The disclosure relates to the field of surgery and, more specifically, to tissue repairs for reconstructive surgeries.
Reconstruction systems, assemblies, kits and methods of tissue repairs are disclosed.
A tendon-slide technique is employed to repair distal tendon ruptures with a soft anchor. A tendon is approximated to bone with a surgical construct in the form of a soft anchor that includes a sheath and a tensionable construct attached to the sheath. In an embodiment, shuttling sutures are passed through a soft anchor sheath. The soft anchor sheath loaded with the shuttling sutures is inserted either unicortically or bicortically. Suture limbs extending from sutured tendon are passed/shuttled through the sheath by employing the shuttling sutures. The tendon is secured into or onto the bone. The suture limbs may be passed through the soft anchor sheath in various directions and/or orientations and/or locations.
The disclosure provides surgical systems, assemblies, constructs, kits and methods for securing soft tissue to bone with a tensionable construct.
In an embodiment, a surgical construct is a soft anchor in the form of a soft anchor sleeve (sheath) attached to soft tissue (e.g., tendon, ligament, etc.) to be positioned relative to bone. The surgical construct may be a single-loaded construct or multiple-loaded construct (multiple-tail construct). In an embodiment, the sleeve is attached to soft tissue by one or more flexible strands that are sutured/fixed to the soft tissue. The soft anchor sleeve (sheath) may be secured within a second tissue (for example, bone) and the tensionable construct may secure the soft tissue to the second tissue. The construct may be knotted or knotless.
In an embodiment, a surgical construct is a soft anchor that includes a soft anchor sleeve (sheath) and a tensionable construct with at least two flexible strands extending through the soft anchor sleeve (sheath). In an embodiment, a surgical construct includes a soft anchor sleeve (sheath) and at least two flexible strands extending through at least one passage/cannulation of the soft anchor sleeve. The at least two flexible strands may extend through the sleeve in similar or different directions and/or orientations and/or locations. The at least two flexible strands may extend through the sleeve in opposite directions. The at least two flexible strands are attached to the soft tissue, for example, securely attached to it. The at least two flexible strands may be sutured, for example, whipstitched, to soft tissue (e.g., tendon) to be secured to bone.
In an embodiment, a surgical construct is a soft anchor that includes a soft anchor sleeve (sheath) in the form of a tubular member with a first end and a second end; and a tensionable construct attached to the soft anchor sleeve (sheath). The tensionable construct may include one or more flexible strands extending through the soft anchor sleeve and secured to a tendon. At least one of the first and second ends may be an open end. The flexible strands may extend through the sleeve in similar or different directions and/or orientations and/or locations. The surgical construct may include one or more shuttling devices (passing devices or shuttle/pull devices or shuttling sutures) attached to the soft anchor sleeve and employed to shuttle/pass the flexible strands through the sleeve at different locations and/or orientations and/or directions. The shuttling devices may be shuttling wires or sliding shuttle stitches or any suture passing devices. The shuttling devices may be loaded with the flexible strands.
In an embodiment, a surgical construct is a soft anchor in the form of a multiple-loaded construct (multiple-loop construct or multiple-tail construct). The construct includes a soft anchor sleeve (sheath); a first flexible strand extending through a first passage of the soft anchor sleeve in a first direction; and a second flexible strand extending through a second passage of the soft anchor sleeve in a second direction, which may be similar or different from the first direction. The first and second flexible strands are attached to soft tissue to be positioned relative to bone. The soft anchor sleeve may be secured into or onto bone and the tensionable construct may secure the soft tissue (for example, distal biceps tendon) to the bone. The first direction may be opposite the second direction. The first and second directions may extend about parallel to a longitudinal axis of the sheath. The first and second directions may extend about parallel to a transversal axis of the sheath. The first and second flexible strands may extend for a first length or portion about parallel to a longitudinal axis of the sheath, and for a second length or portion about parallel to a transversal axis of the sheath. The construct may further include additional flexible strands. The first and second passages may be concentrically located and/or may extend in various directions relative to each other.
