Methods of treating infection

Information

  • Patent Application
  • 20090124539
  • Publication Number
    20090124539
  • Date Filed
    September 26, 2008
    16 years ago
  • Date Published
    May 14, 2009
    15 years ago
Abstract
The present invention relates to methods of inhibiting the proliferation of bacteria for either ex vivo or in vivo use. The invention also relates to methods of treating a patient infected with an antibiotic resistant bacteria by administering a pharmaceutical composition comprising an Empedopeptin; methods of sanitizing surfaces and instruments; and methods of assaying bacteria for Empedopeptin resistance.
Description
FIELD OF THE INVENTION

The present invention relates to methods of inhibiting the proliferation of bacteria in a patient by administering to the patient an antibiotic compound. The invention also presents ex vivo methods of use for the same antibiotic compound such as methods of sanitizing surfaces and/or objects, and methods of assaying Gram positive bacteria.


BACKGROUND

Bacteria are unicellular microorganisms. They are typically a few micrometers long and have many shapes including spheres, rods, and spirals. Bacteria are ubiquitous in every habitat on Earth, growing in soil, acidic hot springs, radioactive waste [Fredrickson J, Zachara J, Balkwill D, et al (2004). “Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the hanford site, Washington state”. Appl Environ Microbiol 70 (7): 4230-41], seawater, and deep in the earth's crust. Some bacteria can even survive in the extreme cold and vacuum of outer space. There are typically 40 million bacterial cells in a gram of soil and a million bacterial cells in a milliliter of fresh water; in all, there are approximately five nonillion (5×1030) bacteria in the world. Whitman W, Coleman D, Wiebe W (1998). “Prokaryotes: the unseen majority”. Proc Natl Acad Sci USA 95 (12): 6578-83. Bacteria are vital in recycling nutrients, and many important steps in nutrient cycles depend on bacteria, such as the fixation of nitrogen from the atmosphere. However, most of these bacteria have not been characterized, and only about half of the phyla of bacteria have species that can be cultured in the laboratory. Rappé M, Giovannoni S. “The uncultured microbial majority”. Annu Rev Microbiol 57: 369-94.


Although the vast majority of these bacteria are rendered harmless or beneficial by the protective effects of the mammalian immune system, a few pathogenic bacteria cause infectious diseases, including cholera, syphilis, anthrax, leprosy and bubonic plague. The most common fatal bacterial diseases are respiratory infections, with tuberculosis alone killing about 2 million people a year, mostly in sub-Saharan Africa. See http://www.who.int/healthinfo/bodgbd2002revised/en/index.html.


Although there are numerous antibiotics that are effective in treating patients suffering from bacterial infections, several recent generations of disease causing bacteria possess multiple drug resistance and have become serious clinical problems.


The number of patients treated for antibiotics-resistant infections has increased drastically in recent years. What started in the 1980s as problem primarily associated with hospital-acquired Enterococcus infections in long-term care patients has become a problem that has moved into the general community and has grown to include a number of common and very serious human pathogens. Drug-resistant Streptococci, Staphylococci and Pseudomonas strains are quite common. In fact, currently as many as 70% of hospital-acquired infections in the US are resistant to at least one antibiotic, and about 40% of S. aureus infections are multidrug-resistant. Coates, A., Hu, Y., Bax, R., and Page, C. (2002) “The Future Challenges Facing the Development of New Antimicrobial Drugs. Nat. Rev. Drug Discov. 1:895-910.


Even very powerful drugs like vancomycin and teicoplanin, which for years represented the “agents of last resort” for treatment of antibiotics-resistant infections, are no longer efficacious against certain strains of bacteria (see e.g., Smith, T. L., and Jarvis, W. R. (1999) Antimicrobial resistance in Staphylococcus aureus. Microb. Infect. 1:795-805; Ge, M., Chen, Z., Onishi, H. R., Kohler, J., Silver, L. L., Kerns, R., Fuzukawa, S., Thompson, C., and Kahne, D. (1999) Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. Science 284:507-511; and Goldman, R. C., and Gange, D. (2000) Inhibition of transglycosylation involved in bacterial peptidoglycan synthesis. Curr. Med. Chem. 7:801-820). Hence, these compounds are predicted to be of little use for the treatment of future infections. In this context, it is important to realize that the loss of efficacy of vancomycin and related compounds leaves very few treatment options for patients with multi-drug resistant infections. The seriousness of the situation is clearly illustrated by the fact that as many as 90,000, of the two million people who acquired a bacterial infection in US hospitals in 2004, died as a result of it (Leeb, M. (2004) A shot in the arm. Nature 431:892-893). There is clearly an immediate need for new antibiotics with novel modes of action. Thus, there is a strong demand for a compound having excellent antibacterial activity against antibiotic resistant strains of disease causing bacteria.


SUMMARY OF THE INVENTION

The present invention provides methods of inhibiting bacterial proliferation including providing a pharmaceutical composition comprising Empedopeptin or a pharmaceutically acceptable salt thereof, wherein the bacteria comprises at least one Gram positive strain.


In several embodiments, the Gram positive strain is resistant to glycopeptides, aminoglycosides, oxazolidinones, penicillins, macrolides, rifamycins, polypeptides, lipopeptides, chloramphenicol, or any combination thereof. For example, the Gram positive strain further comprises Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, or any combination thereof.


In other embodiments, the Gram positive strain is resistant to at least one of linezolid, oxacillin, vancomycin, daptomycin, erythromycin, methicillin, gentamicin, chloramphenicol, fusidic acid, rifampin, or combinations thereof. For instance, the Gram positive strain is resistant to methicillin.


In several embodiments, the Gram positive strain consists essentially of Enterococcus faecalis, the Gram positive strain consists essentially of Staphylococcus aureus, the Gram positive strain consists essentially of Staphylococcus epidermidis, the Gram positive strain consists essentially of Streptococcus pneumoniae, or the Gram positive strain consists essentially of Streptococcus pyogenes.


In some embodiments, the method further includes providing a second antibiotic agent. For instance, some methods further include providing a second pharmaceutical composition, wherein the second pharmaceutical composition comprises a second antibiotic agent, or providing a single pharmaceutical composition comprising Empedopeptin and a second antibiotic agent.


Another aspect of the present invention provides methods of treating a patient infected with bacteria including providing a pharmaceutical composition comprising Empedopeptin or a pharmaceutically acceptable salt thereof, wherein the bacteria comprises at least one Gram positive strain.


In several embodiments, the Gram positive strain is resistant to one or more of glycopeptides, oxazolidinones, penicillins, macrolides, rifamycins, polypeptides, lipopeptides, chloramphenicol, or combinations thereof. For example, the Gram positive strain further comprises Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, or any combination thereof. For example, the Gram positive strain is resistant to linezolid, oxacillin, vancomycin, daptomycin, methicillin, gentamicin, erythromycin, chloramphenicol, fusidic acid, rifampin, or any combination thereof. In other examples, the Gram positive strain is resistant to methicillin.


In several embodiments, the Gram positive strain consists essentially of Enterococcus faecalis, the Gram positive strain consists essentially of Staphylococcus aureus, the Gram positive strain consists essentially of Staphylococcus epidermidis, the Gram positive strain consists essentially of Streptococcus pneumoniae, or the Gram positive strain consists essentially of Streptococcus pyogenes.


In some embodiments, the method further includes providing a second antibiotic agent. For instance, some methods further include providing a second pharmaceutical composition, wherein the second pharmaceutical composition comprises a second antibiotic agent, or providing a single pharmaceutical composition comprising Empedopeptin and a second antibiotic agent.


Another aspect of the present invention provides methods of treating a patient infected with Staphylococcus aureus or Staphylococcus epidermidis, either of which is resistant to glycopeptides, oxazolidinones, penicillins, macrolides, rifamycins, polypeptides, lipopeptides, chloramphenicol, or any combination thereof, comprising administering to the patient an effective amount of a pharmaceutical composition comprising Empedopeptin or a pharmaceutically acceptable salt thereof.


In several embodiments, the pharmaceutical composition is administered to the patient parenterally or intravenously. In other embodiments, the pharmaceutical composition is intravenously administered to the patient, or the pharmaceutical composition is topically administered to the patient.


Another aspect of the present invention provides methods of sanitizing a surface or object comprising contacting the surface or object with a cleaning composition comprising Empedopeptin and a carrier.


In several embodiments, the carrier comprises water or alcohol.


In other embodiments, the surface is skin, or the object is an agricultural product, a medical instrument, a kitchen utensil, or an article of clothing.


In some embodiments, the cleaning composition further comprises a second antibiotic agent, e.g., one that does not substantially affect the antibiotic activity of Empedobactin.


Another aspect of the present invention provides methods of assaying bacteria for Empedopeptin resistance comprising colonizing bacteria in a medium; and incubating the medium, wherein the medium comprises Empedopeptin.


Another aspect of the present invention provides an isolated nucleotide sequence comprising SEQ. ID. NO. 1.


Another aspect of the present invention provides an isolated protein sequence comprising SEQ. ID. NO. 2.


Another aspect of the present invention provides an isolated nucleotide sequence comprising SEQ. ID. NO. 3.


Another aspect of the present invention provides an isolated protein sequence comprising SEQ. ID. NO. 4.


Another aspect of the present invention provides an isolated nucleotide sequence comprising SEQ. ID. NO. 5.


Another aspect of the present invention provides an isolated protein sequence comprising SEQ. ID. NO. 6.


Another aspect of the present invention provides an isolated nucleotide sequence comprising SEQ. ID. NO. 7


Another aspect of the present invention provides an isolated protein sequence comprising SEQ. ID. NO. 8.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates a gene cluster sequence that is responsible for the biosynthesis of Empedopeptin in E. haloabium;



FIG. 2 illustrates an organization of the Empedopeptin biosynthesis gene;



FIG. 3 provides the sequence listing for SEQ ID NO 1





DETAILED DESCRIPTION

The present invention provides methods of restricting bacterial proliferation by providing a pharmaceutical composition comprising Empedopeptin, wherein the bacteria comprises at least one Gram positive strain that is resistant to one or more of aminoglycosides, carbacephems, carbapenems, cephalosporins (e.g., first generation, second generation, third generation, or fourth generation), glycopeptides, lipopeptides, macrolides, monobactams, penicillins, polypeptides, quinolones, sulfonamides, tetracyclines, oxazolidinones, rifamycins, other unclassified antibiotics (e.g., chloramphenicol), or combinations thereof. This method is useful for ex vivo or in vivo purposes.


I. DEFINITIONS

As used herein, “Empedopeptin”, refers to a cyclic peptide having the structure:







As used herein, “antibiotic” or “antibiotic agent” refers to a compound, such as penicillin, streptomycin, methicillin, vancomycin, erythromycin, daptomycin, and/or bacitracin produced by or derived from certain fungi, bacteria, and other organisms, or are synthetically produced, that can destroy or inhibit the growth of other microorganisms. Antibiotics are widely used in the prevention and treatment of infectious diseases such as bacterial infection. Common antibiotics are discussed below.


As used herein, “antibiotic resistant” or “antibiotic resistance” refers to a characteristic of some bacteria, wherein at least some portion of a population of bacteria can survive and proliferate despite being treated with large amounts of antibiotic. For example, antibiotic resistance is used to mean that the bacteria does not lyse or is not otherwise destroyed by the antibiotic. Antibiotic resistance can also mean that the bacteria actively grows and proliferates in the presence of the antibiotic. In several examples, antibiotic resistant bacteria are those that when treated with one or more antibiotics yield a minimal inhibitory concentration from between about 2-fold to more than about 100-fold higher (e.g., from about 3 fold to about more than 100 fold, from about 4 fold to about more than 100 fold, or the like) than that observed for bacteria sensitive to the one or more antibiotic(s), or bacteria having intermediate resistance to the one or more antibiotic(s).


As used herein, “alcohol” refers to an organic compound in any physical state (e.g., solid, gas, or liquid) that includes a carbon atom that is bonded to a hydroxy (—OH) functional group. Without limitation, exemplary alcohols include methanol, ethanol, propanol, isopropanol, or the like.


As used herein, “bacteria” means ubiquitous one-celled organisms, spherical, spiral, or rod-shaped and appearing singly or in chains, comprising the Schizomycota, a phylum of the kingdom Monera (in some classification systems the plant class Schizomycetes), various species of which are involved in fermentation, putrefaction, infectious diseases, or nitrogen fixation.


As used herein, “bacterial proliferation” means growth or reproduction of bacteria.


As used herein, “an effective amount” is defined as the amount required to confer a therapeutic effect on the treated patient, and is typically determined based on age, surface area, weight, and condition of the patient. The interrelationship of dosages for animals and humans (based on milliGrams per meter squared of body surface) is described by Freireich et al., Cancer Chemother. Rep., 50: 219 (1966). Body surface area may be approximately determined from height and weight of the patient. See, e.g., Scientific Tables, Geigy Pharmaceuticals, Ardsley, New York, 537 (1970).


As used herein, “agricultural product” means fruits, vegetables, nuts, flowers, honey, and animal products such as beef, pork, chicken, fish, lamb, or the like.


As used herein, “medical instrument” means instruments associated with medical uses such as a scalpels, hemostats, saws, retractors, forceps, surgical needles, catheters, drills, bandages, rib spreaders, tongue depressors, and any other instrument that is commonly inserted into a living organism.


As used herein, “kitchen utensils” means instruments commonly used in food preparation such as knives, forks, spoons, tongs, spatulas, any other instruments that are commonly used in food preparation.


As used herein, “Gram positive” refers to bacteria that retain a crystal violet color during the Gram stain process. Gram positive bacteria will appear blue or violet under a microscope.


As used herein, “Gram negative” refers to bacteria that retain a red or pink color during the Gram stain process. Gram negative bacteria will appear red or pink under a microscope. The difference in classification between Gram positive and Gram negative bacteria is largely based on a difference in the bacteria's cell wall structure.


As used herein, “patient” refers to a mammal, including a human.


Unless otherwise stated, structures depicted herein are also meant to include all isomeric (e.g., enantiomeric, diastereomeric, and geometric (or conformational)) forms of the structure; for example, the R and S configurations for each asymmetric center, (Z) and (E) double bond isomers, and (Z) and (E) conformational isomers. Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, and geometric (or conformational) mixtures of the present compounds are within the scope of the invention.


Unless otherwise stated, all tautomeric forms of the compounds of the invention are within the scope of the invention. Additionally, unless otherwise stated, structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13C- or 14C-enriched carbon are within the scope of this invention. Such compounds are useful, for example, as analytical tools or probes in biological assays, or as therapeutic agents.


II. ABBREVIATIONS

Abbreviations used herein have the following meanings:


L-Arg: L-Arginine


D-Ser: D-Serine


L-Pro: L-Proline


D-Pro: D-Proline


L-Ala: L-Alanine


L-Thr: L-Threonine


D-aThr: D-allo-Threonine


L-hyPro: L-trans-3-hydroxyproline


D-hyAsp: D-threo-β-hydroxyaspartic acid


L-hyAsp: L-threo-β-hydroxyaspartic acid


III. METHODS

The present invention provides methods of inhibiting bacterial proliferation comprising providing a pharmaceutical composition comprising Empedopeptin or a pharmaceutically acceptable salt thereof, wherein the bacteria comprises at least one Gram positive strain, and the Gram positive strain is resistant to one or more of glycopeptides, lipopeptides, aminoglycosides, oxazolidinones, penicillins, macrolides, rifamycins, polypeptides, other unclassified antibiotics (e.g., chloramphenicol), or combinations thereof. In several methods, the Gram positive strain further comprises Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, or any combination thereof.


