_012124, “Homo sapiens cysteine and


histidine-rich domain (CHORD)-containing, zinc binding”, “protein 1 (CHORDC1), mRNA”,


gi|6912303|ref|NM_012124.1|[6912303]; 1330: NM_012130, “Homo sapiens claudin 14


(CLDN 14), transcript variant 2, mRNA”, gi|21536295|ref|NM_012130.2|[21536295]; 1331:


NM_012133, “Homo sapiens coatomer protein complex, subunit gamma 2 (COPG2), mRNA”,


gi|6912319|ref|NM_012133.1|[6912319]; 1332: NM_012139, Homo sapiens deafness locus


associated putative guanine nucleotide exchange, “factor (DELGEF), mRNA”,


gi|40548400|ref|NM_012139.2|[40548400]; 1333: NM_012144, “Homo sapiens dynein,


axonemal, intermediate polypeptide 1 (DNAI1), mRNA”,


gi|22212919|ref|NM_012144.2|[22212919]; 1334: NM_012152, “Homo sapiens endothelial


differentiation, lysophosphatidic acid”, “G-protein-coupled receptor, 7 (EDG7), mRNA”,


gi|6912347|ref|NM_012152.1|[6912347]; 1335: NM_012160, “Homo sapiens F-box and


leucine-rich repeat protein 4 (FBXL4), mRNA”, gi|21536437|ref|NM_012160.3|[21536437];


1336: NM_012164, “Homo sapiens F-box and WD-40 domain protein 2 (FBXW2), mRNA”,


gi|7549806|ref|NM_012164.2|[7549806]; 1337: NM_012168, “Homo sapiens F-box only protein


2 (FBXO2), mRNA”, gi|15812197|ref|NM_012168.2|[15812197]; 1338: NM_012170, “Homo



sapiens F-box only protein 22 (FBXO22), transcript variant 2, mRNA”,



gi|22547147|ref|NM_012170.2|[22547147]; 1339: NM_012177, “Homo sapiens F-box only


protein 5 (FBXO5), mRNA”, gi|15812190|ref|NM_012177.2|[15812190]; 1340: NM_012179,


Homo sapiens F-box only protein 7 (FBXO7), mRNA”,


gi|15812192|ref|NM_012179|[15812192]; 1341: NM_012182, “Homo sapiens forkhead box


B1 (FOXB1), mRNA”, gi|11386194|ref|NM_012182.1|[11386194]; 1342: NM_012183, “Homo



sapiens forkhead box D3 (FOXD3), mRNA”, gi|6912371|ref|NM_012183.1|[6912371]; 1343:



NM_012191, “Homo sapiens putative tumor suppressor (FUS2), mRNA”,


gi|6912379|ref|NM_012191.1|[6912379]; 1344: NM_012192, “Homo sapiens fracture callus 1


homolog (rat) (FXC1), mRNA”, gi|29837656|ref|NM_012192.2|[29837656]; 1345: NM_012198,


Homo sapiens grancalcin, EF-hand calcium binding protein (GCA), mRNA”,


gi|21614521|ref|NM_012198.2|[21614521]; 1346: NM_012204, “Homo sapiens general


transcription factor IIIC, polypeptide 4, 90 kDa (GTF3C4),”, mRNA,


gi|6912399|ref|NM_012204.1|[6912399]; 1347: NM_012222, “Homo sapiens mutY homolog


(E. coli) (MUTYH), mRNA”, gi|6912519|ref|NM_012222.1|[6912519]; 1348: NM_012237,



Homo sapiens sirtuin (silent mating type information regulation 2 homolog) 2 (S., “cerevisiae)



(SIRT2), transcript variant 1, mRNA”, gi|13775599|ref|NM_012237.2|[13775599]; 1349:


NM_012242, “Homo sapiens dickkopf homolog 1 (Xenopus laevis) (DKK1), mRNA”,


gi|7110718|ref|NM_012242.1|[7110718]; 1350: NM_012254, “Homo sapiens solute carrier


family 27 (fatty acid transporter), member 5”, “(SLC27A5), mRNA”,


gi|13325056|ref|NM_012254.1|[13325056]; 1351: NM_012256, “Homo sapiens zinc finger


protein 212 (ZNF212), mRNA”, gi|24797064|ref|NM_012256.2|[24797064]; 1352: NM_012259,


Homo sapiens hairy/enhancer-of-split related with YRPW motif 2 (HEY2), mRNA”,


gi|6912413|ref|NM_012259.1|[6912413]; 1353: NM_012265, “Homo sapiens chromosome 22


open reading frame 3 (C22orf3), mRNA”, gi|11072100|ref|NM_012265.1|[11072100]; 1354:


NM_012281, “Homo sapiens potassium voltage-gated channel, Shal-related subfamily, member


2”, “(KCND2), mRNA”, gi|27436982|ref|NM_012281.2|[27436982]; 1355: NM_012285,


Homo sapiens potassium voltage-gated channel, subfamily H (eag-related), member”, “4


(KCNH4), mRNA”, gi|6912445|ref|NM_012285.1|[6912445]; 1356: NM_012289, “Homo



sapiens kelch-like ECH-associated protein 1 (KEAP1), mRNA”,



gi|22027641|ref|NM_012289.2|[22027641]; 1357: NM_012311, “Homo sapiens KIN, antigenic


determinant of recA protein homolog (mouse) (KIN),”, mRNA,


gi|40068516|ref|NM_012311.2|[40068516]; 1358: NM_012327, “Homo sapiens


phosphatidylinositol glycan, class N (PIGN), transcript variant 2,”, mRNA,


gi|34328903|ref|NM_012327.3|[34328903]; 1359: NM_012339, “Homo sapiens transmembrane


4 superfamily member tetraspan NET-7 (NET-7), mRNA”,


gi|21264576|ref|NM_012339.2|[21264576]; 1360: NM_012342, Homo sapiens BMP and activin


membrane-bound inhibitor homolog (Xenopus laevis), “(BAMBI), mRNA”,


gi|6912533|ref|NM_012342.1|[6912533]; 1361: NM_012381, “Homo sapiens origin recognition


complex, subunit 3-like (yeast) (ORC3L),”, “transcript variant 2, mRNA”,


gi|32483366|ref|NM_012381.2|[32483366]; 1362: NM_012392, Homo sapiens PEF protein with


a long N-terminal hydrophobic domain (peflin), “(PEF), mRNA”,


gi|6912581|ref|NM_012392.1|[6912581]; 1363: NM_012396, “Homo sapiens pleckstrin


homology-like domain, family A, member 3 (PHLDA3), mRNA”,


gi|6912589|ref|NM_012396.1|[6912589]; 1364: NM_012399, “Homo sapiens


phosphotidylinositol transfer protein, beta (PLTPNB), mRNA”,


gi|19923401|ref|NM_012399.2|[19923401]; 1365: NM_012402, Homo sapiens ADP-


ribosylation factor interacting protein 2 (arfaptin 2), “(ARFIP2), mRNA”,


gi|38569401|ref|NM_012402.2|[38569401]; 1366: NM_012407, “Homo sapiens protein kinase


C, alpha binding protein (PRKCABP), mRNA”, gi|7110696|ref|NM_012407.1|[7110696]; 1367:


NM_012424 “Homo sapiens ribosomal protein S6 kinase, 52 kDa, polypeptide 1 (RPS6KC1),


mRNA”, gi|19923722|ref|NM_012424.2|[19923722]; 1368: NM_012425, “Homo sapiens Ras


suppressor protein 1 (RSU1), transcript variant 1, mRNA”,


gi|34577084|ref|NM_012425.3|[34577084]; 1369: NM_012427, “Homo sapiens kallikrein 5


(KLK5), mRNA”, gi|22208993|ref|NM_012427.3|[22208993]; 1370: NM_012430, “Homo



sapiens SEC22 vesicle trafficking protein-like 2 (S. cerevisiae) (SEC22L2),”, mRNA,



gi|14591918|ref|NM_012430.2|[14591918]; 1371: NM_012445, “Homo sapiens spondin 2,


extracellular matrix protein (SPON2), mRNA”, gi|6912681|ref|NM_012445.1|[6912681]; 1372:


NM_012448, “Homo sapiens signal transducer and activator of transcription 5B (STAT5B),


mRNA”, gi|42519913|ref|NM_012448.3|[42519913]; 1373: NM_012450, “Homo sapiens solute


carrier family 13 (sodium/sulfate symporters), member 4”, “(SLC13A4), mRNA”,


gi|31795545|ref|NM_012450.2|[31795545]; 1374: NM_012451, “Homo sapiens synaptogyrin 4


(SYNGR4), mRNA”, gi|22035701|ref|NM_012451.2|[22035701]; 1375: NM_012456, Homo



sapiens translocase of inner mitochondrial membrane 10 homolog (yeast), “(TIMM10), mRNA”,



gi|6912707|ref|NM_012456.1|[6912707]; 1376: NM_012458, Homo sapiens translocase of inner


mitochondrial membrane 13 homolog (yeast), “(TIMM13), nuclear gene encoding mitochondrial


protein, mRNA”, gi|27436898|ref|NM_012458.2|[27436898]; 1377: NM_012459, Homo sapiens


translocase of inner mitochondrial membrane 8 homolog B (yeast), “(TIMM8B), mRNA”,


gi|6912711|ref|NM_012459.1|[6912711]; 1378: NM_012460, Homo sapiens translocase of inner


mitochondrial membrane 9 homolog (yeast), “(TIMM9), mRNA”,


gi|21359892|ref|NM_012460.2|[21359892]; 1379: NM_012461, “Homo sapiens TERF1


(TRF1)-interacting nuclear factor 2 (TINF2), mRNA”, gi|6912715|ref|NM_012461.1|[6912715];


1380: NM_012481, “Homo sapiens zinc finger protein, subfamily 1A, 3 (Aiolos) (ZNFN1A3),


transcript”, “variant 1, mRNA”, gi|38045957|ref|NM_012481.3|[38045957]; 1381: NM_012482,


Homo sapiens zinc finger protein 281 (ZNF281), mRNA”,


gi|40255235|ref|NM_012482.3|[40255235]; 1382: NM_013232, “Homo sapiens programmed


cell death 6 (PDCD6), mRNA”, gi|22027539|ref|NM_013232.2|[22027539]; 1383: NM_013235,


Homo sapiens nuclear RNase III Drosha (RNASE3L), mRNA”,


gi|21359821|ref|NM_013235.2|[21359821]; 1384: NM_013238, “Homo sapiens DnaJ (Hsp40)


homolog, subfamily D, member 1 (DNAJD1), mRNA”,


gi|7019452|ref|NM_013238.1|[7019452]; 1385: NM_013241, “Homo sapiens formin homology


2 domain containing 1 (FHOD1), mRNA”, gi|7019374|ref|NM_013241.1|[7019374]; 1386:


NM_013242, “Homo sapiens likely ortholog of mouse gene trap locus 3 (GTL3), mRNA”,


gi|42716281|ref|NM_013242.2|[42716281]; 1387: NM_013248, “Homo sapiens NTF2-like


export factor 1 (NXT1), mRNA”, gi|20127526|ref|NM_013248.2|[20127526]; 1388:


NM_013250, “Homo sapiens zinc finger protein 215 (ZNF215), mRNA”,


gi|7019582|ref|NM_013250.1|[7019582]; 1389: NM_013254, “Homo sapiens TANK-binding


kinase 1 (TBK1), mRNA”, gi|19743810|ref|NM_013254.2|[19743810]; 1390: NM_013256,


Homo sapiens zinc finger protein 180 (HHZ168) (ZNF180), mRNA”,


gi|7019578|ref|NM_013256.1|[7019578]; 1391: NM_013260, “Homo sapiens transcriptional


regulator protein (HCNGP), mRNA”, gi|21361710|ref|NM_013260.3|[21361710]; 1392:


NM_013263, “Homo sapiens bromodomain containing 7 (BRD7), mRNA”,


gi|41350211|ref|NM_013263.2|[41350211]; 1393: NM_013264, “Homo sapiens DEAD (Asp-


Glu-Ala-Asp) box polypeptide 25 (DDX25), mRNA”,


gi|21327696|ref|NM_013264.2|[21327696]; 1394: NM_013266, “Homo sapiens catenin


(cadherin-associated protein), alpha 3 (CTNNA3), mRNA”,


gi|7019570|ref|NM_013266.1|[7019570]; 1395: NM_013267, “Homo sapiens liver


mitochondrial glutaminase (GA), nuclear gene encoding”, “mitochondrial protein, transcript


variant 1, mRNA”, gi|20336213|ref|NM_013267.2|[20336213]; 1396: NM_013270, “Homo



sapiens testes-specific protease 50 (TSP50), mRNA”,



gi|31543829|ref|NM_013270.2|[31543829]; 1397: NM_013274, “Homo sapiens polymerase


(DNA directed), lambda (POLL), mRNA”, gi|38146101|ref|NM_013274.2|[38146101]; 1398:


NM_013275, “Homo sapiens ankyrin repeat domain 11 (ANKRD11), mRNA”,


gi|40786546|ref|NM_013275.3|[40786546]; 1399: NM_013283, “Homo sapiens methionine


adenosyltransferase II, beta (MAT2B), transcript variant”, “1, mRNA”,


gi|33519456|ref|NM_013283.3|[33519456]; 1400: NM_013284, “Homo sapiens polymerase


(DNA directed), mu (POLM), mRNA”, gi|7019492|ref|NM_013284.1|[7019492]; 1401:


NM_013285, “Homo sapiens nucleolar GTPase (HUMAUANTIG), mRNA”,


gi|7019418|ref|NM_013285.1|[7019418]; 1402: NM_013286, “Homo sapiens chromosome


3p21.1 gene sequence (HUMAGCGB), mRNA”, gi|31712021|ref|NM_013286.2|[31712021];


1403: NM_013301, “Homo sapiens protein predicted by clone 23882 (HSU79303), mRNA”,


gi|9558742|ref|NM_013301.1|[9558742]; 1404: NM_013312, “Homo sapiens hook homolog 2


(Drosophila) (HOOK2), mRNA”, gi|7019410|ref|NM_013312.1|[7019410]; 1405: NM_013322,


Homo sapiens sorting nexin 10 (SNX10), mRNA”, gi|23111022|ref|NM_013322.2|[23111022];


1406: NM_013324, “Homo sapiens cytokine inducible SH2-containing protein (CISH),


transcript”, “variant 1, mRNA”, gi|21614504|ref|NM_013324.4|[21614504]; 1407: NM_013326,


Homo sapiens chromosome 18 open reading frame 8 (C18orf8), mRNA”,


gi|21361441|ref|NM_013326.2|[21361441]; 1408: NM_013330, “Homo sapiens non-metastatic


cells 7, protein expressed in”, “(nucleoside-diphosphate kinase) (NME7), transcript variant 1,


mRNA”, gi|37574616|ref|NM_013330.3|[37574616]; 1409: NM_013333, “Homo sapiens epsin


1 (EPN1), mRNA”, gi|41350200|ref|NM_013333.2|[41350200]; 1410: NM_013335, “Homo



sapiens GDP-mannose pyrophosphorylase A (GMPPA), mRNA”,



gi|31881778|ref|NM_013335.2|[31881778]; 1411: NM_013336, “Homo sapiens Sec61 alpha 1


subunit (S. cerevisiae) (SEC61A1), mRNA”, gi|14591931|ref|NM_013336.2|[14591931]; 1412:


NM_013338, “Homo sapiens asparagine-linked glycosylation 5 homolog (yeast,”, “dolichyl-


phosphate beta-glucosyltransferase) (ALG5), mRNA”,


gi|38176301|ref|NM_013338.3|[38176301]; 1413: NM_013339, “Homo sapiens asparagine-


linked glycosylation 6 homolog (yeast,”, “alpha-1,3-glucosyltransferase) (ALG6), mRNA”,


gi|38026891|ref|NM_013339.2|[38026891]; 1414: NM_013341, “Homo sapiens hypothetical


protein PTD004 (PTD004), mRNA”, gi|24431968|ref|NM_013341.2|[24431968]; 1415:


NM_013342, “Homo sapiens TCF3 (E2A) fusion partner (in childhood Leukemia) (TFPT),


mRNA”, gi|7019370|ref|NM_013342.1|[7019370]; 1416: NM_013343, “Homo sapiens loss of


heterozygosity, 3, chromosomal region 2, gene A (LOH3CR2A),”, mRNA,


gi|7106370|ref|NM_013343.1|[7106370]; 1417: NM_013345, “Homo sapiens G protein-coupled


receptor 132 (GPR132), mRNA”, gi|30181231|ref|NM_013345.2|[30181231]; 1418:


NM_013348, “Homo sapiens potassium inwardly-rectifying channel, subfamily J, member 14”,


“(KCNJ14), transcript variant 1, mRNA”, gi|25777633|ref|NM_013348.2|[25777633]; 1419:


NM_013366, “Homo sapiens anaphase promoting complex subunit 2 (ANAPC2), mRNA”,


gi|41327747|ref|NM_013366.3|[41327747]; 1420: NM_013374, “Homo sapiens programmed


cell death 6 interacting protein (PDCD6IP), mRNA”, gi|22027537|ref|NM_013374.2|[22027537];


1421: NM_013375, “Homo sapiens activator of basal transcription 1 (ABT1), mRNA”,


gi|17572813|ref|NM_013375.2|[17572813]; 1422: NM_013380, “Homo sapiens zinc finger


protein 228 (ZNF228), mRNA”, gi|34932234|ref|NM_013380.2|[34932234]; 1423: NM_013381,


Homo sapiens thyrotropin-releasing hormone degrading ectoenzyme (TRHDE), mRNA”,


gi|7019560|ref|NM_013381.1|[7019560]; 1424: NM_013382, “Homo sapiens protein-O-


mannosyltransferase 2 (POMT2), mRNA”, gi|32455270|ref|NM_013382.3|[32455270]; 1425:


NM_013384, “Homo sapiens LAG1 longevity assurance homolog 2 (S. cerevisiae) (LASS2),”,


“transcript variant 3, mRNA”, gi|32455253|ref|NM_013384.3|[32455253]; 1426: NM_013386,


Homo sapiens calcium-binding transporter (DKFZp586G0123), mRNA”,


gi|33598953|ref|NM_013386.2|[33598953]; 1427: NM_013387, “Homo sapiens ubiquinol-


cytochrome c reductase complex (7.2 kD) (HSPC051), mRNA”,


gi|41281884|ref|NM_013387.2|[41281884]; 1428: NM_013392, “Homo sapiens nuclear receptor


binding protein (NRBP), mRNA”, gi|7019332|ref|NM_013392.1|[7019332]; 1429: NM_013400,


Homo sapiens replication initiator 1 (REPIN1), mRNA”,


gi|7019516|ref|NM_013400.1|[7019516]; 1430: NM_013403, “Homo sapiens striatin,


calmodulin binding protein 4 (STRN4), mRNA”, gi|7019572|ref|NM_013403.1|[7019572]; 1431:


NM_013441, “Homo sapiens Down syndrome critical region gene 1-like 2 (DSCR1L2),


mRNA”, gi|38455419|ref|NM_013441.2|[338455419]; 1432: NM_013442, “Homo sapiens


stomatin (EPB72)-like 2 (STOML2), mRNA”, gi|7305502|ref|NM_013442.1|[7305502]; 1433:


NM_014012, “Homo sapiens RAS (RAD and GEM)-like GTP-binding (REM), mRNA”,


gi|35493898|ref|NM_014012.4|[35493898]; 1434: NM_014020, “Homo sapiens LR8 protein


(LR8), mRNA”, gi|21361500|ref|NM_014020.2|[21361500]; 1435: NM_014035, “Homo sapiens


sorting nexing 24 (SNX24), mRNA”, gi|7662654|ref|NM_014035.1|[7662654]; 1436:


NM_014038, “Homo sapiens basic leucine zipper and W2 domains 2 (BZW2), mRNA”,


gi|7661743|ref|NM_014038.1|[7661743]; 1437: NM_014041, “Homo sapiens signal peptidase


12 kDa (SPC12), mRNA”, gi|7661745|ref|NM_014041.1|[7661745]; 1438: NM_014044, “Homo



sapiens unc-50 homolog (C. elegans) (UNC50), mRNA”,



gi|37059764|ref|NM_014044.4|[37059764]; 1439: NM_014045, “Homo sapiens low density


lipoprotein receptor-related protein 10 (LRP10), mRNA”,


gi|32490558|ref|NM_014045.21|[32490558]; 1440: NM_014047, “Homo sapiens HSPC023


protein (HSPC023), mRNA”, gi|7661741|ref|NM_014047.1|[7661741]; 1441: NM_014048,


Homo sapiens myocardin-related transcription factor B (MRTF-B), mRNA”,


gi|38569479|ref|NM_014048.3|[38569479]; 1442: NM_014051, “Homo sapiens transmembrane


protein 14A (TMEM14A), mRNA”, gi|32261328|ref|NM_014051.2|[32261328]; 1443:


NM_014055, Homo sapiens carnitine deficiency-associated gene expressed in ventricle 1,


“(CDV-1), mRNA”, gi|32526900|ref|NM_014055.2|[32526900]; 1444: NM_014059, “Homo



sapiens response gene to complement 32 (RGC32), mRNA”,



gi|7662650|ref|NM_014059.1|[7662650]; 1445: NM_014060, “Homo sapiens malignant T cell


amplified sequence 1 (MCTS1), mRNA”, gi|7662501|ref|NM_014060.1|[7662501]; 1446:


NM_014065, “Homo sapiens HT001 protein (HT001), mRNA”,


gi|33469986|ref|NM_014065.2|[33469986]; 1447: NM_014070, “Homo sapiens chromosome 6


open reading frame 15 (C6orf15), mRNA”, gi|7662666|ref|NM_014070.1|[7662666]; 1448:


NM_014099,, ref|NM_014099.1|[7662610], This record was temporarily removed by RefSeq


staff for additional review.,, 1449: NM_014109, “Homo sapiens PRO2000 protein (PRO2000),


mRNA”, gi|24497617|ref|NM_014109.2|[24497617]; 1450: NM_014113, “Homo sapiens


PRO0038 protein (PRO0038), mRNA”, gi|7662519|ref|NM_014113.1|[7662519]; 1451:


NM_014117, “Homo sapiens PRO0149 protein (PRO0149), mRNA”,


gi|38016918|ref|NM_014117.2|[38016918]; 1452: NM_014124,, ref|NM_014124.1|[7662541],


This record was temporarily removed by RefSeq staff for additional review.,, 1453:


NM_014133,, ref|NM_014133.1|[7662573], This record was temporarily removed by RefSeq


staff for additional review.,, 1454: NM_014135,, ref|NM_014135.1|[7662577], This record was


temporarily removed by RefSeq staff for additional review.,, 1455: NM_014140, “Homo



sapiens SWI/SNF related, matrix associated, actin dependent regulator of”, “chromatin,



subfamily a-like 1 (SMARCAL1), mRNA”, gi|21071059|ref|NM_014140.2|[21071059]; 1456:


NM_014144, “Homo sapiens chromosome 11 open reading frame 21 (C11orf21), mRNA”,


gi|7662662|ref|NM_014144.1|[7662662]; 1457: NM_014145, “Homo sapiens chromosome 20


open reading frame 30 (C20orf30), mRNA”, gi|42476067|ref|NM_014145.3|[42476067]; 1458:


NM_014155, “Homo sapiens HSPC063 protein (HSPC063), mRNA”,


gi|7661765|ref|NM_014155.1|[7661765]; 1459: NM_014161, “Homo sapiens mitochondrial


ribosomal protein L18 (MRPL18), nuclear gene encoding”, “mitochondrial protein, mRNA”,


gi|21265079|ref|NM_014161.2|[21265079]; 1460: NM_014162, “Homo sapiens HSPC072


protein (HSPC072), mRNA”, gi|7661779|ref|NM_014162.1|[7661779]; 1461: NM_014164,


Homo sapiens FXYD domain containing ion transport regulator 5 (FXYD5), mRNA”,


gi|21618360|ref|NM_014164.3|[21618360]; 1462: NM_014165, “Homo sapiens chromosome 6


open reading frame 66 (C6orf66), mRNA”, gi|7661785|ref|NM_014165.1|[7661785]; 1463:


NM_014166, “Homo sapiens vitamin D receptor interacting protein (VDRIP), mRNA”,


gi|40254874|ref|NM_014166.2|[40254874]; 1464: NM_014171, “Homo sapiens postsynaptic


protein CRIPT (CRIPT), mRNA”, gi|41350204|ref|NM_014171.3|[41350204]; 1465:


NM_014173, “Homo sapiens HSPC142 protein (HSPC142), mRNA”,


gi|7661801|ref|NM_014173.1|[7661801]; 1466: NM_014174, “Homo sapiens thymocyte protein


thy28 (THY28), transcript variant 1, mRNA”, gi|40806217|ref|NM_014174.2|[40806217]; 1467:


NM_014179, “Homo sapiens HSPC157 protein (HSPC157), mRNA”,


gi|7661813|ref|NM_014179.1|[7661813]; 1468: NM_014185,, ref|NM_0414185.1|[7661825],


This record was replaced or removed. See revision history for details.,, 1469: NM_014187,


Homo sapiens HSPC171 protein (HSPC171), mRNA”,


gi|7661829|ref|NM_014187.1|[7661829]; 1470: NM_014191, “Homo sapiens sodium channel,


voltage gated, type VIII, alpha (SCN8A), mRNA”, gi|7657543|ref|NM_014191.1|[7657543];


1471: NM_014205, “Homo sapiens chromosome 11 open reading frame 5 (C11orf5), mRNA”,


gi|42716303|ref|NM_014205.2|[42716303]; 1472: NM_014206, “Homo sapiens chromosome 11


open reading frame 10 (C11orf10), mRNA”, gi|7656933|ref|NM_014206.1|[7656933]; 1473:


NM_014211, “Homo sapiens gamma-aminobutyric acid (GABA) A receptor, pi (GABRP),


mRNA”, gi|7657105|ref|NM_014211.1|[7657105]; 1474: NM_014225, “Homo sapiens protein


phosphatase 2 (formerly 2A), regulatory subunit A (PR 65),”, “alpha isoform (PPP2R1A),


mRNA”, gi|32455242|ref|NM_014225.3|[32455242]; 1475: NM_014226, “Homo sapiens renal


tumor antigen (RAGE), mRNA”, gi|7657497|ref|NM_014226.1|[7657497]; 1476: NM_014234,


Homo sapiens hydroxysteroid (17-beta) dehydrogenase 8 (HSD17B8), mRNA”,


gi|20143980|ref|NM_014234.3|[20143980]; 1477: NM_014235, “Homo sapiens ubiquitin-like 4


(UBL4), mRNA”, gi|40254852|ref|NM_014235.2|[40254852]; 1478: NM_014236, “Homo



sapiens glyceronephosphate O-acyltransferase (GNPAT), mRNA”,



gi|7657133|ref|NM_014236.1|[7657133]; 1479: NM_014239, “Homo sapiens eukaryotic


translation initiation factor 2B, subunit 2 beta, 39 kDa”, “(EIF2B2), mRNA”,


gi|7657057|ref|NM_014239.1|[7657057]; 1480: NM_014243, Homo sapiens a disintegrin-like


and metalloprotease (reprolysin type) with, “thrombospondin type 1 motif, 3 (ADAMTS3),


mRNA”, gi|21265036|ref|NM_014243.1|[21265036]; 1481: NM_014245, “Homo sapiens ring


finger protein 7 (RNF7), transcript variant 1, mRNA”,


gi|34304329|ref|NM_014245.2|[34304329]; 1482: NM_014248, “Homo sapiens ring-box 1


(RBX1), mRNA”, gi|22091459|ref|NM_014248.2|[22091459]; 1483: NM_014252, Homo



sapiens solute carrier family 25 (mitochondrial carrier; ornithine, “transporter) member 15



(SLC25A15), nuclear gene encoding mitochondrial protein,”, mRNA,


gi|7657584|ref|NM_014252.1|[7657584]; 1484: NM_014258, “Homo sapiens synaptonemal


complex protein 2 (SYCP2), mRNA”, gi|38373672|ref|NM_014258.2|[38373672]; 1485:


NM_014262, “Homo sapiens leprecan-like 2 protein (LEPREL2), mRNA”,


gi|28466982|ref|NM_014262.2|[28466982]; 1486: NM_014273, Homo sapiens a disintegrin-like


and metalloprotease (reprolysin type) with, “thrombospondin type 1 motif, 6 (ADAMTS6),


mRNA”, gi|21536389|ref|NM_014273.2|[21536389]; 1487: NM_014275, “Homo sapiens


mannosyl (alpha-1,3-)-glycoprotein”, “beta-1,4-N-acetylglucosaminyltransferase, isoenzyme B


(MGAT4B), transcript”, “variant 1, mRNA”, gi|16915933|ref|NM_014275.2|[16915933]; 1488:


NM_014276, Homo sapiens recombining binding protein suppressor of hairless, “(Drosophila)-


like (RBPSUHL), mRNA”, gi|34577080|ref|NM_014276.2|[34577080]; 1489: NM_014278,


Homo sapiens heat shock protein (hsp110 family) (APG-1), mRNA”,


gi|31541940|ref|NM_014278.2|[31541940]; 1490: NM_014283, “Homo sapiens chromosome 1


open reading frame 9 (C1orf9), mRNA”, gi|29837653|ref|NM_014283.2|[29837653]; 1491:


NM_014288, “Homo sapiens integrin beta 3 binding protein (beta3-endonexin) (ITGB3BP),


mRNA”, gi|27597074|ref|NM_014288.3|[27597074]; 1492: NM_014290, “Homo sapiens tudor


repeat associator with PCTAIRE 2 (PCTAIRE2BP), mRNA”,


gi|24307950|ref|NM_014290.1|[24307950]; 1493: NM_014296, “Homo sapiens calpain 7


(CAPN7), mRNA”, gi|41327720|ref|NM_014296.2|[41327720]; 1494: NM_014301, “Homo



sapiens nitrogen fixation cluster-like (NIFU), mRNA”,



gi|24307952|ref|NM_041301.1|[24307952]; 1495: NM_014302, “Homo sapiens Sec61 gamma


subunit (SEC61G), mRNA”, gi|14591933|ref|NM_014302.2|[14591933]; 1496: NM_014303,


Homo sapiens pescadillo homolog 1, containing BRCT domain (zebrafish) (PES1),”, mRNA,


gi|22091458|ref|NM_014303.2|[22091458]; 1497: NM_014305, “Homo sapiens TDP-glucose


4,6-dehydratase (TGDS), mRNA”, gi|7657640|ref|NM_014305.1|[7657640]; 1498: NM_014308,


Homo sapiens phosphoinositide-3-kinase, regulatory subunit, polypeptide p101”, “(P101-


PI3K), mRNA”, gi|7657432|ref|NM_014308.1|[7657432]; 1499: NM_014315, “Homo sapiens


kelch domain containing 2 (KLHDC2), mRNA”, gi|7657300|ref|NM_014315.1|[7657300]; 1500:


NM_014317, “Homo sapiens trans-prenyltransferase (TPRT), mRNA”,


gi|11863164|ref|NM_014317.2|[11863164]; 1501: NM_014319, “Homo sapiens integral inner


nuclear membrane protein (MAN1), mRNA”, gi|36287116|ref|NM_014319.3|[36287116]; 1502:


NM_014322, “Homo sapiens opsin 3 (encephalopsin, panopsin) (OPN3), mRNA”,


gi|7657070|ref|NM_014322.1|[7657070]; 1503: NM_014329, “Homo sapiens autoantigen


(RCD-8), mRNA”, gi|21361430|ref|NM_014329.2|[21361430]; 1504: NM_014338, “Homo



sapiens phosphatidylserine decarboxylase (PISD), mRNA”,



gi|34147578|ref|NM_014338.3|[34147578]; 1505: NM_014342, “Homo sapiens mitochondrial


carrier homolog 2 (C. elegans) (MTCH2), nuclear gene”, “encoding mitochondrial protein,


mRNA”, gi|40254847|ref|NM_014342.2|[40254847]; 1506: NM_014344, “Homo sapiens four


jointed box 1 (Drosophila) (FJX1), mRNA”, gi|18765710|ref|NM_014344.2|[18765710]; 1507:


NM_014348, “Homo sapiens POM121 membrane glycoprotein-like 1 (rat) (POM121L1),


mRNA”, gi|7657468|ref|NM_014348.1|[7657468]; 1508: NM_014360, “Homo sapiens NK2


transcription factor related, locus 8 (Drosophila) (NKX2-8),”, mRNA,


gi|31377776|ref|NM_014360.2|[31377776]; 1509: NM_014361, “Homo sapiens contactin 5


(CNTN5), transcript variant 1, mRNA”, gi|28373127|ref|NM_014361.2|[28373127]; 1510:


NM_014364 “Homo sapiens glyceraldehyde-3-phosphate dehydrogenase, spermatogenic


(GAPDS),”, mRNA, gi|34222311|ref|NM_014364.3|[34222311]; 1511: NM_014365 “Homo



sapiens heat shock 27 kDa protein 8 (HSPB8), mRNA”,



gi|38016940|ref|NM_014365.2|[38016940]; 1512: NM_014366, “Homo sapiens nucleostemin


(NS), mRNA”, gi|37497106|ref|NM_014366.3|[37497106]; 1513: NM_014368, “Homo sapiens


LIM homeobox 6 (LHX6), transcript variant 1, mRNA”,


gi|40549416|ref|NM_014368.2|[40549416]; 1514: NM_014372, “Homo sapiens ring finger


protein 11 (RNF11), mRNA”, gi|34452682|ref|NM_014372.3|[34452682]; 1515: NM_014384,


Homo sapiens acyl-Coenzyme A dehydrogenase family, member 8 (ACAD8), mRNA”,


gi|7656848|ref|NM_014384.1|[7656848]; 1516: NM_014390, “Homo sapiens staphylococcal


nuclease domain containing 1 (SND1), mRNA”, gi|7657430|ref|NM_014390.1|[7657430]; 1517:


NM_014391, “Homo sapiens ankyrin repeat domain 1 (cardiac muscle) (ANKRD1), mRNA”,


gi|38327521|ref|NM_014391.2|[38327521]; 1518: NM_014402, “Homo sapiens low molecular


mass ubiquinone-binding protein (9.5 kD) (QP-C),”, “nuclear gene encoding mitochondrial


protein, mRNA”, gi|27894387|ref|NM_014402.2|[27894387]; 1519: NM_014409, “Homo



sapiens TAF5-like RNA polymerase II, p300/CBP-associated factor”, “(PCAF)-associated



factor, 65 kDa (TAF5L), mRNA”, gi|21269865|ref|NM_014409.2|[21269865]; 1520:


NM_014415, “Homo sapiens zinc finger protein (ZNF-U69274), mRNA”,


gi|7657702|ref|NM_014415.1|[7657702]; 1521: NM_014421, “Homo sapiens dickkopf homolog


2 (Xenopus laevis) (DKK2), mRNA”, gi|7657022|ref|NM_014421.1|[7657022]; 1522:


NM_014426, “Homo sapiens sorting nexin 5 (SNX5), transcript variant 2, mRNA”,


gi|23111045|ref|NM_014426.2|[23111045]; 1523: NM_014427, “Homo sapiens copine VII


(CPNE7), transcript variant 2, mRNA”, gi|25141326|ref|NM_014427.3|[25141326]; 1524:


NM_014429, “Homo sapiens microrchidia homolog (mouse) (MORC), mRNA”,


gi|7657340|ref|NM_014429.1|[7657340]; 1525: NM_014430, “Homo sapiens cell death-


inducing DFFA-like effector b (CIDEB), mRNA”, gi|7656978|ref|NM_014430.1|[7656978];


1526: NM_014432, “Homo sapiens interleukin 20 receptor, alpha (IL20RA), mRNA”,


gi|31083155|ref|NM_014432.2|[31083155]; 1527: NM_014437, “Homo sapiens solute carrier


family 39 (zinc transporter), member 1 (SLC39A1),”, mRNA,


gi|34147669|ref|NM_014437.3|[34147669]; 1528: NM_014440, “Homo sapiens interleukin 1


family, member 6 (epsilon) (IL1F6), mRNA”, gi|7657091|ref|NM_014440.1|[7657091]; 1529:


NM_014453, “Homo sapiens putative breast adenocarcinoma marker (32 kD) (BC-2),


transcript”, “variant 1, mRNA”, gi|38372936|ref|NM_014453.2|[38372936]; 1530: NM_014459,


Homo sapiens protocadherin 17 (PCDH17), mRNA”,


gi|14589926|ref|NM_014459.2|[14589926]; 1531: NM_014462, “Homo sapiens LSM1


homolog, U6 small nuclear RNA associated (S. cerevisiae)”, “(LSM1), mRNA”,


gi|7657312|ref|NM_014462.1|[7657312]; 1532: NM_014466, “Homo sapiens tektin 2


(testicular) (TEKT2), mRNA”, gi|16507949|ref|NM_014466.2|[16507949]; 1533: NM_014471,


Homo sapiens serine protease inhibitor, Kazal type 4 (SPINK4), mRNA”,


gi|7657452|ref|NM_014471.1|[7657452]; 1534: NM_014484, “Homo sapiens molybdenum


cofactor synthesis 3 (MOCS3), mRNA”, gi|31652257|ref|NM_014484.3|[31652257]; 1535:


NM_014504, “Homo sapiens RAB guanine nucleotide exchange factor (GEF) 1 (RABGEF1),


mRNA”, gi|7657495|ref|NM_014504.1|[7657495]; 1536: NM_014505, “Homo sapiens


potassium large conductance calcium-activated channel, subfamily M,”, “beta member 4


(KCNMB4), mRNA”, gi|26051274|ref|NM_014505.4|[26051274]; 1537: NM_014506, “Homo



sapiens torsin family 1, member B (torsin B) (TOR1B), mRNA”,



gi|14149652|ref|NM_014506.1|[14149652]; 1538: NM_014507, Homo sapiens malonyl-


CoA: acyl carrier protein transacylase (malonyltransferase), “(MT), mRNA”,


gi|27477044|ref|NM_014507.1|[27477044]; 1539: NM_014517, “Homo sapiens upstream


binding protein 1 (LBP-1a) (UBP1), mRNA”, gi|31543907|ref|NM_014517.2|[31543907]; 1540:


NM_014520, “Homo sapiens MYB binding protein (P160) 1a (MYBBP1A), mRNA”,


gi|7657350|ref|NM_014520.1|[7657350]; 1541: NM_014548, “Homo sapiens tropomodulin 2


(neuronal) (TMOD2), mRNA”, gi|40789262|ref|NM_014548.2|[40789262]; 1542: NM_014563,


Homo sapiens spondyloepiphyseal dysplasia, late (SEDL), mRNA”,


gi|38044279|ref|NM_014563.2|[38044279]; 1543: NM_014565, “Homo sapiens olfactory


receptor, family 1, subfamily A, member 1 (OR1A1), mRNA”,


gi|7657420|ref|NM_014565.1|[7657420]; 1544: NM_014571, “Homo sapiens hairy/enhancer-of-


split related with YRPW motif-like (HEYL), mRNA”,


gi|19923414|ref|NM_014571.2|[19923414]; 1545: NM_014580, “Homo sapiens solute carrier


family 2, (facilitated glucose transporter) member 8”, “(SLC2A8), mRNA”,


gi|21361448|ref|NM_014580.2|[21361448]; 1546: NM_014581, “Homo sapiens odorant binding


protein 2B (OBP2B), mRNA”, gi|7657406|ref|NM_014581.1|[7657406]; 1547: NM_014588,


Homo sapiens visual system homeobox 1 homolog, CHX10-like (zebrafish) (VSX1),”,


“transcript variant 1, mRNA”, gi|40806214|ref|NM_014588.4|[40806214]; 1548: NM_014595,


Homo sapiens 5′,3′-nucleotidase, cytosolic (NT5C), mRNA”,


gi|7657032|ref|NM_014595.1|[7657032]; 1549: NM_014602, “Homo sapiens phosphoinositide-


3-kinase, regulatory subunit 4, p150 (PIK3R4),”, mRNA,


gi|23943911|ref|NM_014602.1|[23943911]; 1550: NM_014606,, ref|NM_014606.1|[7657151],


This record was temporarily removed by RefSeq staff for additional review.,, 1551:


NM_014608, “Homo sapiens cytoplasmic FMR1 interacting protein 1 (CYFIP1), mRNA”,


gi|24307968|ref|NM_014608.1|[24307968]; 1552: NM_014620, “Homo sapiens homeo box C4


(HOXC4), transcript variant 1, mRNA”, gi|24497537|ref|NM_014620.2|[24497537]; 1553:


NM_014621, “Homo sapiens homeo box D4 (HOXD4), mRNA”,


gi|23397671|ref|NM|014621.2|[23397671]; 1554: NM_014623, “Homo sapiens male-enhanced


antigen (MEA), mRNA”, gi|7657325|ref|NM_014623.1|[7657325]; 1555: NM_014625, “Homo



sapiens nephrosis 2, idiopathic, steroid-resistant (podocin) (NPHS2), mRNA”,



gi|7657614|ref|NM_014625.1|[7657614]; 1556: NM_014628, “Homo sapiens MAD2L1 binding


protein (MAD2L1BP), mRNA”, gi|7661917|ref|NM_014628.1|[7661917]; 1557: NM_014632,


