The present embodiment relates generally to the recovery of hydrocarbons from a subterranean formation penetrated by a well bore and more particularly to non-radioactive compositions and methods of utilizing the non-radioactive compositions for determining the source of treatment fluids being produced from a production formation having multiple zones. For example, the compositions and methods can be utilized for tracking the transport of particulate solids during the production of hydrocarbons from a subterranean formation penetrated by a well bore.
Transport of particulate solids during the production of hydrocarbons from a subterranean formation penetrated by a well bore is a continuing problem. The transported solids can erode or cause significant wear in the hydrocarbon production equipment used in the recovery process. The solids also can clog or plug the well bore thereby limiting or completely stopping fluid production. Further, the transported particulates must be separated from the recovered hydrocarbons adding further expense to the processing. The particulates which are available for transport may be present due to an unconsolidated nature of a subterranean formation and/or as a result of well treatments placing particulates in a well bore or formation, such as, by gravel packing or propped fracturing.
In the treatment of subterranean formations, it is common to place particulate materials as a filter medium and/or a proppant in the near well bore area and in fractures extending outwardly from the well bore. In fracturing operations, proppant is carried into fractures created when hydraulic pressure is applied to these subterranean rock formations to a point where fractures are developed. Proppant suspended in a viscosified fracturing fluid is carried outwardly away from the well bore within the fractures as they are created and extended with continued pumping. Upon release of pumping pressure, the proppant materials remain in the fractures holding the separated rock faces in an open position forming a channel for flow of formation fluids back to the well bore.
Proppant flowback is the transport of proppants back into the well bore with the production of formation fluids following fracturing. This undesirable result causes undue wear on production equipment, the need for separation of solids from the produced hydrocarbons and occasionally also decreases the efficiency of the fracturing operation since the proppant does not remain within the fracture and may limit the width or conductivity of the created flow channel.
Current techniques for controlling the flowback of proppants include coating the proppants with curable resin, or blending the proppants with fibrous materials, tackifying agents or deformable particulates (See e.g. U.S. Pat. No. 6,328,105 to Betzold, U.S. Pat. No. 6,172,011 to Card et al. and U.S. Pat. No. 6,047,772 to Weaver et al.) For a multi-zone well that has been fractured with proppant and is plagued with proppant flowback problems, it is quite difficult to identify the zone from which the proppant is emanating unless the proppant is tagged with a tracer. Radioactive materials have been commonly used in the logging or tagging of sand or proppant placement, however, such radioactive materials are hazardous to the environment and the techniques for utilizing such radioactive materials are complex, expensive and time consuming. Therefore, there is a need for simple compositions and methods for tracking the flowback of proppant in subterranean wells to avoid the above problems.
According to one embodiment, to determine from which zone(s) a fluid is being produced, a water soluble inorganic or organic salt is dissolved in the base treatment fluid as the fluid is being pumped downhole during the treatment. Such treatment fluids include but are not limited to fracturing fluids, drilling fluids, disposal fluids and injection fluids used as displacement fluids in hydrocarbon recovery processes. Acting as a fluid tracer agent, a salt is tagged into the fluid that is unique for each treatment job such as a fracturing job treatment. Suitable water soluble salts for this purpose are metal salts in which the metal is selected from Groups I to VIII of the Periodic Table of the Elements as well as the lanthanide series of rare earth metals so long as the metal salts do not constitute a component of fluids naturally present in the formation and are compatible with the fluids injected into the formation. Preferred metals include barium, beryllium, cadmium, chromium, cesium, sodium, potassium, manganese and zinc. Particularly preferred water soluble salts include barium bromide, barium iodide, beryllium fluoride, beryllium bromide, beryllium chloride, cadmium bromide, cadmium chloride, cadmium iodide, cadmium nitrate, chromium bromide, chromium chloride, chromium iodide, cesium bromide, cesium chloride, sodium bromide, sodium iodide, sodium nitrate, sodium nitrite, potassium iodide, potassium nitrate, manganese bromide, manganese chloride, zinc bromide, zinc chloride, zinc iodide, sodium monofluoroacetate, sodium trifluoroacetate, sodium 3-fluoropropionate, potassium monofluoroacetate, potassium trifluoroacetate, potassium 3-fluoropropionate.
The fluid tracer agents used in the method of this embodiment must meet a number of requirements. They should be relatively inexpensive, must be compatible with fluids naturally present in the reservoir and within the rock itself, as well as be compatible with the fluids injected into the reservoir as part of the formation treatment. The fluid tracer agents must be susceptible to being readily detected qualitatively and analyzed quantitatively in the presence of the materials naturally occurring in the formation fluids. For example, an aqueous sodium chloride solution could be utilized as a fluid tracer agent but for the fact that most field brines contain sodium chloride in substantial quantities, and so detection and analysis to differentiate the presence of sodium chloride used as tracer in the presence of naturally-occurring sodium chloride would be difficult.
In field application, a known amount of a selected water soluble salt based on a known concentration (i.e. 100 parts per million) is dissolved in a volume of water which is 1/1,000 of the total actual volume of base fluid required for the treatment. The mixed solution is then metered to the base fluid line at a rate of one gallon per 1,000 gallons of the base fluid. To handle multiple zones, various salts can be used provided that the interest cations or anions of selected compounds are unique to prevent any interference between zones.
According to another embodiment, metals are tagged onto proppant material or materials to be blended with proppant material to provide for the ready identification of flowback proppant from different stages or zones of the well. Suitable metals for this purpose may be selected from Groups I to VIII of the Periodic Table of the elements as well as the lanthanide series of rare earth metals so long as the metals do not constitute a component of the proppant, the fracturing fluid or the reservoir fluid and so long as the metals are compatible with the fracturing fluid. Preferred metals include gold, silver, copper, aluminum, barium, beryllium, cadmium, cobalt, chromium, iron, lithium, magnesium, manganese, molybdenum, nickel, phosphorus, lead, titanium, vanadium and zinc as well as derivatives thereof including oxides, phosphates, sulfates, carbonates and salts thereof so long as such derivatives are only slightly soluble in water so that they remain intact during transport with the proppant from the surface into the fractures. Particularly preferred metals include copper, nickel, zinc, cadmium, magnesium and barium. The metal acts as a tracer material and a different metal is tagged onto the proppant, or onto the materials to be blended with the proppant, so that each proppant stage or each fracturing job treatment can be identified by a unique tracer material. Suitable metals for use as the tracer material are generally commercially available from Sigma-Aldrich, Inc. as well as from Mallinckrodt Baker, Inc. It is understood, however, that field grade materials may also be used as suitable tracer materials for tagging onto proppant material or materials to be blended with proppant material.
Samples of flowback proppant collected from the field may be analyzed according to a process known as the inductively-coupled plasma (ICP) discharge method to determine from which proppant stage and which production zone the proppant has been produced. According to the ICP discharge method, an aqueous sample is nebulized within an ICP spectrometer and the resulting aerosol is transported to an argon plasma torch located within the ICP spectrometer. The ICP spectrometer measures the intensities of element-specific atomic emissions produced when the solution components enter the high-temperature plasma. An on-board computer within the ICP spectrometer accesses a standard calibration curve to translate the measured intensities into elemental concentrations. ICP spectrometers for use according to the ICP discharge method are generally commercially available from the Thermo ARL business unit of Thermo Electron Corporation, Agilent Technologies and several other companies. Depending upon the model and the manufacturer, the degree of sensitivity of currently commercially available ICP spectrometers can generally detect levels as low as 1 to 5 parts per million for most of the metals listed above.
It is understood that depending on the materials used as tagging agents, other spectroscopic techniques well known to those skilled in the art, including atomic absorption spectroscopy, X-ray fluorescence spectroscopy, or neutron activation analysis, can be utilized to identify these materials.