Methods of tissue repair are also disclosed. In an embodiment, a method of tissue repair comprises inter alia (i) providing a soft flexible sleeve (soft anchor sleeve, tubular member, or sheath) with two shuttling strands passing through the flexible sleeve and in a first and second direction, respectively; (ii) securing the flexible sleeve with the two shuttling strands into or onto bone; (iii) passing suturing strands from a sutured soft tissue through the flexible sleeve by employing the two shuttling strands to shuttle the suturing strands through the flexible sleeve; and (iv) pulling on the suturing strands to approximate the sutured soft tissue to bone. The first direction may be similar to, or different from, the second direction. The first direction may be opposite the second direction. The first and second directions may be about parallel to a longitudinal axis of the sheath. The suturing strands may extend about parallel to a longitudinal axis of the sleeve, or about parallel to a transversal axis of the sheath, or in any directions (similar or different) relative to the two axis of the sleeve. The suturing strands may extend about parallel to a longitudinal axis of the sleeve for a first length or portion and then may extend about parallel to a transversal axis of the sheath, exiting the sheath at about a 90 degree angle with the longitudinal axis of the sheath.
In an embodiment, a method of distal biceps repair using a soft loadable button and tension-slide technique is conducted by inter alia (i) securing a soft button in the form of a flexible sleeve (soft anchor sleeve, tubular member, or sheath) into or onto bone, the flexible sleeve further including two shuttling strands passing through a length of the flexible sleeve and in opposite directions; and (ii) passing suturing strands from a sutured distal tendon through the flexible sleeve, by employing the two shuttling strands to shuttle the suturing strands through the flexible sleeve. The method further includes (iii) pulling on the suturing strands to approximate and secure the distal biceps tendon to bone. Step (ii) may be conducted before or after step (i).
The surgical constructs and methods of the present disclosure provide apparatus, systems, assemblies, kits and methods for tissue repair, for example, distal biceps repair using a loadable soft button and tension-slide technique. The methods of the present disclosure provide surgeons with a non-metallic button option which will not be visible on X-rays and which allows surgeons to drill a smaller tunnel than those required for metal buttons. The disclosure provides a “cortical” soft button that is preloaded with shuttling devices (shuttling FiberLink™ sutures with a closed loop on one end, for example) to enable to attach external sutures to the soft anchor/button.
As detailed below, during a biceps tenodesis, for example, a soft flexible sheath is preloaded with shuttling sutures (wire loops) so that each loop of a shuttling suture extends at an end opposite the other end. External sutures are shuttled through the sheath in various directions (by employing the shuttling sutures). In this manner, whipstitched suture limbs (sutured to a distal tendon) are shuttled through the sheath using the shuttling sutures (for example, FiberLink™ sutures). The tendon will tension slide into or onto the bone. The technique requires a smaller drill hole and the final repair (loadable soft button) does not show up on X-rays.
The present disclosure also provides systems, assemblies and kits containing implants, drill(s), guide, FiberLoop® sutures and free needle. The implants/constructs of the disclosure may be available alone or in combination with other elements, i.e., part of kits, systems, etc.
Referring now to the drawings, where like elements are designated by like reference numerals,
In an exemplary embodiment, flexible strands 21, 23 are shuttling devices (passing devices or shuttle/pull devices or suture passers such as shuttling wires or sliding shuttle stitches) attached to the soft anchor sleeve 10. Flexible strands 21, 23 may be shuttling devices with a small closed loop 21a, 23a at one end, employed to shuttle/pass additional flexible strands through the sleeve 10, as detailed below. The shuttling devices 21, 23 may be shuttling wires or sliding shuttle stitches. The shuttling devices 21, 23 may be loaded with the flexible strands.
In the exemplary embodiment of
The first and second shuttling devices 21, 23 are configured to be pulled out of the body of the soft anchor sleeve to allow first and second flexible strands 32, 34 to pass through the body 13 of the sleeve 10, as shown in
Surgical assembly 99 is a tensionable construct 99. Pulling on the ends 32, 34 in the directions of arrows A1, A2 (
Exemplary surgical assembly 99 is a double-tail construct with two flexible sutures. However, additional embodiments wherein one or three or more flexible sutures are provided along a length of the sleeve 10 are also contemplated. The number of flexible sutures of tensionable construct 99 will depend on the number of sutures employed to fixate/secure tendon 80, for example, to suture/stitch distal end 83 of tendon 80.
