Field of the Invention
The present invention relates to proppant storage containers. More particularly, the present invention relates to systems and methods for the delivery of proppant to a well site. More particularly, the present invention relates to containers as part of a system of storing proppant prior to delivery to a well site.
Description of Related Art
Hydraulic fracturing is the propagation of fractions in a rock layer caused by the presence of pressurized fluid. Hydraulic fractures may form naturally, in the case of veins or dikes, or may be man-made in order to release petroleum, natural gas, coal seam gas, or other substances for extraction. Fracturing is done from a wellbore drilled into reservoir rock formations. The energy from the injection of a highly-pressurized fracturing fluid creates new channels in the rock which can increase the extraction rates and ultimate recovery of fossil fuels. The fracture width is typically maintained after the injection by introducing a proppant into the injected fluid. Proppant is a material, such as grains of sand, ceramic, or other particulates, that prevent the fractures from closing when the injection is stopped.
With the rise of hydraulic fracturing over the past decade, there is a steep climb in proppant demand. Global supplies are currently tight. The number of proppant suppliers worldwide has increased since 2000 from a handful to well over fifty sand, ceramic proppant and resin-coat producers.
By the far the dominant proppant is silica sand, made up of ancient weathered quartz, the most common mineral in the Earth's continental crust. Unlike common sand, which often feels gritty when rubbed between the fingers, sand used as a proppant tends to roll to the touch as a result of its round, spherical shape and tightly-graded particle distribution. Sand quality is a function of both deposit and processing. Grain size is critical, as any given proppant must reliably fall within certain mesh ranges, subject to downhole conditions and completion design. Generally, coarser proppant allows the higher flow capacity due to the larger pore spaces between grains. However, it may break down or crush more readily under stress due to the relatively fewer grain-to-grain contact points to bear the stress often incurred in deep oil- and gas-bearing formations.
Typically, in any hydraulic fracturing operation, a large amount of such proppant is required. Typically, it has been difficult to effectively store the proppant at the fracturing sites. Additionally, it has been found to be rather difficult to effectively transport the proppant to the desired location. Often, proppant is hauled to the desired locations on the back of trucks and is dumped onsite. Under such circumstances, the proppant is often exposed to adverse weather conditions. This will effectively degrade the quality of the proppant during its storage. Additionally, the maintenance of proppant in containers at the hydraulic fracturing site requires a large capital investment in storage facilities. Typically, the unloading of such storage facilities is carried out on a facility-by-facility basis. As such, there is a need to be able to effectively transport the proppant to and store the proppant in a desired location adjacent to the hydraulic fracturing location.
Present methods of storing proppant for use at the well site has involved a significant investment in structural facilities. In particular, silos have been built in order to store proppant for use in the fracturing operation. Often, the silos can have a cost of several million dollars. Whenever such silos are used, there is a possibility of contamination of the proppant that is contained within the silo. Large storage facilities often mix various types and qualities of proppant. As such, lower quality proppant may be mixed with higher quality proppant so as to create an undesirable contaminated combination.
The availability of high quality proppant is always of a major concern during such fracturing operations. If the proppant is not available at the well site, then the fracturing operation can stall until such time that proppant is available. In other circumstances, the operators of the fracturing operation may be forced to use lower quality proppant in order to continue the operation. As such, there is a need to be able to have high quality proppant available at all times during the fracturing operation. It is also advantageous to provide a system which avoids the mixture of different types of proppant and to avoid the contamination of the proppant supply.
Under certain circumstances, railcars are used to deliver proppant to the fracturing location. The proppant is unloaded from the railcars into pneumatic bulk trailers. The pneumatic bulk trailers can then deliver the proppant to the well site. Often, the bulk materials train will have to remain on-site during the time the proppant remains in the bulk material train. As such, the train is not able to be used for other purposes. This adds additional cost to the fracturing operation. Ultimately, after the train is completely unloaded, a new bulk material train must be transported to the desired location and then serve as a storage facility. As such, a need is developed so as to quickly remove all of the proppant from the bulk material train and to store such proppant until such time as the proppant is needed.
In the past, various patents have issued relating to storage and transport facilities. For example, U.S. Patent Publication No. 2008/0179054, published on Jul. 31, 2008 to McGough et al., shows a bulk material storage and transportation system. In particular, the storage system is mounted on the trailer of a truck. The storage system includes walls that define an interior volume suitable for receiving the aggregate material therein. There are hoppers provided at the bottom of the container. These hoppers have inclined walls. The hoppers can extend so as to allow the material from the inside of the container to be properly conveyed to a location exterior of the container. Actuators are used so as to expand and collapse the container.
U.S. Pat. No. 7,240,681, issued on Jul. 10, 2007 to L. Saik, describes a trailer-mounted mobile apparatus for dewatering and recovering formation sand. The trailer is mounted to a truck-towable trailer so as to receive sand therein. The container has a pair of sloping end walls. The back end of the container is suitably openable so as to allow the sand to be removed therefrom. A pneumatic or hydraulic ram is provided on the forward part of the container so as to allow the container to be lifted angularly upwardly so as to allow sand to be discharged through the gate at the rear of the container.
U.S. Pat. No. 4,247,228, issued on Jan. 27, 1981 to Gray et al., describes a dump truck or trailer with a pneumatic conveyor. The container is mounted to a frame on wheels. A hydraulic ram tilts the container for dumping through a rear outlet. A pneumatic conveyor is carried by the frame with an intake at the rear of the container. A gate allows the solids to be dumped conventionally by gravity or to be blown to a storage facility by the pneumatic container. The container has a top hatch formed therein so as to allow the solids to be introduced into the interior of the container.
U.S. Pat. No. 2,865,521, issued on Dec. 23, 1958 to Fisher et al., shows a bulk material truck that has an interior volume suitable for the receipt of bulk material therein. A pneumatic conveyer is utilized so as to allow the removal of such material from the bottom of the container. A pair of sloping walls are provided on opposite sides of the container so as to allow the bulk material within the container to be passed toward the bottom of the container. A top hatch is provided on the top of the conveyer. The pneumatic conveyer is connected to the bottom of the container.
U.S. Pat. No. 4,995,522, issued on Feb. 26, 1991, to F. M. Barr, describes a bottom dumping bulk container apparatus for a bulk granulated material. The shipping container has a lower wall with a discharge opening. Doors are provided for the opening and closing of the discharge opening. The doors are actuated by an actuating structure which is mounted for vertical movement relative to the container. The actuating structure has upper portions which serve as conventional lifting connectors or receptacles at corners of the container. These cooperate with conventional hooks so that raising the actuating structure opens the door and lowering the actuating structure closes the door. This permits granulated material within the container to be dumped into a lower container or conveyance without requiring specialized lifting or opening equipment.
U.S. Pat. No. 6,401,983, issued on Jun. 11, 2002 to McDonald et al., provides a bulk cargo container for storing and transporting solid and liquid bulk materials. The bulk cargo container includes a vessel suitable for containing the bulk material and a supporting frame assembly having a generally horizontally-disposed support member attachment. The container portion is formed into at least one hopper having a discharge opening therein suitable for discharging bulk material contained within the vessel.
U.S. Pat. No. 4,138,163, issued on Feb. 6, 1979 to Calvert et al., discloses a bulk material container for the handling of flowable particulate materials. This container has a closed, generally rectangular parallel piped structure with side walls, end walls and a roof. Conduits permit the introduction and withdrawal of particulate material to and from the container body. The lower base portion supports a vertical flexure panel at each corner thereof. The vertical flexure panel supports opposed pairs of longitudinal and transverse flexure panels between the tops thereof.
U.S. Pat. No. 4,909,556, issued on Mar. 20, 1990 to T. Koskinen, provides a transport container for the transport of bulk material. This transport container has a filling-hole in the upper part and an emptying device in the rear. For the loading and unloading, a side section is provided that can be opened. An emptying device, in the nature of a pneumatic pressure discharger, allows the material to freely flow from the containers through a check valve.
U.S. Pat. No. 7,967,161, issued on Jun. 28, 2011 to A. M. Townsend, provides a shipping container liner system for the shipping of bulk flowable materials. The system has a specially-adapted shipping container liner that is self-supporting without the need for rear-mounted rigid supportive bars to retain the liner within the shipping container during filling and discharge. The system has an arrangement of interior support baffles operating in conjunction with a plurality of exterior anchor straps adapted to distribute the cargo load throughout the length of the container.
U.S. Pat. No. 5,690,466, issued on Nov. 25, 1997 to Gaddis et al., shows slope plate for a particulate material truck box. The slope plate assembly includes a plurality of slope plate sections pivotally connected to the opposite side walls of the truck box so as to be movable between a raised inoperative position and a lowered operative position. In the lowered position, particulate material flows by gravity along the slope plate sections for discharge into an auger assembly residing below the floor of the truck box. In the raised position, bulk material or other cargo can be loaded into the truck box.
It is the object of the present invention to provide a system for the storage and transport of proppant that is mobile, scalable and flexible.
Another object to the present invention to provide a system for the storage and transport of proppant that can be located in proximity to the rail spur.
Another object of the present invention to provide a system for the transport and storage of proppant that can be rapidly implemented.
Another object of the present invention to provide a system for the storage and transport of proppant that occupies a small footprint.
The further object of the present invention to provide a system for the storage and transport of proppant that assures a continuous inventory of proppant to the fracturing operation.
Still another object of the present invention is to provide a system for the storage and transport of proppant that is movable and rechargeable at the drill site.
The further object of the present invention is to provide a system for the storage and transport of proppant that enhances the productivity of the proppant supplier.
The further object of the present invention to provide a system for the storage and transport of proppant that reduces driver fatigue.
Another object of the present invention to provide a system for the storage and transport of proppant that reduces liabilities.
The further object of the present invention to provide a system for the storage and transport of proppant that improves safety.
Further object of the present invention to provide a system for the storage and transport of proppant that is compliant with Department of Transportation regulations.
Still another object of the present invention to provide a system for the storage and transport of proppant which improves the profits for the proppant supplier.
These and other objects and advantages of the present invention will become apparent from a reading of the attached specification and appended claims.
The present invention is an apparatus for proppant storage. This apparatus comprises a container having a bottom wall, a top wall, a pair of side walls, and a pair of end walls. The pair of side walls extend between the pair of end walls and between the bottom wall and the top wall. The container has an interior volume. A hatch is positioned on the top wall. This hatch is openable so as to allow the proppant to be introduced into the interior volume of the container. A flow gate is positioned on one of the end walls. The flow gate is openable so as to allow the proppant to flow outwardly of the interior volume of the container.