For example, in one group of methods, the Gram positive strain comprises Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, or any combination thereof; and the Gram positive strain is further resistant to one or more glycopeptides including amikacin, gentamicin, kanamycin, neomycin, netilmicin, paromomycin, streptomycin, tobramycin, vancomcin, teicoplanin, and apramycin. In other methods, the Gram positive strain comprises Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, or any combination thereof; and the Gram positive strain is further resistant to one or more penicillins including methicillin, dicloxacillin, flucloxacillin, oxacillin, nafcillin, amoxicillin, ampicillin, azlocillin, carbenicillin, cloxacillin, mezlocillin, penicillin, piperacillin, ticarcillin, or any combination thereof. In another method, the Gram positive strain comprises Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, or any combination thereof; and the Gram positive strain is further resistant to one or more aminoglycosides including amikacin, gentamicin, kanamycin, neomycin, netilmicin, paromomycin, streptomycin, tobramycin, apramycin, or combinations thereof. In another method, the Gram positive strain comprises Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, or combinations thereof; and the Gram positive strain is further resistant to one or more macrolides including erythromycin, azithromycin, troleandomycin, clarithromycin, dirithromycin, roxithromycin, or any combination thereof. In another method, the Gram positive strain comprises Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, or any combination thereof; and the Gram positive strain is further resistant to one or more rifamycins including rifampin, rifabutin, rifapentine, or any combination thereof. In another method, the Gram positive strain comprises Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, or any combination thereof; and the Gram positive strain is further resistant to one or more polypeptides or lipopeptides including daptomycin, bacitracin, colistin, polymyxin B, or any combination thereof. In other methods, the Gram positive strain comprises Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, or any combination thereof; and the Gram positive strain is further resistant to one or more of linezolid, oxacillin, vancomycin, daptomycin, methicillin, gentamicin, chloramphenicol, fusidic acid, rifampin, or any combination thereof.


In several alternative methods, the Gram positive strain consists essentially of Enterococcus faecalis that is resistant to one or more of linezolid, oxacillin, vancomycin, daptomycin, methicillin, gentamicin, chloramphenicol, fusidic acid, rifampin, or combinations thereof. In other methods, the Gram positive strain consists essentially of Staphylococcus aureus that is resistant to one or more of linezolid, oxacillin, vancomycin, daptomycin, methicillin, gentamicin, chloramphenicol, fusidic acid, rifampin, or combinations thereof. In several methods, the Gram positive strain consists essentially of Staphylococcus epidermidis that is resistant to one or more of linezolid, oxacillin, vancomycin, daptomycin, methicillin, gentamicin, chloramphenicol, fusidic acid, rifampin, or combinations thereof. In other methods, the Gram positive strain consists essentially of Streptococcus pneumoniae that is resistant to one or more of linezolid, oxacillin, vancomycin, daptomycin, methicillin, gentamicin, chloramphenicol, fusidic acid, rifampin, or combinations thereof. In other methods, the Gram positive strain consists essentially of Streptococcus pyogenes that is resistant to one or more of linezolid, oxacillin, vancomycin, daptomycin, methicillin, gentamicin, chloramphenicol, fusidic acid, rifampin, or combinations thereof.


The methods of inhibiting bacterial proliferation are also useful for treating a patient infected with bacteria, wherein the bacteria is a Gram positive strain that is resistant to glycopeptides, lipopeptides, aminoglycosides, oxazolidinones, penicillins, macrolides, rifamycins, polypeptides, or other unclassified antibiotics (e.g., chloramphenicol), or any combination thereof.


Such methods comprise providing a pharmaceutical composition comprising Empedopeptin or a pharmaceutically acceptable salt thereof to treat an infection of Gram positive bacteria that are resistant to glycopeptides, lipopeptides, aminoglycosides, oxazolidinones, penicillins, macrolides, rifamycins, polypeptides, unclassified antibiotics (e.g., chloramphenicol), or combinations thereof.


In several methods, a patient infected with bacteria is treated with a pharmaceutical composition comprising Empedopeptin or a pharmaceutically acceptable salt thereof, wherein the bacteria comprises at least one Gram positive strain, and the Gram positive strain is resistant to one or more glycopeptides, lipopeptides, aminoglycosides, oxazolidinones, penicillins, macrolides, rifamycins, polypeptides, unclassified antibiotics (e.g., chloramphenicol), or combinations thereof. In other methods, patient is infected with Enterococcus faecalis that is resistant to glycopeptides, aminoglycosides, oxazolidinones, lipopeptides, penicillins, macrolides, rifamycins, polypeptides, unclassified antibiotics (e.g., chloramphenicol), or combinations thereof. In several methods, the patient is infected with Staphylococcus aureus that is resistant to one or more glycopeptides, aminoglycosides, lipopeptides, oxazolidinones, penicillins, macrolides, rifamycins, polypeptides, unclassified antibiotics (e.g., chloramphenicol), or combinations thereof. In several methods, the patient is infected with Staphylococcus epidermidis that is resistant to one or more glycopeptides, lipopeptides, aminoglycosides, oxazolidinones, penicillins, macrolides, rifamycins, polypeptides, unclassified antibiotics (e.g., chloramphenicol), or combinations thereof. In other methods, the patient is infected with Streptococcus pneumoniae that is resistant to one or more glycopeptides, lipopeptides, aminoglycosides, oxazolidinones, penicillins, macrolides, rifamycins, polypeptides, or unclassified antibiotics (e.g., chloramphenicol), or combinations thereof. In some methods, the patient is infected with Streptococcus pyogenes that is resistant to one or more of linezolid, oxacillin, vancomycin, daptomycin, methicillin, gentamicin, chloramphenicol, fusidic acid, rifampin, or combinations thereof.


Other methods provide for treating a patient infected with bacteria comprising providing Empedopeptin, or a pharmaceutically acceptable salt thereof, wherein the bacteria comprises Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, or combinations thereof. More specifically, the bacteria comprises methicillin resistant Staphylococcus aureus, methicillin resistant Streptococcus pneumoniae, methicillin resistant Streptococcus pyogenes, or combinations thereof. In several methods, the population of bacteria is resistant to linezolid, oxacillin, vancomycin, daptomycin, methicillin, gentamicin, chloramphenicol, fusidic acid, rifampin, or combinations thereof. In other embodiments, the population of bacteria consists essentially of Enterococcus faecalis. In still more embodiments, the population of bacteria consists essentially of Staphylococcus aureus. Alternatively, the population of bacteria consists essentially of Staphylococcus epidermidis. Or, the population of bacteria consists essentially of Streptococcus pneumoniae. In some embodiments, the population of bacteria consists essentially of Streptococcus pyogenes.


Other embodiments of the present invention provide methods of treating a patient infected with Staphylococcus aureus or Staphylococcus epidermidis, either of which is resistant to linezolid, oxacillin, vancomycin, daptomycin, methicillin, gentamicin, chloramphenicol, fusidic acid, rifampin, or combinations thereof, comprising administering to the patient an effective amount of Empedopeptin or a pharmaceutically acceptable salt thereof.


Still more embodiments provide methods of sanitizing a surface or object comprising contacting the surface or object with a cleaning composition comprising Empedopeptin and an effective carrier. Several cleaning compositions of the present invention include a carrier comprising water, alcohol, or mixtures thereof. In other examples, the solvent comprises ethanol, methanol, isopropanol, water, or combinations thereof. This method is well-suited for sanitizing surfaces such as skin, countertops, tabletops, and other surfaces that can host infectious bacteria. Moreover, this method is well-suited for sanitizing objects such as surgical instruments (e.g., scalpel, oral thermometer, retractor, saw blades, forceps, hemostat, scissors, or the like), kitchen utensils, or the like.


In several embodiments, the pharmaceutical composition useful for treating infection or restricting the proliferation of bacteria can optionally include a second antibiotic agent. For instance the pharmaceutical composition can comprise Empedopeptin and one or more antibiotic agents independently selected from glycopeptides, lipopeptides, aminoglycosides, oxazolidinones, penicillins, macrolides, rifamycins, polypeptides, or unclassified antibiotics (e.g., chloramphenicol).


Another aspect of the present invention provides methods of assaying bacteria for Empedopeptin resistance comprising colonizing bacteria in a medium comprising Empedopetin, and incubating the bacteria. Any bacteria can be assayed using this method.


IV. ANTIBIOTICS

Antibiotics are often classified by the scope of their respective bioactivities. An antibiotic's scope of bioactivity is qualitatively assessed as being narrow spectrum, moderate spectrum, or broad spectrum.


Narrow spectrum antibiotics have activity in only a few strains of bacteria or small family of bacteria, while antibiotics having activities in multiple strains or families of bacteria are classified as moderate spectrum antibiotics, and those antibiotics having activities in a large number of strains or families of bacteria (e.g., Gram negative bacteria and/or Gram positive bacteria) are classifies as broad spectrum antibiotics.


Antibiotics can also be classified by the organisms against which they are effective, and by the type of infection in which they are useful, which depends on the sensitivities of the organisms that most commonly cause the infection and the concentration of antibiotic obtainable in the affected tissue.


At the most generic level, antibiotics can be classified as either bactericidal or bacteriostatic. Bactericidals kill bacteria directly where bacteriostatics prevent them from dividing. However, these classifications are based on laboratory behavior; in practice, both of these can end a bacterial infection.


Common commercial antibiotics include aminoglycosides, carbacephems, carbapenems, cephalosporins (e.g., first generation, second generation, third generation, or fourth generation), glycopeptides, lipopeptides, macrolides, monobactams, penicillins, polypeptides, quinolones, sulfonamides, tetracyclines, oxazolidinones, rifamycins, and unclassified antibiotics (e.g., chloramphenicol). Each class of antibiotic is briefly discussed below.


Penicillins include those antibiotic drugs obtained from penicillium molds or produced synthetically, which are most active against Gram-positive bacteria and used in the treatment of various infections and diseases. Penicillin is one of the beta-lactam antibiotics, all of which possess a four-ring beta-lactam structure fused with a five-membered thiazolidine ring. These antibiotics are nontoxic and kill sensitive bacteria during their growth stage by the inhibition of biosynthesis of their cell wall mucopeptide. Penicillin antibiotics provide narrow spectrum bioactivity, moderate or intermediate spectrum bioactivity, and broad spectrum bioactivity. Without limitation, narrow spectrum penicillins include methicillin, dicloxacillin, flucloxacillin, oxacillin, nafcillin, or the like. Without limitation, moderate or intermediate spectrum penicillins include amoxicillin, ampicillin, or the like. Penicillins include, without limitation, ampicillin, azlocillin, carbenicillin, cloxacillin, dicloxacillin, flucloxacillin, mezlocillin, nafcillin, penicillin, piperacillin, and ticarcillin.


Aminoglycosides are a group of antibiotics that are effective against certain types of bacteria. They include amikacin, gentamicin, kanamycin, neomycin, netilmicin, paromomycin, streptomycin, tobramycin and apramycin. Those which are derived from Streptomyces genus are named with the suffix -mycin, while those which are derived from micromonospora are named with the suffix -micin. Aminoglycosides are useful primarily in infections involving aerobic, Gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter. In addition, some mycobacteria, including the bacteria that cause tuberculosis, are susceptible to aminoglycosides. The most frequent use of aminoglycosides is empiric therapy for serious infections such as septicemia, complicated intraabdominal infections, complicated urinary tract infections, and nosocomial respiratory tract infections. Usually, once cultures of the causal organism are grown and their susceptibilities tested, aminoglycosides are discontinued in favor of less toxic antibiotics.


Carbacephem is a class of antibiotic medication, specifically modified forms of cephalosporin. It prevents bacterial cell division by inhibiting cell wall synthesis. Without limitation, carbacephems include loracarbef, or the like.


Carbapenems are a class of beta-lactam antibiotics, the structure of which renders them highly resistant to beta-lactamases. Carbapenems include, without limitation, imipenem (often given as part of imipenem/cilastatin), meropenem, ertapenem, faropenem, doripenem, panipenem/betamipron, or the like.


Cephalosporins are a class of beta-lactam antibiotics. Together with cephamycins they belong to a sub-group called cephems. First-generation cephalosporins are predominantly active against Gram positive bacteria. First generation cephalosporins are moderate spectrum agents, with a spectrum of activity that includes penicillinase-producing, methicillin-susceptible staphylococci and streptococci, though they are not the drugs of choice for such infections. They also have activity against some Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis, but have no activity against Bacteroides fragilis, enterococci, methicillin-resistant staphylococci, Pseudomonas, Acinetobacter, Enterobacter, indole-positive Proteus or Serratia. First generation cephalosporins include, without limitation, cefadroxil, cefazolin, and cephalexin.


The second generation cephalosporins have a greater Gram negative spectrum while retaining some activity against Gram positive cocci. They are also more resistant to beta-lactamase. Second generation cephalosporins include, for example, cefonicid, cefprozil, cefproxil, cefuroxime, cefuzonam, cefaclor, cefamandole, ceforanide, and cefotiam.


Third generation cephalosporins have a broad spectrum of activity and further increased activity against Gram negative organisms. Some members of this group (particularly those available in an oral formulation, and those with anti-pseudomonal activity) have decreased activity against Gram positive organisms. They may be particularly useful in treating hospital-acquired infections, although increasing levels of extended-spectrum beta-lactamases are reducing the clinical utility of this class of antibiotics. Without limitation, third generation cephalosporins include cefcapene, cefdaloxime, cefdinir, cefditoren, cefetamet, cefixime, cefmenoxime, cefodizime, cefoperazone, cefotaxime, cefpimizole, cefpodoxime, cefteram, ceftibuten, ceftiofur, ceftiolene, ceftizoxime, and ceftriaxone. Third generation cephalosporins with antipseudomonal activity include ceftazidime, cefpiramide, and cefsulodin.


Oxacephems are also sometimes grouped with third-generation cephalosporins and include latamoxef and flomoxef.


Fourth generation cephalosporins are extended-spectrum agents with similar activity against Gram positive organisms as first-generation cephalosporins. They also have a greater resistance to beta-lactamases than the third generation cephalosporins. Many can cross blood brain barrier and are effective in meningitis. Exemplary fourth generation cephalosporins include cefclidine, cefepime, cefluprenam, cefoselis, cefozopran, cefpirome, and cefquinome.


These cephems have progressed far enough to be named, but have not been assigned to a particular generation: ceftobiprole, cefaclomezine, cefaloram, cefaparole, cefcanel, cefedrolor, cefempidone, cefetrizole, cefivitril, cefmatilen, cefmepidium, cefovecin, cefoxazole, cefrotil, cefsumide, ceftioxide, ceftobiprole, ceftobiprole, and cefuracetime.


Glycopeptide antibiotics are another class of antibiotic drugs. They consist of a glycosylated cyclic or polycyclic nonribosomal peptide. Exemplary glycopeptide antibiotics include vancomycin, teicoplanin, ramoplanin, and decaplanin.


Macrolides are a group of drugs (typically antibiotics) whose activity stems from the presence of a macrolide ring, a large lactone ring to which one or more deoxy sugars, usually cladinose and desosamine, are attached. The lactone ring can be either 14-, 15- or 16-membered. Macrolides belong to the polyketide class of natural products. Common antibiotic macrolides include erythromycin, azithromycin, troleandomycin, clarithromycin, dirithromycin, and roxithromycin.