Homo sapiens flavoprotein oxidoreductase MICAL2 (MICAL2), mRNA”,


gi|41281417|ref|NM_014632.2|[41281417]; 1558: NM_014633, Homo sapiens SH2 domain


binding protein 1 (tetratricopeptide repeat containing), “(SH2BP1), mRNA”,


gi|41281407|ref|NM_014633.2|[41281407]; 1559: NM_014652, “Homo sapiens importin 13


(IPO13), mRNA”, gi|41281424|ref|NM_014652.2|[41281424]; 1560: NM_014657, “Homo



sapiens KIAA0406 gene product (KIAA0406), mRNA”,



gi|24307960|ref|NM_014657.1|[24307960]; 1561: NM_014662,, ref|NM_014662.1|[7662221],


This record was temporarily removed by RefSeq staff for additional review.,, 1562:


NM_014671,, ref|NM_014671.1|[7661855], This record was temporarily removed by RefSeq


staff for additional review.,, 1563: NM_014674,, ref|NM_014674.1|[7662001], This record was


temporarily removed by RefSeq staff for additional review.,, 1564: NM_014686,,


ref|NM_014686.1|[7662075], This record was temporarily removed by RefSeq staff for


additional review.,, 1565: NM_014700, “Homo sapiens eferin (Rab11-FIP3), mRNA”,


gi|41281455|ref|NM_014700.2|[41281455]; 1566: NM_014708 “Homo sapiens kinetochore


associated 1 (KNTC1), mRNA”, gi|41327744|ref|NM_014708.3|[41327744]; 1567: NM_014713,


Homo sapiens lysosomal-associated protein transmembrane 4 alpha (LAPTM4A), mRNA”,


gi|41352690|ref|NM_014713.3|[41352690]; 1568: NM_014714, “Homo sapiens KIAA0590


gene product (KIAA0590), mRNA”, gi|41281446|ref|NM_014714.2|[41281446]; 1569:


NM_014733, “Homo sapiens zinc finger, FYVE domain containing 16 (ZFYVE16), mRNA”,


gi|41281465|ref|NM_014733.2|[41281465]; 1570: NM_014734 “Homo sapiens KIAA0247


(KIAA0247), mRNA”, gi|41281456|ref|NM_014734.2|[41281456]; 1571: NM_014738, “Homo



sapiens KIAA0195 gene product (KIAA0195), mRNA”,



gi|41281472|ref|NM_014738.2|[41281472]; 1572: NM_014748, “Homo sapiens sorting nexin 17


(SNX17), mRNA”, gi|23238249|ref|NM_014748.2|[23238249]; 1573: NM_014753, “Homo



sapiens BMS1-like, ribosome assembly protein (yeast) (BMS1L), mRNA”,



gi|41281482|ref|NM_014753.2|[41281482]; 1574: NM_014754, “Homo sapiens


phosphatidylserine synthase 1 (PTDSS1), mRNA”, gi|7662646|ref|NM_014754.1|[7662646];


1575: NM_014757, “Homo sapiens mastermind-like 1 (Drosophila) (MAML1), mRNA”,


gi|41350321|ref|NM_014757.3|[41350321]; 1576: NM_014760,, ref|NM_014760.1|[7662007],


This record was temporarily removed by RefSeq staff for additional review.,, 1577:


NM_014777,, ref|NM_014777.1|[7661931], This record was temporarily removed by RefSeq


staff for additional review.,, 1578: NM_014783, “Homo sapiens similar to human GTPase-


activating protein (ARHGAP11A), mRNA”, gi|40788020|ref|NM_014783.2|[40788020]; 1579:


NM_014784, “Homo sapiens Rho guanine nucleotide exchange factor (GEF) 11


(ARHGEF11),”, “transcript variant 1, mRNA”, gi|38026914|ref|NM_014784.2|[38026914];


1580: NM_014785,, ref|NM_014785.1|[7662029], This record was temporarily removed by


RefSeq staff for additional review.,, 1581: NM_014786 “Homo sapiens Rho guanine


nucleotide exchange factor (GEF) 17 (ARHGEF17), mRNA”,


gi|21361457|ref|NM_014786.2|[21361457]; 1582: NM_014791, “Homo sapiens maternal


embryonic leucine zipper kinase (MELK), mRNA”, gi|41281490|ref|NM_014791.2|[41281490];


1583: NM_014797,, ref|NM_014797.1|[7662127], This record was temporarily removed by


RefSeq staff for additional review.,, 1584: NM_014805, “Homo sapiens EPM2A (laforin)


interacting protein 1 (EPM2AIP1), mRNA”, gi|31982934|ref|NM_014805.2|[31982934]; 1585:


NM_014813,, ref|NM_014813.1|[7662319], This record was temporarily removed by RefSeq


staff for additional review.,, 1586: NM_014814, “Homo sapiens proteasome regulatory particle


subunit p44S10 (p44S10), mRNA”, gi|7661913|ref|NM_014814.1|[7661913]; 1587: NM_014819,


Homo sapiens praja 2, RING-H2 motif containing (PJA2), mRNA”,


gi|41281511|ref|NM_014819.2|[41281511]; 1588: NM_014821, “Homo sapiens KIAA0317


(KIAA0317), mRNA”, gi|42734314|ref|NM_014821.2|[42734314]; 1589: NM_014840,,


ref|NM_014840.1|[7662169], This record was temporarily removed by RefSeq staff for


additional review.,, 1590: NM_014845, “Homo sapiens KIAA0274 (KIAA0274), mRNA”,


gi|36030904|ref|NM_014845.4|[36030904]; 1591: NM_014846, “Homo sapiens KIAA0196


gene product (KIAA0196), mRNA”, gi|41281517|ref|NM_014846.2|[41281517]; 1592:


NM_014862, “Homo sapiens aryl-hydrocarbon receptor nuclear translocator 2 (ARNT2),


mRNA”, gi|41281514|ref|NM_014862.2|[41281514]; 1593: NM_014865, “Homo sapiens


chromosome condensation-related SMC-associated protein 1 (CNAP1),”, mRNA,


gi|41281520|ref|NM_014865.2|[41281520]; 1594: NM_014867,, ref|NM_014867.1|[7662259],


This record was temporarily removed by RefSeq staff for additional review.,, 1595:


NM_014872,, ref|NM_014872.1|[7662073], This record was temporarily removed by RefSeq


staff for additional review.,, 1596: NM_014873,, ref|NM_014873.1|[7661995], This record was


temporarily removed by RefSeq staff for additional review.,, 1597: NM_014875,,


ref|NM_014875.1|[7661877], This record was temporarily removed by RefSeq staff for


additional review.,, 1598: NM_014876, “Homo sapiens KIAA0063 gene product (KIAA0063),


mRNA”, gi|34222319|ref|NM_014876.3|[34222319]; 1599: NM_014881, “Homo sapiens DNA


cross-link repair 1A (PSO2 homolog, S. cerevisiae) (DCLRE1A),”, mRNA,


gi|42734318|ref|NM_014881.2|[42734318]; 1600: NM_014886, “Homo sapiens TGF beta-


inducible nuclear protein 1 (TINP1), mRNA”, gi|21359901|ref|NM_014886.2|[21359901]; 1601:


NM_014888, “Homo sapiens family with sequence similarity 3, member C (FAM3C), mRNA”,


gi|7661713|ref|NM_014888.1|[7661713]; 1602: NM_014889, “Homo sapiens pitrilysin


metalloproteinase 1 (PITRM1), mRNA”, gi|41352060|ref|NM_014889.2|[41352060]; 1603:


NM_014892,, ref|NM_014892.1|[7662491], This record was temporarily removed by RefSeq


staff for additional review.,, 1604: NM_014901, “Homo sapiens ring finger protein 44


(RNF44), mRNA”, gi|42718018|ref|NM_014901.4|[42718018]; 1605: NM_014907, “Homo



sapiens FERM and PDZ domain containing 1 (FRMPD1), mRNA”,



gi|7662415|ref|NM_014907.1|[7662415]; 1606: NM_014910,, ref|NM_014910.1|[7662479],


This record was temporarily removed by RefSeq staff for additional review.,, 1607:


NM_014914, “Homo sapiens centaurin, gamma 2 (CENTG2), mRNA”,


gi|41281554|ref|NM_014914.2|[41281554]; 1608: NM_014917,, ref|NM_014917.1|[7662425],


This record was temporarily removed by RefSeq staff for additional review.,, 1609:


NM_014935, “Homo sapiens phosphoinositol 3-phosphate-binding protein-3 (PEPP3), mRNA”,


gi|37595547|ref|NM_014935.2|[37595547]; 1610: NM_014937, “Homo sapiens inositol


polyphosphate-5-phosphatase F (INPP5F), transcript variant”, “1, mRNA”,


gi|38327540|ref|NM_014937.2|[38327540]; 1611: NM_014939, “Homo sapiens KIAA1012


(KIAA1012), mRNA”, gi|42476075|ref|NM_014939.2|[42476075]; 1612: NM_014940, “Homo



sapiens HSV-1 stimulation-related gene 1 (HSRG1), mRNA”,



gi|38016939|ref|NM_014940.2|[38016939]; 1613: NM_014949,, ref|NM_014949.1|[7662371],


This record was temporarily removed by RefSeq staff for additional review.,, 1614:


NM_014977, “Homo sapiens apoptotic chromatin condensation inducer in the nucleus


(ACINUS),”, mRNA, gi|7662237|ref|NM_014977.1|[7662237]; 1615: NM_014992, “Homo



sapiens dishevelled associated activator of morphogenesis 1 (DAAM1), mRNA”,



gi|21071076|ref|NM_014992.1|[21071076]; 1616: NM_015029, “Homo sapiens processing of


precursors 1 (POP1), mRNA”, gi|23097291|ref|NM_015029.1|[23097291]; 1617: NM_015039,


Homo sapiens nicotinamide nucleotide adenylyltransferase 2 (NMNAT2), transcript”, “variant


1, mRNA”, gi|25141321|ref|NM_015039.2|[25141321]; 1618: NM_015050, “Homo sapiens


KIAA0082 (KIAA0082), mRNA”, gi|24307982|ref|NM_015050.1|[24307982]; 1619:


NM_015064, “Homo sapiens Rab6-interacting protein 2 (ELKS), transcript variant alpha,


mRNA”, gi|38045899|ref|NM_015064.2|[38045899]; 1620: NM_015074, “Homo sapiens


kinesin family member 1B (KIF1B), transcript variant 1, mRNA”,


gi|41393562|ref|NM_015074.2|[41393562]; 1621: NM_015078, “Homo sapiens Rho family


guanine-nucleotide exchange factor (KIAA0861), mRNA”,


gi|31742504|ref|NM_015078.2|[31742504]; 1622: NM_015089, “Homo sapiens p53-associated


parkin-like cytoplasmic protein (PARC), mRNA”, gi|24307990|ref|NM_015089.1|[24307990];


1623: NM_015101, “Homo sapiens chromosome 1 open reading frame 17 (C1orf17), mRNA”,


gi|16506819|ref|NM_015101.1|[16506819]; 1624: NM_015149, “Homo sapiens RalGDS-like


gene (RGL), mRNA”, gi|20127535|ref|NM_015149.2|[20127535]; 1625: NM_015163, “Homo



sapiens tripartite motif-containing 9 (TRIM9), transcript variant 1, mRNA”,



gi|29543553|ref|NM_015163.3|[29543553]; 1626: NM_015169, “Homo sapiens RRS1 ribosome


biogenesis regulator homolog (S. cerevisiae) (RRS1),”, mRNA,


gi|34147329|ref|NM_015169.2|[34147329]; 1627: NM_015178, “Homo sapiens Rho-related


BTB domain containing 2 (RHOBTB2), mRNA”, gi|14165285|ref|NM_015178.1|[14165285];


1628: NM_015198, “Homo sapiens cordon-bleu homolog (mouse) (COBL), mRNA”,


gi|31581523|ref|NM_015198.2|[31581523]; 1629: NM_015216, “Homo sapiens KIAA0433


protein (KIAA0433), mRNA”, gi|41281582|ref|NM_015216.2|[41281582]; 1630: NM_015254,


Homo sapiens kinesin family member 13B (KIF13B), mRNA”,


gi|13194196|ref|NM_015254.1|[13194196]; 1631: NM_015292, Homo sapiens likely ortholog


of mouse membrane bound C2 domain containing, “protein (MBC2), mRNA”,


gi|14149679|ref|NM_015292.1|[14149679]; 1632: NM_015308, “Homo sapiens formin binding


protein 4 (FNBP4), mRNA”, gi|24308032|ref|NM_015308.1|[24308032]; 1633: NM_015316,


Homo sapiens protein phosphatase 1, regulatory (inhibitor) subunit 13B”, “(PPP1R13B),


mRNA”, gi|18699719|ref|NM_015316.1|[18699719]; 1634: NM_015318, “Homo sapiens


rho/rac guanine nucleotide exchange factor (GEF) 18 (ARHGEF18),”, mRNA,


gi|41327768|ref|NM_015318.2|[41327768]; 1635: NM_015331, “Homo sapiens nicastrin


(NCSTN), mRNA”, gi|24638432|ref|NM_015331.1|[24638432]; 1636: NM_015339, “Homo



sapiens activity-dependent neuroprotector (ADNP), transcript variant 1,”, mRNA,



gi|31563504|ref|NM_015339.2|[31563504]; 1637: NM_015341, “Homo sapiens barren homolog


(Drosophila) (BRRN1), mRNA”, gi|25121986|ref|NM_015341.2|[25121986]; 1638: NM_015343,


Homo sapiens dullard homolog (Xenopus laevis) (DULLARD), mRNA”,


gi|34222318|ref|NM_015343.3|[34222318]; 1639: NM_015358, “Homo sapiens zinc finger,


CW-type with coiled-coil domain 3 (ZCWCC3), mRNA”,


gi|28872811|ref|NM_015358.1|[28872811]; 1640: NM_015362,, ref|NM_015362.3|[44662829];


1641: NM_015368, “Homo sapiens pannexin 1 (PANX1), mRNA”,


gi|39995063|ref|NM_015368.3|[39995063]; 1642: NM_015372, “Homo sapiens hypothetical


protein HSN44A4A (HSN44A4A), mRNA”, gi|7661723|ref|NM_015372.1|[7661723]; 1643:


NM_015376,, ref|NM_015376.1|[7662333], This record was temporarily removed by RefSeq


staff for additional review.,, 1644: NM_015388, “Homo sapiens chromosome 6 open reading


frame 109 (C6orf109), mRNA”, gi|7661641|ref|NM_015388.1|[7661641]; 1645: NM_015393,


Homo sapiens DKFZP564O0823 protein (DKFZP564O0823), mRNA”,


gi|7661631|ref|NM_015393.1|[7661631]; 1646: NM_015399, “Homo sapiens breast cancer


metastasis suppressor 1 (BRMS1), mRNA”, gi|24475631|ref|NM_015399.2|[24475631]; 1647:


NM_015407, “Homo sapiens DKFZP564O243 protein (DKFZP564O243), mRNA”,


gi|34147328|ref|NM_015407.3|[34147328]; 1648: NM_015414, “Homo sapiens ribosomal


protein L36 (RPL36), transcript variant 2, mRNA”, gi|16117793|ref|NM_015414.2|[16117793];


1649: NM_015416, “Homo sapiens cervical cancer 1 protooncogene (HCCR1), mRNA”,


gi|21166356|ref|NM_015416.2|[21166356]; 1650: NM_015439, “Homo sapiens chromosome 6


open reading frame 80 (C6orf80), mRNA”, gi|31083115|ref|NM_015439.2|[31083115]; 1651:


NM_015480, “Homo sapiens poliovirus receptor-related 3 (PVRL3), mRNA”,


gi|11386198|ref|NM_015480.1|[11386198]; 1652: NM_015484, “Homo sapiens GCIP-


interacting protein p29 (P29), mRNA”, gi|7661635|ref|NM_015484.1|[7661635]; 1653:


NM_015485, “Homo sapiens RWD domain containing 3 (RWDD3), mRNA”,


gi|21361481|ref|NM_015485.2|[21361481]; 1654: NM_015490, “Homo sapiens SEC31-like 2


(S. cerevisiae) (SEC31L2), transcript variant 1, mRNA”,


gi|38149839|ref|NM_015490.3|[38149839]; 1655: NM_015509, “Homo sapiens


DKFZP566B183 protein (DKFZP566B183), mRNA”,


gi|31542527|ref|NM_015509.2|[31542527]; 1656: NM_015510, “Homo sapiens


DKFZP566O084 protein (DKFZp566O084), mRNA”,


gi|23065521|ref|NM_015510.3|[23065521]; 1657: NM_015511, “Homo sapiens chromosome 20


open reading frame 4 (C20orf4), mRNA”, gi|18034689|ref|NM_015511.2|[18034689]; 1658:


NM_015513, “Homo sapiens cysteine-rich with EGF-like domains 1 (CRELD1), mRNA”,


gi|22095396|ref|NM_015513.2|[22095396]; 1659: NM_015517, Homo sapiens MBD2 (methyl-


CpG-binding protein)-interacting zinc finger protein, “(MIZF), transcript variant 1, mRNA”,


gi|39725947|ref|NM_015517.3|[39725947]; 1660: NM_015527, “Homo sapiens


DKFZP434P1750 protein (DKFZP434P1750), mRNA”,


gi|21361484|ref|NM_015527.2|[21361484]; 1661: NM_015533, “Horno sapiens


DKFZP586B1621 protein (DKFZP586B1621), mRNA”,


gi|20149620|ref|NM_015533.2|[20149620]; 1662: NM_015535, “Homo sapiens DNA


polymerase-transactivated protein 6 (DNAPTP6), mRNA”,


gi|7661597|ref|NM_015535.1|[7661597]; 1663: NM_015540, “Homo sapiens DKFZP727M111


protein (DKFZP727M111), mRNA”, gi|24430138|ref|NM_015540.2|[24430138]; 1664:


NM_015558, Homo sapiens synovial sarcoma translocation gene on chromosome 18-like 1,


“(SS18L1), transcript variant 2, mRNA”, gi|39777611|ref|NM_015558.3|[39777611]; 1665:


NM_015570, “Homo sapiens autism susceptibility candidate 2 (AUTS2), mRNA”,


gi|17864089|ref|NM_015570.1|[17864089]; 1666: NM_015582, “Homo sapiens


DKFZP564B147 protein (DKFZP564B147), mRNA”, gi|7661599|ref|NM_015582.1|[7661599];


1667: NM_015584, “Homo sapiens polymerase (DNA-directed), delta interacting protein 2


(POLDIP2),”, mRNA, gi|30089946|ref|NM_015584.2|[30089946]; 1668: NM_015603, “Homo



sapiens coiled-coil domain containing 9 (CCDC9), mRNA”,



gi|7661689|ref|NM_015603.1|[7661689]; 1669: NM_015604, “Homo sapiens WD repeat


domain 21 (WDR21), transcript variant 1, mRNA”, gi|31317287|ref|NM_015604.2|[31317287];


1670: NM_015623,, ref|NM_015623.2|[32306520], This record was temporarily removed by


RefSeq staff for additional review.,, 1671: NM_015646, “Homo sapiens RAP1B, member of


RAS oncogene family (RAP1B), mRNA”, gi|34222320|ref|NM_015646.3|[34222320]; 1672:


NM_015649, “Homo sapiens interferon regulatory factor 2 binding protein 1 (IRF2BP1),


mRNA”, gi|24308114|ref|NM_015649.1|[24308114]; 1673: NM_015653, “Homo sapiens


DKFZP566F0546 protein (DKFZP566F0546), mRNA”,


gi|13124762|ref|NM_015653.1|[13124762]; 1674: NM_015654, “Homo sapiens


DKFZP564C103 protein (DKFZP564C103), mRNA”,


gi|34222325|ref|NM_015654.3|[34222325]; 1675: NM_015691, “Homo sapiens KIAA1280


protein (KIAA1280), mRNA”, gi|38570148|ref|NM_015691.2|[38570148]; 1676: NM_015699,,


ref|NM_015699.1|[7661559], This record was temporarily removed by RefSeq staff for


additional review.,, 1677: NM_015702, “Homo sapiens hypothetical protein CL25022


(CL25022), mRNA”, gi|7661547|ref|NM_015702.1|[7661547]; 1678: NM_015710, “Homo



sapiens glioma tumor suppressor candidate region gene 2 (GLTSCR2), mRNA”,



gi|21359905|ref|NM_015710.2|[21359905]; 1679: NM_015714, “Homo sapiens putative


lymphocyte G0/G1 switch gene (G0S2), mRNA”, gi|20070269|ref|NM_015714.2|[20070269];


1680: NM_015715, “Homo sapiens phospholipase A2, group III (PLA2G3), mRNA”,


gi|7657125|ref|NM_015715.1|[7657125]; 1681: NM_015722, “Homo sapiens calcyon protein


(CALCYON), mRNA”, gi|9257200|ref|NM_015722.2|[9257200]; 1682: NM_015855, “Homo



sapiens Wilms tumor associated protein (WIT-1), mRNA”,



gi|19743572|ref|NM_015855.2|[19743572]; 1683: NM_015859, “Homo sapiens general


transcription factor IIA, 1, 19/37 kDa (GTF2A1), transcript”, “variant 1, mRNA”,


gi|42476103|ref|NM_015859.2|[42476103]; 1684: NM_015865, “Homo sapiens solute carrier


family 14 (urea transporter), member 1 (Kidd blood”, “group) (SLC14A1), mRNA”,


gi|7706676|ref|NM_015865.1|[7706676]; 1685: NM_015871, “Homo sapiens zinc finger protein


(ZT86), mRNA”, gi|21359908|ref|NM_015871.2|[21359908]; 1686: NM_015884, “Homo



sapiens membrane-bound transcription factor protease, site 2 (MBTPS2), mRNA”,



gi|7706692|ref|NM_015884.1|[7706692]; 1687: NM_015885, “Homo sapiens pre-mRNA


cleavage complex II protein Pcf11 (PCF11), mRNA”,


gi|33620744|ref|NM_015885.2|[33620744]; 1688: NM_015889, “Homo sapiens PC2 (positive


cofactor 2, multiprotein complex)”, “glutamine/Q-rich-associated protein (PCQAP), mRNA”,


gi|21312133|ref|NM_015889.2|[21312133]; 1689: NM_015894, “Homo sapiens stathmin-like 3


(STMN3), mRNA”, gi|14670374|ref|NM_015894.2|[14670374]; 1690: NM_015895, “Homo



sapiens geminin, DNA replication inhibitor (GMNN), mRNA”,



gi|41393571|ref|NM_015895.3|[41393571]; 1691: NM_015901, Homo sapiens nudix


(nucleoside diphosphate linked moiety X)-type motif 13, “(NUDT13), mRNA”,


gi|34330151|ref|NM_015901.3|[34330151]; 1692: NM_015918, “Homo sapiens RNase


MRP/RNase P protein-like (POP5), transcript variant 1, mRNA”,


gi|38016924|ref|NM_015918.3|[38016924]; 1693: NM_015920, “Homo sapiens ribosomal


protein S27-like (RPS27L), mRNA”, gi|18490988|ref|NM_015920.2|[18490988]; 1694:


NM_015921, “Homo sapiens chromosome 6 open reading frame 82 (C6orf82), mRNA”,


gi|7706243|ref|NM_015921.1|[7706243]; 1695: NM_015925, “Homo sapiens liver-specific


bHLH-Zip transcription factor (LISCH7), mRNA”, gi|34916060|ref|NM_015925.3|[34916060];


1696: NM_015926, “Homo sapiens putative secreted protein ZSIG11 (ZSIG11), mRNA”,


gi|34147580|ref|NM_015926.3|[34147580]; 1697: NM_015927, “Homo sapiens transforming


growth factor beta 1 induced transcript 1 (TGFB1I1),”, mRNA,


gi|34147679|ref|NM_015927.3|[34147679]; 1698: NM_015929, “Homo sapiens


lipoyltransferase 1 (LIPT1), transcript variant 1, mRNA”,


gi|21729874|ref|NM_015929.2|[21729874]; 1699: NM_015932, “Homo sapiens chromosome 13


open reading frame 12 (C13orf12), mRNA”, gi|21361533|ref|NM_015932.2|[21361533]; 1700:


NM_015937, “Homo sapiens phosphatidylinositol glycan, class T (PIGT), mRNA”,


gi|23397652|ref|NM_015937.2|[23397652]; 1701: NM_015938, “Homo sapiens CGI-07 protein


(CGI-07), mRNA”, gi|19923795|ref|NM_015938.2|[19923795]; 1702: NM_015941, “Homo



sapiens ATPase, H+ transporting, lysosomal 50/57 kD V1 subunit H (ATP6V1H),”, mRNA,



gi|7706261|ref|NM_015941.1|[7706261]; 1703: NM_015942, “Homo sapiens CGI-12 protein


(CGI-12), mRNA”, gi|34147675|ref|NM_015942.3|[34147675]; 1704: NM_015945, “Homo



sapiens solute carrier family 35, member C2 (SLC35C2), transcript variant”, “2, mRNA”,



gi|34335287|ref|NM_015945.10|[34335287]; 1705: NM_015947, “Homo sapiens CGI-18


protein (CGI-18), mRNA”, gi|7705601|ref|NM_015947.1|[7705601]; 1706: NM_015950,


Homo sapiens mitochondrial ribosomal protein L2 (MRPL2), nuclear gene encoding”,


“mitochondrial protein, mRNA”, gi|41872659|ref|NM_015950.3|[41872659]; 1707: NM_015953


Homo sapiens nitric oxide synthase interacting protein (NOSIP), mRNA”,


gi|34147607|ref|NM_015953.3|[34147607]; 1708: NM_015956, “Homo sapiens mitochondrial


ribosomal protein L4 (MRPL4), nuclear gene encoding”, “mitochondrial protein, transcript


variant 1, mRNA”, gi|22547135|ref|NM_015956.2|[22547135]; 1709: NM_015959, “Homo



sapiens thioredoxin-related transmembrane protein 2 (TMX2), mRNA”,



gi|7705725|ref|NM_015959.1|[7705725]; 1710: NM_015960, “Homo sapiens CGI-32 protein


(CGI-32), mRNA”, gi|7705727|ref|NM_015960.1|[7705727]; 1711: NM_015962, “Homo



sapiens chromosome 14 open reading frame 111 (C14orf111), mRNA”,



gi|7705729|ref|NM_015962.1|[7705729]; 1712: NM_015964, “Homo sapiens brain specific


protein (CGI-38), mRNA”, gi|7706275|ref|NM_015964.1|[7706275]; 1713: NM_015965,


Homo sapiens cell death-regulatory protein GRIM19 (GRIM19), mRNA”,


gi|21361821|ref|NM_015965.3|[21361821]; 1714: NM_015971, “Homo sapiens mitochondrial


ribosomal protein S7 (MRPS7), nuclear gene encoding”, “mitochondrial protein, mRNA”,


gi|16554617|ref|NM_015971.2|[16554617]; 1715: NM_015972, “Homo sapiens polymerase


(RNA) I polypeptide D, 16 kDa (POLR1D), mRNA”, gi|7705739|ref|NM_015972.1|[7705739];


1716: NM_015974, “Homo sapiens crystallin, lambda 1 (CRYL1), mRNA”,


gi|7705743|ref|NM_015974.1|[7705743]; 1717: NM_015976, “Homo sapiens sorting nexin 7


(SNX7), transcript variant 1, mRNA”, gi|23111053|ref|NM_015976.2|[23111053]; 1718:


NM_015982, “Homo sapiens germ cell specific Y-box binding protein (YBX2), mRNA”,


gi|7705750|ref|NM_015982.1|[7705750]; 1719: NM_015986, “Homo sapiens cytokine receptor-


like factor 3 (CRLF3), mRNA”, gi|27764872|ref|NM_015986.2|[27764872]; 1720: NM_015991,


Homo sapiens complement component 1, q subcomponent, alpha polypeptide (C1QA),”,


mRNA, gi|7705752|ref|NM_015991.1|[7705752]; 1721: NM_015997, “Homo sapiens CGI-41


protein (CGI-41), mRNA”, gi|21361524|ref|NM_015997.2|[21361524]; 1722: NM_015999,


Homo sapiens adiponectin receptor 1 (ADIPOR1), mRNA”,


gi|21361518|ref|NM_015999.2|[21361518]; 1723: NM_016004, “Homo sapiens chromosome 20


open reading frame 9 (C20orf9), mRNA”, gi|7705768|ref|NM_016004.1|[7705768]; 1724:


NM_016011, “Homo sapiens nuclear receptor binding factor 1 (CGI-63), mRNA”,


gi|7705776|ref|NM_016011.1|[7705776]; 1725: NM_016013, “Homo sapiens NADH


dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly factor”, “1 (NDUFAF1), mRNA”,


gi|7705778|ref|NM_016013.1|[7705778]; 1726: NM_016015, “Homo sapiens leucine carboxyl


methyltransferase 1 (LCMT1), mRNA”, gi|15082255|ref|NM_016015.2|[15082255]; 1727:


NM_016020, “Homo sapiens transcription factor B1, mitochondrial (TFB1M), mRNA”,


gi|7705784|ref|NM_016020.1|[7705784]; 1728: NM_016022, Homo sapiens likely ortholog of



C. elegans anterior pharynx defective 1A, “(APH-1A), mRNA”,



gi|7705786|ref|NM_016022.1|[7705786]; 1729: NM_016027, “Homo sapiens lactamase, beta 2


(LACTB2), mRNA”, gi|7705792|ref|NM_016027.1|[7705792]; 1730: NM_016028, “Homo



sapiens CGI-85 protein (CGI-85), transcript variant 2, mRNA”,



gi|27477098|ref|NM_016028.3|[27477098]; 1731: NM_016033, “Homo sapiens CGI-90 protein


(CGI-90), mRNA”, gi|7705802|ref|NM_016033.1|[7705802]; 1732: NM_016045, “Homo



sapiens chromosome 20 open reading frame 45 (C20orf45), mRNA”,



gi|7705609|ref|NM_016045.1|[7705609]; 1733: NM_016046, “Homo sapiens exosomal core


protein CSL4 (CSL4), mRNA”, gi|22035626|ref|NM_016046.2|[22035626]; 1734: NM_016049,


Homo sapiens chromosome 14 open reading frame 122 (C14orf122), mRNA”,


gi|34222327|ref|NM_016049.3|[34222327]; 1735: NM_016052, “Homo sapiens CGI-115


protein (CGI-115), mRNA”, gi|31542299|ref|NM_016052.2|[31542299]; 1736: NM_016053,


Homo sapiens CGI-116 protein (CGI-116), mRNA”, gi|7705621|ref|NM_016053.1|[7705621];


1737: NM_016055, “Homo sapiens mitochondrial ribosomal protein L48 (MRPL48), nuclear


gene encoding”, “mitochondrial protein, mRNA”, gi|38788229|ref|NM_016055.3|[38788229];


1738: NM_016056, “Homo sapiens CGI-119 protein (CGI-119), mRNA”,


gi|7706334|ref|NM_016056.1|[7706334]; 1739: NM_016062, “Homo sapiens CGI-128 protein


(CGI-128), mRNA”, gi|7706342|ref|NM_016062.1|[7706342]; 1740: NM_016065, “Homo



sapiens mitochondrial ribosomal protein S16 (MRPS16), nuclear gene encoding”, “mitochondrial



protein, mRNA”, gi|16554612|ref|NM_016065.2|[16554612]; 1741: NM_016067, “Homo



sapiens mitochondrial ribosomal protein S18C (MRPS18C), nuclear gene”, “encoding



mitochondrial protein, mRNA”, gi|7705629|ref|NM_016067.1|[7705629]; 1742: NM_016069,



Homo sapiens mitochondria-associated protein involved in granulocyte-macrophage, “colony-



stimulating factor signal transduction (Magmas), nuclear gene encoding”, “mitochondrial


protein, mRNA”, gi|27363460|ref|NM_016069.8|[27363460]; 1743: NM_016071, “Homo



sapiens mitochondrial ribosomal protein S33 (MRPS33), nuclear gene encoding”, “mitochondrial



protein, transcript variant 1, mRNA”, gi|16950595|ref|NM_016071.2|[16950595]; 1744:


NM_016072, “Homo sapiens CGI-141 protein (CGI-141), mRNA”,


gi|19923443|ref|NM_016072.2|[19923443]; 1745: NM_016079, “Homo sapiens neuroendocrine


differentiation factor (NEDF), mRNA”, gi|7706352|ref|NM_016079.1|[7706352]; 1746:


NM_016080, “Homo sapiens CGI-150 protein (CGI-150), mRNA”,


gi|34850073|ref|NM_016080.2|[34850073]; 1747: NM_016082, “Homo sapiens CDK5


regulatory subunit associated protein 1 (CDK5RAP1), transcript”, “variant 2, mRNA”,


gi|28872783|ref|NM_016082.3|[28872783]; 1748: NM_016086, “Homo sapiens map kinase


phosphatase-like protein MK-STYX (MK-STYX), mRNA”,


gi|32481212|ref|NM_016086.2|[32481212]; 1749: NM_016087, “Homo sapiens wingless-type


MMTV integration site family, member 16 (WNT16),”, “transcript variant 2, mRNA”,


gi|17402913|ref|NM_016087.2|[17402913]; 1750: NM_016090, “Homo sapiens RNA binding


motif protein 7 (RBM7), mRNA”, gi|31543547|ref|NM_016090.2|[31543547]; 1751:


NM_016091, “Homo sapiens eukaryotic translation initiation factor 3, subunit 6 interacting”,


“protein (EIF3S6IP), mRNA”, gi|7705432|ref|NM_016091.1|[7705432]; 1752: NM_016095,


Homo sapiens DNA replication complex GINS protein PSF2 (Pfs2), mRNA”,


gi|7706366|ref|NM_016095.1|[7706366]; 1753: NM_016097, “Homo sapiens HSPC039 protein


(HSPC039), mRNA”, gi|32261311|ref|NM_016097.2|[32261311]; 1754: NM_016099, “Homo



sapiens golgi autoantigen, golgin subfamily a, 7 (GOLGA7), mRNA”,



gi|7705820|ref|NM_016099.1|[7705820]; 1755: NM_016101, “Homo sapiens comparative gene


identification transcript 37 (CGI-37), mRNA”, gi|40538791|ref|NM_016101.2|[40538791]; 1756:


NM_016102, “Homo sapiens tripartite motif-containing 17 (TRIM17), mRNA”,


gi|7705824|ref|NM_016102.1|[7705824]; 1757: NM_016103, “Homo sapiens SAR1a gene


homolog 2 (S. cerevisiae) (SARA2), mRNA”, gi|38176155|ref|NM_016103.2|[38176155]; 1758:


NM_016106, “Homo sapiens sec1 family domain containing 1 (SCFD1), transcript variant 1,


mRNA”, gi|33469965|ref|NM_016106.2|[33469965]; 1759: NM_016127, “Homo sapiens


hypothetical protein MGC8721 (MGC8721), mRNA”,


gi|42476192|ref|NM_016127.4|[42476192]; 1760: NM_016133, “Homo sapiens insulin induced


gene 2 (INSIG2), mRNA”, gi|38327532|ref|NM_016133.2|[38327532]; 1761: NM_016139,


Homo sapiens coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2),”, mRNA,


gi|32307179|ref|NM_016139.2|[32307179]; 1762: NM_016142, “Homo sapiens hydroxysteroid


(17-beta) dehydrogenase 12 (HSD17B12), mRNA”, gi|7705854|ref|NM_016142.1|[7705854];


1763: NM_016145, “Homo sapiens PTD008 protein (PTD008), mRNA”,


gi|7706664|ref|NM_016145.1|[7706664]; 1764: NM_016148, “Homo sapiens SH3 and multiple


ankyrin repeat domains 1 (SHANK1), mRNA”, gi|11968151|ref|NM_016148.1|[11968151];


1765: NM_016158, “Homo sapiens erythrocyte transmembrane protein (LOC51145), mRNA”,


gi|7705856|ref|NM_016158.1|[7705856]; 1766: NM_016183, “Homo sapiens chromosome 1


open reading frame 33 (Clorf33), mRNA”, gi|18490986|ref|NM_016183.2|[18490986]; 1767:


NM_016185, “Homo sapiens hematological and neurological expressed 1 (HN1), mRNA”,


gi|7705876|ref|NM_016185.1|[7705876]; 1768: NM_016187, “Homo sapiens bridging


integrator 2 (BIN2), mRNA”, gi|7705295|ref|NM_016187.1|[7705295]; 1769: NM_016195,


Homo sapiens M-phase phosphoprotein 1 (MPHOSPH1), mRNA”,


gi|7705347|ref|NM_016195.1|[7705347]; 1770: NM_016200, “Homo sapiens LSM8 homolog,


U6 small nuclear RNA associated (S. cerevisiae)”, “(LSM8), mRNA”,


gi|21314665|ref|NM_016200.2|[21314665]; 1771: NM_016202, “Homo sapiens zinc finger


protein 580 (ZNF580), mRNA”, gi|7705880|ref|NM_016202.1|[7705880]; 1772: NM_016203,


Homo sapiens protein kinase, AMP-activated, gamma 2 non-catalytic subunit”, “(PRKAG2),


mRNA”, gi|33186924|ref|NM_016203.2|[33186924]; 1773: NM_016206, “Homo sapiens colon


carcinoma related protein (LOC51159), mRNA”, gi|7705882|ref|NM_016206.1|[7705882]; 1774:


NM_016209, “Homo sapiens unknown (LOC51693), mRNA”,


gi|7706428|ref|NM_016209.1|[7706428]; 1775: NM_016210, “Homo sapiens g20 protein


(LOC51161), mRNA”, gi|31543080|ref|NM_016210.2|[31543080]; 1776: NM_016216, “Homo



sapiens debranching enzyme homolog 1 (S. cerevisiae) (DBR1), mRNA”,



gi|7705890|ref|NM_016216.1|[7705890]; 1777: NM_016223, Homo sapiens protein kinase C


and casein kinase substrate in neurons 3, “(PACSIN3), mRNA”,


gi|34147484|ref|NM_016223.3|[34147484]; 1778: NM_016229, “Homo sapiens cytochrome b5


reductase b5R.2 (CYB5R2), mRNA”, gi|7706442|ref|NM_016229.1|[7706442]; 1779:


NM_016230, “Homo sapiens NADPH cytochrome B5 oxidoreductase (NCB5OR), mRNA”,


gi|21314659|ref|NM_016230.2|[21314659]; 1780: NM_016231, “Homo sapiens nemo like


kinase (NLK), mRNA”, gi|42734431|ref|NM_016231.2|[42734431]; 1781: NM_016245, “Homo



sapiens dehydrogenase/reductase (SDR family) member 8 (DHRS8), mRNA”,



gi|7705904|ref|NM_016245.1|[7705904]; 1782: NM_016246, “Homo sapiens


dehydrogenase/reductase (SDR family) member 10 (DHRS10), mRNA”,


gi|7705906|ref|NM_016246.1|[7705906]; 1783: NM_016255, “Homo sapiens family with


sequence similarity 8, member A1 (FAM8A1), mRNA”,


gi|7705267|ref|NM_016255.1|[7705267]; 1784: NM_016256, Homo sapiens N-


acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase, “(NAGPA), mRNA”,


gi|7705908|ref|NM_016256.1|[7705908]; 1785: NM_016258, “Homo sapiens high-glucose-


regulated protein 8 (HGRG8), mRNA”, gi|7705410|ref|NM_016258.1|[7705410]; 1786:


NM_016260, “Homo sapiens zinc finger protein, subfamily 1A, 2 (Helios) (ZNFN1A2),


mRNA”, gi|7705910|ref|NM_016260.1|[7705910]; 1787: NM_016265, “Homo sapiens zinc


finger protein 325 (ZNF325), mRNA”, gi|7706464|ref|NM_016265.1|[7706464]; 1788:


NM_016286, “Homo sapiens dicarbonyl/L-xylulose reductase (DCXR), mRNA”,


gi|41350203|ref|NM_016286.2|[41350203]; 1789: NM_016287, “Homo sapiens HP1-BP74


(HP1-BP74), mRNA”, gi|7705416|ref|NM_016287.1|[7705416]; 1790: NM_016289, “Homo



sapiens MO25 protein (MO25), mRNA”, gi|19745179|ref|NM_016289.2|[19745179]; 1791:



NM_016304, “Homo sapiens chromosome 15 open reading frame 15 (C15orf15), mRNA”,


gi|18491027|ref|NM_016304.2|[18491027]; 1792: NM_016308, “Homo sapiens UMP-CMP


kinase (UMP-CMPK), mRNA”, gi|7706496|ref|NM_016308.1|[7706496]; 1793: NM_016310,


Homo sapiens polymerase (RNA) III (DNA directed) polypeptide K, 12.3 kDa”, “(POLR3K),


mRNA”, gi|14589957|ref|NM_016310.2|[14589957]; 1794: NM_016316, “Homo sapiens


REV1-like (yeast) (REV1L), mRNA”, gi|7706680|ref|NM_016316.1|[7706680]; 1795:


NM_016319, Homo sapiens COP9 constitutive photomorphogenic homolog subunit 7A


(Arabidopsis), “(COPS7A), mRNA”, gi|7705329|ref|NM_016319.1|[7705329]; 1796:


NM_016324, “Homo sapiens zinc finger protein 274 (ZNF274), transcript variant ZNF274b,


mRNA”, gi|19743797|ref|NM_016324.2|[19743797]; 1797: NM_016332, “Homo sapiens


selenoprotein X, 1 (SEPX1), mRNA”, gi|7706510|ref|NM_016332.1|[7706510]; 1798:


NM_016337, “Homo sapiens Enah/Vasp-like (EVL), mRNA”,


gi|7706686|ref|NM_016337.1|[7706686]; 1799: NM_016354, “Homo sapiens solute carrier


organic anion transporter family, member 4A1”, “(SLCO4A1), mRNA”,


gi|39777593|ref|NM_016354.3|[39777593]; 1800: NM_016355, “Homo sapiens DEAD (Asp-


Glu-Ala-Asp) box polypeptide 47 (DDX47), transcript”, “variant 1, mRNA”,


gi|41327774|ref|NM_016355.3|[41327774]; 1801: NM_016358, “Homo sapiens iroquois


homeobox protein 4 (IRX4), mRNA”, gi|7705554|ref|NM_016358.1|[7705554]; 1802:


NM_016364, “Homo sapiens dual specificity phosphatase 13 (DUSP13), mRNA”,


gi|20149630|ref|NM_016364.2|[20149630]; 1803: NM_016368, “Homo sapiens myo-inositol 1-


phosphate synthase A1 (ISYNA1), mRNA”, gi|21902536|ref|NM_016368.3|[21902536]; 1804:


NM_016371, “Homo sapiens hydroxysteroid (17-beta) dehydrogenase 7 (HSD17B7), mRNA”,


gi|7705420|ref|NM_016371.1|[7705420]; 1805: NM_016372, “Homo sapiens seven


transmembrane domain orphan receptor (TPRA40), mRNA”,


gi|7705964|ref|NM_016372.1|[7705964]; 1806: NM_016397, “Homo sapiens TH1-like


(Drosophila) (TH1L), transcript variant 2, mRNA”, gi|39812483|ref|NM_016397.2|[39812483];


1807: NM_016400, “Homo sapiens Huntingtin interacting protein K (HYPK), mRNA”,


gi|21361540|ref|NM_016400.2|[21361540]; 1808: NM_016404, “Homo sapiens hypothetical


protein HSPC152 (HSPC152), mRNA”, gi|7705476|ref|NM_016404.1|[7705476]; 1809:


NM_016406, “Homo sapiens hypothetical protein HSPC155 (HSPC155), mRNA”,


gi|7705480|ref|NM_016406.1|[7705480]; 1810: NM_016407, “Homo sapiens chromosome 20


open reading frame 43 (C20orf43), mRNA”, gi|7705482|ref|NM_016407.1|[7705482]; 1811:


NM_016412, “Homo sapiens insulin-like growth factor 2, antisense (IGF2AS), mRNA”,


gi|7705972|ref|NM_016412.1|[7705972]; 1812: NM_016422, “Homo sapiens ring finger protein


141 (RNF141), mRNA”, gi|38045936|ref|NM_016422.3|[38045936]; 1813: NM_016423,


Homo sapiens zinc finger protein 219 (ZNF219), mRNA”,


gi|7705974|ref|NM_016423.1|[7705974]; 1814: NM_016433, “Homo sapiens glycolipid transfer


protein (GLTP), mRNA”, gi|20357594|ref|NM_016433.2|[20357594]; 1815: NM_016447,


Homo sapiens membrane protein, palmitoylated 6 (MAGUK p55 subfamily member 6)”,


“(MPP6), mRNA”, gi|21361597|ref|NM_016447.2|[21361597]; 1816: NM_016448, “Homo



sapiens RA-regulated nuclear matrix-associated protein (RAMP), mRNA”,



gi|7705575|ref|NM_016448.1|[7705575]; 1817: NM_016453, “Homo sapiens SH3 protein


interacting with Nck, 90 kDa (AF3P21), transcript”, “variant 1, mRNA”,


gi|37577149|ref|NM_016453.2|[37577149]; 1818: NM_016508, “Homo sapiens cyclin-


dependent kinase-like 3 (CDKL3), mRNA”, gi|17017984|ref|NM_016508.2|[17017984]; 1819:


NM_016526, “Homo sapiens blocked early in transport 1 homolog (S. cerevisiae) like


(BET1L),”, mRNA, gi|34365798|ref|NM_016526.3|[34365798]; 1820: NM_016527, “Homo



sapiens hydroxyacid oxidase 2 (long chain) (HAO2), mRNA”,



gi|7705392|ref|NM_016527.1|[7705392]; 1821: NM_016530, “Homo sapiens RAB8B, member


RAS oncogene family (RAB8B), mRNA”, gi|7706562|ref|NM_016530.1|[7706562]; 1822:


NM_016539, Homo sapiens sirtuin (silent mating type information regulation 2 homolog) 6 (S.,


cerevisiae) (SIRT6), mRNA”, gi|7706709|ref|NM_016539.1|[7706709]; 1823: NM_016545,


Homo sapiens immediate early response 5 (IER5), mRNA”,


gi|16554598|ref|NM_016545.2|[16554598]; 1824: NM_016551, “Homo sapiens transmembrane


7 superfamily member 3 (TM7SF3), mRNA”, gi|7706574|ref|NM_016551.1|[7706574]; 1825:


NM_016557, “Homo sapiens chemokine (C—C motif) receptor-like 1 (CCRL1), transcript


variant”, “2, mRNA”, gi|30795218|ref|NM_016557.2|[30795218]; 1826: NM_016558, “Homo



sapiens SCAN domain containing 1 (SCAND1), transcript variant 1, mRNA”,



gi|15967154|ref|NM_016558.2|[15967154]; 1827: NM_016559 “Homo sapiens Pex5p-related


protein (PEX5R), mRNA”, gi|7706670|ref|NM_016559.1|[7706670]; 1828: NM_016561,


Homo sapiens bifunctional apoptosis regulator (BFAR), mRNA”,


gi|7706090|ref|NM_016561.1|[7706090]; 1829: NM_016567, “Homo sapiens BRCA2 and


CDKN1A interacting protein (BCCIP), transcript variant A,”, mRNA,


gi|17402869|ref|NM_016567.2|[17402869]; 1830: NM_016570, “Homo sapiens PTX1 protein


(PTX1), mRNA”, gi|7706104|ref|NM_016570.1|[7706104]; 1831: NM_016573, “Homo sapiens


Gem-interacting protein (GMIP), mRNA”, gi|7706106|ref|NM_016573.1|[7706106]; 1832:


NM_016576, “Homo sapiens guanosine monophosphate reductase 2 (GMPR2), mRNA”,


gi|20070275|ref|NM_016576.2|[20070275]; 1833: NM_016581, Homo sapiens likely ortholog


of mouse signaling intermediate in Toll, “pathway-evolutionarily conserved (SITPEC), mRNA”,


gi|20149632|ref|NM_016581.2|[20149632]; 1834: NM_016593, “Homo sapiens cytochrome


P450, family 39, subfamily A, polypeptide 1 (CYP39A1),”, mRNA,


gi|32313586|ref|NM_016593.3|[32313586]; 1835: NM_016602, “Homo sapiens G protein-


coupled receptor 2 (GPR2), mRNA”, gi|7705315|ref|NM_016602.1|[7705315]; 1836:


NM_016611, “Homo sapiens potassium channel, subfamily K, member 4 (KCNK4), transcript”,


“variant 1, mRNA”, gi|15718764|ref|NM_016611.2|[15718764]; 1837: NM_016614, “Homo



sapiens TRAF and TNF receptor associated protein (TTRAP), mRNA”,



gi|23510347|ref|NM_016614.2|[23510347]; 1838: NM_016617, “Homo sapiens hypothetical


protein BM-002 (BM-002), mRNA”, gi|7705299|ref|NM_016617.1|[7705299]; 1839:


NM_016621, “Homo sapiens BRAF35/HDAC2 complex (80 kDa) (BHC80), mRNA”,


gi|19923461|ref|NM_016621.2|[19923461]; 1840: NM_016625, “Homo sapiens BM-011 protein


(MGC12197), mRNA”, gi|38488726|ref|NM_016625.2|[38488726]; 1841: NM_016627, “Homo



sapiens hypothetical protein LOC51321 (LOC51321), mRNA”,



gi|42476207|ref|NM_016627.2|[42476207]; 1842: NM_016630, “Homo sapiens acid cluster


protein 33 (ACP33), mRNA”, gi|42544234|ref|NM_016630.3|[42544234]; 1843: NM_016639,


Homo sapiens tumor necrosis factor receptor superfamily, member 12A (TNFRSF12A),”,


mRNA, gi|7706185|ref|NM_016639.1|[7706185]; 1844: NM_016647, “Homo sapiens


mesenchymal stem cell protein DSCD75 (LOC51337), mRNA”,


gi|7706199|ref|NM_016647.1|[7706199]; 1845: NM_016651, “Homo sapiens dapper homolog


1, antagonist of beta-catenin (xenopus) (DACT1),”, mRNA,


gi|38569506|ref|NM_016651.4|[38569506]; 1846: NM_016831, “Homo sapiens period homolog


3 (Drosophila) (PER3), mRNA”, gi|8567387|ref|NM_01683 1.1|[8567387]; 1847: NM_016937,


Homo sapiens polymerase (DNA directed), alpha (POLA), mRNA”,


gi|8393994|ref|NM_016937.1|[8393994]; 1848: NM_016940, “Homo sapiens chromosome 21


open reading frame 6 (C21orf6), mRNA”, gi|8393017|ref|NM_016940.1|[8393017]; 1849:


NM_016948, “Homo sapiens par-6 partitioning defective 6 homolog alpha (C. elegans)


(PARD6A),”, mRNA, gi|8394416|ref|NM_016948.1|[8394416]; 1850: NM_017412, “Homo



sapiens frizzled homolog 3 (Drosophila) (FZD3), mRNA”,



gi|22035685|ref|NM_017412.2|[22035685]; 1851: NM_017414, “Homo sapiens ubiquitin


specific protease 18 (USP18), mRNA”, gi|32313609|ref|NM_017414.2|[32313609]; 1852:


NM_017422, “Homo sapiens calmodulin-like 5 (CALML5), mRNA”,


gi|38327636|ref|NM_017422.3|[38327636]; 1853: NM_017426, “Homo sapiens nucleoporin


54 kDa (NUP54), mRNA”, gi|26051236|ref|NM_017426.2|[26051236]; 1854: NM_017429,


Homo sapiens beta-carotene 15,15′-monooxygenase 1 (BCMO1), mRNA”,


gi|8393364|ref|NM_017429.1|[8393364]; 1855: NM_017435, “Homo sapiens solute carrier


organic anion transporter family, member 1C1”, “(SLCO1C1), mRNA”,


gi|21361594|ref|NM_017435.2|[21361594]; 1856: NM_017443 “Homo sapiens polymerase


(DNA directed), epsilon 3 (p17 subunit) (POLE3), mRNA”,


gi|31543422|ref|NM_017443.3|[31543422]; 1857: NM_017495, “Homo sapiens RNA-binding


region (RNP1, RRM) containing 1 (RNPC1), transcript”, “variant 1, mRNA”,


gi|34577106|ref|NM_17495.4|[34577106]; 1858: NM_017542, “Homo sapiens pogo


transposable element with KRAB domain (POGK), mRNA”,


gi|22027479|ref|NM_017542.3|[22027479]; 1859: NM_017559, “Homo sapiens hypothetical


protein DKFZp434H2215 (DKFZp434H2215), mRNA”,


gi|8922137|ref|NM_017559.1|[8922137]; 1860: NM_017566, “Homo sapiens hypothetical


protein DKFZp434G0522 (DKFZp434G0522), mRNA”,


gi|21314674|ref|NM_017566.2|[21314674]; 1861: NM_017571, “Homo sapiens hypothetical


protein LOC55580 (LOC55580), mRNA”, gi|8923837|ref|NM_017571.1|[8923837]; 1862:


NM_017578, “Homo sapiens ropporin, rhophilin associated protein 1 (ROPN1), mRNA”,


gi|21359919|ref|NM_017578.2|[21359919]; 1863: NM_017582, “Homo sapiens ubiquitin-


conjugating enzyme E2Q (putative) (UBE2Q), mRNA”,


gi|38045949|ref|NM_017582.5|[38045949]; 1864: NM_017589, “Homo sapiens B-cell


translocation gene 4 (BTG4), mRNA”, gi|28872723|ref|NM_017589.2|[28872723]; 1865:


NM_017596,, ref|NM_017596.1|[8922142], This record was temporarily removed by RefSeq


staff for additional review.,, 1866: NM_017606, “Homo sapiens hypothetical protein


DKFZp434K1210 (DKFZp434K1210), mRNA”, gi|40254896|ref|NM_017606.2|[40254896];


1867: NM_017610, “Homo sapiens ring finger protein 111 (RNF111), mRNA”,


gi|37595552|ref|NM_017610.6|[37595552]; 1868: NM_017623, “Homo sapiens cyclin M3


(CNNM3), transcript variant 1, mRNA”, gi|40068048|ref|NM_017623.3|[40068048]; 1869:


NM_017624, “Homo sapiens hypothetical protein FLJ20019 (FLJ20019), mRNA”,


gi|8923025|ref|NM_017624.1|[8923025]; 1870: NM_017629, “Homo sapiens eukaryotic


translation initiation factor 2C, 4 (EIF2C4), mRNA”, gi|29029592|ref|NM_017629.2|[29029592];


1871: NM_017630, “Homo sapiens chromosome 14 open reading frame 113 (C14orf113),


mRNA”, gi|8923035|ref|NM_017630.1|[8923035]; 1872: NM_017631, “Homo sapiens


hypothetical protein FLJ20035 (FLJ20035), mRNA”,


gi|37059778|ref|NM_017631.3|[37059778]; 1873: NM_017632, Homo sapiens


collaborates/cooperates with ARF (alternate reading frame) protein, “(CARF), mRNA”,


gi|8923039|ref|NM_017632.1|[8923039]; 1874: NM_017633, “Homo sapiens chromosome 6


open reading frame 37 (C6orf37), mRNA”, gi|8923041|ref|NM_017633.1|[8923041]; 1875:


NM_017634, “Homo sapiens potassium channel tetramerisation domain containing 9 (KCTD9),


mRNA”, gi|39753958|ref|NM_017634.2|[39753958]; 1876: NM_017636, “Homo sapiens


transient receptor potential cation channel, subfamily M, member 4”, “(TRPM4), mRNA”,


gi|21314670|ref|NM_017636.2|[21314670]; 1877: NM_017645, “Homo sapiens family with


sequence similarity 29, member A (FAM29A), mRNA”,


gi|31377561|ref|NM_017645.3|[31377561]; 1878: NM_017647, “Homo sapiens FtsJ homolog 3


(E. coli) (FTSJ3), mRNA”, gi|17017990|ref|NM_017647.2|[17017990]; 1879: NM_017654,


Homo sapiens FLJ20073 protein (FLJ20073), mRNA”,


gi|38201705|ref|NM_017654.2|[38201705]; 1880: NM_017655, “Homo sapiens PDZ domain


protein GIPC2 (GIPC2), mRNA”, gi|41393578|ref|NM_017655.4|[41393578]; 1881:


NM_017657, “Homo sapiens hypothetical protein FLJ20080 (FLJ20080), mRNA”,


gi|31377757|ref|NM_017657.2|[31377757]; 1882: NM_017659, “Homo sapiens hypothetical


protein FLJ20084 (FLJ20084), mRNA”, gi|8923091|ref|NM_017659.1|[8923091]; 1883:


NM_017665, “Homo sapiens zinc finger, CCHC domain containing 10 (ZCCHC10), mRNA”,


gi|8923105|ref|NM_017665.1|[8923105]; 1884: NM_017668, “Homo sapiens nudE nuclear


distribution gene E homolog 1 (A. nidulans) (NDE1),”, mRNA,


gi|8923109|ref|NM_017668.1|[8923109]; 1885: NM_017676, “Homo sapiens hypothetical


protein FLJ20125 (FLJ20125), mRNA”, gi|8923123|ref|NM_017676.1|[8923123]; 1886:


NM_017686, “Homo sapiens ganglioside induced differentiation associated protein 2


(GDAP2),”, mRNA, gi|8923142|ref|NM_017686.1|[8923142]; 1887: NM_017691, “Homo



sapiens hypothetical protein FLJ20156 (FLJ20156), mRNA”,



gi|8923153|ref|NM_017691.1|[8923153]; 1888: NM_017699, “Homo sapiens hypothetical


protein FLJ20174 (FLJ20174), mRNA”, gi|8923170|ref|NM_017699.1|[8923170]; 1889:


NM_017702, “Homo sapiens hypothetical protein FLJ20186 (FLJ20186), mRNA”,


gi|8923176|ref|NM_017702.1|[8923176]; 1890: NM_017703, “Homo sapiens F-box and


leucine-rich repeat protein 12 (FBXL12), mRNA”, gi|8923178|ref|NM_017703.1|[8923178];


1891: NM_017704, “Homo sapiens fetal globin-inducing factor (FGIF), mRNA”,


gi|41350197|ref|NM_017704.2|[41350197]; 1892: NM_017708, “Homo sapiens hypothetical


protein FLJ20200 (FLJ20200), mRNA”, gi|8923189|ref|NM_017708.1|[8923189]; 1893:


NM_017709, “Homo sapiens FLJ20202 protein (FLJ20202), mRNA”,


gi|38570094|ref|NM_017709.2|[38570094]; 1894: NM_017720, “Homo sapiens signal-


transducing adaptor protein-2 (STAP2), mRNA”, gi|8923213|ref|NM_017720.1|[8923213];


1895: NM_017727, “Homo sapiens hypothetical protein FLJ20254 (FLJ20254), mRNA”,


gi|19923809|ref|NM_017727.2|[19923809]; 1896: NM_017728, “Homo sapiens hypothetical


protein FLJ20255 (FLJ20255), mRNA”, gi|40254901|ref|NM_017728.2|[40254901]; 1897:


NM_017735, “Homo sapiens hypothetical protein FLJ20272 (FLJ20272), mRNA”,


gi|42476021|ref|NM_017735.3|[42476021]; 1898: NM_017739, “Homo sapiens O-linked


mannose beta1,2-N-acetylglucosaminyltransferase”, “(FLJ20277), mRNA”,


gi|8923252|ref|NM_017739.1|[8923252]; 1899: NM_017740, “Homo sapiens zinc finger,


DHHC domain containing 7 (ZDHHC7), mRNA”, gi|8923254|ref|NM_017740.1|[8923254];


1900: NM_017742, “Homo sapiens zinc finger, CCHC domain containing 2 (ZCCHC2),


mRNA”, gi|41872708|ref|NM_017742.3|[41872708]; 1901: NM_017743, “Homo sapiens


dipeptidylpeptidase 8 (DPP8), transcript variant 2, mRNA”,


gi|37577092|ref|NM_017743.3|[37577092]; 1902: NM_017744, “Homo sapiens suppression of


tumorigenicity 7 like (ST7L), transcript variant 1,”, mRNA,


gi|38201633|ref|NM_017744.4|[38201633]; 1903: NM_017745, “Homo sapiens BCL6 co-


repressor (BCOR), transcript variant 1, mRNA”, gi|21071036|ref|NM_017745.4|[21071036];


1904: NM_017746, “Homo sapiens testis expressed gene 10 (TEX10), mRNA”,


gi|8923268|ref|NM_017746.1|[8923268]; 1905: NM_017748, “Homo sapiens hypothetical


protein FLJ20291 (FLJ20291), mRNA”, gi|34147582|ref|NM_017748.3|[34147582]; 1906:


NM_017750, “Homo sapiens hypothetical protein FLJ20296 (FLJ20296), mRNA”,


gi|31377747|ref|NM_017750.2|[31377747]; 1907: NM_017751, “Homo sapiens hypothetical


protein FLJ20297 (FLJ20297), mRNA”, gi|8923276|ref|NM_017751.1|[8923276]; 1908:


NM_017761, “Homo sapiens proline-rich nuclear receptor coactivator 2 (PNRC2), mRNA”,


gi|20127576|ref|NM_017761.2|[20127576]; 1909: NM_017762, “Homo sapiens hypothetical


protein FLJ20313 (FLJ20313), mRNA”, gi|8923296|ref|NM_017762.1|[8923296]; 1910:


NM_017766 “Homo sapiens hypothetical protein FLJ20321 (FLJ20321), mRNA”,


gi|40254903|ref|NM_017766.2|[40254903]; 1911: NM_017774, “Homo sapiens CDK5


regulatory subunit associated protein 1-like 1 (CDKAL1), mRNA”,


gi|8923317|ref|NM_017774.1|[8923317]; 1912: NM_017791, “Homo sapiens chromosome 14


open reading frame 58 (C14orf58), mRNA”, gi|8923349|ref|NM_017791.1|[8923349]; 1913:


NM_017801, “Homo sapiens chemokine-like factor super family 6 (CKLFSF6), mRNA”,


gi|32130534|ref|NM_017801.2|[32130534]; 1914: NM_017805, “Homo sapiens Ras-interacting


protein (RAIN), mRNA”, gi|38570104|ref|NM_017805.2|[38570104]; 1915: NM_017806,


Homo sapiens hypothetical protein FLJ20406 (FLJ20406), mRNA”,


gi|8923377|ref|NM_017806.1|[8923377]; 1916: NM_017807, “Homo sapiens O-


sialoglycoprotein endopeptidase (OSGEP), mRNA”, gi|8923379|ref|NM_017807.1|[8923379];


1917: NM_017813, “Homo sapiens hypothetical protein FLJ20421 (FLJ20421), mRNA”,


gi|8923391|ref|NM_017813.1|[8923391]; 1918: NM_017818, “Homo sapiens WD repeat


domain 8 (WDR8), mRNA”, gi|16445433|ref|NM_017818.2|[16445433]; 1919: NM_017827,


Homo sapiens seryl-tRNA synthetase 2 (SARS2), mRNA”,


gi|20149644|ref|NM_017827.2|[20149644]; 1920: NM_017832, “Homo sapiens hypothetical


protein FLJ20457 (FLJ20457), mRNA”, gi|20127565|ref|NM_017832.2|[20127565]; 1921:


NM_017833, “Homo sapiens chromosome 21 open reading frame 55 (C21orf55), mRNA”,


gi|40254907|ref|NM_017833.2|[40254907]; 1922: NM_017835, “Homo sapiens chromosome 21


open reading frame 59 (C21orf59), mRNA”, gi|8923436|ref|NM_017835.1|[8923436]; 1923:


NM_017837, “Homo sapiens hypothetical protein FLJ20477 (FLJ20477), mRNA”,


gi|21361770|ref|NM_017837.2|[21361770]; 1924: NM_017840, “Homo sapiens mitochondrial


ribosomal protein L16 (MRPL16), nuclear gene encoding”, “mitochondrial protein, mRNA”,


gi|27436902|ref|NM_017840.2|[27436902]; 1925: NM_017847, “Homo sapiens chromosome 1


open reading frame 27 (C1orf27), mRNA”, gi|20127566|ref|NM_017847.2|[20127566]; 1926:


NM_017849, “Homo sapiens hypothetical protein FLJ20507 (FLJ20507), mRNA”,


gi|8923465|ref|NM_017849.1|[8923465]; 1927: NM_017850, “Homo sapiens hypothetical


protein FLJ20508 (FLJ20508), mRNA”, gi|8923468|ref|NM_017850.1|[8923468]; 1928:


NM_017851, “Homo sapiens hypothetical protein FLJ20509 (FLJ20509), mRNA”,


gi|8923470|ref|NM_017851.1|[8923470]; 1929: NM_017856, “Homo sapiens hypothetical


protein FLJ20514 (FLJ20514), mRNA”, gi|8923480|ref|NM_017856.1|[8923480]; 1930:


NM_017859, “Homo sapiens uridine kinase-like 1 (URKL1), mRNA”,


gi|8923486|ref|NM_017859.1|[8923486]; 1931: NM_017860, “Homo sapiens hypothetical


protein FLJ20519 (FLJ20519), mRNA”, gi|34147608|ref|NM_017860.3|[34147608]; 1932:


NM_017867, “Homo sapiens hypothetical protein FLJ20534 (FLJ20534), mRNA”,


gi|8923502|ref|NM_017867.1|[8923502]; 1933: NM_017869, “Homo sapiens BTG3 associated


nuclear protein (BANP), transcript variant 1, mRNA”,


gi|17986265|ref|NM_017869.2|[17986265]; 1934: NM_017870, “Homo sapiens heat shock


70 kDa protein 5 (glucose-regulated protein, 78 kDa)”, “binding protein 1 (HSPA5BP1), transcript


variant 1, mRNA”, gi|30089934|ref|NM_017870.2|[30089934]; 1935: NM_017872, “Homo



sapiens hypothetical protein FLJ20546 (FLJ20546), mRNA”,



gi|21361662|ref|NM_017872.2|[21361662]; 1936: NM_017877, “Homo sapiens chromosome 2


open reading frame 18 (C2orf18), mRNA”, gi|31542710|ref|NM_017877.2|[31542710]; 1937:


NM_017880, “Homo sapiens hypothetical protein FLJ20558 (FLJ20558), mRNA”,


gi|8923527|ref|NM_017880.1|[8923527]; 1938: NM_017890, “Homo sapiens Cohen syndrome


1 (COH1), transcript variant 5, mRNA”, gi|35493712|ref|NM_017890.3|[35493712]; 1939:


NM_017896, “Homo sapiens chromosome 20 open reading frame 11 (C20orf11), mRNA”,


gi|40804466|ref|NM_017896.2|[40804466]; 1940: NM_017901, “Homo sapiens two pore


segment channel 1 (TPCN1), mRNA”, gi|29725621|ref|NM_017901.3|[29725621]; 1941:


NM_017903, “Homo sapiens hypothetical protein FLJ20618 (FLJ20618), mRNA”,


gi|31542714|ref|NM_017903.2|[31542714]; 1942: NM_017908, “Homo sapiens hypothetical


protein FLJ20626 (FLJ20626), mRNA”, gi|8923581|ref|NM_017908.1|[8923581]; 1943;


NM_017909, “Homo sapiens chromosome 6 open reading frame 96 (C6orf96), mRNA”,


gi|8923583|ref|NM_017909.1|[8923583]; 1944: NM_017910, “Homo sapiens hypothetical


protein FLJ20628 (FLJ20628), mRNA”, gi|13435382|ref|NM_017910.2|[13435382]; 1945:


NM_017911, “Homo sapiens hypothetical protein FLJ20635 (FLJ20635), mRNA”,


gi|8923587|ref|NM_017911.1|[8923587]; 1946: NM_017913, “Homo sapiens Hsp90-associating


relative of Cdc37 (HARC), mRNA”, gi|8923591|ref|NM_017913.1|[8923591]; 1947:


NM_017914, “Homo sapiens hypothetical protein FLJ20640 (FLJ20640), mRNA”,


gi|42476017|ref|NM_017914.2|[42476017]; 1948: NM_017915, “Homo sapiens hypothetical


protein FLJ20641 (FLJ20641), mRNA”, gi|8923595|ref|NM_017915.1|[8923595]; 1949:


NM_017916, “Homo sapiens hypothetical protein FLJ20643 (FLJ20643), mRNA”,


gi|8923597|ref|NM_017916.1|[8923597]; 1950: NM_017917, “Homo sapiens chromosome 14


open reading frame 10 (C14orf10), mRNA”, gi|31542241|ref|NM_017917.2|[31542241]; 1951:


NM_017926, “Homo sapiens chromosome 14 open reading frame 118 (C14orf118), transcript”,


“variant 1, mRNA”, gi|40018645|ref|NM_017926.2|[40018645]; 1952: NM_017929, “Homo



sapiens peroxisome biogenesis factor 26 (PEX26), mRNA”,



gi|32307138|ref|NM_017929.2|[32307138]; 1953: NM_017932, “Homo sapiens hypothetical


protein FLJ20700 (FLJ20700), mRNA”, gi|8923629|ref|NM_017932.1|[8923629]; 1954:


NM_017933, “Homo sapiens hypothetical protein FLJ20701 (FLJ20701), mRNA”,


gi|40255259|ref|NM_017933.3|[40255259]; 1955: NM_017937, “Homo sapiens hypothetical


protein FLJ20712 (FL120712), mRNA”, gi|8923640|ref|NM_017937.1|[8923640]; 1956:


NM_017938, “Homo sapiens hypothetical protein FLJ20716 (FLJ20716), mRNA”,


gi|31377736|ref|NM_017938.2|[31377736]; 1957: NM_017941, “Homo sapiens lung cancer-


related protein 8 (HLC-8), mRNA”, gi|34222156|ref|NM_017941.3|[34222156]; 1958:


NM_017945, “Homo sapiens solute carrier family 35, member A5 (SLC35A5), mRNA”,


gi|31543636|ref|NM_017945.2|[31543636]; 1959: NM_017946, “Homo sapiens FK506 binding


protein 14, 22 kDa (FKBP14), mRNA”, gi|8923658|ref|NM_017946.1|[8923658]; 1960:


NM_017952, “Homo sapiens FLJ20758 protein (FLJ20758), mRNA”,


gi|38683854|ref|NM_017952.4|[38683854]; 1961: NM_017964, “Homo sapiens solute carrier


family 30 (zinc transporter), member 6 (SLC30A6),”, mRNA,


gi|21687223|ref|NM_017964.2|[21687223]; 1962: NM_017974, “Homo sapiens APG16


autophagy 16-like (S. cerevisiae) (APG16L), transcript”, “variant 2, mRNA”,


gi|38683867|ref|NM_017974.2|[38683867]; 1963: NM_017975, “Homo sapiens hypothetical


protein FLJ10036 (FLJ10036), mRNA”, gi|33300636|ref|NM_017975.2|[33300636]; 1964:


NM_017979, “Homo sapiens smooth muscle cell associated protein-1 (SMAP-1), mRNA”,


gi|8922201|ref|NM_017979.1|[8922201]; 1965: NM_017985, “Homo sapiens chromosome 9


open reading frame 68 (C9orf68), mRNA”, gi|42538977|ref|NM_017985.2|[42538977]; 1966:


NM_017990, “Homo sapiens pyruvate dehydrogenase phosphatase regulatory subunit (PDPR),


mRNA”, gi|32261325|ref|NM_017990.3|[32261325]; 1967: NM_017991, “Homo sapiens


hypothetical protein FLJ10081 (FLJ10081), mRNA”,


gi|21361733|ref|NM_017991.3|[21361733]; 1968: NM_017999, “Homo sapiens ring finger


protein 31 (RNF31), mRNA”, gi|38045939|ref|NM_017999.3|[38045939]; 1969: NM_018000,


Homo sapiens hypothetical protein FLJ10116 (FLJ10116), mRNA”,


gi|8922236|ref|NM_018000.1|[8922236]; 1970: NM_018004, “Homo sapiens hypothetical


protein FLJ10134 (FLJ10134), mRNA”, gi|8922242|ref|NM_018004.1|[8922242]; 1971:


NM_018006, “Homo sapiens hypothetical protein FLJ10140 (FLJ10140), mRNA”,


gi|31542640|ref|NM_018006.2|[31542640]; 1972: NM_018011, “Homo sapiens hypothetical


protein FLJ10154 (FLJ10154), mRNA”, gi|8922258|ref|NM_018011.1|[8922258]; 1973:


NM_018022, “Homo sapiens hypothetical protein FLJ10199 (FLJ10199), mRNA”,


gi|8922276|ref|NM_018022.1|[8922276]; 1974: NM_018023, “Homo sapiens hypothetical


protein FLJ10201 (FLJ10201), mRNA”, gi|33620754|ref|NM_018023.3|[33620754]; 1975:


NM_018024, “Homo sapiens hypothetical protein FLJ10204 (FLJ10204), mRNA”,


gi|8922280|ref|NM_018024.1|[8922280]; 1976: NM_018026, “Homo sapiens phosphofurin


acidic cluster sorting protein 1 (PACS1), mRNA”, gi|30089915|ref|NM_018026.2|[30089915];


1977: NM_018034, “Homo sapiens hypothetical protein FLJ10233 (FLJ10233), mRNA”,


gi|20149650|ref|NM_018034.2|[20149650]; 1978: NM_018037, “Homo sapiens Ral-A exchange


factor RalGPS2 (FLJ10244), mRNA”, gi|8922306|ref|NM_018037.1|[8922306]; 1979:


NM_018039, “Homo sapiens jumonji domain containing 2D (JMJD2D), mRNA”,


gi|39653316|ref|NM_018039.2|[39653316]; 1980: NM_018040, “Homo sapiens hypothetical


protein FLJ10252 (FLJ10252), mRNA”, gi|8922312|ref|NM_018040.1|[8922312]; 1981:


NM_018048, “Homo sapiens hypothetical protein FLJ10292 (FLJ10292), mRNA”,


gi|21361685|ref|NM_018048.2|[21361685]; 1982: NM_018049, “Homo sapiens pleckstrin


homology domain containing, family J member 1 (PLEKHJ1),”, mRNA,


gi|8922332|ref|NM_018049.1|[8922332]; 1983: NM_018050, “Homo sapiens hypothetical


protein FLJ10298 (FLJ10298), mRNA”, gi|31542649|ref|NM_018050.2|[31542649]; 1984:


NM_018056, “Homo sapiens hypothetical protein FLJ10315 (FLJ10315), mRNA”,


gi|8922347|ref|NM_018056.1|[8922347]; 1985: NM_018058, “Homo sapiens cartilage acidic


protein 1 (CRTAC1), mRNA”, gi|42415498|ref|NM_018058.2|[42415498]; 1986: NM_018060,


Homo sapiens mitochondrial isoleucine tRNA synthetase (FLJ10326), mRNA”,


gi|39752644|ref|NM_018060.2|[39752644]; 1987: NM_018061, “Homo sapiens hypothetical


protein FLJ10330 (FLJ10330), mRNA”, gi|8922357|ref|NM_018061.1|[8922357]; 1988:


NM_018064, “Homo sapiens chromosome 6 open reading frame 166 (C6orf166), mRNA”,


gi|39725640|ref|NM_018064.2|[39725640]; 1989: NM_018066, “Homo sapiens hypothetical


protein FLJ10349 (FLJ10349), mRNA”, gi|40254894|ref|NM_018066.2|[40254894]; 1990:


NM_018074, “Homo sapiens hypothetical protein FLJ10374 (FLJ10374), mRNA”,


gi|34222335|ref|NM_018074.3|[34222335]; 1991: NM_018077, “Homo sapiens hypothetical


protein FLJ10377 (FLJ10377), mRNA”, gi|8922387|ref|NM_018077.1|[8922387]; 1992:


NM_018079, “Homo sapiens hypothetical protein FLJ10379 (FLJ10379), mRNA”,


gi|39841072|ref|NM_018079.3|[39841072]; 1993: NM_018083, “Homo sapiens zinc finger


protein 358 (ZNF358), mRNA”, gi|8922400|ref|NM_018083.1|[8922400]; 1994: NM_018090,


Homo sapiens hypothetical protein FLJ10420 (FLJ10420), mRNA”,


gi|39725692|ref|NM_018090.3|[39725692]; 1995: NM_018091, “Homo sapiens elongation


protein 3 homolog (S. cerevisiae) (ELP3), mRNA”, gi|23510282|ref|NM_018091.3|[23510282];


1996: NM_018097, “Homo sapiens hypothetical protein FLJ10460 (FLJ10460), mRNA”,


gi|8922429|ref|NM_018097.1|[8922429]; 1997: NM_018101, “Homo sapiens cell division cycle


associated 8 (CDCA8), mRNA”, gi|8922437|ref|NM_018101.1|[8922437]; 1998: NM_018105,


Homo sapiens THAP domain containing, apoptosis associated protein 1 (THAP1),”, “transcript


variant 1, mRNA”, gi|40068498|ref|NM_018105.2|[40068498]; 1999: NM_018106, “Homo



sapiens zinc finger, DHHC domain containing 4 (ZDHHC4), mRNA”,



gi|21361700|ref|NM_018106.2|[21361700]; 2000: NM_018107, “Homo sapiens RNA-binding


region (RNP1, RRM) containing 4 (RNPC4), mRNA”,


gi|34147682|ref|NM_018107.3|[34147682]; 2001: NM_018108, “Homo sapiens chromosome 14


open reading frame 130 (C14orf130), mRNA”, gi|21361696|ref|NM_018108.2|[21361696];


2002: NM_018111, “Homo sapiens hypothetical protein FLJ10490 (FLJ10490), mRNA”,


gi|8922458|ref|NM_018111.1|[8922458]; 2003: NM_018116, “Homo sapiens misato


(FLJ10504), mRNA”, gi|39780570|ref|NM_018116.2|[39780570]; 2004: NM_018117, “Homo



sapiens WD repeat domain 11 (WDR11), mRNA”, gi|22547233|ref|NM_018117.10|[22547233];



2005: NM_018118, Homo sapiens MCM3 minichromosome maintenance deficient 3 (S. cerevisiae),


“associated protein, antisense (MCM3APAS), mRNA”,


gi|8922473|ref|NM_018118.1|[8922473]; 2006: NM_018119, “Homo sapiens RNA polymerase


III 80 kDa subunit RPC5 (RPC5), mRNA”, gi|38146100|ref|NM_018119.2|[38146100]; 2007:


NM_018124, “Homo sapiens hypothetical protein FLJ10520 (FLJ10520), mRNA”,


gi|19923516|ref|NM_018124.2|[19923516]; 2008: NM_018126, “Homo sapiens hypothetical


protein FLJ10525 (FLJ10525), mRNA”, gi|8922490|ref|NM_018126.1|[8922490]; 2009:


NM_018131, “Homo sapiens chromosome 10 open reading frame 3 (C10orf3), mRNA”,


gi|34147683|ref|NM_018131.3|[34147683]; 2010: NM_018132, “Homo sapiens chromosome 6


open reading frame 139 (C6orf139), mRNA”, gi|40068060|ref|NM_018132.2|[40068060]; 2011:


NM_018133, “Homo sapiens hypothetical protein FLJ10546 (FLJ10546), mRNA”,


gi|38570120|ref|NM_018133.2|[38570120]; 2012: NM_018139, “Homo sapiens chromosome 14


open reading frame 104 (C14orf104), mRNA”, gi|8922518|ref|NM_018139.1|[8922518]; 2013:


NM_018141, “Homo sapiens mitochondrial ribosomal protein S10 (MRPS10), nuclear gene


encoding”, “mitochondrial protein, mRNA”, gi|16554606|ref|NM_018141.2|[16554606]; 2014:


NM_018143, “Homo sapiens kelch-like 11 (Drosophila) (KLHL11), mRNA”,


gi|8922527|ref|NM_018143.1|[8922527]; 2015: NM_018145, “Homo sapiens hypothetical


protein FLJ10579 (FLJ10579), mRNA”, gi|8922531|ref|NM_018145.1|[8922531]; 2016:


NM_018154, “Homo sapiens ASF1 anti-silencing function 1 homolog B (S. cerevisiae)


(ASF1B),”, mRNA, gi|8922548|ref|NM_018154.1|[8922548]; 2017: NM_018158, “Homo



sapiens solute carrier family 4 (anion exchanger), member 1, adaptor”, “protein (SLC4A1AP),



mRNA”, gi|8922556|ref|NM_018158.1|[8922556]; 2018: NM_018163, “Homo sapiens


hypothetical protein FLJ10634 (FLJ10634), mRNA”, gi|8922562|ref|NM_018163.1|[8922562];


2019: NM_018164, “Homo sapiens hypothetical protein FLJ10637 (FLJ10637), mRNA”,


gi|11024685|ref|NM_018164.1|[11024685]; 2020: NM_018171, “Homo sapiens DIP13 beta


(DIP13B), mRNA”, gi|24586662|ref|NM_018171.2|[24586662]; 2021: NM_018172, “Homo



sapiens hypothetical protein FLJ10661 (FLJ10661), mRNA”,



gi|8922578|ref|NM_018172.1|[8922578]; 2022: NM_018174, “Homo sapiens VCY2 interacting


protein 1 (VCY2IP1), mRNA”, gi|21361667|ref|NM_018174.3|[21361667]; 2023: NM_018178,


Homo sapiens GPP34-related protein (GPP34R), mRNA”,


gi|29826327|ref|NM_018178.3|[29826327]; 2024: NM_018179, “Homo sapiens activating


transcription factor 7 interacting protein (ATF7IP),”, mRNA,


gi|38261961|ref|NM_018179.3|[38261961]; 2025: NM_018181, “Homo sapiens zinc finger


protein 532 (ZNF532), mRNA”, gi|24475845|ref|NM_018181.3|[24475845]; 2026: NM_018182,


Homo sapiens hypothetical protein FLJ10700 (FLJ10700), mRNA”,


gi|8922595|ref|NM_018182.1|[8922595]; 2027: NM_018191, Homo sapiens regulator of


chromosome condensation (RCC1) and BTB (POZ) domain, “containing protein 1 (RCBTB1),


mRNA”, gi|19923518|ref|NM_018191.2|[19923518]; 2028: NM_018195, “Homo sapiens


hypothetical protein FLJ10726 (FLJ10726), mRNA”,


gi|40254918|ref|NM_018195.2|[40254918]; 2029: NM_018200, “Homo sapiens high-mobility


group 20A (HMG20A), mRNA”, gi|21359925|ref|NM_018200.2|[21359925]; 2030: NM_018202,


