Embodiments relate to implantable medical leads and implantable medical lead extensions. More particularly, embodiments relate to methods of shielding implantable medical leads and implantable medical lead extensions.
Implantable medical systems are used to provide stimulation therapy and/or physiological sensing for patients. The implantable medical system includes a stimulation or sensing device that is implanted at a convenient location. Implantable medical leads are routed between the site of implantation of the device and a target site where stimulation or sensing is to occur. Where the route is lengthy, an implantable medical lead extension is used to traverse a portion of that distance.
The implantable medical leads include one or more electrical contacts located near a proximal end of the lead. Where no extension is needed, the proximal end of the lead is physically connected to the stimulation or sensing device so that the proximal contacts of the lead are electrically coupled to electrical circuitry of the device. For scenarios where the implantable medical lead extension is used, then the proximal end of the lead is physically connected to a distal end of the extension where electrical connectors of the extension are coupled to the electrical contacts of the lead. The proximal end of the extension is physically connected to the stimulation or sensing device so that the proximal contacts of the extension are electrically coupled to electrical circuitry of the device. The leads also include one or more electrodes located near a distal end of the leads. Electrical conductors are present within the lead, and each electrical conductor is connected to a respective electrical contact and electrode to provide an electrical path for stimulation and/or sensed signals. Electrical conductors are also present within the extension, and each electrical conductor is connected to a respective electrical contact and distal connector to provide an electrical path for stimulation and/or sensed signals.
Because the lead and lead-extension combination extends over a significant distance within the body, each electrical conductor within the lead and extension is susceptible to receiving extraneous electromagnetic energy that produces electrical current on the electrical conductor. While most ambient conditions expose the lead and lead extension to insignificant levels of such extraneous electromagnetic energy, certain situations may create levels of extraneous electromagnetic energy that are of concern. An example of such a situation is a magnetic resonance imaging (MRI) scan. The MRI scan utilizes a high energy radio frequency (RF) electromagnetic signal. This RF signal may produce relatively large levels of electrical current on the electrical conductor of the lead and extension when the patient having the implantable medical system that includes the lead and/or lead extension combination undergoes the MRI scan. The relatively large electrical current that results from the high energy RF signal produces heating at the electrodes that may create discomfort and even dangerous tissue damage at the site within the body where the one or more electrodes of the lead are located.
It has been found that a shield layer within the lead reduces the amount of RF energy that reaches the electrical conductors, which in turn reduces the amount of current being coupled onto the electrical conductors and reduces the heating at the electrodes to acceptable levels. The manufacturing process of the lead has been altered to include a shield layer when the lead body is being manufactured by creating an inner jacket over the electrical conductor, then creating the shield layer on the inner jacket, and then creating an outer jacket over the inner jacket. The electrical contacts and electrodes are then installed about the inner jacket and are coupled to the electrical conductor to complete the leads. However, leads and extensions that have been constructed without such shield layers or other protective aspects remain vulnerable to the high levels of RF energy of the MRI scan or other situation.
Embodiments address issues such as these and others by adding a shield layer onto the exterior surface of an insulative lead body of an existing lead having electrical contacts and electrodes already installed on that lead body. The shield layer is then covered by an insulative layer.
Embodiments provide a method of shielding an implantable medical lead. The method involves providing a shield layer onto an exterior surface of an insulative lead body of the implantable medical lead between an electrical contact on a proximal end of the insulative lead body and an electrode on a distal end of the insulative lead body with a proximal end of the shield layer being spaced distally from the electrical contact and with a distal end of the shield layer being spaced proximally from the electrode. The method further involves applying an outer insulative layer onto the shield layer while the shield layer is present on the exterior surface of the insulative layer with the outer insulative layer being located between the electrical contact and the electrode.
Embodiments provide a method of shielding an implantable medical lead. The method involves utilizing the implantable medical lead as a mandrel for a braiding machine to braid wires onto an insulative lead body of the implantable medical lead between an electrical contact on a proximal end of the implantable medical lead and an electrode on a distal end of the implantable medical lead with a proximal end of the shield layer being spaced distally from the electrical contact and with a distal end of the shield layer being spaced proximally from the electrode. The method further involves applying an outer insulative layer onto the braided wires while the braided wires are present on the insulative lead body of the implantable medical lead with the outer insulative layer being located between the electrical contact and the electrode.
Embodiments provide a method of shielding an implantable medical lead extension. The method involves providing a shield layer onto an exterior surface of an insulative lead body of the implantable medical lead extension between an electrical contact on a proximal end of the implantable medical lead extension and a distal end of the implantable medical lead extension with a proximal end of the shield layer being spaced distally from the electrical contact. The method further involves applying an outer insulative layer onto the shield layer with the outer insulative layer being located between the electrical contact and the distal end.
Embodiments provide a method of shielding an implantable medical lead extension. The method involves utilizing the implantable medical lead extension as a mandrel for a braiding machine to braid wires onto an insulative lead body of the implantable medical lead extension between an electrical contact on a proximal end of the implantable medical lead extension and a distal end of the implantable medical lead extension with a proximal end of the shield layer being spaced distally from the electrical contact. The method further involves applying an outer insulative layer onto the braided wires on the implantable medical lead extension with the outer insulative layer being located between the electrical contact and the distal end.
Embodiments provide an implantable medical lead that includes a lead body defining a lumen, a conductor within the lumen, a proximal contact coupled to a proximal area of the lead body, and a distal electrode coupled to a distal area of the lead body, with the conductor electrically coupling the proximal contact to the distal electrode. The implantable medical lead further includes an inner insulative layer coupled to the outer surface of the lead body, a shield layer positioned about the inner insulative layer and between the proximal contact and the distal electrode, and an outer insulative layer positioned about the shield layer and between the proximal contact and the distal electrode.
Embodiments provide an implantable medical lead extension that includes a lead body defining a lumen, a conductor within the lumen, a proximal contact coupled to a proximal area of the lead body, and a distal connector housing coupled to a distal area of the lead body with a distal connector positioned within the distal connector housing, the conductor electrically coupling the proximal contact to the distal connector. The implantable medical lead extension further includes an inner insulative layer coupled to the outer surface of the lead body, a shield layer positioned about the inner insulative layer and between the proximal contact and the distal connector housing, and an outer insulative layer positioned about the shield layer and between the proximal contact and the distal connector housing.
