Methods of tracking fluids produced from various zones in a subterranean well

Information

  • Patent Grant
  • 8354279
  • Patent Number
    8,354,279
  • Date Filed
    Thursday, February 12, 2004
    20 years ago
  • Date Issued
    Tuesday, January 15, 2013
    11 years ago
Abstract
Compositions and methods for determining the source of treatment fluids being produced from a production formation having multiple zones by introducing a treatment composition having a tracking material into a zone in the subterranean formation, and detecting the tracking material in treatment composition that flows back from the subterranean formation.
Description
BACKGROUND

The present embodiment relates generally to the recovery of hydrocarbons from a subterranean formation penetrated by a well bore and more particularly to non-radioactive compositions and methods of utilizing the non-radioactive compositions for determining the source of treatment fluids being produced from a production formation having multiple zones. For example, the compositions and methods can be utilized for tracking the transport of particulate solids during the production of hydrocarbons from a subterranean formation penetrated by a well bore.


Transport of particulate solids during the production of hydrocarbons from a subterranean formation penetrated by a well bore is a continuing problem. The transported solids can erode or cause significant wear in the hydrocarbon production equipment used in the recovery process. The solids also can clog or plug the well bore thereby limiting or completely stopping fluid production. Further, the transported particulates must be separated from the recovered hydrocarbons adding further expense to the processing. The particulates which are available for transport may be present due to an unconsolidated nature of a subterranean formation and/or as a result of well treatments placing particulates in a well bore or formation, such as, by gravel packing or propped fracturing.


In the treatment of subterranean formations, it is common to place particulate materials as a filter medium and/or a proppant in the near well bore area and in fractures extending outwardly from the well bore. In fracturing operations, proppant is carried into fractures created when hydraulic pressure is applied to these subterranean rock formations to a point where fractures are developed. Proppant suspended in a viscosified fracturing fluid is carried outwardly away from the well bore within the fractures as they are created and extended with continued pumping. Upon release of pumping pressure, the proppant materials remain in the fractures holding the separated rock faces in an open position forming a channel for flow of formation fluids back to the well bore.


Proppant flowback is the transport of proppants back into the well bore with the production of formation fluids following fracturing. This undesirable result causes undue wear on production equipment, the need for separation of solids from the produced hydrocarbons and occasionally also decreases the efficiency of the fracturing operation since the proppant does not remain within the fracture and may limit the width or conductivity of the created flow channel.


Current techniques for controlling the flowback of proppants include coating the proppants with curable resin, or blending the proppants with fibrous materials, tackifying agents or deformable particulates (See e.g. U.S. Pat. No. 6,328,105 to Betzold, U.S. Pat. No. 6,172,011 to Card et al. and U.S. Pat. No. 6,047,772 to Weaver et al.) For a multi-zone well that has been fractured with proppant and is plagued with proppant flowback problems, it is quite difficult to identify the zone from which the proppant is emanating unless the proppant is tagged with a tracer. Radioactive materials have been commonly used in the logging or tagging of sand or proppant placement, however, such radioactive materials are hazardous to the environment and the techniques for utilizing such radioactive materials are complex, expensive and time consuming. Therefore, there is a need for simple compositions and methods for tracking the flowback of proppant in subterranean wells to avoid the above problems.







DETAILED DESCRIPTION

According to one embodiment, to determine from which zone(s) a fluid is being produced, a water soluble inorganic or organic salt is dissolved in the base treatment fluid as the fluid is being pumped downhole during the treatment. Such treatment fluids include but are not limited to fracturing fluids, drilling fluids, disposal fluids and injection fluids used as displacement fluids in hydrocarbon recovery processes. Acting as a fluid tracer agent, a salt is tagged into the fluid that is unique for each treatment job such as a fracturing job treatment. Suitable water soluble salts for this purpose are metal salts in which the metal is selected from Groups I to VIII of the Periodic Table of the Elements as well as the lanthanide series of rare earth metals so long as the metal salts do not constitute a component of fluids naturally present in the formation and are compatible with the fluids injected into the formation. Preferred metals include barium, beryllium, cadmium, chromium, cesium, sodium, potassium, manganese and zinc. Particularly preferred water soluble salts include barium bromide, barium iodide, beryllium fluoride, beryllium bromide, beryllium chloride, cadmium bromide, cadmium chloride, cadmium iodide, cadmium nitrate, chromium bromide, chromium chloride, chromium iodide, cesium bromide, cesium chloride, sodium bromide, sodium iodide, sodium nitrate, sodium nitrite, potassium iodide, potassium nitrate, manganese bromide, manganese chloride, zinc bromide, zinc chloride, zinc iodide, sodium monofluoroacetate, sodium trifluoroacetate, sodium 3-fluoropropionate, potassium monofluoroacetate, potassium trifluoroacetate, potassium 3-fluoropropionate.


The fluid tracer agents used in the method of this embodiment must meet a number of requirements. They should be relatively inexpensive, must be compatible with fluids naturally present in the reservoir and within the rock itself, as well as be compatible with the fluids injected into the reservoir as part of the formation treatment. The fluid tracer agents must be susceptible to being readily detected qualitatively and analyzed quantitatively in the presence of the materials naturally occurring in the formation fluids. For example, an aqueous sodium chloride solution could be utilized as a fluid tracer agent but for the fact that most field brines contain sodium chloride in substantial quantities, and so detection and analysis to differentiate the presence of sodium chloride used as tracer in the presence of naturally-occurring sodium chloride would be difficult.


In field application, a known amount of a selected water soluble salt based on a known concentration (i.e. 100 parts per million) is dissolved in a volume of water which is 1/1,000 of the total actual volume of base fluid required for the treatment. The mixed solution is then metered to the base fluid line at a rate of one gallon per 1,000 gallons of the base fluid. To handle multiple zones, various salts can be used provided that the interest cations or anions of selected compounds are unique to prevent any interference between zones.


According to another embodiment, metals are tagged onto proppant material or materials to be blended with proppant material to provide for the ready identification of flowback proppant from different stages or zones of the well. Suitable metals for this purpose may be selected from Groups I to VIII of the Periodic Table of the elements as well as the lanthanide series of rare earth metals so long as the metals do not constitute a component of the proppant, the fracturing fluid or the reservoir fluid and so long as the metals are compatible with the fracturing fluid. Preferred metals include gold, silver, copper, aluminum, barium, beryllium, cadmium, cobalt, chromium, iron, lithium, magnesium, manganese, molybdenum, nickel, phosphorus, lead, titanium, vanadium and zinc as well as derivatives thereof including oxides, phosphates, sulfates, carbonates and salts thereof so long as such derivatives are only slightly soluble in water so that they remain intact during transport with the proppant from the surface into the fractures. Particularly preferred metals include copper, nickel, zinc, cadmium, magnesium and barium. The metal acts as a tracer material and a different metal is tagged onto the proppant, or onto the materials to be blended with the proppant, so that each proppant stage or each fracturing job treatment can be identified by a unique tracer material. Suitable metals for use as the tracer material are generally commercially available from Sigma-Aldrich, Inc. as well as from Mallinckrodt Baker, Inc. It is understood, however, that field grade materials may also be used as suitable tracer materials for tagging onto proppant material or materials to be blended with proppant material.


Samples of flowback proppant collected from the field may be analyzed according to a process known as the inductively-coupled plasma (ICP) discharge method to determine from which proppant stage and which production zone the proppant has been produced. According to the ICP discharge method, an aqueous sample is nebulized within an ICP spectrometer and the resulting aerosol is transported to an argon plasma torch located within the ICP spectrometer. The ICP spectrometer measures the intensities of element-specific atomic emissions produced when the solution components enter the high-temperature plasma. An on-board computer within the ICP spectrometer accesses a standard calibration curve to translate the measured intensities into elemental concentrations. ICP spectrometers for use according to the ICP discharge method are generally commercially available from the Thermo ARL business unit of Thermo Electron Corporation, Agilent Technologies and several other companies. Depending upon the model and the manufacturer, the degree of sensitivity of currently commercially available ICP spectrometers can generally detect levels as low as 1 to 5 parts per million for most of the metals listed above.


