The present invention refers to an annular prosthesis for mitral valve.
The mitral plastic surgery operation includes a series of procedures suitable to re-establish the correct functionality of the mitral valve, when this is affected by congenital or acquired pathology. Among these procedures, the remodelling of the valve annulus is one of the most frequently used manoeuvres in order to complete and/or to strengthen the valve. Remodelling provides for two moments: the reduction of the annular area and the properly said remodelling, that is suitable to re-establish the normal geometric ratios that are found in natural valves free of pathology. The first one of these manoeuvres is usually carried out with the aid of a prosthesis that is appropriately sutured to the natural annulus. The prosthesis for annuloplastic surgery available on the market are of two types. Flexible annular prostheses, made of various materials, that allow a “linear” reduction of the annular circumference, and rigid and semi-rigid annular prostheses made of various materials, that allow the “linear” reduction of the annular circumference and a geometric remodelling so as to re-establish the physiological systolic shape of the annulus. In the case of semi-rigid prostheses they additionally allow a minimum deformation in order to allow the prosthesis to follow the deformations of the annulus-during the cardiac stages.
All the rigid and semi-rigid annular prostheses have a kidney-like or coupled D shape, with an anterior half-ring, rectilinear in first approximation, that gets sutured in correspondence of the joining of the anterior valve leaflet and a curved posterior half-ring that is sutured in correspondence of the joining of the posterior valve leaflet. The shape of the annular prostheses at issue reproduces the configuration of the valve annulus during the ventricular systole, and therefore in the stage of the valve closing. The ratio between minor axis and major axis is approximately ¾ in all the models currently on the market since it reproduces normal anatomical ratios.
Recently the concept of undersizing of mitral valve annuloplasty has been introduced. This procedure is proposed in case of mitral insufficiency due to a reduced movement of the leaflets as in the case of ischaemic mitral valve or dilated cardiomyopathy. The undersizing consists in using a ring smaller than necessary, though still maintaining the ratio of approximately ¾, and it is carried out in order to bring the base of the anterior leaflet even closer to the posterior leaflet in order to increase the coaptation surface (closure).
The Applicants noticed that in certain pathological conditions, there is a need to modify such ratio in order to make the operation of reconstruction of the mitral valve more effective: for instance in order to bring the valve leaflets closer to each other in the case of anatomical or functional tissue deficiency of one or both leaflets. In addition, it has also been observed that anatomical variation that do not correspond to the ratios reported above are frequent in nature.
In view of the state of the art herein described, a scope of the present invention is to provide an annular prosthesis for mitral valve that can meet the different requirements that have been noticed.
According to present the invention, these and other scopes have been attained by means of an annular prosthesis for mitral valve made up of a posterior half-ring and an anterior half-ring that are coupled to each other on a first transverse plane which defines a maximum width section of the prosthesis, characterised in that the ratio between the distance between said anterior half-ring and said posterior half-ring, as measured along a second plane, perpendicular to said first plane and equidistant to said couplings, and said maximum width of the prosthesis is lower than ¾.
The characteristics and the advantages of the present invention will become evident from the following detailed description of an embodiment thereof, that is illustrated as a non-limiting example in the enclosed drawings, in which:
In
In
For every size of prosthesis two or more reduced ratios can therefore be provided. By size the dimension of the transverse width of the prosthesis is meant; it represents the clinical parameter on the bases of which the prosthesis is selected in each single clinical case in examination, and it is also the identifying parameter for the prosthesis.
The lower ratio as compared with the prostheses currently used for annuloplastic surgery allows its use in selected cases of pathologies that are not treatable in adequate way with conventional prostheses.
The lower ratios in this case have the function to treat pathologies characterised by reduced movement of the leaflets with tethering (stretching towards the cardiac apex) symmetrical (as regards each leaflet) with medium or serious proportions. The reduction of the ratio confers the prosthesis a more “squeezed” shape, that allows a better apposition of the leaflets in selected cases. For instance, in the dilated cardiomyopathy, when the expansion of the left ventricle determines a lateral movement and toward the apex of the papillary muscles, the leaflets stretch toward the cardiac apex and the apposition is thus lacking at central level. A possible sizing, in addition, must respect an anatomical requirement: the anterior half-ring 1 (the base for the implant of the front leaflet) is anatomically fixed and not modifiable, and therefore, the sizing should not be applied to this structure, that is to the width of the prosthesis. The maintaining of a normal fore width of the prosthesis, associated with the reduction of the height allows an undersizing that is less inclined to deformation of the fore leaflet, therefore reducing the risk of residual insufficiency.