Homo sapiens hypothetical protein FLJ10747 (FLJ10747), mRNA”,


gi|31542660|ref|NM_018202.2|[31542660]; 2031: NM_018205, “Homo sapiens hypothetical


protein FLJ10751 (FLJ10751), mRNA”, gi|8922643|ref|NM_018205.1|[8922643]; 2032:


NM_018206, “Homo sapiens vacuolar protein sorting 35 (yeast) (VPS35), mRNA”,


gi|41352714|ref|NM_018206.3|[41352714]; 2033: NM_018216, “Homo sapiens pantothenate


kinase 4 (PANK4), mRNA”, gi|8922664|ref|NM_018216.1|[8922664]; 2034: NM_018217,


Homo sapiens chromosome 20 open reading frame 31 (C20orf31), mRNA”,


gi|8922666|ref|NM_018217.1|[8922666]; 2035: NM_018223, “Homo sapiens checkpoint with


forkhead and ring finger domains (CHFR), mRNA”, gi|8922674|ref|NM_018223.1|[8922674];


2036: NM_018225, “Homo sapiens homolog of C. elegans smu-1 (SMU-1), mRNA”,


gi|8922678|ref|NM_018225.1|[8922678]; 2037: NM_018226, “Homo sapiens arginyl


aminopeptidase (aminopeptidase B)-like 1 (RNPEPL1), mRNA”,


gi|20070295|ref|NM_018226.2|[20070295]; 2038: NM_018227, “Homo sapiens hypothetical


protein FLJ10808 (FLJ10808), mRNA”, gi|40255038|ref|NM_018227.3|[40255038]; 2039:


NM_018233, “Homo sapiens hypothetical protein FLJ10826 (FLJ10826), mRNA”,


gi|42476029|ref|NM_018233.2|[42476029]; 2040: NM_018241, “Homo sapiens hypothetical


protein FLJ10846 (FLJ10846), mRNA”, gi|8922706|ref|NM_018241.1|[8922706]; 2041:


NM_018245, “Homo sapiens hypothetical protein FLJ10851 (FLJ10851), mRNA”,


gi|8922715|ref|NM_018245.1|[8922715]; 2042: NM_018246, “Homo sapiens hypothetical


protein FLJ10853 (FLJ10853), mRNA”, gi|8922717|ref|NM_018246.1|[8922717]; 2043:


NM_018247, “Homo sapiens chromosome 6 open reading frame 67 (C6orf67), mRNA”,


gi|8922719|ref|NM_018247.1|[8922719]; 2044: NM_018248, “Homo sapiens DNA glycosylase


hFPG2 (FLJ10858), mRNA”, gi|8922721|ref|NM_018248.1|[8922721]; 2045: NM_018250,


Homo sapiens hypothetical protein FLJ10871 (FLJ10871), mRNA”,


gi|8922725|ref|NM_018250.1|[8922725]; 2046: NM_018254, “Homo sapiens hypothetical


protein FLJ10876 (FLJ10876), mRNA”, gi|33620752|ref|NM_018254.2|[33620752]; 2047:


NM_018256, “Homo sapiens WD repeat domain 12 (WDR12), mRNA”,


gi|16445423|ref|NM_018256.2|[16445423]; 2048: NM_018259, “Homo sapiens


tetratricopeptide repeat domain 17 (TTC17), mRNA”,


gi|41055004|ref|NM_018259.3|[41055004]; 2049: NM_018261, “Homo sapiens SEC3-like 1 (S. cerevisiae)


(SEC3L1), transcript variant 1, mRNA”, gi|30410719|ref|NM_018261.2|[30410719];


2050: NM_018263, “Homo sapiens additional sex combs like 2 (Drosophila) (ASXL2),


mRNA”, gi|38146000|ref|NM_018263.2|[38146000]; 2051: NM_018264, “Homo sapiens


hypothetical protein FLJ10900 (FLY10900), mRNA”, gi|8922751|ref|NM_018264.1|[8922751];


2052: NM_018265, “Homo sapiens hypothetical protein FLJ10901 (FLJ10901), mRNA”,


gi|8922753|ref|NM_018265.1|[8922753]; 2053: NM_018266, ”Homo sapiens hypothetical


protein FLJ10902 (FLJ10902), mRNA”, gi|8922755|ref|NM_018266.1|[8922755]; 2054:


NM_018270, “Homo sapiens chromosome 20 open reading frame 20 (C20orf20), mRNA”,


gi|40353206|ref|NM_018270.3|[40353206]; 2055: NM_018273, “Homo sapiens hypothetical


protein FLJ10922 (FLJ10922), mRNA”, gi|32171253|ref|NM_018273.2|[32171253]; 2056:


NM_018279, “Homo sapiens hypothetical protein FLJ10936 (FLJ10936), mRNA”,


gi|21361719|ref|NM_018279.2|[21361719]; 2057: NM_018281, “Homo sapiens hypothetical


protein FLJ10948 (FLJ10948), mRNA”, gi|8922786|ref|NM_018281.1|[8922786]; 2058:


NM_018287 “Homo sapiens Rho GTPase activating protein 12 (ARHGAP12), mRNA”,


gi|26986533|ref|NM_018287.4|[26986533]; 2059: NM_018295, “Homo sapiens hypothetical


protein FLJ11000 (FLJ11000), mRNA”, gi|8922813|ref|NM_018295.1|[8922813]; 2060:


NM_018303, “Homo sapiens SEC5-like 1 (S. cerevisiae) (SEC5L1), mRNA”,


gi|30581133|ref|NM_018303.4|[30581133]; 2061: NM_018308, “Homo sapiens acyl-Coenzyme


A oxidase-like (ACOXL), mRNA”, gi|8922839|ref|NM_018308.1|[8922839]; 2062: NM_018314,


Homo sapiens ubiquitin-conjugating enzyme E2-like (UEV3), mRNA”,


gi|23943813|ref|NM_018314.2|[23943813]; 2063: NM_018317, “Homo sapiens hypothetical


protein FLJ11082 (FLJ11082), mRNA”, gi|8922855|ref|NM_018317.1|[8922855]; 2064:


NM_018319, “Homo sapiens tyrosyl-DNA phosphodiesterase 1 (TDP1), mRNA”,


gi|20127585|ref|NM_018319.2|[20127585]; 2065: NM_018320, “Homo sapiens ring finger


protein 121 (RNF121), transcript variant 1, mRNA”, gi|37588863|ref|NM_018320.3|[37588863];


2066: NM_018327, “Homo sapiens chromosome 20 open reading frame 38 (C20orf38),


mRNA”; gi|8922874|ref|NM_018327.1|[8922874]; 2067: NM_018329, “Homo sapiens


hypothetical protein FLJ11117 (FLJ11117), mRNA”, gi|8922878|ref|NM_018329.1|[8922878];


2068: NM_018338, “Homo sapiens hypothetical protein FLJ11142 (FLJ11142), mRNA”,


gi|31377845|ref|NM_018338.2|[31377845]; 2069: NM_018350,, ref|NM_018350.1|[8922918],


This record was temporarily removed by RefSeq staff for additional review.,, 2070:


NM_018353, “Homo sapiens chromosome 14 open reading frame 106 (C14orf106), mRNA”,


gi|42415491|ref|NM_018353.3|[42415491]; 2071: NM_018354, “Homo sapiens chromosome 20


open reading frame 46 (C20orf46), mRNA”, gi|8922926|ref|NM_018354.1|[8922926]; 2072:


NM_018356, “Homo sapiens hypothetical protein FLJ11193 (FLJ11193), mRNA”,


gi|8922930|ref|NM_018356.1|[8922930]; 2073: NM_018357, “Homo sapiens acheron


(FLJ11196), transcript variant 1, mRNA”, gi|37537709|ref|NM_018357.2|[37537709]; 2074:


NM_018360, “Homo sapiens chromosome X open reading frame 15 (CXorf15), mRNA”,


gi|8922939|ref|NM_018360.1|[8922939]; 2075: NM_018368, “Homo sapiens chromosome 6


open reading frame 209 (C6orf209), mRNA”, gi|31542670|ref|NM_018368.2|[31542670]; 2076:


NM_018372, “Homo sapiens receptor-interacting factor 1 (RIF1), mRNA”,


gi|31377732|ref|NM_018372.2|[31377732]; 2077: NM_018374, “Homo sapiens hypothetical


protein FLJ11273 (FLJ11273), mRNA”, gi|40254892|ref|NM_018374.2|[40254892]; 2078:


NM_018375, “Homo sapiens solute carrier family 39 (zinc transporter), member 9


(SLC39A9),”, mRNA, gi|40254927|ref|NM_018375.2|[40254927]; 2079: NM_018378, “Homo



sapiens F-box and leucine-rich repeat protein 8 (FBXL8), mRNA”,



gi|22547145|ref|NM_018378.2|[22547145]; 2080: NM_018379, “Homo sapiens hypothetical


protein FLJ11280 (FLJ11280), mRNA”, gi|31377840|ref|NM_018379.2|[31377840]; 2081:


NM_018383, “Homo sapiens WD repeat domain 33 (WDR33), mRNA”,


gi|19923528|ref|NM_018383.2|[19923528]; 2082: NM_018386, “Homo sapiens hypothetical


protein FLJ11305 (FLJ11305), mRNA”, gi|8922986|ref|NM_018386.1|[8922986]; 2083:


NM_018388, “Homo sapiens muscleblind-like 3 (Drosophila) (MBNL3), mRNA”,


gi|19387843|ref|NM_018388.2|[19387843]; 2084: NM_018389, “Homo sapiens solute carrier


family 35, member C1 (SLC35C1), mRNA”, gi|37059730|ref|NM_018389.3|[37059730]; 2085:


NM_018398, “Homo sapiens calcium channel, voltage-dependent, alpha 2/delta 3 subunit”,


“(CACNA2D3), mRNA”, gi|8923764|ref|NM_018398.1|[8923764]; 2086: NM_018403, “Homo



sapiens transcription factor SMIF (HSA275986), mRNA”,



gi|8923766|ref|NM_018403.1|[8923766]; 2087: NM_018410, “Homo sapiens hypothetical


protein DKFZp762E1312 (DKFZp762E1312), mRNA”,


gi|21361746|ref|NM_018410.2|[21361746]; 2088: NM_018418, “Homo sapiens


spermatogenesis associated 7 (SPATA7), mRNA”, gi|13384599|ref|NM_018418.1|[13384599];


2089: NM_018419, “Homo sapiens SRY (sex determining region Y)-box 18 (SOX18), mRNA”,


gi|31077201|ref|NM_018419.2|[31077201]; 2090: NM_018422, “Homo sapiens hypothetical


protein DKFZp761K1423 (DKFZp761K1423), mRNA”,


gi|8922171|ref|NM_018422.1|[8922171]; 2091: NM_018428, “Homo sapiens hepatocellular


carcinoma-associated antigen 66 (HCA66), mRNA”, gi|8923721|ref|NM_018428.1|[8923721];


2092: NM_018431, “Homo sapiens docking protein 5 (DOK5), transcript variant 1, mRNA”,


gi|29544725|ref|NM_018431.2|[29544725]; 2093: NM_018433, “Homo sapiens jumonji domain


containing 1 (JMJD1), mRNA”, gi|20357521|ref|NM_018433.2|[20357521]; 2094: NM_018441,


Homo sapiens peroxisomal trans-2-enoyl-CoA reductase (PECR), mRNA”,


gi|19923816|ref|NM_018441.2|[19923816]; 2095: NM_018444, “Homo sapiens protein


phosphatase 2C, magnesium-dependent, catalytic subunit”, “(PPM2C), mRNA”,


gi|8923959|ref|NM_018444.1|[8923959]; 2096: NM_018452, “Homo sapiens chromosome 6


open reading frame 35 (C6orf35), mRNA”, gi|24431986|ref|NM_018452.2|[24431986]; 2097:


NM_018453, “Homo sapiens chromosome 14 open reading frame 11 (C14orf11), mRNA”,


gi|30425545|ref|NM_018453.2|[30425545]; 2098: NM_018457, “Homo sapiens DKFZp564J157


protein (DKFZP564J157), mRNA”, gi|35250772|ref|NM_018457.2|[35250772]; 2099:


NM_018459,, ref|NM_018459.1|[8922103], This record was replaced or removed. See revision


history for details.,, 2100: NM_018464, “Homo sapiens chromosome 10 open reading frame 70


(C10orf70), mRNA”, gi|8923929|ref|NM_018464.1|[8923929]; 2101: NM_018465, “Homo



sapiens chromosome 9 open reading frame 46 (C9orf46), mRNA”,



gi|8923931|ref|NM_018465.1|[8923931]; 2102: NM_018469, “Homo sapiens uncharacterized


hypothalamus protein HT008 (HT008), mRNA”, gi|38679908|ref|NM_018469.3|[38679908];


2103: NM_018473, “Homo sapiens thioesterase superfamily member 2 (THEM2), mRNA”,


gi|40549423|ref|NM_018473.2|[40549423]; 2104: NM_018474, “Homo sapiens chromosome 20


open reading frame 19 (C20orf19), mRNA”, gi|32189414|ref|NM_018474.2|[32189414]; 2105:


NM_018478, “Homo sapiens chromosome 20 open reading frame 35 (C20orf35), mRNA”,


gi|8923782|ref|NM_018478.1|[8923782]; 2106: NM_018480, “Homo sapiens uncharacterized


hypothalamus protein HT007 (HT007), mRNA”, gi|32189381|ref|NM_018480.2|[32189381];


2107: NM_018484, “Homo sapiens solute carrier family 22 (organic anion/cation transporter),


member”, “11 (SLC22A11), mRNA”, gi|24497483|ref|NM_018484.2|[24497483]; 2108:


NM_018487, “Homo sapiens hepatocellular carcinoma-associated antigen 112 (HCA112),


mRNA”, gi|32484986|ref|NM_018487.2|[32484986]; 2109: NM_018489, “Homo sapiens ash1


(absent, small, or homeotic)-like (Drosophila) (ASH1L), mRNA”,


gi|8922080|ref|NM_018489.1|[8922080]; 2110: NM_018557, Homo sapiens low density


lipoprotein-related protein 1B (deleted in tumors), “(LRP1B), mRNA”,


gi|9055269|ref|NM_018557.1|[9055269]; 2111: NM_018569, “Homo sapiens hypothetical


protein PRO0971 (PRO0971), mRNA”, gi|21361756|ref|NM_018569.2|[21361756]; 2112:


NM_018584, “Homo sapiens calcium/calmodulin-dependent protein kinase II (CaMKIINalpha),


mRNA”, gi|31324542|ref|NM_018584.4|[31324542]; 2113: NM_018589, “Homo sapiens


chromosome 14 open reading frame 116 (C14orf116), mRNA”,


gi|20127573|ref|NM_018589.2|[20127573]; 2114: NM_018590, “Homo sapiens chondroitin


sulfate GalNAcT-2 (GALNACT-2), mRNA”, gi|24429591|ref|NM_018590.3|[24429591]; 2115:


NM_018602, “Homo sapiens DnaJ (Hsp40) homolog, subfamily A, member 4 (DNAJA4),


mRNA”, gi|33354248|ref|NM_018602.2|[33354248]; 2116: NM_018622, “Homo sapiens


presenilin associated, rhomboid-like (PSARL), mRNA”,


gi|20127651|ref|NM_018622.3|[20127651]; 2117: NM_018640, “Homo sapiens neuronal


specific transcription factor DAT1 (DAT1), mRNA”,


gi|41350202|ref|NM_018640.3|[41350202]; 2118: NM_018641, “Homo sapiens carbohydrate


(chondroitin 4) sulfotransferase 12 (CHST12), mRNA”,


gi|20070291|ref|NM_018641.2|[20070291]; 2119: NM_018644, “Homo sapiens beta-1,3-


glucuronyltransferase 1 (glucuronosyltransferase P)”, “(B3GAT1), transcript variant 1, mRNA”,


gi|16905508|ref|NM_018644.2|[16905508]; 2120: NM_018648, “Homo sapiens nucleolar


protein family A, member 3 (H/ACA small nucleolar RNPs)”, “(NOLA3), mRNA”,


gi|15011920|ref|NM_018648.2|[15011920]; 2121: NM_018649, “Homo sapiens H2A histone


family, member Y2 (H2AFY2), mRNA”, gi18923919|ref|NM_018649.1|[8923919]; 2122:


NM_018650, “Homo sapiens MAP/microtubule affinity-regulating kinase 1 (MARK1),


mRNA”, gi|33589842|ref|NM_018650.2|[33589842]; 2123: NM_018654, “Homo sapiens G


protein-coupled receptor, family C, group 5, member D (GPRC5D),”, mRNA,


gi|8923704|ref|NM_018654.1|[8923704]; 2124: NM_018674, “Homo sapiens amiloride-


sensitive cation channel 4, pituitary (ACCN4), transcript”, “variant 1, mRNA”,


gi|33519441|ref|NM_018674.3|[33519441]; 2125: NM_018687, “Homo sapiens hepatocellular


carcinoma-associated gene TD26 (LOC55908), mRNA”,


gi|33667073|ref|NM_018687.3|[33667073]; 2126: NM_018688, “Homo sapiens bridging


integrator 3 (BIN3), mRNA”, gi|39725693|ref|NM_018688.3|[39725693]; 2127: NM_018695,


Homo sapiens erbb2 interacting protein (ERBB2IP), mRNA”,


gi|8923908|ref|NM_018695.1|[8923908]; 2128: NM_018696, “Homo sapiens elaC homolog 1


(E. coli) (ELAC1), mRNA”, gi|8922121|ref|NM_018696.1|[8922121]; 2129: NM_018697,



Homo sapiens LanC lantibiotic synthetase component C-like 2 (bacterial), “(LANCL2), mRNA”,



gi|19923550|ref|NM_018697.2|[19923550]; 2130: NM_018704, “Homo sapiens hypothetical


protein DKFZp547A023 (DKFZp547A023), mRNA”,


gi|24308178|ref|NM_018704.1|[24308178]; 2131: NM_018705,, ref|NM_018705.1|[8922152],


This record was temporarily removed by RefSeq staff for additional review.,, 2132:


NM_018722, “Homo sapiens BWRT protein (HSA404617), mRNA”,


gi|10190657|ref|NM_018722.1|[10190657]; 2133: NM_018723, “Homo sapiens ataxin 2-


binding protein 1 (A2BP1), transcript variant 4, mRNA”,


gi|22538402|ref|NM_018723.2|[22538402]; 2134: NM_018725, “Homo sapiens interleukin 17


receptor B (IL17RB), transcript variant 1, mRNA”, gi|27477073|ref|NM_018725.2|[27477073];


2135: NM_018845, “Homo sapiens stromal cell protein (LOC55974), mRNA”,


gi|10047123|ref|NM_018845.1|[10047123]; 2136: NM_018897, “Homo sapiens dynein,


axonemal, heavy polypeptide 7 (DNAH7), mRNA”, gi|17864091|ref|NM_018897.1|[17864091];


2137: NM_018943, “Homo sapiens tubulin, alpha 8 (TUBA8), mRNA”,


gi|9507214|ref|NM_018943.1|[9507214]; 2138: NM_018945, “Homo sapiens phosphodiesterase


7B (PDE7B), mRNA”, gi|40255306|ref|NM_018945.2|[40255306]; 2139: NM_018947, “Homo



sapiens cytochrome c, somatic (CYCS), nuclear gene encoding mitochondrial”, “protein,



mRNA”, gi|34328939|ref|NM_018947.4|[34328939]; 2140: NM_018957, “Homo sapiens SH3-


domain binding protein 1 (SH3BP1), mRNA”, gi|15147251|ref|NM_018957.2|[15147251]; 2141:


NM_018959, “Homo sapiens DAZ associated protein 1 (DAZAP1), transcript variant 2,


mRNA”, gi|25470885|ref|NM_018959.2|[25470885]; 2142: NM_018967, “Homo sapiens


syntrophin, gamma 1 (SNTG1), mRNA”, gi|9507162|ref|NM_018967.1|[9507162]; 2143:


NM_018973, “Homo sapiens dolichyl-phosphate mannosyltransferase polypeptide 3 (DPM3),”,


“transcript variant 1, mRNA”, gi|24430133|ref|NM_018973.3|[24430133]; 2144: NM_018975,


Homo sapiens telomeric repeat binding factor 2, interacting protein (TERF2IP),”, mRNA,


gi|9507032|ref|NM_018975.1|[9507032]; 2145: NM_018982, “Homo sapiens hypothetical


protein DJ167A19.1 (DJ167A19.1), mRNA”, gi|40538797|ref|NM_018982.3|[40538797]; 2146:


NM_018983, “Homo sapiens nucleolar protein family A, member 1 (H/ACA small nucleolar


RNPs)”, “(NOLA1), transcript variant 1, mRNA”, gi|15011914|ref|NM_018983.2|[15011914];


2147: NM_018990, “Homo sapiens chromosome X open reading frame 9 (CXorf9), mRNA”,


gi|40254885|ref|NM_018990.2|[40254885]; 2148: NM_018992, “Homo sapiens potassium


channel tetramerisation domain containing 5 (KCTD5), mRNA”,


gi|9506650|ref|NM_018992.1|[9506650]; 2149: NM_018993, “Homo sapiens Ras and Rab


interactor 2 (RIN2), mRNA”, gi|35493905|ref|NM_018993.2|[35493905]; 2150: NM_019002,


Homo sapiens ETAA16 protein (ETAA16), mRNA”,


gi|37059813|ref|NM_019002.2|[37059813]; 2151: NM_019006, “Homo sapiens protein


associated with PRK1 (AWP1), mRNA”, gi|21359917|ref|NM_019006.2|[21359917]; 2152:


NM_019008,, ref|NM_019008.4|[42766427]; 2153: NM_019009, “Homo sapiens toll


interacting protein (TOLLIP), mRNA”, gi|21361618|ref|NM_019009.2|[21361618]; 2154:


NM_019014, “Homo sapiens polymerase (RNA) I polypeptide B, 128 kDa (POLR1B), mRNA”,


gi|33469940|ref|NM_019014.2|[33469940]; 2155: NM_019020, “Homo sapiens TBC1 domain


family, member 16 (TBC1D16), mRNA”, gi|33563375|ref|NM_019020.2|[33563375]; 2156:


NM_019021, “Homo sapiens hypothetical protein FLJ20010 (FLJ20010), mRNA”,


gi|9506646|ref|NM_019021.1|[9506646]; 2157: NM_019023, “Homo sapiens hypothetical


protein FLJ10640 (FLJ10640), mRNA”, gi|9506614|ref|NM_019023.1|[9506614]; 2158:


NM_019033, “Homo sapiens hypothetical protein FLJ11235 (FLJ11235), mRNA”,


gi|9506642|ref|NM_019033.1|[9506642]; 2159: NM_019040, “Homo sapiens elongation protein


4 homolog (S. cerevisiae) (ELP4), mRNA”, gi|21361628|ref|NM_019040.2|[21361628]; 2160:


NM_019045, “Homo sapiens similar to rab11-binding protein (DKFZp686L20145), mRNA”,


gi|32526902|ref|NM_019045.2|[32526902]; 2161: NM_019055, “Homo sapiens roundabout


homolog 4, magic roundabout (Drosophila) (ROBO4), mRNA”,


gi|17511434|ref|NM_019055.4|[17511434]; 2162: NM_019056, “Homo sapiens neuronal


protein 17.3 (P17.3), mRNA”, gi|20127560|ref|NM_019056.2|[20127560]; 2163: NM_019059,



Homo sapiens translocase of outer mitochondrial membrane 7 homolog (yeast), “(TOMM7),



mRNA”, gi|9506858|ref|NM_019059.1|[9506858]; 2164: NM_019063, “Homo sapiens


echinoderm microtubule associated protein like 4 (EML4), mRNA”,


gi|19923496|ref|NM_019063.2|[19923496]; 2165: NM_019064, “Homo sapiens sidekick


homolog 2 (chicken) (SDK2), mRNA”, gi|21735576|ref|NM_019064.2|[21735576]; 2166:


NM_019069, “Homo sapiens WD repeat domain 5B (WDR5B), mRNA”,


gi|42544246|ref|NM_019069.3|[42544246]; 2167: NM_019074, “Homo sapiens delta-like 4


(Drosophila) (DLL4), mRNA”, gi|31881762|ref|NM_019074.2|[31881762]; 2168: NM_019081,


Homo sapiens limkain b1 (LKAP), transcript variant 2, mRNA”,


gi|34878696|ref|NM_019081.2|[34878696]; 2169: NM_019082, “Homo sapiens DEAD (Asp-


Glu-Ala-Asp) box polypeptide 56 (DDX56), mRNA”, gi|9506930|ref|NM_019082.1|[9506930];


2170: NM_019083, “Homo sapiens hypothetical protein FLJ10287 (FLJ10287), mRNA”,


gi|11024703|ref|NM_019083.1|[11024703]; 2171: NM_019088, “Homo sapiens hypothetical


protein F23149_1 (PD2), mRNA”, gi|42476168|ref|NM_019088.2|[42476168]; 2172:


NM_019096, “Homo sapiens GTP binding protein 2 (GTPBP2), mRNA”,


gi|19923498|ref|NM_019096.2|[19923498]; 2173: NM_019102, “Homo sapiens homeo box A5


(HOXA5), mRNA”, gi|24497516|ref|NM_019102.2|[24497516]; 2174: NM_019103, “Homo



sapiens hypothetical protein LOC55954 (LOC55954), mRNA”,



gi|9506862|ref|NM_019103.1|[9506862]; 2175: NM_019104, “Homo sapiens protein F25965


(F25965), mRNA”, gi|28144915|ref|NM_019104.1|[28144915]; 2176: NM_019112, “Homo



sapiens ATP-binding cassette, sub-family A (ABC1), member 7 (ABCA7),”, “transcript variant



1, mRNA”, gi|15451836|ref|NM_019112.2|[15451836]; 2177: NM_019613, “Homo sapiens


hypothetical protein 628 (LOC56270), mRNA”, gi|19923554|ref|NM_019613.2|[19923554];


2178: NM_019843, Homo sapiens eukaryotic translation initiation factor 4E nuclear import


factor 1, “(EIF4ENIF1), mRNA”, gi|10947034|ref|NM_019843.2|[10947034]; 2179:


NM_019845, “Homo sapiens candidate mediator of the p53-dependent G2 arrest (REPRIMO),


mRNA”, gi|9790192|ref|NM_019845.1|[9790192]; 2180: NM_019848, “Homo sapiens solute


carrier family 10 (sodium/bile acid cotransporter family),”, “member 3 (SLC10A3), mRNA”,


gi|10938005|ref|NM_019848.2|[10938005]; 2181: NM_019851, “Homo sapiens fibroblast


growth factor 20 (FGF20), mRNA”, gi|9789946|ref|NM_019851.1|[9789946]; 2182:


NM_019852, “Homo sapiens methyltransferase like 3 (METTL3), mRNA”,


gi|21361826|ref|NM_019852.2|[21361826]; 2183: NM_019857, “Homo sapiens CTP synthase II


(CTPS2), transcript variant 1, mRNA”, gi|28559082|ref|NM_019857.3|[28559082]; 2184:


NM_019887, “Homo sapiens diablo homolog (Drosophila) (DIABLO), nuclear gene encoding”,


“mitochondrial protein, transcript variant 1, mRNA”, gi|42544195|ref|NM_019887.3|[42544195];


2185: NM_020062, “Homo sapiens SLC2A4 regulator (SLC2A4RG), mRNA”,


gi|39777592|ref|NM_020062.3|[39777592]; 2186: NM_020120, “Homo sapiens UDP-glucose


ceramide glucosyltransferase-like 1 (UGCGL1), mRNA”,


gi|9910279|ref|NM_020120.1|[9910279]; 2187: NM_020121, “Homo sapiens UDP-glucose


ceramide glucosyltransferase-like 2 (UGCGL2), mRNA”,


gi|11386200|ref|NM_020121.2|[11386200]; 2188: NM_020123, “Homo sapiens SM-11044


binding protein (SMBP), mRNA”, gi|33859832|ref|NM_020123.2|[33859832]; 2189:


NM_020126, “Homo sapiens sphingosine kinase 2 (SPHK2), mRNA”,


gi|21361698|ref|NM_020126.3|[21361698]; 2190: NM_020127, “Homo sapiens tuftelin 1


(TUFT1), mRNA”, gi|9910595|ref|NM_020127.1|[9910595]; 2191: NM_020130, “Homo



sapiens chromosome 8 open reading frame 4 (C8orf4), mRNA”,



gi|21359931|ref|NM_020130.2|[21359931]; 2192: NM_020133, Homo sapiens 1-acylglycerol-


3-phosphate O-acyltransferase 4 (lysophosphatidic, “acid acyltransferase, delta) (AGPAT4),


mRNA”, gi|9910391|ref|NM_020133.1|[9910391]; 2193: NM_020135, “Homo sapiens Werner


helicase interacting protein 1 (WRNIP1), transcript variant”, “1, mRNA”,


gi|18426901|ref|NM_020135.2|[18426901]; 2194: NM_020142, “Homo sapiens


NADH: ubiquinone oxidoreductase MLRQ subunit homolog (LOC56901),”, mRNA,


gi|34147589|ref|NM_020142.3|[34147589]; 2195: NM_020144, “Homo sapiens poly(A)


polymerase beta (testis specific) (PAPOLB), mRNA”,


gi|37202113|ref|NM_020144.3|[37202113]; 2196: NM_020147, “Homo sapiens THAP domain


containing 10 (THAP10), mRNA”, gi|31543086|ref|NM_020147.2|[31543086]; 2197:


NM_020151, “Homo sapiens START domain containing 7 (STARD7), transcript variant 1,


mRNA”, gi|21450854|ref|NM_020151.2|[21450854]; 2198: NM_020154, “Homo sapiens


chromosome 15 hypothetical ATG/GTP binding protein (LOC56851), mRNA”,


gi|9910345|ref|NM_020154.1|[9910345]; 2199: NM_020156, Homo sapiens core 1 UDP-


galactose: N-acetylgalactosamine-alpha-R beta, “1,3-galactosyltransferase (C1GALT1), mRNA”,


gi|9910143|ref|NM_020156.1|[9910143]; 2200: NM_020169, “Homo sapiens latexin protein


(LXN), mRNA”, gi|21359932|ref|NM_020169.2|[21359932]; 2201: NM_020170, “Homo



sapiens hypothetical protein from EUROIMAGE 2021883 (LOC56926), mRNA”,



gi|24308184|ref|NM_020170.1|[24308184]; 2202: NM_020184, “Homo sapiens cyclin M4


(CNNM4), mRNA”, gi|41350205|ref|NM_020184.2|[41350205]; 2203: NM_020186, “Homo



sapiens ACN9 homolog (S. cerevisiae) (ACN9), mRNA”,



gi|9910179|ref|NM_020186.1|[9910179]; 2204: NM_020188, “Homo sapiens DC13 protein


(DC13), mRNA”, gi|42476040|ref|NM_020188.2|[42476040]; 2205: NM_020189, “Homo



sapiens DC6 protein (DC6), mRNA”, gi|34222364|ref|NM_020189.4|[34222364]; 2206:



NM_020191, “Homo sapiens mitochondrial ribosomal protein S22 (MRPS22), nuclear gene


encoding”, “mitochondrial protein, mRNA”, gi|16554602|ref|NM_020191.2|[16554602]; 2207:


NM_020194, “Homo sapiens GL004 protein (GL004), mRNA”,


gi|31377606|ref|NM_020194.4|[31377606]; 2208: NM_020195, “Homo sapiens chromosome 14


open reading frame 124 (C14orf124), mRNA”, gi|9910257|ref|NM_020195.1|[9910257]; 2209:


NM_020196, “Homo sapiens XPA binding protein 2 (XAB2), mRNA”,


gi|9910259|ref|NM_020196.1|[9910259]; 2210: NM_020198, “Homo sapiens GK001 protein


(GK001), mRNA”, gi|9910241|ref|NM_020198.1|[9910241]; 2211: NM_020224,,


ref|NM_020224.1|[9910203], This record was temporarily removed by RefSeq staff for


additional review.,, 2212: NM_020226, “Homo sapiens PR domain containing 8 (PRDM8),


mRNA”, gi|41349479|ref|NM_020226.2|[41349479]; 2213: NM_020228, “Homo sapiens PR


domain containing 10 (PRDM10), transcript variant 1, mRNA”,


gi|41349457|ref|NM_020228.2|[41349457]; 2214: NM_020229, “Homo sapiens PR domain


containing 11 (PRDM11), mRNA”, gi|41349465|ref|NM_020229.2|[41349465]; 2215:


NM_020230, “Homo sapiens peter pan homolog (Drosophila) (PPAN), mRNA”,


gi|41872679|ref|NM_020230.3|[41872679]; 2216: NM_020231, “Homo sapiens x 010 protein


(MDS010), mRNA”, gi|34303962|ref|NM_020231.3|[34303962]; 2217: NM_020232, “Homo



sapiens hepatocellular carcinoma susceptibility protein (HCCA3), mRNA”,



gi|39725705|ref|NM_020232.3|[39725705]; 2218: NM_020233, “Homo sapiens x 006 protein


(MDS006), mRNA”, gi|37059747|ref|NM_020233.3|[37059747]; 2219: NM_020234, “Homo



sapiens x 009 protein (MDS009), mRNA”, gi|34222368|ref|NM_020234.3|[34222368]; 2220:



NM_020239, “Homo sapiens small protein effector 1 of Cdc42 (SPEC1), mRNA”,


gi|12965169|ref|NM_020239.2|[12965169]; 2221: NM_020243, Homo sapiens translocase of


outer mitochondrial membrane 22 homolog (yeast), “(TOMM22), mRNA”,


gi|39725679|ref|NM_020243.3|[39725679]; 2222: NM_020247, “Homo sapiens chaperone,


ABC1 activity of bc1 complex like (S. pombe) (CABC1),”, mRNA,


gi|34147521|ref|NM_020247.3|[34147521]; 2223: NM_020249, Homo sapiens a disintegrin-like


and metalloprotease (reprolysin type) with, “thrombospondin type 1 motif, 9 (ADAMTS9),


transcript variant 3, mRNA”, gi|33624884|ref|NM_020249.2|[33624884]; 2224: NM_020307,


Homo sapiens cyclin L1 (CCNL1), mRNA”, gi|9945319|ref|NM_020307.1|[9945319]; 2225:


NM_020309, Homo sapiens solute carrier family 17 (sodium-dependent inorganic phosphate,


“cotransporter), member 7 (SLC17A7), mRNA”, gi|9945321|ref|NM_020309.1|[9945321]; 2226:


NM_020310, “Homo sapiens MAX binding protein (MNT), mRNA”,


gi|9945317|ref|NM_020310.1|[9945317]; 2227: NM_020319, “Homo sapiens hypothetical


protein DKFZp564O043 (DKFZP564O043), mRNA”,


gi|28461128|ref|NM_020319.1|[28461128]; 2228: NM_020354, “Homo sapiens ectonucleoside


triphosphate diphosphohydrolase 7 (ENTPD7), mRNA”,


gi|9966820|ref|NM_020354.1|[9966820]; 2229: NM_020357, “Homo sapiens PEST-containing


nuclear protein (PCNP), mRNA”, gi|9966826|ref|NM_020357.1|[9966826]; 2230: NM_020363,


Homo sapiens deleted in azoospermia 2 (DAZ2), mRNA”,


gi|11036659|ref|NM_020363.1|[11036659]; 2231: NM_020367, “Homo sapiens chromosome 12


open reading frame 6 (C12orf6), mRNA”, gi|20127593|ref|NM_020367.2|[20127593]; 2232:


NM_020371, “Homo sapiens apoptosis, caspase activation inhibitor (AVEN), mRNA”,


gi|9966840|ref|NM_020371.1|[9966840]; 2233: NM_020375, “Homo sapiens chromosome 12


open reading frame 5 (C12orf5), mRNA”, gi|9966848|ref|NM_020375.1|[9966848]; 2234:


NM_020379, “Homo sapiens mannosidase, alpha, class 1C, member 1 (MAN1C1), mRNA”,


gi|9966902|ref|NM_020379.1|[9966902]; 2235: NM_020380, “Homo sapiens AF15q14 protein


(AF15Q14), mRNA”, gi|24475852|ref|NM_020380.2|[24475852]; 2236: NM_020381, “Homo



sapiens chromosome 6 open reading frame 210 (C6orf210), mRNA”,



gi|29893561|ref|NM_020381.2|[29893561]; 2237: NM_020387, “Homo sapiens RAB25,


member RAS oncogene family (RAB25), mRNA”, gi|9966860|ref|NM_020387.1|[9966860];


2238: NM_020397, “Homo sapiens calcium/calmodulin-dependent protein kinase ID


(CAMK1D), mRNA”, gi|9966874|ref|NM_020397.1|[9966874]; 2239: NM_020401, “Homo



sapiens nuclear pore complex protein (NUP107), mRNA”,



gi|9966880|ref|NM_020401.1|[9966880]; 2240: NM_020410, “Homo sapiens ATPase type 13A


(ATP13A), mRNA”, gi|9966896|ref|NM_020410.1|[9966896]; 2241: NM_020418, “Homo



sapiens poly(rC) binding protein 4 (PCBP4), transcript variant 1, mRNA”,



gi|14670367|ref|NM_020418.2|[14670367]; 2242: NM_020423, “Homo sapiens ezrin-binding


partner PACE-1 (PACE-1), transcript variant 1, mRNA”,


gi|27363466|ref|NM_020423.4|[27363466]; 2243: NM_020424, “Homo sapiens hypothetical


protein A-211C6.1 (LOC57149), mRNA”, gi|19923825|ref|NM_020424.2|[19923825]; 2244:


NM_020433, “Homo sapiens junctophilin 2 (JPH2), transcript variant 1, mRNA”,


gi|29893810|ref|NM_020433.3|[29893810]; 2245: NM_020453, “Homo sapiens ATPase, Class


V, type 10D (ATP10D), mRNA”, gi|28466988|ref|NM_020453.2|[28466988]; 2246:


NM_020465, “Homo sapiens NDRG family member 4 (NDRG4), mRNA”,


gi|14165263|ref|NM_020465.1|[14165263]; 2247: NM_020466, “Homo sapiens hypothetical


protein dJ122O8.2 (DJ122O8.2), mRNA”, gi|20070310|ref|NM_020466.3|[20070310]; 2248:


NM_020529, Homo sapiens nuclear factor of kappa light polypeptide gene enhancer in B-cells,


“inhibitor, alpha (NFKBIA), mRNA”, gi|10092618|ref|NM_020529.1|[10092618]; 2249:


NM_020533, “Homo sapiens mucolipin 1 (MCOLN1), mRNA”,


gi|10092596|ref|NM_020533.1|[10092596]; 2250: NM_020549, “Homo sapiens choline


acetyltransferase (CHAT), transcript variant M, mRNA”,


gi|11038626|ref|NM_020549.2|[11038626]; 2251: NM_020638, “Homo sapiens fibroblast


growth factor 23 (FGF23), mRNA”, gi|15055547|ref|NM_020638.2|[15055547]; 2252:


NM_020639, “Homo sapiens ankyrin repeat domain 3 (ANKRD3), mRNA”,


gi|41327753|ref|NM_020639.2|[41327753]; 2253: NM_020640, “Homo sapiens RP42 homolog


(RP42), mRNA”, gi|36030882|ref|NM_020640.2|[36030882]; 2254: NM_020642, “Homo



sapiens chromosome 11 open reading frame 17 (C11orf17), transcript variant”, “2, mRNA”,



gi|21361869|ref|NM_020642.2|[21361869]; 2255: NM_020644, “Homo sapiens chromosome 11


open reading frame 15 (C11orf15), mRNA”, gi|11034854|ref|NM_020644.1|[11034854]; 2256:


NM_020645, “Homo sapiens nuclear receptor interacting protein 3 (NRIP3), mRNA”,


gi|11034818|ref|NM_020645.1|[11034818]; 2257: NM_020648, “Homo sapiens twisted


gastrulation homolog 1 (Drosophila) (TWSG1), mRNA”,


gi|21314788|ref|NM_020648.3|[21314788]; 2258: NM_020649, “Homo sapiens chromobox


homolog 8 (Pc class homolog, Drosophila) (CBX8), mRNA”,


gi|10190681|ref|NM_020649.1|[10190681]; 2259: NM_020655, “Homo sapiens junctophilin 3


(JPH3), mRNA”, gi|21704282|ref|NM_020655.2|[21704282]; 2260: NM_020669,,


ref|NM_020669.1|[10190709], This record was temporarily removed by RefSeq staff for


additional review.,, 2261: NM_020673, “Homo sapiens RAB22A, member RAS oncogene


family (RAB22A), mRNA”, gi|34577103|ref|NM_020673.2|[34577103]; 2262: NM_020685,


Homo sapiens HT021 (HT021), mRNA”, gi|34222336|ref|NM_020685.3|[34222336]; 2263:


NM_020710, “Homo sapiens KIAA1185 protein (KIAA1185), mRNA”,


gi|24308206|ref|NM_020710.1|[24308206]; 2264: NM_020826, “Homo sapiens synaptotagmin