According to yet another embodiment, an oil-soluble or oil-dispersible tracer comprising a metal salt, metal oxide, metal sulfate, metal phosphate or a metal salt of an organic acid can be used to tag the proppant by intimately mixing the metal with a curable resin prior to coating the curable resin onto the proppant. Preferably, the metal is selected from the Group VIB metals, the Group VIIB metals, and the lanthanide series of rare earth metals. Specifically, the metal according to this embodiment may be chromium, molybdenum, tungsten, manganese, technetium, rhenium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. It is preferred that the metals according to this embodiment, do not constitute a component of the proppant, the fracturing fluid or the reservoir fluid, and that the metals are compatible with the fracturing fluid.
Preferably, the organic acid is a substituted or unsubstituted carboxylic acid. More preferably, the organic acid may be selected from alkanoic and alkenoic carboxylic acids, polyunsaturated aliphatic monocarboxylic acids and aromatic carboxylic acids. Most preferably, the alkanoic carboxylic acids have from 5 to 35 carbon atoms, the alkenoic carboxylic acids have from 5 to 30 carbon atoms, the polyunsaturated aliphatic monocarboxylic acids may be selected from the group of sorbic, linoleic, linolenic, and eleostearic acids and the aromatic acids maybe selected from the group of benzoic, salicylic, cinnarnic and gallic acids. Suitable organic acids are generally commercially available from Sigma-Aldrich, Inc. as well as from Mallinckrodt Baker, Inc.
For proppant to be coated with a curable resin, the tracer agent is blended homogeneously with the resin mixture and the resin is then coated onto the proppant. The proppant can be pre-coated as in the case of curable resin-coated proppants, for example, such as those commercially available from Santrol or Acme Borden, or it can be coated on-the-fly during the fracturing job treatment. The nature of the resin materials and the processes for performing the coating process is well know to those skilled in the art, as represented by U.S. Pat. No. 5,609,207 to Dewprashad et al., the entire disclosure of which is hereby incorporated herein by reference. Also, it is understood that materials to be blended with proppant such as the fibrous materials, tackifying agents or deformable beads disclosed in U.S. Pat. No. 6,328,105 to Betzold, U.S. Pat. No. 6,172,011 to Card et al. and U.S. Pat. No. 6,047,772 to Weaver et al., the entire disclosures of which are hereby incorporated by reference, can be similarly treated with a tracer agent.
According to still another embodiment, the metal elements or their derivative compounds can be tagged as part of the manufacturing process of proppant. As a result, the proppant is tagged with a permanent tracer.
According to yet another embodiment, the proppant can be coated with phosphorescent, fluorescent, or photoluminescent pigments, such as those disclosed in U.S. Pat. No. 6,123,871 to Carroll, U.S. Pat. No. 5,498,280 to Fistner et al. and U.S. Pat. No. 6,074,739 to Katagiri, the entire disclosures of which are hereby incorporated herein by reference. According to this embodiment, the phosphorescent, fluorescent, or photoluminescent pigments maybe prepared from materials well known to those skilled in the art including but not limited to alkaline earth aluminates activated by rare earth ions, zinc sulfide phosphors, aluminate phosphors, zinc silicate phosphors, zinc sulfide cadmium phosphors, strontium sulfide phosphors, calcium tungstate phosphors and calcium sulfide phosphors. Suitable phosphorescent, fluorescent and photoluminescent materials are commercially available from Keystone Aniline Corporation (TB Series) and Capricorn Chemicals (H Series and S Series Glowbug Specialty Pigments). The particular structure of the materials has a strong capacity to absorb and store visible light such as sunlight or light from artificial lighting. After absorbing a variety of such common visible light the phosphorescent, fluorescent, or photoluminescent materials will glow in the dark. Various pigment colors can be combined with the luminescent capability of the materials to enhance the differentiation of the stages or zones. According to this embodiment, micron sized particles of the phosphorescent, fluorescent, or photoluminescent materials are intimately mixed with a resin to be coated onto a proppant to be used in a fracturing treatment.
According to still another embodiment, proppant materials having a naturally dark color can be dyed or coated with a marker material having a bright, vivid and intense color which marker material may be selected from oil soluble dyes, oil dispersible dyes or oil dispersible pigments. Suitable oil soluble dyes, oil dispersible dyes and oil dispersible pigments are well known to those skilled in the art and are generally commercially available from Keystone Aniline Corporation and Abbey Color. According to this embodiment, proppant materials having a dark color, such as bauxite proppant which is naturally black in color, are dyed or coated with such marker materials. In this regard, reference is made to the dyes disclosed in U.S. Pat. No. 6,210,471 to Craig, the entire disclosure of which is hereby incorporated herein by reference.
According to all of the above-described embodiments, the proppant material may comprise substantially any substrate material that does not undesirably chemically interact with other components used in treating the subterranean formation. It is understood that the proppant material may comprise sand, ceramics, glass, sintered bauxite, resin coated sand, resin beads, metal beads and the like.
The following examples are illustrative of the methods and compositions discussed above.
ZnCl2 was selected to tag 50,000 gallons of a base fracturing fluid. For a 100-ppm concentration of ZnCl2 in the fracturing fluid, it requires 0.2084 gram per liter of fluid, or 39.44 kg for the total fluid volume. This amount of ZnCl2 is dissolved in 50 gallons of fluid, and the mixed solution is metered into the base fluid line at a rate of 1 gallon for every 1,000 gallons of the base fluid.
A number of methods well known to those of ordinary skill in the art such as wet chemistry titration, colorimetry, atomic absorption spectroscopy, inductively coupled plasma (ICP) discharge, ion chromatography (IC), gas chromatography (GC), liquid chromatography (LC) and nuclear magnetic resonance (NMR), can be used to analyze the fluid samples produced from the well and to determine from which zones the fluid has been produced, and the theoretical production level of each zone in the well.
A total of three separate hydraulic fracturing treatments were performed in a subterranean formation penetrated by a well bore. For each fracturing treatment, sufficient metal tracer was added to a liquid hardenable resin to provide an initial concentration of 1000 ppm of the metal tracer in the resin treated proppant. Cuprous oxide, manganese oxide, and zinc oxide were used as tagging agents in fracturing treatments 1, 2, and 3, respectively. Samples of flowback proppant were collected during the flow back of the well. Each proppant sample was weighted and digested in concentrated nitric acid before being measured against known, calibrated metal concentrations according to the inductively coupled plasma (ICP) discharge method for the ARL Model 3410 ICP which is commercially available from the Thermo ARL business unit of Thermo Electron Corporation. Table 1 shows the concentrations of each metal obtained in each proppant flowback sample. The data indicated that the highest concentration of flowback proppant was produced from the interval of the well that was fractured in the second fracturing treatment.
A total of five separate hydraulic fracturing treatments were performed in a subterranean formation penetrated by a well bore. For each fracturing treatment, sufficient metal tracer was added to the liquid hardenable resin to provide an initial concentration of 1000 ppm of the metal tracer in the resin treated proppant. Manganese oxide, cuprous oxide, zinc oxide, magnesium oxide, and barium oxide were used as tagging agents in fracturing treatments 1 through 5, respectively. Samples of flowback proppant were collected during the flow back of the well. Each proppant sample was weighted and digested in concentrated nitric acid before being measured against known, calibrated metal concentrations according to the inductively coupled plasma (ICP) discharge method for the ARL Model 3410 ICP which is commercially available from the Thermo ARL business unit of Thermo Electron Corporation. Table 2 shows the concentrations of each metal obtained in each proppant flowback sample. The data indicated that the highest concentration of flowback proppant was produced from the intervals of the well that were fractured in fracturing treatments 1 and 5.
Although only a few exemplary embodiments have been described in detail above, those skilled in the art will readily appreciate that many other modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages described herein. Accordingly, all such modifications are intended to be included within the scope of the following claims.