It is understood that depending on the materials used as tagging agents, other spectroscopic techniques well known to those skilled in the art, including atomic absorption spectroscopy, X-ray fluorescence spectroscopy, or neutron activation analysis, can be utilized to identify these materials.


According to yet another embodiment, an oil-soluble or oil-dispersible tracer comprising a metal salt, metal oxide, metal sulfate, metal phosphate or a metal salt of an organic acid can be used to tag the proppant by intimately mixing the metal with a curable resin prior to coating the curable resin onto the proppant. Preferably, the metal is selected from the Group VIB metals, the Group VIIB metals, and the lanthanide series of rare earth metals. Specifically, the metal according to this embodiment may be chromium, molybdenum, tungsten, manganese, technetium, rhenium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. It is preferred that the metals according to this embodiment, do not constitute a component of the proppant, the fracturing fluid or the reservoir fluid, and that the metals are compatible with the fracturing fluid.


Preferably, the organic acid is a substituted or unsubstituted carboxylic acid. More preferably, the organic acid may be selected from alkanoic and alkenoic carboxylic acids, polyunsaturated aliphatic monocarboxylic acids and aromatic carboxylic acids. Most preferably, the alkanoic carboxylic acids have from 5 to 35 carbon atoms, the alkenoic carboxylic acids have from 5 to 30 carbon atoms, the polyunsaturated aliphatic monocarboxylic acids may be selected from the group of sorbic, linoleic, linolenic, and eleostearic acids and the aromatic acids maybe selected from the group of benzoic, salicylic, cinnarnic and gallic acids. Suitable organic acids are generally commercially available from Sigma-Aldrich, Inc. as well as from Mallinckrodt Baker, Inc.


For proppant to be coated with a curable resin, the tracer agent is blended homogeneously with the resin mixture and the resin is then coated onto the proppant. The proppant can be pre-coated as in the case of curable resin-coated proppants, for example, such as those commercially available from Santrol or Acme Borden, or it can be coated on-the-fly during the fracturing job treatment. The nature of the resin materials and the processes for performing the coating process is well know to those skilled in the art, as represented by U.S. Pat. No. 5,609,207 to Dewprashad et al., the entire disclosure of which is hereby incorporated herein by reference. Also, it is understood that materials to be blended with proppant such as the fibrous materials, tackifying agents or deformable beads disclosed in U.S. Pat. No. 6,328,105 to Betzold, U.S. Pat. No. 6,172,011 to Card et al. and U.S. Pat. No. 6,047,772 to Weaver et al., the entire disclosures of which are hereby incorporated by reference, can be similarly treated with a tracer agent.


According to still another embodiment, the metal elements or their derivative compounds can be tagged as part of the manufacturing process of proppant. As a result, the proppant is tagged with a permanent tracer.


According to yet another embodiment, the proppant can be coated with phosphorescent, fluorescent, or photoluminescent pigments, such as those disclosed in U.S. Pat. No. 6,123,871 to Carroll, U.S. Pat. No. 5,498,280 to Fistner et al. and U.S. Pat. No. 6,074,739 to Katagiri, the entire disclosures of which are hereby incorporated herein by reference. According to this embodiment, the phosphorescent, fluorescent, or photoluminescent pigments maybe prepared from materials well known to those skilled in the art including but not limited to alkaline earth aluminates activated by rare earth ions, zinc sulfide phosphors, aluminate phosphors, zinc silicate phosphors, zinc sulfide cadmium phosphors, strontium sulfide phosphors, calcium tungstate phosphors and calcium sulfide phosphors. Suitable phosphorescent, fluorescent and photoluminescent materials are commercially available from Keystone Aniline Corporation (TB Series) and Capricorn Chemicals (H Series and S Series Glowbug Specialty Pigments). The particular structure of the materials has a strong capacity to absorb and store visible light such as sunlight or light from artificial lighting. After absorbing a variety of such common visible light the phosphorescent, fluorescent, or photoluminescent materials will glow in the dark. Various pigment colors can be combined with the luminescent capability of the materials to enhance the differentiation of the stages or zones. According to this embodiment, micron sized particles of the phosphorescent, fluorescent, or photoluminescent materials are intimately mixed with a resin to be coated onto a proppant to be used in a fracturing treatment.


According to still another embodiment, proppant materials having a naturally dark color can be dyed or coated with a marker material having a bright, vivid and intense color which marker material may be selected from oil soluble dyes, oil dispersible dyes or oil dispersible pigments. Suitable oil soluble dyes, oil dispersible dyes and oil dispersible pigments are well known to those skilled in the art and are generally commercially available from Keystone Aniline Corporation and Abbey Color. According to this embodiment, proppant materials having a dark color, such as bauxite proppant which is naturally black in color, are dyed or coated with such marker materials. In this regard, reference is made to the dyes disclosed in U.S. Pat. No. 6,210,471 to Craig, the entire disclosure of which is hereby incorporated herein by reference.


According to all of the above-described embodiments, the proppant material may comprise substantially any substrate material that does not undesirably chemically interact with other components used in treating the subterranean formation. It is understood that the proppant material may comprise sand, ceramics, glass, sintered bauxite, resin coated sand, resin beads, metal beads and the like.


The following examples are illustrative of the methods and compositions discussed above.


EXAMPLE 1

ZnCl2 was selected to tag 50,000 gallons of a base fracturing fluid. For a 100-ppm concentration of ZnCl2 in the fracturing fluid, it requires 0.2084 gram per liter of fluid, or 39.44 kg for the total fluid volume. This amount of ZnCl2 is dissolved in 50 gallons of fluid, and the mixed solution is metered into the base fluid line at a rate of 1 gallon for every 1,000 gallons of the base fluid.


A number of methods well known to those of ordinary skill in the art such as wet chemistry titration, colorimetry, atomic absorption spectroscopy, inductively coupled plasma (ICP) discharge, ion chromatography (IC), gas chromatography (GC), liquid chromatography (LC) and nuclear magnetic resonance (NMR), can be used to analyze the fluid samples produced from the well and to determine from which zones the fluid has been produced, and the theoretical production level of each zone in the well.


EXAMPLE 2

A total of three separate hydraulic fracturing treatments were performed in a subterranean formation penetrated by a well bore. For each fracturing treatment, sufficient metal tracer was added to a liquid hardenable resin to provide an initial concentration of 1000 ppm of the metal tracer in the resin treated proppant. Cuprous oxide, manganese oxide, and zinc oxide were used as tagging agents in fracturing treatments 1, 2, and 3, respectively. Samples of flowback proppant were collected during the flow back of the well. Each proppant sample was weighted and digested in concentrated nitric acid before being measured against known, calibrated metal concentrations according to the inductively coupled plasma (ICP) discharge method for the ARL Model 3410 ICP which is commercially available from the Thermo ARL business unit of Thermo Electron Corporation. Table 1 shows the concentrations of each metal obtained in each proppant flowback sample. The data indicated that the highest concentration of flowback proppant was produced from the interval of the well that was fractured in the second fracturing treatment.