XIII (SYT13), mRNA”, gi|24308232|ref|NM_020826.1|[24308232]; 2265: NM_020836, “Homo



sapiens brain-enriched guanylate kinase-associated protein (KIAA1446), mRNA”,



gi|34147339|ref|NM_020836.2|[34147339]; 2266: NM_020858, “Homo sapiens sema domain,


transmembrane domain (TM), and cytoplasmic domain,”, “(semaphorin) 6D (SEMA6D),


transcript variant 1, mRNA”, gi|24234728|ref|NM_020858.1|[24234728]; 2267: NM_020892,


Homo sapiens deltex homolog 2 (Drosophila) (DTX2), mRNA”,


gi|24308252|ref|NM_020892.1|[24308252]; 2268: NM_020898, “Homo sapiens KIAA1536


protein (KIAA1536), mRNA”, gi|14149741|ref|NM_020898.1|[14149741]; 2269: NM_020904,


Homo sapiens pleckstrin homology domain containing, family A (phosphoinositide”, “binding


specific) member 4 (PLEKHA4), mRNA”, gi|10190743|ref|NM_020904.1|[10190743]; 2270:


NM_020982,, ref|NM_020982.2|[44680149]; 2271: NM_020998, “Homo sapiens macrophage


stimulating 1 (hepatocyte growth factor-like) (MST1),”, mRNA,


gi|31543211|ref|NM_020998.2|[31543211]; 2272: NM_020999, “Homo sapiens neurogenin 3


(NEUROG3), mRNA”, gi|10337610|ref|NM_020999.1|[10337610]; 2273: NM_021018, “Homo



sapiens histone 1, H3f (HIST1H3F), mRNA”, gi|21396497|ref|NM_021018.2|[21396497]; 2274:



NM_021025, “Homo sapiens T-cell leukemia, homeobox 3 (TLX3), mRNA”,


gi|10440563|ref|NM_021025.1|[10440563]; 2275: NM_021062, “Homo sapiens histone 1, H2bb


(HIST1H2BB), mRNA”, gi|19924303|ref|NM_021062.2|[19924303]; 2276: NM_021070,


Homo sapiens latent transforming growth factor beta binding protein 3 (LTBP3),”, mRNA,


gi|18497287|ref|NM_021070.2|[18497287]; 2277: NM_021077, “Homo sapiens neuromedin B


(NMB), mRNA”, gi|24475648|ref|NM_021077.2|[24475648]; 2278: NM_021080, “Homo



sapiens disabled homolog 1 (Drosophila) (DAB1), mRNA”,



gi|33350927|ref|NM_021080.3|[33350927]; 2279: NM_021081, “Homo sapiens growth


hormone releasing hormone (GHRH), mRNA”, gi|3058116|ref|NM_021081.3|[30581161];


2280: NM_021098, “Homo sapiens calcium channel, voltage-dependent, alpha 1H subunit


(CACNA1H),”, mRNA, gi|10864076|ref|NM_021098.1|[10864076]; 2281: NM_021100, “Homo



sapiens NFS1 nitrogen fixation 1 (S. cerevisiae) (NFS1), nuclear gene”, “encoding mitochondrial



protein, transcript variant 1, mRNA”, gi|32307131|ref|NM_021100.3|[32307131]; 2282:


NM_021104, “Homo sapiens ribosomal protein L41 (RPL41), mRNA”,


gi|10863874|ref|NM_021104.1|[10863874]; 2283: NM_021126, “Homo sapiens


mercaptopyruvate sulfurtransferase (MPST), mRNA”,


gi|23510449|ref|NM_021126.3|[23510449]; 2284: NM_021133, “Homo sapiens ribonuclease L


(2′,5′-oligoisoadenylate synthetase-dependent)”, “(RNASEL), mRNA”,


gi|30795246|ref|NM_021133.2|[30795246]; 2285: NM_021134, “Homo sapiens mitochondrial


ribosomal protein L23 (MRPL23), nuclear gene encoding”, “mitochondrial protein, mRNA”,


gi|27436903|ref|NM_021134.2|[27436903]; 2286: NM_021147, “Homo sapiens uracil-DNA


glycosylase 2 (UNG2), mRNA”, gi|10863950|ref|NM_021147.1|[10863950]; 2287: NM_021149,


Homo sapiens coactosin-like 1 (Dictyostelium) (COTL1), mRNA”,


gi|23510452|ref|NM_021149.2|[23510452]; 2288: NM_021158, “Homo sapiens chromosome 20


open reading frame 97 (C20orf97), mRNA”, gi|41327717|ref|NM_021158.3|[41327717]; 2289:


NM_021161, “Homo sapiens potassium channel, subfamily K, member 10 (KCNK10),


transcript”, “variant 1, mRNA”, gi|20143942|ref|NM_021161.3|[20143942]; 2290: NM_021165,


Homo sapiens hypothetical protein from clone 24828 (LOC57795), mRNA”,


gi|23943865|ref|NM_021165.1|[23943865]; 2291: NM_021168, “Homo sapiens RAB40C,


member RAS oncogene family (RAB40C), mRNA”, gi|18373307|ref|NM_021168.1|[18373307];


2292: NM_021174, “Homo sapiens p30 DBC protein (DBC-1), transcript variant 1, mRNA”,


gi|40548406|ref|NM_021174.4|[40548406]; 2293: NM_021184, “Homo sapiens chromosome 6


open reading frame 47 (C6orf47), mRNA”, gi|10863984|ref|NM_021184.1|[10863984]; 2294:


NM_021187, “Homo sapiens cytochrome P450, family 4, subfamily F, polypeptide 11


(CYP4F11),”, mRNA, gi|10863992|ref|NM_021187.1|[10863992]; 2295: NM_021193, “Homo



sapiens homeo box D12 (HOXD12), mRNA”, gi|23510369|ref|NM_021193.2|[23510369]; 2296:



NM_021195, “Homo sapiens claudin 6 (CLDN6), mRNA”,


gi|39725680|ref|NM_021195.3|[39725680]; 2297: NM_021199, “Homo sapiens sulfide quinone


reductase-like (yeast) (SQRDL), mRNA”, gi|10864010|ref|NM_021199.1|[10864010]; 2298:


NM_021204, “Homo sapiens E-1 enzyme (MASA), mRNA”,


gi|10864016|ref|NM_021204.1|[10864016]; 2299: NM_021208, “Homo sapiens chromosome 9


open reading frame 27 (C9orf27), mRNA”, gi|10864018|ref|NM_021208.1|[10864018]; 2300:


NM_021211, “Homo sapiens transposon-derived Buster1 transposase-like protein


(LOC58486),”, mRNA, gi|10864022|ref|NM_021211.1|[10864022]; 2301: NM_021226, “Homo



sapiens Rho GTPase activating protein 22 (ARHGAP22), mRNA”,



gi|34013589|ref|NM_021226.2|[34013589]; 2302: NM_021238, “Homo sapiens chromosome 12


open reading frame 14 (C12orf14), mRNA”, gi|10864048|ref|NM_021238.1|[10864048]; 2303:


NM_021242, “Homo sapiens hypothetical protein STRAIT11499 (STRAIT11499), mRNA”,


gi|39725681|ref|NM_021242.3|[39725681]; 2304: NM_021249, “Homo sapiens sorting nexin 6


(SNX6), transcript variant 1, mRNA”, gi|23111048|ref|NM_021249.2|[23111048]; 2305:


NM_021257, “Homo sapiens neuroglobin (NGB), mRNA”,


gi|21361878|ref|NM_021257.2|[21361878]; 2306: NM_021258, “Homo sapiens interleukin 22


receptor, alpha 1 (IL22RA1), mRNA”, gi|31317238|ref|NM_021258.2|[31317238]; 2307:


NM_021259, “Homo sapiens transmembrane protein 8 (five membrane-spanning domains)


(TMEM8),”, mRNA, gi|10864068|ref|NM_021259.1|[10864068]; 2308: NM_021614, “Homo



sapiens potassium intermediate/small conductance calcium-activated channel,”, “subfamily N,



member 2 (KCNN2), transcript variant 1, mRNA”, gi|25777644|ref|NM_021614.2|[25777644];


2309: NM_021620, “Homo sapiens PR domain containing 13 (PRDM13), mRNA”,


gi|41349467|ref|NM_021620.2|[41349467]; 2310: NM_021625, “Homo sapiens transient


receptor potential cation channel, subfamily V, member 4”, “(TRPV4), transcript variant 1,


mRNA”, gi|22547183|ref|NM_021625.3|[22547183]; 2311: NM_021627, “Homo sapiens


sentrin-specific protease (SENP2), mRNA”, gi|11055993|ref|NM_021627.1|[11055993]; 2312:


NM_021633, “Homo sapiens kelch-like 12 (Drosophila) (KLHL12), mRNA”,


gi|21361889|ref|NM_021633.2|[21361889]; 2313: NM_021640, “Homo sapiens chromosome 12


open reading frame 10 (C12orf10), mRNA”, gi|11056017|ref|NM_021640.1|[11056017]; 2314:


NM_021729, “Homo sapiens vacuolar protein sorting 11 (yeast) (VPS11), mRNA”,


gi|17978476|ref|NM_021729.3|[17978476]; 2315: NM_021812, “Homo sapiens


blepharophimosis, epicanthus inversus and ptosis, candidate 1”, “(BPESC1), mRNA”,


gi|11141882|ref|NM_021812.1|[11141882]; 2316: NM_021813, “Homo sapiens BTB and CNC


homology 1, basic leucine zipper transcription factor 2”, “(BACH2), mRNA”,


gi|13540489|ref|NM_021813.1|[13540489]; 2317: NM_021817, “Homo sapiens brain link


protein-1 (BRAL1), mRNA”, gi|11141886|ref|NM_021817.1|[11141886]; 2318: NM_021818,


Homo sapiens salvador homolog 1 (Drosophila) (SAV1), mRNA”,


gi|18860913|ref|NM_021818.2|[18860913]; 2319: NM_021820, “Homo sapiens chromosome 6


open reading frame 75 (C6orf75), mRNA”, gi|11141892|ref|NM_021820.1|[11141892]; 2320:


NM_021823, “Homo sapiens hypothetical protein MDS018 (MDS018), mRNA”,


gi|21361899|ref|NM_021823.2|[21361899]; 2321: NM_021824, “Homo sapiens NIF3 NGG1


interacting factor 3-like 1 (S. pombe) (NIF3L1), mRNA”,


gi|11141898|ref|NM_021824.1|[11141898]; 2322: NM_021826, “Homo sapiens hypothetical


protein FLJ13149 (FLJ13149), mRNA”, gi|40806183|ref|NM_021826.4|[40806183]; 2323:


NM_021828, “Homo sapiens heparanase 2 (HPSE2), mRNA”,


gi|40254951|ref|NM_021828.2|[40254951]; 2324: NM_021830, “Homo sapiens progressive


external ophthalmoplegia 1 (PEO1), mRNA”, gi|39725941|ref|NM_021830.3|[39725941]; 2325:


NM_021831, “Homo sapiens hypothetical protein FLJ21839 (FLJ21839), mRNA”,


gi|34147509|ref|NM_021831.3|[34147509]; 2326: NM_021833, “Homo sapiens uncoupling


protein 1 (mitochondrial, proton carrier) (UCP1),”, “nuclear gene encoding mitochondrial


protein, mRNA”, gi|21614550|ref|NM_021833.3|[21614550]; 2327: NM_021926, “Homo



sapiens aristaless-like homeobox 4 (ALX4), mRNA”,



gi|11496266|ref|NM_021926.1|[11496266]; 2328: NM_021932, “Homo sapiens likely ortholog


of mouse synembryn (RIC-8), mRNA”, gi|27883865|ref|NM_021932.4|[27883865]; 2329:


NM_021933, “Homo sapiens hypothetical protein FLJ12438 (FLJ12438), mRNA”,


gi|11345471|ref|NM_021933.1|[11345471]; 2330: NM_021934, “Homo sapiens hypothetical


protein FLJ11773 (FLJ11773), mRNA”, gi|34222337|ref|NM_021934.3|[34222337]; 2331:


NM_021939, “Homo sapiens FK506 binding protein 10, 65 kDa (FKBP10), mRNA”,


gi|21361894|ref|NM_021939.2|[21361894]; 2332: NM_021940, “Homo sapiens stromal


membrane-associated protein 1 (SMAP1), mRNA”, gi|21264557|ref|NM_021940.2|[21264557];


2333: NM_021943, “Homo sapiens testis expressed sequence 27 (TEX27), mRNA”,


gi|11345483|ref|NM_021943.1|[11345483]; 2334: NM_021946, “Homo sapiens hypothetical


protein FLJ11362 (FLJ11362), mRNA”, gi|33286441|ref|NM_021946.2|[33286441]; 2335:


NM_021958, “Homo sapiens H2.0-like homeo box 1 (Drosophila) (HLX1), mRNA”,


gi|19923769|ref|NM_021958.2|[19923769]; 2336: NM_021959, “Homo sapiens protein


phosphatase 1, regulatory (inhibitor) subunit 11 (PPP1R11),”, “transcript variant 1, mRNA”,


gi|11386174|ref|NM_021959.1|[11386174]; 2337: NM_021961, Homo sapiens TEA domain


family member 1 (SV40 transcriptional enhancer factor), “(TEAD1), mRNA”,


gi|38570152|ref|NM_021961.2|[38570152]; 2338: NM_021970, Homo sapiens mitogen-


activated protein kinase kinase 1 interacting protein 1, “(MAP2K1IP1), mRNA”,


gi|21614526|ref|NM_021970.2|[21614526]; 2339: NM_021972, “Homo sapiens sphingosine


kinase 1 (SPHK1), mRNA”, gi|21361087|ref|NM_021972.2|[21361087]; 2340: NM_021974,


Homo sapiens polymerase (RNA) II (DNA directed) polypeptide F (POLR2F), mRNA”,


gi|14602451|ref|NM_021974.2|[14602451]; 2341: NM_022003, “Homo sapiens FXYD domain


containing ion transport regulator 6 (FXYD6), mRNA”,


gi|11612654|ref|NM_022003.1|[11612654]; 2342: NM_022039, “Homo sapiens split hand/foot


malformation (ectrodactyly) type 3 (SHFM3), mRNA”,


gi|24475655|ref|NM_022039.2|[24475655]; 2343: NM_022041, “Homo sapiens giant axonal


neuropathy (gigaxonin) (GAN), mRNA”, gi|21614518|ref|NM_022041.2|[21614518]; 2344:


NM_022042, “Homo sapiens solute carrier family 26 (sulfate transporter), member 1


(SLC26A1),”, “transcript variant 1, mRNA”, gi|20336271|ref|NM_022042.2|[20336271]; 2345:


NM_022044, “Homo sapiens stromal cell-derived factor 2-like 1 (SDF2L1), mRNA”,


gi|11545742|ref|NM_022044.1|[11545742]; 2346: NM_022049, “Homo sapiens G-protein


coupled receptor 88 (GPR88), mRNA”, gi|11545752|ref|NM_022049.1|[11545752]; 2347:


NM_022054, “Homo sapiens potassium channel, subfamily K, member 13 (KCNK13), mRNA”,


gi|16306554|ref|NM_022054.2|[16306554]; 2348: NM_022063, “Homo sapiens hypothetical


protein FLJ13188 (FLJ13188), mRNA”, gi|11545770|ref|NM_022063.1|[11545770]; 2349:


NM_022064, “Homo sapiens ring finger protein 123 (RNF123), mRNA”,


gi|37588868|ref|NM_022064.2|[37588868]; 2350: NM_022067, “Homo sapiens chromosome 14


open reading frame 133 (C14orf133), mRNA”, gi|20127606|ref|NM_022067.2|[20127606];


2351: NM_022071, “Homo sapiens hypothetical protein FLJ20967 (FLJ20967), mRNA”,


gi|21361890|ref|NM_022071.2|[21361890]; 2352: NM_022072, “Homo sapiens hypothetical


protein FLJ22609 (FLJ22609), mRNA”, gi|31542738|ref|NM_022072.2|[31542738]; 2353:


NM_022082, “Homo sapiens chromosome 20 open reading frame 59 (C20orf59), mRNA”,


gi|31542262|ref|NM_022082.2|[31542262]; 2354: NM_022089, “Homo sapiens putative


ATPase (HSA9947), mRNA”, gi|13435128|ref|NM_022089.1|[13435128]; 2355: NM_022096,


Homo sapiens ankyrin repeat domain 5 (ANKRD5), transcript variant 1, mRNA”,


gi|38569425|ref|NM_022096.4|[38569425]; 2356: NM_022097, “Homo sapiens hepatocellular


carcinoma antigen gene 520 (LOC63928), mRNA”, gi|11545810|ref|NM_022097.1|[11545810];


2357: NM_022098, “Homo sapiens hypothetical protein LOC63929 (LOC63929), mRNA”,


gi|38195085|ref|NM_022098.2|[38195085]; 2358: NM_022101, “Homo sapiens hypothetical


protein FLJ22965 (FLJ22965), mRNA”, gi|34147219|ref|NM_022101.2|[34147219]; 2359:


NM_022111, “Homo sapiens claspin homolog (Xenopus laevis) (CLSPN), mRNA”,


gi|21735568|ref|NM_022111.2|[21735568]; 2360: NM_022114, “Homo sapiens PR domain


containing 16 (PRDM16), transcript variant 1, mRNA”,


gi|41349469|ref|NM_022114.2|[41349469]; 2361: NM_022118, “Homo sapiens chromosome 13


open reading frame 10 (C13orf10), mRNA”, gi|31652263|ref|NM_022118.3|[31652263]; 2362:


NM_022120, “Homo sapiens 3-oxoacid CoA transferase 2 (OXCT2), mRNA”,


gi|11545840|ref|NM_022120.1|[11545840]; 2363: NM_022121, “Homo sapiens PERP, TP53


apoptosis effector (PERP), mRNA”, gi|31377721|ref|NM_022121.2|[31377721]; 2364:


NM_022126, Homo sapiens phospholysine phosphohistidine inorganic pyrophosphate


phosphatase, “(LHPP), mRNA”, gi|33636765|ref|NM_022126.2|[33636765]; 2365: NM_022130,


Homo sapiens golgi phosphoprotein 3 (coat-protein) (GOLPH3), mRNA”,


gi|29550859|ref|NM_022130.3|[29550859]; 2366: NM_022133, “Homo sapiens sorting nexin 16


(SNX16), transcript variant 1, mRNA”, gi|23238243|ref|NM_022133.2|[23238243]; 2367:


NM_022135, “Homo sapiens popeye domain containing 2 (POPDC2), mRNA”,


gi|22209003|ref|NM_022135.2|[22209003]; 2368: NM_022149, “Homo sapiens melanoma


antigen, family F, 1 (MAGEF1), mRNA”, gi|34335240|ref|NM_022149.3|[34335240]; 2369:


NM_022151, “Homo sapiens modulator of apoptosis 1 (MOAP1), mRNA”,


gi|21536456|ref|NM_022151.3|[21536456]; 2370: NM_022156, “Homo sapiens PP3111 protein


(PP3111), mRNA”, gi|40807365|ref|NM_022156.3|[40807365]; 2371: NM_022157, “Homo



sapiens Ras-related GTP binding C (RRAGC), mRNA”,



gi|31542866|ref|NM_022157.2|[31542866]; 2372: NM_022158, “Homo sapiens fructosamine-3-


kinase (FN3K), mRNA”, gi|31542792|ref|NM_022158.2|[31542792]; 2373: NM_022164,


Homo sapiens lipocalin 7 (LCN7), mRNA”, gi|11545917|ref|NM_022164.1|[11545917]; 2374:


NM_022171, “Homo sapiens T-cell leukemia translocation altered gene (TCTA), mRNA”,


gi|11560140|ref|NM_022171.1|[11560140]; 2375: NM_022341, “Homo sapiens peptide


deformylase-like protein (PDF), mRNA”, gi|11641242|ref|NM_022341.1|[11641242]; 2376:


NM_022353, “Homo sapiens O-sialoglycoprotein endopeptidase-like 1 (OSGEPL1), mRNA”,


gi|11641264|ref|NM_022353.1|[11641264]; 2377: NM_022354, “Homo sapiens


spermatogenesis associated 1 (SPATA1), mRNA”, gi|11641266|ref|NM_022354.1|[11641266];


2378: NM_022356, “Homo sapiens leucine proline-enriched proteoglycan (leprecan) 1


(LEPRE1), mRNA”, gi|21361917|ref|NM_022356.2|[21361917]; 2379: NM_022362, “Homo



sapiens MMS19-like (MET18 homolog, S. cerevisiae) (MMS19L), mRNA”,



gi|31543206|ref|NM_022362.2|[31543206]; 2380: NM_022365, “Homo sapiens DnaJ (Hsp40)


homolog, subfamily C, member 1 (DNAJC1), mRNA”,


gi|21361911|ref|NM_022365.2|[21361911]; 2381: NM_022366, “Homo sapiens transcription


factor B2, mitochondrial (TFB2M), mRNA”, gi|11641288|ref|NM_022366.1|[11641288]; 2382:


NM_022367, “Homo sapiens hypothetical protein FLJ12287 similar to semaphorins


(FLJ12287),”, mRNA, gi|21361913|ref|NM_022367.2|[21361913]; 2383: NM_022450, “Homo



sapiens rhomboid family 1 (Drosophila) (RHBDP1), mRNA”,



gi|21359942|ref|NM_022450.2|[21359942]; 2384: NM_022451, “Homo sapiens AD24 protein


(AD24), mRNA”, gi|31377626|ref|NM_022451.9|[31377626]; 2385: NM_022452, “Homo



sapiens fibrosin 1 (FBS1), mRNA”, gi|11967986|ref|NM_022452.1|[11967986]; 2386:



NM_022460, “Homo sapiens HS1-binding protein 3 (FLJ14249), transcript variant 1, mRNA”,


gi|18491011|ref|NM_022460.2|[18491011]; 2387: NM_022461, “Homo sapiens 5-azacytidine


induced gene 2 (AZ2), transcript variant 1, mRNA”, gi|42716307|ref|NM_022461.2|[42716307];


2388: NM_022470, “Homo sapiens p53 target zinc finger protein (WIG1), transcript variant 1,


mRNA”, gi|23199979|ref|NM_022470.2|[23199979]; 2389: NM_022474, “Homo sapiens


membrane protein, palmitoylated 5 (MAGUK p55 subfamily member 5)”, “(MPP5), mRNA”,


gi|38570141|ref|NM_022474.2|[38570141]; 2390: NM_022476, “Homo sapiens fused toes


homolog (mouse) (FTS), mRNA”, gi|11968026|ref|NM_022476.1|[11968026]; 2391:


NM_022484, “Homo sapiens hypothetical protein FLJ13576 (FLJ13576), mRNA”,


gi|21362101|ref|NM_022484.2|[21362101]; 2392: NM_022485, “Homo sapiens hypothetical


protein FLJ22405 (FLJ22405), mRNA”, gi|20127610|ref|NM_022485.2|[20127610]; 2393:


NM_022494, “Homo sapiens zinc finger, DHHC domain containing 6 (ZDHHC6), mRNA”,


gi|11968052|ref|NM_022494.1|[11968052]; 2394: NM_022496, “Homo sapiens actin-related


protein 6 (ACTR6), mRNA”, gi|31541858|ref|NM_022496.2|[31541858]; 2395: NM_022551,


Homo sapiens ribosomal protein S18 (RPS18), mRNA”,


gi|14165467|ref|NM_022551.2|[14165467]; 2396: NM_022553, “Homo sapiens vacuolar


protein sorting 52 (yeast) (VPS52), transcript variant 2,”, mRNA,


gi|18379339|ref|NM_022553.3|[18379339]; 2397: NM_022658, “Homo sapiens homeo box C8


(HOXC8), mRNA”, gi|24497545|ref|NM_022658.2|[24497545]; 2398: NM_022659, “Homo



sapiens early B-cell factor 2 (EBF2), mRNA”, gi|12056972|ref|NM_022659.1|[12056972]; 2399:



NM_022662, “Homo sapiens anaphase promoting complex subunit 1 (ANAPC1), mRNA”,


gi|12056970|ref|NM_022662.1|[12056970]; 2400: NM_022725, “Homo sapiens Fanconi


anemia, complementation group F (FANCF), mRNA”,


gi|42716285|ref|NM_022725.2|[42716285]; 2401: NM_022726, “Homo sapiens elongation of


very long chain fatty acids (FEN1/Elo2, SUR4/Elo3,”, “yeast)-like 4 (ELOVL4), mRNA”,


gi|21362099|ref|NM_022726.2|[21362099]; 2402: NM_022727, “Homo sapiens HpaII tiny


fragments locus 9C (HTF9C), transcript variant 2, mRNA”,


gi|21361611|ref|NM_022727.3|[21361611]; 2403: NM_022730, “Homo sapiens COP9


constitutive photomorphogenic homolog subunit 7B (Arabidopsis), “(COPS7B), mRNA”,


gi|12232384|ref|NM_022730.1|[12232384]; 2404: NM_022746, “Homo sapiens hypothetical


protein FLJ22390 (FLJ22390), mRNA”, gi|33285009|ref|NM_022746.2|[33285009]; 2405:


NM_022750, “Homo sapiens zinc finger CCCH type domain containing 1 (ZC3HDC1),


mRNA”, gi|12232412|ref|NM_022750.1|[12232412]; 2406: NM_022754, “Homo sapiens


sideroflexin 1 (SFXN1), mRNA”, gi|40255158|ref|NM_022754.4|[40255158]; 2407:


NM_022756, “Homo sapiens hypothetical protein FLJ11730 (FLJ11730), mRNA”,


gi|40255019|ref|NM_022756.3|[40255019]; 2408: NM_022761, “Homo sapiens chromosome 11


open reading frame 1 (C11orf1), mRNA”, gi|12232430|ref|NM_022761.1|[12232430]; 2409:


NM_022762, “Homo sapiens hypothetical protein FLJ22318 (FLJ22318), mRNA”,


gi|34147687|ref|NM_022762.3|[34147687]; 2410: NM_022765, Homo sapiens NEDD9


interacting protein with calponin homology and LIM domains, “(NICAL), mRNA”,


gi|20127615|ref|NM_022765.2|[20127615]; 2411: NM_022766, “Homo sapiens ceramide kinase


(CERK), transcript variant 1, mRNA”, gi|32967301|ref|NM_022766.4|[32967301]; 2412:


NM_022776, “Homo sapiens oxysterol binding protein-like 11 (OSBPL11), mRNA”,


gi|23111058|ref|NM_022776.3|[23111058]; 2413: NM_022781, “Homo sapiens ring finger


protein 38 (RNF38), transcript variant 1, mRNA”, gi|37577174|ref|NM_022781.3|[37577174];


2414: NM_022784, “Homo sapiens hypothetical protein FLJ12476 (FLJ12476), mRNA”,


gi|12232474|ref|NM_022784.1|[12232474]; 2415: NM_022785, “Homo sapiens CAP-binding


protein complex interacting protein 1 (FLJ23588),”, “transcript variant 1, mRNA”,


gi|38570106|ref|NM_022785.2|[38570106]; 2416: NM_022819, “Homo sapiens phospholipase


A2, group IIF (PLA2G2F), mRNA”, gi|12383057|ref|NM_022819.1|[12383057]; 2417:


NM_022834, “Homo sapiens von Willebrand factor A domain-related protein (WARP),


transcript”, “variant 1, mRNA”, gi|40068484|ref|NM_022834.3|[40068484]; 2418: NM_022836,


Homo sapiens DNA cross-link repair 1B (PSO2 homolog, S. cerevisiae) (DCLRE1B),”, mRNA,


gi|24431998|ref|NM_022836.2|[24431998]; 2419: NM_022840, “Homo sapiens


methyltransferase like 4 (METTL4), mRNA”, gi|38505223|ref|NM_022840.2|[38505223]; 2420:


NM_022897, “Homo sapiens RAN binding protein 17 (RANBP17), mRNA”,


gi|22095364|ref|NM_022897.2|[22095364]; 2421: NM_022898, “Homo sapiens B-cell


CLL/lymphoma 11B (zinc finger protein) (BCL11B), transcript”, “variant 2, mRNA”,


gi|12597634|ref|NM_022898.1|[12597634]; 2422: NM_022899, “Homo sapiens ARP8 actin-


related protein 8 homolog (yeast) (ACTR8), mRNA”,


gi|39812114|ref|NM_022899.3|[39812114]; 2423: NM_022903, “Homo sapiens hypothetical


protein FLJ12800 (FLJ12800), mRNA”, gi|33285012|ref|NM_022903.2|[33285012]; 2424:


NM_022908, “Homo sapiens hypothetical protein FLJ12442 (FLJ12442), mRNA”,


gi|12597652|ref|NM_022908.1|[12597652]; 2425: NM_022911, “Homo sapiens solute carrier


family 26, member 6 (SLC26A6), transcript variant 1,”, mRNA,


gi|20336275|ref|NM_022911.2|[20336275]; 2426: NM_022914, “Homo sapiens hypothetical


protein 24432 (24432), mRNA”, gi|12597658|ref|NM_022914.1|[12597658]; 2427: NM_022917,


Homo sapiens nucleolar protein family 6 (RNA-associated) (NOL6), transcript”, “variant


alpha, mRNA”, gi|39777587|ref|NM_022917.4|[39777587]; 2428: NM_023008, “Homo sapiens


hypothetical protein FLJ12949 (FLJ12949), transcript variant 1,”, mRNA,


gi|30410782|ref|NM_023008.2|[30410782]; 2429: NM_023039, “Homo sapiens ankyrin repeat,


family A (RFXANK-like), 2 (ANKRA2), mRNA”, gi|21362082|ref|NM_023039.2|[21362082];


2430: NM_023067, “Homo sapiens forkhead box L2 (FOXL2), mRNA”,


gi|42716284|ref|NM_023067.2|[42716284]; 2431: NM_023071, “Homo sapiens


spermatogenesis associated, serine-rich 2 (SPATS2), mRNA”,


gi|12751480|ref|NM_023071.1|[12751480]; 2432: NM_023918, “Homo sapiens taste receptor,


type 2, member 8 (TAS2R8), mRNA”, gi|12965173|ref|NM_023918.1|[12965173]; 2433:


NM_023921, “Homo sapiens taste receptor, type 2, member 10 (TAS2R10), mRNA”,


gi|12965179|ref|NM_023921.1|[12965179]; 2434: NM_023922, “Homo sapiens taste receptor,


type 2, member 14 (TAS2R14), mRNA”, gi|12965181|ref|NM_023922.1|[12965181]; 2435:


NM_023924, “Homo sapiens bromodomain containing 9 (BRD9), mRNA”,


gi|12965190|ref|NM_023924.1|[12965190]; 2436: NM_023925, “Homo sapiens C1q domain


containing 1 (C1QDC1), transcript variant L, mRNA”,


gi|23503234|ref|NM_023925.2|[23503234]; 2437: NM_023927, “Homo sapiens HCV NS3-


transactivated protein 2 (NS3TP2), mRNA”, gi|12965196|ref|NM_023927.1|[12965196]; 2438:


NM_023932, “Homo sapiens EGF-like-domain, multiple 9 (EGFL9), mRNA”,


gi|13027595|ref|NM_023932.1|[13027595]; 2439: NM_023933, “Homo sapiens hypothetical


protein MGC2494 (MGC2494), mRNA”, gi|13027599|ref|NM_023933.1|[13027599]; 2440:


NM_023936, “Homo sapiens mitochondrial ribosomal protein S34 (MRPS34), nuclear gene


encoding”, “mitochondrial protein, mRNA”, gi|13027603|ref|NM_023936.1|[13027603]; 2441:


NM_023938, “Homo sapiens specifically androgen-regulated protein (SARG), mRNA”,


gi|40556373|ref|NM_023938.3|[40556373]; 2442: NM_023944, “Homo sapiens cytochrome


P450, family 4, subfamily F, polypeptide 12 (CYP4F12),”, mRNA,


gi|13184045|ref|NM_023944.1|[13184045]; 2443: NM_024032, “Homo sapiens hypothetical


protein MGC3130 (MGC3130), mRNA”, gi|31543178|ref|NM_024032.2|[31543178]; 2444:


NM_024034, Homo sapiens ganglioside-induced differentiation-associated protein 1-like 1,


“(GDAP1L1), mRNA”, gi|30581159|ref|NM_024034.3|[30581159]; 2445: NM_024040, “Homo



sapiens chromosome 10 open reading frame 66 (C10orf66), mRNA”,



gi|13128995|ref|NM_024040.1|[13128995]; 2446: NM_024041, “Homo sapiens sodium channel


modifier 1 (SCNM1), mRNA”, gi|13128997|ref|NM_024041.1|[13128997]; 2447: NM_024045,


Homo sapiens DEAD (Asp-Glu-Ala-Asp) box polypeptide 50 (DDX50), mRNA”,


gi|13129005|ref|NM_024045.1|[13129005]; 2448: NM_024051, “Homo sapiens chromosome 7


open reading frame 24 (C7orf24), mRNA”, gi|34147353|ref|NM_024051.2|[34147353]; 2449:


NM_024052, “Homo sapiens hypothetical protein MGC3048 (MGC3048), mRNA”,


gi|23111006|ref|NM_024052.3|[23111006]; 2450: NM_024053, “Homo sapiens chromosome 22


open reading frame 18 (C22orf18), mRNA”, gi|37059723|ref|NM_024053.2|[37059723]; 2451:


NM_024057, “Homo sapiens nucleoporin Nup37 (Nup37), mRNA”,


gi|34222120|ref|NM_024057.2|[34222120]; 2452: NM_024065, “Homo sapiens phosducin-like


3 (PDCL3), mRNA”, gi|34147358|ref|NM_024065.2|[34147358]; 2453: NM_024068 “Homo



sapiens hypothetical protein MGC2731 (MGC2731), mRNA”,



gi|34147355|ref|NM_024068.2|[34147355]; 2454: NM_024072, “Homo sapiens DEAD (Asp-


Glu-Ala-Asp) box polypeptide 54 (DDX54), mRNA”,


gi|19923594|ref|NM_024072.2|[19923594]; 2455: NM_024075, “Homo sapiens leukocyte


receptor cluster (LRC) member 5 (LENG5), mRNA”,


gi|13129061|ref|NM_024075.1|[13129061]; 2456: NM_024076, “Homo sapiens potassium


channel tetramerisation domain containing 15 (KCTD15),”, mRNA,


gi|13129063|ref|NM_024076.1|[13129063]; 2457: NM_024078, “Homo sapiens hypothetical


protein MGC3162 (MGC3162), mRNA”, gi|13129067|ref|NM_024078.1|[13129067]; 2458:


NM_024080, “Homo sapiens transient receptor potential cation channel, subfamily M, member


8”, “(TRPM8), mRNA”, gi|21361690|ref|NM_024080.3|[21361690]; 2459: NM_024082,


Homo sapiens transmembrane gamma-carboxyglutamic acid protein 3 (TMG3), mRNA”,


gi|31543810|ref|NM_024082.2|[31543810]; 2460: NM_024083, “Homo sapiens alveolar soft


part sarcoma chromosome region, candidate 1”, “(ASPSCR1), mRNA”,


gi|17572803|ref|NM_024083.2|[17572803]; 2461: NM_024089, “Homo sapiens KDEL (Lys-


Asp-Glu-Leu) containing 1 (KDELC1), mRNA”, gi|13129085|ref|NM_024089.1|[13129085];


2462: NM_024092, “Homo sapiens hypothetical protein MGC5508 (MGC5508), mRNA”,


gi|13129091|ref|NM_024092.1|[13129091]; 2463: NM_024093, “Homo sapiens hypothetical


protein MGC5509 (MGC5509), mRNA”, gi|13129093|ref|NM_024093.1|[13129093]; 2464:


NM_024094, Homo sapiens defective in sister chromatid cohesion homolog 1 (S. cerevisiae),


“(MGC5528), mRNA”, gi|13129095|ref|NM_024094.1|[13129095]; 2465: NM_024095, “Homo



sapiens ankyrin repeat and SOCS box-containing 8 (ASB8), mRNA”,



gi|40556379|ref|NM_024095.2|[40556379]; 2466: NM_024096, “Homo sapiens XTP3-


transactivated protein A (XTP3TPA), mRNA”, gi|13129099|ref|NM_024096.1|[13129099];


2467: NM_024107, “Homo sapiens hypothetical protein MGC3123 (MGC3123), mRNA”,


gi|13129117|ref|NM_024107.1|[13129117]; 2468: NM_024111, “Homo sapiens hypothetical


protein MGC4504 (MGC4504), mRNA”, gi|34147362|ref|NM_024111.2|[34147362]; 2469:


NM_024113, “Homo sapiens hypothetical protein MGC4707 (MGC4707), mRNA”,


gi|34147364|ref|NM_024113.2|[34147364]; 2470: NM_024115,, ref|NM_024115.1|[13129133],


This record was replaced or removed. See revision history for details.,, 2471: NM_024117,


Homo sapiens mitogen-activated protein kinase associated protein 1 (MAPKAP1),”, mRNA,


gi|34147366|ref|NM_024117.2|[34147366]; 2472: NM_024119, “Homo sapiens likely ortholog


of mouse D11lgp2 (LGP2), mRNA”, gi|13129141|ref|NM_024119.1|[13129141]; 2473:


NM_024122, “Homo sapiens hypothetical protein MGC4825 (MGC4825), mRNA”,


gi|34147363|ref|NM_024122.2|[34147363]; 2474: NM_024292, “Homo sapiens ubiquitin-like 5


(UBL5), mRNA”, gi|42476283|ref|NM_024292.2|[42476283]; 2475: NM_024294, “Homo



sapiens hypothetical protein MGC4614 (MGC4614), mRNA”,



gi|13236513|ref|NM_024294.1|[13236513]; 2476: NM_024299, “Homo sapiens chromosome 20


open reading frame 149 (C20orf149), mRNA”, gi|34147371|ref|NM_024299.2|[34147371];


2477: NM_024300, “Homo sapiens coiled-coil-helix-coiled-coil-helix domain containing 7


(CHCHD7),”, mRNA, gi|34147367|ref|NM_024300.2|[34147367]; 2478: NM_024301, “Homo



sapiens fukutin related protein (FKRP), mRNA”, gi|36951139|ref|NM_024301.2|[36951139];



2479: NM_024302, “Homo sapiens matrix metalloproteinase 28 (MMP28), transcript variant 1,


mRNA”, gi|14589910|ref|NM_024302.2|[14589910]; 2480: NM_024311, “Homo sapiens


hypothetical protein ET (ET), mRNA”, gi|34147375|ref|NM_024311.2|[34147375]; 2481:


NM_024321, “Homo sapiens hypothetical protein MGC10433 (MGC10433), mRNA”,


gi|34147641|ref|NM_024321.3|[34147641]; 2482: NM_024322, “Homo sapiens hypothetical


protein MGC11266 (MGC11266), mRNA”, gi|13236564|ref|NM_024322.1|[13236564]; 2483:


NM_024323, “Homo sapiens hypothetical protein MGC11271 (MGC11271), mRNA”,


gi|31543147|ref|NM_024323.3|[31543147]; 2484: NM_024330, “Homo sapiens solute carrier


family 27 (fatty acid transporter), member 3”, “(SLC27A3), mRNA”,


gi|13236578|ref|NM_024330.1|[13236578]; 2485: NM_024331, “Homo sapiens chromosome 20


open reading frame 121 (C20orf121), mRNA”, gi|34147379|ref|NM_024331.2|[34147379];


2486: NM_024339, “Homo sapiens hypothetical protein MGC2655 (MGC2655), mRNA”,


gi|31543163|ref|NM_024339.2|[31543163]; 2487: NM_024409, “Homo sapiens natriuretic


peptide precursor C (NPPC), mRNA”, gi|13249345|ref|NM_024409.1|[13249345]; 2488:


NM_024411, “Homo sapiens prodynorphin (PDYN), mRNA”,


gi|32483402|ref|NM_024411.2|[32483402]; 2489: NM_024419, “Homo sapiens


phosphatidyiglycerophosphate synthase (PGS1), mRNA”,


gi|21314623|ref|NM_024419.2|[21314623]; 2490: NM_024491, “Homo sapiens p10-binding


protein (BITE), mRNA”, gi|13346499|ref|NM_024491.1|[13346499]; 2491: NM_024504,


Homo sapiens PR domain containing 14 (PRDM14), mRNA”,


gi|41349468|ref|NM_024504.2|[41349468]; 2492: NM_024505, “Homo sapiens NADPH


oxidase, EF hand calcium-binding domain 5 (NOX5), mRNA”,


gi|20127623|ref|NM_024505.2|[20127623]; 2493: NM_024506, “Homo sapiens galactosidase,


beta 1-like (GLB1L), mRNA”, gi|40255042|ref|NM_024506.3|[40255042]; 2494: NM_024507,


Homo sapiens kringle containing transmembrane protein 2 (KREMEN2), transcript”, “variant 2,


mRNA”, gi|27437002|ref|NM_024507.2|[27437002]; 2495: NM_024512, “Homo sapiens


leucine rich repeat containing 2 (LRRC2), mRNA”, gi|14719432|ref|NM_024512.2|[14719432];