This application is a divisional application of Ser. No. 10/298,825 now U.S. Pat. No. 6,725,926, filed Nov. 18, 2002, the entire disclosure of which is incorporated herein by reference, and which itself is a continuation-in-part of Ser. No. 10/125,171 now U.S. Pat. No. 6,691,780, filed Apr. 18, 2002, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2238671 | Woodhouse | Apr 1941 | A |
2703316 | Schneider | Mar 1955 | A |
2869642 | McKay et al. | Jan 1959 | A |
3047067 | Williams et al. | Jul 1962 | A |
3052298 | Malott | Sep 1962 | A |
3070165 | Stratton | Dec 1962 | A |
3123138 | Robichaux | Mar 1964 | A |
3173484 | Huitt et al. | Mar 1965 | A |
3176768 | Brandt et al. | Apr 1965 | A |
3195635 | Fast | Jul 1965 | A |
3199590 | Young | Aug 1965 | A |
3272650 | MacVittie | Sep 1966 | A |
3297086 | Spain | Jan 1967 | A |
3302719 | Fischer | Feb 1967 | A |
3308885 | Sandiford | Mar 1967 | A |
3308886 | Evans | Mar 1967 | A |
3316965 | Watanabe | May 1967 | A |
3329204 | Brieger | Jul 1967 | A |
3336980 | Rike | Aug 1967 | A |
3364995 | Atkins et al. | Jan 1968 | A |
3366178 | Malone et al. | Jan 1968 | A |
3375872 | McLaughlin et al. | Apr 1968 | A |
3378074 | Kiel | Apr 1968 | A |
3404735 | Young et al. | Oct 1968 | A |
3415320 | Young | Dec 1968 | A |
3455390 | Gallus | Jul 1969 | A |
3478824 | Hess et al. | Nov 1969 | A |
3481403 | Gidley et al. | Dec 1969 | A |
3489222 | Millhone et al. | Jan 1970 | A |
3492147 | Young et al. | Jan 1970 | A |
3525398 | Fisher | Aug 1970 | A |
3565176 | Wittenwyler | Feb 1971 | A |
3592266 | Tinsley | Jul 1971 | A |
3659651 | Graham | May 1972 | A |
3681287 | Brown et al. | Aug 1972 | A |
3708013 | Dismukes | Jan 1973 | A |
3709298 | Pramann | Jan 1973 | A |
3709641 | Sarem | Jan 1973 | A |
3741308 | Veley | Jun 1973 | A |
3754598 | Holloway, Jr. | Aug 1973 | A |
3765804 | Brandon | Oct 1973 | A |
3768564 | Knox et al. | Oct 1973 | A |
3769070 | Schilt | Oct 1973 | A |
3784585 | Schmitt et al. | Jan 1974 | A |
3819525 | Hattenbrun | Jun 1974 | A |
3828854 | Templeton et al. | Aug 1974 | A |
3842911 | Know et al. | Oct 1974 | A |
3850247 | Tinsley | Nov 1974 | A |
3854533 | Gurley et al. | Dec 1974 | A |
3856468 | Keller | Dec 1974 | A |
3857444 | Copeland | Dec 1974 | A |
3861467 | Harnsberger | Jan 1975 | A |
3863709 | Fitch | Feb 1975 | A |
3868998 | Lybarger et al. | Mar 1975 | A |
3878890 | Fertl et al. | Apr 1975 | A |
3888311 | Cooke, Jr. | Jun 1975 | A |
3912692 | Casey et al. | Oct 1975 | A |
3933205 | Kiel | Jan 1976 | A |
3948672 | Harnsberger | Apr 1976 | A |
3955993 | Curtice | May 1976 | A |
3960736 | Free et al. | Jun 1976 | A |
4000781 | Knapp | Jan 1977 | A |
4008763 | Lowe et al. | Feb 1977 | A |
4015995 | Hess | Apr 1977 | A |
4018285 | Watkins et al. | Apr 1977 | A |
4029148 | Emery | Jun 1977 | A |
4031958 | Sandiford et al. | Jun 1977 | A |
4042032 | Anderson et al. | Aug 1977 | A |
4060988 | Arnold | Dec 1977 | A |
4068718 | Cooke, Jr. et al. | Jan 1978 | A |
4070865 | McLaughlin | Jan 1978 | A |
4074760 | Copeland et al. | Feb 1978 | A |
4085801 | Sifferman et al. | Apr 1978 | A |
4085802 | Sifferman et al. | Apr 1978 | A |
4089437 | Chutter et al. | May 1978 | A |
4127173 | Watkins et al. | Nov 1978 | A |
4169798 | DeMartino | Oct 1979 | A |
4172066 | Zweigle et al. | Oct 1979 | A |
4245702 | Haafkens et al. | Jan 1981 | A |
4247430 | Constien | Jan 1981 | A |
4259205 | Murphey | Mar 1981 | A |
4273187 | Satter et al. | Jun 1981 | A |
4291766 | Davies et al. | Sep 1981 | A |
4305463 | Zakiewicz | Dec 1981 | A |
4336842 | Graham et al. | Jun 1982 | A |
4352674 | Fery | Oct 1982 | A |
4353806 | Canter et al. | Oct 1982 | A |
4387769 | Erbstoesser et al. | Jun 1983 | A |
4392988 | Dobson et al. | Jul 1983 | A |
4399866 | Dearth | Aug 1983 | A |
4415805 | Fertl et al. | Nov 1983 | A |
4428427 | Friedman | Jan 1984 | A |
4439489 | Johnson et al. | Mar 1984 | A |
4441556 | Powers et al. | Apr 1984 | A |
4443347 | Underdown et al. | Apr 1984 | A |
4447340 | FeJean-Jacques | May 1984 | A |
4460052 | Gockel | Jul 1984 | A |
4470915 | Conway | Sep 1984 | A |
4473669 | Rupert et al. | Sep 1984 | A |
4493875 | Beck et al. | Jan 1985 | A |
4494605 | Wiechel et al. | Jan 1985 | A |
4498995 | Gockel | Feb 1985 | A |
4501328 | Nichols | Feb 1985 | A |
4526695 | Erbstosser et al. | Jul 1985 | A |
4527627 | Graham et al. | Jul 1985 | A |
4541489 | Wu | Sep 1985 | A |
4542789 | Stapp | Sep 1985 | A |
4546012 | Brooks | Oct 1985 | A |
4553596 | Graham et al. | Nov 1985 | A |
4564459 | Underdown et al. | Jan 1986 | A |
4572803 | Yamazoe et al. | Feb 1986 | A |
4585064 | Graham et al. | Apr 1986 | A |
4649998 | Friedman | Mar 1987 | A |
4654266 | Kachnik | Mar 1987 | A |
4664819 | Glaze et al. | May 1987 | A |
4665988 | Murphey et al. | May 1987 | A |
4669543 | Young | Jun 1987 | A |
4670501 | Dymond et al. | Jun 1987 | A |
4675140 | Sparks et al. | Jun 1987 | A |
4677187 | Armbruster et al. | Jun 1987 | A |
4681165 | Bannister | Jul 1987 | A |
4683954 | Walker et al. | Aug 1987 | A |
4694905 | Armbruster | Sep 1987 | A |
4715967 | Bellis | Dec 1987 | A |
4716964 | Erbstoesser et al. | Jan 1988 | A |
4733729 | Copeland | Mar 1988 | A |
4739832 | Jennings, Jr. et al. | Apr 1988 | A |
4741401 | Walles et al. | May 1988 | A |
4756844 | Walles et al. | Jul 1988 | A |
4772646 | Harms et al. | Sep 1988 | A |
4777200 | Dymond et al. | Oct 1988 | A |
4785884 | Armbruster | Nov 1988 | A |
4787453 | Hewgill et al. | Nov 1988 | A |
4789105 | Hosokawa et al. | Dec 1988 | A |