Surgical Technique
Place the patient in a supine position on the operating room table. Make transverse incision approximately few centimeters distal to the elbow flexion crease. Identify the lateral antebrachial cutaneous nerve and retract it laterally. Identify the retracted distal end of the biceps tendon and deliver it through the incision. Debride the end of the tendon to remove any degenerative or diseased tissue. The tendon 80 could pass through a sizing block to ensure that it will fit through a bone tunnel. Whipstitch a portion (about 2.5 cm) of the distal end 83 of the biceps tendon 80 using a FiberLoop®, making sure to lock the sutures 30 by making the final pass proximal to the previous pass, to obtain stitched region 33. Cut the FiberLoop® near the needle, ensuring adequate length suture limbs 32, 34. Mark a line on the tendon 1 cm from the end to help visualize the tendon docking into the radial tuberosity.
Thread one limb 32 of suture 30 through loop 21a of first shuttling device 21, and thread one limb 34 of suture 30 through loop 23a of second shuttling device 23. Pull on each shuttling device simultaneously to ensure that the sutures 32, 34 are passed through the body 13 of sleeve 10 and slide freely within the sleeve, and to obtain assembly 99.
With the elbow in full extension and full supination, expose the radial tuberosity and debride it of any remaining soft tissue. Drill a bi-cortical tunnel 91 through the radial tuberosity 90. Fluoroscopy may be used to confirm drill placement in the radial tuberosity.
Drill a uni-cortical tunnel 92 (
Insert the surgical assembly 99 through both cortices of the radial tuberosity. Flexing the forearm may aid in sleeve and tendon insertion. Verify that the sleeve with both suture limbs 32, 34 is deployed through both cortices.
Pull on the free suture limbs 32, 34 to seat the sleeve 10 against the radius. Grasp each limb 32, 34 of suture 30 and slowly apply tension to dock the tendon 80 into the bone tunnel 92. The previously marked line may also aid in visual confirmation that the tendon is fully docked into the bone tunnel 92.
Once the tendon 80 is fully seated, free needle may be used to pass one limb through the tendon 80 and tie a knot 88, using a knot pusher if necessary.
Load fixation device 89 (for example, a 7 mm×10 mm PEEK tenodesis screw 89) onto a driver and load one suture limb through the driver. Insert the screw 89 on the radial side of the bone tunnel 92, pushing the tendon more ulnar. The screw 89 should seat flush with the anterior cortex.
Tie the suture limbs over the screw to complete the repair 101.
Like surgical construct 20, surgical construct 120 is also provided with a soft anchor sleeve 10 (sheath 10; sleeve 10; tubular member 10) with a body 13 and at least one flexible material or flexible strand 121, 123 (shuttling devices 121, 123) extending through at least an inner portion of the body 13 and along a length of the body 13. Soft anchor sleeve 10 is provided with a first end 10a and a second end 10b. At least one of the first and second ends 10a, 10b may be an open end. In the exemplary embodiment shown in
In the exemplary embodiments of
For example,
Construct 420 is about similar to surgical construct 320 detailed above in that it also includes a soft anchor sleeve 10 (sheath 10; sleeve 10; tubular member 10; tube 10) with a body 13, and one or more flexible materials or flexible strands 21, 23 extending through at least an inner portion of the body 13. Like in the previously-described embodiment, flexible strands 21, 23 are shuttling devices (passing devices or shuttle/pull devices or suture passers such as shuttling wires or sliding shuttle stitches) attached to the soft anchor sleeve 10, and each provided with a small closed loop 21a, 23a at one end. First shuttling device 21 enters one of the ends 10a, 10b of the sheath 10 (for example, end 10a) and then exits the sheath at location L1 of the sheath. Location L1 is spaced apart from ends 10a, 10b. Similarly, second shuttling device 23 enters one of the ends 10a, 10b of the sheath 10 (for example, end 10b) and then exits the sheath at location L2 of the sheath. Location L2 is spaced apart from ends 10a, 10b. Locations L1 and L2 may be spaced apart from each other (as shown in
Construct 420 also includes a knotless mechanism 421 which may be similar to the knotless SutureTak® self-locking technology (“finger trap” design). Knotless mechanism 421 is part of tensionable construct 199 (
The knotless version shown in
In additional embodiments, the length of suture 30 with limbs 32, 34 employed to suture/whipstitch tendon 80 may be engineered so that the surgeon whipstitches a certain length of it and then the limbs 32, 34 are pulled through the sheath 10 and locked within it, i.e., locked within stuffed structures 425a, 425b (flexible materials 425a, 425b) in a knotless manner. The flexible materials 425a, 425b may be any structures that allow the passage of limbs 32, 34 and locking of the limbs within the body of the flexible materials.
