Methods of repairing an abnormal mitral valve

Information

  • Patent Grant
  • 8529621
  • Patent Number
    8,529,621
  • Date Filed
    Friday, March 9, 2012
    12 years ago
  • Date Issued
    Tuesday, September 10, 2013
    11 years ago
Abstract
The present invention refers to an annular prosthesis for mitral valve. In one of its embodiments the annular prosthesis for mitral valve is made up of a posterior half-ring and an anterior half-ring coupled to each other on a first transverse plane which defines a maximum width section of the prosthesis, characterized in that the ratio between the distance between said anterior half-ring and said posterior half-ring, as measured along a second plane, perpendicular to said first plane and equidistant to said couplings, and said maximum width of the prosthesis is lower than ¾.
Description
FIELD OF THE INVENTION

The present invention refers to an annular prosthesis for mitral valve.


BACKGROUND OF THE INVENTION

The mitral plastic surgery operation includes a series of procedures suitable to re-establish the correct functionality of the mitral valve, when this is affected by congenital or acquired pathology. Among these procedures, the remodelling of the valve annulus is one of the most frequently used manoeuvres in order to complete and/or to strengthen the valve. Remodelling provides for two moments: the reduction of the annular area and the properly said remodelling, that is suitable to re-establish the normal geometric ratios that are found in natural valves free of pathology. The first one of these manoeuvres is usually carried out with the aid of a prosthesis that is appropriately sutured to the natural annulus. The prosthesis for annuloplastic surgery available on the market are of two types. Flexible annular prostheses, made of various materials, that allow a “linear” reduction of the annular circumference, and rigid and semi-rigid annular prostheses made of various materials, that allow the “linear” reduction of the annular circumference and a geometric remodelling so as to re-establish the physiological systolic shape of the annulus. In the case of semi-rigid prostheses they additionally allow a minimum deformation in order to allow the prosthesis to follow the deformations of the annulus-during the cardiac stages.


All the rigid and semi-rigid annular prostheses have a kidney-like or coupled D shape, with an anterior half-ring, rectilinear in first approximation, that gets sutured in correspondence of the joining of the anterior valve leaflet and a curved posterior half-ring that is sutured in correspondence of the joining of the posterior valve leaflet. The shape of the annular prostheses at issue reproduces the configuration of the valve annulus during the ventricular systole, and therefore in the stage of the valve closing. The ratio between minor axis and major axis is approximately ¾ in all the models currently on the market since it reproduces normal anatomical ratios.


Recently the concept of undersizing of mitral valve annuloplasty has been introduced. This procedure is proposed in case of mitral insufficiency due to a reduced movement of the leaflets as in the case of ischaemic mitral valve or dilated cardiomyopathy. The undersizing consists in using a ring smaller than necessary, though still maintaining the ratio of approximately ¾, and it is carried out in order to bring the base of the anterior leaflet even closer to the posterior leaflet in order to increase the coaptation surface (closure).


The Applicants noticed that in certain pathological conditions, there is a need to modify such ratio in order to make the operation of reconstruction of the mitral valve more effective: for instance in order to bring the valve leaflets closer to each other in the case of anatomical or functional tissue deficiency of one or both leaflets. In addition, it has also been observed that anatomical variation that do not correspond to the ratios reported above are frequent in nature.


In view of the state of the art herein described, a scope of the present invention is to provide an annular prosthesis for mitral valve that can meet the different requirements that have been noticed.


SUMMARY OF THE INVENTION

According to present the invention, these and other scopes have been attained by means of an annular prosthesis for mitral valve made up of a posterior half-ring and an anterior half-ring that are coupled to each other on a first transverse plane which defines a maximum width section of the prosthesis, characterised in that the ratio between the distance between said anterior half-ring and said posterior half-ring, as measured along a second plane, perpendicular to said first plane and equidistant to said couplings, and said maximum width of the prosthesis is lower than ¾.