4796701 | Hudson et al. | Jan 1989 | A |
4797262 | Dewitz | Jan 1989 | A |
4800960 | Friedman et al. | Jan 1989 | A |
4807469 | Hall | Feb 1989 | A |
4809783 | Hollenbeck et al. | Mar 1989 | A |
4817721 | Pober | Apr 1989 | A |
4829100 | Murphey et al. | May 1989 | A |
4838352 | Oberste-Padtberg et al. | Jun 1989 | A |
4842070 | Sharp | Jun 1989 | A |
4842072 | Friedman et al. | Jun 1989 | A |
4843118 | Lai et al. | Jun 1989 | A |
4848467 | Cantu et al. | Jul 1989 | A |
4848470 | Korpics | Jul 1989 | A |
4850430 | Copeland et al. | Jul 1989 | A |
4875525 | Mana | Oct 1989 | A |
4886354 | Welch et al. | Dec 1989 | A |
4888240 | Graham et al. | Dec 1989 | A |
4892147 | Jennings, Jr. et al. | Jan 1990 | A |
4895207 | Friedman et al. | Jan 1990 | A |
4898750 | Friedman et al. | Feb 1990 | A |
4903770 | Friedman et al. | Feb 1990 | A |
4921576 | Hurd | May 1990 | A |
4934456 | Moradi-Araghi | Jun 1990 | A |
4936385 | Weaver et al. | Jun 1990 | A |
4942186 | Murphey et al. | Jul 1990 | A |
4957165 | Cantu et al. | Sep 1990 | A |
4959432 | Fan et al. | Sep 1990 | A |
4961466 | Himes et al. | Oct 1990 | A |
4969522 | Whitehurst et al. | Nov 1990 | A |
4969523 | Martin et al. | Nov 1990 | A |
4984635 | Cullick et al. | Jan 1991 | A |
4986353 | Clark et al. | Jan 1991 | A |
4986354 | Cantu et al. | Jan 1991 | A |
4986355 | Casad et al. | Jan 1991 | A |
4987960 | Darlington | Jan 1991 | A |
5030603 | Rumpf et al. | Jul 1991 | A |
5049743 | Taylor, III et al. | Sep 1991 | A |
5056597 | Stowe, III et al. | Oct 1991 | A |
5082056 | Tackett, Jr. | Jan 1992 | A |
5095987 | Weaver et al. | Mar 1992 | A |
5105886 | Strubhar et al. | Apr 1992 | A |
5107928 | Hilterhaus | Apr 1992 | A |
5128390 | Murphey et al. | Jul 1992 | A |
5135051 | Facteau et al. | Aug 1992 | A |
5142023 | Gruber et al. | Aug 1992 | A |
5165438 | Fracteau et al. | Nov 1992 | A |
5173527 | Calve | Dec 1992 | A |
5178218 | Dees | Jan 1993 | A |
5182051 | Bandy et al. | Jan 1993 | A |
5199491 | Kutts et al. | Apr 1993 | A |
5199492 | Surles et al. | Apr 1993 | A |
5211234 | Floyd | May 1993 | A |
5216050 | Sinclair | Jun 1993 | A |
5218038 | Johnson et al. | Jun 1993 | A |
5232955 | Caabai et al. | Aug 1993 | A |
5232961 | Murphey et al. | Aug 1993 | A |
5238068 | Fredickson | Aug 1993 | A |
5244362 | Conally et al. | Sep 1993 | A |
5247059 | Gruber et al. | Sep 1993 | A |
5249627 | Harms et al. | Oct 1993 | A |
5249628 | Surjaatmadja | Oct 1993 | A |
5256729 | Kutts et al. | Oct 1993 | A |
5265678 | Grundmann | Nov 1993 | A |
5273115 | Spafford | Dec 1993 | A |
5278203 | Harms | Jan 1994 | A |
5285849 | Surles et al. | Feb 1994 | A |
5293939 | Surles et al. | Mar 1994 | A |
5295542 | Cole et al. | Mar 1994 | A |
5320171 | Laramay | Jun 1994 | A |
5321062 | Landrum et al. | Jun 1994 | A |
5325923 | Surjaatmadja et al. | Jul 1994 | A |
5330005 | Card et al. | Jul 1994 | A |
5332037 | Schmidt et al. | Jul 1994 | A |
5335726 | Rodrogues | Aug 1994 | A |
5351754 | Hardin et al. | Oct 1994 | A |
5358051 | Rodrigues | Oct 1994 | A |
5359026 | Gruber | Oct 1994 | A |
5360068 | Sprunt et al. | Nov 1994 | A |
5361856 | Surjaatmajda et al. | Nov 1994 | A |
5363916 | Himes et al. | Nov 1994 | A |
5373901 | Norman et al. | Dec 1994 | A |
5377756 | Northrop et al. | Jan 1995 | A |
5377759 | Surles | Jan 1995 | A |
5381864 | Nguyen et al. | Jan 1995 | A |
5386874 | Laramay et al. | Feb 1995 | A |
5388648 | Jordan, Jr. | Feb 1995 | A |
5390741 | Payton et al. | Feb 1995 | A |
5393810 | Harris et al. | Feb 1995 | A |
5396957 | Surjaatmadja et al. | Mar 1995 | A |
5402846 | Jennings, Jr. et al. | Apr 1995 | A |
5403822 | Mueller et al. | Apr 1995 | A |
5420174 | Dewprashad | May 1995 | A |
5422183 | Sinclair et al. | Jun 1995 | A |
5423381 | Surles et al. | Jun 1995 | A |
5425994 | Harry et al. | Jun 1995 | A |
5439055 | Card et al. | Aug 1995 | A |
5460226 | Lawson et al. | Oct 1995 | A |
5464060 | Hale et al. | Nov 1995 | A |
5475080 | Gruber et al. | Dec 1995 | A |
5484881 | Gruber et al. | Jan 1996 | A |
5492177 | Yeh et al. | Feb 1996 | A |
5492178 | Nguyen et al. | Feb 1996 | A |
5494103 | Surjaatmadja et al. | Feb 1996 | A |
5497830 | Boles et al. | Mar 1996 | A |
5498280 | Fistner et al. | Mar 1996 | A |
5499678 | Surjaatmadja et al. | Mar 1996 | A |
5501275 | Card et al. | Mar 1996 | A |
5505787 | Yamaguchi | Apr 1996 | A |
5512071 | Yam et al. | Apr 1996 | A |
5520250 | Harry et al. | May 1996 | A |
5522460 | Shu | Jun 1996 | A |
5529123 | Carpenter et al. | Jun 1996 | A |
5531274 | Bienvenu, Jr. | Jul 1996 | A |
5536807 | Gruber et al. | Jul 1996 | A |
5545824 | Stengel et al. | Aug 1996 | A |
5547023 | McDaniel et al. | Aug 1996 | A |
5551513 | Suries et al. | Sep 1996 | A |
5551514 | Nelson et al. | Sep 1996 | A |
5582249 | Caveny et al. | Dec 1996 | A |
5582250 | Constien | Dec 1996 | A |
5588488 | Vijn et al. | Dec 1996 | A |
5591700 | Harris et al. | Jan 1997 | A |
5594095 | Gruber et al. | Jan 1997 | A |
5595245 | Scott, III | Jan 1997 | A |
5597784 | Sinclair et al. | Jan 1997 | A |
5604184 | Ellis et al. | Feb 1997 | A |
5604186 | Hunt et al. | Feb 1997 | A |
5609207 | Dewprashad et al. | Mar 1997 | A |
5620049 | Gipson et al. | Apr 1997 | A |
5639806 | Johnson et al. | Jun 1997 | A |
5663123 | Goodhue, Jr. et al. | Sep 1997 | A |
5670473 | Scepanski | Sep 1997 | A |
5692566 | Surles | Dec 1997 | A |
5697440 | Weaver et al. | Dec 1997 | A |
5697448 | Johnson | Dec 1997 | A |
5698322 | Tsai et al. | Dec 1997 | A |
5701956 | Hardy et al. | Dec 1997 | A |