Embodiments provide a shield layer for an existing implantable lead and/or implantable lead extension. This provides a method of manufacturing a lead or extension with a shield layer where a conventional manufacturing technique may be used to create a complete lead or lead extension and then the shield layer is added as a subsequent process. This further provides the ability to retrofit the shield layer to leads and lead extensions that have already been constructed and are present in available inventory so that this existing inventory is made safer for MRI scans.
According to the embodiment shown, the lead 110 has an added shield layer 122 that has been applied to an existing outer layer 120 of the lead body of the lead 110. This shield layer 122 may be of various forms such as a tubular structure of braided conductive wires that have been overbraided atop the existing outer insulative layer 120, a tubular conductive foil structure, and the like. For a braided shield, the wires of the braid may be a conductor such as a biocompatible metal like tantalum, titanium, and the like. For a foil shield, the foil may be a conductor such as biocompatible metal like tantalum, titanium, and the like.
Where the shield layer 122 is a braided wire shield as shown in
As can be seen, the added shield layer 122 is present with a proximal end of the shield layer 122 starting distally of a most distal proximal contact 114 and ending proximally of a most proximal distal electrode 118. Likewise, an outer insulative layer 124 is applied atop the shield layer 122 with a proximal end of the outer insulative layer 124 starting distally of the most distal proximal contact 114 and ending proximally of the most proximal distal electrode 118 to thereby entirely cover the added shield layer 122. This prevents exposure of the added shield layer 122 to the tissue surround the lead 110.
While the shield layer 122 is not in direct contact with the tissue along the length of the lead 110, high frequency RF energy coupled onto the shield layer 122, such as during an MRI scan, may capacitively couple to the surrounding tissue to dissipate the RF energy over the length of the shield layer 122. Thus, there is a significant amount of tissue where the RF energy is being dissipated, rather than a small amount of tissue where the electrodes 118 are located. Furthermore, if desired, ground rings could be added atop the shield layer 122 where the ground rings are exposed to provide a direct path for current from the shield layer 122 to the tissue or from the shield layer 122 to a ground connection at the device 102.
Thus, the lead 110 may be manufactured in a conventional manner and then the shield layer 122 and insulative layer 124 may be added as subsequent steps. Furthermore, the lead 110 may exist in inventory and may be retrieved from inventory for a retrofit of the shield layer 122 and insulative layer 124.
According to the embodiment shown, the extension 202 has an added shield layer 214 that has been applied to an existing outer layer 212 of the lead body of the extension 202. As with the shield layer 122 of the lead 110 in
As can be seen, the added shield layer 202 is present with a proximal end of the shield layer 214 starting distally of a most distal proximal contact 206 and ending proximally of a most proximal distal connector 210 within the connector block 208. Likewise, an outer insulative layer 216 is applied atop the shield layer 214 with a proximal end of the outer insulative layer 216 starting distally of the most distal proximal contact 206 and ending proximally of the most proximal distal connector 210 to thereby entirely cover the added shield layer 214. This prevents exposure of the added shield layer 214 to the tissue surrounding the extension 202.
While the shield layer 214 is not in direct contact with the tissue along the length of the extension 202, high frequency RF energy coupled onto the shield layer 214, such as during an MRI scan, may capacitively couple to the surrounding tissue to dissipate the RF energy over the length of the shield layer 214. Thus, there is a significant amount of tissue where the RF energy is being dissipated for the extension, rather than a small amount of tissue where the electrodes 118 of the lead 110 are located. Furthermore, if desired, ground rings could be added atop the shield layer 214 where the ground rings are exposed to provide a direct path for current from the shield layer 214 to the tissue or from the shield layer 214 to a ground connection at the device 102.
Thus, the extension 202 may also be manufactured in a conventional manner and then the shield layer 214 and insulative layer 216 may be added as subsequent steps. Furthermore, the extension 202 may exist in inventory and may be retrieved from inventory for a retrofit of the shield layer 214 and insulative layer 216.
As shown in
The shield layer 122, 214 is then added about the lead body 120, 212. The shield layer 122, 214 may be added by sliding a loose fitting shield layer, such as the tubular braid of wires or a tubular foil on the lead body 120, 212. Alternatively, the shield layer may be extruded or braided directly onto the lead body 120, 212. This alternative is discussed in more detail below with reference to
The outer insulative layer 124, 216 is then added over the shield layer 122, 214. The outer insulative layer 124 may be extruded onto the shield layer 122, 214 or may be a tubular structure such as a polyurethane heat shrink tube that fits loosely over the shield layer 122, 214. Once heated the heat shrink tube then shrinks to tightly fit against the shield layer 122, 214 and the lead body 120, 212 which fixes the position of the shield layer 122, 214 and also provides separation of the shield layer 122, 214 from the exterior conditions.
One example of operations 400 for constructing the lead or lead extension with the added shield layer is shown in
An example of the braiding machine configuration that may be used to complete the operations 402 and 404 of
As shown, the insulative layer 608 is applied over the shield layer 604 and may also be applied over the shield terminator 606. Where the terminator 606 is a heat shrink terminator, the result is a heat shrink terminator then covered by an outer insulative layer 608 that may also be a heat shrink tubing.
Alternatively, where the terminator is a biocompatible conductive material such as a biocompatible metal ring, the insulative layer 608 may be stopped prior to covering the shield terminator 606 which allows the shield terminator 606 be exposed to the external conditions. This allows the terminator 606 to provide a ground path from the shield layer to a ground connector of the implantable device 102 that electrically couples to the terminator 606 or a ground path directly to tissue in contact with the terminator 606.
The shield layer 122, 214 is applied onto the inner insulative layer 902 as in the prior embodiments. The inner insulative layer 902 protects the lead body 120′, 212′ which may be more vulnerable to damage from the shield layer 122, 214 due to being a very soft and flexible material. The outer insulative layer 124, 216 is then applied over the shield layer 122, 214 as discussed above for the prior embodiments.