BRIEF DESCRIPTION OF THE DRAWINGS

The characteristics and the advantages of the present invention will become evident from the following detailed description of an embodiment thereof, that is illustrated as a non-limiting example in the enclosed drawings, in which:



FIG. 1 shows an annular prosthesis for mitral valve according to the known art;



FIG. 2 shows a first embodiment of an annular prosthesis for mitral valve according to the present invention;



FIG. 3 shows a second embodiment of an annular prosthesis for mitral valve according to the present invention;



FIG. 4 shows a third embodiment of an annular prosthesis for mitral valve according to the present invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

In FIG. 1 a prosthesis for annular mitral valve according to the known art is shown. It has a kidney-like or D-shape, and it is made up of an anterior half-ring 1 rectilinear in first approximation, that is sutured in correspondence of the joining of the anterior valve leaflet 2 and a curved posterior half-ring that is sutured in correspondence of the joining of the posterior valve leaflet. The posterior half-ring 2 and anterior half-ring 1 are coupled at two points 5 and 6 located on a transverse plane 3 that define a maximum width section of the prosthesis. In addition a longitudinal plane 4 is also defined, that intersects the prosthesis at the points 7 and 8, that is arranged perpendicular to the transverse plane 3 and equidistant from the coupling points 5 and 6. The posterior half-ring 2 is thus subdivided in a first lateral zone (left) 9 located between the points 5 and 7, and a second lateral zone (right) 10 located between the points 6 and 7. The intersection points 5, 6 and 7, 8 of the prosthesis respectively with the planes 3 and 4 define the terms for the calculation of the dimensions of the prosthesis. According to the known art, the ratio between the distance between the points 7 and 8, herein also defined as height of the prosthesis, and the distance between the points 5 and 6, herein also defined as width of the prosthesis, is typically equal to ¾.


In FIG. 2 a first embodiment of an annular prosthesis for mitral valve according to the present invention is shown. It substantially has the same shape as the one rendered in FIG. 1 but the ratio between the height and the width of the prosthesis is lower than ¾, for instance equal to 2.5/4 or equal to 2/4.


For every size of prosthesis two or more reduced ratios can therefore be provided. By size the dimension of the transverse width of the prosthesis is meant; it represents the clinical parameter on the bases of which the prosthesis is selected in each single clinical case in examination, and it is also the identifying parameter for the prosthesis.


The lower ratio as compared with the prostheses currently used for annuloplastic surgery allows its use in selected cases of pathologies that are not treatable in adequate way with conventional prostheses.


The lower ratios in this case have the function to treat pathologies characterised by reduced movement of the leaflets with tethering (stretching towards the cardiac apex) symmetrical (as regards each leaflet) with medium or serious proportions. The reduction of the ratio confers the prosthesis a more “squeezed” shape, that allows a better apposition of the leaflets in selected cases. For instance, in the dilated cardiomyopathy, when the expansion of the left ventricle determines a lateral movement and toward the apex of the papillary muscles, the leaflets stretch toward the cardiac apex and the apposition is thus lacking at central level. A possible sizing, in addition, must respect an anatomical requirement: the anterior half-ring 1 (the base for the implant of the front leaflet) is anatomically fixed and not modifiable, and therefore, the sizing should not be applied to this structure, that is to the width of the prosthesis. The maintaining of a normal fore width of the prosthesis, associated with the reduction of the height allows an undersizing that is less inclined to deformation of the fore leaflet, therefore reducing the risk of residual insufficiency.


In FIG. 3 a second embodiment of an annular prosthesis for mitral valve according to the present invention is shown. In this case the natural ratio height/width of ¾ is maintained in order to define the curving radii of the two lateral parts of the anterior half-ring. In the central zone, in proximity of the point 7, the distance between the posterior half-ring 1 and the front half-ring 2 is reduced, with the aim of obtaining a height/width ratio lower than ¾. The central zone of the posterior half-ring 2 therefore takes a configuration that recalls the dog bone or gull wing shape and increases the coaptation at central level by limiting the annular reduction at level of the commisure.


In some extreme cases, it could be useful to make the distance between the two half-rings in the central zone equal to zero, in order to obtain an eight-shape configuration, in order to improve the coaptation at central level. This remodelling simulates the double orifice operation, in which the leaflets are joined at the centre of the valve in order to force the central coaptation. This prosthesis could also be used with this type of technique in order to reduce the stress on the suture and in order to minimise the reduction of the valve area.