Monobactams are beta-lactam antibiotics wherein the beta-lactam ring is alone, and not fused to another ring (in contrast to most other beta-lactams, which have at least two rings). An example is aztreonam.


Polypeptide antibiotics include bacitracin, colistin, and polymyxin B.


Quinolones are another family of broad spectrum antibiotics. The parent of the group is nalidixic acid. The majority of quinolones in clinical use belong to the subset of fluoroquinolones, which have a fluoro group attached the central ring system. Exemplary quinolone antibiotics include cinoxacin, flumequine, nalidixic acid, oxolinic acid, piromidic acid, pipemidic acid, ciprofloxacin, enoxacin, fleroxacin, lomefloxacin, nadifloxacin, norfloxacin, ofloxacin, pefloxacin, rufloxacin, balofloxacin, grepafloxacin, levofloxacin, pazufloxacin mesilate, sparfloxacin, temafloxacin, tosufloxacin, clinafloxacin, gemifloxacin, moxifloxacin, gatifloxacin, sitafloxacin, and trovafloxacin.


Antibacterial sulfonamides (sometimes called simply sulfa drugs) are synthetic antimicrobial agents that contain the sulfonamide group. In bacteria, antibacterial sulfonamides act as competitive inhibitors of the enzyme dihydropteroate synthetase, DHPS. Several antibacterial sulfonamides include mafenide prontosil, sulfacetamide, sulfamethizole, sulfanilamide, sulfasalazine, sulfisoxazole, trimethoprim, and trimethoprim-sulfamethoxazole.


Tetracyclines are a group of broad-spectrum antibiotics named for their four (“tetra-”) hydrocarbon rings (“-cycl-”) derivation (“-ine”). Exemplary tetracyclines include tetracycline, chlortetracycline, oxytetracycline, demeclocycline, doxycycline, lymecycline, meclocycline, methacycline, minocycline, rolitetracycline, and tigecycline.


Oxazolidinones are a class of compounds containing 2-oxazolidone in their structures. Oxazolidinones are useful antibiotics. Some of the most important oxazolidinones are the last generation of antibiotics used against Gram positive bacterial strains. One example of an oxazolidinone is linezolid.


Rifamycins are a group antibiotics that are synthesized either naturally by the bacterium Amycolatopsis mediterranei, or artificially. Rifamycins are particularly effective against mycobacteria, and are therefore used to treat tuberculosis, leprosy, and mycobacterium avium complex (MAC) infections. The rifamycin antibiotic group includes, without limitation, rifampin, rifL.


Lipopeptide antibiotics includes peptides with attached lipids or a mixture of lipids and peptides such as the cyclic lipopeptide, daptomycin.


Other unclassified antibiotics include chloramphenicol, clindamycin, ethambutol, fosfomycin, furazolidone, isoniazid, metronidazole, mupirocin, nitrofurantoin, platensimycin, pyrazinamide, quinupristin/dalfopristin, spectinomycin, and telithromycin.


Pharmaceutical compositions comprising the abovementioned antibiotics can comprise a combination of antibiotics.


Furthermore, the abovementioned antibiotics can be administered via any suitable method (e.g., orally, topically, intravenously, ip injection, muscular injection (IM), or by any combination thereof). These antibiotics can further be administered concurrently, i.e., at approximately the same time, or sequentially, i.e., at different times.


Recent generations of bacteria have developed resistance to one or more of the abovementioned antibiotic agents. Such bacteria include Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, each of which can cause illness in mammals; especially humans.


V. PRODUCING EMPEDOPEPTIN

Cyclic peptides are composed of several biosynthetic units, typically amino acids, linked in sequence to form a closed ring structure. The producing organisms contain large enzyme complexes referred to as non-ribosomal peptide synthetase (NRPS) complexes, which are responsible for the synthesis of these molecules. NRPS complexes have an assembly line-like organization comprising a number of biosynthetic modules, each of which is responsible for the addition of one, specific amino acid (biosynthetic unit) to the sequence of the cyclic peptide.


Because each biosynthetic module in the NRPS complex is specific for a certain amino acid, the sequential arrangement of the modules in the complex does, in itself, determine the sequence and structure of the cyclic peptide produced. From this follows that if the sequence, or order, of the modules is changed, the amino acid sequence of the peptide will also change. That is, if a biosynthetic module specific for a particular amino acid is substituted for a module specific for another amino acid, the net effect will be a different amino acid, at that position, in the peptide produced by the modified NRPS complex. Moreover, since the arrangement of modules in an NRPS complex is a direct reflection of the arrangement of the module-encoding gene sequences in the corresponding NRPS gene, deletion, insertion and/or substitution of biosynthetic modules in an NRPS complex can be accomplished by deletion, insertion and/or substitution of the relevant sequence segments in the corresponding NRPS gene. Consequently, genetic engineering (of the relevant cyclic peptide-producing organism) can now be used to generate molecules with features that previously could only be introduced using the complicated and expensive synthetic chemistry methods discussed above.


Nonetheless, utilization of the genetic engineering approach outlined above, for introduction of modifications to the structure of Empedopeptin, requires knowledge of the sequence and structure of the NRPS gene encoding the Empedopeptin synthetase. This gene has to date not been identified or cloned. Consequently, with the aim of cloning this gene, a set of degenerate PCR primers, targeted at the coding regions of the highly conserved core adenylation domain sequence motifs A3 (AUG1470: GGWTCYACWGGWACWCCWTTRCC; forward) and A8 (AUG1473: CCWARYTCWATACGRAAWCCACG; reverse; with R=A or G; W=A or T; Y═C or T), were prepared. The design of the primers was optimized with regard to the codon usage of the Empedopeptin-producer organism Empedobacter spp. ATCC 31962. A PCR amplification was subsequently carried out using these primers, standard reaction conditions and the Expand High-Fidelity PCR system (Roche), according to the manufacturer's protocol. The reaction yielded an 806 bp DNA fragment, which was cloned and subjected to sequence analysis. This revealed that the fragment encodes a portion of an NRPS adenylation domain. The amplified fragment shares highest amino acid sequence homology (55% identity, 66% similarity) with the proline-activating adenylation domain of module 2 in the syringopeptin synthetase from Pseudomonas syringae pv. syringae. Determination and analysis of the presumed substrate-binding constituents, in the fragment sequence, revealed that the adenylation domain amplified from Empedobacter spp. likely recognizes and activates proline. Together these observations suggest that the cloned PCR fragment represents a fragment of the Empedopeptin synthetase NRPS gene.


The sequence of the putative Empedopeptin synthase fragment is SEQ ID NO 1, and is provided in the sequence listing below.


The corresponding protein sequence is SEQ. ID. NO. 2, and is also provided in the sequence listing below.


The first step in the cloning of the remaining portion(s) the Empedopeptin synthetase NRPS gene (epp) cluster involved construction of an Empedobacter haloabium fosmid library. This was done using the CopyControl Cloning System (Epicentre) which combines the clone stability afforded by single copy cloning with the advantages of high yields of DNA obtained by on-demand induction of clones to a high copy number (usually 10-200 copies per cell). First, high-molecular-weight E. haloabium genomic DNA (>80 kb) was prepared, using standard procedures. The genomic DNA was then sheared to approximately 40 kb fragments which, subsequently, were end-repaired to generate the appropriate blunt and 5′-phosphorylated ends. The end-repaired DNA was then size-fractioned on a low-melting-point agarose gel, using field-inversion gel electrophoresis (FIGE). DNA fragments of the appropriate size (approx. 40 kb) were excised, extracted from the gel, and, subsequently, ligated into the CopyControl pCC1FOS cloning vector. Following packaging of the ligated DNA into Lambda phage particles, the packaging reaction mix was used for transfection of Escherichia coli EPI300-T1, to determine the library's titer. And, once the titer was determined the library was plated and screened.


Individual clones derived from plating of the fosmid library were screened by PCR, using primers designed to amplify the NRPS gene fragment, previously amplified from E. haloabium genomic DNA (see above). E. haloabium belongs to the family of Flavobacteriaceae (e.g. Flavobacterium johnsoniae, Flavobacterium pschrophilum, and Flavobacterium sp. MED217), which has an average genome size of approximately 4.4 Mb. Consequently, about 500 clones were screened to ensure a 99% probability of finding at least one clone that contained the (entire) sequence information of the (putative) empedopeptin biosynthetic gene cluster (predicted size: approx. 30 kb).


Twelve 48-well-microtiter plates were prepared by adding 0.8 ml of Luria-Broth (LB) medium, supplemented with 12.5 μg/ml chloramphenicol, and inoculating the medium in each well with a single clone from the plated fosmid library (see above). Following overnight incubation at 30° C./250 rpm, 20 μl of each culture was used as inoculum for the copy number amplification procedure outlined below. The remainder of the cultures were supplemented with 0.4 ml glycerol and stored, as a master plate, at −80° C. The aliquots induced for copy number amplification produced the (high) yields of fosmid DNA required for PCR analysis and fingerprinting. Fresh 48-well-microtiter plates were prepared by adding 0.8 ml LB medium, supplemented with 12.5 μg/ml chloramphenicol and 0.1% arabinose, and inoculating the medium in each well with 20 μl of the pre-culture prepared earlier. The cultures were incubated overnight at 30° C./250 rpm. To reduce the time and effort involved in the screening of the fosmid clones, small aliquots of the individual cultures were combined into defined pools (of 24 clones each), and the (fosmid) DNA present in each pool was isolated using standard procedures. The pooled fosmid DNAs was used as template in PCR amplifications with primers designed to amplify the NRPS gene fragment isolated previously by degenerate primer PCR (see above). Genomic E. haloabium DNA and/or the previously cloned putative empedopeptin NRPS gene fragment was used as positive controls for these experiments. Fosmid DNA from the individual clones in the clone pools that produced an amplicon of the expected size (in the first round of PCR) were subsequently prepared and analyzed individually in the same manner. This second round of PCR identified two individual fosmid clone(s) that, upon sequencing, were found to both contain the entire NRPS portion of the (putative) empedopeptin biosynthetic gene cluster.


An illustration of the gene cluster sequence identified in two fosmid clones prepared from E. haloabium genomic DNA is provided as FIG. 1. The locations of sequences encoding putative “decorating enzymes” are also indicated in FIG. 1.


In FIG. 1, the following abbreviations are employed: A, adenylation domain; T, thiolation domain; C, condensation domain; Ox, monooxygenase domain; and Te, thioesterase domain.


The isolated nucleotide and protein sequences of the three NRPS genes comprising the Empedopeptin biosynthetic gene cluster are also provided as follows:










(Nucleotide Sequence of Empedopeptin synthase fragment)









SEQ ID NO 1










gtcgggttcg acgggtacgc caaaggggtc gcgatggccc agggcccgct ggtcaacctg
60






atccggtggc aggcttcgtc gcgttcgaag ctggcccagc gcgaacgcac gctgcagttc
120





tccgccctgg gcttcgatgc cacgttccag gagatcttca gcgcattgtg ctatggcgcc
180





agcctggtgc tgctggccga gtccatccgg cgcgatccgc gcgaactggt gcggctgatg
240





cgccggtacg acgtggaacg cattttcctg ccgttcgtcg cgctgcagaa catcgccgag
300





gcggcggtgg agctgggcga accgttgcct gcgctgaaca cgatgatcac ggcaggcgaa
360





cagttgcgca tcagtcccgc catcgtgcag ttcttccgca tgcgcgccgg ccgcagcctg
420





cacaactact acggcccgac cgagagccac gtcgtgacga cgtatgtgct ggacggcgat
480





ccgggcgcgt ggcccgcgtt gccgccgatc ggcgcgccga tcgccaacac ccagatctac
540





attctcgacg cggcgctgca gccggtggcc ctgggcgcgc atggcgagct gtatatcgcc
600





ggcgattgcc tggccgacgg ctacctgaac cggcctgacc tgacggcgga gcgcttcgtc
660





ggcaatgtct tccggccagg cacgcgcatg tacaagacgg gcgacatcgc ccgctggctg
720





gaggacggca atatcgaata cctgggccgc aacgacagcc aggtcaagat ccgcggctac
780





cgcatcgagc tgggcgaaat cgaggc
806











(Peptide Sequence of Empedopeptin synthase fragment)









SEQ ID NO 2









Val Gly Phe Asp Gly Tyr Ala Lys Gly Val Ala Met Ala Gln Gly Pro



1         5           10           15





Leu Val Asn Leu Ile Arg Trp Gln Ala Ser Ser Arg Ser Lys Leu Ala


      20            25           30





Gln Arg Glu Arg Thr Leu Gln Phe Ser Ala Leu Gly Phe Asp Ala Thr


     35          40          45





Phe Gln Glu Ile Phe Ser Ala Leu Cys Tyr Gly Ala Ser Leu Val Leu


 50             55           60





Leu Ala Glu Ser Ile Arg Arg Asp Pro Arg Glu Leu Val Arg Leu Met


65           70           75          80





Arg Arg Tyr Asp Val Glu Arg Ile Phe Leu Pro Phe Val Ala Leu Gln


         85          90           95





Asn Ile Ala Glu Ala Ala Val Glu Leu Gly Glu Pro Leu Pro Ala Leu


        100          105          110





Asn Thr Met Ile Thr Ala Gly Glu Gln Leu Arg Ile Ser Pro Ala Ile


    115           120           125





Val Gln Phe Phe Arg Met Arg Ala Gly Arg Ser Leu His Asn Tyr Tyr


  130           135         140





Gly Pro Thr Glu Ser His Val Val Thr Thr Tyr Val Leu Asp Gly Asp


145          150           155           160





Pro Gly Ala Trp Pro Ala Leu Pro Pro Ile Gly Ala Pro Ile Ala Asn


         165           170           175





Thr Gln Ile Tyr Ile Leu Asp Ala Ala Leu Gln Pro Val Ala Leu Gly


      180             185          190





Ala His Gly Glu Leu Tyr Ile Ala Gly Asp Cys Leu Ala Asp Gly Tyr


    195           200           205





Leu Asn Arg Pro Asp Leu Thr Ala Glu Arg Phe Val Gly Asn Val Phe


  210          215          220





Arg Pro Gly Thr Arg Met Tyr Lys Thr Gly Asp Ile Ala Arg Trp Leu


225          230          235           240





Glu Asp Gly Asn Ile Glu Tyr Leu Gly Arg Asn Asp Ser Gln Val Lys


        245           250           255





Ile Arg Gly Tyr Arg Ile Glu Leu Gly Glu Ile Glu


      260          265





(Nucleotide Sequence of eppA)