While embodiments have been particularly shown and described, it will be understood by those skilled in the art that various other changes in the form and details may be made therein without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2433480 | Rendich | Dec 1947 | A |
2487038 | Jasper | Nov 1949 | A |
3788329 | Friedman | Jan 1974 | A |
3842485 | Bemert | Oct 1974 | A |
3915174 | Preston | Oct 1975 | A |
4033355 | Amundson | Jul 1977 | A |
4038990 | Thompson | Aug 1977 | A |
4214804 | Little | Jul 1980 | A |
4220813 | Kyle | Sep 1980 | A |
4280507 | Rosenberg | Jul 1981 | A |
4320763 | Money | Mar 1982 | A |
4350169 | Dutcher | Sep 1982 | A |
4383225 | Mayer | May 1983 | A |
4403824 | Scott | Sep 1983 | A |
4441498 | Nordling | Apr 1984 | A |
4628942 | Sweeney et al. | Dec 1986 | A |
4683895 | Pohndorf | Aug 1987 | A |
4711027 | Harris | Dec 1987 | A |
4726379 | Altman et al. | Feb 1988 | A |
4852585 | Heath | Aug 1989 | A |
4906241 | Noddin | Mar 1990 | A |
4920980 | Jackowski | May 1990 | A |
4922607 | Doan et al. | May 1990 | A |
4934380 | De Toledo | Jun 1990 | A |
4947866 | Lessar et al. | Aug 1990 | A |
4951672 | Buchwald et al. | Aug 1990 | A |
4991583 | Silvian | Feb 1991 | A |
5003992 | Holleman | Apr 1991 | A |
5005587 | Scott | Apr 1991 | A |
5012045 | Sato | Apr 1991 | A |
5018523 | Bach, Jr. et al. | May 1991 | A |
5020544 | Dahl et al. | Jun 1991 | A |
5020545 | Soukup | Jun 1991 | A |
5036862 | Pohndorf | Aug 1991 | A |
5040544 | Lessar et al. | Aug 1991 | A |
5063932 | Dahl et al. | Nov 1991 | A |
5197468 | Proctor et al. | Mar 1993 | A |
5213111 | Cook et al. | May 1993 | A |
5217010 | Tsitlik et al. | Jun 1993 | A |
5231078 | Riebman et al. | Jul 1993 | A |
5243996 | Hall | Sep 1993 | A |
5246438 | Langberg | Sep 1993 | A |
5260128 | Ishii et al. | Nov 1993 | A |
5265608 | Lee et al. | Nov 1993 | A |
5265623 | Kroll et al. | Nov 1993 | A |
5271417 | Swanson et al. | Dec 1993 | A |
5308664 | House et al. | May 1994 | A |
5314459 | Swanson et al. | May 1994 | A |
5323776 | Blakely et al. | Jun 1994 | A |
5335657 | Terry, Jr. et al. | Aug 1994 | A |
5349133 | Rogers | Sep 1994 | A |
5360441 | Otten | Nov 1994 | A |
5366496 | Dahl et al. | Nov 1994 | A |
5370644 | Langberg | Dec 1994 | A |
5374286 | Morris | Dec 1994 | A |
5374778 | Hashimoto et al. | Dec 1994 | A |
5417719 | Hull et al. | May 1995 | A |
5456705 | Morris | Oct 1995 | A |
5458629 | Baudino et al. | Oct 1995 | A |
5458631 | Xavier | Oct 1995 | A |
5466252 | Soukup et al. | Nov 1995 | A |
5473812 | Morris et al. | Dec 1995 | A |
5476496 | Strandberg et al. | Dec 1995 | A |
5485667 | Kleshinski | Jan 1996 | A |
5500013 | Buscemi et al. | Mar 1996 | A |
5504274 | McCabe et al. | Apr 1996 | A |
5514172 | Mueller | May 1996 | A |
5515848 | Corbett, III et al. | May 1996 | A |
5523534 | Meister et al. | Jun 1996 | A |
5523578 | Herskovic | Jun 1996 | A |
5527348 | Winkler | Jun 1996 | A |
5534018 | Wahlstrand | Jul 1996 | A |
5552565 | Cartier et al. | Sep 1996 | A |
5571157 | McConnell | Nov 1996 | A |
5572594 | DeVoe et al. | Nov 1996 | A |
5591218 | Jacobson | Jan 1997 | A |
5594304 | Graber | Jan 1997 | A |
5606981 | Tartacower et al. | Mar 1997 | A |
5609622 | Soukup et al. | Mar 1997 | A |
5628780 | Helland et al. | May 1997 | A |
5629622 | Scampini | May 1997 | A |
5643254 | Scheldrup et al. | Jul 1997 | A |
5649965 | Pons et al. | Jul 1997 | A |
5662697 | Li et al. | Sep 1997 | A |
5676659 | McGurk | Oct 1997 | A |
5676694 | Boser et al. | Oct 1997 | A |
5683435 | Truex et al. | Nov 1997 | A |
5683444 | Huntley et al. | Nov 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5697958 | Paul et al. | Dec 1997 | A |
5702437 | Baudino | Dec 1997 | A |
5706826 | Schwager | Jan 1998 | A |
5722998 | Prutchi et al. | Mar 1998 | A |
5727552 | Ryan | Mar 1998 | A |
5751539 | Stevenson et al. | May 1998 | A |
5766232 | Grevious et al. | Jun 1998 | A |
5782241 | Felblinger et al. | Jul 1998 | A |
5795341 | Samson | Aug 1998 | A |
5807258 | Cimochowski et al. | Sep 1998 | A |
5814076 | Brownlee | Sep 1998 | A |
5827997 | Chung et al. | Oct 1998 | A |
5830136 | Delonzor et al. | Nov 1998 | A |
5842966 | Markoll | Dec 1998 | A |
5842986 | Avrin et al. | Dec 1998 | A |
5851226 | Skubitz et al. | Dec 1998 | A |
5897584 | Herman | Apr 1999 | A |
5905627 | Brendel et al. | May 1999 | A |
5927345 | Samson | Jul 1999 | A |
5931861 | Werner et al. | Aug 1999 | A |
5954760 | Jarl | Sep 1999 | A |