In FIG. 4 a third embodiment of an annular prosthesis for mitral valve according to the present invention is shown.


In this embodiment the curving radius of one of the lateral zones, for instance the second lateral zone (right) 10, is increased so as to induce a selective increase of the competence in correspondence of the valve sector with reduced mobility of the leaflets (bad asymmetric apposition of the leaflets as in ischaemic pathology). It is thus obtained that one part of the prosthesis, for instance the first lateral zone (left) 9, maintains a configuration substantially similar to the traditional prosthesis and one part, for instance the second lateral zone (right) 10, gets a sized configuration. In other words the distance between the middle point of the first lateral zone (left) 9 and the longitudinal plane 4 is greater than the distance between the middle point of the second lateral zone (right) 10 and the longitudinal plane


The prosthesis, according to the present invention, can be made of an inert material that is highly tolerated by the human organism and can have a resistance that is appropriated to the use and that can substantially maintain the shape given to it.

Claims
  • 1. A method of correcting the functionality of a patient's mitral valve in a mitral annulus having an anterior leaflet and a posterior leaflet, comprising: providing an annular prosthetic ring made of a material that can substantially maintain an implanted shape defining a curved posterior section contiguous with a generally rectilinear anterior section and together forming a periphery oriented around a central flow axis, wherein in plan view as seen along the flow axis the prosthetic ring has a transverse plane that defines a maximum width representing an identifying size parameter of the prosthetic ring corresponding to the dimension of the base of the patient's anterior leaflet in systole, and a longitudinal plane perpendicular to the transverse plane that bisects the anterior and posterior sections, the prosthetic ring having a height from the anterior section to the posterior section along the longitudinal plane; andimplanting the prosthetic ring at the patient's mitral valve such that the curved posterior section lies along the mitral annulus at the base of the posterior leaflet and the generally rectilinear anterior section lies along the mitral annulus at the base of the anterior leaflet;wherein the prosthetic ring has a reduced height to maximum width ratio relative to a normal height to width ratio found in the annulus of natural valves free of pathology so that when implanted the prosthetic ring squeezes the mitral annulus along the longitudinal axis such that the posterior valve leaflet and anterior valve leaflet move toward each other relative to their normal spacing as found in a natural valve free of pathology while the mitral annulus in the transverse direction and the maximum width of the prosthetic ring remain substantially unchanged.
  • 2. The method of claim 1, wherein the prosthetic ring is symmetrical across the longitudinal plane.
  • 3. The method of claim 1, wherein the prosthetic ring is asymmetrical across the longitudinal plane.
  • 4. The method of claim 3, wherein the curved posterior section on one side of the longitudinal plane has a radius of curvature that is smaller than on the other side of the longitudinal plane.
  • 5. The method of claim 1, wherein the curved posterior section and generally rectilinear anterior section of the prosthetic ring together form a generally D-shaped periphery.
  • 6. The method of claim 1, wherein the prosthetic ring has a height to maximum width ratio that is equal to 2.5/4.
  • 7. The method of claim 1, wherein the prosthetic ring has a height to maximum width ratio is equal to 2/4.