TABLE 1





Sample
Frac Treatment 1
Frac Treatment 2
Frac Treatment 3


Number
Cu (ppm)
Mn (ppm)
Zn (ppm)


















1
1.9
217.3
11.5


2
2
219.2
11.8


3
2.8
120.5
9.1


4
3.1
204.1
12


5
670.6
382
24.1


6
51.6
214.1
15.3


7
7.3
234.5
13.3


8
2.7
437.7
17.1


9
2.3
183.8
11.9


10
2.7
220.2
12.8


11
2.9
465
19.3


12
2.1
408.1
17.4


13
2.7
577.2
19.3


14
3.1
410.2
18.2


15
2.3
342.9
40.2


16
2.1
299.8
14.9


17
6.5
296.8
12.5


18
2.1
494.8
18


19
51
385.8
16.5


20
2.7
443.8
17


21
2.8
564.8
44.6


22
35.5
551.8
16.1


23
2.4
545.8
23.3


24
2
538.8
14.7


25
181
342.8
16.6


26
1.5
119.8
10.3


27
1.4
34.8
11.9


28
1.9
204.8
43.2


29
2
240.8
13.7


30
2.4
175.8
11.3


31
7.5
171.8
10.9


32
2.3
57.8
7.7


33
5.8
192.8
17


34
1.7
188.8
12.1


35
1.9
115.8
9.6


36
2.1
168.9
11.1


37
1.6
245.3
13


38
1.7
173.9
11.6


39
1.9
219.4
12.9


40
1.9
224.6
12.6


41
2
383.3
17.1


42
1.7
284.7
12.5


43
1.9
270.6
13.4


44
2.4
311
12.7


45
1.9
177.1
10.3


46
1.8
304.2
12.9


47
2.4
343.2
13.3


48
2
308.2
12.6


49
5.4
241.6
11.2


50
3.4
209.1
11.4


51
3.3
217.1
11.1


52
1.9
299.7
12.7


53
2.3
228.6
11.4


54
1.5
162.8
10.1









EXAMPLE 3

A total of five separate hydraulic fracturing treatments were performed in a subterranean formation penetrated by a well bore. For each fracturing treatment, sufficient metal tracer was added to the liquid hardenable resin to provide an initial concentration of 1000 ppm of the metal tracer in the resin treated proppant. Manganese oxide, cuprous oxide, zinc oxide, magnesium oxide, and barium oxide were used as tagging agents in fracturing treatments 1 through 5, respectively. Samples of flowback proppant were collected during the flow back of the well. Each proppant sample was weighted and digested in concentrated nitric acid before being measured against known, calibrated metal concentrations according to the inductively coupled plasma (ICP) discharge method for the ARL Model 3410 ICP which is commercially available from the Thermo ARL business unit of Thermo Electron Corporation. Table 2 shows the concentrations of each metal obtained in each proppant flowback sample. The data indicated that the highest concentration of flowback proppant was produced from the intervals of the well that were fractured in fracturing treatments 1 and 5.














TABLE 2







Frac
Frac
Frac
Frac



Frac
Treat-
Treat-
Treat-
Treat-


Sample
Treatment 1
ment 2
ment 3
ment 4
ment 5


Number
Mn (ppm)
Cu (ppm)
Zn (ppm)
Mg (ppm)
Ba (ppm)




















1
256.9
7.3
18.2
26.8
106.2


2
210.3
14.5
23.1
24
110.6


3
164.5
12.4
20.2
22.5
94.8


4
236.5
9.1
19.9
23.3
100.4


5
97.8
10.5
14.7
19
105.7


6
288.9
2.8
15.8
25.4
110.4


7
202.8
172.8
12.1
21.3
99.7


8
221.3
3
12.8
22.3
115.9


9
167.9
2.9
12.5
21.8
115.7


10
236.1
2.2
12.5
22.8
90.7


11
162.6
1.6
10.8
19.5
85.9


12
111.8
1.6
8.9
18.8
74.9


13
231.8
1.7
11.5
21.7
86.7


14
246.9
2.5
13.1
24.4
98.3


15
348.2
2
13.5
26.8
112.8


16
273.5
2.4
12.4
24.4
101


17
221.5
2
11.4
29.3
83.8


18
268
1.4
11.9
25.8
88.4


19
177.8
1.8
10.4
22.3
77.8


20
247.5
2.4
11.3
28
92.2


21
132.8
1.8
10
22.2
72.4


22
165.8
2.3
9.4
20.9
75.3


23
306.9
66.4
11.9
28.7
103.8


24
205.7
1.6
9.4
23
87.1


25
241.2
2.6
10.6
23.4
90.4


26
197.6
2.2
10.1
24.1
88


27
242
2.3
10.7
26.2
98.9


28
202.8
3
10.8
24.6
94.6


29
165.7
2
9
20.7
85.5


30
138.3
1.4
8.7
21.3
76.1


31
227.4
1.5
10.3
24
92.8


32
192.1
1.7
9.8
23.5
86.6


33
201.9
1.2
9.6
22.3
86.4


34
138.4
1.7
8.6
19.8
73.9









VARIATIONS AND EQUIVALENTS

Although only a few exemplary embodiments have been described in detail above, those skilled in the art will readily appreciate that many other modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages described herein. Accordingly, all such modifications are intended to be included within the scope of the following claims.

Claims
  • 1. A proppant composition comprising a particulate material that has been coated with a coating composition comprising a homogenous blend of a tracking composition and a resin composition, wherein the tracking composition comprises a substantially non-radioactive tracking material selected from the group consisting of: a metal salt wherein a metal portion of the metal salt is selected from the group consisting of gold, silver, lithium, molybdenum, and vanadium; anda metal salt selected from the group consisting of barium bromide, barium iodide, beryllium fluoride, beryllium bromide, beryllium chloride, cadmium bromide, cadmium iodide, chromium bromide, chromium chloride, chromium iodide, cesium bromide, cesium chloride, sodium bromide, sodium iodide, sodium nitrate, sodium nitrite, potassium iodide, potassium nitrate, manganese bromide, zinc bromide, zinc iodide, sodium monofluoroacetate, sodium trifluoroacetate, sodium 3-fluoropropionate, potassium monofluoroacetate, potassium trifluoroacetate, and potassium 3-fluoropropionate.
  • 2. The proppant composition of claim 1 wherein the particulate material is selected from the group consisting of fibrous materials, tackifying agents, and deformable beads.
  • 3. The proppant composition of claim 1 further comprising a particulate material tagged with the tracking material.
  • 4. A proppant composition comprising particulate material that has been coated with a coating composition comprising a tracking composition and a resin composition, wherein the tracking composition comprises a substantially non-radioactive tracking material selected from the group consisting of: a metal salt wherein a metal portion of the metal salt is selected from the group consisting of gold, silver, molybdenum, and vanadium; anda metal salt selected from the group consisting of barium bromide, barium iodide, beryllium fluoride, beryllium bromide, beryllium chloride, cadmium bromide, cadmium iodide, chromium bromide, chromium chloride, chromium iodide, cesium bromide, cesium chloride, sodium bromide, sodium iodide, sodium nitrate, sodium nitrite, potassium iodide, potassium nitrate, manganese bromide, zinc bromide, zinc iodide, sodium monofluoroacetate, sodium trifluoroacetate, sodium 3-fluoropropionate, potassium monofluoroacetate, potassium trifluoroacetate, and potassium 3-fluoropropionate.
  • 5. The proppant composition of claim 4 wherein the particulate material is selected from the group consisting of fibrous materials, tackifying agents, and deformable beads.
  • 6. The proppant composition of claim 4 further comprising a particulate material tagged with the tracking material.
  • 7. The proppant composition of claim 4 wherein the resin composition and the tracking composition are a homogenous blend that is coated on the particulate material.
  • 8. A proppant composition comprising a particulate material that has been coated with a coating composition comprising a tracking composition, wherein the tracking composition comprises a substantially non-radioactive tracking material, wherein the substantially non-radioactive tracking material comprises at least one metal salt selected from the group consisting of: barium bromide, barium iodide, beryllium fluoride, beryllium bromide, beryllium chloride, cadmium bromide, cadmium iodide, chromium bromide, chromium chloride, chromium iodide, cesium bromide, cesium chloride, sodium bromide, sodium iodide, sodium nitrate, sodium nitrite, potassium iodide, potassium nitrate, manganese bromide, zinc bromide, zinc iodide, sodium monofluoroacetate, sodium trifluoroacetate, sodium 3-fluoropropionate, potassium monofluoroacetate, potassium trifluoroacetate, and potassium 3-fluoropropionate.
  • 9. The proppant composition of claim 8 wherein the particulate material is selected from the group consisting of fibrous materials, tackifying agents, and deformable beads.
  • 10. The proppant composition of claim 8 further comprising a particulate material tagged with the substantially non-radioactive tracking material.
  • 11. The proppant composition of claim 8 wherein the coating composition further comprises a resin composition.
  • 12. The proppant composition of claim 11 wherein the resin composition and the tracking composition are a homogenous blend that is coated on the particulate material.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of Ser. No. 10/298,825 now U.S. Pat. No. 6,725,926, filed Nov. 18, 2002, the entire disclosure of which is incorporated herein by reference, and which itself is a continuation-in-part of Ser. No. 10/125,171 now U.S. Pat. No. 6,691,780, filed Apr. 18, 2002, the entire disclosure of which is incorporated herein by reference.