5712314 | Surles et al. | Jan 1998 | A |
5732364 | Kalb et al. | Mar 1998 | A |
5738136 | Rosenberg | Apr 1998 | A |
5765642 | Surjaatmadja | Jun 1998 | A |
5775425 | Weaver et al. | Jul 1998 | A |
5782300 | James et al. | Jul 1998 | A |
5783822 | Buchanan et al. | Jul 1998 | A |
5787986 | Weaver et al. | Aug 1998 | A |
5791415 | Nguyen et al. | Aug 1998 | A |
5799734 | Norman et al. | Sep 1998 | A |
5806593 | Suries | Sep 1998 | A |
5830987 | Smith | Nov 1998 | A |
5833000 | Weaver et al. | Nov 1998 | A |
5833361 | Funk | Nov 1998 | A |
5836391 | Jonasson et al. | Nov 1998 | A |
5836392 | Urlwin-Smith | Nov 1998 | A |
5836393 | Johnson | Nov 1998 | A |
5837656 | Sinclair et al. | Nov 1998 | A |
5837785 | Kinsho et al. | Nov 1998 | A |
5839510 | Weaver et al. | Nov 1998 | A |
5840784 | Funkhouser et al. | Nov 1998 | A |
5849401 | El-Afandi et al. | Dec 1998 | A |
5849590 | Anderson, II et al. | Dec 1998 | A |
5853048 | Weaver et al. | Dec 1998 | A |
5864003 | Qureshi et al. | Jan 1999 | A |
5865936 | Edelman et al. | Feb 1999 | A |
5871049 | Weaver et al. | Feb 1999 | A |
5873413 | Chatterji et al. | Feb 1999 | A |
5875844 | Chatterji et al. | Mar 1999 | A |
5875845 | Chatterji et al. | Mar 1999 | A |
5875846 | Chatterji et al. | Mar 1999 | A |
5893383 | Fracteau | Apr 1999 | A |
5893416 | Read | Apr 1999 | A |
5901789 | Donnelly et al. | May 1999 | A |
5908073 | Nguyen et al. | Jun 1999 | A |
5911282 | Onan et al. | Jun 1999 | A |
5916933 | Johnson et al. | Jun 1999 | A |
5921317 | Dewprashad et al. | Jul 1999 | A |
5924488 | Nguyen et al. | Jul 1999 | A |
5929437 | Elliott et al. | Jul 1999 | A |
5944105 | Nguyen | Aug 1999 | A |
5944106 | Dalrymple et al. | Aug 1999 | A |
5945387 | Chatterji et al. | Aug 1999 | A |
5948734 | Sinclair et al. | Sep 1999 | A |
5957204 | Chatterji et al. | Sep 1999 | A |
5960877 | Funkhouser et al. | Oct 1999 | A |
5960878 | Nguyen et al. | Oct 1999 | A |
5960880 | Nguyen et al. | Oct 1999 | A |
5964291 | Bourne et al. | Oct 1999 | A |
5969006 | Onan et al. | Oct 1999 | A |
5977283 | Rossitto | Nov 1999 | A |
5994785 | Higuchi et al. | Nov 1999 | A |
RE36466 | Nelson et al. | Dec 1999 | E |
6003600 | Nguyen et al. | Dec 1999 | A |
6004400 | Bishop et al. | Dec 1999 | A |
6006835 | Onan et al. | Dec 1999 | A |
6006836 | Chatterji et al. | Dec 1999 | A |
6012524 | Chatterji et al. | Jan 2000 | A |
6016870 | Dewprashad et al. | Jan 2000 | A |
6024170 | McCabe et al. | Feb 2000 | A |
6028113 | Scepanski | Feb 2000 | A |
6028534 | Ciglenec et al. | Feb 2000 | A |
6040398 | Kinsho et al. | Mar 2000 | A |
6047772 | Weaver et al. | Apr 2000 | A |
6059034 | Rickards et al. | May 2000 | A |
6059035 | Chatterji et al. | May 2000 | A |
6059036 | Chatterji et al. | May 2000 | A |
6063738 | Chatterji et al. | May 2000 | A |
6068055 | Chatterji et al. | May 2000 | A |
6069117 | Onan et al. | May 2000 | A |
6070667 | Gano | Jun 2000 | A |
6074739 | Katagiri | Jun 2000 | A |
6079492 | Hoogteijling et al. | Jun 2000 | A |
6098711 | Chatterji et al. | Aug 2000 | A |
6114410 | Betzold | Sep 2000 | A |
6123871 | Carroll | Sep 2000 | A |
6123965 | Jacon et al. | Sep 2000 | A |
6124246 | Heathman et al. | Sep 2000 | A |
6130286 | Thomas et al. | Oct 2000 | A |
6131661 | Conner et al. | Oct 2000 | A |
6135987 | Tsai et al. | Oct 2000 | A |
6140446 | Fujiki et al. | Oct 2000 | A |
6143698 | Murphey et al. | Nov 2000 | A |
6148911 | Gipson et al. | Nov 2000 | A |
6152234 | Newhouse et al. | Nov 2000 | A |
6162766 | Muir et al. | Dec 2000 | A |
6165947 | Chang et al. | Dec 2000 | A |
6169058 | Le et al. | Jan 2001 | B1 |
6172011 | Card et al. | Jan 2001 | B1 |
6172077 | Curtis et al. | Jan 2001 | B1 |
6176315 | Reddy et al. | Jan 2001 | B1 |
6177484 | Surles | Jan 2001 | B1 |
6184311 | O'Keefe et al. | Feb 2001 | B1 |
6186228 | Wegener et al. | Feb 2001 | B1 |
6187834 | Thayer et al. | Feb 2001 | B1 |
6187839 | Eoff et al. | Feb 2001 | B1 |
6189615 | Sydansk | Feb 2001 | B1 |
6192985 | Hinkel et al. | Feb 2001 | B1 |
6192986 | Urlwin-Smith | Feb 2001 | B1 |
6196317 | Hardy | Mar 2001 | B1 |
6202751 | Chatterji et al. | Mar 2001 | B1 |
6209643 | Nguyen et al. | Apr 2001 | B1 |
6209644 | Brunet | Apr 2001 | B1 |
6209646 | Reddy et al. | Apr 2001 | B1 |
6210471 | Craig | Apr 2001 | B1 |
6214773 | Harris et al. | Apr 2001 | B1 |
6231664 | Chatterji et al. | May 2001 | B1 |
6234251 | Chatterji et al. | May 2001 | B1 |
6238597 | Yim et al. | May 2001 | B1 |
6241019 | Davidson et al. | Jun 2001 | B1 |
6242390 | Mitchell et al. | Jun 2001 | B1 |
6244344 | Chatterji et al. | Jun 2001 | B1 |
6257335 | Nguyen et al. | Jul 2001 | B1 |
6260622 | Blok et al. | Jul 2001 | B1 |
6271181 | Chatterji et al. | Aug 2001 | B1 |
6274650 | Cui | Aug 2001 | B1 |
6279652 | Chatterji et al. | Aug 2001 | B1 |
6279656 | Sinclair et al. | Aug 2001 | B1 |
6283214 | Guinot et al. | Sep 2001 | B1 |
6302207 | Nguyen et al. | Oct 2001 | B1 |
6306998 | Kimura et al. | Oct 2001 | B1 |
6310008 | Rietjens | Oct 2001 | B1 |
6311773 | Todd et al. | Nov 2001 | B1 |
6315040 | Donnelly | Nov 2001 | B1 |
6321841 | Eoff et al. | Nov 2001 | B1 |
6323307 | Bigg et al. | Nov 2001 | B1 |
6326458 | Gruber et al. | Dec 2001 | B1 |
6328105 | Betzold | Dec 2001 | B1 |
6328106 | Griffith et al. | Dec 2001 | B1 |
6330916 | Rickards et al. | Dec 2001 | B1 |
6330917 | Chatterji et al. | Dec 2001 | B2 |
6342467 | Chang et al. | Jan 2002 | B1 |
6350309 | Chatterji et al. | Feb 2002 | B2 |
6357527 | Norman et al. | Mar 2002 | B1 |
6364018 | Brannon et al. | Apr 2002 | B1 |