  • 8. A method of correcting the functionality of a patient's mitral valve in a mitral annulus having an anterior leaflet and a posterior leaflet, the mitral annulus having a transverse dimension in systole along the base of the patient's anterior leaflet and a longitudinal dimension perpendicular to the transverse dimension and between the bases of the two leaflets, the method comprising: selecting an annular prosthetic ring from a choice of prosthetic rings made of a material that can substantially maintain an implanted shape, the prosthetic ring selected having an identifying size corresponding to the transverse dimension of the mitral annulus, wherein each prosthetic ring defines a posterior section contiguous with an anterior section and forming a periphery oriented around a central flow axis, wherein in plan view as seen along the flow axis the prosthetic ring has a maximum width dimension along a major axis perpendicular to a height dimension along a minor axis that bisects the anterior and posterior sections, wherein the maximum width dimension is approximately equal to the transverse dimension; andimplanting the prosthetic ring at the patient's mitral valve such that the curved posterior section lies along the mitral annulus at the base of the posterior valve leaflet and the generally rectilinear anterior section lies along the mitral annulus at the base of the anterior valve leaflet;wherein the prosthetic ring has a reduced height dimension to maximum width dimension ratio relative to a normal height to width ratio found in the annulus of natural valves free of pathology so that when implanted the prosthetic ring reduces the longitudinal dimension such that the posterior valve leaflet and anterior valve leaflet move toward each other relative to their normal spacing as found in a natural valve free of pathology while the transverse dimension of the annulus and the maximum width of the prosthetic ring remain unchanged.
  • 9. The method of claim 8, wherein the prosthetic ring is symmetrical across the minor axis.
  • 10. The method of claim 8, wherein the prosthetic ring is asymmetrical across the minor axis.
  • 11. The method of claim 10, wherein the curved posterior section on one side of the minor axis has a radius of curvature that is smaller than on the other side of the minor axis.
  • 12. The method of claim 8, wherein the prosthetic ring has a height dimension to maximum width dimension ratio that is equal to 2.5/4.
  • 13. The method of claim 8, wherein the prosthetic ring has a height dimension to maximum width dimension ratio is equal to 2/4.
  • 14. A method of correcting the functionality of a patient's mitral valve having an annulus, an anterior leaflet and a posterior leaflet, comprising implanting a prosthetic ring made of a material that can substantially maintain an implanted shape at the patient's mitral valve such that when implanted, the prosthetic ring squeezes the mitral annulus along the longitudinal axis relative its normal shape as found in a natural valve free of pathology such that the posterior valve leaflet and anterior valve leaflet move toward each other relative to their normal spacing as found in a natural valve free of pathology while the mitral annulus in the transverse direction and the maximum width of the prosthetic ring remain substantially unchanged.
  • 15. The method of claim 14, wherein the annular prosthetic ring defines a periphery oriented around a central flow axis, wherein in plan view as seen along the flow axis the prosthetic ring has a maximum width dimension along a major axis perpendicular to a minor axis that bisects the anterior and posterior sections, and the method includes implanting the prosthetic ring at the patient's mitral valve such that the maximum width dimension is parallel to the base of the anterior valve leaflet.
  • 16. The method of claim 15, wherein the prosthetic ring is symmetrical across the minor axis.
  • 17. The method of claim 15, wherein the prosthetic ring is asymmetrical across the minor axis.
  • 18. The method of claim 17, wherein the curved posterior section on one side of the minor axis has a radius of curvature that is smaller than on the other side of the minor axis.
  • 19. The method of claim 15, wherein the prosthetic ring has a height dimension along the minor axis and the ratio of the height dimension to maximum width dimension is equal to 2.5/4.
  • 20. The method of claim 15, wherein the prosthetic ring has a height dimension along the minor axis and the ratio of the height dimension to maximum width dimension is equal to 2/4.
RELATED PATENT APPLICATIONS