US Referenced Citations (611)
Number Name Date Kind
2238671 Woodhouse Apr 1941 A
2703316 Schneider Mar 1955 A
2869642 McKay et al. Jan 1959 A
3047067 Williams et al. Jul 1962 A
3052298 Malott Sep 1962 A
3070165 Stratton Dec 1962 A
3123138 Robichaux Mar 1964 A
3173484 Huitt et al. Mar 1965 A
3176768 Brandt et al. Apr 1965 A
3195635 Fast Jul 1965 A
3199590 Young Aug 1965 A
3272650 MacVittie Sep 1966 A
3297086 Spain Jan 1967 A
3302719 Fischer Feb 1967 A
3308885 Sandiford Mar 1967 A
3308886 Evans Mar 1967 A
3316965 Watanabe May 1967 A
3329204 Brieger Jul 1967 A
3336980 Rike Aug 1967 A
3364995 Atkins et al. Jan 1968 A
3366178 Malone et al. Jan 1968 A
3375872 McLaughlin et al. Apr 1968 A
3378074 Kiel Apr 1968 A
3404735 Young et al. Oct 1968 A
3415320 Young Dec 1968 A
3455390 Gallus Jul 1969 A
3478824 Hess et al. Nov 1969 A
3481403 Gidley et al. Dec 1969 A
3489222 Millhone et al. Jan 1970 A
3492147 Young et al. Jan 1970 A
3525398 Fisher Aug 1970 A
3565176 Wittenwyler Feb 1971 A
3592266 Tinsley Jul 1971 A
3659651 Graham May 1972 A
3681287 Brown et al. Aug 1972 A
3708013 Dismukes Jan 1973 A
3709298 Pramann Jan 1973 A
3709641 Sarem Jan 1973 A
3741308 Veley Jun 1973 A
3754598 Holloway, Jr. Aug 1973 A
3765804 Brandon Oct 1973 A
3768564 Knox et al. Oct 1973 A
3769070 Schilt Oct 1973 A
3784585 Schmitt et al. Jan 1974 A
3819525 Hattenbrun Jun 1974 A
3828854 Templeton et al. Aug 1974 A
3842911 Know et al. Oct 1974 A
3850247 Tinsley Nov 1974 A
3854533 Gurley et al. Dec 1974 A
3856468 Keller Dec 1974 A
3857444 Copeland Dec 1974 A
3861467 Harnsberger Jan 1975 A
3863709 Fitch Feb 1975 A
3868998 Lybarger et al. Mar 1975 A
3878890 Fertl et al. Apr 1975 A
3888311 Cooke, Jr. Jun 1975 A
3912692 Casey et al. Oct 1975 A
3933205 Kiel Jan 1976 A
3948672 Harnsberger Apr 1976 A
3955993 Curtice May 1976 A
3960736 Free et al. Jun 1976 A
4000781 Knapp Jan 1977 A
4008763 Lowe et al. Feb 1977 A
4015995 Hess Apr 1977 A
4018285 Watkins et al. Apr 1977 A
4029148 Emery Jun 1977 A
4031958 Sandiford et al. Jun 1977 A
4042032 Anderson et al. Aug 1977 A
4060988 Arnold Dec 1977 A
4068718 Cooke, Jr. et al. Jan 1978 A
4070865 McLaughlin Jan 1978 A
4074760 Copeland et al. Feb 1978 A
4085801 Sifferman et al. Apr 1978 A
4085802 Sifferman et al. Apr 1978 A
4089437 Chutter et al. May 1978 A
4127173 Watkins et al. Nov 1978 A
4169798 DeMartino Oct 1979 A
4172066 Zweigle et al. Oct 1979 A
4245702 Haafkens et al. Jan 1981 A
4247430 Constien Jan 1981 A
4259205 Murphey Mar 1981 A
4273187 Satter et al. Jun 1981 A
4291766 Davies et al. Sep 1981 A
4305463 Zakiewicz Dec 1981 A
4336842 Graham et al. Jun 1982 A
4352674 Fery Oct 1982 A
4353806 Canter et al. Oct 1982 A
4387769 Erbstoesser et al. Jun 1983 A
4392988 Dobson et al. Jul 1983 A
4399866 Dearth Aug 1983 A
4415805 Fertl et al. Nov 1983 A
4428427 Friedman Jan 1984 A
4439489 Johnson et al. Mar 1984 A
4441556 Powers et al. Apr 1984 A
4443347 Underdown et al. Apr 1984 A
4447340 FeJean-Jacques May 1984 A
4460052 Gockel Jul 1984 A
4470915 Conway Sep 1984 A
4473669 Rupert et al. Sep 1984 A
4493875 Beck et al. Jan 1985 A
4494605 Wiechel et al. Jan 1985 A
4498995 Gockel Feb 1985 A
4501328 Nichols Feb 1985 A
4526695 Erbstosser et al. Jul 1985 A
4527627 Graham et al. Jul 1985 A
4541489 Wu Sep 1985 A
4542789 Stapp Sep 1985 A
4546012 Brooks Oct 1985 A
4553596 Graham et al. Nov 1985 A
4564459 Underdown et al. Jan 1986 A
4572803 Yamazoe et al. Feb 1986 A
4585064 Graham et al. Apr 1986 A
4649998 Friedman Mar 1987 A
4654266 Kachnik Mar 1987 A
4664819 Glaze et al. May 1987 A
4665988 Murphey et al. May 1987 A
4669543 Young Jun 1987 A
4670501 Dymond et al. Jun 1987 A
4675140 Sparks et al. Jun 1987 A
4677187 Armbruster et al. Jun 1987 A
4681165 Bannister Jul 1987 A
4683954 Walker et al. Aug 1987 A
4694905 Armbruster Sep 1987 A
4715967 Bellis Dec 1987 A
4716964 Erbstoesser et al. Jan 1988 A
4733729 Copeland Mar 1988 A
4739832 Jennings, Jr. et al. Apr 1988 A
4741401 Walles et al. May 1988 A
4756844 Walles et al. Jul 1988 A
4772646 Harms et al. Sep 1988 A
4777200 Dymond et al. Oct 1988 A
4785884 Armbruster Nov 1988 A
4787453 Hewgill et al. Nov 1988 A
4789105 Hosokawa et al. Dec 1988 A
4796701 Hudson et al. Jan 1989 A
4797262 Dewitz Jan 1989 A
4800960 Friedman et al. Jan 1989 A
4807469 Hall Feb 1989 A
4809783 Hollenbeck et al. Mar 1989 A
4817721 Pober Apr 1989 A
4829100 Murphey et al. May 1989 A
4838352 Oberste-Padtberg et al. Jun 1989 A
4842070 Sharp Jun 1989 A
4842072 Friedman et al. Jun 1989 A
4843118 Lai et al. Jun 1989 A
4848467 Cantu et al. Jul 1989 A
4848470 Korpics Jul 1989 A
4850430 Copeland et al. Jul 1989 A
4875525 Mana Oct 1989 A
4886354 Welch et al. Dec 1989 A
4888240 Graham et al. Dec 1989 A
4892147 Jennings, Jr. et al. Jan 1990 A
4895207 Friedman et al. Jan 1990 A
4898750 Friedman et al. Feb 1990 A
4903770 Friedman et al. Feb 1990 A
4921576 Hurd May 1990 A
4934456 Moradi-Araghi Jun 1990 A
4936385 Weaver et al. Jun 1990 A
4942186 Murphey et al. Jul 1990 A
4957165 Cantu et al. Sep 1990 A
4959432 Fan et al. Sep 1990 A
4961466 Himes et al. Oct 1990 A
4969522 Whitehurst et al. Nov 1990 A
4969523 Martin et al. Nov 1990 A
4984635 Cullick et al. Jan 1991 A
4986353 Clark et al. Jan 1991 A
4986354 Cantu et al. Jan 1991 A
4986355 Casad et al. Jan 1991 A
4987960 Darlington Jan 1991 A
5030603 Rumpf et al. Jul 1991 A
5049743 Taylor, III et al. Sep 1991 A
5056597 Stowe, III et al. Oct 1991 A
5082056 Tackett, Jr. Jan 1992 A
5095987 Weaver et al. Mar 1992 A
5105886 Strubhar et al. Apr 1992 A
5107928 Hilterhaus Apr 1992 A
5128390 Murphey et al. Jul 1992 A