In
In some extreme cases, it could be useful to make the distance between the two half-rings in the central zone equal to zero, in order to obtain an eight-shape configuration, in order to improve the coaptation at central level. This remodelling simulates the double orifice operation, in which the leaflets are joined at the centre of the valve in order to force the central coaptation. This prosthesis could also be used with this type of technique in order to reduce the stress on the suture and in order to minimise the reduction of the valve area.
In
In this embodiment the curving radius of one of the lateral zones, for instance the second lateral zone (right) 10, is increased so as to induce a selective increase of the competence in correspondence of the valve sector with reduced mobility of the leaflets (bad asymmetric apposition of the leaflets as in ischaemic pathology). It is thus obtained that one part of the prosthesis, for instance the first lateral zone (left) 9, maintains a configuration substantially similar to the traditional prosthesis and one part, for instance the second lateral zone (right) 10, gets a sized configuration. In other words the distance between the middle point of the first lateral zone (left) 9 and the longitudinal plane 4 is greater than the distance between the middle point of the second lateral zone (right) 10 and the longitudinal plane
The prosthesis, according to the present invention, can be made of an inert material that is highly tolerated by the human organism and can have a resistance that is appropriated to the use and that can substantially maintain the shape given to it.
The present application is a continuation of co-pending Ser. No. 12/697,936, filed Feb. 1, 2010, which is a continuation of Ser. No. 10/742,454, filed Dec. 18, 2003, now U.S. Pat. No. 7,674,286, which is a continuation of Ser. No. 10/144,932 filed May 15, 2002, now U.S. Pat. No. 6,726,717, which claims foreign priority to Italian Patent Application Serial No. MI2001a 001012, filed on May 17, 2001.
Number | Name | Date | Kind |
---|---|---|---|
3656185 | Carpentier | Apr 1972 | A |
4055861 | Carpentier et al. | Nov 1977 | A |
4164046 | Cooley | Aug 1979 | A |
4217665 | Bex et al. | Aug 1980 | A |
4275469 | Gabbay | Jun 1981 | A |
4602911 | Ahmadi et al. | Jul 1986 | A |
4790844 | Ovil | Dec 1988 | A |
4914097 | Oda et al. | Apr 1990 | A |
4993428 | Arms | Feb 1991 | A |
5010892 | Colvin et al. | Apr 1991 | A |
5041130 | Cosgrove et al. | Aug 1991 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5064431 | Gilbertson et al. | Nov 1991 | A |
5104407 | Lam et al. | Apr 1992 | A |
5201880 | Wright et al. | Apr 1993 | A |
5258021 | Duran | Nov 1993 | A |
5306296 | Wright et al. | Apr 1994 | A |
5316016 | Adams et al. | May 1994 | A |
5344442 | Deac | Sep 1994 | A |
5396887 | Imran | Mar 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5480424 | Cox | Jan 1996 | A |
5496336 | Cosgrove et al. | Mar 1996 | A |
5533515 | Coller et al. | Jul 1996 | A |
5573007 | Bobo, Sr. | Nov 1996 | A |
5593435 | Carpentier et al. | Jan 1997 | A |
5607471 | Seguin et al. | Mar 1997 | A |
5662704 | Gross | Sep 1997 | A |
5674279 | Wright et al. | Oct 1997 | A |
5728064 | Burns et al. | Mar 1998 | A |
5733331 | Peredo | Mar 1998 | A |
5752522 | Murphy | May 1998 | A |
5776189 | Khalid | Jul 1998 | A |