The present application is a continuation of co-pending Ser. No. 12/697,936, filed Feb. 1, 2010, which is a continuation of Ser. No. 10/742,454, filed Dec. 18, 2003, now U.S. Pat. No. 7,674,286, which is a continuation of Ser. No. 10/144,932 filed May 15, 2002, now U.S. Pat. No. 6,726,717, which claims foreign priority to Italian Patent Application Serial No. MI2001a 001012, filed on May 17, 2001.

US Referenced Citations (174)
Number Name Date Kind
3656185 Carpentier Apr 1972 A
4055861 Carpentier et al. Nov 1977 A
4164046 Cooley Aug 1979 A
4217665 Bex et al. Aug 1980 A
4275469 Gabbay Jun 1981 A
4602911 Ahmadi et al. Jul 1986 A
4790844 Ovil Dec 1988 A
4914097 Oda et al. Apr 1990 A
4993428 Arms Feb 1991 A
5010892 Colvin et al. Apr 1991 A
5041130 Cosgrove et al. Aug 1991 A
5061277 Carpentier et al. Oct 1991 A
5064431 Gilbertson et al. Nov 1991 A
5104407 Lam et al. Apr 1992 A
5201880 Wright et al. Apr 1993 A
5258021 Duran Nov 1993 A
5306296 Wright et al. Apr 1994 A
5316016 Adams et al. May 1994 A
5344442 Deac Sep 1994 A
5396887 Imran Mar 1995 A
5450860 O'Connor Sep 1995 A
5480424 Cox Jan 1996 A
5496336 Cosgrove et al. Mar 1996 A
5533515 Coller et al. Jul 1996 A
5573007 Bobo, Sr. Nov 1996 A
5593435 Carpentier et al. Jan 1997 A
5607471 Seguin et al. Mar 1997 A
5662704 Gross Sep 1997 A
5674279 Wright et al. Oct 1997 A
5728064 Burns et al. Mar 1998 A
5733331 Peredo Mar 1998 A
5752522 Murphy May 1998 A
5776189 Khalid Jul 1998 A
5814098 Hinnenkamp et al. Sep 1998 A
5824066 Gross Oct 1998 A
5824069 Lemole Oct 1998 A
5848969 Panescu et al. Dec 1998 A
5855563 Kaplan et al. Jan 1999 A
5865801 Houser Feb 1999 A
5888240 Carpentier et al. Mar 1999 A
5902308 Murphy May 1999 A
5919147 Jain Jul 1999 A
5921934 Teo Jul 1999 A
5921935 Hickey Jul 1999 A
5924984 Rao Jul 1999 A
5931868 Gross Aug 1999 A
5972030 Garrison et al. Oct 1999 A
6010531 Donlon et al. Jan 2000 A
6019739 Rhee et al. Feb 2000 A
6024918 Hendriks et al. Feb 2000 A
6066160 Colvin et al. May 2000 A
6081737 Shah Jun 2000 A
6083179 Oredsson Jul 2000 A
6099475 Seward et al. Aug 2000 A
6102945 Campbell Aug 2000 A
6110200 Hinnenkamp Aug 2000 A
6117091 Young et al. Sep 2000 A
6143024 Campbell et al. Nov 2000 A
6159240 Sparer et al. Dec 2000 A
6183512 Howanec, Jr. et al. Feb 2001 B1
6187040 Wright Feb 2001 B1
6217610 Carpentier et al. Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6250308 Cox Jun 2001 B1
6258122 Tweden et al. Jul 2001 B1
6312464 Navia Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6391054 Carpentier et al. May 2002 B2
6406420 McCarthy et al. Jun 2002 B1
6406493 Tu et al. Jun 2002 B1
6409759 Peredo Jun 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6602288 Cosgrove et al. Aug 2003 B1
6602289 Colvin et al. Aug 2003 B1
6619291 Hlavka et al. Sep 2003 B2
6709456 Langberg et al. Mar 2004 B2
6718985 Hlavka et al. Apr 2004 B2
6719786 Ryan et al. Apr 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726715 Sutherland Apr 2004 B2
6726717 Alfieri et al. Apr 2004 B2
6749639 Lewallen Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6797002 Spence et al. Sep 2004 B2
6800090 Alferness et al. Oct 2004 B2
6802860 Cosgrove et al. Oct 2004 B2
6805710 Bolling et al. Oct 2004 B2
6805711 Quijano et al. Oct 2004 B2
6830586 Quijano et al. Dec 2004 B2
6858039 McCarthy Feb 2005 B2
6908482 McCarthy et al. Jun 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6921407 Nguyen et al. Jul 2005 B2
6942694 Liddicoat et al. Sep 2005 B2
6945996 Sedransk Sep 2005 B2