5964705 | Truwit et al. | Oct 1999 | A |
5968087 | Hess | Oct 1999 | A |
5970429 | Martin | Oct 1999 | A |
5942966 | Markoll | Dec 1999 | A |
6004269 | Crowley | Dec 1999 | A |
6016447 | Juran et al. | Jan 2000 | A |
6024703 | Zanelli et al. | Feb 2000 | A |
6032063 | Hoar et al. | Feb 2000 | A |
6033408 | Gage et al. | Mar 2000 | A |
6055457 | Bonner | Apr 2000 | A |
6101417 | Vogel et al. | Aug 2000 | A |
6103037 | Wilson | Aug 2000 | A |
6108582 | Fischer, Sr. | Aug 2000 | A |
6132390 | Cookston et al. | Oct 2000 | A |
6141593 | Patag | Oct 2000 | A |
6143013 | Samson et al. | Nov 2000 | A |
6152746 | Brown | Nov 2000 | A |
6156029 | Mueller | Dec 2000 | A |
6195267 | MacDonald et al. | Feb 2001 | B1 |
6198807 | DeSena | Mar 2001 | B1 |
6198972 | Hartlaub et al. | Mar 2001 | B1 |
6209764 | Hartlaub et al. | Apr 2001 | B1 |
6240322 | Peterfeso | May 2001 | B1 |
6258071 | Brookes | Jul 2001 | B1 |
6265466 | Glatkowski | Jul 2001 | B1 |
6269148 | Jessop et al. | Jul 2001 | B1 |
6284971 | Atalar et al. | Sep 2001 | B1 |
6302740 | Holmstrom | Oct 2001 | B1 |
6348070 | Teissl et al. | Feb 2002 | B1 |
6424234 | Stevenson | Jul 2002 | B1 |
6471699 | Fleischman et al. | Oct 2002 | B1 |
6488704 | Connelly et al. | Dec 2002 | B1 |
6494916 | Babalola et al. | Dec 2002 | B1 |
6501991 | Honeck et al. | Dec 2002 | B1 |
6503648 | Wang | Jan 2003 | B1 |
6506972 | Wang | Jan 2003 | B1 |
6529774 | Greene | Mar 2003 | B1 |
6538191 | MacDonald | Mar 2003 | B1 |
6583361 | Clouet | Jun 2003 | B2 |
6606521 | Paspa et al. | Aug 2003 | B2 |
6640137 | MacDonald | Oct 2003 | B2 |
6648690 | Saito et al. | Nov 2003 | B2 |
6660116 | Wolf et al. | Dec 2003 | B2 |
6671544 | Baudino | Dec 2003 | B2 |
6671554 | Gibson et al. | Dec 2003 | B2 |
6673999 | Wang et al. | Jan 2004 | B1 |
6675033 | Lardo et al. | Jan 2004 | B1 |
6689835 | Amarasekera et al. | Feb 2004 | B2 |
6695761 | Oschman et al. | Feb 2004 | B2 |
6708051 | Durousseau | Mar 2004 | B1 |
6711440 | Deal et al. | Mar 2004 | B2 |
6712844 | Pacetti et al. | Mar 2004 | B2 |
6713671 | Wang et al. | Mar 2004 | B1 |
6718203 | Weiner et al. | Apr 2004 | B2 |
6718207 | Connelly | Apr 2004 | B2 |
6725092 | MacDonald et al. | Apr 2004 | B2 |
6735471 | Hill et al. | May 2004 | B2 |
6741892 | Meadows et al. | May 2004 | B1 |
6743055 | Flynn | Jun 2004 | B1 |
6750055 | Connelly et al. | Jun 2004 | B1 |
6757566 | Weiner et al. | Jun 2004 | B2 |
6760628 | Weiner et al. | Jul 2004 | B2 |
6763268 | MacDonald et al. | Jul 2004 | B2 |
6765144 | Wang et al. | Jul 2004 | B1 |
6768053 | Wang et al. | Jul 2004 | B1 |
6778856 | Connelly et al. | Aug 2004 | B2 |
6792316 | Sass | Sep 2004 | B2 |
6793642 | Connelly et al. | Sep 2004 | B2 |
6795730 | Connelly et al. | Sep 2004 | B2 |
6795736 | Connelly et al. | Sep 2004 | B2 |
6799067 | Pacetti | Sep 2004 | B2 |
6799069 | Weiner et al. | Sep 2004 | B2 |
6815609 | Wang et al. | Nov 2004 | B1 |
6819954 | Connelly | Nov 2004 | B2 |
6819958 | Weiner et al. | Nov 2004 | B2 |
6844492 | Wang et al. | Jan 2005 | B1 |
6845259 | Pacetti et al. | Jan 2005 | B2 |
6845267 | Harrison et al. | Jan 2005 | B2 |
6846985 | Wang et al. | Jan 2005 | B2 |
6850805 | Connelly et al. | Feb 2005 | B2 |
6852091 | Edwards et al. | Feb 2005 | B2 |
6863653 | Zanelli et al. | Mar 2005 | B1 |
6864418 | Wang et al. | Mar 2005 | B2 |
6869683 | Sakurai et al. | Mar 2005 | B2 |
6871091 | Wilkinson et al. | Mar 2005 | B2 |
6872882 | Fritz | Mar 2005 | B2 |
6875180 | Weiner et al. | Apr 2005 | B2 |
6879861 | Benz et al. | Apr 2005 | B2 |
6882519 | Uzawa et al. | Apr 2005 | B2 |
6895280 | Meadows et al. | May 2005 | B2 |
6901287 | Davis et al. | May 2005 | B2 |
6901290 | Foster et al. | May 2005 | B2 |
6906256 | Wang | Jun 2005 | B1 |
6920361 | Williams | Jul 2005 | B2 |
6922590 | Whitehurst | Jul 2005 | B1 |
6925328 | Foster et al. | Aug 2005 | B2 |
6930242 | Helfer | Aug 2005 | B1 |
6937906 | Terry et al. | Aug 2005 | B2 |
6944489 | Zeiljemaker et al. | Sep 2005 | B2 |
6949929 | Gray et al. | Sep 2005 | B2 |
6954674 | Connelly | Oct 2005 | B2 |
6968235 | Belden et al. | Nov 2005 | B2 |
6968236 | Hagele | Nov 2005 | B2 |
6971391 | Wang et al. | Dec 2005 | B1 |
6980865 | Wang et al. | Dec 2005 | B1 |
6982378 | Dickson | Jan 2006 | B2 |
6985775 | Reinke et al. | Jan 2006 | B2 |
6993387 | Connelly et al. | Jan 2006 | B2 |
6999818 | Stevenson et al. | Feb 2006 | B2 |
6999821 | Jenney et al. | Feb 2006 | B2 |
7001369 | Griffin et al. | Feb 2006 | B2 |