6364945 | Chatterji et al. | Apr 2002 | B1 |
6367165 | Huttlin | Apr 2002 | B1 |
6367549 | Chatterji et al. | Apr 2002 | B1 |
6372678 | Youngsman et al. | Apr 2002 | B1 |
6376571 | Chawla et al. | Apr 2002 | B1 |
6387986 | Moradi-Araghi et al. | May 2002 | B1 |
6390195 | Nguyen et al. | May 2002 | B1 |
6394181 | Schnatzmeyer et al. | May 2002 | B2 |
6401817 | Griffith et al. | Jun 2002 | B1 |
6405796 | Meyer et al. | Jun 2002 | B1 |
6405797 | Davidson et al. | Jun 2002 | B2 |
6406789 | McDaniel et al. | Jun 2002 | B1 |
6408943 | Schultz et al. | Jun 2002 | B1 |
6415509 | Echols et al. | Jul 2002 | B1 |
6422183 | Kato | Jul 2002 | B1 |
6422314 | Todd et al. | Jul 2002 | B1 |
6439309 | Matherly et al. | Aug 2002 | B1 |
6439310 | Scott, III et al. | Aug 2002 | B1 |
6440255 | Kohlhammer et al. | Aug 2002 | B1 |
6446727 | Zemlak et al. | Sep 2002 | B1 |
6448206 | Griffith et al. | Sep 2002 | B1 |
6450260 | James et al. | Sep 2002 | B1 |
6454003 | Chang et al. | Sep 2002 | B1 |
6457518 | Castano-Mears et al. | Oct 2002 | B1 |
6458885 | Stengel et al. | Oct 2002 | B1 |
6478092 | Voll et al. | Nov 2002 | B2 |
6485947 | Rajgarhia et al. | Nov 2002 | B1 |
6488091 | Weaver et al. | Dec 2002 | B1 |
6488763 | Brothers et al. | Dec 2002 | B2 |
6494263 | Todd | Dec 2002 | B2 |
6503870 | Griffith et al. | Jan 2003 | B2 |
6508305 | Brannon et al. | Jan 2003 | B1 |
6510896 | Bode et al. | Jan 2003 | B2 |
6520255 | Tolman et al. | Feb 2003 | B2 |
6527051 | Reddy et al. | Mar 2003 | B1 |
6528157 | Hussain et al. | Mar 2003 | B1 |
6531427 | Shuchart et al. | Mar 2003 | B1 |
6534449 | Gilmour et al. | Mar 2003 | B1 |
6536939 | Blue | Mar 2003 | B1 |
6538576 | Schultz et al. | Mar 2003 | B1 |
6543545 | Chatterji et al. | Apr 2003 | B1 |
6550959 | Huber et al. | Apr 2003 | B2 |
6552333 | Storm et al. | Apr 2003 | B1 |
6554071 | Reddy et al. | Apr 2003 | B1 |
6555507 | Chatterji et al. | Apr 2003 | B2 |
6569814 | Brady et al. | May 2003 | B1 |
6582819 | McDaniel et al. | Jun 2003 | B2 |
6588926 | Huber et al. | Jul 2003 | B2 |
6588928 | Huber et al. | Jul 2003 | B2 |
6593402 | Chatterji et al. | Jul 2003 | B2 |
6599863 | Palmer et al. | Jul 2003 | B1 |
6608162 | Chiu et al. | Aug 2003 | B1 |
6609578 | Patel et al. | Aug 2003 | B2 |
6616320 | Huber et al. | Sep 2003 | B2 |
6620857 | Valet | Sep 2003 | B2 |
6626241 | Nguyen | Sep 2003 | B2 |
6632527 | McDaniel et al. | Oct 2003 | B1 |
6632778 | Ayoub et al. | Oct 2003 | B1 |
6632892 | Rubinsztajn et al. | Oct 2003 | B2 |
6642309 | Komitsu et al. | Nov 2003 | B2 |
6648501 | Huber et al. | Nov 2003 | B2 |
6659179 | Nguyen | Dec 2003 | B2 |
6664343 | Narisawa et al. | Dec 2003 | B2 |
6667279 | Hessert et al. | Dec 2003 | B1 |
6668926 | Nguyen et al. | Dec 2003 | B2 |
6669771 | Tokiwa et al. | Dec 2003 | B2 |
6677426 | Noro et al. | Jan 2004 | B2 |
6681856 | Chatterji et al. | Jan 2004 | B1 |
6686328 | Binder | Feb 2004 | B1 |
6691780 | Nguyen et al. | Feb 2004 | B2 |
6705400 | Nguyen et al. | Mar 2004 | B1 |
6710019 | Sawdon et al. | Mar 2004 | B1 |
6713170 | Kaneka et al. | Mar 2004 | B1 |
6725926 | Nguyen et al. | Apr 2004 | B2 |
6725930 | Boney et al. | Apr 2004 | B2 |
6725931 | Nguyen et al. | Apr 2004 | B2 |
6729404 | Nguyen et al. | May 2004 | B2 |
6729405 | DiLullo et al. | May 2004 | B2 |
6732800 | Acock et al. | May 2004 | B2 |
6745159 | Todd et al. | Jun 2004 | B1 |
6749025 | Brannon et al. | Jun 2004 | B1 |
6763888 | Harris et al. | Jul 2004 | B1 |
6764981 | Eoff et al. | Jul 2004 | B1 |
6766858 | Nguyen et al. | Jul 2004 | B2 |
6776235 | England | Aug 2004 | B1 |
6776236 | Nguyen | Aug 2004 | B1 |
6832650 | Nguyen et al. | Dec 2004 | B2 |
6832655 | Ravensbergen et al. | Dec 2004 | B2 |
6837309 | Boney et al. | Jan 2005 | B2 |
6851474 | Nguyen | Feb 2005 | B2 |
6866099 | Nguyen | Mar 2005 | B2 |
6881709 | Nelson et al. | Apr 2005 | B2 |
6887834 | Nguyen et al. | May 2005 | B2 |
6928709 | Nguyen et al. | Aug 2005 | B2 |
6962200 | Nguyen et al. | Nov 2005 | B2 |
6978836 | Nguyen et al. | Dec 2005 | B2 |
6997259 | Nguyen | Feb 2006 | B2 |
7007752 | Reddy et al. | Mar 2006 | B2 |
7013976 | Nguyen et al. | Mar 2006 | B2 |
7017665 | Nguyen et al. | Mar 2006 | B2 |
7025134 | Byrd et al. | Apr 2006 | B2 |
7032667 | Nguyen et al. | Apr 2006 | B2 |
7036589 | Nguyen | May 2006 | B2 |
7040403 | Nguyen et al. | May 2006 | B2 |
7059406 | Nguyen et al. | Jun 2006 | B2 |
7063150 | Slabaugh et al. | Jun 2006 | B2 |
7066258 | Justus et al. | Jun 2006 | B2 |
7073581 | Nguyen et al. | Jul 2006 | B2 |
7080688 | Todd et al. | Jul 2006 | B2 |
7081439 | Sullivan et al. | Jul 2006 | B2 |
7104325 | Nguyen et al. | Sep 2006 | B2 |
7114570 | Nguyen et al. | Oct 2006 | B2 |
7131491 | Blauch et al. | Nov 2006 | B2 |
7153575 | Anderson et al. | Dec 2006 | B2 |
7156194 | Nguyen et al. | Jan 2007 | B2 |
20010016562 | Muir et al. | Aug 2001 | A1 |
20020036088 | Todd | Mar 2002 | A1 |
20020043370 | Poe | Apr 2002 | A1 |
20020048676 | McDaniel et al. | Apr 2002 | A1 |
20020070020 | Nguyen | Jun 2002 | A1 |
20020104217 | Echols et al. | Aug 2002 | A1 |
20020160920 | Dawson et al. | Oct 2002 | A1 |
20020169085 | Miller et al. | Nov 2002 | A1 |
20020189808 | Nguyen et al. | Dec 2002 | A1 |
20030006036 | Malone et al. | Jan 2003 | A1 |
20030013871 | Mallon et al. | Jan 2003 | A1 |
20030060374 | Cooke, Jr. | Mar 2003 | A1 |
20030106690 | Boney et al. | Jun 2003 | A1 |
20030114314 | Ballard et al. | Jun 2003 | A1 |
20030114317 | Benton et al. | Jun 2003 | A1 |
20030130133 | Vollmer | Jul 2003 | A1 |
20030131999 | Nguyen et al. | Jul 2003 | A1 |