In the apparatus of the present invention, at least one of the end walls is recessed inwardly of the end of the pair of side walls and inwardly at the bottom wall and inwardly at the top wall. This end wall has a generally convex shape. A proppant inlet is affixed to the end wall. The proppant inlet communicates with the interior volume of the container. The proppant inlet is suitable for allowing proppant to be introduced into the interior volume of the container. A vent also opens to the interior volume. This vent is formed at an upper portion of one of the pair of end walls.
A longitudinal member is positioned in the interior volume of the container. The longitudinal member has one end affixed to one of the pair of end walls and an opposite end affixed to the other of the pair of end walls. A first cross member is positioned in the interior volume of the container. The first cross member has one end affixed to one of the pair of side walls and an opposite end affixed to the other of the pair of side walls. A second cross member is positioned in the interior volume of the container and in spaced relationship to the first cross member. The second cross member has one end affixed to one of the pair of side walls and an opposite end affixed to the other of the pair of side walls. A flow gate is positioned on one of the end walls generally adjacent to the bottom wall. This flow gate is slidable between an open position and a closed position.
The present invention is also a method of delivering proppant that comprises the steps of: (1) transporting a load of proppant in a vessel to a desired location; (2) moving the load of proppant from the vessel into a container so as to create a proppant-loaded container; (3) unloading the proppant-loaded container into a pneumatic bulk trailer; and (4) transporting the unloaded proppant in the pneumatic bulk trailer to a well site.
The vessel is a hopper of a bulk material train. The step of transporting includes loading the hopper with proppant in a remote location and then transporting the loaded proppant in the hopper of the bulk material train to the desired location. The step of moving includes conveying the proppant from the hopper of the bulk material train into a hatch formed at the top of the container.
The container can be placed onto the bed of a truck. The truck is moved so that the container is adjacent to the vessel. As such, the empty container is available so that the proppant can be conveyed from the hopper of the bulk material train into the interior volume of the container.
The step of unloading includes placing the proppant-loaded container onto a tilting mechanism, tilting the placed proppant-loaded container to an angle such that an end wall of the container faced downwardly at an angle, and discharging the proppant from the tilted container to a flow gate of the container. The proppant flows through the container of the flow gate into a hopper. This flowed proppant is conveyed from the hopper into the pneumatic bulk trailer. Air is injected into the container as the proppant flows through the flow gate. A plurality of the proppant-loaded containers can be stacked at the desired location prior to the step of unloading.
The present invention is also a method of delivering and storing proppant for use at the well site. This method includes the steps of: (1) transporting the load of proppant in a vessel to a desired location; (2) moving the load of proppant from the vessel into a plurality of containers so as to create a plurality of proppant-loaded containers; (3) stacking the plurality of proppant-loaded containers at the desired location so as to form a stack of the proppant-loaded containers; (4) lifting an upper most proppant-loaded container from the stack; (5) moving the upper most proppant-loaded container to a tilting mechanism; and (6) tilting the proppant-loaded container by the tilting mechanism so as to discharge the proppant from the container.
The discharged container can be transported to another stack of empty containers or to a position adjacent to the proppant-containing vessel. The proppant is discharged to a flow gate of the tilted proppant-loaded container into a hopper. The proppant from the hopper can be conveyed into a pneumatic bulk loader. The transported conveyed proppant in the pneumatic bulk trailer can then be transported to the well site.
Referring to
It can be seen that the end wall 22 is recessed inwardly of an end of the pair of side walls 18 and 20 and inwardly of the bottom wall 14 and the top wall 16. As such, the outermost end 30 of the container 12 will provide a protective structure for the generally convex surface of the end wall 22. This convex shape of the end wall 22 facilitates the ability to funnel the proppant from within the interior volume of container 12 outwardly through the flow gate 28. The frame structure at the end 30 enhances the structural integrity of the container 12 at this end while protecting the mechanical structures associated with the flow gate 28. The flow gate 28 is slidable upwardly so as to open to the interior volume. An inlet 32 is generally positioned at the end wall 22 and opened through the end wall 22 to the interior volume of the container 12. This proppant inlet is suitable for allowing proppant and/or air to be introduced into the interior volume of the container. As such, when the container 12 is at a well site or other location, additional proppant can be introduced into the interior volume of the container 12 through the proppant inlet 32. Inlet 32 also allows air to be introduced into the interior volume of the container 12 so as facilitate the ability of the proppant within the container 12 to exit through the flow gate 28. The inlet 32 is in the nature of a tube that can be connected to a suitable hose. A vent 34 is also positioned at the end wall 22. Vent 34 opens to the interior volume of the container 12 so as to allow excess air pressure to exit outwardly of the container 18.
The container 10 is configured so as to contain 96,000 pounds of proppant therein. Since each railcar can transport 192,000 pounds of proppant, a pair of containers 12 can receive all of the proppant from the railcar. However, conventional shipping containers could lack the structural integrity to contain such a large weight. As such, the proppant storage apparatus 10 includes an interior structure which enhances the integrity of the container 12 for its intended purpose.
In particular, a longitudinal member 36 is positioned in the interior volume of the container 12. Longitudinal member 36 extends generally centrally of the interior volume of the container 12. The longitudinal member 36 has one end rigidly affixed to the end wall 22 and an opposite end rigidly affixed to the end wall 24. This connection will maintain the integrity of the end walls 22 and 24 in spite of the large weight of proppant urging thereagainst. A first cross member 38 is positioned within the interior volume of the container 12. The first cross member 38 has one end affixed to the side wall 18 and an opposite end affixed to the side wall 20. A second cross member 40 is also positioned in the interior volume of the container and is in generally spaced parallel relationship to the first cross member 38. Each of the cross members 38 and 40 is positioned generally centrally with respect to the height of the container 12. The second cross member has one end affixed to the side wall 18 and an opposite end affixed to the side wall 22. The cross member 38 and 40 are configured so as to maintain the integrity of the side walls 18 and 20 against the large weight of proppant contained within the interior volume of the container 12.
Within the concept of the present invention, it is advantageous to be able to stack several containers on top of one another. As such, the end surface 30 has structural uprights 44 and 46 thereon. Similarly, horizontal structural members 48 and 50 will extend between the structural uprights 44 and 46 at the top and bottom of the container 12. The structural members enhance the integrity of the container so that a large amount of weight can be stacked upon the container 12. Again, the structural members 44, 46, 48 and 50 enhance the integrity of the container 12 to the heavy weight supported therein.
The rail spur 68 is illustrated as being located in an elevated location. As such, containers 70, 72, 74 and 76 can be located in proximity to the vessel 62 and adjacent to the bulk material train 64. Each of the containers 70, 72, 74 and 76 has a configuration similar to that shown herein in association with
The hatch on the top wall 78 of the container 70 is illustrated as being adjacent to a conveyer 80 associated with the vessel 62. In other words, the hopper of the bulk material train 64 is opened adjacent to the conveyer 80. The conveyer 80 extends between the gate of the vessel 62 and the hatch at the top wall 78 of the container 70. Once this hopper of the bulk material train 64 is unloaded into the vessel 70, the conveyer 80 can be moved forwardly along the bulk material train 64 so that another hopper can discharge its proppant content into the container 72 of truck 82. The containers 70 and 72 are supported on the bed of the truck 82. Similarly, a conveyer 84 allows the unloading of another hopper of the bulk material train 64 into the container 74. The container 76 can be maintained in proximity to another hopper of the bulk material train 64 so that further unloading can occur.
A container loader/unloader 86 is positioned so as to allow for the lifting and transport of the containers 70, 72, 74 and 76. In particular, in
A conveyer 102 extends to the bottom of the hopper 98 and to the top of a pneumatic bulk trailer 104. As a result, the proppant that is discharged through the flow gate at the end wall of the container 92 into the hopper 98 is transported by the conveyer 102 into the pneumatic bulk trailer 104. Similarly, another conveyer 106 extends from the hopper 100 to another pneumatic bulk trailer 108 so as to discharge proppant into the pneumatic bulk trailer. When each of the pneumatic bulk trailers 108 has been filled with proppant, these pneumatic bulk trailers 104 and 108 can then transport the proppant to the well site.
Flatbed trucks 110 and 112 are in line for receiving additional containers 114. Truck 112 is positioned adjacent to the container 114 so that the container loader/unloader 116 can place the containers onto the flatbed of the truck 112. Truck 112 can then move to another position adjacent to the bulk material train 64 for the further unloading of the hoppers associated therewith. As such, it can be seen that the staging of the various flatbed trucks allows for the efficient and effective removal of the proppant from the hoppers of the bulk material train 64.
In
Each of containers as utilized in the system of the present invention is a specially designed 8 foot by 20 foot container that is capable of containing 96,000 pounds of proppant. The containers can be moved by flatbed, low bed and container chassis that are accessible and economical. The facilities, such as illustrated in
Each of the containers can be arranged as to store 360,000 pounds of proppant per 160 square feet of footprint. The unloading equipment can unload one railcar in less than twenty minutes or unload a 120 car unit train in less than 48 hours. Multiple railcars can be unloaded at the same time.
The arrangement of containers is scalable for as much or as little proppant as required. A WMS inventory control system can be utilized. In such a system, each container can be bar-coded (using bar codes or logging mechanisms 49) and logged-in to track the amount of proppant on hand by the mesh size of the proppant. Once the containers are loaded, they can be easily and safely stacked up in yards. As such, air space is utilized as opposed to yard space. All that is required is a solid foundation and proper container handling equipment.
The proppant is unloaded from containers to pneumatic bulk trailers. As such, the proppant will stay dry and would be manipulated less then flat-stored proppant. When the proppant is ordered, the container-moving machines move the container to hydraulic chassis. Proppant is then dumped into the hoppers. An airbox is utilized so as to blow the proppant out of the container.
The process of the present invention ensures close proximity of the site to the rail spur. The process of the present invention can be rapidly implemented when compared to silo facilities. Typically, such silo facilities can take up to two years to build. The number of containers is scalable for inventory requirements. A mini-stack of containers can be moved and recharged at the drill site so as to ensure continuous inventory for the fracturing operation. The system of the present invention can move the inventory closer to the production field then the prior art.