7013174 | Connelly et al. | Mar 2006 | B2 |
7013180 | Villaseca et al. | Mar 2006 | B2 |
7015392 | Dickenson | Mar 2006 | B1 |
7015393 | Weiner | Mar 2006 | B2 |
7047084 | Erickson | May 2006 | B2 |
7050855 | Zeijlemaker et al. | May 2006 | B2 |
7058192 | Muller et al. | Jun 2006 | B2 |
7076283 | Cho et al. | Jul 2006 | B2 |
7076302 | Scheiner | Jul 2006 | B2 |
7082328 | Funke | Jul 2006 | B2 |
7082337 | Sommer et al. | Jul 2006 | B2 |
7103413 | Swanson | Sep 2006 | B2 |
7113827 | Silvestri | Sep 2006 | B2 |
7115134 | Chambers | Oct 2006 | B2 |
7118693 | Glatkowski et al. | Oct 2006 | B2 |
7123013 | Gray | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7162302 | Wang et al. | Jan 2007 | B2 |
7174219 | Wahlstrand et al. | Feb 2007 | B2 |
7187980 | Osypka et al. | Mar 2007 | B2 |
7233825 | Jorgenson et al. | Jun 2007 | B2 |
7257449 | Bodner | Aug 2007 | B2 |
7282260 | LeGrande et al. | Oct 2007 | B2 |
7286871 | Cohen | Oct 2007 | B2 |
7286882 | Cole | Oct 2007 | B2 |
7292894 | Belden | Nov 2007 | B2 |
7294785 | Uutela et al. | Nov 2007 | B2 |
7319901 | Dublin | Jan 2008 | B2 |
7363090 | Halperin | Apr 2008 | B2 |
7389148 | Morgan | Jun 2008 | B1 |
7540865 | Griffin et al. | Jun 2009 | B2 |
7548788 | Chinn et al. | Jun 2009 | B2 |
7591831 | Parsonage et al. | Sep 2009 | B2 |
7674972 | Gladd et al. | Mar 2010 | B2 |
7711436 | Stone | May 2010 | B2 |
7729777 | Gray et al. | Jun 2010 | B2 |
7738942 | Weiner | Jun 2010 | B2 |
7813811 | Wingeier et al. | Oct 2010 | B2 |
7819826 | Diederich et al. | Oct 2010 | B2 |
7822484 | Zhao et al. | Oct 2010 | B1 |
7828833 | Haverkost | Nov 2010 | B2 |
7844343 | Wahlstrand | Nov 2010 | B2 |
7844344 | Wahlstrand | Nov 2010 | B2 |
7853332 | Olsen | Dec 2010 | B2 |
7877150 | Hoegh et al. | Jan 2011 | B2 |
7904178 | Williams | Mar 2011 | B2 |
7917213 | Bulkes | Mar 2011 | B2 |
7933652 | Phillips | Apr 2011 | B2 |
8007440 | Magnin et al. | Aug 2011 | B2 |
8027736 | Wahlstrand | Sep 2011 | B2 |
8036756 | Swoyer et al. | Oct 2011 | B2 |
8048060 | Griffin et al. | Nov 2011 | B2 |
8055351 | Atalar et al. | Nov 2011 | B2 |
8106657 | Sakellariou et al. | Jan 2012 | B2 |
8170691 | Eckerdal | May 2012 | B2 |
8202259 | Evans et al. | Jun 2012 | B2 |
8246643 | Nita | Aug 2012 | B2 |
8275464 | Li et al. | Sep 2012 | B2 |
8280526 | Wahlstrand | Oct 2012 | B2 |
8483842 | Alexander et al. | Jul 2013 | B2 |
8620455 | Alexander et al. | Dec 2013 | B2 |
8676340 | Wahlstrand | Mar 2014 | B2 |
8744598 | Alexander et al. | Jun 2014 | B2 |
8788061 | Mehdizadeth | Jul 2014 | B2 |
8805534 | Olsen | Aug 2014 | B2 |
8903504 | Hegland | Dec 2014 | B2 |
9002474 | Olsen | Apr 2015 | B2 |
9037263 | Marshall | May 2015 | B2 |
9044593 | Li | Jun 2015 | B2 |
20010044646 | Marshall et al. | Nov 2001 | A1 |
20020032468 | Hill | Mar 2002 | A1 |
20020038135 | Connelly et al. | Mar 2002 | A1 |
20020058978 | Sass | May 2002 | A1 |
20020183438 | Amarasekera et al. | May 2002 | A1 |
20020082673 | Benz et al. | Jun 2002 | A1 |
20020106918 | Saito et al. | Aug 2002 | A1 |
20020111659 | Davis et al. | Aug 2002 | A1 |
20020111663 | Dahl et al. | Aug 2002 | A1 |
20020116028 | Greatbatch et al. | Aug 2002 | A1 |
20020116029 | Miller et al. | Aug 2002 | A1 |
20020116033 | Greatbatch et al. | Aug 2002 | A1 |
20020116034 | Miller et al. | Aug 2002 | A1 |
20020128689 | Connelly et al. | Sep 2002 | A1 |
20020128691 | Connelly | Sep 2002 | A1 |
20020133086 | Connelly et al. | Sep 2002 | A1 |
20020133199 | MacDonald et al. | Sep 2002 | A1 |
20020133200 | Weiner et al. | Sep 2002 | A1 |
20020133201 | Connelly et al. | Sep 2002 | A1 |
20020133202 | Connelly et al. | Sep 2002 | A1 |
20020133208 | Connelly | Sep 2002 | A1 |
20020133211 | Weiner et al. | Sep 2002 | A1 |
20020133216 | Connelly et al. | Sep 2002 | A1 |
20020138102 | Weiner et al. | Sep 2002 | A1 |
20020138107 | Weiner et al. | Sep 2002 | A1 |
20020138108 | Weiner et al. | Sep 2002 | A1 |
20020138110 | Connelly et al. | Sep 2002 | A1 |
20020138112 | Connelly et al. | Sep 2002 | A1 |
20020143377 | Wessman et al. | Oct 2002 | A1 |
20020183740 | Edwards et al. | Dec 2002 | A1 |
20020183822 | Bodner | Dec 2002 | A1 |
20020188345 | Pacetti | Dec 2002 | A1 |
20030009207 | Paspa et al. | Jan 2003 | A1 |
20030014080 | Baudino | Jan 2003 | A1 |
20030036776 | Foster et al. | Feb 2003 | A1 |
20030044623 | Sakurai et al. | Mar 2003 | A1 |
20030045920 | Belden et al. | Mar 2003 | A1 |
20030060732 | Jacobsen et al. | Mar 2003 | A1 |