20030148893 | Lungofer et al. | Aug 2003 | A1 |
20030186820 | Thesing | Oct 2003 | A1 |
20030188766 | Banerjee et al. | Oct 2003 | A1 |
20030188872 | Nguyen et al. | Oct 2003 | A1 |
20030196805 | Boney et al. | Oct 2003 | A1 |
20030205376 | Ayoub et al. | Nov 2003 | A1 |
20030230408 | Acock et al. | Dec 2003 | A1 |
20030230431 | Reddy et al. | Dec 2003 | A1 |
20030234103 | Lee et al. | Dec 2003 | A1 |
20040000402 | Nguyen et al. | Jan 2004 | A1 |
20040014607 | Sinclair et al. | Jan 2004 | A1 |
20040014608 | Nguyen et al. | Jan 2004 | A1 |
20040040706 | Hossaini et al. | Mar 2004 | A1 |
20040040708 | Stephenson et al. | Mar 2004 | A1 |
20040040712 | Ravi et al. | Mar 2004 | A1 |
20040040713 | Nguyen et al. | Mar 2004 | A1 |
20040043906 | Heath et al. | Mar 2004 | A1 |
20040045712 | Eoff et al. | Mar 2004 | A1 |
20040048752 | Nguyen et al. | Mar 2004 | A1 |
20040055747 | Lee | Mar 2004 | A1 |
20040060702 | Kotlar et al. | Apr 2004 | A1 |
20040106525 | Willbert et al. | Jun 2004 | A1 |
20040138068 | Rimmer et al. | Jul 2004 | A1 |
20040149441 | Nguyen et al. | Aug 2004 | A1 |
20040152601 | Still et al. | Aug 2004 | A1 |
20040152602 | Boles | Aug 2004 | A1 |
20040162224 | Nguyen et al. | Aug 2004 | A1 |
20040177961 | Nguyen et al. | Sep 2004 | A1 |
20040194961 | Nguyen et al. | Oct 2004 | A1 |
20040206499 | Nguyen et al. | Oct 2004 | A1 |
20040211559 | Nguyen et al. | Oct 2004 | A1 |
20040211561 | Nguyen et al. | Oct 2004 | A1 |
20040221992 | Nguyen et al. | Nov 2004 | A1 |
20040231845 | Cooke, Jr. | Nov 2004 | A1 |
20040231847 | Nguyen et al. | Nov 2004 | A1 |
20040256097 | Byrd et al. | Dec 2004 | A1 |
20040256099 | Nguyen et al. | Dec 2004 | A1 |
20040261993 | Nguyen | Dec 2004 | A1 |
20040261995 | Nguyen et al. | Dec 2004 | A1 |
20040261997 | Nguyen et al. | Dec 2004 | A1 |
20040261999 | Nguyen | Dec 2004 | A1 |
20050000694 | Dalrymple et al. | Jan 2005 | A1 |
20050000731 | Nguyen et al. | Jan 2005 | A1 |
20050006093 | Nguyen et al. | Jan 2005 | A1 |
20050006095 | Justus et al. | Jan 2005 | A1 |
20050006096 | Nguyen et al. | Jan 2005 | A1 |
20050028976 | Nguyen | Feb 2005 | A1 |
20050034862 | Nguyen | Feb 2005 | A1 |
20050034865 | Todd et al. | Feb 2005 | A1 |
20050045326 | Nguyen | Mar 2005 | A1 |
20050045330 | Nguyen et al. | Mar 2005 | A1 |
20050045384 | Nguyen | Mar 2005 | A1 |
20050051331 | Nguyen et al. | Mar 2005 | A1 |
20050059555 | Dusterhoft et al. | Mar 2005 | A1 |
20050061509 | Nguyen et al. | Mar 2005 | A1 |
20050092489 | Welton et al. | May 2005 | A1 |
20050145385 | Nguyen et al. | Jul 2005 | A1 |
20050173116 | Nguyen et al. | Aug 2005 | A1 |
20050194142 | Nguyen et al. | Sep 2005 | A1 |
20050197258 | Nguyen et al. | Sep 2005 | A1 |
20050263283 | Nguyen et al. | Dec 2005 | A1 |
20050267001 | Weaver et al. | Dec 2005 | A1 |
20050269086 | Nguyen et al. | Dec 2005 | A1 |
20050269101 | Stegent et al. | Dec 2005 | A1 |
20050277554 | Blauch et al. | Dec 2005 | A1 |
20050284637 | Stegent et al. | Dec 2005 | A1 |
20060048943 | Parker et al. | Mar 2006 | A1 |
20060048944 | Van Batenburg et al. | Mar 2006 | A1 |
20060052251 | Anderson et al. | Mar 2006 | A1 |
20060089266 | Dusterhoft et al. | Apr 2006 | A1 |
20060124303 | Nguyen et al. | Jun 2006 | A1 |
20060157243 | Nguyen et al. | Jul 2006 | A1 |
20060175058 | Nguyen et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
2063877 | May 2003 | CA |
0313243 | Oct 1988 | EP |
0528595 | Aug 1992 | EP |
0510762 | Nov 1992 | EP |
0643196 | Jun 1994 | EP |
0834644 | Apr 1998 | EP |
0853186 | Jul 1998 | EP |
0864726 | Sep 1998 | EP |
0879935 | Nov 1998 | EP |
0933498 | Aug 1999 | EP |
1001133 | May 2000 | EP |
1132569 | Sep 2001 | EP |
1326003 | Jul 2003 | EP |
1362978 | Nov 2003 | EP |
1394355 | Mar 2004 | EP |
1396606 | Mar 2004 | EP |
1398640 | Mar 2004 | EP |
1403466 | Mar 2004 | EP |
1464789 | Oct 2004 | EP |
1292718 | Oct 1972 | GB |
2298440 | Feb 1996 | GB |
2298440 | Sep 1996 | GB |
2382143 | Apr 2001 | GB |
WO 9315127 | Aug 1993 | WO |
WO 9407949 | Apr 1994 | WO |
WO 9408078 | Apr 1994 | WO |
WO 9408090 | Apr 1994 | WO |
WO 9509879 | Apr 1995 | WO |
WO 9711845 | Apr 1997 | WO |
WO 9927229 | Jun 1999 | WO |
WO 0005302 | Feb 2000 | WO |
WO0005302 | Feb 2000 | WO |
WO 0181914 | Nov 2001 | WO |
WO 0187797 | Nov 2001 | WO |
WO 0212674 | Feb 2002 | WO |
WO 03027431 | Apr 2003 | WO |
WO 2004009956 | Jan 2004 | WO |
WO 2004037946 | May 2004 | WO |
WO 2004038176 | May 2004 | WO |
WO 2005021928 | Mar 2005 | WO |
Entry |
---|
Office action dated Mar. 18, 2005 from U.S. Appl. No. 10/741,557, appl. publ. Jul. 8, 2004 as US PGPUB 20040129923. |
Office action dated Jul. 6, 2005 from U.S. Appl. No. 10/741,557, appl. publ. Jul. 8, 2004 as US PGPUB 20040129923. |
“Santrol Bioballs”; http://www.fairmounminerals.com/.sub.--SANTROL/SANTROL%20Web%20Site/B.sub- .--TD.htm, Sep. 30, 2004. |
Paccaloni, et al., “Key Factors for Enhanced Results of Matrix Stimulation Treatments,” SPE 17154, Feb. 1988. |
Paccaloni, et al., “Advances in Matrix Stimulation Technology,” SPE 20623, Mar. 1993. |
Nguyen, et al., Controlling Proppant Flowback in High-Temperature, High-Production Wells, SPE 82215, May 2003. |
Dusterhoft, et al., “Maximizing Effective Proppant Permeability Under High-Stress, High Gas-Rate Conditions,” SPE 90398, Sep. 2004. |
Halliburton, CoalStimSM Service, Helps Boost Cash Flow From CBM Assets, Stimulation, HO3679 Oct. 2003, Halliburton Communications. |