5135051 Facteau et al. Aug 1992 A
5142023 Gruber et al. Aug 1992 A
5165438 Fracteau et al. Nov 1992 A
5173527 Calve Dec 1992 A
5178218 Dees Jan 1993 A
5182051 Bandy et al. Jan 1993 A
5199491 Kutts et al. Apr 1993 A
5199492 Surles et al. Apr 1993 A
5211234 Floyd May 1993 A
5216050 Sinclair Jun 1993 A
5218038 Johnson et al. Jun 1993 A
5232955 Caabai et al. Aug 1993 A
5232961 Murphey et al. Aug 1993 A
5238068 Fredickson Aug 1993 A
5244362 Conally et al. Sep 1993 A
5247059 Gruber et al. Sep 1993 A
5249627 Harms et al. Oct 1993 A
5249628 Surjaatmadja Oct 1993 A
5256729 Kutts et al. Oct 1993 A
5265678 Grundmann Nov 1993 A
5273115 Spafford Dec 1993 A
5278203 Harms Jan 1994 A
5285849 Surles et al. Feb 1994 A
5293939 Surles et al. Mar 1994 A
5295542 Cole et al. Mar 1994 A
5320171 Laramay Jun 1994 A
5321062 Landrum et al. Jun 1994 A
5325923 Surjaatmadja et al. Jul 1994 A
5330005 Card et al. Jul 1994 A
5332037 Schmidt et al. Jul 1994 A
5335726 Rodrogues Aug 1994 A
5351754 Hardin et al. Oct 1994 A
5358051 Rodrigues Oct 1994 A
5359026 Gruber Oct 1994 A
5360068 Sprunt et al. Nov 1994 A
5361856 Surjaatmajda et al. Nov 1994 A
5363916 Himes et al. Nov 1994 A
5373901 Norman et al. Dec 1994 A
5377756 Northrop et al. Jan 1995 A
5377759 Surles Jan 1995 A
5381864 Nguyen et al. Jan 1995 A
5386874 Laramay et al. Feb 1995 A
5388648 Jordan, Jr. Feb 1995 A
5390741 Payton et al. Feb 1995 A
5393810 Harris et al. Feb 1995 A
5396957 Surjaatmadja et al. Mar 1995 A
5402846 Jennings, Jr. et al. Apr 1995 A
5403822 Mueller et al. Apr 1995 A
5420174 Dewprashad May 1995 A
5422183 Sinclair et al. Jun 1995 A
5423381 Surles et al. Jun 1995 A
5425994 Harry et al. Jun 1995 A
5439055 Card et al. Aug 1995 A
5460226 Lawson et al. Oct 1995 A
5464060 Hale et al. Nov 1995 A
5475080 Gruber et al. Dec 1995 A
5484881 Gruber et al. Jan 1996 A
5492177 Yeh et al. Feb 1996 A
5492178 Nguyen et al. Feb 1996 A
5494103 Surjaatmadja et al. Feb 1996 A
5497830 Boles et al. Mar 1996 A
5498280 Fistner et al. Mar 1996 A
5499678 Surjaatmadja et al. Mar 1996 A
5501275 Card et al. Mar 1996 A
5505787 Yamaguchi Apr 1996 A
5512071 Yam et al. Apr 1996 A
5520250 Harry et al. May 1996 A
5522460 Shu Jun 1996 A
5529123 Carpenter et al. Jun 1996 A
5531274 Bienvenu, Jr. Jul 1996 A
5536807 Gruber et al. Jul 1996 A
5545824 Stengel et al. Aug 1996 A
5547023 McDaniel et al. Aug 1996 A
5551513 Suries et al. Sep 1996 A
5551514 Nelson et al. Sep 1996 A
5582249 Caveny et al. Dec 1996 A
5582250 Constien Dec 1996 A
5588488 Vijn et al. Dec 1996 A
5591700 Harris et al. Jan 1997 A
5594095 Gruber et al. Jan 1997 A
5595245 Scott, III Jan 1997 A
5597784 Sinclair et al. Jan 1997 A
5604184 Ellis et al. Feb 1997 A
5604186 Hunt et al. Feb 1997 A
5609207 Dewprashad et al. Mar 1997 A
5620049 Gipson et al. Apr 1997 A
5639806 Johnson et al. Jun 1997 A
5663123 Goodhue, Jr. et al. Sep 1997 A
5670473 Scepanski Sep 1997 A
5692566 Surles Dec 1997 A
5697440 Weaver et al. Dec 1997 A
5697448 Johnson Dec 1997 A
5698322 Tsai et al. Dec 1997 A
5701956 Hardy et al. Dec 1997 A
5712314 Surles et al. Jan 1998 A
5732364 Kalb et al. Mar 1998 A
5738136 Rosenberg Apr 1998 A
5765642 Surjaatmadja Jun 1998 A
5775425 Weaver et al. Jul 1998 A
5782300 James et al. Jul 1998 A
5783822 Buchanan et al. Jul 1998 A
5787986 Weaver et al. Aug 1998 A
5791415 Nguyen et al. Aug 1998 A
5799734 Norman et al. Sep 1998 A
5806593 Suries Sep 1998 A
5830987 Smith Nov 1998 A
5833000 Weaver et al. Nov 1998 A
5833361 Funk Nov 1998 A
5836391 Jonasson et al. Nov 1998 A
5836392 Urlwin-Smith Nov 1998 A
5836393 Johnson Nov 1998 A
5837656 Sinclair et al. Nov 1998 A
5837785 Kinsho et al. Nov 1998 A
5839510 Weaver et al. Nov 1998 A
5840784 Funkhouser et al. Nov 1998 A
5849401 El-Afandi et al. Dec 1998 A
5849590 Anderson, II et al. Dec 1998 A
5853048 Weaver et al. Dec 1998 A
5864003 Qureshi et al. Jan 1999 A
5865936 Edelman et al. Feb 1999 A
5871049 Weaver et al. Feb 1999 A
5873413 Chatterji et al. Feb 1999 A
5875844 Chatterji et al. Mar 1999 A
5875845 Chatterji et al. Mar 1999 A
5875846 Chatterji et al. Mar 1999 A
5893383 Fracteau Apr 1999 A
5893416 Read Apr 1999 A
5901789 Donnelly et al. May 1999 A
5908073 Nguyen et al. Jun 1999 A
5911282 Onan et al. Jun 1999 A
5916933 Johnson et al. Jun 1999 A
5921317 Dewprashad et al. Jul 1999 A
5924488 Nguyen et al. Jul 1999 A
5929437 Elliott et al. Jul 1999 A
5944105 Nguyen Aug 1999 A
5944106 Dalrymple et al. Aug 1999 A
5945387 Chatterji et al. Aug 1999 A
5948734 Sinclair et al. Sep 1999 A
5957204 Chatterji et al. Sep 1999 A
5960877 Funkhouser et al. Oct 1999 A
5960878 Nguyen et al. Oct 1999 A
5960880 Nguyen et al. Oct 1999 A
5964291 Bourne et al. Oct 1999 A
5969006 Onan et al. Oct 1999 A
5977283 Rossitto Nov 1999 A
5994785 Higuchi et al. Nov 1999 A
RE36466 Nelson et al. Dec 1999 E
6003600 Nguyen et al. Dec 1999 A
6004400 Bishop et al. Dec 1999 A
6006835 Onan et al. Dec 1999 A
6006836 Chatterji et al. Dec 1999 A
6012524 Chatterji et al. Jan 2000 A
6016870 Dewprashad et al. Jan 2000 A
6024170 McCabe et al. Feb 2000 A
6028113 Scepanski Feb 2000 A
6028534 Ciglenec et al. Feb 2000 A
6040398 Kinsho et al. Mar 2000 A
6047772 Weaver et al. Apr 2000 A
6059034 Rickards et al. May 2000 A
6059035 Chatterji et al. May 2000 A
6059036 Chatterji et al. May 2000 A
6063738 Chatterji et al. May 2000 A
6068055 Chatterji et al. May 2000 A
6069117 Onan et al. May 2000 A
6070667 Gano Jun 2000 A
6074739 Katagiri Jun 2000 A
6079492 Hoogteijling et al. Jun 2000 A
6098711 Chatterji et al. Aug 2000 A
6114410 Betzold Sep 2000 A
6123871 Carroll Sep 2000 A