20030083570 | Cho et al. | May 2003 | A1 |
20030083723 | Wilkinson et al. | May 2003 | A1 |
20030083726 | Zeijlemaker et al. | May 2003 | A1 |
20030093107 | Parsonage et al. | May 2003 | A1 |
20030109901 | Greatbatch | Jun 2003 | A1 |
20030117787 | Nakauchi | Jun 2003 | A1 |
20030120148 | Pacetti | Jun 2003 | A1 |
20030120197 | Kaneko et al. | Jun 2003 | A1 |
20030135114 | Pacetti et al. | Jul 2003 | A1 |
20030139794 | Jenney et al. | Jul 2003 | A1 |
20030139806 | Haverkost et al. | Jul 2003 | A1 |
20030140931 | Zeijlemaker | Jul 2003 | A1 |
20030144704 | Terry | Jul 2003 | A1 |
20030144705 | Funke | Jul 2003 | A1 |
20030144716 | Reinke et al. | Jul 2003 | A1 |
20030144717 | Hegele | Jul 2003 | A1 |
20030144718 | Zeijlemaker | Jul 2003 | A1 |
20030144719 | Zeijlemaker | Jul 2003 | A1 |
20030144720 | Villaseca et al. | Jul 2003 | A1 |
20030144721 | Villaseca et al. | Jul 2003 | A1 |
20030167052 | Lee et al. | Sep 2003 | A1 |
20030204217 | Greatbatch | Oct 2003 | A1 |
20030225331 | Diederich et al. | Dec 2003 | A1 |
20040020674 | McFadden et al. | Feb 2004 | A1 |
20040024442 | Sowinski et al. | Feb 2004 | A1 |
20040028859 | LeGrande et al. | Feb 2004 | A1 |
20040068307 | Goble | Apr 2004 | A1 |
20040071949 | Glatkowski et al. | Apr 2004 | A1 |
20040088012 | Kroll et al. | May 2004 | A1 |
20040106958 | Mathis et al. | Jun 2004 | A1 |
20040162600 | Williams | Aug 2004 | A1 |
20040167443 | Shireman et al. | Aug 2004 | A1 |
20040173368 | Dickson | Sep 2004 | A1 |
20040199069 | Connelly et al. | Oct 2004 | A1 |
20040220549 | Dittman et al. | Nov 2004 | A1 |
20040249428 | Wang et al. | Dec 2004 | A1 |
20040251042 | Weiner et al. | Dec 2004 | A1 |
20040263172 | Gray et al. | Dec 2004 | A1 |
20040263173 | Gray | Dec 2004 | A1 |
20040263174 | Gray et al. | Dec 2004 | A1 |
20040267328 | Duffin | Dec 2004 | A1 |
20050065587 | Gryzwa | Mar 2005 | A1 |
20050070972 | Wahlstrand | Mar 2005 | A1 |
20050080471 | Chitre et al. | Apr 2005 | A1 |
20050113876 | Weiner | May 2005 | A1 |
20050115624 | Walak | Jun 2005 | A1 |
20050137664 | Sommer et al. | Jun 2005 | A1 |
20050145307 | Shireman et al. | Jul 2005 | A1 |
20050159661 | Connelly et al. | Jul 2005 | A1 |
20050182471 | Wang | Aug 2005 | A1 |
20050222642 | Przybyszewski | Oct 2005 | A1 |
20050222647 | Wahlstrand | Oct 2005 | A1 |
20050222656 | Wahlstrand | Oct 2005 | A1 |
20050222657 | Wahlstrand | Oct 2005 | A1 |
20050222658 | Hoegh et al. | Oct 2005 | A1 |
20050222659 | Olsen | Oct 2005 | A1 |
20060030918 | Chinn et al. | Feb 2006 | A1 |
20060036306 | Heist et al. | Feb 2006 | A1 |
20060079926 | Desai et al. | Apr 2006 | A1 |
20060089680 | Bruchmann et al. | Apr 2006 | A1 |
20060095078 | Tronnes | May 2006 | A1 |
20060135962 | Kick et al. | Jun 2006 | A1 |
20060155270 | Hancock | Jul 2006 | A1 |
20060167522 | Malinowski | Jul 2006 | A1 |
20060167527 | Malinowski | Jul 2006 | A1 |
20060200218 | Wahlstrand | Sep 2006 | A1 |
20060224207 | Dublin | Oct 2006 | A1 |
20060247747 | Olsen | Nov 2006 | A1 |
20060247748 | Wahlstrand | Nov 2006 | A1 |
20070021811 | D'Aquanni et al. | Jan 2007 | A1 |
20070106332 | Denker | May 2007 | A1 |
20070123805 | Shireman et al. | May 2007 | A1 |
20070129779 | Ayre | Jun 2007 | A1 |
20070168008 | Olsen | Jul 2007 | A1 |
20070185556 | Williams | Aug 2007 | A1 |
20070208383 | Williams | Sep 2007 | A1 |
20070293924 | Belden et al. | Dec 2007 | A1 |
20080033497 | Bulkes | Feb 2008 | A1 |
20080039709 | Karmarkar | Feb 2008 | A1 |
20080058715 | Houser et al. | Mar 2008 | A1 |
20080154326 | Clyne | Jun 2008 | A1 |
20080183263 | Alexander | Jul 2008 | A1 |
20080195186 | Li | Aug 2008 | A1 |
20080195187 | Li | Aug 2008 | A1 |
20080215008 | Nance et al. | Sep 2008 | A1 |
20080242944 | Sharma | Oct 2008 | A1 |
20080243081 | Nance et al. | Oct 2008 | A1 |
20080243218 | Bottomley | Oct 2008 | A1 |
20080262582 | Alexander | Oct 2008 | A1 |
20080262584 | Bottomley | Oct 2008 | A1 |
20080269863 | Alexander | Oct 2008 | A1 |
20080287804 | Nita | Nov 2008 | A1 |
20090171421 | Atalar | Jul 2009 | A1 |
20090204192 | Carlton | Aug 2009 | A1 |
20090221970 | Spinoza | Sep 2009 | A1 |
20090228074 | Edgell et al. | Sep 2009 | A1 |
20090234402 | Marshall | Sep 2009 | A1 |
20090240235 | Murata | Sep 2009 | A1 |
20090259272 | Reddy | Oct 2009 | A1 |
20090270956 | Vase | Oct 2009 | A1 |
20090287189 | Suwito | Nov 2009 | A1 |
20100069743 | Sheetz et al. | Mar 2010 | A1 |
20100100164 | Johnson et al. | Apr 2010 | A1 |