Halliburton, Conductivity Endurance Technology for High Permeability Reservoirs, Helps Prevent Intrusion of Formation Material Into the Proppant Pack for Improved Long-term Production, Stimulation, 2003, Halliburton Communications. |
Halliburton, Expedite® Service, A Step-Change Improvement Over Conventional Proppant Flowback Control Systems. Provides Up to Three Times the Conductivity of RCPs., Stimulation, HO3296 May 2004, Halliburton Communications. |
Halliburton Technical Flier—Multi Stage Frac Completion Methods, 2 pages. |
Halliburton “CobraFracSM Service, Coiled Tubing Fracturing—Cost-Effective Method for Stimulating Untapped Reserves”, 2 pages, 2004. |
Halliburton “CobraJetFracSM Service, Cost-Effective Technology That Can Help Reduce Cost per BOE Produced, Shorten Cycle time and Reduce Capex”. |
Halliburton Cobra Frac Advertisement, 2001. |
Halliburton “SurgiFracSM Service, a Quick and cost-Effective Method to Help Boost Production From Openhole Horizonal Completions”, 2002. |
Halliburton, SandWedge® NT Conductivity Enhancement System, Enhances Proppant Pack Conductivity and Helps Prevent Intrusion of Formation Material for Improved Long-Term Production, Stimulation, HO2289 May 2004, Halliburton Communications. |
Nguyen et al., A Novel Approach for Enhancing Proppant Consolidation: Laboratory Testing and Field Applications, SPE Paper No. 77748, 2002. |
SPE 15547, Field Application of Lignosulfonate Gels to Reduce Channeling, South Swan Hills Miscible Unit, Alberta, Canada, by O.R. Wagner et al., 1986. |
Owens et al., Waterflood Pressure Pulsing for Fractured Reservoirs SPE 1123, 1966. |
Felsenthal et al., Pressure Pulsing—An Improved Method of Waterflooding Fractured Reservoirs SPE 1788, 1957. |
Raza, “Water and Gas Cyclic Pulsing Method for Improved Oil Recovery”, SPE 3005, 1971. |
Peng et al., “Pressure Pulsing Waterflooding in Dual Porosity Naturally Fractured Reservoirs” SPE 17587, 1988. |
Dusseault et al, “Pressure Pulse Workovers in Heavy Oil”, SPE 79033, 2002. |
Yang et al., “Experimental Study on Fracture Initiation by Pressure Pulse”, SPE 63035, 2000. |
Nguyen et al., New Guidelines for Applying Curable Resin-Coated Proppants, SPE Paper No. 39582, 1997. |
Kazakov et al., “Optimizing and Managing Coiled Tubing Frac Strings” SPE 60747, 2000. |
Advances in Polymer Science, vol. 157, “Degradable Aliphatic Polyesters” edited by A.-C. Alberston, 2001. |
Gorman, Plastic Electric: Lining up the Future of Conducting Polymers Science News, vol. 163, May 17, 2003. |
Gidley et al., “Recent Advances in Hydraulic Fracturing,” Chapter 6, pp. 109-130, 1989. |
Simmons et al., “Poly(phenyllactide): Synthesis, Characterization, and Hydrolytic Degradation, Biomacromolecules”, vol. 2, No. 2, pp. 658-663, 2001. |
Yin et al., “Preparation and Characterization of Substituted Polylactides”, Americal Chemical Society, vol. 32, No. 23, pp. 7711-7718, 1999. |
Yin et al., “Synthesis and Properties of Polymers Derived from Substituted Lactic Acids”, American Chemical Society, Ch.12, pp. 147-159, 2001. |
Cantu et al., “Laboratory and Field Evaluation of a Combined Fluid-Loss Control Additive and Gel Breaker for Fracturing Fluids,” SPE 18211, 1990. |
Love et al., “Selectively Placing Many Fractures in Openhole Horizontal Wells Improves Production”, SPE 50422, 1998. |
McDaniel et al. “Evolving New Stimulation Process Proves Highly Effective in Level 1 Dual-Lateral Completion” SPE 78697, 2002. |
Albertsson et al.,“Aliphatic Polyesters: Synthesis, Properties and Applications”, Advances in Polymer Science, vol. 57 Degradable Aliphatic Polyesters, 2002. |
Dechy-Cabaret et al., “Controlled Ring-Operated Polymerization of Lactide and Glycolide” American Chemical Society, Chemical Reviews, A-Z, AA-AD, 2004. |
Funkhouser et al., “Synthetic Polymer Fracturing Fluid for High-Temperature Applications”, SPE 80236, 2003. |
Chelating Agents, Encyclopedia of Chemical Technology, vol. 5 (764-795). |
Vichaibun et al., “A New Assay for the Enzymatic Degradation of Polylactic Acid, Short Report”, ScienceAsia, vol. 29, pp. 297-300, 2003. |
CDX Gas, CDX Solution, 2003, CDX, LLC, Available @ www.cdxgas.com/solution.html, printed pp. 1-2. |
CDX Gas, “What is Coalbed Methane?” CDX, LLC. Available @ www.cdxgas.com/what.html, printed p. 1. |
Halliburton brochure entitled “H2Zero™ Service Introducing the Next Generation of cost-Effective Conformance Control Solutions”, 2002. |
Halliburton brochure entitled INJECTROL® A Component, 1999. |
Halliburton brochure entitled “INJECTROL® G Sealant”, 1999. |
Halliburton brochure entitled “INJECTROL® IT Sealant”, 1999. |
Halliburton brochure entitled “INJECTROL® Service Treatment”, 1999. |
Halliburton brochure entitled “INJECTROL® U Sealant”, 1999. |
Halliburton brochure entitled “Sanfix® A Resin”, 1999. |
Halliburton brochure entitled “Pillar Frac Stimulation Technique” Fracturing Services Technical Data Sheet, 2 pages. |
S. W. Almond, et al., “Factors Affecting Proppant Flowback With Resin Coated Proppants,” Society of Petroleum Engineers, Inc., SPE 30096, p. 171-186, 1995. |
Lewis, Richard J., Sr. (2002) Hawley's Condensed Chemical Dictionary (14th Edition), John Wiley & Sons, online@http://knovel.com/web/portal/browse/display?—EXT—KNOVEL—DISPLAY—bookid=704&VerticalID=0, headword=A-stage resin, (Knovel Release Date: Sep. 4, 2003; downloaded Aug. 26, 2012), pp. 1. |
Number | Date | Country | |
---|---|---|---|
20040162224 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10298825 | Nov 2002 | US |
Child | 10777412 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10125171 | Apr 2002 | US |
Child | 10298825 | US |