The present invention provides a lower overall cost per ton of proppant. In particular, the empty containers can be staged on-site at the mine. This serves to smooth out productivity for the proppant supplier. It also serves to improve throughput/profits for the proppant supplier. Any over supplies or leftover production can be stored on-site. This allows the company to negotiate better rates in exchange for helping the proppant supplier with their supply chain problems.
In contrast to prior systems where the pneumatic bulk trailer continually moves back and forth from the bulk material train to the well site, the present invention allows for the storage of such proppant in a location adjacent to the rail line. As a result, the truck drivers can have reduced fatigue. A safer work environment is promoted by the system of the present invention. A higher quality driver pool is maintained. Additionally, this system complies with Department of Transportation regulations.
This application claims the benefit of, and is a continuation of U.S. patent application Ser. No. 15/251,020, filed Aug. 30, 2016, titled “Methods of Storing and Moving Proppant at Location Adjacent Rail Line,” which is a continuation of U.S. patent application Ser. No. 15/143,893, filed May 2, 2016, titled “Methods of Storing and Moving Proppant at Location Adjacent Rail Line,” now U.S. Pat. No. 9,475,661, issued Oct. 25, 2016, which is a continuation of U.S. patent application Ser. No. 14/851,005, filed Sep. 11, 2015, titled “Methods of Storing and Moving Proppant at Location Adjacent Rail Line,” now U.S. Pat. No. 9,358,916, issued Jun. 7, 2016, which is a continuation of U.S. patent application Ser. No. 14/314,468, filed Jun. 25, 2014, titled “Methods of Storing and Moving Proppant at Location Adjacent Rail Line,” now U.S. Pat. No. 9,162,603, issued Oct. 20, 2015, which is a continuation of U.S. patent application Ser. No. 14/310,648, filed Jun. 20, 2014, titled “Method of Delivering, Transporting, and Storing Proppant for Delivery and Use at a Well Site,” now U.S. Pat. No. 9,248,772, issued Feb. 2, 2016, which is a continuation of PCT Application No. PCT/US13/32819, filed on Mar. 18, 2013, titled “System of Delivering and Storing Proppant for Use at a Well Site and Container for Such Proppant,” which claims the benefit of U.S. patent application Ser. No. 13/427,140, filed on Mar. 22, 2012, titled “System of Delivering and Storing Proppant for Use at a Well Site and Container for Such Proppant,” now U.S. Pat. No. 8,622,251, issued on Jan. 7, 2014, which is a continuation-in-part of U.S. patent application Ser. No. 13/332,937 filed on Dec. 21, 2011, titled “Proppant Storage Vessel and Assembly Thereof,” now U.S. Pat. No. 8,827,118, issued on Sep. 9, 2014, all of which are incorporated herein by reference in their entireties. U.S. patent application Ser. No. 15/251,020 also claims the benefit of, and is a continuation of U.S. patent application Ser. No. 15/143,942, filed May 2, 2016, titled “Methods of Storing and Moving Proppant at Location Adjacent Rail Line,” which is a continuation of U.S. patent application Ser. No. 14/851,005, filed Sep. 11, 2015, titled “Methods of Storing and Moving Proppant at Location Adjacent Rail Line,” now U.S. Pat. No. 9,358,916, issued Jun. 7, 2016, which is a continuation of U.S. patent application Ser. No. 14/314,468, filed Jun. 25, 2014, titled “Methods of Storing and Moving Proppant at Location Adjacent Rail Line,” now U.S. Pat. No. 9,162,603, issued Oct. 20, 2015, which is a continuation of U.S. patent application Ser. No. 14/310,648, filed Jun. 20, 2014, titled “Method of Delivering, Transporting, and Storing Proppant for Delivery and Use at a Well Site,” now U.S. Pat. No. 9,248,772, issued Feb. 2, 2016, which is a continuation of PCT Application No. PCT/US13/32819, filed on Mar. 18, 2013, titled “System of Delivering and Storing Proppant for Use at a Well Site and Container for Such Proppant,” which claims the benefit of U.S. patent application Ser. No. 13/427,140, filed on Mar. 22, 2012, titled “System of Delivering and Storing Proppant for Use at a Well Site and Container for Such Proppant,” now U.S. Pat. No. 8,622,251, issued on Jan. 7, 2014, which is a continuation-in-part of U.S. patent application Ser. No. 13/332,937 filed on Dec. 21, 2011, titled “Proppant Storage Vessel and Assembly Thereof,” now U.S. Pat. No. 8,827,118, issued on Sep. 9, 2014, all of which are incorporated herein by reference in their entireties.
The foregoing disclosure and description of the invention is illustrative and explanatory thereof. Various changes in the details of the illustrated construction can be made within the scope of the appended claims without departing from the true spirit of the invention. The present invention should only be limited by the following claims and their legal equivalents.
This application claims the benefit of, and is a continuation of U.S. patent application Ser. No. 15/251,020, filed Aug. 30, 2016, titled “Methods of Storing and Moving Proppant at Location Adjacent Rail Line,” which is a continuation of U.S. patent application Ser. No. 15/143,893, filed May 2, 2016, titled “Methods of Storing and Moving Proppant at Location Adjacent Rail Line,” now U.S. Pat. No. 9,475,661, issued Oct. 25, 2016, which is a continuation of U.S. patent application Ser. No. 14/851,005, filed Sep. 11, 2015, titled “Methods of Storing and Moving Proppant at Location Adjacent Rail Line,” now U.S. Pat. No. 9,358,916, issued Jun. 7, 2016, which is a continuation of U.S. patent application Ser. No. 14/314,468, filed Jun. 25, 2014, titled “Methods of Storing and Moving Proppant at Location Adjacent Rail Line,” now U.S. Pat. No. 9,162,603, issued Oct. 20, 2015, which is a continuation of U.S. patent application Ser. No. 14/310,648, filed Jun. 20, 2014, titled “Method of Delivering, Transporting, and Storing Proppant for Delivery and Use at a Well Site,” now U.S. Pat. No. 9,248,772, issued Feb. 2, 2016, which is a continuation of PCT Application No. PCT/US13/32819, filed on Mar. 18, 2013, titled “System of Delivering and Storing Proppant for Use at a Well Site and Container for Such Proppant,” which claims the benefit of U.S. patent application Ser. No. 13/427,140, filed on Mar. 22, 2012, titled “System of Delivering and Storing Proppant for Use at a Well Site and Container for Such Proppant,” now U.S. Pat. No. 8,622,251, issued on Jan. 7, 2014, which is a continuation-in-part of U.S. patent application Ser. No. 13/332,937 filed on Dec. 21, 2011, titled “Proppant Storage Vessel and Assembly Thereof,” now U.S. Pat. No. 8,827,118, issued on Sep. 9, 2014, all of which are incorporated herein by reference in their entireties. U.S. patent application Ser. No. 15/251,020 also claims the benefit of, and is a continuation of U.S. patent application Ser. No. 15/143,942, filed May 2, 2016, titled “Methods of Storing and Moving Proppant at Location Adjacent Rail Line,” which is a continuation of U.S. patent application Ser. No. 14/851,005, filed Sep. 11, 2015, titled “Methods of Storing and Moving Proppant at Location Adjacent Rail Line,” now U.S. Pat. No. 9,358,916, issued Jun. 7, 2016, which is a continuation of U.S. patent application Ser. No. 14/314,468, filed Jun. 25, 2014, titled “Methods of Storing and Moving Proppant at Location Adjacent Rail Line,” now U.S. Pat. No. 9,162,603, issued Oct. 20, 2015, which is a continuation of U.S. patent application Ser. No. 14/310,648, filed Jun. 20, 2014, titled “Method of Delivering, Transporting, and Storing Proppant for Delivery and Use at a Well Site,” now U.S. Pat. No. 9,248,772, issued Feb. 2, 2016, which is a continuation of PCT Application No. PCT/US13/32819, filed on Mar. 18, 2013, titled “System of Delivering and Storing Proppant for Use at a Well Site and Container for Such Proppant,” which claims the benefit of U.S. patent application Ser. No. 13/427,140, filed on Mar. 22, 2012, titled “System of Delivering and Storing Proppant for Use at a Well Site and Container for Such Proppant,” now U.S. Pat. No. 8,622,251, issued on Jan. 7, 2014, which is a continuation-in-part of U.S. patent application Ser. No. 13/332,937 filed on Dec. 21, 2011, titled “Proppant Storage Vessel and Assembly Thereof,” now U.S. Pat. No. 8,827,118, issued on Sep. 9, 2014, all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