20100137957 | Eckerdal | Jun 2010 | A1 |
20100145426 | Stone | Jun 2010 | A1 |
20100198327 | Helland | Aug 2010 | A1 |
20100256528 | Lippert et al. | Oct 2010 | A1 |
20100256604 | Lippert et al. | Oct 2010 | A1 |
20100268310 | Bonde et al. | Oct 2010 | A1 |
20100331938 | Sommer | Dec 2010 | A1 |
20110015713 | Min | Jan 2011 | A1 |
20110034983 | Min | Feb 2011 | A1 |
20110071599 | Olsen | Mar 2011 | A1 |
20110071604 | Wahlstrand | Mar 2011 | A1 |
20110071605 | Wahlstrand | Mar 2011 | A1 |
20110112615 | Hoegh et al. | May 2011 | A1 |
20110230943 | Johnson et al. | Sep 2011 | A1 |
20110251487 | Magnin et al. | Oct 2011 | A1 |
20110319905 | Palme et al. | Dec 2011 | A1 |
20120010689 | Wahlstrand | Jan 2012 | A1 |
20120035616 | Olsen et al. | Feb 2012 | A1 |
20120035694 | Olsen | Feb 2012 | A1 |
20120035695 | Olsen et al. | Feb 2012 | A1 |
20120035696 | Kern | Feb 2012 | A1 |
20120035697 | Stone | Feb 2012 | A1 |
20120035951 | Goetz | Feb 2012 | A1 |
20120041528 | Mehdizadeh | Feb 2012 | A1 |
20120041529 | Olsen | Feb 2012 | A1 |
20120046722 | Olsen | Feb 2012 | A1 |
20120635696 | Kern | Feb 2012 | |
20120053664 | Hegland | Mar 2012 | A1 |
20120059467 | Drew | Mar 2012 | A1 |
20120130461 | Olsen | May 2012 | A1 |
20120330383 | Wahlstrand | Dec 2012 | A1 |
20130282088 | Bondhus | Oct 2013 | A1 |
20130296991 | Alexander et al. | Nov 2013 | A1 |
20140107746 | Alexander et al. | Apr 2014 | A1 |
20140200643 | Wahlstrand | Jul 2014 | A1 |
20140288626 | Alexander et al. | Sep 2014 | A1 |
20140345132 | Mehdizadeh et al. | Nov 2014 | A1 |
20140350654 | Olsen et al. | Nov 2014 | A1 |
20150082618 | Hegland | Mar 2015 | A1 |
20150170792 | Alford | Jun 2015 | A1 |
20150374977 | Howard et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
0617978 | Oct 1994 | EP |
0624383 | Nov 1994 | EP |
0713714 | May 1996 | EP |
0760196 | Mar 1997 | EP |
0920239 | Jun 1999 | EP |
1273922 | Jan 2003 | EP |
1424095 | Jun 2004 | EP |
1466576 | Oct 2004 | EP |
1625875 | Feb 2006 | EP |
1632265 | Mar 2006 | EP |
1935449 | Jun 2008 | EP |
2429154 | Feb 2007 | GB |
07255863 | Oct 1995 | JP |
11086641 | Mar 1999 | JP |
WO95032673 | Dec 1995 | WO |
WO96016694 | Jun 1996 | WO |
WO96028951 | Sep 1996 | WO |
WO97041923 | Nov 1997 | WO |
WO98048896 | Nov 1998 | WO |
WO99010035 | Mar 1999 | WO |
WO99019020 | Apr 1999 | WO |
WO99060370 | Nov 1999 | WO |
WO00027279 | May 2000 | WO |
WO01080940 | Nov 2001 | WO |
WO02000292 | Jan 2002 | WO |
WO02083236 | Oct 2002 | WO |
WO03037429 | May 2003 | WO |
WO03061755 | Jul 2003 | WO |
WO03063946 | Aug 2003 | WO |
WO03063948 | Aug 2003 | WO |
WO03063952 | Aug 2003 | WO |
WO03063953 | Aug 2003 | WO |
WO03063954 | Aug 2003 | WO |
WO03063955 | Aug 2003 | WO |
WO03063956 | Aug 2003 | WO |
WO03063957 | Aug 2003 | WO |
WO03075797 | Sep 2003 | WO |
WO03092326 | Nov 2003 | WO |
WO03095022 | Nov 2003 | WO |
WO04012809 | Feb 2004 | WO |
WO04052448 | Jun 2004 | WO |
WO04073040 | Aug 2004 | WO |
WO05030322 | Apr 2005 | WO |
WO05032654 | Apr 2005 | WO |
WO05102444 | Nov 2005 | WO |
WO05102445 | Nov 2005 | WO |
WO05102446 | Nov 2005 | WO |
WO05102447 | Nov 2005 | WO |
WO06031317 | Mar 2006 | WO |
WO06093685 | Sep 2006 | WO |
WO06093686 | Sep 2006 | WO |
WO06118640 | Nov 2006 | WO |
WO06118641 | Nov 2006 | WO |
WO07047966 | Apr 2007 | WO |
WO07124273 | Nov 2007 | WO |
WO07126657 | Nov 2007 | WO |
WO07149757 | Dec 2007 | WO |
WO08088568 | Jul 2008 | WO |
WO08100839 | Aug 2008 | WO |
WO08100840 | Aug 2008 | WO |
WO08111986 | Sep 2008 | WO |
WO08130409 | Oct 2008 | WO |
WO08134196 | Nov 2008 | WO |
WO08140376 | Nov 2008 | WO |
WO09011440 | Sep 2009 | WO |
WO09134901 | Nov 2009 | WO |
WO10062988 | Jun 2010 | WO |
WO10126871 | Nov 2010 | WO |
WO10126877 | Nov 2010 | WO |
WO10126884 | Nov 2010 | WO |
WO10126887 | Nov 2010 | WO |
WO10126935 | Nov 2010 | WO |
WO10126939 | Nov 2010 | WO |
WO10126943 | Nov 2010 | WO |
WO10126946 | Nov 2010 | WO |
WO10126949 | Nov 2010 | WO |
WO10126975 | Nov 2010 | WO |
WO10135440 | Nov 2010 | WO |
WO11019416 | Feb 2011 | WO |
WO12103419 | Aug 2012 | WO |
WO13158189 | Oct 2013 | WO |
Entry |
---|
PCT Application No. PCT/US2015/0471171 International Search Report and Written Opinion dated Oct. 1, 2015. |
PCT/US2004/042081: Search Report and Written Opinion. |
PCT/US2005/000322: Search Report and Written Opinion. |
PCT/US2008/053540: Search Report and Written Opinion. |
PCT/US2008/053541: Search Report and Written Opinion. |
PCT/US2008/059358: Search Report and Written Opinion. |