The first and second shuttling devices 21, 23, 121, 123 may be passing devices; shuttle/pull devices; suture passers such as shuttling wires or sliding shuttle stitches; or any combination of these devices. The shuttling devices are configured to be pulled out of the body of the soft anchor sleeve 10 to allow the suture strands to pass through the body of the sleeve and be further secured to another tissue (for example, bone). The plurality of flexible limbs/sutures that are shuttled/passed with the first and second shuttling devices 21, 23, 121, 123 may be shuttled simultaneously or sequentially. The soft anchor sleeve 10 may be secured to a first tissue (for example, bone) and the tensionable construct (formed by the soft tissue and attached suture strands) may secure a second tissue (for example, the soft tissue) to the first tissue.
The methods of the present disclosure are conducted by inserting flexible sleeve 10 (soft anchor sleeve, tubular member, or sheath 10) of surgical construct 20, 120, 220, 320, 420 in a hole 92 in bone 90; and fixing limbs of flexible material/strand 30 (attached to tissue 80) in or to the flexible sleeve 10 (soft anchor sleeve 10; tubular member 10) in a knotted or knotless manner. The limbs 32, 34 of the flexible material/strand 30 are passed within the flexible sleeve 10 to form tensionable construct 99, 199 which may include at least one adjustable closed loop 55 (self-locking mechanism 55) or knotless mechanism 421 and which allows the user (for example, surgeon) to control the tension of the flexible strand 30 on first tissue 80 (soft tissue) to be attached to a second tissue 90 (for example, bone).
The shuttling devices 21, 23, 121, 123 may be shuttle/pull suture devices such as shuttling wires or passing instruments, for example, a FiberLink™ or a Nitinol loop. Each of the shuttling devices 21, 23, 121, 123 may be provided loaded with flexible limbs of flexible strands 30. Each of the shuttling devices 21, 23, 121, 123 is configured to be pulled out of the body of the sheath 10, to allow limbs of the flexible strand 30 to pass through the body of the soft anchor sleeve. The passage of the limbs of the flexible strand may optionally form a knotless closed adjustable loop having an adjustable length and perimeter. Each of the shuttling devices 21, 23, 121, 123 may be provided with one, two, or more than two, shuttling eyelets or closed loops, to facilitate passing of multiple flexible strands/sutures through body 13 of sheath/sleeve 10. For example, two shuttling loops may be provided at one end of the shuttling device, whereas one loop may be provided at another end of the shuttling device (for example, the opposite end).
Flexible ends/limbs of flexible strand 30 are passed through shuttling loops or eyelets 21a, 23a, 21b, 23b of shuttling devices 21, 23, 121, 123. The shuttling devices 21, 23, 121, 123 are then pulled so that the flexible ends/limbs of suture 30 are brought inside the sheath 10 to form adjustable closed loop 55 of repair 101 (
Suture limbs passed through the soft anchor sleeve 10 may exit the soft anchor sleeve 10 at various locations relative to ends 10a, 10b. For example, the suture limbs may exit the most distal and proximal ends (as shown in
Flexible strands 30, 32, 34 and tensionable construct 99, 199 may be formed of flexible materials and strands such as suture (for example, round suture) or tape (for example, suture tape) or combination of suture and tape. The flexible strands may have cross-sections of various forms and geometries, including round, oval, rectangular, or flat, among others, or combination of such forms and geometries. In an exemplary embodiment only, at least one of flexible strands 30, 32, 34 may be provided as a cord or suture which may be braided, knitted or woven. Flexible strands 30, 32, 34 may be any tissue repair strands, for example, suture strands, nitinol strands, FiberLink™ or combinations of such materials, among many others.