5814098 | Hinnenkamp et al. | Sep 1998 | A |
5824066 | Gross | Oct 1998 | A |
5824069 | Lemole | Oct 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5855563 | Kaplan et al. | Jan 1999 | A |
5865801 | Houser | Feb 1999 | A |
5888240 | Carpentier et al. | Mar 1999 | A |
5902308 | Murphy | May 1999 | A |
5919147 | Jain | Jul 1999 | A |
5921934 | Teo | Jul 1999 | A |
5921935 | Hickey | Jul 1999 | A |
5924984 | Rao | Jul 1999 | A |
5931868 | Gross | Aug 1999 | A |
5972030 | Garrison et al. | Oct 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6019739 | Rhee et al. | Feb 2000 | A |
6024918 | Hendriks et al. | Feb 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6081737 | Shah | Jun 2000 | A |
6083179 | Oredsson | Jul 2000 | A |
6099475 | Seward et al. | Aug 2000 | A |
6102945 | Campbell | Aug 2000 | A |
6110200 | Hinnenkamp | Aug 2000 | A |
6117091 | Young et al. | Sep 2000 | A |
6143024 | Campbell et al. | Nov 2000 | A |
6159240 | Sparer et al. | Dec 2000 | A |
6183512 | Howanec, Jr. et al. | Feb 2001 | B1 |
6187040 | Wright | Feb 2001 | B1 |
6217610 | Carpentier et al. | Apr 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6250308 | Cox | Jun 2001 | B1 |
6258122 | Tweden et al. | Jul 2001 | B1 |
6312464 | Navia | Nov 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6391054 | Carpentier et al. | May 2002 | B2 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6406493 | Tu et al. | Jun 2002 | B1 |
6409759 | Peredo | Jun 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6602288 | Cosgrove et al. | Aug 2003 | B1 |
6602289 | Colvin et al. | Aug 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6719786 | Ryan et al. | Apr 2004 | B2 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726715 | Sutherland | Apr 2004 | B2 |
6726717 | Alfieri et al. | Apr 2004 | B2 |
6749639 | Lewallen | Jun 2004 | B2 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6800090 | Alferness et al. | Oct 2004 | B2 |
6802860 | Cosgrove et al. | Oct 2004 | B2 |
6805710 | Bolling et al. | Oct 2004 | B2 |
6805711 | Quijano et al. | Oct 2004 | B2 |
6830586 | Quijano et al. | Dec 2004 | B2 |
6858039 | McCarthy | Feb 2005 | B2 |
6908482 | McCarthy et al. | Jun 2005 | B2 |
6918917 | Nguyen et al. | Jul 2005 | B1 |
6921407 | Nguyen et al. | Jul 2005 | B2 |
6942694 | Liddicoat et al. | Sep 2005 | B2 |
6945996 | Sedransk | Sep 2005 | B2 |
6955689 | Ryan et al. | Oct 2005 | B2 |
6966924 | Holmberg | Nov 2005 | B2 |
6977950 | Krishnamoorthy | Dec 2005 | B1 |
6986775 | Morales et al. | Jan 2006 | B2 |
7037334 | Hlavka et al. | May 2006 | B1 |
7066954 | Ryan et al. | Jun 2006 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7112219 | Vidlund et al. | Sep 2006 | B2 |
7118595 | Ryan et al. | Oct 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7166126 | Spence et al. | Jan 2007 | B2 |
7166127 | Spence et al. | Jan 2007 | B2 |
7247134 | Vidlund et al. | Jul 2007 | B2 |
7294148 | McCarthy | Nov 2007 | B2 |
7329280 | Bolling et al. | Feb 2008 | B2 |
7527647 | Spence | May 2009 | B2 |
20010034551 | Cox | Oct 2001 | A1 |
20020129820 | Ryan et al. | Sep 2002 | A1 |
20020133180 | Ryan et al. | Sep 2002 | A1 |
20020169504 | Alferness et al. | Nov 2002 | A1 |
20020173844 | Alfieri et al. | Nov 2002 | A1 |
20030033009 | Gabbay | Feb 2003 | A1 |
20030040793 | Marquez | Feb 2003 | A1 |
20030078653 | Vesely et al. | Apr 2003 | A1 |
20030083742 | Spence et al. | May 2003 | A1 |