6955689 Ryan et al. Oct 2005 B2
6966924 Holmberg Nov 2005 B2
6977950 Krishnamoorthy Dec 2005 B1
6986775 Morales et al. Jan 2006 B2
7037334 Hlavka et al. May 2006 B1
7066954 Ryan et al. Jun 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7112219 Vidlund et al. Sep 2006 B2
7118595 Ryan et al. Oct 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7166126 Spence et al. Jan 2007 B2
7166127 Spence et al. Jan 2007 B2
7247134 Vidlund et al. Jul 2007 B2
7294148 McCarthy Nov 2007 B2
7329280 Bolling et al. Feb 2008 B2
7527647 Spence May 2009 B2
20010034551 Cox Oct 2001 A1
20020129820 Ryan et al. Sep 2002 A1
20020133180 Ryan et al. Sep 2002 A1
20020169504 Alferness et al. Nov 2002 A1
20020173844 Alfieri et al. Nov 2002 A1
20030033009 Gabbay Feb 2003 A1
20030040793 Marquez Feb 2003 A1
20030078653 Vesely et al. Apr 2003 A1
20030083742 Spence et al. May 2003 A1
20030093148 Bolling et al. May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20040006384 McCarthy Jan 2004 A1
20040088047 Spence et al. May 2004 A1
20040122513 Navia et al. Jun 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040249452 Adams et al. Dec 2004 A1
20040249453 Cartledge et al. Dec 2004 A1
20050004666 Alfieri et al. Jan 2005 A1
20050043791 McCarthy et al. Feb 2005 A1
20050070999 Spence Mar 2005 A1
20050075727 Wheatley Apr 2005 A1
20050131533 Alfieri et al. Jun 2005 A1
20050182487 McCarthy et al. Aug 2005 A1
20050192666 McCarthy Sep 2005 A1
20050197696 Gomez Duran Sep 2005 A1
20050246014 McCarthy Nov 2005 A1
20050256567 Lim et al. Nov 2005 A1
20050256568 Lim et al. Nov 2005 A1
20050256569 Lim et al. Nov 2005 A1
20050267572 Schoon et al. Dec 2005 A1
20050278022 Lim Dec 2005 A1
20050288776 Shaoulian et al. Dec 2005 A1
20050288777 Rhee et al. Dec 2005 A1
20050288778 Shaoulian et al. Dec 2005 A1
20050288780 Rhee et al. Dec 2005 A1
20050288782 Moaddeb et al. Dec 2005 A1
20050288783 Shaoulian et al. Dec 2005 A1
20060015178 Moaddeb et al. Jan 2006 A1
20060015179 Bulman-Fleming et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025856 Ryan et al. Feb 2006 A1
20060025858 Alameddine Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060149368 Spence Jul 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060259135 Navia et al. Nov 2006 A1
20070038294 Navia Feb 2007 A1
20070049952 Weiss Mar 2007 A1
20070050020 Spence Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070100439 Cangialosi et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070123979 Perier et al. May 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070173930 Sogard et al. Jul 2007 A1
20070213582 Zollinger et al. Sep 2007 A1
20070255396 Douk et al. Nov 2007 A1
20090177278 Spence Jul 2009 A1
20090192602 Kuehn Jul 2009 A1
20090192603 Ryan Jul 2009 A1
20090192604 Gloss Jul 2009 A1
20090192605 Gloss et al. Jul 2009 A1
20090192606 Gloss et al. Jul 2009 A1
Foreign Referenced Citations (36)
Number Date Country
0338994 Oct 1989 EP
0595791 May 1994 EP
0860151 Aug 1998 EP
1034753 Sep 2000 EP
2708458 Feb 1995 FR
9119456 Dec 1991 WO
9503757 Feb 1995 WO
9640006 Dec 1996 WO
9741801 Nov 1997 WO
9742871 Nov 1997 WO
9806329 Feb 1998 WO
9911201 Mar 1999 WO
9951169 Oct 1999 WO
9965423 Dec 1999 WO
0032105 Jun 2000 WO
0119292 Mar 2001 WO
0126586 Apr 2001 WO
0147438 Jul 2001 WO
0187191 Nov 2001 WO
0203892 Jan 2002 WO
03020178 Mar 2003 WO
03041617 May 2003 WO
2004004607 Jan 2004 WO
2005004753 Jan 2005 WO
2005034813 Apr 2005 WO
2005082278 Sep 2005 WO
2005110290 Nov 2005 WO
2006041877 Jun 2006 WO
2006133186 Dec 2006 WO