Flexible strands 30, 32, 34 and/or sheath 10 may be made of any known suture construct, such as multifilament, braided, knitted, woven suture, or including fibers of ultrahigh molecular weight polyethylene (UHMWPE) or the FiberWire® suture (disclosed in U.S. Pat. No. 6,716,234, the disclosure of which is hereby incorporated by reference in its entirety herein). FiberWire® suture is formed of an advanced, high-strength fiber material, namely ultrahigh molecular weight polyethylene (UHMWPE), sold under the tradenames Spectra (Honeywell) and Dyneema (DSM), braided with at least one other fiber, natural or synthetic, to form lengths of suture material. The preferred FiberWire® suture includes a core within a hollow braided construct, the core being a twisted yarn of UHMWPE. Flexible strands 30, 32, 34 and/or sheath 10 may be also formed of suture tape, for example, Arthrex FiberTape®, which is a high strength suture tape that is braided and rectangular-like in cross section and as disclosed in U.S. Pat. No. 7,892,256, the disclosure of which is incorporated by reference in its entirety herein. Surgical constructs 20, 120, 220, 320, 420 can be used with any type of flexible material or suture known in the art. The strands 30, 32, 34 and/or sheath 10 may be also formed of a stiff material, or combination of stiff and flexible materials, depending on the intended application. The strands 30, 32, 34 and/or sheath 10 may be also coated and/or provided in different colors.
Flexible sheath 10 may be dimensioned to allow secure insertion and installing into an opening or tunnel or hole/socket within bone, so that the sheath is below a cortical surface of the bone. The constructs of the present disclosure are not limited to areas with good bone and depth, but could be also used for unicortical applications as well. Sheath design can be modified as needed while keeping the construct consistent based on repair location (sheath size or type). The construct creates a knotless repair, wherein the repair suture is fixed to soft tissue and then limbs of the repair suture are passed through the sheath, with both limbs passing from one end of the sheath to the other end of the sheath, and also extending through a bone tunnel.
Shuttling loops 21a, 23a, 21b, 23b of shuttling devices 21, 23, 121, 123 are flexible, continuous loops or eyelets that may have similar or different diameters and/or similar or different perimeters. Shuttling loops may be formed of nitinol or similar material (for example, alloy or metal). If a shuttling device is provided with two or more shuttling loops or eyelets, the eyelets may be all adjacent to each other (i.e., provided at a same end of the shuttling device and in sequential order), one after another spaced apart along a length of the shuttling device.
For multiple-tail constructs, the multiple flexible limbs may be passed through one of the two shuttling loops and then passed all simultaneously. For example, a first plurality of limbs (for example, two limbs) may be passed through loop 21a and a second plurality of limbs (for example, three limbs) may be passed through loop 21b in a single pass step.
Surgical constructs 20, 120, 220, 320, 420 may be preferably coated (partially or totally) with wax (beeswax, petroleum wax, polyethylene wax, or others), silicone (Dow Corning silicone fluid 202A or others), silicone rubbers (Nusil Med 2245, Nusil Med 2174 with a bonding catalyst, or others) PTFE (Teflon, Hostaflon, or others), PBA (polybutylate acid), ethyl cellulose (Filodel) or other coatings, to improve lubricity of the suture or tape, knot security, pliability, handleability or abrasion resistance, for example.