20030093148 | Bolling et al. | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20040006384 | McCarthy | Jan 2004 | A1 |
20040088047 | Spence et al. | May 2004 | A1 |
20040122513 | Navia et al. | Jun 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040249452 | Adams et al. | Dec 2004 | A1 |
20040249453 | Cartledge et al. | Dec 2004 | A1 |
20050004666 | Alfieri et al. | Jan 2005 | A1 |
20050043791 | McCarthy et al. | Feb 2005 | A1 |
20050070999 | Spence | Mar 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050131533 | Alfieri et al. | Jun 2005 | A1 |
20050182487 | McCarthy et al. | Aug 2005 | A1 |
20050192666 | McCarthy | Sep 2005 | A1 |
20050197696 | Gomez Duran | Sep 2005 | A1 |
20050246014 | McCarthy | Nov 2005 | A1 |
20050256567 | Lim et al. | Nov 2005 | A1 |
20050256568 | Lim et al. | Nov 2005 | A1 |
20050256569 | Lim et al. | Nov 2005 | A1 |
20050267572 | Schoon et al. | Dec 2005 | A1 |
20050278022 | Lim | Dec 2005 | A1 |
20050288776 | Shaoulian et al. | Dec 2005 | A1 |
20050288777 | Rhee et al. | Dec 2005 | A1 |
20050288778 | Shaoulian et al. | Dec 2005 | A1 |
20050288780 | Rhee et al. | Dec 2005 | A1 |
20050288782 | Moaddeb et al. | Dec 2005 | A1 |
20050288783 | Shaoulian et al. | Dec 2005 | A1 |
20060015178 | Moaddeb et al. | Jan 2006 | A1 |
20060015179 | Bulman-Fleming et al. | Jan 2006 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060025856 | Ryan et al. | Feb 2006 | A1 |
20060025858 | Alameddine | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060149368 | Spence | Jul 2006 | A1 |
20060195183 | Navia et al. | Aug 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20070038294 | Navia | Feb 2007 | A1 |
20070049952 | Weiss | Mar 2007 | A1 |
20070050020 | Spence | Mar 2007 | A1 |
20070066863 | Rafiee et al. | Mar 2007 | A1 |
20070100439 | Cangialosi et al. | May 2007 | A1 |
20070118151 | Davidson | May 2007 | A1 |
20070123979 | Perier et al. | May 2007 | A1 |
20070162111 | Fukamachi et al. | Jul 2007 | A1 |
20070173930 | Sogard et al. | Jul 2007 | A1 |
20070213582 | Zollinger et al. | Sep 2007 | A1 |
20070255396 | Douk et al. | Nov 2007 | A1 |
20090177278 | Spence | Jul 2009 | A1 |
20090192602 | Kuehn | Jul 2009 | A1 |
20090192603 | Ryan | Jul 2009 | A1 |
20090192604 | Gloss | Jul 2009 | A1 |
20090192605 | Gloss et al. | Jul 2009 | A1 |
20090192606 | Gloss et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
0338994 | Oct 1989 | EP |
0595791 | May 1994 | EP |
0860151 | Aug 1998 | EP |
1034753 | Sep 2000 | EP |
2708458 | Feb 1995 | FR |
9119456 | Dec 1991 | WO |
9503757 | Feb 1995 | WO |
9640006 | Dec 1996 | WO |
9741801 | Nov 1997 | WO |
9742871 | Nov 1997 | WO |
9806329 | Feb 1998 | WO |
9911201 | Mar 1999 | WO |
9951169 | Oct 1999 | WO |
9965423 | Dec 1999 | WO |
0032105 | Jun 2000 | WO |
0119292 | Mar 2001 | WO |
0126586 | Apr 2001 | WO |
0147438 | Jul 2001 | WO |
0187191 | Nov 2001 | WO |
0203892 | Jan 2002 | WO |
03020178 | Mar 2003 | WO |
03041617 | May 2003 | WO |
2004004607 | Jan 2004 | WO |
2005004753 | Jan 2005 | WO |
2005034813 | Apr 2005 | WO |
2005082278 | Sep 2005 | WO |
2005110290 | Nov 2005 | WO |
2006041877 | Jun 2006 | WO |
2006133186 | Dec 2006 | WO |
2007050506 | May 2007 | WO |
2007100408 | Sep 2007 | WO |
2007131513 | Nov 2007 | WO |
2008058940 | May 2008 | WO |
2008063537 | May 2008 | WO |
2008094469 | Aug 2008 | WO |
2008098226 | Aug 2008 | WO |