SEQ ID NO 3










atgcatacct ccgccatacc cgacacctgc gcgaccttgt tcgacgtcct ccgccatcgt
60






gccagcgccg ccggcacggc ggaccggccg gccttcacct atctgaacga tggtgaatcg
120





gtcagcggtg cgctcagtta tgcccagctc gacgccgcgg cgcagcgcct ggcggcgcac
180





ctgcagcagg tcaccagccc gggcgaccgc gtgctgctcg tgtatccgcc cagcctggac
240





tacatcgtcg ccttctatgc ctgcgtgtac gccggtgtca ccgccgtgcc cgcgctgccg
300





ccggccaatc cgcgtgccct gccgcggctg cggctgcagg cggaagacgc ccagcccagc
360





gcggccctga ccagcgccgc gatccgcgcc acgatcgtcg atggcgcggc gggcgacgac
420





gcgctgcgcc gctgccactg gctggcgacc gatgcgctgg acgagacggc gccgccatgg
480





cgcgagccgt cggtgcgtgc cagcgacatc gtgttcctgc agtacacctc gggttcgacc
540





ggtgcgccca aaggcgtcat ggtgagccat gccagcctgc tggccaacgt cgccctcagc
600





cagcagctgt acggcatgcg cggcgacgac gtgttcgtct cgtggctgcc gccgcaccac
660





gacttcggcc tgatcggcac gatcgtctcg ccggtctatg tcggctgcca cagcgtgcag
720





ttcccgcccg ccgcgttcct gatgcgcccg caccgctggc tcaagctcat cgcggcatac
780





cgcgcccgca tcaccggcgc gcccaacttc gcctaccagt tgtgcgcgca gcgcgtcacg
840





ccggcgcagc gtgccggcct cgatctgtcc tgcctcgagg tcgcggtcaa cggcgccgag
900





cgtatccgca tggagacggt acgggagttc gccgccgcct tcgccgactg cggcctgagg
960





ccggaagcga tggtgccggc gtatggcatg gccgagtgtg tgctgctggc ttgcgcggcg
1020





atggacaagc ggccgggcgc cttgccgcac agccgccatc tcagcaaggc ggcgctggag
1080





cgcaacgtcg tgaccgacag cgccggcgcg gcggacgaga tcgagattgc ctgcacgggc
1140





gcggccgtca acggcgcgca ccgcatcgtt tgcgtcgagc cggacagccg cgtggcgctg
1200





ccggacaacg cggtcggcga agtctggatc agcggcccat ccgtcgccga tggctactgg
1260





ggcaagccgg acgccagcgc ggcggtattc ggcgccgcgc tggccggtgg ccccggccgc
1320





tggttgcgca cgggcgacct gggattcgtc gccgatggcc gcctgtacat cacgggccgc
1380





atcaaggaaa tgatgatctt taacggccgc aacgtctatc cgcaggacgt cgagatcacg
1440





gtcgagaagc tcgataccgc tttccggccc agcggctgcg ccgtgttcgc ggtggaggac
1500





gacgccacga ccgcgctggt cgtcgtgcag gagctcgagg cgcgccagca ggcctacacg
1560





gccacgctgg tggcccgact gcgcgaggcg ctggccgagc gccacgacat cctcgacctg
1620





gccggtgtcg tgctggtcaa ggcgggccgc attccacgca cctccagcgg caagctgcag
1680





cgcgtggcgt gccgccagct gtatctggaa ggcgccctcg atcccatctg gagctggcgc
1740





cgtgaagacg acagcgtggc cgcggtggcg ggtgccgtcg cacccgccga gcagcgcatg
1800





ctggcgatct ggcaggagct gttcgagcag gcgccgctgg cgctggacga caatttcttc
1860





cgcctgggcg gccactcgct gctggcgacc cagctgatcg gtgccgtcaa cgcggcattc
1920





ggcgtgcagc tgccgctgcg ggtcgtgttc cacgcgccga ccccgcgggc gatggccgcg
1980





gcggtcggtg acgcggccgc gggcggcgcc accgatgtgc tggcgccggc cgggcacgcg
2040





ggtctggcgc cgctgtcgtt cgcccagcag cgtttctggt tcctcgacca gtaccagccc
2100





ggcaacccgt tctacaacat cccgctggcg ctcgcgctga cgggcgccgt cgatgccgca
2160





ctgctggaac gggcgctgaa cgcgctggtc gcgcggcatg acacgctgcg taccagcttc
2220





cccgccgacg gcggcgtgcc gcggcagcac gtggcggcgc agctggcgct gccgctgacc
2280





atcgtcgacc tggccgcgct gccggtcgcc gaggccgagg cgcgcaccga acgcatcgtg
2340





cgtgccgagg ccgcgcagcc attcgacctg acggccggtc cattgctgcg agccagtctg
2400





gtgtcgattg ccgatacgcg ccatgtgctg ctgctgacgt tgcaccacat cgtgcacgac
2460





ggctggtcca cgccggtgct gctgggcgaa ctgcgccgca tctacgcggc gctgcgcgac
2520





agtcaggccg cggccctgcc tgcgccggcc ttgcagtacg ccgactatgc cgtgtgggag
2580





cagcgccgct ggcagggcga ggcgctggcc gcggcgctgg cattctggcg cgccaacctg
2640





gccgacgcct cgccgctgct ggcgctgccg accgaccggc cgcgcgccaa tgtgatggcg
2700





cacgaaggcc gggcatggca gacgcgcgtg ccggcggcac tggtgcgcga cctgaaccgg
2760





cttgccgcca gctcgaacgc gacgctgttc atggtgctga ccgcggcgtt gaacgccgtg
2820





ctgtaccgct attccggcca gaccgatttc gccatcggcg ccctgtcggc caaccgcccg
2880





gcaggtaccg agcacatgcc gggcaacttc gtcaacgtgg tgccgctgcg tgcccgcgtg
2940





cacggcgacg atacgttcgc ggcgctgctt gccgatacgg cggcgaacct gctggccgcc
3000





tacgactgcc agctgccgtt cgagttgatc ctgcagcacg tggtgtccga gcgcagcccg
3060





gcctacacgc cctatgcgca ggtggtactg aattaccaca gcgagttcga aggccaggaa
3120





caggcggcgc tggcaccgga cggcgacgcg ctccacatcg aaggccgcca cgcggccagc
3180





gtccagtacg cggcgttcga cctgaagatc gagatgaacc gcgtcggcgc cgagctggac
3240





ctggtgttcg agtacagcac ggcgctgttc gaccaagcga cgatcgcccg gctggccggc
3300





cactacgtgc gcgtgctcga acaggtcggc gccgatgccc aggcgcgtgt cgccgcgctg
3360





gcgctgctgt cggaaggtga gctggcggcg ctgtcggcgc agtggcagtc cgcccgccac
3420





gattacccgc gcacggccaa cctggccacg ctgctggagc agcaggccgc gcgcacgccg
3480





gatgcgccgg cggtggcttg cgccggcacg gtgctgacgt acgcccagtt gcacggccgg
3540





gccaaccgcc tggcccacct gctgcgcgcg cgcggcgtcg ggccggacgt gctggtgggc
3600





gtctgcgtcg agcgttcgct cgacatggtc gtggccgtgc tggccgtcgt caaggccggc
3660





ggtgcctacc tgccgctcga cccgaactat ccggccgcgc gcctcgcata catgctggaa
3720





gacgccgccc cggcgctggt gctgacgcaa cagcacctgg ccgcgcgcct gccggcgcag
3780





gcgccggcca tcgtgatcga cgccgatcac acggcacacc cggacagcgc accggctccg
3840





gtgggcgggc cggacgacct ggcatacgtc atctacacgt ccggttcgac cggcaagccg
3900





aagggcgcca tggtgcagcg ccagggcgtg ctgaacctgc tgacgtggtt cgtgcgcgag
3960





tacgccatcg gcgcggccga tcgcgtgctg ctggtgtcgt ccttcagctt cgacctgacg
4020





cagaagaaca tcttcggcat cctgctggtc ggcggcgagc tgcacctgat ggcggacgac
4080





tacgcgccgg aacgcatcgg cgcctatgcg gggaccgccg ggatcacgct gatcaactgc
4140





gcgcccagcg cgttctatcc gctgctggcc gacggcggcg cggcgcgcat ggcgtcgctg
4200





cgcgccgtct tcctgggcgg cgagccgatc caggtcggcc tgctgcgcgc ggcataccgc
4260





gacgtcgcca cgccaccact ggtgcacaac acgtacggcc cgaccgaggc ctccgatgtc
4320





gtgtcgcact acgcctggca cccgcatgag ccggtgacga cgctgccgat cggccgggcg
4380





atcgccaaca cccgcctgta tgtgctcgat ggcggccgcc agctggtgcc gcaaggcgcc
4440





gtgggcgagc tgtatgtggg cggcgacggg gtcgggcgcg gctatctgca ccgtcccgaa
4500





ctgaccgccg aacggttcct gcccgatccg tttgccgggc agccaggcgc gcgcatgtac
4560





cgcaccggcg acctggtgcg ctccctgccg gacggcgtgc tggaatacct gggccgtatc
4620





gatcaccagg tcaaggtgcg tggcctgcgc atcgagctcg gggaaatcga agaggcgctg
4680





gcggcgctgc cggccatcga ccaggcactg gtgctcgcct gcgacgatct ggccgccgat
4740





gtgcgcctgg tcgcctacct ggtcggcgtc gatgcgcagg ccgcgctcga tcccgtcgca
4800





ctgcgtgcgg cgctgacgca aaccctgccg cagtacatgc tgccgtcgca tttcgtccag
4860





ctgccggcgt tcccgttgag ccccaacggc aaggtggacc gggccgcgtt gccgcgaccc
4920





gtacaggacc tgcatgcacc gttcgtcgcg ccgagcggcg ccaccgagca ggcgctcgcg
4980





caaatctggg cggaggtgct gaagtgtgcc gacgtgggtc gcgccgacga cttcttccag
5040





ctgggcggcc actcgctgct ggccacgcag gtgatgtcgc atgtgcgcgc gcgccttggc
5100





gtcgacctgc cgctgcgcac cctgttcgaa tacccgacgc tggcggcact gggcgagcag
5160





atcgaccgcg ccgacaaggc cgcgagcggc ccgctggccc tggccgccgg cgacggcgcc
5220





gcggcgggcg cgttggcgcc gctgtcgtat gcgcagcagc gcctgtgggt gctgcagaag
5280





ctgggcgaga atccggccgt ctacaacctg ccgttcgccg tcgagctcga gggggcggtc
5340





gacgtgcccg cgttgcagca cgcgctggac ctgctggcgc ggcggcacgc ggcgttgcgt
5400





accgccttcg tcaccgtcga cggcgagccg ctgtgcgcgg tggccgccca tgccgcgttg
5460





ccgctgcaga ccgccagcct ggccgacgcg gcgccgcagg cggtgcacga ctggctggtc
5520





gccgcggcgc aggtgccgtt cgacctggag tgcgcgccac tggcgcgtgc gaccctgttg
5580





cacgtcgcgc cggcccggca cgtgctgctg ctggtcatgc accacatcat tgccgacggc
5640





tggtcgatcg gtgtcctgag ccgcgaactg tcggtgctgt acaacgccgc ccgccgtggt
5700





gtgccggcgg cactgccggc cttgccgctc cagtacagcg attatgcccg ctggcagcgc
5760





agccgcgcgg aagagggcgc gttcgacaat cagctggctt actggcgcga ccgcctggcg
5820





cacgcgcccg ccatgctggc cttgccgctg gaccatccgc gtccggccct gccggccctg
5880





cgcggcgacg tgctggcttt caccgtcgaa ccgggcctgc tggcaggcct gcggcgcctg
5940





gcgcgcgaag ggcaggcgag cctgttcatg gtactgagcg ccgccttcgg tgtgctgctg
6000





ggccgctact ccggccagcg cgacctgtgc atcggcacgc cgatcgccaa ccgccatcat
6060





ggcgagctgg aaggattggt cggcttcttc gtcaacacgc tcgtgctgcg cctgacgctc
6120





gagccggcgc acggcttcga ggcgctgctg gcgcaggtgc gcgaaacggt gctgcaggca
6180





ttcgccaacc aggacctccc gttcgaacag gtcgtggcgg ccagcgccgg tgcgcgccag
6240





gccggccaga cgccgctgtt ccaggccatg ctcgcgctgc agaacgcgcc gcaggacgag
6300





gtggcgctgg aggccctgtc cggccgcgtg ctcgacgtgc acaacggtgg cgccaaattc
6360





gacctgacgc tcgacatcac gccgcgcggc gaccgcctgg actgccgctt tgaatacgat
6420





tgcgcgctgt tcgaacgcgc cacggtggcg cgcttggccg ataacctgct cacactgctg
6480





gccagcatcg tcgccgcgcc gcaggcaccg ttgcaaacgc tggcattgct ggcgccagcc
6540





gagcaggcct tgctggcacg gctgggcgcc ggcacgcccg ccggcgccgc gccgctggtg
6600





catcgcgcat tcgagtccca cgcggcacgc aacccggacg ccgtggcatt gacgcacgaa
6660





ggtaccaccc tgacgtacgc cgaattgaac gcgcgggccg acacgctggc acgcgcgctt
6720





acggccgccg gggtgggacc ggacagccgg gtggtcctgt atgccgaacg cggcatcgga
6780





ttgatcaccg gtgtgctggc gatcctgaaa gctggcggcg cctacgtgcc attcgatccg
6840





gcgtatccgc gcgaacggct ggcatacatg gcacaggact gcatgccggc ggcgctcgtc
6900





acggaaccgg cgctgctggc cgaggcacag gcgctgggac cggccctggc ggccgtgccc
6960





tgctgcctga tcgaagcggg cggcgcgcag cccggcgctg cgccggcgcc ggcatcgggc
7020





gccgccgttg gccccggcca tctcgcttac atgatctata cctccggctc gacgggacag
7080





ccgaaaggcg tgcaggtgga acatggcggc ctggccagcc tggcggcgga ccagaaccgg
7140





gcgctggcga tcggtcccgg cagccgcgtg ctgcaattcg cgtcgatcag cttcgatgcc
7200





agcatctggg aaatcgtcat ggcgctggcc agcggcgcgg cgctggtttc cgcaccgcgc
7260





gccgcgctga tgccgggcgc gccgctgctc gcgttcctgg gcgagcagaa catcagccac
7320





gcgctgctgc caccttcggt gctggcgatc atggctgacg acgagcggct ggcgccgatg
7380





acgttgctgg tgggcggcga agcctgcccg ccgtccgtcg ccgcccactg gggccggcgc
7440





caccgtttcg tcaacgccta tggtccgagc gagatcacgg tctgcgccac gacctggcat
7500





tacgacggcc gcgccggcgg cgccattccg atcgggcggc cactggcggg tacccgcatc
7560





catatcctgg acgaggcggg ccagccggta ccggtcggcg cggtcggcga gatccatatc
7620





ggcggcgtcg gcgtggcgcg cggttacctg aaccggccgg acctgaccgc acagcgcttc
7680





ctggccgaac cggggcaccc cgatacccgc ttgtaccgca ccggcgacct ggggcgatgg
7740





gatgcggccg gcatgctgca ctatgcgggc cgcaacgatt tccaggtcaa ggtacggggc
7800





ttccgcatcg agctgggcga aatcgaagcc gtgctgcgcg cccagccggc attggccgat
7860





gccgccgtga tcgcccgtgc gggggcggac ggccagcagc gcctgctggc ctatgtggtg
7920





ccacgcgcgg atacggcgcc cgaaccggcg gccctgcgca gcgccttgct ggcacgcctg
7980





ccggactaca tggtgcctgg agcgttcatc gcgctgccgg cattgccgca gacacccaac
8040





ggcaagctcg atcgcgatgc gctgccgctg cccgatgacg atgccttggc gcggcaggct
8100





ttcgtgccgc cgcaggacgg catcgagcgg cgcctggccg acatctggca aggcgtgctc
8160





ggtgtcgcgg cggtgggccg tttcgatcac ttcttcgagc tgggcggcca ctcgctggcg
8220





ttgacgaagc tcagcttcct ggtgcaggaa gcgttcggcg tgacgctcag cctgggtcag
8280





ctctaccagc tgcagcagct ggcgcagcag gccgaccata tcgccgcggc gcttgccacg
8340





gcaagccgca agaaggtgct ggtactggac ctggacgacg aggaggaagc cgcatga
8397











(Protein Sequence of eppA)