6123965 Jacon et al. Sep 2000 A
6124246 Heathman et al. Sep 2000 A
6130286 Thomas et al. Oct 2000 A
6131661 Conner et al. Oct 2000 A
6135987 Tsai et al. Oct 2000 A
6140446 Fujiki et al. Oct 2000 A
6143698 Murphey et al. Nov 2000 A
6148911 Gipson et al. Nov 2000 A
6152234 Newhouse et al. Nov 2000 A
6162766 Muir et al. Dec 2000 A
6165947 Chang et al. Dec 2000 A
6169058 Le et al. Jan 2001 B1
6172011 Card et al. Jan 2001 B1
6172077 Curtis et al. Jan 2001 B1
6176315 Reddy et al. Jan 2001 B1
6177484 Surles Jan 2001 B1
6184311 O'Keefe et al. Feb 2001 B1
6186228 Wegener et al. Feb 2001 B1
6187834 Thayer et al. Feb 2001 B1
6187839 Eoff et al. Feb 2001 B1
6189615 Sydansk Feb 2001 B1
6192985 Hinkel et al. Feb 2001 B1
6192986 Urlwin-Smith Feb 2001 B1
6196317 Hardy Mar 2001 B1
6202751 Chatterji et al. Mar 2001 B1
6209643 Nguyen et al. Apr 2001 B1
6209644 Brunet Apr 2001 B1
6209646 Reddy et al. Apr 2001 B1
6210471 Craig Apr 2001 B1
6214773 Harris et al. Apr 2001 B1
6231664 Chatterji et al. May 2001 B1
6234251 Chatterji et al. May 2001 B1
6238597 Yim et al. May 2001 B1
6241019 Davidson et al. Jun 2001 B1
6242390 Mitchell et al. Jun 2001 B1
6244344 Chatterji et al. Jun 2001 B1
6257335 Nguyen et al. Jul 2001 B1
6260622 Blok et al. Jul 2001 B1
6271181 Chatterji et al. Aug 2001 B1
6274650 Cui Aug 2001 B1
6279652 Chatterji et al. Aug 2001 B1
6279656 Sinclair et al. Aug 2001 B1
6283214 Guinot et al. Sep 2001 B1
6302207 Nguyen et al. Oct 2001 B1
6306998 Kimura et al. Oct 2001 B1
6310008 Rietjens Oct 2001 B1
6311773 Todd et al. Nov 2001 B1
6315040 Donnelly Nov 2001 B1
6321841 Eoff et al. Nov 2001 B1
6323307 Bigg et al. Nov 2001 B1
6326458 Gruber et al. Dec 2001 B1
6328105 Betzold Dec 2001 B1
6328106 Griffith et al. Dec 2001 B1
6330916 Rickards et al. Dec 2001 B1
6330917 Chatterji et al. Dec 2001 B2
6342467 Chang et al. Jan 2002 B1
6350309 Chatterji et al. Feb 2002 B2
6357527 Norman et al. Mar 2002 B1
6364018 Brannon et al. Apr 2002 B1
6364945 Chatterji et al. Apr 2002 B1
6367165 Huttlin Apr 2002 B1
6367549 Chatterji et al. Apr 2002 B1
6372678 Youngsman et al. Apr 2002 B1
6376571 Chawla et al. Apr 2002 B1
6387986 Moradi-Araghi et al. May 2002 B1
6390195 Nguyen et al. May 2002 B1
6394181 Schnatzmeyer et al. May 2002 B2
6401817 Griffith et al. Jun 2002 B1
6405796 Meyer et al. Jun 2002 B1
6405797 Davidson et al. Jun 2002 B2
6406789 McDaniel et al. Jun 2002 B1
6408943 Schultz et al. Jun 2002 B1
6415509 Echols et al. Jul 2002 B1
6422183 Kato Jul 2002 B1
6422314 Todd et al. Jul 2002 B1
6439309 Matherly et al. Aug 2002 B1
6439310 Scott, III et al. Aug 2002 B1
6440255 Kohlhammer et al. Aug 2002 B1
6446727 Zemlak et al. Sep 2002 B1
6448206 Griffith et al. Sep 2002 B1
6450260 James et al. Sep 2002 B1
6454003 Chang et al. Sep 2002 B1
6457518 Castano-Mears et al. Oct 2002 B1
6458885 Stengel et al. Oct 2002 B1
6478092 Voll et al. Nov 2002 B2
6485947 Rajgarhia et al. Nov 2002 B1
6488091 Weaver et al. Dec 2002 B1
6488763 Brothers et al. Dec 2002 B2
6494263 Todd Dec 2002 B2
6503870 Griffith et al. Jan 2003 B2
6508305 Brannon et al. Jan 2003 B1
6510896 Bode et al. Jan 2003 B2
6520255 Tolman et al. Feb 2003 B2
6527051 Reddy et al. Mar 2003 B1
6528157 Hussain et al. Mar 2003 B1
6531427 Shuchart et al. Mar 2003 B1
6534449 Gilmour et al. Mar 2003 B1
6536939 Blue Mar 2003 B1
6538576 Schultz et al. Mar 2003 B1
6543545 Chatterji et al. Apr 2003 B1
6550959 Huber et al. Apr 2003 B2
6552333 Storm et al. Apr 2003 B1
6554071 Reddy et al. Apr 2003 B1
6555507 Chatterji et al. Apr 2003 B2
6569814 Brady et al. May 2003 B1
6582819 McDaniel et al. Jun 2003 B2
6588926 Huber et al. Jul 2003 B2
6588928 Huber et al. Jul 2003 B2
6593402 Chatterji et al. Jul 2003 B2
6599863 Palmer et al. Jul 2003 B1
6608162 Chiu et al. Aug 2003 B1
6609578 Patel et al. Aug 2003 B2
6616320 Huber et al. Sep 2003 B2
6620857 Valet Sep 2003 B2
6626241 Nguyen Sep 2003 B2
6632527 McDaniel et al. Oct 2003 B1
6632778 Ayoub et al. Oct 2003 B1
6632892 Rubinsztajn et al. Oct 2003 B2
6642309 Komitsu et al. Nov 2003 B2
6648501 Huber et al. Nov 2003 B2
6659179 Nguyen Dec 2003 B2
6664343 Narisawa et al. Dec 2003 B2
6667279 Hessert et al. Dec 2003 B1
6668926 Nguyen et al. Dec 2003 B2
6669771 Tokiwa et al. Dec 2003 B2
6677426 Noro et al. Jan 2004 B2
6681856 Chatterji et al. Jan 2004 B1
6686328 Binder Feb 2004 B1
6691780 Nguyen et al. Feb 2004 B2
6705400 Nguyen et al. Mar 2004 B1
6710019 Sawdon et al. Mar 2004 B1
6713170 Kaneka et al. Mar 2004 B1
6725926 Nguyen et al. Apr 2004 B2
6725930 Boney et al. Apr 2004 B2
6725931 Nguyen et al. Apr 2004 B2
6729404 Nguyen et al. May 2004 B2
6729405 DiLullo et al. May 2004 B2
6732800 Acock et al. May 2004 B2
6745159 Todd et al. Jun 2004 B1
6749025 Brannon et al. Jun 2004 B1
6763888 Harris et al. Jul 2004 B1
6764981 Eoff et al. Jul 2004 B1
6766858 Nguyen et al. Jul 2004 B2
6776235 England Aug 2004 B1
6776236 Nguyen Aug 2004 B1
6832650 Nguyen et al. Dec 2004 B2
6832655 Ravensbergen et al. Dec 2004 B2
6837309 Boney et al. Jan 2005 B2
6851474 Nguyen Feb 2005 B2
6866099 Nguyen Mar 2005 B2
6881709 Nelson et al. Apr 2005 B2
6887834 Nguyen et al. May 2005 B2
6928709 Nguyen et al. Aug 2005 B2
6962200 Nguyen et al. Nov 2005 B2
6978836 Nguyen et al. Dec 2005 B2
6997259 Nguyen Feb 2006 B2
7007752 Reddy et al. Mar 2006 B2
7013976 Nguyen et al. Mar 2006 B2
7017665 Nguyen et al. Mar 2006 B2
7025134 Byrd et al. Apr 2006 B2
7032667 Nguyen et al. Apr 2006 B2
7036589 Nguyen May 2006 B2
7040403 Nguyen et al. May 2006 B2
7059406 Nguyen et al. Jun 2006 B2
7063150 Slabaugh et al. Jun 2006 B2