137871 | Worsley | Apr 1873 | A |
150894 | Safely | May 1874 | A |
384443 | Hoover | Jun 1888 | A |
448238 | Johnson | Mar 1891 | A |
711632 | Johnson | Oct 1902 | A |
917649 | Otto | Apr 1909 | A |
1143641 | McGregor | Jun 1915 | A |
1331883 | Stuart | Feb 1920 | A |
1344768 | Messiter | Jun 1920 | A |
1434488 | Forsythe et al. | Nov 1922 | A |
1520560 | Burno | Dec 1923 | A |
1506936 | Lea | Sep 1924 | A |
1526527 | Butler | Feb 1925 | A |
1573664 | Wetherill | Feb 1926 | A |
1807447 | Smith | May 1931 | A |
1850000 | Fernand | Mar 1932 | A |
1932320 | Steward | Oct 1933 | A |
1973312 | Hardinge | Sep 1934 | A |
2020628 | Woodruff | Nov 1935 | A |
2233005 | Garlinghouse | Feb 1941 | A |
2255448 | Morris | Sep 1941 | A |
2293160 | Miller et al. | Aug 1942 | A |
2368672 | McNamara | Feb 1945 | A |
2381103 | Frank | Aug 1945 | A |
2385245 | Willoughby | Sep 1945 | A |
2413661 | Stokes | Dec 1946 | A |
2423879 | De Frees | Jul 1947 | A |
2564020 | Mengel | Aug 1951 | A |
2603342 | Martinson | Jul 1952 | A |
2616758 | Meyers | Nov 1952 | A |
2622771 | Tulou | Dec 1952 | A |
2652174 | Shea et al. | Sep 1953 | A |
2670866 | Glesby | Mar 1954 | A |
2678145 | Ejuzwiak et al. | May 1954 | A |
2693282 | Sensibar | Nov 1954 | A |
2700574 | Tourneau | Jan 1955 | A |
2792262 | Hathorn | Apr 1955 | A |
2774515 | Johansson et al. | Dec 1956 | A |
2791973 | Dorey | May 1957 | A |
2801125 | Page et al. | Jul 1957 | A |
2808164 | Glendinning | Oct 1957 | A |
2812970 | Martinson | Nov 1957 | A |
2837369 | Stopps | Jun 1958 | A |
2865521 | Fisher et al. | Dec 1958 | A |
2873036 | Noble | Feb 1959 | A |
2894666 | Campbell, Jr. | Jul 1959 | A |
2988235 | Ronyak | Jun 1961 | A |
2994460 | Matthews | Aug 1961 | A |
3041113 | Sackett | Jun 1962 | A |
3049248 | Heltzel et al. | Aug 1962 | A |
3064832 | Heltzel | Nov 1962 | A |
3083879 | Coleman | Apr 1963 | A |
3090527 | Rensch | May 1963 | A |
3109389 | Karlsson | Nov 1963 | A |
3122258 | Raymond | Feb 1964 | A |
3134606 | Oyler | May 1964 | A |
3135432 | McKinney | Jun 1964 | A |
3163127 | Gutridge et al. | Dec 1964 | A |
3187684 | Ortner | Jun 1965 | A |
3198494 | Curran et al. | Aug 1965 | A |
3199585 | Cronberger | Aug 1965 | A |
3248026 | Kemp | Apr 1966 | A |
3255927 | Ruppert et al. | Jun 1966 | A |
3265443 | Simas | Aug 1966 | A |
3270921 | Nadolske et al. | Sep 1966 | A |
3281006 | Tonchung | Oct 1966 | A |
3294306 | Areddy | Dec 1966 | A |
3318473 | Jones et al. | May 1967 | A |
3353599 | Swift | Nov 1967 | A |
3354918 | Coleman | Nov 1967 | A |
3378152 | Warner | Apr 1968 | A |
3387570 | Pulcrano et al. | Jun 1968 | A |
3396675 | Stevens | Aug 1968 | A |
3397654 | Snyder | Aug 1968 | A |
3406995 | McCarthy | Oct 1968 | A |
3407971 | Oehler | Oct 1968 | A |
3425599 | Sammarco et al. | Feb 1969 | A |
3455474 | Truncali | Jul 1969 | A |
3486787 | Campbell | Dec 1969 | A |
3499694 | Coppel | Mar 1970 | A |
3508762 | Pratt | Apr 1970 | A |
3524567 | Coleman | Aug 1970 | A |
3528570 | Pase | Sep 1970 | A |
3561633 | Morrison et al. | Feb 1971 | A |
3587834 | Dugge | Jun 1971 | A |
3596609 | Ortner | Aug 1971 | A |
3601244 | Ort et al. | Aug 1971 | A |
3602400 | Cooke | Aug 1971 | A |
3650567 | Danielson | Mar 1972 | A |
3653521 | Bridge | Apr 1972 | A |
3661293 | Gerhard et al. | May 1972 | A |
3692363 | Tenebaum et al. | Sep 1972 | A |
3704797 | Suykens | Dec 1972 | A |
3721199 | Hassenauer | Mar 1973 | A |
3729121 | Cannon | Apr 1973 | A |
3734215 | Smith | May 1973 | A |
3738511 | Lemon et al. | Jun 1973 | A |
3752511 | Racy | Aug 1973 | A |
3777909 | Rheinfrank | Dec 1973 | A |
3785534 | Smith | Jan 1974 | A |
3800712 | Krug, Jr. | Apr 1974 | A |
3802584 | Sackett | Apr 1974 | A |
3817261 | Rogge | Jun 1974 | A |
3820762 | Bostrom et al. | Jun 1974 | A |
3827578 | Hough | Aug 1974 | A |
3840141 | Allom et al. | Oct 1974 | A |
3854612 | Snape | Dec 1974 | A |
3861716 | Baxter et al. | Jan 1975 | A |
3883005 | Stevens | May 1975 | A |
3909223 | Schmidt | Sep 1975 | A |
3913933 | Visser et al. | Oct 1975 | A |
3933100 | Dugge | Jan 1976 | A |
3963149 | Fassauer | Jun 1976 | A |
3970123 | Poulton et al. | Jul 1976 | A |
3986708 | Heltzel et al. | Oct 1976 | A |
3997089 | Clarke et al. | Dec 1976 | A |
4003301 | Norton | Jan 1977 | A |
4004700 | Empey | Jan 1977 | A |
4057153 | Weaver | Nov 1977 | A |
4058239 | Van Mill | Nov 1977 | A |
4063656 | Lambert | Dec 1977 | A |
4073410 | Melcher | Feb 1978 | A |
4125195 | Sasadi | Nov 1978 | A |
4138163 | Calvert et al. | Feb 1979 | A |
4178117 | Brugler | Dec 1979 | A |
4204773 | Bates | May 1980 | A |
4210273 | Hegele | Jul 1980 | A |
4210963 | Ricciardi et al. | Jul 1980 | A |
RE30358 | Sensibar | Aug 1980 | E |
4222498 | Brock | Sep 1980 | A |
4227732 | Kish | Oct 1980 | A |
4232884 | DeWitt | Nov 1980 | A |
4239424 | Pavolka | Dec 1980 | A |
4245820 | Muryn | Jan 1981 | A |
4247228 | Gray et al. | Jan 1981 | A |
4247370 | Nijhawan et al. | Jan 1981 | A |
4258953 | Johnson | Mar 1981 | A |
4265266 | Kierbow et al. | May 1981 | A |
4278190 | Oory et al. | Jul 1981 | A |
4282988 | Hulbert, Jr. | Aug 1981 | A |
4287921 | Sanford | Sep 1981 | A |
4287997 | Rolfe et al. | Sep 1981 | A |
4289353 | Merritt | Sep 1981 | A |
4299597 | Oetiker et al. | Nov 1981 | A |
4306895 | Thompson et al. | Dec 1981 | A |
4329106 | Adler | May 1982 | A |
4350241 | Wenzel | Sep 1982 | A |
4359176 | Johnson | Nov 1982 | A |
4363396 | Wolf et al. | Dec 1982 | A |
4395052 | Rash | Jul 1983 | A |
4397406 | Croley | Aug 1983 | A |
4398653 | Daloisio | Aug 1983 | A |
4402392 | Fabian et al. | Sep 1983 | A |
4407202 | McCormick | Oct 1983 | A |
4408886 | Sampson et al. | Oct 1983 | A |
4410106 | Kierbow et al. | Oct 1983 | A |
4420285 | Loyer et al. | Dec 1983 | A |
4427133 | Kierbow et al. | Jan 1984 | A |
4428504 | Bassett et al. | Jan 1984 | A |
4449861 | Saito et al. | May 1984 | A |
4453645 | Usui et al. | Jun 1984 | A |
4474204 | West | Oct 1984 | A |
4475672 | Whitehead | Oct 1984 | A |
4478155 | Cena et al. | Oct 1984 | A |
4483462 | Heintz | Nov 1984 | A |
4513755 | Baroni | Apr 1985 | A |
4525071 | Horowitz | Jun 1985 | A |
4526353 | Stomp | Jul 1985 | A |
4532098 | Campbell | Jul 1985 | A |
4534869 | Seibert | Aug 1985 | A |
4552573 | Weis | Nov 1985 | A |
4569394 | Sweatman et al. | Feb 1986 | A |
4570967 | Allnut | Feb 1986 | A |
4571143 | Hellerich | Feb 1986 | A |
4588605 | Frei et al. | May 1986 | A |
4608931 | Ruhmann et al. | Sep 1986 | A |
4619531 | Dunstan | Oct 1986 | A |
4624729 | Bresciani et al. | Nov 1986 | A |
4626155 | Hlinsky et al. | Dec 1986 | A |
4626166 | Jolly | Dec 1986 | A |
4628825 | Taylor et al. | Dec 1986 | A |
4639015 | Pitts | Jan 1987 | A |
4648584 | Wamser | Mar 1987 | A |
4660733 | Snyder et al. | Apr 1987 | A |
4701095 | Berryman et al. | Oct 1987 | A |
4714010 | Smart | Dec 1987 | A |
4715754 | Scully | Dec 1987 | A |
4738774 | Patrick | Apr 1988 | A |
4741273 | Sherwood | May 1988 | A |
4761039 | Hilaris | Aug 1988 | A |
4798039 | Deglise | Jan 1989 | A |
4801389 | Brannon et al. | Jan 1989 | A |
4819830 | Schultz | Apr 1989 | A |
4836510 | Weber et al. | Jun 1989 | A |
4836735 | Dennehy | Jun 1989 | A |
4848605 | Wise | Jul 1989 | A |
4882784 | Tump | Nov 1989 | A |
4889219 | Key | Dec 1989 | A |
4901649 | Fehrenbach et al. | Feb 1990 | A |
4909378 | Webb | Mar 1990 | A |
4909556 | Koskinen | Mar 1990 | A |
4917019 | Hesch et al. | Apr 1990 | A |
4919583 | Speakman, Jr. | Apr 1990 | A |
4923358 | Van Mill | May 1990 | A |
4946068 | Erickson et al. | Aug 1990 | A |