SEQ ID NO 4









Met His Thr Ser Ala Ile Pro Asp Thr Cys Ala Thr Leu Phe Asp Val



1        5            10            15





Leu Arg His Arg Ala Ser Ala Ala Gly Thr Ala Asp Arg Pro Ala Phe


      20           25           30





Thr Tyr Leu Asn Asp Gly Glu Ser Val Ser Gly Ala Leu Ser Tyr Ala


    35           40           45





Gln Leu Asp Ala Ala Ala Gln Arg Leu Ala Ala His Leu Gln Gln Val


  50           55           60





Thr Ser Pro Gly Asp Arg Val Leu Leu Val Tyr Pro Pro Ser Leu Asp


65           70           75           80





Tyr Ile Val Ala Phe Tyr Ala Cys Val Tyr Ala Gly Val Thr Ala Val


          85           90           95





Pro Ala Leu Pro Pro Ala Asn Pro Arg Ala Leu Pro Arg Leu Arg Leu


        100          105          110





Gln Ala Glu Asp Ala Gln Pro Ser Ala Ala Leu Thr Ser Ala Ala Ile


    115          120          125





Arg Ala Thr Ile Val Asp Gly Ala Ala Gly Asp Asp Ala Leu Arg Arg


  130          135          140





Cys His Trp Leu Ala Thr Asp Ala Leu Asp Glu Thr Ala Pro Pro Trp


145          150          155          160





Arg Glu Pro Ser Val Arg Ala Ser Asp Ile Val Phe Leu Gln Tyr Thr


        165          170          175





Ser Gly Ser Thr Gly Ala Pro Lys Gly Val Met Val Ser His Ala Ser


      180          185          190





Leu Leu Ala Asn Val Ala Leu Ser Gln Gln Leu Tyr Gly Met Arg Gly


    195          200          205





Asp Asp Val Phe Val Ser Trp Leu Pro Pro His His Asp Phe Gly Leu


  210          215          220





Ile Gly Thr Ile Val Ser Pro Val Tyr Val Gly Cys His Ser Val Gln


225          230          235          240





Phe Pro Pro Ala Ala Phe Leu Met Arg Pro His Arg Trp Leu Lys Leu


        245          250          255





Ile Ala Ala Tyr Arg Ala Arg Ile Thr Gly Ala Pro Asn Phe Ala Tyr


      260          265          270





Gln Leu Cys Ala Gln Arg Val Thr Pro Ala Gln Arg Ala Gly Leu Asp


    275          280          285





Leu Ser Cys Leu Glu Val Ala Val Asn Gly Ala Glu Arg Ile Arg Met


  290          295          300





Glu Thr Val Arg Glu Phe Ala Ala Ala Phe Ala Asp Cys Gly Leu Arg


305          310          315          320





Pro Glu Ala Met Val Pro Ala Tyr Gly Met Ala Glu Cys Val Leu Leu


        325          330          335





Ala Cys Ala Ala Met Asp Lys Arg Pro Gly Ala Leu Pro His Ser Arg


      340          345          350





His Leu Ser Lys Ala Ala Leu Glu Arg Asn Val Val Thr Asp Ser Ala


    355          360          365





Gly Ala Ala Asp Glu Ile Glu Ile Ala Cys Thr Gly Ala Ala Val Asn


  370          375          380





Gly Ala His Arg Ile Val Cys Val Glu Pro Asp Ser Arg Val Ala Leu


385          390          395          400





Pro Asp Asn Ala Val Gly Glu Val Trp Ile Ser Gly Pro Ser Val Ala


        405          410          415





Asp Gly Tyr Trp Gly Lys Pro Asp Ala Ser Ala Ala Val Phe Gly Ala


      420          425          430





Ala Leu Ala Gly Gly Pro Gly Arg Trp Leu Arg Thr Gly Asp Leu Gly


    435          440          445





Phe Val Ala Asp Gly Arg Leu Tyr Ile Thr Gly Arg Ile Lys Glu Met


  450          455          460





Met Ile Phe Asn Gly Arg Asn Val Tyr Pro Gln Asp Val Glu Ile Thr


465          470          475           480





Val Glu Lys Leu Asp Thr Ala Phe Arg Pro Ser Gly Cys Ala Val Phe


        485          490          495





Ala Val Glu Asp Asp Ala Thr Thr Ala Leu Val Val Val Gln Glu Leu


      500          505          510





Glu Ala Arg Gln Gln Ala Tyr Thr Ala Thr Leu Val Ala Arg Leu Arg


    515          520          525





Glu Ala Leu Ala Glu Arg His Asp Ile Leu Asp Leu Ala Gly Val Val


  530          535          540





Leu Val Lys Ala Gly Arg Ile Pro Arg Thr Ser Ser Gly Lys Leu Gln


545          550          555          560





Arg Val Ala Cys Arg Gln Leu Tyr Leu Glu Gly Ala Leu Asp Pro Ile


        565          570          575





Trp Ser Trp Arg Arg Glu Asp Asp Ser Val Ala Ala Val Ala Gly Ala


      580          585          590





Val Ala Pro Ala Glu Gln Arg Met Leu Ala Ile Trp Gln Glu Leu Phe


    595          600          605





Glu Gln Ala Pro Leu Ala Leu Asp Asp Asn Phe Phe Arg Leu Gly Gly


  610          615          620





His Ser Leu Leu Ala Thr Gln Leu Ile Gly Ala Val Asn Ala Ala Phe


625          630          635          640





Gly Val Gln Leu Pro Leu Arg Val Val Phe His Ala Pro Thr Pro Arg


        645          650          655





Ala Met Ala Ala Ala Val Gly Asp Ala Ala Ala Gly Gly Ala Thr Asp


      660          665          670





Val Leu Ala Pro Ala Gly His Ala Gly Leu Ala Pro Leu Ser Phe Ala


    675          680          685





Gln Gln Arg Phe Trp Phe Leu Asp Gln Tyr Gln Pro Gly Asn Pro Phe


  690          695          700





Tyr Asn Ile Pro Leu Ala Leu Ala Leu Thr Gly Ala Val Asp Ala Ala


705          710          715          720





Leu Leu Glu Arg Ala Leu Asn Ala Leu Val Ala Arg His Asp Thr Leu


        725          730          735





Arg Thr Ser Phe Pro Ala Asp Gly Gly Val Pro Arg Gln His Val Ala


      740          745          750





Ala Gln Leu Ala Leu Pro Leu Thr Ile Val Asp Leu Ala Ala Leu Pro


    755          760          765





Val Ala Glu Ala Glu Ala Arg Thr Glu Arg Ile Val Arg Ala Glu Ala


  770          775          780





Ala Gln Pro Phe Asp Leu Thr Ala Gly Pro Leu Leu Arg Ala Ser Leu


785          790          795          800





Val Ser Ile Ala Asp Thr Arg His Val Leu Leu Leu Thr Leu His His


        805          810          815





Ile Val His Asp Gly Trp Ser Thr Pro Val Leu Leu Gly Glu Leu Arg


      820          825          830





Arg Ile Tyr Ala Ala Leu Arg Asp Ser Gln Ala Ala Ala Leu Pro Ala


    835          840          845





Pro Ala Leu Gln Tyr Ala Asp Tyr Ala Val Trp Glu Gln Arg Arg Trp


  850          855          860





Gln Gly Glu Ala Leu Ala Ala Ala Leu Ala Phe Trp Arg Ala Asn Leu


865          870          875          880





Ala Asp Ala Ser Pro Leu Leu Ala Leu Pro Thr Asp Arg Pro Arg Ala


        885          890          895





Asn Val Met Ala His Glu Gly Arg Ala Trp Gln Thr Arg Val Pro Ala


      900          905          910





Ala Leu Val Arg Asp Leu Asn Arg Leu Ala Ala Ser Ser Asn Ala Thr


    915          920          925





Leu Phe Met Val Leu Thr Ala Ala Leu Asn Ala Val Leu Tyr Arg Tyr


  930          935          940





Ser Gly Gln Thr Asp Phe Ala Ile Gly Ala Leu Ser Ala Asn Arg Pro


945          950          955          960





Ala Gly Thr Glu His Met Pro Gly Asn Phe Val Asn Val Val Pro Leu


        965          970          975





Arg Ala Arg Val His Gly Asp Asp Thr Phe Ala Ala Leu Leu Ala Asp


      980          985          990





Thr Ala Ala Asn Leu Leu Ala Ala Tyr Asp Cys Gln Leu Pro Phe Glu


    995         1000         1005





Leu Ile Leu Gln His Val Val Ser Glu Arg Ser Pro Ala Tyr Thr


  1010          1015          1020





Pro Tyr Ala Gln Val Val Leu Asn Tyr His Ser Glu Phe Glu Gly


  1025          1030          1035





Gln Glu Gln Ala Ala Leu Ala Pro Asp Gly Asp Ala Leu His Ile


  1040          1045          1050





Glu Gly Arg His Ala Ala Ser Val Gln Tyr Ala Ala Phe Asp Leu


  1055          1060          1065





Lys Ile Glu Met Asn Arg Val Gly Ala Glu Leu Asp Leu Val Phe


  1070          1075          1080





Glu Tyr Ser Thr Ala Leu Phe Asp Gln Ala Thr Ile Ala Arg Leu


  1085          1090          1095





Ala Gly His Tyr Val Arg Val Leu Glu Gln Val Gly Ala Asp Ala


  1100          1105          1110





Gln Ala Arg Val Ala Ala Leu Ala Leu Leu Ser Glu Gly Glu Leu


  1115          1120          1125





Ala Ala Leu Ser Ala Gln Trp Gln Ser Ala Arg His Asp Tyr Pro


  1130          1135          1140





Arg Thr Ala Asn Leu Ala Thr Leu Leu Glu Gln Gln Ala Ala Arg


  1145          1150          1155





Thr Pro Asp Ala Pro Ala Val Ala Cys Ala Gly Thr Val Leu Thr


  1160          1165          1170





Tyr Ala Gln Leu His Gly Arg Ala Asn Arg Leu Ala His Leu Leu


  1175          1180          1185





Arg Ala Arg Gly Val Gly Pro Asp Val Leu Val Gly Val Cys Val


  1190          1195          1200





Glu Arg Ser Leu Asp Met Val Val Ala Val Leu Ala Val Val Lys


  1205          1210          1215





Ala Gly Gly Ala Tyr Leu Pro Leu Asp Pro Asn Tyr Pro Ala Ala


  1220          1225          1230





Arg Leu Ala Tyr Met Leu Glu Asp Ala Ala Pro Ala Leu Val Leu


  1235          1240          1245





Thr Gln Gln His Leu Ala Ala Arg Leu Pro Ala Gln Ala Pro Ala


  1250          1255          1260





Ile Val Ile Asp Ala Asp His Thr Ala His Pro Asp Ser Ala Pro


  1265          1270          1275





Ala Pro Val Gly Gly Pro Asp Asp Leu Ala Tyr Val Ile Tyr Thr


  1280          1285          1290





Ser Gly Ser Thr Gly Lys Pro Lys Gly Ala Met Val Gln Arg Gln


  1295          1300          1305





Gly Val Leu Asn Leu Leu Thr Trp Phe Val Arg Glu Tyr Ala Ile


  1310          1315          1320





Gly Ala Ala Asp Arg Val Leu Leu Val Ser Ser Phe Ser Phe Asp


  1325          1330          1335





Leu Thr Gln Lys Asn Ile Phe Gly Ile Leu Leu Val Gly Gly Glu


  1340          1345          1350





Leu His Leu Met Ala Asp Asp Tyr Ala Pro Glu Arg Ile Gly Ala


  1355          1360          1365





Tyr Ala Gly Thr Ala Gly Ile Thr Leu Ile Asn Cys Ala Pro Ser


  1370          1375          1380





Ala Phe Tyr Pro Leu Leu Ala Asp Gly Gly Ala Ala Arg Met Ala


  1385          1390          1395





Ser Leu Arg Ala Val Phe Leu Gly Gly Glu Pro Ile Gln Val Gly