In additional embodiments, sheath 10 may be formed of braided polyester with or without a core (as long as it allows passage of shuttling devices and flexible strands through it), and the flexible strands may be suture. If desired, at least one of the sheath 10 and/or flexible strand 30, 32, 34 may be coated, impregnated, or otherwise stiffened with a material such as plastic, for example. Preferably, flexible limbs of suturing construct may have a very fine end that is coated, impregnated, or stiffened with a material such as plastic, for example.
The sheath 10 and/or flexible strand 30, 32, 34 may be also provided with tinted tracing strands, or otherwise contrast visually with the sheath of the construct, which remains a plain, solid color, or displays a different tracing pattern, for example. Various structural elements of surgical constructs 20, 120, 220, 320, 420 and assembly 99, 199 (tensionable construct 99, 199) may be visually coded, making identification and handling of the suture legs simpler. Easy identification of suture in situ is advantageous in surgical procedures.
The surgical constructs and assemblies of the present disclosure have applicability to suture applications that may be employed in surgical procedures such as shoulder repairs, biceps repairs, and other reconstruction procedures, and applications for suture used in or with suture anchors.
An exemplary method of tissue repair may comprise inter alia the steps of installing a soft anchor 10 into or onto bone; and threading limbs 32, 34 of a suture 30 attached to tendon 80 through the soft anchor 10, to attach the tendon 80 to the soft anchor 10 in a knotted or knotless manner. The soft anchor 10 is a soft loadable button. The soft loadable button may be a knotted construct or a knotless construct.
An exemplary method of tissue repair may comprise inter alia the steps of (i) securing a soft anchor sheath 10 to a first tissue 90; (ii) passing a flexible strand 30 through or around a second tissue 80 to be secured to the first tissue; and (iii) securing limbs 32, 34 of the flexible strand 30 to the soft anchor sheath 10. The method may further comprise the step of passing limbs 32, 34 through a body of the sheath 10 by shuttling the limbs 32, 34 with at least one shuttling device. The method may further comprise the step of threading one of limbs 32, 34 through an eyelet of a shuttling device extending through at least a portion of the body of the sheath 10, and pulling the shuttling device to bring the one of the limbs 32, 34 within the body of the sheath. The method may further comprise the step of threading a first limb 32 through an eyelet 21a of a shuttling device 21 extending through at least a first portion of the body of the sheath 10; threading a second limb 32 through an eyelet 23a of a shuttling device 23 extending through at least a second portion of the body of the sheath 10; and pulling the shuttling devices 21, 23 to bring the limbs 32, 34 within the body of the sheath and form a tensionable construct 99, 199. The tensionable construct may be knotless or knotted.
The term “high strength suture” is defined as any elongated flexible member, the choice of material and size being dependent upon the particular application. For the purposes of illustration and without limitation, the term “suture” as used herein may be a cable, filament, thread, wire, fabric, or any other flexible member suitable for tissue fixation in the body.
Number | Name | Date | Kind |
---|---|---|---|