4947760 | Dawson et al. | Aug 1990 | A |
4949714 | Orr | Aug 1990 | A |
4954975 | Kalata | Sep 1990 | A |
4956821 | Fenelon | Sep 1990 | A |
4964243 | Reiter | Oct 1990 | A |
4975205 | Sloan | Dec 1990 | A |
4975305 | Biginelli | Dec 1990 | A |
4988115 | Steinke | Jan 1991 | A |
4995522 | Barr | Feb 1991 | A |
5004400 | Handke | Apr 1991 | A |
5028002 | Whitford | Jul 1991 | A |
5042538 | Wiese | Aug 1991 | A |
5069352 | Harbolt et al. | Dec 1991 | A |
5080259 | Hadley | Jan 1992 | A |
5082304 | Preller | Jan 1992 | A |
5102281 | Handke | Apr 1992 | A |
5102286 | Fenton | Apr 1992 | A |
5105858 | Levinson | Apr 1992 | A |
5131524 | Uehara | Jul 1992 | A |
5167719 | Tamaki | Dec 1992 | A |
5190182 | Copas et al. | Mar 1993 | A |
5195861 | Handke | Mar 1993 | A |
5199826 | Lawrence | Apr 1993 | A |
5201546 | Lindsay | Apr 1993 | A |
5224635 | Wise | Jul 1993 | A |
5253746 | Friesen et al. | Oct 1993 | A |
5253776 | Decroix et al. | Oct 1993 | A |
5265763 | Heinrici et al. | Nov 1993 | A |
5280883 | Ibar | Jan 1994 | A |
5286158 | Zimmerman | Feb 1994 | A |
5286294 | Ebi et al. | Feb 1994 | A |
5290139 | Hedrick | Mar 1994 | A |
5317783 | Williamson | Jun 1994 | A |
5320046 | Hesch | Jun 1994 | A |
5324097 | DeCap | Jun 1994 | A |
5339996 | Dubbert | Aug 1994 | A |
5345982 | Nadeau et al. | Sep 1994 | A |
5358137 | Shuert et al. | Oct 1994 | A |
5373792 | Pileggi et al. | Dec 1994 | A |
5392946 | Holbrook et al. | Feb 1995 | A |
5402915 | Hogan | Apr 1995 | A |
5413154 | Hurst, Jr. et al. | May 1995 | A |
5429259 | Robin | Jul 1995 | A |
5441321 | Karpisek | Aug 1995 | A |
5465829 | Kruse | Nov 1995 | A |
5470175 | Jensen et al. | Nov 1995 | A |
5470176 | Corcoran et al. | Nov 1995 | A |
5493852 | Stewart | Feb 1996 | A |
5507514 | Jacques | Apr 1996 | A |
5538286 | Hoff | Jul 1996 | A |
5549278 | Sidler | Aug 1996 | A |
5564599 | Barber et al. | Oct 1996 | A |
5570743 | Padgett et al. | Nov 1996 | A |
5590976 | Kilheffer et al. | Jan 1997 | A |
5601181 | Lindhorst | Feb 1997 | A |
5602761 | Spoerre et al. | Feb 1997 | A |
5613446 | DiLuigi et al. | Mar 1997 | A |
5617974 | Sawyer | Apr 1997 | A |
5647514 | Toth et al. | Jul 1997 | A |
RE35580 | Heider et al. | Aug 1997 | E |
5667298 | Musil | Sep 1997 | A |
5687881 | Rouse et al. | Nov 1997 | A |
5690466 | Gaddis et al. | Nov 1997 | A |
5697535 | Coleman | Dec 1997 | A |
5706614 | Wiley et al. | Jan 1998 | A |
5718555 | Swalheim | Feb 1998 | A |
5722552 | Olson | Mar 1998 | A |
5722688 | Garcia | Mar 1998 | A |
5746258 | Huck | May 1998 | A |
5761854 | Johnson et al. | Jun 1998 | A |
5762222 | Liu | Jun 1998 | A |
5772390 | Walker | Jun 1998 | A |
5782524 | Heider et al. | Jul 1998 | A |
5785421 | Milek | Jul 1998 | A |
5803296 | Olson | Sep 1998 | A |
5806863 | Heger et al. | Sep 1998 | A |
5836480 | Epp et al. | Nov 1998 | A |
5845799 | Deaton | Dec 1998 | A |
5876172 | Di Rosa | Mar 1999 | A |
5906471 | Schwoerer | May 1999 | A |
5911337 | Bedeker | Jun 1999 | A |
5924829 | Hastings | Jul 1999 | A |
5927558 | Bruce | Jul 1999 | A |
5960974 | Kee | Oct 1999 | A |
5971219 | Karpisek | Oct 1999 | A |
5993202 | Yamazaki et al. | Nov 1999 | A |
5997099 | Collins | Dec 1999 | A |
6002063 | Bilak et al. | Dec 1999 | A |
6006918 | Hart | Dec 1999 | A |
6069118 | Hinkel et al. | May 2000 | A |
6077068 | Okumura | Jun 2000 | A |
6092974 | Roth | Jul 2000 | A |
6109486 | Lee | Aug 2000 | A |
6120233 | Adam | Sep 2000 | A |
D431358 | Willemsen | Oct 2000 | S |
6155175 | Rude et al. | Dec 2000 | A |
6186654 | Gunteret et al. | Feb 2001 | B1 |
6190107 | Lanigan et al. | Feb 2001 | B1 |
6192985 | Hinkel et al. | Feb 2001 | B1 |
6196590 | Kim | Mar 2001 | B1 |
6205938 | Foley et al. | Mar 2001 | B1 |
6210088 | Crosby | Apr 2001 | B1 |
6247594 | Garton | Jun 2001 | B1 |
6263803 | Dohr et al. | Jul 2001 | B1 |
6269849 | Fields | Aug 2001 | B1 |
6273154 | Laug | Aug 2001 | B1 |
6283212 | Hinkel et al. | Sep 2001 | B1 |
6286986 | Grimland | Sep 2001 | B2 |
6296109 | Nohl | Oct 2001 | B1 |
6306800 | Samuel et al. | Oct 2001 | B1 |
6328156 | Otsman | Dec 2001 | B1 |
6328183 | Coleman | Dec 2001 | B1 |
6364584 | Taylor | Apr 2002 | B1 |
6374915 | Andrews | Apr 2002 | B1 |
6382446 | Hinkle et al. | May 2002 | B1 |
6390742 | Breeden | May 2002 | B1 |
6401983 | McDonald et al. | Jun 2002 | B1 |
6412422 | Dohr et al. | Jul 2002 | B2 |
6415909 | Mitchell et al. | Jul 2002 | B1 |
6416271 | Pigott et al. | Jul 2002 | B1 |
6422413 | Hall et al. | Jul 2002 | B1 |
6425725 | Ehlers | Jul 2002 | B1 |
6450522 | Yamada et al. | Sep 2002 | B1 |
6457291 | Wick | Oct 2002 | B2 |
6498976 | Ehlbeck et al. | Dec 2002 | B1 |
6505760 | Werner | Jan 2003 | B1 |
6508387 | Simon et al. | Jan 2003 | B1 |
6508615 | Taylor | Jan 2003 | B2 |
6523482 | Wingate | Feb 2003 | B2 |
6537002 | Gloystein | Mar 2003 | B2 |
6557896 | Stobart | May 2003 | B1 |
6575614 | Tosco et al. | Jun 2003 | B2 |
6660693 | Miller et al. | Dec 2003 | B2 |
6663373 | Yoshida | Dec 2003 | B2 |
6666573 | Grassi | Dec 2003 | B2 |
6675066 | Moshgbar | Jan 2004 | B2 |
6675073 | Kieman et al. | Jan 2004 | B2 |
6705449 | Wagstaffe | Mar 2004 | B2 |
6720290 | England et al. | Apr 2004 | B2 |
6772912 | Schall et al. | Aug 2004 | B1 |
6774318 | Beal et al. | Aug 2004 | B2 |
6776235 | England | Aug 2004 | B1 |
6783032 | Fons | Aug 2004 | B2 |
6811048 | Lau | Nov 2004 | B2 |
6828280 | England et al. | Dec 2004 | B2 |
6835041 | Albert | Dec 2004 | B1 |
6882960 | Miller | Apr 2005 | B2 |
6902061 | Elstone | Jun 2005 | B1 |
6915854 | England et al. | Jul 2005 | B2 |
6953119 | Wening | Oct 2005 | B1 |
6955127 | Taylor | Oct 2005 | B2 |
6964551 | Friesen | Nov 2005 | B1 |
6968946 | Shuert | Nov 2005 | B2 |
6974021 | Boevers | Dec 2005 | B1 |
7008163 | Russell | Mar 2006 | B2 |
7051661 | Herzog et al. | May 2006 | B2 |
7084095 | Lee et al. | Aug 2006 | B2 |
7104425 | Le Roy | Sep 2006 | B2 |
7140516 | Bothor | Nov 2006 | B2 |
7146914 | Morton et al. | Dec 2006 | B2 |
7201290 | Mehus et al. | Apr 2007 | B2 |
7214028 | Boasso | May 2007 | B2 |
7240681 | Saik | Jul 2007 | B2 |
7252309 | Eng Soon et al. | Aug 2007 | B2 |
7284579 | Elgan et al. | Oct 2007 | B2 |
7284670 | Schmid | Oct 2007 | B2 |
7316333 | Wegner | Jan 2008 | B2 |
7367271 | Early | May 2008 | B2 |
7377219 | Brandt | May 2008 | B2 |
7410623 | Mehus et al. | Aug 2008 | B2 |
7475796 | Garton | Jan 2009 | B2 |
7500817 | Furrer et al. | Mar 2009 | B2 |
7513280 | Brashears et al. | Apr 2009 | B2 |
7591386 | Hooper | Sep 2009 | B2 |
7640075 | Wietgrefe | Dec 2009 | B2 |
7695538 | Cheng | Apr 2010 | B2 |
7753637 | Benedict et al. | Jul 2010 | B2 |
7798558 | Messier | Sep 2010 | B2 |
7802958 | Garcia et al. | Sep 2010 | B2 |
7803321 | Lark et al. | Sep 2010 | B2 |
7837427 | Beckel | Nov 2010 | B2 |
7841394 | McNeel et al. | Nov 2010 | B2 |
7845516 | Pessin et al. | Dec 2010 | B2 |
7858888 | Lucas et al. | Dec 2010 | B2 |
7867613 | Smith | Jan 2011 | B2 |
7891304 | Herzog et al. | Feb 2011 | B2 |
7891523 | Mehus et al. | Feb 2011 | B2 |
7896198 | Mehus et al. | Mar 2011 | B2 |
7921783 | Forbes et al. | Apr 2011 | B2 |
7967161 | Townsend | Jun 2011 | B2 |
7980803 | Brandstätter et al. | Jul 2011 | B2 |
7997213 | Gauthier et al. | Aug 2011 | B1 |
7997623 | Williams | Aug 2011 | B2 |
8083083 | Mohns | Dec 2011 | B1 |
8201520 | Meritt | Jun 2012 | B2 |
8313278 | Simmons et al. | Nov 2012 | B2 |
8366349 | Beachner | Feb 2013 | B2 |
8375690 | LaFargue et al. | Feb 2013 | B2 |
8379927 | Taylor | Feb 2013 | B2 |
8387824 | Wietgrefe | Mar 2013 | B2 |
8393502 | Renyer et al. | Mar 2013 | B2 |
8424666 | Benning et al. | Apr 2013 | B2 |
D688351 | Oren | Aug 2013 | S |
8505780 | Oren | Aug 2013 | B2 |
8544419 | Spalding et al. | Oct 2013 | B1 |
8545148 | Wanek-Pusset et al. | Oct 2013 | B2 |
8562022 | Nadeau et al. | Oct 2013 | B2 |
8573387 | Trimble | Nov 2013 | B2 |
8573917 | Renyer | Nov 2013 | B2 |
8585341 | Oren | Nov 2013 | B1 |
D694670 | Oren | Dec 2013 | S |
8616370 | Allegretti | Dec 2013 | B2 |