7066258 Justus et al. Jun 2006 B2
7073581 Nguyen et al. Jul 2006 B2
7080688 Todd et al. Jul 2006 B2
7081439 Sullivan et al. Jul 2006 B2
7104325 Nguyen et al. Sep 2006 B2
7114570 Nguyen et al. Oct 2006 B2
7131491 Blauch et al. Nov 2006 B2
7153575 Anderson et al. Dec 2006 B2
7156194 Nguyen et al. Jan 2007 B2
20010016562 Muir et al. Aug 2001 A1
20020036088 Todd Mar 2002 A1
20020043370 Poe Apr 2002 A1
20020048676 McDaniel et al. Apr 2002 A1
20020070020 Nguyen Jun 2002 A1
20020104217 Echols et al. Aug 2002 A1
20020160920 Dawson et al. Oct 2002 A1
20020169085 Miller et al. Nov 2002 A1
20020189808 Nguyen et al. Dec 2002 A1
20030006036 Malone et al. Jan 2003 A1
20030013871 Mallon et al. Jan 2003 A1
20030060374 Cooke, Jr. Mar 2003 A1
20030106690 Boney et al. Jun 2003 A1
20030114314 Ballard et al. Jun 2003 A1
20030114317 Benton et al. Jun 2003 A1
20030130133 Vollmer Jul 2003 A1
20030131999 Nguyen et al. Jul 2003 A1
20030148893 Lungofer et al. Aug 2003 A1
20030186820 Thesing Oct 2003 A1
20030188766 Banerjee et al. Oct 2003 A1
20030188872 Nguyen et al. Oct 2003 A1
20030196805 Boney et al. Oct 2003 A1
20030205376 Ayoub et al. Nov 2003 A1
20030230408 Acock et al. Dec 2003 A1
20030230431 Reddy et al. Dec 2003 A1
20030234103 Lee et al. Dec 2003 A1
20040000402 Nguyen et al. Jan 2004 A1
20040014607 Sinclair et al. Jan 2004 A1
20040014608 Nguyen et al. Jan 2004 A1
20040040706 Hossaini et al. Mar 2004 A1
20040040708 Stephenson et al. Mar 2004 A1
20040040712 Ravi et al. Mar 2004 A1
20040040713 Nguyen et al. Mar 2004 A1
20040043906 Heath et al. Mar 2004 A1
20040045712 Eoff et al. Mar 2004 A1
20040048752 Nguyen et al. Mar 2004 A1
20040055747 Lee Mar 2004 A1
20040060702 Kotlar et al. Apr 2004 A1
20040106525 Willbert et al. Jun 2004 A1
20040138068 Rimmer et al. Jul 2004 A1
20040149441 Nguyen et al. Aug 2004 A1
20040152601 Still et al. Aug 2004 A1
20040152602 Boles Aug 2004 A1
20040162224 Nguyen et al. Aug 2004 A1
20040177961 Nguyen et al. Sep 2004 A1
20040194961 Nguyen et al. Oct 2004 A1
20040206499 Nguyen et al. Oct 2004 A1
20040211559 Nguyen et al. Oct 2004 A1
20040211561 Nguyen et al. Oct 2004 A1
20040221992 Nguyen et al. Nov 2004 A1
20040231845 Cooke, Jr. Nov 2004 A1
20040231847 Nguyen et al. Nov 2004 A1
20040256097 Byrd et al. Dec 2004 A1
20040256099 Nguyen et al. Dec 2004 A1
20040261993 Nguyen Dec 2004 A1
20040261995 Nguyen et al. Dec 2004 A1
20040261997 Nguyen et al. Dec 2004 A1
20040261999 Nguyen Dec 2004 A1
20050000694 Dalrymple et al. Jan 2005 A1
20050000731 Nguyen et al. Jan 2005 A1
20050006093 Nguyen et al. Jan 2005 A1
20050006095 Justus et al. Jan 2005 A1
20050006096 Nguyen et al. Jan 2005 A1
20050028976 Nguyen Feb 2005 A1
20050034862 Nguyen Feb 2005 A1
20050034865 Todd et al. Feb 2005 A1
20050045326 Nguyen Mar 2005 A1
20050045330 Nguyen et al. Mar 2005 A1
20050045384 Nguyen Mar 2005 A1
20050051331 Nguyen et al. Mar 2005 A1
20050059555 Dusterhoft et al. Mar 2005 A1
20050061509 Nguyen et al. Mar 2005 A1
20050092489 Welton et al. May 2005 A1
20050145385 Nguyen et al. Jul 2005 A1
20050173116 Nguyen et al. Aug 2005 A1
20050194142 Nguyen et al. Sep 2005 A1
20050197258 Nguyen et al. Sep 2005 A1
20050263283 Nguyen et al. Dec 2005 A1
20050267001 Weaver et al. Dec 2005 A1
20050269086 Nguyen et al. Dec 2005 A1
20050269101 Stegent et al. Dec 2005 A1
20050277554 Blauch et al. Dec 2005 A1
20050284637 Stegent et al. Dec 2005 A1
20060048943 Parker et al. Mar 2006 A1
20060048944 Van Batenburg et al. Mar 2006 A1
20060052251 Anderson et al. Mar 2006 A1
20060089266 Dusterhoft et al. Apr 2006 A1
20060124303 Nguyen et al. Jun 2006 A1
20060157243 Nguyen et al. Jul 2006 A1
20060175058 Nguyen et al. Aug 2006 A1
Foreign Referenced Citations (40)
Number Date Country
2063877 May 2003 CA
0313243 Oct 1988 EP
0528595 Aug 1992 EP
0510762 Nov 1992 EP
0643196 Jun 1994 EP
0834644 Apr 1998 EP
0853186 Jul 1998 EP
0864726 Sep 1998 EP
0879935 Nov 1998 EP
0933498 Aug 1999 EP
1001133 May 2000 EP
1132569 Sep 2001 EP
1326003 Jul 2003 EP
1362978 Nov 2003 EP
1394355 Mar 2004 EP
1396606 Mar 2004 EP
1398640 Mar 2004 EP
1403466 Mar 2004 EP
1464789 Oct 2004 EP
1292718 Oct 1972 GB
2298440 Feb 1996 GB
2298440 Sep 1996 GB
2382143 Apr 2001 GB
WO 9315127 Aug 1993 WO
WO 9407949 Apr 1994 WO
WO 9408078 Apr 1994 WO
WO 9408090 Apr 1994 WO
WO 9509879 Apr 1995 WO
WO 9711845 Apr 1997 WO
WO 9927229 Jun 1999 WO
WO 0005302 Feb 2000 WO
WO0005302 Feb 2000 WO
WO 0181914 Nov 2001 WO
WO 0187797 Nov 2001 WO
WO 0212674 Feb 2002 WO
WO 03027431 Apr 2003 WO
WO 2004009956 Jan 2004 WO
WO 2004037946 May 2004 WO
WO 2004038176 May 2004 WO
WO 2005021928 Mar 2005 WO
Non-Patent Literature Citations (52)
Entry
Office action dated Mar. 18, 2005 from U.S. Appl. No. 10/741,557, appl. publ. Jul. 8, 2004 as US PGPUB 20040129923.
Office action dated Jul. 6, 2005 from U.S. Appl. No. 10/741,557, appl. publ. Jul. 8, 2004 as US PGPUB 20040129923.
“Santrol Bioballs”; http://www.fairmounminerals.com/.sub.--SANTROL/SANTROL%20Web%20Site/B.sub- .--TD.htm, Sep. 30, 2004.
Paccaloni, et al., “Key Factors for Enhanced Results of Matrix Stimulation Treatments,” SPE 17154, Feb. 1988.
Paccaloni, et al., “Advances in Matrix Stimulation Technology,” SPE 20623, Mar. 1993.
Nguyen, et al., Controlling Proppant Flowback in High-Temperature, High-Production Wells, SPE 82215, May 2003.
Dusterhoft, et al., “Maximizing Effective Proppant Permeability Under High-Stress, High Gas-Rate Conditions,” SPE 90398, Sep. 2004.
Halliburton, CoalStimSM Service, Helps Boost Cash Flow From CBM Assets, Stimulation, HO3679 Oct. 2003, Halliburton Communications.