  1400          1405          1410





Leu Leu Arg Ala Ala Tyr Arg Asp Val Ala Thr Pro Pro Leu Val


  1415          1420          1425





His Asn Thr Tyr Gly Pro Thr Glu Ala Ser Asp Val Val Ser His


  1430          1435          1440





Tyr Ala Trp His Pro His Glu Pro Val Thr Thr Leu Pro Ile Gly


  1445          1450          1455





Arg Ala Ile Ala Asn Thr Arg Leu Tyr Val Leu Asp Gly Gly Arg


  1460          1465          1470





Gln Leu Val Pro Gln Gly Ala Val Gly Glu Leu Tyr Val Gly Gly


  1475          1480          1485





Asp Gly Val Gly Arg Gly Tyr Leu His Arg Pro Glu Leu Thr Ala


  1490          1495          1500





Glu Arg Phe Leu Pro Asp Pro Phe Ala Gly Gln Pro Gly Ala Arg


  1505          1510          1515





Met Tyr Arg Thr Gly Asp Leu Val Arg Ser Leu Pro Asp Gly Val


  1520          1525          1530





Leu Glu Tyr Leu Gly Arg Ile Asp His Gln Val Lys Val Arg Gly


  1535          1540          1545





Leu Arg Ile Glu Leu Gly Glu Ile Glu Glu Ala Leu Ala Ala Leu


  1550          1555          1560





Pro Ala Ile Asp Gln Ala Leu Val Leu Ala Cys Asp Asp Leu Ala


  1565          1570          1575





Ala Asp Val Arg Leu Val Ala Tyr Leu Val Gly Val Asp Ala Gln


  1580          1585          1590





Ala Ala Leu Asp Pro Val Ala Leu Arg Ala Ala Leu Thr Gln Thr


  1595          1600          1605





Leu Pro Gln Tyr Met Leu Pro Ser His Phe Val Gln Leu Pro Ala


  1610          1615          1620





Phe Pro Leu Ser Pro Asn Gly Lys Val Asp Arg Ala Ala Leu Pro


  1625          1630          1635





Arg Pro Val Gln Asp Leu His Ala Pro Phe Val Ala Pro Ser Gly


  1640          1645          1650





Ala Thr Glu Gln Ala Leu Ala Gln Ile Trp Ala Glu Val Leu Lys


  1655          1660          1665





Cys Ala Asp Val Gly Arg Ala Asp Asp Phe Phe Gln Leu Gly Gly


  1670          1675          1680





His Ser Leu Leu Ala Thr Gln Val Met Ser His Val Arg Ala Arg


  1685          1690          1695





Leu Gly Val Asp Leu Pro Leu Arg Thr Leu Phe Glu Tyr Pro Thr


  1700          1705          1710





Leu Ala Ala Leu Gly Glu Gln Ile Asp Arg Ala Asp Lys Ala Ala


  1715          1720          1725





Ser Gly Pro Leu Ala Leu Ala Ala Gly Asp Gly Ala Ala Ala Gly


  1730          1735          1740





Ala Leu Ala Pro Leu Ser Tyr Ala Gln Gln Arg Leu Trp Val Leu


  1745          1750          1755





Gln Lys Leu Gly Glu Asn Pro Ala Val Tyr Asn Leu Pro Phe Ala


  1760          1765          1770





Val Glu Leu Glu Gly Ala Val Asp Val Pro Ala Leu Gln His Ala


  1775          1780          1785





Leu Asp Leu Leu Ala Arg Arg His Ala Ala Leu Arg Thr Ala Phe


  1790          1795          1800





Val Thr Val Asp Gly Glu Pro Leu Cys Ala Val Ala Ala His Ala


  1805          1810          1815





Ala Leu Pro Leu Gln Thr Ala Ser Leu Ala Asp Ala Ala Pro Gln


  1820          1825          1830





Ala Val His Asp Trp Leu Val Ala Ala Ala Gln Val Pro Phe Asp


  1835          1840          1845





Leu Glu Cys Ala Pro Leu Ala Arg Ala Thr Leu Leu His Val Ala


  1850          1855          1860





Pro Ala Arg His Val Leu Leu Leu Val Met His His Ile Ile Ala


  1865          1870          1875





Asp Gly Trp Ser Ile Gly Val Leu Ser Arg Glu Leu Ser Val Leu


  1880          1885          1890





Tyr Asn Ala Ala Arg Arg Gly Val Pro Ala Ala Leu Pro Ala Leu


  1895          1900          1905





Pro Leu Gln Tyr Ser Asp Tyr Ala Arg Trp Gln Arg Ser Arg Ala


  1910          1915          1920





Glu Glu Gly Ala Phe Asp Asn Gln Leu Ala Tyr Trp Arg Asp Arg


  1925          1930          1935





Leu Ala His Ala Pro Ala Met Leu Ala Leu Pro Leu Asp His Pro


  1940          1945          1950





Arg Pro Ala Leu Pro Ala Leu Arg Gly Asp Val Leu Ala Phe Thr


  1955          1960          1965





Val Glu Pro Gly Leu Leu Ala Gly Leu Arg Arg Leu Ala Arg Glu


  1970          1975          1980





Gly Gln Ala Ser Leu Phe Met Val Leu Ser Ala Ala Phe Gly Val


  1985          1990          1995





Leu Leu Gly Arg Tyr Ser Gly Gln Arg Asp Leu Cys Ile Gly Thr


  2000          2005          2010





Pro Ile Ala Asn Arg His His Gly Glu Leu Glu Gly Leu Val Gly


  2015          2020          2025





Phe Phe Val Asn Thr Leu Val Leu Arg Leu Thr Leu Glu Pro Ala


  2030          2035          2040





His Gly Phe Glu Ala Leu Leu Ala Gln Val Arg Glu Thr Val Leu


  2045          2050          2055





Gln Ala Phe Ala Asn Gln Asp Leu Pro Phe Glu Gln Val Val Ala


  2060          2065          2070





Ala Ser Ala Gly Ala Arg Gln Ala Gly Gln Thr Pro Leu Phe Gln


  2075          2080          2085





Ala Met Leu Ala Leu Gln Asn Ala Pro Gln Asp Glu Val Ala Leu


  2090          2095          2100





Glu Ala Leu Ser Gly Arg Val Leu Asp Val His Asn Gly Gly Ala


  2105          2110          2115





Lys Phe Asp Leu Thr Leu Asp Ile Thr Pro Arg Gly Asp Arg Leu


  2120          2125          2130





Asp Cys Arg Phe Glu Tyr Asp Cys Ala Leu Phe Glu Arg Ala Thr


  2135          2140          2145





Val Ala Arg Leu Ala Asp Asn Leu Leu Thr Leu Leu Ala Ser Ile


  2150          2155          2160





Val Ala Ala Pro Gln Ala Pro Leu Gln Thr Leu Ala Leu Leu Ala


  2165          2170          2175





Pro Ala Glu Gln Ala Leu Leu Ala Arg Leu Gly Ala Gly Thr Pro


  2180          2185          2190





Ala Gly Ala Ala Pro Leu Val His Arg Ala Phe Glu Ser His Ala


  2195          2200          2205





Ala Arg Asn Pro Asp Ala Val Ala Leu Thr His Glu Gly Thr Thr


  2210          2215          2220





Leu Thr Tyr Ala Glu Leu Asn Ala Arg Ala Asp Thr Leu Ala Arg


  2225          2230          2235





Ala Leu Thr Ala Ala Gly Val Gly Pro Asp Ser Arg Val Val Leu


  2240          2245          2250





Tyr Ala Glu Arg Gly Ile Gly Leu Ile Thr Gly Val Leu Ala Ile


  2255          2260          2265





Leu Lys Ala Gly Gly Ala Tyr Val Pro Phe Asp Pro Ala Tyr Pro


  2270          2275          2280





Arg Glu Arg Leu Ala Tyr Met Ala Gln Asp Cys Met Pro Ala Ala


  2285          2290          2295





Leu Val Thr Glu Pro Ala Leu Leu Ala Glu Ala Gln Ala Leu Gly


  2300          2305          2310





Pro Ala Leu Ala Ala Val Pro Cys Cys Leu Ile Glu Ala Gly Gly


  2315          2320          2325





Ala Gln Pro Gly Ala Ala Pro Ala Pro Ala Ser Gly Ala Ala Val


  2330          2335          2340





Gly Pro Gly His Leu Ala Tyr Met Ile Tyr Thr Ser Gly Ser Thr


  2345          2350          2355





Gly Gln Pro Lys Gly Val Gln Val Glu His Gly Gly Leu Ala Ser


  2360          2365          2370





Leu Ala Ala Asp Gln Asn Arg Ala Leu Ala Ile Gly Pro Gly Ser


  2375          2380          2385





Arg Val Leu Gln Phe Ala Ser Ile Ser Phe Asp Ala Ser Ile Trp


  2390          2395          2400





Glu Ile Val Met Ala Leu Ala Ser Gly Ala Ala Leu Val Ser Ala


  2405          2410          2415





Pro Arg Ala Ala Leu Met Pro Gly Ala Pro Leu Leu Ala Phe Leu


  2420          2425          2430





Gly Glu Gln Asn Ile Ser His Ala Leu Leu Pro Pro Ser Val Leu


  2435          2440          2445





Ala Ile Met Ala Asp Asp Glu Arg Leu Ala Pro Met Thr Leu Leu


  2450          2455          2460





Val Gly Gly Glu Ala Cys Pro Pro Ser Val Ala Ala His Trp Gly


  2465          2470          2475





Arg Arg His Arg Phe Val Asn Ala Tyr Gly Pro Ser Glu Ile Thr


  2480          2485          2490





Val Cys Ala Thr Thr Trp His Tyr Asp Gly Arg Ala Gly Gly Ala


  2495          2500          2505





Ile Pro Ile Gly Arg Pro Leu Ala Gly Thr Arg Ile His Ile Leu


  2510          2515          2520





Asp Glu Ala Gly Gln Pro Val Pro Val Gly Ala Val Gly Glu Ile


  2525          2530          2535





His Ile Gly Gly Val Gly Val Ala Arg Gly Tyr Leu Asn Arg Pro


  2540          2545          2550





Asp Leu Thr Ala Gln Arg Phe Leu Ala Glu Pro Gly His Pro Asp


  2555          2560          2565





Thr Arg Leu Tyr Arg Thr Gly Asp Leu Gly Arg Trp Asp Ala Ala


  2570          2575          2580





Gly Met Leu His Tyr Ala Gly Arg Asn Asp Phe Gln Val Lys Val


  2585          2590          2595





Arg Gly Phe Arg Ile Glu Leu Gly Glu Ile Glu Ala Val Leu Arg


  2600          2605          2610





Ala Gln Pro Ala Leu Ala Asp Ala Ala Val Ile Ala Arg Ala Gly


  2615          2620          2625





Ala Asp Gly Gln Gln Arg Leu Leu Ala Tyr Val Val Pro Arg Ala


  2630          2635          2640





Asp Thr Ala Pro Glu Pro Ala Ala Leu Arg Ser Ala Leu Leu Ala


  2645          2650          2655





Arg Leu Pro Asp Tyr Met Val Pro Gly Ala Phe Ile Ala Leu Pro


  2660          2665          2670





Ala Leu Pro Gln Thr Pro Asn Gly Lys Leu Asp Arg Asp Ala Leu


  2675          2680          2685





Pro Leu Pro Asp Asp Asp Ala Leu Ala Arg Gln Ala Phe Val Pro


  2690          2695          2700





Pro Gln Asp Gly Ile Glu Arg Arg Leu Ala Asp Ile Trp Gln Gly


  2705          2710          2715





Val Leu Gly Val Ala Ala Val Gly Arg Phe Asp His Phe Phe Glu


  2720          2725          2730





Leu Gly Gly His Ser Leu Ala Leu Thr Lys Leu Ser Phe Leu Val


  2735          2740          2745





Gln Glu Ala Phe Gly Val Thr Leu Ser Leu Gly Gln Leu Tyr Gln


  2750          2755          2760





Leu Gln Gln Leu Ala Gln Gln Ala Asp His Ile Ala Ala Ala Leu


  2765          2770          2775





Ala Thr Ala Ser Arg Lys Lys Val Leu Val Leu Asp Leu Asp Asp


  2780          2785          2790





Glu Glu Glu Ala Ala


  2795





(Nucleotide Sequence of eppB)