8622251 | Oren | Jan 2014 | B2 |
8636832 | Stutzman et al. | Jan 2014 | B2 |
8646641 | Moir | Feb 2014 | B2 |
8662525 | Dierks et al. | Mar 2014 | B1 |
8668430 | Oren | Mar 2014 | B2 |
D703582 | Oren | Apr 2014 | S |
8820559 | Beitler et al. | Sep 2014 | B2 |
8827118 | Oren | Sep 2014 | B2 |
8881749 | Smith | Nov 2014 | B1 |
8887914 | Allegretti | Nov 2014 | B2 |
8905266 | De Brabanter | Dec 2014 | B2 |
8915691 | Mintz | Dec 2014 | B2 |
9051801 | Mintz | Jun 2015 | B1 |
9052034 | Wegner et al. | Jun 2015 | B1 |
D740556 | Huber | Oct 2015 | S |
9162261 | Smith | Oct 2015 | B1 |
9267266 | Cutler et al. | Feb 2016 | B2 |
9296572 | Houghton et al. | Mar 2016 | B2 |
9309064 | Sheesley | Apr 2016 | B2 |
9410414 | Tudor | Aug 2016 | B2 |
D780883 | Schaffner et al. | Mar 2017 | S |
D783771 | Stegemoeller et al. | Apr 2017 | S |
D783772 | Stegemoeller, III et al. | Apr 2017 | S |
9688492 | Stutzman et al. | Jun 2017 | B2 |
20010022308 | Epp et al. | Sep 2001 | A1 |
20010045338 | Ransil et al. | Nov 2001 | A1 |
20020134550 | Leeson et al. | Sep 2002 | A1 |
20020139643 | Peltier et al. | Oct 2002 | A1 |
20030006248 | Gill et al. | Jan 2003 | A1 |
20030111470 | Fouillet et al. | Jun 2003 | A1 |
20030145418 | Ikeda et al. | Aug 2003 | A1 |
20030156929 | Russell | Aug 2003 | A1 |
20040065699 | Schoer et al. | Apr 2004 | A1 |
20040074922 | Bother et al. | Apr 2004 | A1 |
20040084874 | McDougall et al. | May 2004 | A1 |
20040206646 | Goh | Oct 2004 | A1 |
20040245284 | Mehus et al. | Dec 2004 | A1 |
20050158158 | Porta | Jul 2005 | A1 |
20050201851 | Jonkka | Sep 2005 | A1 |
20060012183 | Marchiori et al. | Jan 2006 | A1 |
20060027582 | Beach | Feb 2006 | A1 |
20060053582 | Engel et al. | Mar 2006 | A1 |
20060091072 | Schmid et al. | May 2006 | A1 |
20060151058 | Salaoras et al. | Jul 2006 | A1 |
20060180062 | Furrer et al. | Aug 2006 | A1 |
20060180232 | Glewwe et al. | Aug 2006 | A1 |
20060239806 | Yelton | Oct 2006 | A1 |
20060267377 | Lusk et al. | Nov 2006 | A1 |
20060277783 | Garton | Dec 2006 | A1 |
20060289166 | Stromquist et al. | Dec 2006 | A1 |
20070096537 | Hicks | May 2007 | A1 |
20070125543 | McNeel et al. | Jun 2007 | A1 |
20070194564 | Garceau et al. | Aug 2007 | A1 |
20080008562 | Beckel et al. | Jan 2008 | A1 |
20080029546 | Schuld | Feb 2008 | A1 |
20080029553 | Culleton | Feb 2008 | A1 |
20080058228 | Wilson | Mar 2008 | A1 |
20080179054 | McGough et al. | Jul 2008 | A1 |
20080179324 | McGough et al. | Jul 2008 | A1 |
20080213073 | Benedict et al. | Sep 2008 | A1 |
20080226434 | Smith et al. | Sep 2008 | A1 |
20080264641 | Slabaugh et al. | Oct 2008 | A1 |
20080277423 | Garton | Nov 2008 | A1 |
20080315558 | Cesterino | Dec 2008 | A1 |
20090038242 | Cope | Feb 2009 | A1 |
20090078410 | Krenek et al. | Mar 2009 | A1 |
20090278326 | Rowland et al. | Nov 2009 | A1 |
20100021258 | Kim | Jan 2010 | A1 |
20100037572 | Cheng | Feb 2010 | A1 |
20100038143 | Burnett et al. | Feb 2010 | A1 |
20100040446 | Renyer | Feb 2010 | A1 |
20100065466 | Perkins | Mar 2010 | A1 |
20100080681 | Bain | Apr 2010 | A1 |
20100108711 | Wietgrefe | May 2010 | A1 |
20100129193 | Sherrer | May 2010 | A1 |
20100199668 | Coustou et al. | Aug 2010 | A1 |
20100207371 | Van Houdt et al. | Aug 2010 | A1 |
20100278621 | Redekop | Nov 2010 | A1 |
20100288603 | Schafer | Nov 2010 | A1 |
20100320727 | Haut et al. | Dec 2010 | A1 |
20110011893 | Cerny | Jan 2011 | A1 |
20110017693 | Thomas | Jan 2011 | A1 |
20110101040 | Weissbrod | May 2011 | A1 |
20110109073 | Williams | May 2011 | A1 |
20110121003 | Moir | May 2011 | A1 |
20110127178 | Claussen | Jun 2011 | A1 |
20110160104 | Wu et al. | Jun 2011 | A1 |
20110162838 | Mackenzie et al. | Jul 2011 | A1 |
20110168593 | Neufeld et al. | Jul 2011 | A1 |
20110222983 | Dugic et al. | Sep 2011 | A1 |
20110297702 | Hildebrandt et al. | Dec 2011 | A1 |
20120090956 | Brobst | Apr 2012 | A1 |
20120103848 | Allegretti et al. | May 2012 | A1 |
20120219391 | Teichrob et al. | Aug 2012 | A1 |
20120247335 | Stutzman et al. | Oct 2012 | A1 |
20120255539 | Kolecki | Oct 2012 | A1 |
20130004272 | Mintz | Jan 2013 | A1 |
20130022441 | Uhryn et al. | Jan 2013 | A1 |
20130206415 | Sheesley | Aug 2013 | A1 |
20130209204 | Sheesley | Aug 2013 | A1 |
20130233545 | Mahoney | Sep 2013 | A1 |
20130284729 | Cook et al. | Oct 2013 | A1 |
20130309052 | Luharuka | Nov 2013 | A1 |
20130323005 | Rexius | Dec 2013 | A1 |
20140020765 | Oren | Jan 2014 | A1 |
20140020892 | Oren | Jan 2014 | A1 |
20140023465 | Oren et al. | Jan 2014 | A1 |
20140034662 | Chalmers et al. | Feb 2014 | A1 |
20140044507 | Naizer et al. | Feb 2014 | A1 |
20140077484 | Harrell | Mar 2014 | A1 |
20140083554 | Harris | Mar 2014 | A1 |
20140093319 | Harris et al. | Apr 2014 | A1 |
20140097182 | Sheesley | Apr 2014 | A1 |
20140166647 | Sheesley | Jun 2014 | A1 |
20140203046 | Allegretti | Jul 2014 | A1 |
20140234059 | Thomeer | Aug 2014 | A1 |
20140305769 | Eiden et al. | Oct 2014 | A1 |
20140321950 | Krenek et al. | Oct 2014 | A1 |
20140377042 | McMahon | Dec 2014 | A1 |
20150004895 | Hammers et al. | Jan 2015 | A1 |
20150069052 | Allegretti et al. | Mar 2015 | A1 |
20150079890 | Stutzman et al. | Mar 2015 | A1 |
20150086307 | Stefan | Mar 2015 | A1 |
20150107822 | Tudor | Apr 2015 | A1 |
20150110565 | Harris | Apr 2015 | A1 |
20150115589 | Thiessen | Apr 2015 | A1 |
20150159232 | Zucchi et al. | Jun 2015 | A1 |
20150209829 | De Siqueira et al. | Jul 2015 | A1 |
20150284183 | Houghton et al. | Oct 2015 | A1 |
20160148813 | Rogers et al. | May 2016 | A1 |
20160177678 | Morris et al. | Jun 2016 | A1 |
20160185522 | Herman et al. | Jun 2016 | A1 |
20160273355 | Gosney et al. | Sep 2016 | A1 |
20160280480 | Smith et al. | Sep 2016 | A1 |
20170129721 | Harris et al. | May 2017 | A1 |
Number | Date | Country |
---|---|---|
2023138 | Feb 1992 | CA |
2791088 | Mar 2013 | CA |
2037354 | May 1989 | CN |
2059909 | Aug 1990 | CN |
2075632 | Apr 1991 | CN |
1329562 | Jan 2002 | CN |
2517684 | Oct 2002 | CN |
1635965 | Jul 2005 | CN |
2913250 | Jun 2007 | CN |
201390486 | Jan 2010 | CN |
101823630 | Sep 2010 | CN |
102101595 | Jun 2011 | CN |
201881469 | Jun 2011 | CN |
102114985 | Jul 2011 | CN |
203033469 | Jul 2013 | CN |
103350017 | Oct 2013 | CN |
3108121 | Sep 1982 | DE |
3342281 | Jun 1985 | DE |
4217329 | May 1993 | DE |
20317967 | Mar 2004 | DE |
0019967 | Oct 1980 | EP |
322283 | Jun 1989 | EP |
0564969 | Oct 1993 | EP |
0997607 | May 2000 | EP |
1052194 | Nov 2000 | EP |
1167236 | Jan 2002 | EP |
1775190 | Apr 2007 | EP |
1795467 | Jun 2007 | EP |
2062832 | May 2009 | EP |
2311757 | Apr 2011 | EP |
2173445 | Oct 1973 | FR |
2640598 | Jun 1990 | FR |
1296736 | Nov 1972 | GB |
2374864 | Oct 2002 | GB |
S4871029 | Sep 1973 | JP |
S4876041 | Sep 1973 | JP |
S58161888 | Oct 1983 | JP |
410087046 | Apr 1998 | JP |
10264882 | Oct 1998 | JP |
2012011046 | Oct 2013 | MX |
1990008082 | Jul 1990 | WO |
1992002437 | Feb 1992 | WO |
1993001997 | Feb 1993 | WO |
1993006031 | Apr 1993 | WO |
1996025302 | Aug 1996 | WO |
2006039757 | Apr 2006 | WO |
2007005054 | Jan 2007 | WO |
2007057398 | May 2007 | WO |
2007061310 | May 2007 | WO |
2010026235 | Mar 2010 | WO |
2011099358 | Aug 2011 | WO |
2012021447 | Feb 2012 | WO |
2012058059 | May 2012 | WO |
Entry |
---|
International Search Report for related International Application No. PCT/US2012/066639, dated Feb. 25, 2013. |
International Search Report for related International Application No. PCT/US2013/035442, dated Jun. 23, 2013. |
International Search Report for related International Application No. PCT/US2013/032819, dated May 23, 2013. |
International Search Report for related International Application No. PCT/US2013/049028, dated Mar. 4, 2014. |
International Preliminary Report on Patentability for PCT/US2012/066639, dated Feb. 26, 2013. |
International Preliminary Report on Patentability for PCT/US2013/032819, dated Sep. 23, 2014. |
International Search Report for PCT/US2015/012990, dated May 6, 2015. (15 pages). |