PCT/US2009/036461: Search Report and Written Opinion. |
PCT/US2010/032516: Search Report and Written Opinion. |
PCT/US2010/032526: Search Report and Written Opinion. |
PCT/US2010/032543: Search Report and Written Opinion. |
PCT/US2010/032560: Search Report and Written Opinion. |
PCT/US2010/032567: Search Report and Written Opinion. |
PCT/US2010/032666: Search Report and Written Opinion. |
PCT/US2010/032671: Search Report and Written Opinion. |
PCT/US2010/032675: Search Report and Written Opinion. |
PCT/US2010/032682: Search Report and Written Opinion. |
PCT/US2010/032719: Search Report and Written Opinion. |
PCT/US2013/023637: Search Report and Written Opinion. |
Baker et al., “Evaluation of Specific Absorption Rates as a Dosimeter of MRI-Related Implant Heating”, Journal of Magnetic Resonance Imaging 20:315-320 (2004). |
Baker, K., et al., “Neurostimulation Systems: Assessment of Magnetic Field Interactions Associated with 1.5 and 3-Tesla MR Systems”, J. Magn. Reson. Imaging, Jan. 2005, 21(1);72-7. |
Chung, D.D.L., “Carbon Fiber Composites”, 1994, chapter 1, p. 8, table 1.2, Elsevier, ISBN: 978-0-7506-9169-7. |
Chung, D.D.L., Comparison of Submicron-Diameter Carbon Filaments and Conventional Carbon Fibers as Fillers in Composite Materials, Carbon 39 (2001) pp. 1119-1125, Elsevier Science Ltd. |
Chung, D.D.L., Electromagnetic Interference Shielding Effectiveness of Carbon Materials, Carbon 29 (2001) pp. 279-285, Elsevier Science Ltd. |
Engdahl, Tomi, “Ground Loop Basics.” Web Jan. 4, 2009, ePanorama.net www.epanorama.net/documents/groundloop/basics.html 28052.00 U.S. Appl. No. 11/739,787. |
Finelli, D., et al., “MRI Imaging-Related Heating of Deep Brain Stimulation Electrodes: In Vitro Study”, AJNR Am. J. Neuroadiol 23:1, Nov./Dec. 2002. |
Jou, W.S. “A Novel Structure of Woven Continuous-Carbon Fiber Composites with High Electromagnetic Shielding”, Journal of Electronic Materials, vol. 33, No. 3, Mar. 1, 2004, pp. 162-170(9), Minerals, Metals and Materials Society, http://findarticles.com/p/articIes/mi_qu3776/is_200403/ai_n9405_582/print. |
Kolin, et al., “An Electromagnetic Catheter Flow Meter for Determination of Blood Flow in Major Arteries,” Department of Biophysics, Physiology, and Radiology, University of California School of Medicine (Los Angeles) Jan. 19, 1988, Proc. N.A.S. vol. 59, pp. 808-815. |
Kolin, et al., “An Electromagnetic Intravascular Blood-Flow Sensor”, Department of Biophysics, University of California School of Medicine (Los Angeles), Mar. 20, 1967, Proc. N.A.S., vol. 57, pp. 1331-1337. |
Kolin, et al., “Miniaturization of the Electromagnetic Blood Flow Meter and Its Use for the Recording of Circulatory Responses of Conscious Animals to Sensory Stimuli”, Department of Biophysics, University of California at Los Angeles, Aug. 1959, Proc. N.A.S. vol. 45(8), pp. 1312-1321. |
Medtronic Activa Product Family and Procedure Solution Brochure, Medtronic, Inc, 2001. |
Medtronic Neurostimulation Systems Brochure, Medtronic, Inc., 2002. |
Oscor, Inc. Product Catalog, 2008 28052.00. |
Quick et al., “Endourethral MRI”, Magnetic Resonance in Medicine, 45:138-146, 2001. |
Rezai, A., et al., “Neurostimulation System Used for Deep Brain Stimulation (DBS): MR Safety Issues and Implications of Failing to Follow Safety Recommendations” Investigative Radiology, May 2004, vol. 39, Issue 5, pp. 300-303. |
Rezai, A., et al., “Neurostimulation Systems for Deep Brain Stimulation In Vitro Evaluation of Magnetic Resonance Imaging-Related Healing at 1.5 Tesla”, Journal of Magnetic Reson. Imaging 2002; 15:241-50. |
U.S. Appl. No. 14/807,323, filed Jul. 23, 2015. |
U.S. Appl. No. 14/807,323 Restriction Requirement, dated Apr. 26, 2016. |
U.S. Appl. No. 14/807,323, Response Filed Jun. 20, 2016. |
U.S. Appl. No. 14/807,323, Non-Final Office Action, dated Jul. 13, 2016. |
U.S. Appl. No. 14/807,323, Response Filed Oct. 13, 2016. |
U.S. Appl. No. 14/807,323, Final Office Action, dated Feb. 1, 2017. |
U.S. Appl. No. 14/807,323, Response Filed Apr. 21, 2017. |
U.S. Appl. No. 14/807,323, Advisory Action, dated May 1, 2017. |
U.S. Appl. No. 14/807,323, RCE Request and Response filed May 31, 2017. |
U.S. Appl. No. 14/807,323 Non-Final Office Action, dated Jun. 27, 2017. |
U.S. Appl. No. 14/807,323, Response Filed Sep. 27, 2017. |
Number | Date | Country | |
---|---|---|---|
20160022983 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
62028120 | Jul 2014 | US |