Halliburton, Conductivity Endurance Technology for High Permeability Reservoirs, Helps Prevent Intrusion of Formation Material Into the Proppant Pack for Improved Long-term Production, Stimulation, 2003, Halliburton Communications.
Halliburton, Expedite® Service, A Step-Change Improvement Over Conventional Proppant Flowback Control Systems. Provides Up to Three Times the Conductivity of RCPs., Stimulation, HO3296 May 2004, Halliburton Communications.
Halliburton Technical Flier—Multi Stage Frac Completion Methods, 2 pages.
Halliburton “CobraFracSM Service, Coiled Tubing Fracturing—Cost-Effective Method for Stimulating Untapped Reserves”, 2 pages, 2004.
Halliburton “CobraJetFracSM Service, Cost-Effective Technology That Can Help Reduce Cost per BOE Produced, Shorten Cycle time and Reduce Capex”.
Halliburton Cobra Frac Advertisement, 2001.
Halliburton “SurgiFracSM Service, a Quick and cost-Effective Method to Help Boost Production From Openhole Horizonal Completions”, 2002.
Halliburton, SandWedge® NT Conductivity Enhancement System, Enhances Proppant Pack Conductivity and Helps Prevent Intrusion of Formation Material for Improved Long-Term Production, Stimulation, HO2289 May 2004, Halliburton Communications.
Nguyen et al., A Novel Approach for Enhancing Proppant Consolidation: Laboratory Testing and Field Applications, SPE Paper No. 77748, 2002.
SPE 15547, Field Application of Lignosulfonate Gels to Reduce Channeling, South Swan Hills Miscible Unit, Alberta, Canada, by O.R. Wagner et al., 1986.
Owens et al., Waterflood Pressure Pulsing for Fractured Reservoirs SPE 1123, 1966.
Felsenthal et al., Pressure Pulsing—An Improved Method of Waterflooding Fractured Reservoirs SPE 1788, 1957.
Raza, “Water and Gas Cyclic Pulsing Method for Improved Oil Recovery”, SPE 3005, 1971.
Peng et al., “Pressure Pulsing Waterflooding in Dual Porosity Naturally Fractured Reservoirs” SPE 17587, 1988.
Dusseault et al, “Pressure Pulse Workovers in Heavy Oil”, SPE 79033, 2002.
Yang et al., “Experimental Study on Fracture Initiation by Pressure Pulse”, SPE 63035, 2000.
Nguyen et al., New Guidelines for Applying Curable Resin-Coated Proppants, SPE Paper No. 39582, 1997.
Kazakov et al., “Optimizing and Managing Coiled Tubing Frac Strings” SPE 60747, 2000.
Advances in Polymer Science, vol. 157, “Degradable Aliphatic Polyesters” edited by A.-C. Alberston, 2001.
Gorman, Plastic Electric: Lining up the Future of Conducting Polymers Science News, vol. 163, May 17, 2003.
Gidley et al., “Recent Advances in Hydraulic Fracturing,” Chapter 6, pp. 109-130, 1989.
Simmons et al., “Poly(phenyllactide): Synthesis, Characterization, and Hydrolytic Degradation, Biomacromolecules”, vol. 2, No. 2, pp. 658-663, 2001.
Yin et al., “Preparation and Characterization of Substituted Polylactides”, Americal Chemical Society, vol. 32, No. 23, pp. 7711-7718, 1999.
Yin et al., “Synthesis and Properties of Polymers Derived from Substituted Lactic Acids”, American Chemical Society, Ch.12, pp. 147-159, 2001.
Cantu et al., “Laboratory and Field Evaluation of a Combined Fluid-Loss Control Additive and Gel Breaker for Fracturing Fluids,” SPE 18211, 1990.
Love et al., “Selectively Placing Many Fractures in Openhole Horizontal Wells Improves Production”, SPE 50422, 1998.
McDaniel et al. “Evolving New Stimulation Process Proves Highly Effective in Level 1 Dual-Lateral Completion” SPE 78697, 2002.
Albertsson et al.,“Aliphatic Polyesters: Synthesis, Properties and Applications”, Advances in Polymer Science, vol. 57 Degradable Aliphatic Polyesters, 2002.
Dechy-Cabaret et al., “Controlled Ring-Operated Polymerization of Lactide and Glycolide” American Chemical Society, Chemical Reviews, A-Z, AA-AD, 2004.
Funkhouser et al., “Synthetic Polymer Fracturing Fluid for High-Temperature Applications”, SPE 80236, 2003.
Chelating Agents, Encyclopedia of Chemical Technology, vol. 5 (764-795).
Vichaibun et al., “A New Assay for the Enzymatic Degradation of Polylactic Acid, Short Report”, ScienceAsia, vol. 29, pp. 297-300, 2003.
CDX Gas, CDX Solution, 2003, CDX, LLC, Available @ www.cdxgas.com/solution.html, printed pp. 1-2.
CDX Gas, “What is Coalbed Methane?” CDX, LLC. Available @ www.cdxgas.com/what.html, printed p. 1.
Halliburton brochure entitled “H2Zero™ Service Introducing the Next Generation of cost-Effective Conformance Control Solutions”, 2002.
Halliburton brochure entitled INJECTROL® A Component, 1999.
Halliburton brochure entitled “INJECTROL® G Sealant”, 1999.
Halliburton brochure entitled “INJECTROL® IT Sealant”, 1999.
Halliburton brochure entitled “INJECTROL® Service Treatment”, 1999.
Halliburton brochure entitled “INJECTROL® U Sealant”, 1999.
Halliburton brochure entitled “Sanfix® A Resin”, 1999.
Halliburton brochure entitled “Pillar Frac Stimulation Technique” Fracturing Services Technical Data Sheet, 2 pages.
S. W. Almond, et al., “Factors Affecting Proppant Flowback With Resin Coated Proppants,” Society of Petroleum Engineers, Inc., SPE 30096, p. 171-186, 1995.
Lewis, Richard J., Sr. (2002) Hawley's Condensed Chemical Dictionary (14th Edition), John Wiley & Sons, online@http://knovel.com/web/portal/browse/display?—EXT—KNOVEL—DISPLAY—bookid=704&VerticalID=0, headword=A-stage resin, (Knovel Release Date: Sep. 4, 2003; downloaded Aug. 26, 2012), pp. 1.
Related Publications (1)
Number Date Country
20040162224 A1 Aug 2004 US
Divisions (1)
Number Date Country
Parent 10298825 Nov 2002 US
Child 10777412 US
Continuation in Parts (1)
Number Date Country
Parent 10125171 Apr 2002 US
Child 10298825 US