FS-35 Desert Frac-Sanders. NOV (National Oilwell Varco). Mar. 19, 2012. (https://web.archive.org/web/20120319070423/http://www.nov.com/Well_Service_and_Completion/Frac_Sand_Handling_Equipment/Frac_Sanders/FS-35.aspx). |
File History for U.S. Appl. No. 61/538,616, Robert A. Harris, Sep. 23, 2011. (21 pages). |
International Search Report for PCT/US2015/024810, dated Jul. 8, 2015. (13 pages). |
European Search Report for Application No. 15167039.5, dated Sep. 8, 2015. (7 pages). |
SandBox Logistics, “Mine to Wellhead Logistics,” Houston, TX, May, 2011. |
SandBox Logistics, LLC, screenshots from video made in Apr. 2013 and publicly shown in May 2013, Arnegard, North Dakota. |
International Search Report for PCT/US15/35635, dated Oct. 30, 2015. (12 pages). |
PCT International Search Report for PCT/US15/49074, dated Dec. 17, 2015. (11 pages). |
PCT International Search Report for PCT/US15/57601, dated May 6, 2016. (11 pages). |
SandBox Logistics, LLC, screenshots from video dated Sep. 19, 2013. |
SandBox Logistics, LLC, screenshots from video dated Aug. 22, 2014. |
SandBox Logistics, LLC, screenshots from video dated Oct. 11, 2011. |
SandBox Logistics, LLC, screenshots from video dated Apr. 10, 2011. |
Grit Energy Solutions, LLC, Fidelity, Screenshots from video dated May 16, 2014. |
Grit Energy Solutions, LLC, Gate, Screenshots from video dated Dec. 6, 2013, https://www.youtube.com/user/gritstack. |
Grit Energy Solutions, LLC, Screen, Screenshots from video dated Dec. 6, 2013, https://www.youtube.com/user/gritstack. |
Grit Energy Solutions, LLC, The Grit Stack System—Live Frac, Screenshots from video dated Jun. 15, 2015, https://www.youtube.com/user/gritstack. |
Grit Energy Solutions, LLC, The Grit Stack System, Screenshots from video dated Feb. 7, 2014, https://www.youtube.com/user/gritstack. |
Frac Sand Primer by Brian D. Olmen, Kelrick, LLC, from Hydraulic Fracturing by Michael Berry Smith and Carl Montgomery (CRC Press, Dec. 16, 2015), p. 384. |
Premier Silica LLC, Sands Application in the Energy Market, Irving, TX, Copyright 2016. |
Getty, John, Montana Tech; ASTM International, Overview of Proppants and Existing Standards and Practices, Jacksonville, FL, Jan. 29, 2013. |
Non-Final Office Action dated May 13, 2016 for co-pending U.S. Appl. No. 14/986,826. |
Final Office Action dated Sep. 15, 2016 for co-pending U.S. Appl. No. 14/922,836. |
Non-Final Office Action dated Feb. 4, 2016 for co-pending U.S. Appl. No. 14/922,836. |
Final Office Action dated Aug. 25, 2016 for co-pending U.S. Appl. No. 14/927,614. |
Non-Final Office Action dated Mar. 1, 2016 for co-pending U.S. Appl. No. 14/927,614. |
Non-Final Office Action dated Apr. 29, 2016 for co-pending U.S. Appl. No. 14/943,182. |
Final Office Action dated Sep. 15, 2016 for co-pending U.S. Appl. No. 14/882,973. |
Non-Final Office Action dated Feb. 11, 2016 for co-pending U.S. Appl. No. 14/882,973. |
Non-Final Office Action dated Aug. 11, 2016 for co-pending U.S. Appl. No. 13/625,675. |
Final Office Action dated Nov. 11, 2015 for co-pending U.S. Appl. No. 13/625,675. |
Non-Final Office Action dated Mar. 11, 2015 for co-pending U.S. Appl. No. 13/625,675. |
Arrows Up, Inc., Jumbo BTS—Bulk Transport System, Aug. 1, 2014. |
Arrows Up, Inc., Reusable Packaging Association, Member Spotlight: John Allegrelli, President & CEO, Arrows Up, Inc., Jun. 23, 2016. |
Seed Today, Arrows Up, Inc. Bulk Transport System (BTS), Country Journal Publishing Co., Decatur, IL, Mar. 2, 2011. |
SeedQuest, Arrows Up, Inc. launches innovative bulk transport system for see, Barrington, IL, Mar. 2, 2011. |
Monster Tanks, Inc., Sand Monster Website, http://monstertanksinc.com/sandmonster.html, 2012. |
Solaris Oilfield Infrastructure, Mobile Sand Silo System, 2016. |
Final Office Action dated Sep. 27, 2016 for co-pending U.S. Appl. No. 13/555,635. |
Non-Final Office Action dated Mar. 23, 2016 for co-pending U.S. Appl. No. 13/555,635. |
Final Office Action dated Jul. 30, 2015 for co-pending U.S. Appl. No. 13/555,635. |
Non-Final Office Action dated Oct. 22, 2014 for co-pending U.S. Appl. No. 13/555,635. |
Final Office Action dated Jun. 21, 2016 for co-pending U.S. Appl. No. 13/628,702. |
Non-Final Office Action dated Feb. 23, 2016 for co-pending U.S. Appl. No. 13/628,702. |
Final Office Action dated Sep. 22, 2015 for co-pending U.S. Appl. No. 13/628,702. |
Non-Final Office Action dated Jul. 28, 2015 for co-pending U.S. Appl. No. 13/628,702. |
Final Office Action dated Mar. 24, 2015 for co-pending U.S. Appl. No. 13/628,702. |
Non-Final Office Action dated Sep. 18, 2014 for co-pending U.S. Appl. No. 13/628,702. |
Final Office Action dated Jun. 27, 2016 for co-pending U.S. Appl. No. 14/831,924. |
Non-Final Office Action dated Feb. 16, 2016 for co-pending U.S. Appl. No. 14/831,924. |
Final Office Action dated Jun. 27, 2016 for co-pending U.S. Appl. No. 14/923,920. |
Non-Final Office Action dated Feb. 9, 2016 for co-pending U.S. Appl. No. 14/923,920. |
Final Office Action dated Sep. 15, 2016 for co-pending U.S. Appl. No. 14/943,111. |
Non-Final Office Action dated Apr. 5, 2016 for co-pending U.S. Appl. No. 14/943,111. |
Final Office Action dated Jul. 18, 2016 for co-pending U.S. Appl. No. 14/948,494. |
Non-Final Office Action dated Apr. 8, 2016 for co-pending U.S. Appl. No. 14/948,494. |
Non-Final Office Action dated Sep. 6, 2016 for co-pending U.S. Appl. No. 15/144,296. |
Non-Final Office Action dated Jul. 25, 2016 for co-pending U.S. Appl. No. 13/660,855. |
Final Office Action dated Apr. 28, 2016 for co-pending U.S. Appl. No. 13/660,855. |
Non-Final Office Action dated Oct. 6, 2015 for co-pending U.S. Appl. No. 13/660,855. |
Final Office Action dated Aug. 6, 2015 for co-pending U.S. Appl. No. 13/660,855. |
Non-Final Office Action dated Apr. 29, 2015 for co-pending U.S. Appl. No. 13/660,855. |
Final Office Action dated Dec. 17, 2014 for co-pending U.S. Appl. No. 13/660,855. |
Non-Final Office Action dated Sep. 4, 2014 for co-pending U.S. Appl. No. 13/660,855. |
Final Office Action dated Sep. 24, 2013 for co-pending U.S. Appl. No. 13/660,855. |
Non-Final Office Action dated May 14, 2013 for co-pending U.S. Appl. No. 13/660,855. |
Non-Final Office Action dated Jul. 5, 2016 for co-pending U.S. Appl. No. 14/996,362. |
Non-Final Office Action dated Jul. 6, 2016 for co-pending U.S. Appl. No. 15/144,450. |
Final Office Action dated Sep. 29, 2016 for co-pending U.S. Appl. No. 13/768,962. |
Non-Final Office Action dated Apr. 5, 2016 for co-pending U.S. Appl. No. 13/768,962. |
Final Office Action dated Oct. 9, 2015 for co-pending U.S. Appl. No. 13/768,962. |
Non-Final Office Action dated May 1, 2015 for co-pending U.S. Appl. No. 13/768,962. |
Non-Final Office Action dated Jul. 18, 2016 for co-pending U.S. Appl. No. 15/152,744. |
Non-Final Office Action dated Apr. 13, 2016 for co-pending U.S. Appl. No. 14/738,485. |
Non-Final Office Action dated Sep. 7, 2016 for co-pending U.S. Appl. No. 14/841,942. |
Final Office Action dated May 12, 2016 for co-pending U.S. Appl. No. 14/841,942. |
Non-Final Office Action dated Nov. 30, 2015 for co-pending U.S. Appl. No. 14/841,942. |
Non-Final Office Action dated Jul. 21, 2016 for co-pending U.S. Appl. No. 15/083,596. |
Non-Final Office Action dated Aug. 19, 2016 for co-pending U.S. Appl. No. 15/084,611. |
Non-Final Office Action dated Sep. 6, 2016 for co-pending U.S. Appl. No. 15/143,942. |
Final Office Action dated Sep. 1, 2016 for co-pending U.S. Appl. No. 14/848,447. |
Non-Final Office Action dated Apr. 8, 2016 for co-pending U.S. Appl. No. 14/848,447. |
International Search Report and Written Opinion for PCT/US2017/012271, dated May 22, 2017. |
Non-Final Office Action dated Apr. 24, 2017 for co-pending U.S. Appl. No. 14/738,485. |
Final Office Action dated May 4, 2017 for co-pending Application No. 15/143,942. |
Final Office Action dated May 30, 2017 for co-pending U.S. Appl. No. 13/625,675. |
Final Office Action dated Apr. 19, 2017 for co-pending U.S. Appl. No. 15/219,640. |