SEQ ID NO 5










atgaaactcc atgaactgat ctcccatctg catgccaccg gcgtctcggt gcagaaccgc
60






gacggcaagc tgcaggtgac gagcgccgac ggcgacctgc ccgacgccac gctggcggcg
120





ctgaagaagc acaagaagga cgtggccgca tactatgccg agcccgcgcc ggtcgatgtc
180





gcggcaccgg aacgggagca gccactttcg ttcgcgcagc gccgcctgta tttcctgtac
240





cagtacgagc cggccgcgac gcacttcaac ctgccgatgg agctcggcat cgagggcgcc
300





ctcgacagcg agcgcctgcg cggcgcgctg ctcgacgtgg tgcagcgcca tcccatctac
360





cgcaccacgt atggcatgcg cgacggcgtg ccattccagc gcgtgcgcag cgacctgcag
420





cccaccctcg ggctggacga cctgcgccac ctcgatgccg ccgctgccga tgaacggatg
480





gcgctgcagc gcgcacgtat tgccgccacg ccattcgacc tggccaacga gctgccgctg
540





cggatgcacc tgttccgcca gggcgaggcg gcgtattcgc tgctgatcgt gttccaccat
600





atcgcgaccg acgaatggtc gatccagcag ctgatgcgcg aactgtcgga cgcctatcgg
660





ggcaccggcc ccgccgcgcc ggtgccggcg tacggtgaat acgtcgcctg gcagaacagc
720





cggcatgcgg ggcgcggcta cgaagcggcc cggtcctact ggaccgaaca cctggccgac
780





gcggagcccg tgctggcatt gccggcggac cgcgcgcgcc cgtcacgcca gacctaccgc
840





accggcctcg agcggcttgc gttgccggcg gccttgcgcg aacgcgccag ccagtgcgcc
900





ggccggctcg gcatctccga gttcgcgctg tatctcggcc tgtaccaact gctgctgcac
960





cgcctgacgg ggcagcgcga cctcgtggtc ggcacggacg tgttcggccg cgatcacggc
1020





cggttccgcg aggtggcggg cttcttcgtc aatcagctgg cactgcgcca gcaggtcccg
1080





gccggcgccc aggccgatga attcctgcgc caggtggcgc gcgacgtcaa cgatgcgatg
1140





ctgttccagg acctgccgtt cgaccagctg gtcgacgctt tgcaggtgga gcgcgacccg
1200





gcctattcgc cgctgttcca ggtgaagttc ctgtaccgcc gcaacagcct gacgccggac
1260





ctgttcgacg gcctgcgcag ctggaacaag gagatgttcg cggtacagtc ccagtacgac
1320





ctgacgctgc aggtgctgcc ggacacggtg gaagcgtatt tcaacccgga cctgttcgac
1380





gcggcgcgcg tggccggctg gctggaactg tatgtggcgc tggccgagga ggtcgtggcc
1440





gacccggcgc agccgcttgc cggcctgctc gatgcgcgcc tgcgcgccat ggtcgcaccg
1500





ttcagccatg gcgaggcgac cggcccggcc gggctggcgc tgtgcgaccg catcgccagc
1560





tgggcgggtg ccacgccgga gcgtgtcgcc atcggcagcg ccgaaggcga cctgacgtac
1620





gccgaactgg tacgccgcat ggaggccgtg gccgggcaac tggcggcgct gggcaccggc
1680





cgcggcgaca aggtggcggt ctatctcgac cgttcggccg acctggtggt cgccgtgctg
1740





gcgatcgccc gcgtgggcgc ggtgctggtg ccgctcgaca cggacaatcc accggagcac
1800





atcgcgttcg tgctgcacga cagcggtgcc aacgtggtgc tgagcgaaag cctgcgggcc
1860





gacgacatcg tcgatttcta tgggctgtgg ctggacatcg gcgcgctgag cgcggcgccg
1920





gcaccgcagg cgctgcccgc atacgacacg ctgcaaggcg acgacctggt ctaccagctg
1980





tacacctccg gctcgacggg gcggccgaag ggcgtgctcg tcacgcgcgc cggcttcgcc
2040





aatctgtgcg actggtatgc ctcgttcgcc cgaatcggcc ccgacagccc ggtgctgttg
2100





atgattccga tcggcttcga cgcttcgctg aagaacatct tcacgccctt gatgcagggc
2160





gcgacgctgg tgctggcacc ggcggcgccg ttcgatccgg atgccctgct ggcgctgatc
2220





gccagccgcg gcgtggccgt ggtgaacacg gcgccgagcg cgctgtatgc gctgctgcag
2280





caggacgcgc cgcgccagta cgcggcgctg gccgggctga ccatgttcgc cgtcggcggc
2340





gaggcgctgg acctggggct ggtacgcccg tggctggaca gcccgaactg ccgtgcgctg
2400





ctggccaata tctatggccc gaccgagtgc accgatatct cgctggcgtt cgcggccgat
2460





gccgcgacct ggctggcgcg cgccacggtg acgatcggcc ggccgatccg caacacccag
2520





gctttcatcg tgaacgacga gctggcgctg tgcccacccg gcacgccggg cgaactggtg
2580





attgccggct gcggcgtcgc gcgcggctat caccagctgc cggacgcgga tgcgcgcagc
2640





ttcgtgcacg ccgcgctggc acaggggcgt atctatcgca ccggcgacta tgcctgccat
2700





gaggccgacg gcaatgtgct gtacctgggc cgccgcgacg gccagatcaa gatccgcggc
2760





aagcgggtgg agacgggcga agtgctggcg caaatggcgc gcctgctgcc gggccgcacg
2820





ctgagcgtgc agcgctatgc gcgcgaccgc gtcgagatgc tggtgggctt cgtggcgggc
2880





cgtccg atctggacag cgtgcagctg cgtgccgaac tggcgcgcca cctgccgcgc
2940





cacgcggtgc cggccgatat cgtcttcgtg ccgtcgatgc cgctgagtgc caacggcaag
3000





atcgcggcgg cggcgttgct ggcgctgtac gaggaacacc gcagcacccg ccagtccgcc
3060





acgcgc cgcgc tgagtgcgac cgaagcggcc atcgccgcga tctggcacca gttgctgggc
3120





gaggtcgcgg tggaggcgga cagcagcttc ttcgccgtcg gcggcgactc gatcttctcg
3180





atccagctgg tggcggaatt gcagaagctg gggtacgcgg tcgcggtggc cgacatcttc
3240





aaatacccgg tactggaaca gctggccgcg ttctgcgaca gtcgttcgca tgtcgccgtc
3300





acgaccacgg aggcgctcgc accgttcgcg ctggtcgacc cggccgacct ggccgctctg
3360





ccggaagggc tggaggatgc ctacccggtc acgtcgctgc agcaggggat gctgttccac
3420





tgccggatgg agccggacag tgcgatgtac cacgatgtct tcagctacga gctgcgtttc
3480





gactacgatg ccgccctgct gaagcaggcc gtggggctgg tgctggccca caaccaggtg
3540





ctgcgtaccg gcttcgaact cgataccgtg tccgagccgc tgcaactggt gtatgcgcgc
3600





gtcgagccgg agtggtcgga gcaggacctg cgccacctgt ccgcggcgga gcaggaggcg
3660





gcggtggcca cggccatcgc ttcgctcaag cgcaccggtt tcgccctgtc cggcccgagc
3720





ctgatccgct tcaccgtgtt gcgcaaggcc gagggctgca tccagctgct gatcgacgcg
3780





caccacgcga tcctggacgg ctggagcatg gcaacgctgc agcggcagat cttcgagcac
3840





tacggccatc tgcgcttcgg cctgccgctg gccgacgtct tcgacacggg cgggttgcgg
3900





ttcgccgact acgtcgccca gcaggccgcg gccgagcagg acgacgccgc ggccgcgcac
3960





tggcgtacgt attgccgcgc cgccggcagc ggcgcgctgt cggcgcggct gccgcaacag
4020





ggcgaagcgg tgttgcacac gctgcccttg ccggcggacc tgcccgcacg cctggcgcaa
4080





cgtgtcgcga ccgatggcgt gatgctgaaa acgctgctga tgatggcgca cgcgtacatg
4140





ctgcgcgcgc tcctgccgag tgagcgcctc agcacggcgc tgacggacaa cggccggccc
4200





gaaacgccgg gcgcgcagaa catcgtcggc ctgttcgtca acgtgctgcc ggtggccttc
4260





gacctggacg ccagctggcg ccagctggcc gccgcgttgc aggcggacga ggtggcgcgc
4320





aagccgttcc ggcgcttccc gttcgcgcac atcgtgcgcg aacaacgggc gctgcagatc
4380





gacacgctgt ttacctacaa taacttccat gtcagcgagg cgctgcaggc ggccgagtgg
4440





ctgcagatcg agccgggcaa cagctatgag gaaaccaatt tcaagctggc ggtgctggtc
4500





aacggcaacc tgcagagcgg cctgacgctg acgctcgaaa gccgcctggc gctgacggcg
4560





gcgcaggtcg caacgctgca gcgcgagttc gtgttcgccc tcgactgcat ggcacaggcg
4620





ttcgacgcgc cgatcccgca gcgtgccgat cgcctgctgc ccgtgctggc gcaggccggt
4680





gcggcagtgg cccggttgcg ctggcagggc gtcgccccgg cggcggtgct ggaggcggcg
4740





ctggcccgtt gcgccctgcg tgtcgcggca atcgagcgcg cgccggcaca ggcgccgttc
4800





gatatcgccg ccagcgtgga gcaggacggc cagcggctgg agtggcggat cgcgccggag
4860





tgggcgcagc atcccgacct gccggccctg ctgtccgaaa cgatggaacg cgtgctggcg
4920





acaggtgcgc ccgcgggcga cgtcgccgtc gcttgcgatg cgcagggagc ggcatggccg
4980





ctgcgccagc tggaagacga catggcgttc tggcggggcc ggctggccga agcgccagcg
5040





cacctgaacc tgccgcaaac gctggcgctg gccgcgggcg cggaacgcac ggacgagcgg
5100





catgtgcggg ccgtcgatac ggcggcgctg gcggccctga ccgcgcgcac cgggctgtcc
5160





cgcggcgcca tcctgctggg ggcatggctg gcactgctgg cgcgcctgag cgggcaggaa
5220





accgtgctga ccggcgtacg cctgcgcgcc ggcggaccgt tgctgccgct ggtggccgag
5280





accggcgacg acccggctgc aacggtcctg ctgacgcgtg ccgctggcgc gctgcaggcc
5340





tgcgccgcac acgccggcgt gcccgccagc ctgctgccgg cacgccatgc ggccgcgttc
5400





gcgctggccg atgacggccc gctgccggcc gacatggcga tcgtcgcgac cgacgacggc
5460





gcctgccgcc tcgaactggc ggccgatgtc catgacgccg ccggcgccga ccggctcgcg
5520





gccaacctgg ccgagctgtt gcaaggcgcc gccgccgcgc cgggcgagcg gctgtcgcgc
5580





ctgccgctgc tgggcgcggc ggagcgccac cgcgtgctgg tgcaattcaa cgacagcgcc
5640





cagcacttcg acgacacccg ccagttgcac cagatggtcg aagaccaggc cgccgccgat
5700





cccggcgcgc tggccctgct gtacggcagc gacacgatga cgtacgaggt gctgaaccgc
5760





cgtgccaacc aggtggcgca attcctgcac ggccatggca tcggtgccaa cgaccgcgtc
5820





gccgtctgca tggagcgtgg cctggagatg gtggtcgcga tcctcggcgt gctcaaggcc
5880





ggcgccgcct acatgccgct cgacccggcc tatccggtcg agcgtatcgc ctatatgctc
5940





gacgacagcg cgccccgggc gctgctggcc caggcgccgc tgctggcggc cttggagccg
6000





gtgcgccggc tggcggccga gctgccttgc ctgctgctgg ccgaaggcct ggcggtgctg
6060





gacgggctgc cggatgcgaa cccgcccgcg ccgccgctgg cgcaggccgc agccaacctg
6120





atgtacgtgc tgtacacgtc cggctcgacc ggccggccca aaggggtcgc gatggcccag
6180





ggcccgctgg tcaacctgat ccggtggcag gcttcgtcgc gttcgaagct ggcccagcgc
6240





gaacgcacgc tgcagttctc cgccctgggc ttcgatgcca cgttccagga gatcttcagc
6300





gcattgtgct atggcgccag cctggtgctg ctggccgagt ccatccggcg cgatccgcgc
6360





gaactggtgc ggctgatgcg ccggtacgac gtggaacgca ttttcctgcc gttcgtcgcg
6420





ctgcagaaca tcgccgaggc ggcggtggag ctgggcgaac cgttgcctgc gctgaacacg
6480





atgatcacgg caggcgaaca gttgcgcatc agtcccgcca tcgtgcagtt cttccgcatg
6540





cgcgccggcc gcagcctgca caactactac ggcccgaccg agagccacgt cgtgacgacg
6600





tatgtgctgg acggcgatcc gggcgcgtgg cccgcgttgc cgccgatcgg cgcgccgatc
6660





gccaacaccc agatctacat tctcgacgcg gcgctgcagc cggtggccct gggcgcgcat
6720





ggcgagctgt atatcgccgg cgattgcctg gccgacggct acctgaaccg gcctgacctg
6780





acggcggagc gcttcgtcgg caatgtcttc cggccaggca cgcgcatgta caagacgggc
6840





gacatcgccc gctggctgga ggacggcaat atcgaatacc tgggccgcaa cgacagccag
6900





gtcaagatcc gcggctaccg catcgagccg ggcgaggtcg aggcggcact ggccgcgtgc
6960





gccggcgtgc gcgaggcggt cgtggtggcg cgcgaagacg tgccgggaca gaagcgcctg
7020





gtggcgtatc tgctggccca gccaggccac acgctggcac cggcggcgct gcgcgaccgg
7080





ctggccaccg tgctgccgga ctacatggtg ccggccgcct ttgtctgcat gacggcgttc
7140





cccgtcagcc cgaacggcaa gctggaccgg cgcgcgctgc cggcgcccga cgccgccgcg
7200





caattgcgcc agccgtacga agcgccgcaa ggaagcaccg aaacggcgct ggcggcgatc
7260





tgggaagacc tgctggccgt acgcgacgtt ggccgccgcg accacttctt cgaactcggc
7320





ggccactcgt tgctggccgt gcggctgacc acgcgcgtac gccaggtact gcagcgtgag
7380





ctggcgctgc gggcgttgtt cgagcagccg gtgctggccg atctcgcccg cgtcgtcgat
7440





ggcctggaca gcgccggtac cgcaccgctg cgcgcgttgc cgcgtacgcc cgaccaggtg
7500





ctgcccctgt cgttcgcgca gcagcgactg tggttcgtgc aggagctcga aggtcccacg
7560





ccgacctaca acatgccggc cgcgctgcgc ctgacggggc ggctggatgc cgccgcgctg
7620





gagccggcgc tgcaatacct gatcgagcgc cacgaggtcc tgcgcaccaa cttcgacagc
7680





gtggagggcg tgccgcacct gcgcatcgcg ccgtcgcgta ccgtgacgct ggccgttacc
7740





gacgtcgcgc cggacgaggt ggaggcgcgt gccgcgcgcc atgcggcgct gccgttcgac
7800





ctggcgcgcg agcccttgct gcgtgccgaa ctgctgcggc tgtcggccga ccagcacgtg
7860





ctgctgctga acgtgcacca tatcgtcagc gacggctggt cgctgaacat cctggccgac
7920





gaatggctgc gtgcgtacga cgccctgcgc gccggccgcg cgccggcgct gccggtgctg
7980





ccgctgcagt acgccgacta tgcgtactgg cagcgcgaac aactgaccga agccgtgcgc
8040





gagcgccagc tggcctattg gaccgggcaa ctggccggtg cgccggagct gctcgacctg
8100





ccgaccgacc gcgtgcggcc ggcggtgcag cgcttcgatg gcggcgatga acagctgcgg
8160





ctggacccgg cgctgtcgca cgccgtgcgc cagctggggc atgcgcacaa tgccagcctg
8220





ttcatgacgc tggtcacggc gttcggcctg ctgctgggcc gtctcagcgg ccaggacgac
8280





gtgctggtcg gcgtgccgca ggccacccgc gaccggcgcg agctggaggg catgctcggc
8340





atgctgctgg gtaacctggt cctgcgcatg cgcctggacg acgcggccgg tttcggcacg
8400





ctgctggagc aggtgcgccg caccgcgctg gaggcttacg aacacagcgc catcccgttc
8460





gagcaggtcg tcgacgcgtt gccgctgcag cgtgacctga gccgcaatcc gctgttccag
8520





gtcttcttca acatgctcaa cctgccggag acgaactata cgtcgccgga gctggcgatc
8580





gaaggactgc aaagcacgct gctggacgcc aagttcgacc tgacgctgta tgcgcaggac
8640





agcgaagaag gcatcctgct gcacctggtg tacaaccgtg gcctgttcga tgcgcagcgc
8700





atgcgcgaat tgctgcggca gtaccacagc ttgctggagc aggtcagcca ggcgcccgcc
8760





atcgcctgca aggccgtgtc gctgctgacg gcgccagcgc gcgcggtcct gcccgatccg
8820





gcggtcgtcc tggatgcgac ctggcacggc agcattcccg gccgctttgc cgcgctggtg
8880





gcggcgcagc cggcggcgct ggccgtcacg gcggcgcacc tgcagtggac ctacgcggaa
8940





ctggacgagc gcagcgaggc cgtggcctgc tggctgcagg aggccggcgt cggcgccggc
9000





gccgtggtgg cgatctgcgc cgcccgccgc gcggcgctgg tgccggccgt gctgggcgtg
9060





ctgaaggcgg gtgccgccta taccatcgtc gatcccgctt acccggccga gcacgtgcgc
9120





gcctgcctgg ccgtggcccg gcccgccgcg tggctgacgg tggccgaggg cggcgatgcc
9180





gcattgcttg cctgcctgcc cgcgccggtg ccgcgactcg atctgagcgg gaacgatggc
9240





tggccggtgc tggcagcggg cgtgcgtgcc gtgccggccg cctggacggc cgacgacgtc
9300





gccgtgctga cgttcacgtc cggctccacc ggcctgccca aggccgtcga aggccgccac
9360





ggcgcgctga cgcacttcta cccatggctg caacaacact tcggcatggg gccgcaggat
9420





cgctacgcac tgttgtcggg cctcgcgcac gacccgctgc agcgcgatat cttcaatacc
9480





ttatggatgg gcgccagcct gcacgtgccg ccggtggacg ccatcggccc gggcctgctg
9540





gccgactgga tggcggccga gaacatcagt gccgtcaacc tgacgccggc catgctgcag
9600





ctgctgtgcc aggacgcacg cgctctgccg acattgcggc atgccttcct ggtgggcgat
9660





atcctgacgc aggccgacgt ggccctgctg cagcaggtgg cgccgcgctg cgccgtggtc
9720





agctactacg gcgccaccga ggcgcagcgg gcgttcggca tggtggagat cgccccgggt
9780





acggcggctg gcctgacgcg cgacgtcatc gcgctgggcc acggcatccc cggcgtgcag