2496: NM_024523, “Homo sapiens GRIP and coiled-coil domain-containing 1 (GCC1),


mRNA”, gi|34305454|ref|NM_024523.5|[34305454]; 2497: NM_024525, “Homo sapiens


tetratricopeptide repeat domain 13 (TTC13), mRNA”,


gi|31377702|ref|NM_024525.2|[31377702]; 2498: NM_024526, “Homo sapiens EPS8-like 3


(EPS8L3), transcript variant 3, mRNA”, gi|21071013|ref|NM_024526.2|[21071013]; 2499:


NM_024536, “Homo sapiens chondroitin polymerizing factor (CHPF), mRNA”,


gi|34222219|ref|NM_024536.4|[34222219]; 2500: NM_024537, “Homo sapiens hypothetical


protein FLJ12118 (FLJ12118), mRNA”, gi|13375694|ref|NM_024537.1|[13375694]; 2501:


NM_024540, “Homo sapiens mitochondrial ribosomal protein L24 (MRPL24), nuclear gene


encoding”, “mitochondrial protein, transcript variant 2, mRNA”,


gi|22035587|ref|NM_024540.2|[22035587]; 2502: NM_024544, “Homo sapiens hypothetical


protein FLJ12875 (FLJ12875), mRNA”, gi|13375704|ref|NM_024544.1|[13375704]; 2503:


NM_024546, “Homo sapiens chromosome 13 open reading frame 7 (C13orf7), mRNA”,


gi|21362045|ref|NM_024546.2|[21362045]; 2504: NM_024551, “Homo sapiens adiponectin


receptor 2 (ADIPOR2), mRNA”, gi|38261972|ref|NM_024551.2|[38261972]; 2505: NM_024554,


Homo sapiens piggyBac transposable element derived 5 (PGBD5), mRNA”,


gi|25777747|ref|NM_024554.2|[25777747]; 2506: NM_024565, “Homo sapiens hypothetical


protein FLJ14166 (FLJ14166), mRNA”, gi|40018623|ref|NM_024565.4|[40018623]; 2507:


NM_024570, “Homo sapiens hypothetical protein FLJ11712 (FLJ11712), mRNA”,


gi|13375741|ref|NM_024570.1|[13375741]; 2508: NM_024572, Homo sapiens UDP-N-acetyl-


alpha-D-galactosamine:polypeptide, “N-acetylgalactosaminyltransferase 14 (GalNAc-T14)


(GALNT14), mRNA”, gi|13375743|ref|NM_024572.1|[13375743]; 2509: NM_024573, “Homo



sapiens chromosome 6 open reading frame 211 (C6orf211), mRNA”,



gi|13375745|ref|NM_024573.1|[13375745]; 2510: NM_024580, “Homo sapiens hypothetical


protein FLJ13119 (FLJ13119), mRNA”, gi|40255246|ref|NM_024580.3|[40255246]; 2511:


NM_024583, “Homo sapiens secernin 3 (SCRN3), mRNA”,


gi|38504670|ref|NM_024583.2|[38504670]; 2512: NM_024584, “Homo sapiens hypothetical


protein FLJ13646 (FLJ13646), mRNA”, gi|39979625|ref|NM_024584.2|[39979625]; 2513:


NM_024585, “Homo sapiens hypothetical protein FLJ22160 (FLJ22160), mRNA”,


gi|20149678|ref|NM_024585.2|[20149678]; 2514: NM_024587, “Homo sapiens hypothetical


protein FLJ22353 (FLJ22353), mRNA”, gi|42734433|ref|NM_024587.2|[42734433]; 2515:


NM_024589, “Homo sapiens leucine zipper domain protein (FLJ22386), mRNA”,


gi|13375778|ref|NM_024589.1|[13375778]; 2516: NM_024590, “Homo sapiens hypothetical


protein FLJ23548 (FLJ23548), mRNA”, gi|40254961|ref|NM_024590.2|[40254961]; 2517:


NM_024594, “Homo sapiens pantothenate kinase 3 (PANK3), mRNA”,


gi|24430178|ref|NM_024594.2|[24430178]; 2518: NM_024595, “Homo sapiens hypothetical


protein FLJ12666 (FLJ12666), mRNA”, gi|13375790|ref|NM_024595.1|[13375790]; 2519:


NM_024598, “Homo sapiens hypothetical protein FLJ13154 (FLJ13154), mRNA”,


gi|42716282|ref|NM_024598.2|[42716282]; 2520: NM_024599, “Homo sapiens hypothetical


protein FLJ22341 (FLJ22341), mRNA”, gi|24432005|ref|NM_024599.2|[24432005]; 2521:


NM_024600, “Homo sapiens hypothetical protein FLJ20898 (FLJ20898), mRNA”,


gi|13375800|ref|NM_024600.1|[13375800]; 2522: NM_024604, “Homo sapiens hypothetical


protein FLJ21908 (FLJ21908), mRNA”, gi|13375808|ref|NM_024604.1|[13375808]; 2523:


NM_024608, “Homo sapiens nei endonuclease VIII-like 1 (E. coli) (NEIL1), mRNA”,


gi|13375816|ref|NM_024608.1|[13375816]; 2524: NM_024609,, ref|NM_024609.1|[13375818],


This record was temporarily removed by RefSeq staff for additional review.,, 2525:


NM_024611, “Homo sapiens NMDA receptor-regulated gene 2 (NARG2), mRNA”,


gi|37202122|ref|NM_024611.2|[37202122]; 2526: NM_024615, “Homo sapiens hypothetical


protein FLJ21308 (FLJ21308), mRNA”, gi|24432008|ref|NM_024615.2|[24432008]; 2527:


NM_024616, “Homo sapiens hypothetical protein FLJ23186 (FLJ23186), mRNA”,


gi|13375833|ref|NM_024616.1|[13375833]; 2528: NM_024618, “Homo sapiens NOD9 protein


(NOD9), transcript variant 1, mRNA”, gi|25777607|ref|NM_024618.2|[25777607]; 2529:


NM_024624, Homo sapiens SMC6 structural maintenance of chromosomes 6-like 1 (yeast),


“(SMC6L1), mRNA”, gi|31543646|ref|NM_024624.2|[31543646]; 2530: NM_024628, “Homo



sapiens solute carrier family 12 (potassium/chloride transporters), member”, “8 (SLC12A8),



mRNA”, gi|42740889|ref|NM_024628.4|[42740889]; 2531: NM_024630, “Homo sapiens zinc


finger, DHHC domain containing 14 (ZDHHC14), mRNA”,


gi|24371240|ref|NM_024630.2|[24371240]; 2532: NM_024631, “Homo sapiens hypothetical


protein FLJ23342 (FLJ23342), mRNA”, gi|13375859|ref|NM_024631.1|[13375859]; 2533:


NM_024643, “Homo sapiens chromosome 14 open reading frame 140 (C14orf140), mRNA”,


gi|13375882|ref|NM_024643.1|[13375882]; 2534: NM_024650, “Homo sapiens hypothetical


protein FLJ22531 (FLJ22531), mRNA”, gi|31542734|ref|NM_024650.2|[31542734]; 2535:


NM_024654, “Homo sapiens hypothetical protein FLJ23323 (FLJ23323), mRNA”,


gi|40217804|ref|NM_024654.3|[40217804]; 2536: NM_024658, “Homo sapiens importin 4


(IPO4), mRNA”, gi|18874098|ref|NM_024658.2|[18874098]; 2537: NM_024659, “Homo



sapiens hypothetical protein FLJ11753 (FLJ11753), mRNA”,



gi|40254964|ref|NM_024659.2|[40254964]; 2538: NM_024660, “Homo sapiens hypothetical


protein FLJ22573 (FLJ22573), mRNA”, gi|13375912|ref|NM_024660.1|[13375912]; 2539:


NM_024667, “Homo sapiens hypothetical protein FLJ12750 (FLJ12750), mRNA”,


gi|13375925|ref|NM_024667.1|[13375925]; 2540: NM_024669, “Homo sapiens hypothetical


protein FLJ11795 (FLJ11795), mRNA”, gi|13375927|ref|NM_024669.1|[13375927]; 2541:


NM_024670, “Homo sapiens suppressor of variegation 3-9 homolog 2 (Drosophila)


(SUV39H2),”, mRNA, gi|34147611|ref|NM_024670.3|[34147611]; 2542: NM_024672, “Homo



sapiens THAP domain containing 9 (THAP9), mRNA”,



gi|38564326|ref|NM_024672.2|[38564326]; 2543: NM_024674, “Homo sapiens lin-28 homolog


(C. elegans) (LIN28), mRNA”, gi|34222338|ref|NM_024674.3|[34222338]; 2544: NM_024675,


Homo sapiens hypothetical protein FLJ21816 (FLJ21816), mRNA”,


gi|27436909|ref|NM_024675.2|[27436909]; 2545: NM_024678, “Homo sapiens hypothetical


protein FLJ23441 (FLJ23441), mRNA”, gi|39725682|ref|NM_024678.3|[39725682]; 2546:


NM_024682, “Homo sapiens TBC1 domain family, member 17 (TBC1D17), mRNA”,


gi|13375951|ref|NM_024682.1|[13375951]; 2547: NM_024683, “Homo sapiens hypothetical


protein FLJ22729 (FLJ22729), mRNA”, gi|13375953|ref|NM_024683.1|[13375953]; 2548:


NM_024685, “Homo sapiens hypothetical protein ELJ23560 (FLJ23560), mRNA”,


gi|31377692|ref|NM_024685.2|[31377692]; 2549: NM_024696, “Homo sapiens hypothetical


protein FLJ23058 (FLJ23058), mRNA”, gi|13375978|ref|NM_024696.1|[13375978]; 2550:


NM_024698, “Homo sapiens solute carrier family 25 (mitochondrial carrier: glutamate),


member”, “22 (SLC25A22), mRNA”, gi|34222352|ref|NM_024698.4|[34222352]; 2551:


NM_024699, “Homo sapiens hypothetical protein FLJ14007 (FLJ14007), mRNA”,


gi|13375984|ref|NM_024699.1|[13375984]; 2552: NM_024700, “Homo sapiens Smad nuclear


interacting protein (SNIP1), mRNA”, gi|21314719|ref|NM_024700.2|[21314719]; 2553:


NM_024703, “Homo sapiens hypothetical protein FLJ22593 (FLJ22593), mRNA”,


gi|31542737|ref|NM_024703.2|[31542737]; 2554: NM_024706, “Homo sapiens hypothetical


protein FLJ13479 (FLJ13479), mRNA”, gi|39725704|ref|NM_024706.3|[39725704]; 2555:


NM_024708, “Homo sapiens ankyrin repeat and SOCS box-containing 7 (ASB7), transcript


variant”, “1, mRNA”, gi|30089993|ref|NM_024708.2|[30089993]; 2556: NM_024711, “Homo



sapiens human immune associated nucleotide 2 (hIAN2), mRNA”,



gi|28416428|ref|NM_024711.2|[28416428]; 2557: NM_024712, “Homo sapiens engulfment and


cell motility 3 (ced-12 homolog, C. elegans)”, “(ELMO3), mRNA”,


gi|19718770|ref|NM_024712.2|[19718770]; 2558: NM_024718, “Homo sapiens FLJ10101


protein (FLJ10101), mRNA”, gi|38201703|ref|NM_024718.2|[38201703]; 2559: NM_024723,


Homo sapiens MICAL-like 2 (FLJ23471), transcript variant 2, mRNA”,


gi|13376030|ref|NM_024723.1|[13376030]; 2560: NM_024728, “Homo sapiens chromosome 7


open reading frame 10 (C7orf10), mRNA”, gi|13376041|ref|NM_024728.1|[13376041]; 2561:


NM_024731, “Homo sapiens chromosome 16 open reading frame 44 (C16orf44), mRNA”,


gi|31542245|ref|NM_024731.2|[31542245]; 2562: NM_024741, “Homo sapiens zinc finger


protein 408 (ZNF408), mRNA”, gi|13376063|ref|NM_024741.1|[13376063]; 2563: NM_024744,


Homo sapiens amyotrophic lateral sclerosis 2 (juvenile) chromosome region,”, “candidate 8


(ALS2CR8), mRNA”, gi|20806094|ref|NM_024744.12|[20806094]; 2564: NM_024745, “Homo



sapiens likely ortholog of mouse Shc SH2-domain binding protein 1 (SHCBP1),”, mRNA,



gi|24850112|ref|NM_024745.2|[24850112]; 2565: NM_024747, “Homo sapiens Hermansky-


Pudlak syndrome 6 (HPS6), mRNA”, gi|31881784|ref|NM_024747.4|[31881784]; 2566:


NM_024756, “Homo sapiens elastin microfibril interfacer 3 (EMILIN3), mRNA”,


gi|13376090|ref|NM_024756.1|[13376090]; 2567: NM_024760, “Homo sapiens transducin-like


enhancer protein 6 (FLJ14009), mRNA”, gi|13376098|ref|NM_024760.1|[13376098]; 2568:


NM_024761, “Homo sapiens MOB1, Mps One Binder kinase activator-like 2B (yeast)


(MOBKL2B),”, mRNA, gi|41350329|ref|NM_024761.3|[41350329]; 2569: NM_024763,


Homo sapiens hypothetical protein FLJ23129 (FLJ23129), mRNA”,


gi|33946333|ref|NM_024763.2|[33946333]; 2570: NM_024770, “Homo sapiens hypothetical


protein FLJ13984 (FLJ13984), mRNA”, gi|13376116|ref|NM_024770.1|[13376116]; 2571:


NM_024771, “Homo sapiens hypothetical protein FLJ13848 (FLJ13848), mRNA”,


gi|13376118|ref|NM_024771.1|[13376118]; 2572: NM_024778, “Homo sapiens ring finger


protein 127 (RNF127), mRNA”, gi|37622895|ref|NM_024778.3|[37622895]; 2573: NM_024779,


Homo sapiens phosphatidylinositol-4-phosphate 5-kinase, type II, gamma”, “(PIP5K2C),


mRNA”, gi|37059743|ref|NM_024779.3|[37059743]; 2574: NM_024782, “Homo sapiens


hypothetical protein FLJ12610 (FLJ12610), mRNA”,


gi|13376141|ref|NM_024782.1|[13376141]; 2575: NM_024783, “Homo sapiens hypothetical


protein FLJ23598 (FLJ23598), mRNA”, gi|31657118|ref|NM_024783.2|[31657118]; 2576:


NM_024785, “Homo sapiens hypothetical protein FLJ22746 (FLJ22746), mRNA”,


gi|31542740|ref|NM_024785.2|[31542740]; 2577: NM_024799, “Homo sapiens hypothetical


protein FLJ13224 (FLJ13224), mRNA”, gi|13376172|ref|NM_024799.1|[13376172]; 2578:


NM_024800, “Homo sapiens NIMA (never in mitosis gene a)-related kinase 11 (NEK11),


mRNA”, gi|22094142|ref|NM_024800.2|[22094142]; 2579: NM_024806, “Homo sapiens


hypothetical protein FLJ23554 (FLJ23554), transcript variant 1,”, mRNA,


gi|40217798|ref|NM_024806.2|[40217798]; 2580: NM_024808, “Homo sapiens FLJ22624


protein (FLJ22624), mRNA”, gi|38505206|ref|NM_024808.2|[38505206]; 2581: NM_024811,


Homo sapiens pre-mRNA cleavage factor I, 59 kDa subunit (FLJ12529), mRNA”,


gi|24432015|ref|NM_024811.2|[24432015]; 2582: NM_024818, “Homo sapiens ubiquitin-


activating enzyme E1-domain containing 1 (UBE1DC1),”, “transcript variant 1, mRNA”,


gi|38327030|ref|NM_024818.2|[38327030]; 2583: NM_024821, “Homo sapiens hypothetical


protein FLJ22349 (FLJ22349), mRNA”, gi|13376215|ref|NM_024821.1|[13376215]; 2584:


NM_024823,, ref|NM_024823.1|[13376219], This record was temporarily removed by RefSeq


staff for additional review.,, 2585: NM_024827, “Homo sapiens histone deacetylase 11


(HDAC11), mRNA”, gi|13376227|ref|NM_024827.1|[13376227]; 2586: NM_024828, “Homo



sapiens chromosome 9 open reading frame 82 (C9orf82), mRNA”,



gi|13376229|ref|NM_024828.1|[13376229]; 2587: NM_024831, “Homo sapiens nuclear receptor


coactivator 6 interacting protein (NCOA6IP), mRNA”,


gi|19923660|ref|NM_024831.5|[19923660]; 2588: NM_024834, “Homo sapiens hypothetical


protein FLJ13081 (FLJ13081), mRNA”, gi|13376242|ref|NM_024834.1|[13376242]; 2589:


NM_024848, “Homo sapiens hypothetical protein FLJ13941 (FLJ13941), mRNA”,


gi|13376266|ref|NM_024848.1|[13376266]; 2590: NM_024849, “Homo sapiens hypothetical


protein FLJ14126 (FLJ14126), mRNA”, gi|13376268|ref|NM_024849.1|[13376268]; 2591:


NM_024852, “Homo sapiens eukaryotic translation initiation factor 2C, 3 (EIF2C3), transcript”,


“variant 1, mRNA”, gi|29294646|ref|NM_024852.2|[29294646]; 2592: NM_024853, “Homo



sapiens hypothetical protein FLJ13385 (FLJ13385), mRNA”,



gi|13376276|ref|NM_024853.1|[13376276]; 2593: NM_024860, “Homo sapiens hypothetical


protein FLJ21148 (FLJ21148), mRNA”, gi|13376287|ref|NM_024860.1|[13376287]; 2594:


NM_024861, “Homo sapiens hypothetical protein FLJ22671 (FLJ22671), mRNA”,


gi|13376289|ref|NM_024861.1|[13376289]; 2595: NM_024869, “Homo sapiens hypothetical


protein FLJ14050 (FLJ14050), mRNA”, gi|13376303|ref|NM_024869.1|[13376303]; 2596:


NM_024871, “Homo sapiens hypothetical protein FLJ12748 (FLJ12748), mRNA”,


gi|13376305|ref|NM_024871.1|[13376305]; 2597: NM_024884, “Homo sapiens chromosome 14


open reading frame 160 (C14orf160), mRNA”, gi|13376330|ref|NM_024884.1|[13376330];


2598: NM_024887, “Homo sapiens dehydrodolichyl diphosphate synthase (DHDDS), mRNA”,


gi|13376336|ref|NM_024887.1|[13376336]; 2599: NM_024888, “Homo sapiens hypothetical


protein FLJ11535 (FLJ11535), mRNA”, gi|13376338|ref|NM_024888.1|[13376338]; 2600:


NM_024894, “Homo sapiens hypothetical protein FLJ14075 (FLJ14075), mRNA”,


gi|13430871|ref|NM_024894.1|[13430871]; 2601: NM_024900, “Homo sapiens PHD protein


Jade-1 (JADE1), transcript variant S, mRNA”, gi|19923608|ref|NM_024900.2|[19923608]; 2602:


NM_024901, “Homo sapiens hypothetical protein FLJ22457 (FLJ22457), mRNA”,


gi|34147689|ref|NM_024901.3|[34147689]; 2603: NM_024902, “Homo sapiens hypothetical


protein FLJ13236 (FLJ13236), mRNA”, gi|24431938|ref|NM_024902.2|[24431938]; 2604:


NM_024906, “Homo sapiens stearoyl-CoA desaturase 4 (SCD4), mRNA”,


gi|13376362|ref|NM_024906.1|[13376362]; 2605: NM_024908, “Homo sapiens hypothetical


protein FLJ12973 (FLJ12973), mRNA”, gi|13376366|ref|NM_024908.1|[13376366]; 2606:


NM_024909, “Homo sapiens chromosome 6 open reading frame 134 (C6orf134), mRNA”,


gi|13376368|ref|NM_024909.1|[13376368]; 2607: NM_024911, “Homo sapiens putative NFkB


activating protein 373 (FLJ23091), mRNA”, gi|31542744|ref|NM_024911.3|[31542744]; 2608:


NM_024913, “Homo sapiens hypothetical protein FLJ21986 (FLJ21986), mRNA”,


gi|31542726|ref|NM_024913.3|[31542726]; 2609: NM_024927, “Homo sapiens hypothetical


protein FLJ21019 (FLJ21019), mRNA”, gi|40255046|ref|NM_024927.3|[40255046]; 2610:


NM_024928, “Homo sapiens hypothetical protein FLJ22559 (FLJ22559), mRNA”,


gi|34147613|ref|NM_024928.3|[34147613]; 2611: NM_024935, “Homo sapiens KIAA1772


(KIAA1772), mRNA”, gi|40354206|ref|NM_024935.2|[40354206]; 2612: NM_024939, “Homo



sapiens hypothetical protein FLJ21918 (FLJ21918), mRNA”,



gi|13435148|ref|NM_024939.1|[13435148]; 2613: NM_024941, “Homo sapiens hypothetical


protein FLJ13611 (FLJ13611), mRNA”, gi|13376418|ref|NM_024941.1|[13376418]; 2614:


NM_024946, “Homo sapiens NEFA-interacting nuclear protein NIP30 (NIP30), mRNA”,


gi|13376428|ref|NM_024946.1|[13376428]; 2615: NM_024948, “Homo sapiens hypothetical


protein FLJ13397 (FLJ13397), mRNA”, gi|13376430|ref|NM_024948.1|[13376430]; 2616:


NM_024954, “Homo sapiens hypothetical protein FLJ11807 (FLJ11807), mRNA”,


gi|34222339|ref|NM_024954.3|[34222339]; 2617: NM_024955, “Homo sapiens hypothetical


protein FLJ23322 (FLJ23322), mRNA”, gi|34303916|ref|NM_024955.4|[34303916]; 2618:


NM_024956, “Homo sapiens hypothetical protein FLJ23375 (FLJ23375), mRNA”,


gi|20070341|ref|NM_024956.2|[20070341]; 2619: NM_024958, “Homo sapiens chromosome 20


open reading frame 98 (C20orf98), mRNA”, gi|13376446|ref|NM_024958.1|[13376446]; 2620:


NM_024959, “Homo sapiens solute carrier family 24 (sodium/potassium/calcium exchanger),”,


“member 6 (NCKX6), mRNA”, gi|39995085|ref|NM_024959.2|[39995085]; 2621: NM_024960,


Homo sapiens pantothenate kinase 2 (Hallervorden-Spatz syndrome) (PANK2),”, “transcript


variant 5, mRNA”, gi|24430166|ref|NM_024960.3|[24430166]; 2622: NM_024988, “Homo



sapiens hypothetical protein FLJ12355 (FLJ12355), mRNA”,



gi|13376491|ref|NM_024988.1|[13376491]; 2623: NM_024989, “Homo sapiens GPI deacylase


(PGAP1), mRNA”, gi|13376493|ref|NM_024989.1|[13376493]; 2624: NM_024996, “Homo



sapiens mitochondrial elongation factor G1 (EFG1), nuclear gene encoding”, “mitochondrial



protein, mRNA”, gi|25306276|ref|NM_024996.5|[25306276]; 2625: NM_025000, “Homo



sapiens hypothetical protein FLJ13096 (FLJ13096), mRNA”,



gi|13376510|ref|NM_025000.1|[13376510]; 2626: NM_025003, Homo sapiens a disintegrin-like


and metalloprotease (reprolysin type) with, “thrombospondin type 1 motif, 20 (ADAMTS20),


transcript variant 1, mRNA”, gi|28460689|ref|NM_025003.2|[28460689]; 2627: NM_025009,


Homo sapiens hypothetical protein FLJ13621 (FLJ13621), mRNA”,


gi|13376528|ref|NM_025009.1|[13376528]; 2628: NM_025029, “Homo sapiens hypothetical


protein FLJ14346 (FLJ14346), mRNA”, gi|13376551|ref|NM_025029.1|[13376551]; 2629:


NM_025034, “Homo sapiens hypothetical protein FLJ21290 (FLJ21290), mRNA”,


gi|13376561|ref|NM_025034.1|[13376561]; 2630: NM_025045, “Homo sapiens hypothetical


protein FLJ22582 (FLJ22582), mRNA”, gi|34147690|ref|NM_025045.3|[34147690]; 2631:


NM_025054, Homo sapiens valosin-containing protein (p97)/p47 complex-interacting protein,


“p135 (VCIP135), mRNA”, gi|38569451|ref|NM_025054.3|[38569451]; 2632: NM_025058,


Homo sapiens tripartite motif-containing 46 (TRIM46), mRNA”,


gi|42415489|ref|NM_025058.2|[42415489]; 2633: NM_025061, “Homo sapiens hypothetical


protein FLJ23420 (FLJ23420), mRNA”, gi|40217802|ref|NM_025061.3|[40217802]; 2634:


NM_025064, “Homo sapiens hypothetical protein FLJ23604 (FLJ23604), mRNA”,


gi|13376602|ref|NM_025064.1|[13376602]; 2635: NM_025065, “Homo sapiens RNA


processing factor 1 (RPF1), mRNA”, gi|38569467|ref|NM_025065.5|[38569467]; 2636:


NM_025072, “Homo sapiens prostaglandin E synthase 2 (PTGES2), transcript variant 1,


mRNA”, gi|40068467|ref|NM_025072.4|[40068467]; 2637: NM_025074, “Homo sapiens Fraser


syndrome 1 (FRAS1), mRNA”, gi|33413413|ref|NM_025074.2|[33413413]; 2638: NM_025076,


Homo sapiens UDP-glucuronate decarboxylase 1 (UXS1), mRNA”,


gi|42516562|ref|NM_025076.2|[42516562]; 2639: NM_025079, “Homo sapiens hypothetical


protein FLJ23231 (FLJ23231), mRNA”, gi|13376631|ref|NM_025079.1|[13376631]; 2640:


NM_025083, “Homo sapiens hypothetical protein FLJ21128 (FLJ21128), mRNA”,


gi|19923612|ref|NM_025083.2|[19923612]; 2641: NM_025090, “Homo sapiens ubiquitin


specific protease 36 (USP36), mRNA”, gi|35250685|ref|NM_025090.2|[35250685]; 2642:


NM_025092, “Homo sapiens hypothetical protein FLJ22635 (FLJ22635), mRNA”,


gi|13376651|ref|NM_025092.1|[13376651]; 2643: NM_025097, “Homo sapiens hypothetical


protein FLJ21106 (FLJ21106), mRNA”, gi|13376659|ref|NM_025097.1|[13376659]; 2644:


NM_025106, “Homo sapiens SPRY domain-containing SOCS box protein SSB-1 (SSB1),


mRNA”, gi|18141315|ref|NM_025106.2|[18141315]; 2645: NM_025108, “Homo sapiens


hypothetical protein FLJ13909 (FLJ13909), mRNA”,


gi|13376678|ref|NM_025108.1|[13376678]; 2646: NM_025115, “Homo sapiens hypothetical


protein FLJ23263 (FLJ23263), mRNA”, gi|13376690|ref|NM_025115.1|[13376690]; 2647:


NM_025126, “Homo sapiens ring finger protein 34 (RNF34), transcript variant 2, mRNA”,


gi|37595536|ref|NM_025126.2|[37595536]; 2648: NM_025128, “Homo sapiens MUS81


endonuclease homolog (yeast) (MUS81), mRNA”, gi|34147593|ref|NM_025128.3|[34147593];


2649: NM_025129, “Homo sapiens hypothetical protein FLJ22688 (FLJ22688), mRNA”,


gi|34147614|ref|NM_025129.3|[34147614]; 2650: NM_025137, “Homo sapiens hypothetical


protein FLJ21439 (FLJ21439), mRNA”, gi|33636747|ref|NM_025137.2|[33636747]; 2651:


NM_025138, “Homo sapiens hypothetical protein FLJ12661 (FLJ12661), transcript variant 1,”,


mRNA, gi|25777603|ref|NM_025138.2|[25777603]; 2652: NM_025140, “Homo sapiens limkain


beta 2 (FLJ22471), mRNA”, gi|13376724|ref|NM_025140.1|[13376724]; 2653: NM_025141,


Homo sapiens BBP-like protein 2 (BLP2), transcript variant 2, mRNA”,


gi|17865798|ref|NM_025141.2|[17865798]; 2654: NM_025147, “Homo sapiens hypothetical


protein FLJ13448 (FLJ13448), mRNA”, gi|31542687|ref|NM_025147.2|[31542687]; 2655:


NM_025150, “Homo sapiens threonyl-tRNA synthetase (FLJ12528), mRNA”,


gi|39725684|ref|NM_025150.3|[39725684]; 2656: NM_025155, “Homo sapiens hypothetical


protein FLJ11848 (FLJ11848), mRNA”, gi|13376750|ref|NM_025155.1|[13376750]; 2657:


NM_025181, “Homo sapiens solute carrier family 35, member F5 (SLC35F5), mRNA”,


gi|21361958|ref|NM_025181.2|[21361958]; 2658: NM_025201, “Homo sapiens PH domain-


containing protein (pp9099), mRNA”, gi|33457315|ref|NM_025201.3|[33457315]; 2659:


NM_025203, “Homo sapiens hypothetical protein FLJ21945 (FLJ21945), mRNA”,


gi|13376797|ref|NM_025203.1|[13376797]; 2660: NM_025212, “Homo sapiens CXXC finger 4


(CXXC4), mRNA”, gi|13376815|ref|NM_025212.1|[13376815]; 2661: NM_025215, “Homo



sapiens pseudouridylate synthase 1 (PUS1), mRNA”,



gi|34147590|ref|NM_025215.3|[34147590]; 2662: NM_025233, Homo sapiens bifunctional


phosphopantetheine adenylyl transferase/dephospho CoA, “kinase (DPCK), mRNA”,


gi|22095394|ref|NM_025233.3|[22095394]; 2663: NM_025235, “Homo sapiens tankyrase,


TRF1-interacting ankyrin-related ADP-ribose polymerase 2”, “(TNKS2), mRNA”,


gi|21361945|ref|NM_025235.2|[21361945]; 2664: NM_025236, “Homo sapiens ring finger


protein 39 (RNF39), transcript variant 1, mRNA”, gi|25777714|ref|NM_025236.2|[25777714];


2665: NM_025241, “Homo sapiens UBX domain containing 1 (UBXD1), mRNA”,


gi|13376853|ref|NM_025241.1|[13376853]; 2666: NM_025243, “Homo sapiens solute carrier


family 19, member 3 (SLC19A3), mRNA”, gi|21361938|ref|NM_025243.2|[21361938]; 2667:


NM_025247, “Homo sapiens hypothetical protein MGC5601 (MGC5601), mRNA”,


gi|31543200|ref|NM_025247.2|[31543200]; 2668: NM_025260, “Homo sapiens chromosome 6


open reading frame 25 (C6orf25), transcript variant 1,”, mRNA,


gi|19913372|ref|NM_025260.2|[19913372]; 2669: NM_025263, “Homo sapiens proline-rich


polypeptide 3 (PRR3), mRNA”, gi|13376877|ref|NM_025263.1|[13376877]; 2670: NM_025267,


Homo sapiens hypothetical protein MGC2744 (MGC2744), mRNA”,


gi|34147388|ref|NM_025267.2|[34147388]; 2671: NM_030567, “Homo sapiens hypothetical


protein MGC10772 (MGC10772), mRNA”, gi|21361936|ref|NM_030567.2|[21361936]; 2672:


NM_030576, “Homo sapiens hypothetical protein MGC10986 (MGC10986), mRNA”,


gi|22095372|ref|NM_030576.2|[22095372]; 2673: NM_030577, “Homo sapiens hypothetical


protein MGC10993 (MGC10993), mRNA”, gi|13386491|ref|NM_030577.1|[13386491]; 2674:


NM_030664, “Homo sapiens phosphotriesterase related (PTER), mRNA”,


gi|20070185|ref|NM_030664.2|[20070185]; 2675: NM_030673, “Homo sapiens SEC13-like 1


(S. cerevisiae) (SEC13L1), transcript variant 1, mRNA”,


gi|34335135|ref|NM_030673.2|[34335135]; 2676: NM_030674, “Homo sapiens solute carrier


family 38, member 1 (SLC38A1), mRNA”, gi|21361928|ref|NM_030674.2|[21361928]; 2677:


NM_030758, “Homo sapiens oxysterol binding protein 2 (OSBP2), mRNA”,


gi|13540512|ref|NM_030758.1|[13540512]; 2678: NM_030761, “Homo sapiens wingless-type


MMTV integration site family, member 4 (WNT4), mRNA”,


gi|17402921|ref|NM_030761.2|[17402921]; 2679: NM_030762, “Homo sapiens basic helix-


loop-helix domain containing, class B, 3 (BHLHB3), mRNA”,


gi|13540520|ref|NM_030762.1|[13540520]; 2680: NM_030780, “Homo sapiens mitochondrial


folate transporter/carrier (MFTC), mRNA”, gi|21314738|ref|NM_030780.2|[21314738]; 2681:


NM_030784, “Homo sapiens G protein-coupled receptor 63 (GPR63), mRNA”,


gi|13540556|ref|NM_030784.1|[13540556]; 2682: NM_030790, “Homo sapiens T-cell


immunomodulatory protein (CDA08), mRNA”, gi|21361932|ref|NM_030790.2|[21361932];


2683: NM_030791, “Homo sapiens sphingosine-1-phosphate phosphatase 1 (SGPP1), mRNA”,


gi|40254975|ref|NM_030791.2|[40254975]; 2684: NM_030798, “Homo sapiens Williams-


Beuren syndrome chromosome region 16 (WBSCR16), transcript”, “variant 1, mRNA”,


gi|22538491|ref|NM_030798.2|[22538491]; 2685: NM_030804,, ref|NM_030804.1|[13540591],


This record was temporarily removed by RefSeq staff for additional review.,, 2686:


NM_030805, “Homo sapiens lectin, mannose-binding 2-like (LMAN2L), mRNA”,


gi|13540593|ref|NM_030805.1|[13540593]; 2687: NM_030806, “Homo sapiens chromosome 1


open reading frame 21 (C1orf21), mRNA”, gi|40788019|ref|NM_030806.2|[40788019]; 2688:


NM_030808, Homo sapiens nudE nuclear distribution gene E homolog like 1 (A. nidulans),


“(NDEL1), mRNA”, gi|31543284|ref|NM_030808.2|[31543284]; 2689: NM_030809, “Homo



sapiens chromosome 12 open reading frame 22 (C12orf22), mRNA”,



gi|13540601|ref|NM_030809.1|[13540601]; 2690: NM_030818, “Homo sapiens hypothetical


protein MGC10471 (MGC10471), mRNA”, gi|34147391|ref|NM_030818.2|[34147391]; 2691:


NM_030824, “Homo sapiens zinc finger protein 442 (ZNF442), mRNA”,


gi|13540500|ref|NM_030824.1|[13540500]; 2692: NM_030877, “Homo sapiens catenin, beta


like 1 (CTNNBL1), mRNA”, gi|29570786|ref|NM_030877.3|[29570786]; 2693: NM_030907,


Homo sapiens hypothetical protein MGC10731 (MGC10731), mRNA”,


gi|34147392|ref|NM_030907.2|[34147392]; 2694: NM_030917, “Homo sapiens FIP1 like 1 (S. cerevisiae)


(FIP1L1), mRNA”, gi|40254977|ref|NM_030917.2|[40254977]; 2695: NM_030926,


Homo sapiens integral membrane protein 2C (ITM2C), mRNA”,


gi|31560867|ref|NM_030926.3|[31560867]; 2696: NM_030927, “Homo sapiens tetraspanin


similar to TM4SF9 (DC-TM4F2), mRNA”, gi|13569888|ref|NM_030927.1|[13569888]; 2697:


NM_030954, “Homo sapiens hypothetical protein DKFZp564A022 (DKFZP564A022),


mRNA”, gi|21361953|ref|NM_030954.2|[21361953]; 2698: NM_030963, “Homo sapiens ring


finger protein 146 (RNF146), mRNA”, gi|33636757|ref|NM_030963.2|[33636757]; 2699:


NM_030968, “Homo sapiens C1q and tumor necrosis factor related protein 1 (C1QTNF1),”,


“transcript variant 1, mRNA”, gi|38372915|ref|NM_030968.2|[38372915]; 2700: NM_030974,


Homo sapiens hypothetical protein DKFZp434N1923 (DKFZP434N1923), mRNA”,


gi|31542518|ref|NM_030974.2|[31542518]; 2701: NM_030978, “Homo sapiens actin related


protein 2/3 complex, subunit 5-like (ARPC5L), mRNA”,


gi|13569955|ref|NM_030978.1|[13569955]; 2702: NM_031210, “Homo sapiens hypothetical


protein DC50 (DC50), mRNA”, gi|33667026|ref|NM_031210.3|[33667026]; 2703: NM_031213,


Homo sapiens hypothetical protein MGC5244 (MGG5244), mRNA”,


gi|21361948|ref|NM_031213.2|[21361948]; 2704: NM_031217, “Homo sapiens kinesin family


member 18A (DKFZP434G2226), mRNA”, gi|21314741|ref|NM_031217.2|[21314741]; 2705:


NM_031219, “Homo sapiens hypothetical protein MGC12904 (MGC12904), mRNA”,


gi|31377665|ref|NM_031219.2|[31377665]; 2706: NM_031231, “Homo sapiens amyloid beta


(A4) precursor protein-binding, family A, member 2”, “binding protein (APBA2BP), transcript


variant 1, mRNA”, gi|38569412|ref|NM_031231.2|[38569412]; 2707: NM_031275, “Homo



sapiens testis expressed sequence 12 (TEX12), mRNA”,



gi|14277686|ref|NM_031275.2|[14277686]; 2708: NM_031280, “Homo sapiens mitochondrial


ribosomal protein S15 (MRPS15), nuclear gene encoding”, “mitochondrial protein, mRNA”,


gi|16554610|ref|NM_031280.2|[16554610]; 2709: NM_031284, “Homo sapiens ATP-dependent


glucokinase (ADP-GK), mRNA”, gi|31542508|ref|NM_031284.3|[31542508]; 2710:


NM_031287, “Homo sapiens splicing factor 3b, subunit 5, 10 kDa (SF3B5), mRNA”,


gi|42740890|ref|NM_031287.2|[42740890]; 2711: NM_031289, “Homo sapiens germ cell


associated 1 (GSG1), mRNA”, gi|13775203|ref|NM_031289.1|[13775203]; 2712: NM_031296,


Homo sapiens RAB33B, member RAS oncogene family (RAB33B), mRNA”,


gi|13786128|ref|NM_031296.1|[13786128]; 2713: NM_031298, “Homo sapiens hypothetical


protein MGC2963 (MGC2963), mRNA”, gi|13775219|ref|NM_031298.1|[13775219]; 2714:


NM_031299, “Homo sapiens cell division cycle associated 3 (CDCA3), mRNA”,


gi|34147595|ref|NM_031299.3|[34147595]; 2715: NM_031307, “Homo sapiens hypothetical


protein FKSG32 (FKSG32), mRNA”, gi|31542635|ref|NM_031307.2|[31542635]; 2716:


NM_031310 “Homo sapiens plasmalemma vesicle associated protein (PLVAP), mRNA”,


gi|13775237|ref|NM_031310.1|[13775237]; 2717: NM_031450, “Homo sapiens hypothetical


protein p5326 (P5326), mRNA”, gi|31543378|ref|NM_031450.2|[31543378]; 2718: NM_031485,


Homo sapiens glutamate-rich WD repeat containing 1 (GRWD1), mRNA”,


gi|31542861|ref|NM_031485.2|[31542861]; 2719: NM_031904, “Homo sapiens hypothetical


protein FKSG44 (FKSG44), mRNA”, gi|31982912|ref|NM_031904.2|[31982912]; 2720:


NM_031922 “Homo sapiens RALBP1 associated Eps domain containing 1 (REPS1), mRNA”,


gi|39812393|ref|NM_031922.2|[39812393]; 2721: NM_031966 “Homo sapiens cyclin B1


(CCNB1), mRNA”, gi|34304372|ref|NM_031966.2|[34304372]; 2722: NM_032048, “Homo



sapiens elastin microfibril interfacer 2 (EMILIN2), mRNA”,



gi|14042987|ref|NM_032048.1|[14042987]; 2723: NM_032119, “Homo sapiens monogenic,


audiogenic seizure susceptibility 1 homolog (mouse)”, “(MASS1), mRNA”,


gi|19882212|ref|NM_032119.1|[19882212]; 2724: NM_032144, “Homo sapiens RAB6C,


member RAS oncogene family (RAB6C), mRNA”, gi|14149798|ref|NM_032144.1|[14149798];


2725: NM_032153, “Homo sapiens Zic family member 4 (ZIC4), mRNA”,


gi|22547200|ref|NM_032153.2|[22547200]; 2726: NM_032179, “Homo sapiens hypothetical


protein FLJ20542 (FLJ20542), mRNA”, gi|14149862|ref|NM_032179.1|[14149862]; 2727:


NM_032204, “Homo sapiens ASC-1 complex subunit P100 (ASC1p100), mRNA”,


gi|34147616|ref|NM_032204.3|[34147616]; 2728: NM_032209, “Homo sapiens hypothetical


protein FLJ21777 (FLJ21777), mRNA”, gi|4149905|ref|NM_032209.1|[14149905]; 2729:


NM_032219, “Homo sapiens hypothetical protein FLJ22269 (FLJ22269), mRNA”,


gi|31542730|ref|NM_032219.2|[31542730]; 2730: NM_032233, “Homo sapiens hypothetical


protein FLJ23027 (FLJ23027), transcript variant 1,”, mRNA,


gi|40068480|ref|NM_032233.2|[40068480]; 2731: NM_032338, “Homo sapiens hypothetical


protein MGC14817 (MGC14817), mRNA”, gi|31543151|ref|NM_032338.2|[31543151]; 2732:


NM_032348, “Homo sapiens hypothetical protein MGC3047 (MGC3047), mRNA”,


gi|39725651|ref|NM_032348.2|[39725651]; 2733: NM_032389, “Homo sapiens zinc finger


protein 289, ID1 regulated (ZNF289), mRNA”, gi|31543982|ref|NM_032389.2|[31543982];


2734: NM_032477, “Homo sapiens mitochondrial ribosomal protein L41 (MRPL41), nuclear


gene encoding”, “mitochondrial protein, mRNA”, gi|21265092|ref|NM_032477.1|[21265092];


2735: NM_032509, “Homo sapiens RNA binding protein (LOC84549), mRNA”,


gi|31543090|ref|NM_032509.2|[31543090]; 2736: NM_032569, “Homo sapiens cytokine-like


nuclear factor n-pac (N-PAC), mRNA”, gi|40556375|ref|NM_032569.2|[40556375]; 2737:


NM_032668,, ref|NM_032668.1|[14249231], This record was temporarily removed by RefSeq


staff for additional review.,, 2738: NM_032715,, ref|NM_032715.1|[14249317], This record


was replaced or removed. See revision history for details.,, 2739: NM_032737, “Homo sapiens


lamin B2 (LMNB2), mRNA”, gi|27436950|ref|NM_032737.2|[27436950]; 2740: NM_032765,


Homo sapiens tripartite motif-containing 52 (TRIMS2), mRNA”,


gi|34147443|ref|NM_032765.2|[34147443]; 2741: NM_032842, “Homo sapiens hypothetical


protein FLJ14803 (FLJ14803), mRNA”, gi|14249557|ref|NM_032842.1|[14249557]; 2742:


NM_032856, “Homo sapiens hypothetical protein FLJ14888 (FLJ14888), mRNA”,


gi|14249585|ref|NM_032856.1|[14249585]; 2743: NM_032865, “Homo sapiens C-terminal


tensin-like (CTEN), mRNA”, gi|23943811|ref|NM_032865.3|[23943811]; 2744: NM_032895,


Homo sapiens hypothetical protein MGC14376 (MGC14376), mRNA”,


gi|14249657|ref|NM_032895.1|[14249657]; 2745: NM_033211, “Homo sapiens hypothetical


gene supported by AF038182; BC009203 (LOC90355), mRNA”,


gi|34147457|ref|NM_033211.2|[34147457]; 2746: NM_033284, “Homo sapiens transducin


(beta)-like 1Y-linked (TBL1Y), transcript variant 1,”, mRNA,


gi|15150804|ref|NM_033284.1|[15150804]; 2747: NM_033411, “Homo sapiens RWD domain


containing 2 (RWDD2), mRNA”, gi|34222125|ref|NM_033411.2|[34222125]; 2748:


NM_033415, “Homo sapiens hypothetical gene MGC19595 (MGC19595), mRNA”,


gi|16445355|ref|NM_033415.2|[16445355]; 2749: NM_033416, “Homo sapiens U3 snoRNP


protein 4 homolog (IMP4), mRNA”, gi|15529981|ref|NM_033416.1|[15529981]; 2750:


NM_033418, “Homo sapiens hypothetical protein MGC9084 (MGC9084), mRNA”,


gi|15553096|ref|NM_033418.1|[15553096]; 2751: NM_033453, Homo sapiens inosine


triphosphatase (nucleoside triphosphate pyrophosphatase), “(ITPA), transcript variant 1,


mRNA”, gi|31657145|ref|NM_033453.2|[31657145]; 2752: NM_033546, “Homo sapiens


myosin regulatory light chain MRLC2 (MRLC2), mRNA”,


gi|29568092|ref|NM_033546.2|[29568092]; 2753: NM_052940, “Homo sapiens hypothetical


protein MGC8974 (MGC8974), mRNA”, gi|31543202|ref|NM_052940.3|[31543202]; 2754:


NM_079834, “Homo sapiens secretory carrier membrane protein 4 (SCAMP4), mRNA”,


gi|17738286|ref|NM_079834.1|[17738286]; 2755: NM_080839, “Homo sapiens gamma-


glutamyltransferase-like 4 (GGTL4), transcript variant 2,”, mRNA,


gi|40353751|ref|NM_080839.4|[40353751]; 2756: NM_130463, “Homo sapiens ATPase, H+


transporting, lysosomal 13 kDa, V1 subunit G isoform 2”, “(ATP6V1G2), transcript variant 1,


mRNA”, gi|20357536|ref|NM_130463.2|[20357536]; 2757: NM_133455, “Homo sapiens emilin


and multimerin-domain containing protein 1 (EMU1), mRNA”,


gi|19263344|ref|NM_133455.1|[19263344]; 2758: NM_138288, “Homo sapiens chromosome 14


open reading frame 147 (C14orf147), mRNA”, gi|19923718|ref|NM_138288.1|[19923718];


2759: NM_138402, “Homo sapiens hypothetical protein BC004921 (LOC93349), mRNA”,


gi|20149710|ref|NM_138402.2|[20149710]; 2760: NM_138570, “Homo sapiens hypothetical


protein MGC15523 (MGC15523), mRNA”, gi|20070375|ref|NM_138570.1|[20070375]; 2761:


NM_139136, “Homo sapiens potassium voltage-gated channel, Shaw-related subfamily,


member 2”, “(KCNC2), transcript variant 1, mRNA”,


gi|24497456|ref|NM_139136.2|[24497456]; 2762: NM_139170, “Homo sapiens hypothetical


protein AF447587 (LOC146562), mRNA”, gi|21040258|ref|NM_139170.1|[21040258]; 2763:


NM_139246, “Homo sapiens PP4189 (LOC158427), mRNA”,


gi|31377600|ref|NM_139246.3|[31377600]; 2764: NM_139265, “Home sapiens EH-domain


containing 4 (EHD4), mRNA”, gi|34147619|ref|NM_139265.2|[34147619]; 2765: NM_144617,


Homo sapiens hypothetical protein FLJ32389 (FLJ32389), mRNA”,


gi|21389432|ref|NM_144617.1|[21389432]; 2766: NM_144635, “Homo sapiens hypothetical


protein MGC21688 (MGC21688), mRNA”, gi|40255250|ref|NM_144635.3|[40255250]; 2767:


NM_144718, “Homo sapiens hypothetical protein AY099107 (LOC152185), mRNA”,


gi|40255074|ref|NM_144718.2|[40255074]; 2768: NM_145060, “Homo sapiens hypothetical


protein MGC: 10200 (MGC10200), mRNA”, gi|21450831|ref|NM_145060.1|[21450831]; 2769:


NM_145063, “Homo sapiens chromosome 6 open reading frame 130 (C6orf130), mRNA”,


gi|34147711|ref|NM_145063.2|[34147711]; 2770: NM_145804, “Home sapiens ankyrin repeat


and BTB (POZ) domain containing 2 (ABTB2), mRNA”,


gi|21956638|ref|NM_145804.1|[21956638]; 2771: NM_147129, “Homo sapiens hypothetical


protein LOC259173 (FLJ36525), transcript variant 1,”, mRNA,


gi|33359214|ref|NM_147129.2|[33359214]; 2772: NM_152272, “Home sapiens hypothetical


protein MGC29816 (MGC29816), mRNA”, gi|22748640|ref|NM_152272.1|[22748640]; 2773:


NM_152275, “Homo sapiens hypothetical protein FLJ13946 (FLJ13946), mRNA”,


gi|38683852|ref|NM_152275.2|[38683852]; 2774: NM_152288, “Home sapiens hypothetical


protein MGC13024 (MGC13024), mRNA”, gi|22748650|ref|NM_152288.1|[22748650]; 2775:


NM_152339, “Homo sapiens hypothetical protein MGC26885 (MGC26885), mRNA”,


gi|31377584|ref|NM_152339.2|[31377584]; 2776: NM_152341, “Homo sapiens hypothetical


protein FLJ30002 (FLJ3 0002), mRNA”, gi|31542755|ref|NM_52341.2|[31542755]; 2777:


NM_152519, “Homo sapiens hypothetical protein FLJ23861 (FLJ23861), mRNA”,


gi|40217793|ref|NM_152519.2|[40217793]; 2778: NM_152647, “Home sapiens hypothetical


protein FLJ32800 (FLJ32800), mRNA”, gi|22749318|ref|NM_152647.1|[22749318]; 2779:


NM_152660, “Homo sapiens hypothetical protein MGC34648 (MGC34648), mRNA”,


gi|22749340|ref|NM_152660.1|[22749340]; 2780: NM_152688, “Homo sapiens KH domain


containing, RNA binding, signal transduction associated 2”, “(KHDRBS2), mRNA”,


gi|22749380|ref|NM_152688.1|[22749380]; 2781: NM_152703,, ref|NM_152703.1|[22749402],


This record was temporarily removed by RefSeq staff for additional review.,, 2782:


NM_152726, “Homo sapiens Smhs2 homolog (rat) (FLJ34588), mRNA”,


gi|22749442|ref|NM_152726.1|[22749442]; 2783: NM_152753, “Homo sapiens CUB domain


and EGF-like repeat containing 3 (CEGF3), mRNA”,


gi|31377567|ref|NM_152753.2|[31377567]; 2784: NM_152754, “Homo sapiens sema domain,


immunoglobulin domain (Ig), short basic domain,”, “secreted, (semaphorin) 3D (SEMA3D),


mRNA”, gi|41406085|ref|NM_152754.2|[41406085]; 2785: NM_152758, “Homo sapiens


hypothetical protein FLJ31657 (FLJ31657), mRNA”,


gi|40255334|ref|NM_152758.2|[40255134]; 2786: NM_152769, “Homo sapiens hypothetical


protein MGC40084 (MGC40084), mRNA”, gi|22749502|ref|NM_152769.1|[22749502]; 2787:


NM_152902, “Homo sapiens putative MAPK activating protein (MGC3794), mRNA”,


gi|33239373|ref|NM_152902.2|[33239373]; 2788: NM_153045, “Homo sapiens


DKFZp547P234 protein (DKFZp547P234), mRNA”,


gi|33356141|ref|NM_153045.2|[33356141]; 2789: NM_153354, “Homo sapiens hypothetical


protein MGC33214 (MGC33214), mRNA”, gi|34222213|ref|NM_153354.2|[34222213]; 2790:


NM_153603, “Homo sapiens component of oligomeric golgi complex 7 (COG7), mRNA”,


gi|23957689|ref|NM_153603.1|[23957689]; 2791: NM_153811, “Homo sapiens solute carrier


family 38, member 6 (SLC38A6), mRNA”, gi|24429573|ref|NM_153811.1|[24429573]; 2792:


NM_172341, “Homo sapiens presenilin enhancer 2 (PEN2), mRNA”,


gi|28144919|ref|NM_172341.1|[28144919]; 2793: NM_173481, “Homo sapiens hypothetical


protein LOC126353 (LOC126353), mRNA”, gi|34222226|ref|NM_173481.2|[34222226]; 2794:


NM_173500, “Homo sapiens tau tubulin kinase 2 (TTBK2), mRNA”,


gi|28466990|ref|NM_173500.2|[28466990]; 2795: NM_173509, “Homo sapiens hypothetical


protein MGC16664 (MGC16664), mRNA”, gi|34222229|ref|NM_173509.2|[34222229]; 2796:


NM_173562, “Homo sapiens chromosome 6 open reading frame 69 (C6orf69), mRNA”,


gi|40255181|ref|NM_173562.3|[40255181]; 2797: NM_175066, “Homo sapiens DEAD (Asp-


Glu-Ala-Asp) box polypeptide 51 (DDX51), mRNA”,


gi|37059776|ref|NM_175066.2|[37059776]; 2798: NM_175886, “Homo sapiens phosphoribosyl


pyrophosphate synthetase 1-like 1 (PRPS1L1), mRNA”,


gi|31343499|ref|NM_175886.2|[31343499]; 2799: NM_177966, “Homo sapiens hypothetical


protein DKFZp667B1218 (DKFZp667B1218), mRNA”,


gi|34222255|ref|NM_177966.3|[34222255],,
















TABLE 13








Genes having both an Errα binding motif and a Gabpa binding motif















1: NM_000164, “Homo sapiens gastric inhibitory polypeptide receptor (GIPR), mRNA”,


gi|4503998|ref|NM_000164.1|[4503998]; 2: NM_000183, Homo sapiens hydroxyacyl-


Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A, “thiolase/enoyl-Coenzyme A hydratase


(trifunctional protein), beta subunit”, “(HADHB), mRNA”,


gi|4504326|ref|NM_000183.1|[4504326]; 3: NM_000249, “Homo sapiens mutL homolog 1,


colon cancer, nonpolyposis type 2 (E. coli) (MLH1),”, mRNA,


gi|28559089|ref|NM_000249.2|[28559089]; 4: NM_000274, “Homo sapiens omithine


aminotransferase (gyrate atrophy) (OAT), nuclear gene”, “encoding mitoohondrial protein,


mRNA”, gi|4557808|ref|NM_000274.1|[4557808]; 5: NM_000297, “Homo sapiens polycystic


kidney disease 2 (autosomal dominant) (PKD2), mRNA”,


gi|33286447|ref|NM_000297.2|[33286447]; 6: NM_000347, “Homo sapiens spectrin, beta,


erythrocytic (includes spherocytosis, clinical type”, “I) (SPTB), mRNA”,


gi|22507315|ref|NM_000347.3|[22507315]; 7: NM_000364, “Homo sapiens troponin T2,


cardiac (TNNT2), mRNA”, gi|4507626|ref|NM_000364.1|[4507626]; 8: NM_000403, “Homo



sapiens galactose-4-epimerase, UDP (GALE), mRNA”,



gi|9945333|ref|NM_000403.2|[9945333]; 9: NM_000474, Homo sapiens twist homolog 1


(acrocephalosyndactyly 3; Saethre-Chotzen syndrome), “(Drosophila) (TWIST1), mRNA”,


gi|17978464|ref|NM_000474.2|[17978464]; 10: NM_000483, “Homo sapiens apolipoprotein C-


II (APOC2), mRNA”, gi|32130517|ref|NM_000483.3|[32130517]; 11: NM_000499, “Homo



sapiens cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1),”, mRNA,



gi|13325053|ref|NM_000499.2|[13325053]; 12: NM_000526, “Homo sapiens keratin 14


(epidermolysis bullosa simplex, Dowling-Meara, Koebner)”, “(KIRT14), mRNA”,


gi|15431309|ref|NM_000526.3|[15431309]; 13: NM_000593, “Homo sapiens transporter 1,


ATP-binding cassette, sub-family B (MDR/TAP) (TAP1),”, mRNA,


gi|24797159|ref|NM_000593.4|[24797159]; 14: NM_000603, “Homo sapiens nitric oxide


synthase 3 (endothelial cell) (NOS3), mRNA”, gi|40254421|ref|NM_000603.2|[40254421]; 15:


NM_000628, “Homo sapiens interleukin 10 receptor, beta (IL10RB), mRNA”,


gi|24430214|ref|NM_000628.3|[24430214]; 16: NM_000688, “Homo sapiens aminolevulinate,


delta-, synthase 1 (ALAS1), transcript variant 1,”, mRNA,


gi|40316942|ref|NM_000688.4|[40316942]; 17: NM_000747, “Homo sapiens cholinergic


receptor, nicotinic, beta polypeptide 1 (muscle)”, “(CHRNB1), mRNA”,


gi|41327725|ref|NM_000747.2|[41327725]; 18: NM_000781, “Homo sapiens cytoehrome P450,


family 11, subfamily A, polypeptide 1 (CYP11A1),”, “nuclear gene encoding mitochondrial


protein, mRNA”, gi|4503188|ref|NM_000781.1|[4503188]; 19: NM_000806, “Homo sapiens


gamma-aminobutyric acid (GABA) A receptor, alpha 1 (GABRA1), mRNA”,


gi|38327553|ref|NM_000806.3|[38327553]; 20: NM_000813, “Homo sapiens gamma-


aminobutyric acid (GABA) A receptor, beta 2 (GABRB2),”, “transcript variant 2, mRNA”,


gi|4503864|ref|NM_000813.1|[4503864]; 21: NM_000835, “Homo sapiens glutamate receptor,


ionotropic, N-methyl D-aspartate 2C (GRIN2C),”, mRNA,


gi|6006004|ref|NM_000835.2|[6006004]; 22: NM_000915, “Homo sapiens oxytocin, prepro-


(neurophysin I) (OXT), mRNA”, gi|12707574|ref|NM_000915.2|[12707574]; 23: NM_000932,


Homo sapiens phospholipase C, beta 3 (phosphatidylinositol-specific) (PLCB3),”, mRNA,


gi|11386138|ref|NM_000932.1|[11386138]; 24: NM_001040, “Homo sapiens sex hormone-


binding globulin (SHBG), mRNA”, gi|7382459|ref|NM_001040.2|[7382459]; 25: NM_001087,


Homo sapiens angio-associated, migratory cell protein (AAMP), mRNA”,


gi|4557228|ref|NM_001087.1|[4557228]; 26: NM_001094, “Homo sapiens amiloride-sensitive


cation channel 1, neuronal (degenerin) (ACCN1),”, “transcript variant 2, mRNA”,


gi|34452696|ref|NM_001094.4|[34452696]; 27: NM_001099, “Homo sapiens acid phosphatase,


prostate (ACPP), mRNA”, gi|6382063|ref|NM_001099.2|[6382063]; 28: NM_001104, “Homo



sapiens actinin, alpha 3 (ACTN3), mRNA”, gi|4557240|ref|NM_001104.1|[4557240]; 29:



NM_001158, “Homo sapiens amine oxidase, copper containing 2 (retina-specific) (AOC2),”,


“transcript variant 1, mRNA”, gi|6806880|ref|NM_001158.2|[6806880]; 30: NM_001164,


Homo sapiens amyloid beta (A4) precursor protein-binding, family B, member 1”, “(Fe65)


(APBB1), transcript variant 1, mRNA”, gi|22035552|ref|NM_001164.2|[22035552]; 31:


NM_001188, “Homo sapiens BCL2-antagonist/killer 1 (BAK1), mRNA”,


gi|33457353|ref|NM_001188.2|[33457353]; 32: NM_001257, “Homo sapiens cadherin 13, H-


cadherin (heart) (CDH13), mRNA”, gi|16507956|ref|NM_001257.2|[16507956]; 33:


NM_001261, “Homo sapiens cyclin-dependent kinase 9 (CDC2-related kinase) (CDK9),


mRNA”, gi|17017983|ref|NM_001261.2|[17017983]; 34: NM_001425, “Homo sapiens


epithelial membrane protein 3 (EMP3), mRNA”, gi|4503562|ref|NM_001425.1|[4503562]; 35:


NM_001501, “Homo sapiens gonadotropin-releasing hormone 2 (GNRH2), transcript variant


1,”, mRNA, gi|4504056|ref|NM_001501.1|[4504056]; 36: NM_001542, “Homo sapiens


immunoglobulin superfamily, member 3 (IGSF3), mRNA”,


gi|4504626|ref|NM_001542.1|[4504626]; 37: NM_001662, “Homo sapiens ADP-ribosylation


factor 5 (ARF5), mRNA”, gi|6995999|ref|NM_001662.2|[6995999]; 38: NM_001666, “Homo



sapiens Rho GTPase activating protein 4 (ARHGAP4), mRNA”,



gi|41327157|ref|NM_001666.2|[41327157]; 39: NM_001702, “Homo sapiens brain-specific


angiogenesis inhibitor 1 (BAI1), mRNA”, gi|4502354|ref|NM_001702.1|[4502354]; 40:


NM_001722, “Homo sapiens polymerase (RNA) III (DNA directed) polypeptide D, 44 kDa


(POLR3D),”, mRNA, gi|4502436|ref|NM_001722.1|[4502436]; 41: NM_001823, “Homo



sapiens creatine kinase, brain (CKB), mRNA”, gi|34335231|ref|NM_001823.3|[34335231]; 42:



NM_001859, “Homo sapiens solute carrier family 31 (copper transporters), member 1


(SLC31A1),”, mRNA, gi|40254457|ref|NM_001859.2|[40254457]; 43: NM_001864, “Homo



sapiens cytochrome c oxidase subunit VIIa polypeptide 1 (muscle) (COX7A1),”, mRNA,



gi|18105034|ref|NM_001864.2|[18105034]; 44: NM_001887, “Homo sapiens crystallin, beta B1


(CRYBB1), mRNA”, gi|21536279|ref|NM_001887.3|[21536279]; 45: NM_001893, “Homo



sapiens casein kinase 1, delta (CSNK1D), transcript variant 1, mRNA”,



gi|20544143|ref|NM_001893.3|[20544143]; 46: NM_001895, “Homo sapiens casein kinase 2,


alpha 1 polypeptide (CSNK2A1), transcript variant”, “2, mRNA”,


gi|29570794|ref|NM_001895.2|[29570794]; 47: NM_001923, “Homo sapiens damage-specific


DNA binding protein 1, 127 kDa (DDB1), mRNA”, gi|13435358|ref|NM_001923.2|[13435358];


48: NM_001958, “Homo sapiens eukaryotic translation elongation factor 1 alpha 2 (EEF1A2),


mRNA”, gi|25453470|ref|NM_001958.2|[25453470]; 49: NM_002010, “Homo sapiens


fibroblast growth factor 9 (glia-activating factor) (FGF9), mRNA”,


gi|4503706|ref|NM_002010.1|[4503706]; 50: NM_002012, “Homo sapiens fragile histidine triad


gene (FHIT), mRNA”, gi|4503718|ref|NM_002012.1|[4503718]; 51: NM_002083, “Homo



sapiens glutathione peroxidase 2 (gastrointestinal) (GPX2), mRNA”,



gi|32967606|ref|NM_002083.2|[32967606]; 52: NM_002151, “Homo sapiens hepsin


(transmembrane protease, serine 1) (HPN), transcript variant”, “2, mRNA”,


gi|4504480|ref|NM_002151.1|[4504480]; 53: NM_002157, “Homo sapiens heat shock 10 kDa


protein 1 (chaperonin 10) (HSPE1), mRNA”, gi|4504522|ref|NM_002157.1|[4504522]; 54:


NM_002193, “Homo sapiens inhibin, beta B (activin AB beta polypeptide) (INHBB), mRNA”,


gi|9257224|ref|NM_002193.1|[9257224]; 55: NM_002217, “Homo sapiens pre-alpha (globulin)


inhibitor, H3 polypeptide (ITIH3), mRNA”, gi|10092578|ref|NM_002217.1|[10092578]; 56:


NM_002238, “Homo sapiens potassium voltage-gated channel, subfamily H (eag-related),


member”, “1 (KCNH1), transcript variant 2, mRNA”,


gi|27436999|ref|NM_002238.2|[27436999]; 57: NM_002257, “Homo sapiens kallikrein 1,


renal/pancreas/salivary (KLK1), mRNA”, gi|22027643|ref|NM_002257.2|[22027643]; 58:


NM_002280, “Homo sapiens keratin, hair, acidic, 5 (KRTHA5), mRNA”,


gi|15431313|ref|NM_002280.3|[15431313]; 59: NM_002378, “Homo sapiens megakaryocyte-


associated tyrosine kinase (MATK), transcript variant”, “2, mRNA”,


gi|21450841|ref|NM_002378.2|[21450841]; 60: NM_002419, “Homo sapiens mitogen-activated


protein kinase kinase kinase 11 (MAP3K11), mRNA”,


gi|21735553|ref|NM_002419.2|[21735553]; 61: NM_002437, “Homo sapiens MpV17 transgene,


murine homolog, glomerulosclerosis (MPV17), mRNA”,


gi|37059781|ref|NM_002437.3|[37059781]; 62: NM_002492, “Homo sapiens NADH


dehydrogenase (ubiquinone) 1 beta subcomplex, 5, 16 kDa”, “(NDUFB5), nuclear gene encoding


mitochondrial protein, mRNA”, gi|33519467|ref|NM_002492.2|[33519467]; 63: NM_002506,


Homo sapiens nerve growth factor, beta polypeptide (NGFB), mRNA”,


gi|4505390|ref|NM_002506.1|[4505390]; 64: NM_002590, “Homo sapiens protocadherin 8


(PCDH8), transcript variant 1, mRNA”, gi|6631101|ref|NM_002590.2|[6631101]; 65:


NM_002599, “Homo sapiens phosphodiesterase 2A, cGMP-stimulated (PDE2A), mRNA”,


gi|4505656|ref|NM_002599.1|[4505656]; 66: NM_002630, “Homo sapiens progastricsin


(pepsinogen C) (PGC), mRNA”, gi|4505756|ref|NM_002630.1|[4505756]; 67: NM_002831,


Homo sapiens protein tyrosine phosphatase, non-receptor type 6 (PTPN6),”, “transcript variant


1, mRNA”, gi|34328900|ref|NM_002831.3|[34328900]; 68: NM_002832, “Homo sapiens


protein tyrosine phosphatase, non-receptor type 7 (PTPN7),”, “transcript variant 1, mRNA”,


gi|18375657|ref|NM_002832.2|[18375657]; 69: NM_002904, “Homo sapiens RD RNA binding


protein (RDBP), mRNA”, gi|20631983|ref|NM_002904.4|[20631983]; 70: NM_002912, “Homo



sapiens REV3-like, catalytic subunit of DNA polymerase zeta (yeast)”, “(REV3L), mRNA”,



gi|4506482|ref|NM_002912.1|[4506482]; 71: NM_002930, “Homo sapiens Ras-like without


CAAX 2 (RIT2), mRNA”, gi|4506532|ref|NM_002930.1|[4506532]; 72: NM_002938, “Homo



sapiens ring finger protein 4 (RNF4), mRNA”, gi|34305289|ref|NM_002938.2|[34305289]; 73:



NM_002965, “Homo sapiens S100 calcium binding protein A9 (calgranulin B) (S100A9),


mRNA”, gi|9845520|ref|NM_002965.2|[9845520]; 74: NM_003002, “Homo sapiens succinate


dehydrogenase complex, subunit D, integral membrane”, “protein (SDHD), nuclear gene


encoding mitochondrial protein, mRNA”, gi|4506864|ref|NM_003002.1|[4506864]; 75:


NM_003042, “Homo sapiens solute carrier family 6 (neurotransmitter transporter, GABA),”,


“member 1 (SLC6A1), mRNA”, gi|40254466|ref|NM_003042.2|[40254466]; 76: NM_003055,


Homo sapiens solute carrier family 18 (vesicular acetylcholine), member 3”, “(SLC18A3),


mRNA”, gi|4506990|ref|NM_003055.1|[4506990]; 77: NM_003115, “Homo sapiens UDP-N-


acteylglucosamine pyrophosphorylase 1 (UAP1), mRNA”,


gi|34147515|ref|NM_003115.3|[34147515]; 78: NM_003159, “Homo sapiens cyclin-dependent


kinase-like 5 (CDKL5), mRNA”, gi|4507280|ref|NM_003159.1|[4507280]; 79: NM_003216,


Homo sapiens thyrotrophic embryonic factor (TEF), mRNA”,


gi|34486096|ref|NM_003216.2|[34486096]; 80: NM_003239, “Homo sapiens transforming


growth factor, beta 3 (TGFB3), mRNA”, gi|4507464|ref|NM_003239.1|[4507464]; 81:


NM_003259, “Homo sapiens intercellular adhesion molecule 5, telencephalin (ICAM5),


mRNA”, gi|12545403|ref|NM_003259.2|[12545403]; 82: NM_003325, Homo sapiens HIR


histone cell cycle regulation defective homolog A (S., “cerevisiae) (HIRA), mRNA”,


gi|21536484|ref|NM_003325.3|[21536484]; 83: NM_003334, Homo sapiens ubiquitin-activating


enzyme E1 (A1S9T and BN75 temperature, “sensitivity complementing) (UBE1), transcript


variant 1, mRNA”, gi|23510337|ref|NM_003334.2|[23510337]; 84: NM_003341, “Homo



sapiens ubiquitin-conjugating enzyme E2E 1 (UBC4/5 homolog, yeast)”, “(UBE2E1), transcript



variant 1, mRNA”, gi|33359692|ref|NM_003341.3|[33359692]; 85: NM_003374, “Homo



sapiens voltage-dependent anion channel 1 (VDAC1), mRNA”,



gi|4507878|ref|NM_003374.1|[4507878]; 86: NM_003418, Homo sapiens zinc finger protein 9


(a cellular retroviral nucleic acid binding, “protein) (ZNF9), mRNA”,


gi|4827070|ref|NM_003418.1|[4827070]; 87: NM_003492, “Homo sapiens chromosome X open


reading frame 12 (CXorf12), mRNA”, gi|4504738|ref|NM_003492.1|[4504738]; 88: NM_003524,


Homo sapiens histone 1, H2bh (HIST1H2BH), mRNA”,


gi|21166386|ref|NM_003524.2|[21166386]; 89: NM_003549, “Homo sapiens


hyaluronoglucosaminidase 3 (HYAL3), mRNA”, gi|15208650|ref|NM_003549.2|[15208650]; 90:


NM_003554, “Homo sapiens olfactory receptor, family 1, subfamily E, member 2 (OR1E2),


mRNA”, gi|11386152|ref|NM_003554.1|[11386152]; 91: NM_003594, “Homo sapiens


transcription termination factor, RNA polymerase II (TTF2), mRNA”,


gi|40807470|ref|NM_003594.3|[40807470]; 92: NM_003627, “Homo sapiens solute carrier


family 43, member 1 (SLC43A1), mRNA”, gi|42476323|ref|NM_003627.4|[42476323]; 93:


NM_003632, “Homo sapiens contactin associated protein 1 (CNTNAP1), mRNA”,


gi|4505462|ref|NM_003632.1|[4505462]; 94: NM_003691, “Homo sapiens serine/threonine


kinase 16 (STK16), mRNA”, gi|4505836|ref|NM_003691.1|[4505836]; 95: NM_003860, “Homo



sapiens barrier to autointegration factor 1 (BANF1), mRNA”,



gi|11038645|ref|NM_003860.2|[11038645]; 96: NM_003957, “Homo sapiens serine/threonine


kinase 29 (STK29), mRNA”, gi|27501463|ref|NM_003957.1|[27501463]; 97: NM_004074,


Homo sapiens cytochrome c oxidase subunit VIII (COX8), mRNA”,


gi|4758043|ref|NM_004074.1|[4758043]; 98: NM_004078, “Homo sapiens cysteine and glycine-


rich protein 1 (CSRP1), mRNA”, gi|4758085|ref|NM_004078.1|[4758085]; 99: NM_004100,


Homo sapiens eyes absent homolog 4 (Drosophila) (EYA4), transcript variant 1, ”, mRNA,


gi|26667248|ref|NM_004100.2|[26667248]; 100: NM_004106, “Homo sapiens Fc fragment of


IgE, high affinity I, receptor for; gamma”, “polypeptide (FCER1G), mRNA”,


gi|4758343|ref|NM_004106.1|[4758343]; 101: NM_004178, “Homo sapiens TAR (HIV) RNA


binding protein 2 (TARBP2), transcript variant 3,”, mRNA,


gi|19743837|ref|NM_004178.3|[19743837]; 102: NM_004260, “Homo apiens RecQ protein-


like 4 (RECQL4), mRNA”, gi|4759029|ref|NM_004260.1|[4759029]; 103: NM_004267, “Homo



sapiens carbohydrate (N-acetylglucosamine-6-O) sulfotransferase 2 (CHST2), ”, mRNA,



gi|27369496|ref|NM_004267.2|[27369496]; 104: NM_004294, “Homo sapiens mitochondrial


translational release factor 1 (MTRF1), nuclear gene”, “encoding mitochondrial protein, mRNA”,


gi|34577119|ref|NM_004294.2|[34577119]; 105: NM_004344, “Homo sapiens centrin, EF-hand


protein, 2 (CETN2), mRNA”, gi|4757901|ref|NM_004344.1|[4757901]; 106: NM_004358,


Homo sapiens cell division cycle 25B (CDC25B), transcript variant 1, mRNA”,


gi|11641416|ref|NM_004358.2|[11641416]; 107: NM_004374, “Homo sapiens cytochrome c


oxidase subunit VIc (COX6C), mRNA”, gi|17999531|ref|NM_004374.2|[17999531]; 108:


NM_004427, “Homo sapiens polyhomeotic-like 2 (Drosophila) (PHC2), transcript variant 2,


mRNA”, gi|37595529|ref|NM_004427.2|[37595529]; 109: NM_004470, “Homo sapiens FK506


binding protein 2, 13 kDa (FKBP2), transcript variant 1, mRNA”,


gi|17149841|ref|NM_004470.2|[17149841]; 110: NM_004528, “Homo sapiens microsomal


glutathione S-transferase 3 (MGST3), mRNA”, gi|22035640|ref|NM_004528.2|[22035640]; 111:


NM_004550, “Homo sapiens NADH dehydrogenase (ubiquinone) Fe—S protein 2, 49 kDa”,


“(NADH-coenzyme Q reductase) (NDUFS2), mRNA”,


gi|34147556|ref|NM_004550.3|[34147556]; 112: NM_004604, “Homo sapiens syntaxin 4A


(placental) (STX4A), mRNA”, gi|34147603|ref|NM_004604.3|[34147603]; 113: NM_004656,



Homo sapiens BRCA1 associated protein-1 (ubiquitin carboxy-terminal hydrolase), “(BAP1),



mRNA”, gi|19718752|ref|NM_004656.2|[19718752]; 114: NM_004672, “Homo sapiens


mitogen-activated protein kinase kinase kinase 6 (MAP3K6),”, “transcript variant 1, mRNA”,


gi|24497521|ref|NM_004672.2|[24497521]; 115: NM_004704, “Homo sapiens RNA, U3 small


nucleolar interacting protein 2 (RNU3IP2), mRNA”, gi|31543556|ref|NM_004704.2|[31543556];


116: NM_004870, “Homo sapiens mannose-P-dolichol utilization defect 1 (MPDU1), mRNA”,


gi|4759109|ref|NM_004870.1|[4759109]; 117: NM_004913, “Homo sapiens chromosome 16


open reading frame 7 (C16orf7), mRNA”, gi|4757805|ref|NM_004913.1|[4757805]; 118:


NM_004927, “Homo sapiens mitochondrial ribosomal protein L49 (MRPL49), nuclear gene


encoding”, “mitochondrial protein, mRNA”, gi|27436906|ref|NM_004927.2|[27436906]; 119:


NM_004941, “Homo sapiens DEAH (Asp-Glu-Ala-His) box polypeptide 8 (DHX8), mRNA”,


gi|4826689|ref|NM_004941.1|[4826689]; 120: NM_004959, “Homo sapiens nuclear receptor


subfamily 5, group A, member 1 (NR5A1), mRNA”, gi|24432033|ref|NM_004959.3|[24432033];


121: NM_004987, “Homo sapiens LIM and senescent cell antigen-like domains 1 (LIMS1),


mRNA”, gi|13518025|ref|NM_004987.2|[13518025]; 122: NM_004994, “Homo sapiens matrix


metalloproteinase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa”, “type IV collagenase) (MMP9),


mRNA”, gi|4826835|ref|NM_004994.1|[4826835]; 123: NM_005006, “Homo sapiens NADH


dehydrogenase (ubiquinone) Fe—S protein 1, 75 kDa”, “(NADH-coenzyme Q reductase)


(NDUFS1), nuclear gene encoding mitochondrial”, “protein, mRNA”,


gi|33519474|ref|NM_005006.5|[33519474]; 124: NM_005023, “Homo sapiens protein


geranylgeranyltransferase type I, beta subunit (PGGT1B),”, mRNA,


gi|27597101|ref|NM_005023.2|[27597101]; 125: NM_005027, “Homo sapiens


phosphoinositide-3-kinase, regulatory subunit, polypeptide 2 (p85”, “beta) (PIK3R2), mRNA”,


gi|4826907|ref|NM_005027.1|[4826907]; 126: NM_005124, “Homo sapiens nucleoporin


153 kDa (NUP153), mRNA”, gi|24430145|ref|NM_005124.2|[24430145]; 127: NM_005125,


Homo sapiens copper chaperone for superoxide dismutase (CCS), mRNA”,


gi|4826664|ref|NM_005125.1|[4826664]; 128: NM_005154, “Homo sapiens ubiquitin specific


protease 8 (USP8), mRNA”, gi|41281375|ref|NM_005154.2|[41281375]; 129: NM_005161,


Homo sapiens angiotensin II receptor-like 1 (AGTRL1), mRNA”,


gi|34577064|ref|NM_005161.2|[34577064]; 130: NM_005182, “Homo sapiens carbonic


anhydrase VII (CA7), mRNA”, gi|4885100|ref|NM_005182.1|[4885100]; 131: NM_005186,


Homo sapiens calpain 1, (mu/I) large subunit (CAPN1), mRNA”,


gi|12408655|ref|NM_005186.2|[12408655]; 132: NM_005223, “Homo sapiens


deoxyribonuclease I (DNASE1), mRNA”, gi|21361253|ref|NM_005223.2|[21361253]; 133:


NM_005260, “Homo sapiens growth differentiation factor 9 (GDF9), mRNA”,


gi|6715598|ref|NM_005260.2|[6715598]; 134: NM_005286, “Homo sapiens G protein-coupled


receptor 8 (GPR8), mRNA”, gi|30581163|ref|NM_005286.2|[30581163]; 135: NM_005288,


Homo sapiens G protein-coupled receptor 12 (GPR12), mRNA”,


gi|4885294|ref|NM_005288.1|[4885294]; 136: NM_005302, Homo sapiens G protein-coupled


receptor 37 (endothelin receptor type B-like), “(GPR37), mRNA”,


gi|31377788|ref|NM_005302.2|[31377788]; 137: NM_005306, “Homo sapiens G protein-


coupled receptor 43 (GPR43), mRNA”, gi|4885332|ref|NM_005306.1|[4885332]; 138:


NM_005341, “Homo sapiens GLI-Kruppel family member HKR3 (HKR3), mRNA”,


gi|4885418|ref|NM_005341.1|[4885418]; 139: NM_005393, “Homo sapiens plexin B3


(PLXNB3), mRNA”, gi|10864080|ref|NM_005393.1|[10864080]; 140: NM_005398, “Homo



sapiens protein phosphatase 1, regulatory (inhibitor) subunit 3C (PPP1R3C),”, mRNA,



gi|42476161|ref|NM_005398.3|[42476161]; 141: NM_005418, “Homo sapiens suppression of


tumorigenicity 5 (ST5), transcript variant 1, mRNA”,


gi|121264611|ref|NM_005418.2|[21264611]; 142: NM_005453, “Homo sapiens zinc finger


protein 297 (ZNF297), mRNA”, gi|20070223|ref|NM_005453.3|[20070223]; 143: NM_005475,


Homo sapiens lymphocyte adaptor protein (LNK), mRNA”,


gi|4885454|ref|NM_005475.1|[4885454]; 144: NM_005485, Homo sapiens ADP-


ribosyltransferase (NAD+; poly (ADP-ribose) polymerase)-like 3, “(ADPRTL3), mRNA”,


gi|11496992|ref|NM_005485.2|[11496992]; 145: NM_005550, “Homo sapiens kinesin family


member C3 (KIFC3), mRNA”, gi|19923320|ref|NM_005550.2|[19923320]; 146: NM_005560,


Homo sapiens laminin, alpha 5 (LAMA5), mRNA”, gi|21264601|ref|NM_005560.3|[21264601];


147: NM_005563, “Homo sapiens stathmin 1/oncoprotein 18 (STMN1), mRNA”,


gi|13518023|ref|NM_005563.2|[13518023]; 148: NM_005626, “Homo sapiens splicing factor,


arginine/serine-rich 4 (SFRS4), mRNA”, gi|34147660|ref|NM_005626.3|[34147660]; 149:


NM_005634, “Homo sapiens SRY (sex determining region Y)-box 3 (SOX3), mRNA”,


gi|30061555|ref|NM_005634.2|[30061555]; 150: NM_005698, “Homo sapiens secretory carrier


membrane protein 3 (SCAMP3), transcript variant”, “1, mRNA”,


gi|16445418|ref|NM_005698.2|[16445418]; 151: NM_005716, Homo sapiens regulator of G-


protein signalling 19 interacting protein 1, “(RGS19IP1), transcript variant 1, mRNA”,


gi|42544147|ref|NM_005716.2|[42544147]; 152: NM_005726, “Homo sapiens Ts translation


elongation factor, mitochondrial (TSFM), mRNA”, gi|21361279|ref|NM_005726.2|[21361279];


153: NM_005727, “Homo sapiens tetraspan 1 (TSPAN-1), mRNA”,


gi|21264577|ref|NM_005727.2|[21264577]; 154: NM_005845, “Homo sapiens ATP-binding


cassette, sub-family C (CFTR/MRP), member 4 (ABCC4),”, mRNA,


gi|34452699|ref|NM_005845.2|[34452699]; 155: NM_005860, “Homo sapiens follistatin-like 3


(secreted glycoprotein) (FSTL3), mRNA”, gi|5031700|ref|NM_005860.1|[5031700]; 156:


NM_005909, “Homo sapiens microtubule-associated protein 1B (MAP1B), transcript variant


1,”, mRNA, gi|14165457|ref|NM_005909.2|[14165457]; 157: NM_005965, “Homo sapiens


myosin, light polypeptide kinase (MYLK), transcript variant 6, mRNA”,


gi|16950600|ref|NM_005965.2|[16950600]; 158: NM_005984, Homo sapiens solute carrier


family 25 (mitochondrial carrier; citrate, “transporter), member 1 (SLC25A1), mRNA”,


gi|21389314|ref|NM_005984.1|[21389314]; 159: NM_006017, “Homo sapiens prominin 1


(PROM1), mRNA”, gi|5174386|ref|NM_006017.1|[5174386]; 160: NM_006067, “Homo



sapiens neighbor of COX4 (NOC4), mRNA”, gi|34147520|ref|NM_006067.3|[34147520]; 161:



NM_006090, “Homo sapiens choline/ethanolaminephosphotransferase (CEPT1), mRNA”,


gi|21735567|ref|NM_006090.2|[21735567]; 162: NM_006091, “Homo sapiens coronin, actin


binding protein, 2B (CORO2B), mRNA”, gi|24307902|ref|NM_006091.1|[24307902]; 163:


NM_006114, Homo sapiens translocase of outer mitochondrial membrane 40 homolog (yeast),


“(TOMM40), mRNA”, gi|5174722|ref|NM_006114.1|[5174722]; 164: NM_006157, “Homo



sapiens NEL-like 1 (chicken) (NELL1), mRNA”, gi|5453763|ref|NM_006157.1|[5453763]; 165:



NM_006172, “Homo sapiens natriuretic peptide precursor A (NPPA), mRNA”,


gi|23510318|ref|NM_006172.1|[23510318]; 166: NM_006196, “Homo sapiens poly(rC) binding


protein 1 (PCBP1), mRNA”, gi|14141164|ref|NM_006196.2|[14141164]; 167: NM_006205,


Homo sapiens phosphodiesterase 6H, cGMLP-specific, cone, gamma (PDE6H), mRNA”,


gi|5453867|ref|NM_006205.1|[5453867]; 168: NM_006228, “Homo sapiens prepronociceptin


(PNOC), mRNA”, gi|11079650|ref|NM_006228.2|[11079650]; 169: NM_006261, “Homo



sapiens prophet of Pit1, paired-like homeodomain transcription factor”, “(PROP1), mRNA”,



gi|40254838|ref|NM_006261.2|[40254838]; 170: NM_006289, “Homo sapiens talin 1 (TLN1),


mRNA”, gi|16753232|ref|NM_006289.2|[16753232]; 171: NM_006365, “Homo sapiens


transcriptional activator of the c-fos promoter (CROC4), mRNA”,


gi|5453624|ref|NM_006365.1|[5453624]; 172: NM_006368, “Homo sapiens cAMP responsive


element binding protein 3 (CREB3), mRNA”, gi|38327637|ref|NM_006368.4|[38327637]; 173:


NM_006399, “Homo sapiens basic leucine zipper transcription factor, ATF-like (BATF),


mRNA”, gi|18375640|ref|NM_006399.2|[18375640]; 174: NM_006477, “Homo sapiens RAS-


related on chromosome 22 (RRP22), mRNA”, gi|42476128|ref|NM_006477.2|[42476128]; 175:


NM_006698, “Homo sapiens bladder cancer associated protein (BLCAP), mRNA”,


gi|5729737|ref|NM_006698.1|[5729737]; 176: NM_006747, “Homo sapiens signal-induced


proliferation-associated gene 1 (SIPA1), transcript”, “variant 2, mRNA”,


gi|24497626|ref|NM_006747.2|[24497626]; 177: NM_006764, “Homo sapiens interferon-related


developmental regulator 2 (IFRD2), mRNA”, gi|21361365|ref|NM_006764.2|[21361365]; 178:


NM_006813, “Homo sapiens proline-rich nuclear receptor coactivator 1 (PNRC1), mRNA”,


gi|5802981|ref|NM_006813.1|[5802981]; 179: NM_006841, “Homo sapiens solute carrier


family 38, member 3 (SLC38A3), mRNA”, gi|40795668|ref|NM_006841.3|[40795668]; 180:


NM_006876, “Homo sapiens UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase


6”, “(B3GNT6), mRNA”, gi|5802983|ref|NM_006876.1|[5802983]; 181: NM_006917, “Homo



sapiens retinoid X receptor, gamma (RXRG), mRNA”,



gi|21361386|ref|NM_006917.2|[21361386]; 182: NM_006923, “Homo sapiens stromal cell-


derived factor 2 (SDF2), mRNA”, gi|14141194|ref|NM_006923.2|[14141194]; 183: NM_006946


Homo sapiens spectrin, beta, non-erythrocytic 2 (SPTBN2), mRNA”,


gi|5902121|ref|NM_006946.1|[5902121]; 184: NM_006982, “Homo sapiens cartilage paired-


class homeoprotein 1 (CART1), mRNA”, gi|5901917|ref|NM_006982.1|[5901917]; 185:


NM_006998, “Homo sapiens secretagogin, EF-hand calcium binding protein (SCGN), mRNA”,


gi|15055536|ref|NM_006998.2|[15055536]; 186: NM_007022, “Homo sapiens putative tumor


suppressor 101F6 (101F6), mRNA”, gi|31541779|ref|NM_007022.3|[31541779]; 187:


NM_007046, “Homo sapiens elastin microfibril interfacer 1 (EMILIN1), mRNA”,


gi|5901943|ref|NM_007046.1|[5901943]; 188: NM_007076,, ref|NM_007076.2|[42794619];


189: NM_007149, “Homo sapiens zinc finger protein 184 (Kruppel-like) (ZNF184), mRNA”,


gi|24307934|ref|NM_007149.1|[24307934]; 190: NM_007357, “Homo sapiens component of


oligomeric golgi complex 2 (COG2), mRNA”, gi|6678675|ref|NM_007357.1|[6678675]; 191:


NM_012105, “Homo sapiens beta-site APP-cleaving enzyme 2 (BACE2), transcript variant a,


mRNA”, gi|21040358|ref|NM_012105.3|[21040358]; 192: NM_012164, “Homo sapiens F-box


and WD-40 domain protein 2 (FBXW2), mRNA”, gi|7549806|ref|NM_012164.2|[7549806]; 193:


NM_012168, “Homo sapiens F-box only protein 2 (FBXO2), mRNA”,


gi|15812197|ref|NM_012168.2|[15812197]; 194: NM_012191, “Homo sapiens putative tumor


suppressor (FUS2), mRNA”, gi|6912379|ref|NM_012191.1|[6912379]; 195: NM_012204,


Homo sapiens general transcription factor IIIC, polypeptide 4, 90 kDa (GTF3C4),”, mRNA,


gi|6912399|ref|NM_012204.1|[6912399]; 196: NM_012285, “Homo sapiens potassium voltage-


gated channel, subfamily H (eag-related), member”, “4 (KCNH4), mRNA”,


gi|6912445|ref|NM_012285.1|[6912445]; 197: NM_012311, “Homo sapiens KIN, antigenic


determinant of recA protein homolog (mouse) (KIN),”, mRNA,


gi|40068516|ref|NM_012311.2|[40068516]; 198: NM_012430, “Homo sapiens SEC22 vesicle


trafficking protein-like 2 (S. cerevisiae) (SEC22L2),”, mRNA,


gi|14591918|ref|NM_012430.2|[14591918]; 199: NM_012459, Homo sapiens translocase of


inner mitochondrial membrane 8 homolog B (yeast), “(TIMM8B), mRNA”,


gi|6912711|ref|NM_012459.1|[6912711]; 200: NM_012460, Homo sapiens translocase of inner


mitochondrial membrane 9 homolog (yeast), “(TIMM9), mRNA”,


gi|21359892|ref|NM_012460.2|[21359892]; 201: NM_012482, “Homo sapiens zinc finger


protein 281 (ZNF281), mRNA”, gi|40255235|ref|NM_012482.3|[40255235]; 202: NM_013235,


Homo sapiens nuclear RNase III Drosha (RNASE3L), mRNA”,


gi|21359821|ref|NM_013235.2|[21359821]; 203: NM_013333, “Homo sapiens epsin 1 (EPN1),


mRNA”, gi|41350200|ref|NM_013333.2|[41350200]; 204: NM_013335, “Homo sapiens GDP-


mannose pyrophosphorylase A (GMPPA), mRNA”, gi|31881778|ref|NM_013335.2|[31881778];


205: NM_013343, “Homo sapiens loss of heterozygosity, 3, chromosomal region 2, gene A


(LOH3CR2A),”, mRNA, gi|7106370|ref|NM_013343.1|[7106370]; 206: NM_013387, “Homo



sapiens ubiquinol-cytochrome c reductase complex (7.2 kD) (HSPC051), mRNA”,



gi|41281884|ref|NM_013387.2|[41281884]; 207: NM_013403, “Homo sapiens striatin,


calmodulin binding protein 4 (STRN4), mRNA”, gi|7019572|ref|NM_013403.1|[7019572]; 208:


NM_013441, “Homo sapiens Down syndrome critical region gene 1-like 2 (DSCR1L2),


mRNA”, gi|38455419|ref|NM_013441.2|[38455419]; 209: NM_014099,,


ref|NM_014099.1|[7662610], This record was temporarily removed by RefSeq staff for


additional review.,, 210: NM_014124,, ref|NM_014124.1|[7662541], This record was


temporarily removed by RefSeq staff for additional review.,, 211: NM_014165, “Homo sapiens


chromosome 6 open reading frame 66 (C6orf66), mRNA”,


gi|7661785|ref|NM_014165.1|[7661785]; 212: NM_014236, “Homo sapiens glyceronephosphate


O-acyltransferase (GNPAT), mRNA”, gi|7657133|ref|NM_014236.1|[7657133]; 213:


NM_014301, “Homo sapiens nitrogen fixation cluster-like (NIFU), mRNA”,


gi|24307952|ref|NM_014301.1|[24307952]; 214: NM_014342, “Homo sapiens mitochondrial


carrier homolog 2 (C. elegans) (MTCH2), nuclear gene”, “encoding mitochondrial protein,


mRNA”, gi|40254847|ref|NM_014342.2|[40254847]; 215: NM_014348, “Homo sapiens


POM121 membrane glycoprotein-like 1 (rat) (POM121L1), mRNA”,


gi|7657468|ref|NM_014348.1|[7657468]; 216: NM_014453, “Homo sapiens putative breast


adenocarcinoma marker (32 kD) (BC-2), transcript”, “variant 1, mRNA”,


gi|38372936|ref|NM_014453.2|[38372936]; 217: NM_014548, “Homo sapiens tropomodulin 2


(neuronal) (TMOD2), mRNA”, gi|40789262|ref|NM_014548.2|[40789262]; 218: NM_014606,,


ref|NM_014606.1|[7657151], This record was temporarily removed by RefSeq staff for


additional review.,, 219: NM_014662,, ref|NM_014662.1|[7662221], This record was


temporarily removed by RefSeq staff for additional review.,, 220: NM_014674,,


ref|NM_014674.1|[7662001], This record was temporarily removed by RefSeq staff for


additional review.,, 221: NM_014748, “Homo sapiens sorting nexin 17 (SNX17), mRNA”,


gi|23238249|ref|NM_014748.2|[23238249]; 222: NM_014786, “Homo sapiens Rho guanine


nucleotide exchange factor (GEF) 17 (ARHGEF17), mRNA”,


gi|21361457|ref|NM_014786.2|[21361457]; 223: NM_014813,, ref|NM_014813.1|[7662319],


This record was temporarily removed by RefSeq staff for additional review.,, 224: NM_014814,


Homo sapiens proteasome regulatory particle subunit p44S10 (p44S10), mRNA”,


gi|7661913|ref|NM_014814.1|[7661913]; 225: NM_014901, “Homo sapiens ring finger protein


44 (RNF44), mRNA”, gi|42718018|ref|NM_014901.4|[42718018]; 226: NM_014907, “Homo



sapiens FERM and PDZ domain containing 1 (FRMPD1), mRNA”,



gi|7662415|ref|NM_014907.1|[7662415]; 227: NM_015089, “Homo sapiens p53-associated


parkin-like cytoplasmic protein (PARC), mRNA”, gi|24307990|ref|NM_015089.1|[24307990];


228: NM_015163, “Homo sapiens tripartite motif-containing 9 (TRIM9), transcript variant 1,


mRNA”, gi|29543553|ref|NM_015163.3|[29543553]; 229: NM_015343, “Homo sapiens dullard


homolog (Xenopus laevis) (DULLARD), mRNA”, gi|34222318|ref|NM_015343.3|[34222318];


230: NM_015362,, ref|NM_015362.3|[44662829]; 231: NM_015372, “Homo sapiens


hypothetical protein HSN44A4A (HSN44A4A), mRNA”,


gi|7661723|ref|NM_015372.1|[7661723]; 232: NM_015480, “Homo sapiens poliovirus receptor-


related 3 (PVRL3), mRNA”, gi|[11386198|ref|NM_015480.1|[1386198]; 233: NM_015623,,


ref|NM_015623.2|[32306520], This record was temporarily removed by RefSeq staff for


additional review.,, 234: NM_015710, “Homo sapiens glioma tumor suppressor candidate


region gene 2 (GLTSCR2), mRNA”, gi|21359905|ref|NM_015710.2|[21359905]; 235:


NM_015926, “Homo sapiens putative secreted protein ZSIG11 (ZSIG11), mRNA”,


gi|34147580|ref|NM_015926.3|[34147580]; 236: NM_015964, “Homo sapiens brain specific


protein (CGI-38), mRNA”, gi|7706275|ref|NM_015964.1|[7706275]; 237: NM_016004, “Homo



sapiens chromosome 20 open reading frame 9 (C20orf9), mRNA”,



gi|7705768|ref|NM_016004.1|[7705768]; 238: NM_016067, “Homo sapiens mitochondrial


ribosomal protein S18C (MRPS18C), nuclear gene”, “encoding mitochondrial protein, mRNA”,


gi|7705629|ref|NM_016067.1|[7705629]; 239: NM_016082, “Homo sapiens CDK5 regulatory


subunit associated protein 1 (CDK5RAP1), transcript”, “variant 2, mRNA”,


gi|28872783|ref|NM_016082.3|[28872783]; 240: NM_016090, “Homo sapiens RNA binding


motif protein 7 (RBM7), mRNA”, gi|31543547|ref|NM_016090.2|[31543547]; 241: NM_016187,


Homo sapiens bridging integrator 2 (BIN2), mRNA”,


gi|7705295|ref|NM_016187.1|[7705295]; 242: NM_016210, “Homo sapiens g20 protein


(LOC51161), mRNA”, gi|31543080|ref|NM_016210.2|[31543080]; 243: NM_016231, “Homo



sapiens nemo like kinase (NLK), mRNA”, gi|42734431|ref|NM_016231.2|[42734431]; 244:



NM_016324, “Homo sapiens zinc finger protein 274 (ZNF274), transcript variant ZNF274b,


mRNA”, gi|19743797|ref|NM_016324.2|[19743797]; 245: NM_016368, “Homo sapiens myoinositol


1-phosphate synthase A1 (ISYNA1), mRNA”,


gi|21902536|ref|NM_016368.3|[21902536]; 246: NM_017582, “Homo sapiens ubiquitin-


conjugating enzyme E2Q (putative) (UBE2Q), mRNA”,


gi|38045949|ref|NM_017582.5|[38045949]; 247: NM_017704, “Homo sapiens fetal globin-


inducing factor (FGIF), mRNA”, gi|41350197|ref|NM_017704.2|[41350197]; 248: NM_017740,


Homo sapiens zinc finger, DHHC domain containing 7 (ZDHHC7), mRNA”,


gi|8923254|ref|NM_017740.1|[8923254]; 249: NM_017745, “Homo sapiens BCL6 co-repressor


(BCOR), transcript variant 1, mRNA”, gi|21071036|ref|NM_017745.4|[21071036]; 250:


NM_017746, “Homo sapiens testis expressed gene 10 (TEX10), mRNA”,


gi|8923268|ref|NM_017746.1|[8923268]; 251: NM_017806, “Homo sapiens hypothetical


protein FLJ20406 (FLJ20406), mRNA”, gi|8923377|ref|NM_017806.1|[8923377]; 252:


NM_017847, “Homo sapiens chromosome 1 open reading frame 27 (C1orf27), mRNA”,


gi|20127566|ref|NM_017847.2|[20127566]; 253: NM_017901, “Homo sapiens two pore


segment channel 1 (TPCN1), mRNA”, gi|29725621|ref|NM_017901.3|[29725621]; 254:


NM_017915, “Homo sapiens hypothetical protein FLJ20641 (FLJ20641), mRNA”,


gi|8923595|ref|NM_017915.1|[8923595]; 255: NM_017941, “Homo sapiens lung cancer-related


protein 8 (HLC-8), mRNA”, gi|34222156|ref|NM_017941.3|[34222156]; 256: NM_017991,


Homo sapiens hypothetical protein FLJ10081 (FLJ10081), mRNA”,


gi|21361733|ref|NM_017991.3|[21361733]; 257: NM_018026, “Homo sapiens phosphofurin


acidic cluster sorting protein 1 (PACS1), mRNA”, gi|30089915|ref|NM_018026.2|[30089915];


258: NM_018058, “Homo sapiens cartilage acidic protein 1 (CRTAC1), mRNA”,


gi|42415498|ref|NM_018058.2|[42415498]; 259: NM_018163, “Homo sapiens hypothetical


protein FLJ10634 (FLJ10634), mRNA”, gi|8922562|ref|NM_018163.1|[8922562]; 260:


NM_018195, “Homo sapiens hypothetical protein FLJ10726 (FLJ10726), mRNA”,


gi|40254918|ref|NM_018195.2|[40254918]; 261: NM_018206, “Homo sapiens vacuolar protein


sorting 35 (yeast) (VPS35), mRNA”, gi|41352714|ref|NM_018206.3|[41352714]; 262:


NM_018233, “Homo sapiens hypothetical protein FLJ10826 (FLJ10826), mRNA”,


gi|42476029|ref|NM_018233.2|[42476029]; 263: NM_018245, “Homo sapiens hypothetical


protein FLJ10851 (FLJ10851), mRNA”, gi|8922715|ref|NM_018245.1|[8922715]; 264:


NM_018261, “Homo sapiens SEC3-like 1 (S. cerevisiae) (SEC3L1), transcript variant 1,


mRNA”, gi|30410719|ref|NM_018261.2|[30410719]; 265: NM_018303, “Homo sapiens SEC5-


like 1 (S. cerevisiae) (SEC5L1), mRNA”, gi|30581133|ref|NM_018303.4|[30581133]; 266:


NM_018327, “Homo sapiens chromosome 20 open reading frame 38 (C20orf38), mRNA”,


gi|8922874|ref|NM_018327.1|[8922874]; 267: NM_018431, “Homo sapiens docking protein 5


(DOK5), transcript variant 1, mRNA”, gi|29544725|ref|NM_018431.2|[29544725]; 268:


NM_018459,, ref|NM_018459.1|[8922103], This record was replaced or removed. See revision


history for details.,, 269: NM_018465, “Homo sapiens chromosome 9 open reading frame 46


(C9orf46), mRNA”, gi|8923931|ref|NM_018465.1|[8923931]; 270: NM_018484, “Homo



sapiens solute carrier family 22 (organic anion/cation transporter), member”, “11 (SLC22A11),



mRNA”, gi|24497483|ref|NM_018484.2|[24497483]; 271: NM_018584, “Homo sapiens


calcium/calmodulin-dependent protein kinase II (CaMKIINalpha), mRNA”,


gi|31324542|ref|NM_018584.4|[31324542]; 272: NM_018641, “Homo sapiens carbohydrate


(chondroitin 4) sulfotransferase 12 (CHST12), mRNA”,


gi|20070291|ref|NM_018641.2|[20070291]; 273: NM_018947, “Homo sapiens cytochrome c,


somatic (CYCS), nuclear gene encoding mitochondrial”, “protein, mRNA”,


gi|34328939|ref|NM_018947.4|[34328939]; 274: NM_018957, “Homo sapiens SH3-domain


binding protein 1 (SH3BP1), mRNA”, gi|15147251|ref|NM_018957.2|[15147251]; 275:


NM_018959, “Homo sapiens DAZ associated protein 1 (DAZAP1), transcript variant 2,


mRNA”, gi|25470885|ref|NM_018959.2|[25470885]; 276: NM_018993, “Homo sapiens Ras and


Rab interactor 2 (RIN2), mRNA”, gi|35493905|ref|NM_018993.2|[35493905]; 277: NM_019063,


Homo sapiens echinoderm microtubule associated protein like 4 (EML4), mRNA”,


gi|19923496|ref|NM_019063.2|[19923496]; 278: NM_020170, “Homo sapiens hypothetical


protein from EUROIMAGE 2021883 (LOC56926), mRNA”,


gi|24308184|ref|NM_020170.1|[24308184]; 279: NM_020188, “Homo sapiens DC13 protein


(DC13), mRNA”, gi|42476040|ref|NM_020188.2|[42476040]; 280: NM_020228, “Homo



sapiens PR domain containing 10 (PRDM10), transcript variant 1, mRNA”,



gi|41349457|ref|NM_020228.2|[41349457]; 281: NM_020418, “Homo sapiens poly(rC) binding


protein 4 (PCBP4), transcript variant 1, mRNA”, gi|14670367|ref|NM_020418.2|[14670367];


282: NM_020465, “Homo sapiens NDRG family member 4 (NDRG4), mRNA”,


gi|14165263|ref|NM_020465.1|[14165263]; 283: NM_020999, “Homo sapiens neurogenin 3


(NEUROG3), mRNA”, gi|10337610|ref|NM_020999.1|[10337610]; 284: NM_021018, “Homo



sapiens histone 1, H3f (HIST1H3F), mRNA”, gi|21396497|ref|NM_021018.2|[21396497]; 285:



NM_021025, “Homo sapiens T-cell leukemia, homeobox 3 (TLX3), mRNA”,


gi|10440563|ref|NM_021025.1|[10440563]; 286: NM_021062, “Homo sapiens histone 1, H2bb


(HIST1H2BB), mRNA”, gi|19924303|ref|NM_021062.2|[19924303]; 287: NM_021161, “Homo



sapiens potassium channel, subfamily K, member 10 (KCNK10), transcript”, “variant 1,



mRNA”, gi|20143942|ref|NM_021161.3|[20143942]; 288: NM_021174, “Homo sapiens p30


DBC protein (DBC-1), transcript variant 1, mRNA”, gi|40548406|ref|NM_021174.4|[40548406];


289: NM_021184, “Homo sapiens chromosome 6 open reading frame 47 (C6orf47), mRNA”,


gi|10863984|ref|NM_021184.1|[10863984]; 290: NM_021249, “Homo sapiens sorting nexin 6


(SNX6), transcript variant 1, mRNA”, gi|23111048|ref|NM_021249.2|[23111048]; 291:


NM_021259, “Homo sapiens transmembrane protein 8 (five membrane-spanning domains)


(TMEM8),”, mRNA, gi|10864068|ref|NM_021259.1|[10864068]; 292: NM_021812, “Homo



sapiens blepharophimosis, epicanthus inversus and ptosis, candidate 1”, “(BPESC1), mRNA”,



gi|11141882|ref|NM_021812.1|[11141882]; 293: NM_021830, “Homo sapiens progressive


external ophthalmoplegia 1 (PEO1), mRNA”, gi|39725941|ref|NM_021830.3|[39725941]; 294:


NM_021833, “Homo sapiens uncoupling protein 1 (mitochondrial, proton carrier) (UCP1),”,


“nuclear gene encoding mitochondrial protein, mRNA”,


gi|21614550|ref|NM_021833.3|[21614550]; 295: NM_021926, “Homo sapiens aristaless-like


homeobox 4 (ALX4), mRNA”, gi|11496266|ref|NM_021926.1|[11496266]; 296: NM_021934,


Homo sapiens hypothetical protein FLJ11773 (FLJ11773), mRNA”,


gi|34222337|ref|NM_021934.3|[34222337]; 297: NM_022039, “Homo sapiens split hand/foot


malformation (ectrodactyly) type 3 (SHFM3), mRNA”,


gi|24475655|ref|NM_022039.2|[24475655]; 298: NM_022054, “Homo sapiens potassium


channel, subfamily K, member 13 (KCNK13), mRNA”,


gi|16306554|ref|NM_022054.2|[16306554]; 299: NM_022064, “Homo sapiens ring finger


protein 123 (RNF123), mRNA”, gi|37588868|ref|NM_022064.2|[37588868]; 300: NM_022082,


Homo sapiens chromosome 20 open reading frame 59 (C20orf59), mRNA”,


gi|31542262|ref|NM_022082.2|[31542262]; 301: NM_022114, “Homo sapiens PR domain


containing 16 (PRDM16), transcript variant 1, mRNA”,


gi|41349469|ref|NM_022114.2|[41349469]; 302: NM_022120, “Homo sapiens 3-oxoacid CoA


transferase 2 (OXCT2), mRNA”, gi|11545840|ref|NM_022120.1|[11545840]; 303: NM_022135,


Homo sapiens popeye domain containing 2 (POPDC2), mRNA”,


gi|22209003|ref|NM_022135.2|[22209003]; 304: NM_022354, “Homo sapiens spermatogenesis


associated 1 (SPATA1), mRNA”, gi|11641266|ref|NM_022354.1|[11641266]; 305: NM_022452,


Homo sapiens fibrosin 1 (FBS1), mRNA”, gi|11967986|ref|NM_022452.1|[11967986]; 306:


NM_022494, “Homo sapiens zinc finger, DHHC domain containing 6 (ZDHHC6), mRNA”,


gi|11968052|ref|NM_022494.1|[11968052]; 307: NM_022727, “Homo sapiens HpaII tiny


fragments locus 9C (HTF9C), transcript variant 2, mRNA”,


gi|21361611|ref|NM_022727.3|[21361611]; 308: NM_022754, “Homo sapiens sideroflexin 1


(SFXN1), mRNA”, gi|40255158|ref|NM_022754.4|[40255158]; 309: NM_022765, Homo



sapiens NEDD9 interacting protein with calponin homology and LIM domains, “(NICAL),



mRNA”, gi|20127615|ref|NM_022765.2|[20127615]; 310: NM_022766, “Homo sapiens


ceramide kinase (CERK), transcript variant 1, mRNA”,


gi|32967301|ref|NM_022766.4|[32967301]; 311: NM_023933, “Homo sapiens hypothetical


protein MGC2494 (MGC2494), mRNA”, gi|13027599|ref|NM_023933.1|[13027599]; 312:


NM_024034, Homo sapiens ganglioside-induced differentiation-associated protein 1-like 1,


“(GDAP1L1), mRNA”, gi|30581159|ref|NM_024034.3|[30581159]; 313: NM_024057, “Homo



sapiens nucleoporin Nup37 (Nup37), mRNA”, gi|34222120|ref|NM_024057.2|[34222120]; 314:



NM_024294, “Homo sapiens hypothetical protein MGC4614 (MGC4614), mRNA”,


gi|13236513|ref|NM_024294.1|[13236513]; 315: NM_024323, “Homo sapiens hypothetical


protein MGC11271 (MGC11271), mRNA”, gi|31543147|ref|NM_024323.3|[31543147]; 316:


NM_024506, “Homo sapiens galactosidase, beta 1-like (GLB1L), mRNA”,


gi|40255042|ref|NM_024506.3|[40255042]; 317: NM_024523, “Homo sapiens GRIP and coiled-


coil domain-containing 1 (GCC1), mRNA”, gi|34305454|ref|NM_024523.5|[34305454]; 318:


NM_024546, “Homo sapiens chromosome 13 open reading frame 7 (C13orf7), mRNA”,


gi|21362045|ref|NM_024546.2|[21362045]; 319: NM_024589, “Homo sapiens leucine zipper


domain protein (FLJ22386), mRNA”, gi|13375778|ref|NM_024589.1|[13375778]; 320:


NM_024604, “Homo sapiens hypothetical protein FLJ21908 (FLJ21908), mRNA”,


gi|13375808|ref|NM_024604.1|[13375808]; 321: NM_024624, Homo sapiens SMC6 structural


maintenance of chromosomes 6-like 1 (yeast), “(SMC6L1), mRNA”,


gi|31543646|ref|NM_024624.2|[31543646]; 322: NM_024630, “Homo sapiens zinc finger,


DHHC domain containing 14 (ZDHHC14), mRNA”, gi|24371240|ref|NM_024630.2|[24371240];


323: NM_024643, “Homo sapiens chromosome 14 open reading frame 140 (C14orf140),


mRNA”, gi|13375882|ref|NM_024643.1|[13375882]; 324: NM_024696, “Homo sapiens


hypothetical protein FLJ23058 (FLJ23058), mRNA”,


gi|13375978|ref|NM_024696.1|[13375978]; 325: NM_024728, “Homo sapiens chromosome 7


open reading frame 10 (C7orf10), mRNA”, gi|13376041|ref|NM_024728.1|[13376041]; 326:


NM_024731, “Homo sapiens chromosome 16 open reading frame 44 (C16orf44), mRNA”,


gi|31542245|ref|NM_024731.2|[31542245]; 327: NM_024778, “Homo sapiens ring finger


protein 127 (RNF127), mRNA”, gi|37622895|ref|NM_024778.3|[37622895]; 328: NM_024783,


Homo sapiens hypothetical protein FLJ23598 (FLJ23598), mRNA”,


gi|31657118|ref|NM_024783.2|[31657118]; 329: NM_024799, “Homo sapiens hypothetical


protein FLJ13224 (FLJ13224), mRNA”, gi|13376172|ref|NM_024799.1|[13376172]; 330:


NM_024827, “Homo sapiens histone deacetylase 11 (HDAC11), mRNA”,


gi|13376227|ref|NM_024827.1|[13376227]; 331: NM_024958, “Homo sapiens chromosome 20


open reading frame 98 (C20orf98), mRNA”, gi|13376446|ref|NM_024958.1|[13376446]; 332:


NM_025079, “Homo sapiens hypothetical protein FLJ23231 (FLJ23231), mRNA”,


gi|13376631|ref|NM_025079.1|[13376631]; 333: NM_025137, “Homo sapiens hypothetical


protein FLJ21439 (FLJ21439), mRNA”, gi|33636747|ref|NM_025137.2|[33636747]; 334:


NM_025140, “Homo sapiens limkain beta 2 (FLJ22471), mRNA”,


gi|13376724|ref|NM_025140.1|[13376724]; 335: NM_025212, “Homo sapiens CXXC finger 4


(CXXC4), mRNA”, gi|13376815|ref|NM_025212.1|[13376815]; 336: NM_025236, “Homo



sapiens ring finger protein 39 (RNF39), transcript variant 1, mRNA”,



gi|25777714|ref|NM_025236.2|[25777714]; 337: NM_030804,, ref|NM_030804.1|[13540591],


This record was temporarily removed by RefSeq staff for additional review.,, 338: NM_030818,


Homo sapiens hypothetical protein MGC10471 (MGC10471), mRNA”,


gi|34147391|ref|NM_030818.2|[34147391]; 339: NM_031219, “Homo sapiens hypothetical


protein MGC12904 (MGC12904), mRNA”, gi|31377665|ref|NM_031219.2|[31377665]; 340:


NM_031284, “Homo sapiens ATP-dependent glucokinase (ADP-GK), mRNA”,


gi|31542508|ref|NM_031284.3|[31542508]; 341: NM_031298, “Homo sapiens hypothetical


protein MGC2963 (MGC2963), mRNA”, gi|13775219|ref|NM_031298.1|[13775219]; 342:


NM_031450, “Homo sapiens hypothetical protein p5326 (P5326), mRNA”,


gi|31543378|ref|NM_031450.2|[31543378]; 343: NM_032179, “Homo sapiens hypothetical


protein FLJ20542 (FLJ20542), mRNA”, gi|14149862|ref|NM_032179.1|[14149862]; 344:


NM_032204, “Homo sapiens ASC-1 complex subunit P100 (ASC1p100), mRNA”,


gi|34147616|ref|NM_032204.3|[34147616]; 345: NM_032209, “Homo sapiens hypothetical


protein FLJ21777 (FLJ21777), mRNA”, gi|14149905|ref|NM_032209.1|[14149905]; 346:


NM_032338, “Homo sapiens hypothetical protein MGC14817 (MGC14817), mRNA”,


gi|31543151|ref|NM_032338.2|[31543151]; 347: NM_032348, “Homo sapiens hypothetical


protein MGC3047 (MGC3047), mRNA”, gi|39725651|ref|NM_032348.2|[39725651]; 348:


NM_032389, “Homo sapiens zinc finger protein 289, ID1 regulated (ZNF289), mRNA”,


gi|31543982|ref|NM_032389.2|[31543982]; 349: NM_032842, “Homo sapiens hypothetical


protein FLJ14803 (FLJ14803), mRNA”, gi|14249557|ref|NM_032842.1|[14249557]; 350:


NM_130463, “Homo sapiens ATPase, H+ transporting, lysosomal 13 kDa, V1 subunit G isoform


2”, “(ATP6V1G2), transcript variant 1, mRNA”, gi|20357536|ref|NM_130463.2|[20357536];


351: NM_144718, “Homo sapiens hypothetical protein AY099107 (LOC152185), mRNA”,


gi|40255074|ref|NM_144718.2|[40255074]; 352: NM_145804, “Homo sapiens ankyrin repeat


and BTB (POZ) domain containing 2 (ABTB2), mRNA”,


gi|21956638|ref|NM_145804.1|[21956638]; 353: NM_153045, “Homo sapiens DKFZp547P234


protein (DKFZp547P234), mRNA”, gi|33356141|ref|NM_153045.2|[33356141]; 354:


NM_153354, “Homo sapiens hypothetical protein MGC33214 (MGC33214), mRNA”,


gi|34222213|ref|NM_153354.2|[34222213],,








Claims
  • 1. A method of modulating a biological response in a cell, the method comprising contacting the cell with at least one agent that modulates the expression or activity of Errα or Gabp, wherein the biological response is (a) expression of at least one OXPHOS gene; (b) mitochondrial biogenesis; (c) expression of Nuclear Respiratory Factor 1 (NRF-1); (d) β-oxidation of fatty acids; (e) total mitochondrial respiration; (f) uncoupled respiration; (g) mitochondrial DNA replication; (h) expression of mitochondrial enzymes; or (i) skeletal muscle fiber-type switching.
  • 2. The method of claim 1, wherein the agent increases at least one of the biological responses.
  • 3. The method of claim 1, wherein the agent modulates the formation of a complex between a PGC-1 polypeptide and (i) an Errα polypeptide; or (ii) a Gabp polypeptide.
  • 4. The method of claim 3, wherein the agent increases the formation of the complex.
  • 5. The method of claim 1, wherein the agent is an Errα antagonist or an Errα agonist.
  • 6. The method of claim 1, wherein the agent modulates the expression level or the transcriptional activity of an Errα polypeptide, a Gabp polypeptide, or of both.
  • 7. The method of claim 1, comprising contacting the cell with two agents, wherein one agent modulates the expression or activity of Errα and the other agent modulates the expression or activity of Gabp.
  • 8-10. (canceled)
  • 11. The method of claim 1, wherein the cell is in an organism.
  • 12. The method of claim 11, wherein the organism is a mammal.
  • 13. The method of claim 12, wherein the mammal is a human.
  • 14. The method of claim 13, wherein the human is afflicted with a disorder characterized by reduced mitochondrial activity.
  • 15. The method of claim 14, wherein the disorder is diabetes, obesity, cardiac myopathy, aging, coronary atherosclerotic heart disease, diabetes mellitus, Alzheimer's Disease, Parkinson's Disease, Huntington's disease, dystonia, Leber's hereditary optic neuropathy (LHON), schizophrenia, myodegenerative disorders such as “mitochondrial encephalopathy, lactic acidosis, and stroke” (MELAS). and “myoclonic epilepsy ragged red fiber syndrome” (MERRF), NARP (Neuropathy; Ataxia; Retinitis Pigmentosa), MNGIE (Myopathy and external ophthalmoplegia, neuropathy; gastro-intestinal encephalopathy, Kearns-Sayre disease, Pearson's Syndrome, PEO (Progressive External Ophthalmoplegia), congenital muscular dystrophy with mitochondrial structural abnormalities, Wolfram syndrome, Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy Deafness, Leigh's Syndrome, fatal infantile myopathy with severe mitochondrial DNA (mtDNA) depletion, benign “later-onset” myopathy with moderate reduction in mtDNA, dystonia, medium chain acyl-CoA dehydrogenase deficiency, arthritis, mitochondrial diabetes and deafness (MIDD), or mitochondrial DNA depletion syndrome.
  • 16. The method of claim 1, wherein the cell is a skeletal muscle cell.
  • 17. A method of determining if an agent is a potential agent for the treatment of a disorder that is characterized by glucose intolerance, insulin resistance or reduced mitochondrial function, the method comprising determining if the agent increases: (i) the expression or activity of Errα or Gabp in a cell; or (ii) the formation of a complex between a PGC-1 polypeptide and (i) an Errα polypeptide; or (ii) a Gabp polypeptide; wherein an agent that increases (i) or (ii) is a potential target for the treatment of the disorder.
  • 18. (canceled)
  • 19. The method of claim 17, wherein the agent increases the formation of the complex, and wherein the agent increases the biological response.
  • 20. The method of claim 19, wherein the agent decreases the formation of the complex, and wherein the agent decreases the biological response.
  • 21. The method of claim 18, wherein the contacting step is performed on a cell.
  • 22-34. (canceled)
  • 35. A method of reducing the metabolic rate of a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of an agent which decreases the expression or activity of at least one of the following: (i) Errα; (ii) Gabpa; (iii) a gene having an Errα binding site, a Gabpa binding site, or both; or (iv) a transcriptional activator which binds to an Errα binding site or to a Gabpa binding site; thereby reducing the metabolic rate of the patient.
  • 36. The method of claim 35, wherein the subject is afflicted with a viral infection or with cancer.
  • 37. The method of claim 35, wherein the viral infection is a human immunodeficiency virus infection.
  • 38. The method of claim 35, wherein the subject is afflicted with cancer cachexia, pulmonary cachexia, cardiac cachexia, Russell's Diencephalic Cachexia, or chronic renal insufficiency.
  • 39-41. (canceled)
  • 42. A method of identifying a susceptibility locus for a disorder that is characterized by reduced mitochondrial function, glucose intolerance, or insulin intolerance in a subject, the method comprising (i) identifying at least one polymorphisms in a gene, or linked to a gene, wherein the gene (a) has an Errα binding site, a Gabpa binding site, or both; or (b) is Errα, Gabpa, or Gabpb; (ii) determining if at least one polymorphism is associated with the incidence of the disorder, wherein if a polymorphism is associated with the incidence of the disorder then the gene having the polymorphism, or the gene to which the polymorphism is linked, is a susceptibility locus.
  • 43. The method of claim 42, wherein the gene is anyone of the gene listed on Tables 10-12.
  • 44. The method of claim 42, wherein the disorder is a metabolic disorder.
  • 45. The method of claim 44, wherein the disorder is diabetes or obesity.
  • 46. The method of claim 44, wherein the metabolic disorder is a disorder associated with aberrant lipogenesis.
  • 47. A method of determining if a subject is at risk of developing a disorder which is characterized by reduced mitochondrial function, the method comprising determining if a gene from the subject contains a mutation which reduces the function of the gene, wherein the gene has an Errα binding site, a Gapba binding site, or both, wherein if a gene from the subject contains the mutation then the subject is at risk of developing the disorder.
  • 48. The method of claim 47, wherein the mutation reduces the function of the gene.
  • 49-77. (canceled)
  • 78. A method of detecting statistically-significant differences in the expression level of at least one biomarker belonging to a biomarker set, between the members of a first and of a second experimental group, comprising: (a) obtaining a biomarker sample from members of the first and the second experimental groups; (b) determining, for each biomarker sample, the expression levels of at least one biomarker belonging to the biomarker set and of at least one biomarker not belonging to the set; (c) generating a rank order of each biomarker according to a difference metric of its expression level in the first experimental group compared to the second experimental group; (d) calculating an experimental enrichment score for the biomarker set by applying a non parametric statistic; and (e) comparing the experimental enrichment score with a distribution of randomized enrichment scores to calculate the fraction of randomized enrichment scores greater than the experimental enrichment score, wherein a low fraction indicates a statistically-significant difference in the expression level of the biomarker set between the members of the first and of the second experimental group.
  • 79-92. (canceled)
  • 93. A method of identifying an agent that regulates expression of OXPHOS-CR genes, the method comprising (a) contacting (i) an agent to be assessed for its ability to regulate expression of OXPHOS-CR genes with (ii) a test cell; and (b) determining whether the expression of at least two OXPHOS-CR gene products show a coordinate change in the test cell compared to an appropriate control, wherein a coordinate change in the expression of the OXPHOS-CR gene products indicates that the agent regulates the expression of OXPHOS-CR genes.
  • 94-105. (canceled)
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US04/19017 6/14/2004 WO 6/15/2006
Provisional Applications (3)
Number Date Country
60478238 Jun 2003 US
60525548 Nov 2003 US
60559141 Apr 2004 US