Entry |
---|
Edwards Lifesciences, Carpentier-Edwards Classic Mitral Annuloplasty Ring, Feb. 12, 2001. |
Seguin, et al., Advance in Mitral Valve Repair Using a Device Flexible in Three Dimensions, ASAIO Journal vol. 42, No. 6, pp. 368-370, 1996. |
Adams, David, et al., “Large Annuloplasty Rings Facilitate Mitral Valve Repair in Barlow's Disease,” Society of Thoracic Surgeons 42nd Annual Meeting, Jan. 30-Feb. 1, 2006. |
Alonso-Lei, M.D., et al., Adjustable Annuloplasty for Tricuspid Insufficiency, The annals of Thoracic Surgery, vol. 46, No. 3, pp. 368-369, Sep. 1988. |
Bolling, Mitral Valve Reconstruction in the Patient With Heart Failure, Heart Failure Reviews, 6, pp. 177-185, 2001. |
Bolling, et al., Surgical Alternatives for Heart Failure, The Journal of Heart and Lung Transplantation, vol. 20, No. 7, pp. 729-733, 2001. |
Carpentier, et al. “The ‘Physio-Ring’: An Advanced Concept in Mitral Valve Annuloplasty,” Society of Thoracic Surgeons 31st Annual Meeting, Jan. 30-Feb. 2, 1995. |
Carpentier-Edwards Classic Annuloplasty Ring With Duraflo Treatment Models 4425 and 4525 for Mitral and Tricuspid Valvuloplasty, Baxter Healthcare Corporation, 1998. |
Carpentier-Edwards Physio Annuloplasty Ring, Edwards Lifesciences Corporation, 2003. |
Cochran, et al., Effect of Papillary Muscle Position on Mitral Valve Function: Relationship to Homografts, The Society of Thoracic Surgeons, pp. 5155-5161, 1998. |
D.C. Miller, IMR Redux—To Repair or Replace?, Journal of Thoracic & Cardiovascular Surgery, pp. 1-8, 2001. |
Flachskampf, Frank A., et al. “Analysis of Shape and Motion of the Mitral Annulus in Subjects With and Without Cardiomyopathy by Echocardiographic 3-Dimensional Reconstruction,” American Society of Echocardiography 0894-7317/2000. |
Gatti, et al., Preliminary Experience in Mitral Valve Repair Using the Cosgrove-Edwards Annuloplasty Ring, Interactive Cardiovascular and Thoracic Surgery, vol. 2(3), pp. 256-261, 2003. |
Melo, et al., Atrioventricular Valve Repair Using Externally Adjustable Flexible Rings: The Journal of Thoracic Cardiovascular Surgery, vol. 110, No. 5, 1995. |
MGH Study Shows Mitral Valve Prolapse Not a Stroke Risk Factor, Massachusetts General Hospital, pp. 1-3, Jun. 1999. |
Salgo, et al., Effect of Annular Shape of Leaflet Curvature in Reducing Mitral Leaflet, American Heart Association, Circulation 200; pp. 106-711. |
Smolens, et al., Mitral Valve Repair in Heart Failure, The European Journal of Heart Failure 2, pp. 365-371, 2000. |
Techniques for 3D Quantative Echocardiography, University of Washington Cardiovascular Research & Training Center Cardiac Imaging Research Lab, pp. 1-5, Oct. 2003. |
Watanbe, Nozomi, et al. “Mitral Annulus Flattens in Ischemic Mitral Regurgitation: Geometric Differences Between Inferior and Anterior Myocardial Infarction: A Real-Time 3-Dimensional Echocardiographic Study,” American Heart Association © 2005; ISSN: 1524-4539. |
Salgo, Effect of annular shape on leaflet curvature in reducing mitral leaflet stress, American Heart Association, Circulation, 2002; 106: 711-717. |
Number | Date | Country | |
---|---|---|---|
20120172983 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12697936 | Feb 2010 | US |
Child | 13416929 | US | |
Parent | 10742454 | Dec 2003 | US |
Child | 12697936 | US | |
Parent | 10144932 | May 2002 | US |
Child | 10742454 | US |