6045574 | Thal | Apr 2000 | A |
6143017 | Thal | Nov 2000 | A |
6296659 | Foerster | Oct 2001 | B1 |
6511498 | Fumex | Jan 2003 | B1 |
6544281 | ElAttrache et al. | Apr 2003 | B2 |
7285124 | Foerster | Oct 2007 | B2 |
7749250 | Stone et al. | Jul 2010 | B2 |
7857830 | Stone | Dec 2010 | B2 |
7905903 | Stone | Mar 2011 | B2 |
7905904 | Stone et al. | Mar 2011 | B2 |
7909851 | Stone et al. | Mar 2011 | B2 |
7959650 | Kaiser | Jun 2011 | B2 |
8088130 | Kaiser | Jan 2012 | B2 |
8118836 | Denham | Feb 2012 | B2 |
8231654 | Kaiser et al. | Jul 2012 | B2 |
8273106 | Stone et al. | Sep 2012 | B2 |
8298262 | Stone et al. | Oct 2012 | B2 |
8303604 | Stone et al. | Nov 2012 | B2 |
8361113 | Stone et al. | Jan 2013 | B2 |
8545535 | Hirotsuka et al. | Oct 2013 | B2 |
8562645 | Stone et al. | Oct 2013 | B2 |
8562647 | Kaiser et al. | Oct 2013 | B2 |
8574235 | Stone | Nov 2013 | B2 |
8597327 | Stone et al. | Dec 2013 | B2 |
8608777 | Kaiser et al. | Dec 2013 | B2 |
8652172 | Denham et al. | Feb 2014 | B2 |
8672968 | Stone et al. | Mar 2014 | B2 |
8840645 | Denham et al. | Sep 2014 | B2 |
8936621 | Denham | Jan 2015 | B2 |
9005287 | Stone | Apr 2015 | B2 |
9095331 | Hernandez et al. | Aug 2015 | B2 |
9149267 | Norton et al. | Oct 2015 | B2 |
9198653 | Sengun et al. | Dec 2015 | B2 |
9198656 | Ferguson | Dec 2015 | B1 |
9271713 | Denham et al. | Mar 2016 | B2 |
9314241 | Stone et al. | Apr 2016 | B2 |
9345567 | Sengun | May 2016 | B2 |
9357992 | Stone et al. | Jun 2016 | B2 |
9370350 | Norton | Jun 2016 | B2 |
9402621 | Stone et al. | Aug 2016 | B2 |
9463013 | Pilgeram et al. | Oct 2016 | B2 |
9492158 | Stone et al. | Nov 2016 | B2 |
9498204 | Denham et al. | Nov 2016 | B2 |
9504460 | Stone et al. | Nov 2016 | B2 |
9510821 | Denham et al. | Dec 2016 | B2 |
9532777 | Kaiser et al. | Jan 2017 | B2 |
9539000 | Hendricksen et al. | Jan 2017 | B2 |
9539003 | Stone et al. | Jan 2017 | B2 |
9603591 | Denham et al. | Mar 2017 | B2 |
9622736 | Stone et al. | Apr 2017 | B2 |
9788826 | McCartney | Oct 2017 | B2 |
9801708 | Denham et al. | Oct 2017 | B2 |
9974534 | Troxel et al. | May 2018 | B2 |
10034663 | Nason | Jul 2018 | B1 |
10070856 | Black | Sep 2018 | B1 |
10610212 | Breslich | Apr 2020 | B2 |
10610217 | Stone et al. | Apr 2020 | B2 |
20030130694 | Bojarski | Jul 2003 | A1 |
20050049635 | Leiboff | Mar 2005 | A1 |
20080065114 | Stone | Mar 2008 | A1 |
20090105754 | Sethi | Apr 2009 | A1 |
20100268273 | Albertorio | Oct 2010 | A1 |
20120046693 | Denham | Feb 2012 | A1 |
20130096611 | Sullivan | Apr 2013 | A1 |
20130116730 | Denham | May 2013 | A1 |
20130296895 | Sengun | Nov 2013 | A1 |
20130296934 | Sengun | Nov 2013 | A1 |
20140249577 | Pilgeram | Sep 2014 | A1 |
20150142050 | Ferguson | May 2015 | A1 |
20150164497 | Callison | Jun 2015 | A1 |
20150173739 | Rodriguez | Jun 2015 | A1 |
20150173754 | Norton | Jun 2015 | A1 |
20160058436 | Stone | Mar 2016 | A1 |
20160113642 | Pilgeram | Apr 2016 | A1 |
20170014225 | Denham | Jan 2017 | A1 |
20170049432 | Dooney, Jr. | Feb 2017 | A1 |
20170049434 | Dooney, Jr. | Feb 2017 | A1 |
20170119382 | Denham | May 2017 | A1 |
20170189007 | Burkhart | Jul 2017 | A1 |
20170311947 | Kaiser et al. | Nov 2017 | A1 |
20170360437 | Ferguson | Dec 2017 | A1 |
20190038276 | Jackson | Feb 2019 | A1 |
20190247039 | Gregoire | Aug 2019 | A1 |
20190274681 | Denham | Sep 2019 | A1 |
20190290258 | Denham | Sep 2019 | A1 |
20190314143 | Jackson | Oct 2019 | A1 |
20190358023 | Winter | Nov 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20200054439 A1 | Feb 2020 | US |