Non-Final Office Action dated Jun. 1, 2017 for co-pending U.S. Appl. No. 15/219,640. |
Final Office Action dated May 2, 2017 for co-pending U.S. Appl. No. 15/219,676. |
Non-Final Office Action dated May 10, 2017 for co-pending U.S. Appl. No. 14/882,973. |
Randy Lafollette, Key Considerations for Hydraulic Fracturing of Gas Shales, May 12, 2010. |
Case No. 4:17-cv-00589, Plaintiffs' P.R. 3-1 and 3-2 Infringement Contentions and Disclosures, Jun. 8, 2017. |
Non-Final Office Action dated Jul. 26, 2017 for co-pending U.S. Appl. No. 15/463,201. |
Final Office Action dated Jul. 27, 2017 for co-pending U.S. Appl. No. 14/738,485. |
Non-Final Office Action dated Aug. 3, 2017 for co-pending U.S. Appl. No. 15/219,676. |
Beckwith, Robin, Proppants: Where in the World, Proppant Shortage, JPT, Apr. 2011 (6 pages). |
Kullman, John, The Complicated World of Proppant Selection . . . , South Dakota School of Mines & Technology, Oct. 2011 (65 pages). |
Lafollette, Randy, Key Considerations for Hydraulic Fracturing of Gas Shales, BJ Services Company, Sep. 3, 2010 (53 pages). |
WW Trailers Inc., Model GN2040EZ datasheet, Portland, OR, Jan. 2007 (4pages). |
WW Trailers Inc., Model GN204S9A datasheet, Portland, OR, Jan. 2007 (4pages). |
Non-Final Office Action dated Oct. 27, 2016 for co-pending U.S. Appl. No. 15/219,676. |
Non-Final Office Action dated Nov. 9, 2016 for co-pending U.S. Appl. No. 14/948,494. |
Final Office Action dated Nov. 4, 2016 for co-pending U.S. Appl. No. 14/738,485. |
Non-Final Office Action dated Dec. 28, 2016 for co-pending U.S. Appl. No. 13/628,702. |
Non-Final Office Action dated Jan. 13, 2017 for co-pending U.S. Appl. No. 14/923,920. |
Final Office Action dated Jan. 12, 2017 for co-pending U.S. Appl. No. 14/841,942. |
Non-Final Office Action dated Dec. 23, 2016 for co-pending U.S. Appl. No. 14/485,686. |
Non-Final Office Action dated Jan. 27, 2017 for co-pending U.S. Appl. No. 14/485,687. |
Non-Final Office Action dated Dec. 20, 2016 for co-pending U.S. Appl. No. 14/831,924. |
Final Office Action dated Jan. 19, 2017 for co-pending U.S. Appl. No. 13/660,855. |
Final Office Action dated Nov. 25, 2016 for co-pending U.S. Appl. No. 15/152,744. |
Non-Final Office Action dated Dec. 15, 2016 for co-pending U.S. Appl. No. 14/848,447. |
Non-Final Office Action dated Dec. 9, 2016 for co-pending U.S. Appl. No. 14/927,614. |
International Search Report for PCT Application No. PCT/US2016/050859 dated Dec. 9, 2016. |
Non-Final Office Action dated Feb. 24, 2017 for co-pending U.S. Appl. No. 14/943,182. |
Non-Final Office Action dated Feb. 14, 2017 for co-pending U.S. Appl. No. 14/943,111. |
Final Office Action dated Mar. 7, 2017 for co-pending U.S. Appl. No. 15/144,296. |
Non-Final Office Action dated Apr. 6, 2017 for co-pending U.S. Appl. No. 13/768,962. |
Non-Final Office Action dated Mar. 6, 2017 for co-pending U.S. Appl. No. 15/152,744. |
Non-Final Office Action dated Apr. 3, 2017 for co-pending U.S. Appl. No. 13/555,635. |
Yergin, Daniel, The Quest: Energy, Security, and the Remaking of the Modern World, 2011. |
Gold, Russell, The Boom: How Fracking Ignited the American Energy Revolution and Changed the World, 2014. |
Yergin, Daniel, Stepping on the Gas, Wall Street Journal, Apr. 2, 2011. |
Raimi, Daniel et al., Dunn County and Wafford City, North Dakota: A case study of the fiscal effects of Bakken shale development, Duke University Energy Initiative, May 2016. |
Local Economic Impacts Related to Marcellus Shale Development, The Center for Rural Pennyslvania, Sep. 2014. |
Eagle Ford Shale Task Force Report, Railroad Commission of Texas, Convened and Chaired by David Porter, Mar. 2013. |
Sandbox Logistics LLC et al v. Grit Energy Solutions LLC, 3:16-cv-00012, 73.Parties' P.R. 4-3 Joint Claim Construction and Prehearing Statement by Oren Technologies LLC, SandBox Enterprises LLC, SandBox Logistics LLC, Nov. 17, 2016. |
Beard, Tim, Fracture Design in Horizontal Shale Wells—Data Gathering to Implementation, EPA Hydraulic Fracturing Workshop, Mar. 10-11, 2011. |
Economic Impact of the Eagle Ford Shale, Center for Community and Business Research at the University of Texas at San Antonio's Institute for Economic Development, Sep. 2014. |
Kelsey, Timothy W. et al., Economic Impacts of Marcellus Shale in Pennsylvania: Employment and Income in 2009, The Marcellus Shale Education & Training Center, Aug. 2011. |
2006 Montana Commercial Vehicle Size and Weight and Safety Trucker's Handbook, Montana Department of Transportation Motor Carrier Services Division, Fifth Edition, Jun. 2010. |
Budzynski, Brian W., Never Meant to Take the Weight, Roads & Bridges, Apr. 2015. |
Interstate Weight Limits, 23 C.F.R. § 658, Apr. 1, 2011. |
VIN Requirements, 49 C.F.R. § 565, Oct. 1, 2011. |
Benson, Mary Ellen et al., Frac Sand in the United States—A Geological and Industry Overview, U.S. Department of the Interior, U.S. Geological Survey, 2015-2017. |
Beekman, Thomas J. et al., Transportation Impacts of the Wisconsin Fracture Sand Industry, Wisconsin Department of Transportation, Mar. 2013. |
U.S. Silica Company, Material Safety Data Sheet, Jan. 2011. |
Texas Transportation Code, Chapter 621, General Provisions Relating to Vehicle Size and Weight (Sec. 621.101 effective Sep. 1, 2005 and Section 621.403 effective Sep. 1, 1995). |
Garner, Dwight, Visions of an Age When Oil Isn't King, New York Times, Sep. 20, 2011. |
Final Office Action dated Oct. 13, 2017 for co-pending U.S. Appl. No. 15/398,950. |
Non-Final Office Action dated Sep. 21, 2017 for co-pending U.S. Appl. No. 15/413,822. |
Non-Final Office Action dated Oct. 5, 2017 for co-pending U.S. Appl. No. 14/848,447. |
Final Office Action dated Sep. 21, 2017 for co-pending U.S. Appl. No. 14/922,836. |
Non-Final Office Action dated Sep. 27, 2017 for co-pending U.S. Appl. No. 14/996,362. |
Non-Final Office Action dated Sep. 28, 2017 for co-pending U.S. Appl. No. 13/628,702. |
Final Office Action dated Jun. 1, 2017 for co-pending U.S. Appl. No. 13/628,702. |
Final Office Action dated Jul. 3, 2017 for co-pending U.S. Appl. No. 14/923,920. |
Final Office Action dated Jun. 21, 2017 for co-pending U.S. Appl. No. 14/943,182. |
Final Office Action dated Jun. 7, 2017 for co-pending U.S. Appl. No. 14/848,447. |
Final Office Action dated Jun. 28, 2017 for co-pending U.S. Appl. No. 14/485,687. |
Final Office Action dated Jun. 6, 2017 for co-pending U.S. Appl. No. 14/927,614. |
Non-Final Office Action dated Sep. 8, 2017 for co-pending U.S. Appl. No. 15/475,354. |
Non-Final Office Action dated Sep. 8, 2017 for co-pending U.S. Appl. No. 15/143,942. |
International Search Report and Written Opinion for PCT/US17/34603 dated Aug. 22, 2017. |
Non-Final Office Action dated Aug. 30, 2017 for co-pending U.S. Appl. No. 14/943,182. |
Non-Final Office Action dated Aug. 4, 2017 for co-pending U.S. Appl. No. 13/625,675. |
Number | Date | Country | |
---|---|---|---|
20170240363 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15251020 | Aug 2016 | US |
Child | 15589185 | US | |
Parent | 15143893 | May 2016 | US |
Child | 15251020 | US | |
Parent | 14851005 | Sep 2015 | US |
Child | 15143893 | US | |
Parent | 14314468 | Jun 2014 | US |
Child | 14851005 | US | |
Parent | 14310648 | Jun 2014 | US |
Child | 14314468 | US | |
Parent | PCT/US2013/032819 | Mar 2013 | US |
Child | 14310648 | US | |
Parent | 13427140 | Mar 2012 | US |
Child | PCT/US2013/032819 | US | |
Parent | 15143942 | May 2016 | US |
Child | 15251020 | US | |
Parent | 14851005 | Sep 2015 | US |
Child | 15143942 | US | |
Parent | 14314468 | Jun 2014 | US |
Child | 14851005 | US | |
Parent | 14310648 | Jun 2014 | US |
Child | 14314468 | US | |
Parent | PCT/US2013/032819 | Mar 2013 | US |
Child | 14310648 | US | |
Parent | 13427140 | Mar 2012 | US |
Child | PCT/US2013/032819 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13332937 | Dec 2011 | US |
Child | 13427140 | US | |
Parent | 13332937 | Dec 2011 | US |
Child | 13427140 | US |