2007050506 May 2007 WO
2007100408 Sep 2007 WO
2007131513 Nov 2007 WO
2008058940 May 2008 WO
2008063537 May 2008 WO
2008094469 Aug 2008 WO
2008098226 Aug 2008 WO
Non-Patent Literature Citations (20)
Entry
Edwards Lifesciences, Carpentier-Edwards Classic Mitral Annuloplasty Ring, Feb. 12, 2001.
Seguin, et al., Advance in Mitral Valve Repair Using a Device Flexible in Three Dimensions, ASAIO Journal vol. 42, No. 6, pp. 368-370, 1996.
Adams, David, et al., “Large Annuloplasty Rings Facilitate Mitral Valve Repair in Barlow's Disease,” Society of Thoracic Surgeons 42nd Annual Meeting, Jan. 30-Feb. 1, 2006.
Alonso-Lei, M.D., et al., Adjustable Annuloplasty for Tricuspid Insufficiency, The annals of Thoracic Surgery, vol. 46, No. 3, pp. 368-369, Sep. 1988.
Bolling, Mitral Valve Reconstruction in the Patient With Heart Failure, Heart Failure Reviews, 6, pp. 177-185, 2001.
Bolling, et al., Surgical Alternatives for Heart Failure, The Journal of Heart and Lung Transplantation, vol. 20, No. 7, pp. 729-733, 2001.
Carpentier, et al. “The ‘Physio-Ring’: An Advanced Concept in Mitral Valve Annuloplasty,” Society of Thoracic Surgeons 31st Annual Meeting, Jan. 30-Feb. 2, 1995.
Carpentier-Edwards Classic Annuloplasty Ring With Duraflo Treatment Models 4425 and 4525 for Mitral and Tricuspid Valvuloplasty, Baxter Healthcare Corporation, 1998.
Carpentier-Edwards Physio Annuloplasty Ring, Edwards Lifesciences Corporation, 2003.
Cochran, et al., Effect of Papillary Muscle Position on Mitral Valve Function: Relationship to Homografts, The Society of Thoracic Surgeons, pp. 5155-5161, 1998.
D.C. Miller, IMR Redux—To Repair or Replace?, Journal of Thoracic & Cardiovascular Surgery, pp. 1-8, 2001.
Flachskampf, Frank A., et al. “Analysis of Shape and Motion of the Mitral Annulus in Subjects With and Without Cardiomyopathy by Echocardiographic 3-Dimensional Reconstruction,” American Society of Echocardiography 0894-7317/2000.
Gatti, et al., Preliminary Experience in Mitral Valve Repair Using the Cosgrove-Edwards Annuloplasty Ring, Interactive Cardiovascular and Thoracic Surgery, vol. 2(3), pp. 256-261, 2003.
Melo, et al., Atrioventricular Valve Repair Using Externally Adjustable Flexible Rings: The Journal of Thoracic Cardiovascular Surgery, vol. 110, No. 5, 1995.
MGH Study Shows Mitral Valve Prolapse Not a Stroke Risk Factor, Massachusetts General Hospital, pp. 1-3, Jun. 1999.
Salgo, et al., Effect of Annular Shape of Leaflet Curvature in Reducing Mitral Leaflet, American Heart Association, Circulation 200; pp. 106-711.
Smolens, et al., Mitral Valve Repair in Heart Failure, The European Journal of Heart Failure 2, pp. 365-371, 2000.
Techniques for 3D Quantative Echocardiography, University of Washington Cardiovascular Research & Training Center Cardiac Imaging Research Lab, pp. 1-5, Oct. 2003.
Watanbe, Nozomi, et al. “Mitral Annulus Flattens in Ischemic Mitral Regurgitation: Geometric Differences Between Inferior and Anterior Myocardial Infarction: A Real-Time 3-Dimensional Echocardiographic Study,” American Heart Association © 2005; ISSN: 1524-4539.
Salgo, Effect of annular shape on leaflet curvature in reducing mitral leaflet stress, American Heart Association, Circulation, 2002; 106: 711-717.
Related Publications (1)
Number Date Country
20120172983 A1 Jul 2012 US
Continuations (3)
Number Date Country
Parent 12697936 Feb 2010 US
Child 13416929 US
Parent 10742454 Dec 2003 US
Child 12697936 US
Parent 10144932 May 2002 US
Child 10742454 US