9840





ctgctggtgc tgaacggcgc cggcacgctg gccgggatcg gcgaggtggg cgaagtgtgc
9900





atccgcagcc cgcacctggc gcgcggctac cgcgacgacg cggcgatgac ggcacgccag
9960





ttcgtcgcca acccgttcgg tggcggcgac cgcctgtacc gcacgggcga cctgggacgc
10020





tatctgcccg acggcatggt ggcgggcctg ggccgcaacg accagcaggt caagctgcgc
10080





ggcttccgca tcgagctggg ccacgtcgag gccgcgctgg cccggctgcc gcaagtgcgc
10140





gaagccgtgg tgctggcgtt gggcagcggc gaggcgcgtc gactggtcgc atacgtcgtc
10200





ccgcgcggca ccttcgatgc cgacgcggcc gcggcggcct tgcgcggcac cttgcccgac
10260





tatatgcggc cggccgccta cgtggtcctc gagcgtctgc cgctgacgcc caacggcaag
10320





ctcgatcgtc gtgcgctgcc cgcgccggcg gccacgcccg cggtggcgga cacggcgccg
10380





gcgacggcac tggaagcctc gctgtgcgcg ctcatggccg agctgctgaa ccgcgacgcg
10440





gtcggtccgg ccgagaattt cttcgcgctg ggcggccatt cgttgttggc gacgcgcctg
10500





gtatcgcgca tccgcgcagc ctgcggcgtg cagttgccgc tgcgcgccgt gttcgaggaa
10560





cccacgccgg cggcgctggc gcggctggtg gaacgggccg gcggcgacaa cgccgggccg
10620





gcgccgcgcg aacgctcggg ctggcatccg ctcagctcgc agcagcagcg cctgtggttc
10680





ctcgaccgct tcgagcccgc caacccgttc tacaacatcc cgctcgcgct gcgcctgcgc
10740





ggcacgttgg tgccggcgca gctgcagcaa agcctcgatg cgctggccgc gcgccatccg
10800





tccctgcgca cccgcttcgc cacgcaggac ggccagccgg tacaggaaat cctggcaccg
10860





gcagcggtgc cgctggcgct cacggacctg acgggactgg ctccggcgca gcgcgaggag
10920





gcggcccggc gcgccgccgc caccgtgacg ctgcagccgt tcgtgctgga acagggcaat
10980





ctgctgcgtg cggcgctgct gcggctggac gatgccgacc atgtgctggt actggtggtc
11040





atcacatcg tcagcgatgg ccgtmwcgct ggcggtgctc gccgacgaac tcgcggcgtg
11100





taccgcgccg gcacgaccgg cggcgccgcg gcgctgccgc cgctgccatt gcactacagc
11160





gatttcgcgc actggcagcg cgactggctg cagcagccgg ccgcgctgcg ccagctggcc
11220





tactggaacg ctcaactggc cgacgcgccg gccgtgcacg cgctgccgct ggaccggccg
11280





cgcccggcca tccagagcta tcgcggcgcg acgcacggtt tcgccatcgg cgccgcgacg
11340





ctggccgggc tgcgtgagct ggcagccgcg caggcggaac cgaccacgct gttcatggtg
11400





ctgtgcgccg ccttcaatgt gctgctgtac cgtcacagcg gccaggccga cctgtgcatc
11460





ggtaccccga tcgccaaccg ccagcacgac ggcctggacc gggtggtggg cttctttgcc
11520





aacacgctgg tgctgcgcag ccggccggct cccggccagc cgttccagca gttcctgcgc
11580





gacgttcgcg cgacggcgct ggacgcctac gccaaccagg acatcgcctt cgaacgcgtg
11640





gtggaggcgg tcaagccgca acgtcatacc agccatgcgc cgctgttcca ggtcatgctc
11700





tccctgcagg agtcgctggc cctgccgcag gtggacgata cgctgcggct ggaagcgctc
11760





acgctggaca gttccgtggc gcgcttcgac ctgacgctca gcctggtgga ggaaggcggc
11820





acgctgctgg cggcgttcga gtacaacacc gacctgttcg acgccgcgac catcgagcgc
11880





tgggccggcc acttcagcca cctgctcgat gcggtggtgg ccacgccgca gctggcgctg
11940





gatcgcctgc cgttgctgga cgacgccgag cgtcgtgacg tactgctggc cagcgccggc
12000





gagcgcgccg gcccggtcgg cgacaccgtg ctgcatgcgc tgttcgaaca gcaggcgctg
12060





cgcatccgc agcgttgcgc ggcgcaggcc ggggccgcca gcatcaccta tggtgagctc
12120





aatacgcgtg ccgccgagct ggcattgcgg ctgcgccacg ccggggtcgc agcgggcgac
12180





cgggtggcgg tgcacgcgca gcgctcgctc gagctgctgg tcgcgctgct cggcgtgctg
12240





aaggccggtg ccgcctacgt gccgctcgat ccggcacagc cgcaggaacg gctcgctcat
12300





atgctgcgcg acagtgcgcc ggccgccgtg ctgacccagc aggggctggc cggtggcgcg
12360





ctgctggcaa gtgtcccgtg ccgtgtgttg ttactggacg ggccagccgc cgccgcaccc
12420





gcgccgctgg cggacgtgct cgtacaaccg cacgacctgg cgtatgtgat gtacacgtcc
12480





ggttcgacgg gtatgccgaa gggcgtgatg gtcgaacatg ccagcatcgt caacacggtg
12540





cgcgcgcatg tgcggcaatg cgcgctgcag gcccaggatc gcgtgctgca gtttgtctcg
12600





tacggcttcg acgtctcggc cggcgagatc ttcggcgcgt tcgcggccgg cgccacgctc
12660





gtgctgcggc cggacgagct gcgcgtgccg gacgaagcgt tcgccgcctt cctgcgcgag
12720





caggccgtta ccgtggccga cctgccggcg gcgttctggc accagtgggt gcacgagatc
12780





gccgccggcc gcagcttgcc ggggccggcg ttgcggctcg tcctggccgg cggcgaaaag
12840





gccgacgtgg cgcgcctgcg cacctggctg accctgccgg caacgcggca cgtacgctgg
12900





atcaatgcct atggccccac cgagaccacg gtcaacgcga gttacatgcc gtatgacgcg
12960





ctgtccgagc cgccagccgg cgaggtgccg atcggccggc cgatcgacaa taccgtcgcg
13020





tatgtcctcg acgcacacct gcagccggta gccttcggta tcgccggcga gatctacctc
13080





ggcggcgctg gcgtggcgcg cggctacctg aaccagccgg aactgaccga acgcgcgttt
13140





gtcgccgatc cgttcgccgg cggcgcggcg cgcatgtacc gctccggcga cctgggacgc
13200





cggctggacg acggtacgct cgaatacctg ggccgtaacg acagccaggt gaaattgcgc
13260





ggctaccgca tcgagctggg cgaaatccag tcgcgcctgg ccacgctgga cggcgtgcgc
13320





gaggcatgcg tcatgctgcg cgaggtggcc ggcacaccgc gcctggtggc ttacctggcg
13380





gcggcggagg gcatgcagct gtccgctgcg gagctgcgtc gcatgctggc cgccagcctg
13440





ccggactata tggtgccgtc ggccttcgtc tggctgccgg tcctgccggt caatgccagt
13500





ggcaaggtcg agacggcggc gttgccggaa ccggggcccg ccgacatgga agcgcgcgtg
13560





atcgaaacgc cggtgggagc gcgcgagcag ctgctggcgc agatctggca ggacttgctg
13620





gcattgccgc aggtgagccg gcaggatcac ttcttcgaac tgggcggcca ctcgctgatg
13680





gtggtgacct tgatcgaccg actgcatcaa cacgacctgc atgtggacgt gcgtaccgta
13740





ttttccagcc cgacgctggc ggcgatggcg gcggccctgg ccgaccgcgc cggcgcgacg
13800





gccgcctttg tcgcaccacc gaacctgatt ccgggcgaat ttgccgcctc ggcctccacc
13860





gatcaagcca actttgaaga gtttgaacta tga
13893











(Protein Sequence of eppB)









SEQ ID NO 6









Val Glu Leu Gly Glu Pro Leu Pro Ala Leu Asn Thr Met Ile Thr



  2150          2155          2160





Ala Gly Glu Gln Leu Arg Ile Ser Pro Ala Ile Val Gln Phe Phe


  2165          2170          2175





Arg Met Arg Ala Gly Arg Ser Leu His Asn Tyr Tyr Gly Pro Thr


  2180          2185          2190





Glu Ser His Val Val Thr Thr Tyr Val Leu Asp Gly Asp Pro Gly


  2195          2200          2205





Ala Trp Pro Ala Leu Pro Pro Ile Gly Ala Pro Ile Ala Asn Thr


  2210          2215          2220





Gln Ile Tyr Ile Leu Asp Ala Ala Leu Gln Pro Val Ala Leu Gly


  2225          2230          2235





Ala His Gly Glu Leu Tyr Ile Ala Gly Asp Cys Leu Ala Asp Gly


  2240          2245          2250





Tyr Leu Asn Arg Pro Asp Leu Thr Ala Glu Arg Phe Val Gly Asn


  2255          2260          2265





Val Phe Arg Pro Gly Thr Arg Met Tyr Lys Thr Gly Asp Ile Ala


  2270          2275          2280





Arg Trp Leu Glu Asp Gly Asn Ile Glu Tyr Leu Gly Arg Asn Asp


  2285          2290          2295





Ser Gln Val Lys Ile Arg Gly Tyr Arg Ile Glu Pro Gly Glu Val


  2300          2305          2310





Glu Ala Ala Leu Ala Ala Cys Ala Gly Val Arg Glu Ala Val Val


  2315          2320          2325





Val Ala Arg Glu Asp Val Pro Gly Gln Lys Arg Leu Val Ala Tyr


  2330          2335          2340





Leu Leu Ala Gln Pro Gly His Thr Leu Ala Pro Ala Ala Leu Arg


  2345          2350          2355





Asp Arg Leu Ala Thr Val Leu Pro Asp Tyr Met Val Pro Ala Ala


  2360          2365          2370





Phe Val Cys Met Thr Ala Phe Pro Val Ser Pro Asn Gly Lys Leu


  2375          2380          2385





Asp Arg Arg Ala Leu Pro Ala Pro Asp Ala Ala Ala Gln Leu Arg


  2390          2395          2400





Gln Pro Tyr Glu Ala Pro Gln Gly Ser Thr Glu Thr Ala Leu Ala


  2405          2410          2415





Ala Ile Trp Glu Asp Leu Leu Ala Val Arg Asp Val Gly Arg Arg


  2420          2425          2430





Asp His Phe Phe Glu Leu Gly Gly His Ser Leu Leu Ala Val Arg


  2435          2440          2445





Leu Thr Thr Arg Val Arg Gln Val Leu Gln Arg Glu Leu Ala Leu


  2450          2455          2460





Arg Ala Leu Phe Glu Gln Pro Val Leu Ala Asp Leu Ala Arg Val


  2465          2470          2475





Val Asp Gly Leu Asp Ser Ala Gly Thr Ala Pro Leu Arg Ala Leu


  2480          2485          2490





Pro Arg Thr Pro Asp Gln Val Leu Pro Leu Ser Phe Ala Gln Gln


  2495          2500          2505





Arg Leu Trp Phe Val Gln Glu Leu Glu Gly Pro Thr Pro Thr Tyr


  2510          2515          2520





Asn Met Pro Ala Ala Leu Arg Leu Thr Gly Arg Leu Asp Ala Ala


  2525          2530          2535





Ala Leu Glu Pro Ala Leu Gln Tyr Leu Ile Glu Arg His Glu Val


  2540          2545          2550





Leu Arg Thr Asn Phe Asp Ser Val Glu Gly Val Pro His Leu Arg


  2555          2560          2565





Ile Ala Pro Ser Arg Thr Val Thr Leu Ala Val Thr Asp Val Ala


  2570          2575          2580





Pro Asp Glu Val Glu Ala Arg Ala Ala Arg His Ala Ala Leu Pro


  2585          2590          2595





Phe Asp Leu Ala Arg Glu Pro Leu Leu Arg Ala Glu Leu Leu Arg


  2600          2605          2610





Leu Ser Ala Asp Gln His Val Leu Leu Leu Asn Val His His Ile


  2615          2620          2625





Val Ser Asp Gly Trp Ser Leu Asn Ile Leu Ala Asp Glu Trp Leu


  2630          2635          2640





Arg Ala Tyr Asp Ala Leu Arg Ala Gly Arg Ala Pro Ala Leu Pro


  2645          2650          2655





Val Leu Pro Leu Gln Tyr Ala Asp Tyr Ala Tyr Trp Gln Arg Glu


  2660          2665          2670





Gln Leu Thr Glu Ala Val Arg Glu Arg Gln Leu Ala Tyr Trp Thr


  2675          2680          2685





Gly Gln Leu Ala Gly Ala Pro Glu Leu Leu Asp Leu Pro Thr Asp


  2690          2695          2700





Arg Val Arg Pro Ala Val Gln Arg Phe Asp Gly Gly Asp Glu Gln


  2705          2710          2715





Leu Arg Leu Asp Pro Ala Leu Ser His Ala Val Arg Gln Leu Gly


  2720          2725          2730





His Ala His Asn Ala Ser Leu Phe Met Thr Leu Val Thr Ala Phe


  2735          2740          2745





Gly Leu Leu Leu Gly Arg Leu Ser Gly Gln Asp Asp Val Leu Val


  2750          2755          2760





Gly Val Pro Gln Ala Thr Arg Asp Arg Arg Glu Leu Glu Gly Met


  2765          2770          2775





Leu Gly Met Leu Leu Gly Asn Leu Val Leu Arg Met Arg Leu Asp


  2780          2785          2790





Asp Ala Ala Gly Phe Gly Thr Leu Leu Glu Gln Val Arg Arg Thr


  2795          2800          2805





Ala Leu Glu Ala Tyr Glu His Ser Ala Ile Pro Phe Glu Gln Val


  2810          2815          2820





Val Asp Ala Leu Pro Leu Gln Arg Asp Leu Ser Arg Asn Pro Leu


  2825          2830          2835





Phe Gln Val Phe Phe Asn Met Leu Asn Leu Pro Glu Thr Asn Tyr


  2840          2845          2850





Thr Ser Pro Glu Leu Ala Ile Glu Gly Leu Gln Ser Thr Leu Leu


  2855          2860          2865





Asp Ala Lys Phe Asp Leu Thr Leu Tyr Ala Gln Asp Ser Glu Glu


  2870          2875          2880





Gly Ile Leu Leu His Leu Val Tyr Asn Arg Gly Leu Phe Asp Ala


  2885          2890          2895





Gln Arg Met Arg Glu Leu Leu Arg Gln Tyr His Ser Leu Leu Glu


  2900          2905          2910





Gln Val Ser Gln Ala Pro Ala Ile Ala Cys Lys Ala Val Ser Leu


  2915          2920          2925





Leu Thr Ala Pro Ala Arg Ala Val Leu Pro Asp Pro Ala Val Val


  2930          2935          2940





Leu Asp Ala Thr Trp His Gly Ser Ile Pro Gly Arg Phe Ala Ala


  2945          2950          2955





Leu Val Ala Ala Gln Pro Ala Ala Leu Ala Val Thr Ala Ala His


  2960          2965          2970





Leu Gln Trp Thr Tyr Ala Glu Leu Asp Glu Arg Ser Glu Ala Val


  2975          2980          2985





Ala Cys Trp Leu Gln Glu Ala Gly Val Gly Ala Gly Ala Val Val


  2990          2995          3000





Ala Ile Cys Ala Ala Arg Arg Ala Ala Leu Val Pro Ala Val Leu


  3005          3010          3015





Gly Val Leu Lys Ala Gly Ala Ala Tyr Thr Ile Val Asp Pro Ala


  3020          3025          3030





Tyr Pro Ala Glu His Val Arg Ala Cys Leu Ala Val Ala Arg Pro


  3035          3040          3045





Ala Ala Trp Leu Thr Val Ala Glu Gly Gly Asp Ala Ala Leu Leu


  3050          3055          3060





Ala Cys Leu Pro Ala Pro Val Pro Arg Leu Asp Leu Ser Gly Asn


  3065          3070          3075





Asp Gly Trp Pro Val Leu Ala Ala Gly Val Arg Ala Val Pro Ala


  3080          3085          3090





Ala Trp Thr Ala Asp Asp Val Ala Val Leu Thr Phe Thr Ser Gly


  3095          3100          3105





Ser Thr Gly Leu Pro Lys Ala Val Glu Gly Arg His Gly Ala Leu


  3110          3115          3120





Thr His Phe Tyr Pro Trp Leu Gln Gln His Phe Gly Met Gly Pro


  3125          3130          3135





Gln Asp Arg Tyr Ala Leu Leu Ser Gly Leu Ala His Asp Pro Leu


  3140          3145          3150





Gln Arg Asp Ile Phe Asn Thr Leu Trp Met Gly Ala Ser Leu His


  3155          3160          3165





Val Pro Pro Val Asp Ala Ile Gly Pro Gly Leu Leu Ala Asp Trp


  3170          3175          3180





Met Ala Ala Glu Asn Ile Ser Ala Val Asn Leu Thr Pro Ala Met


  3185          3190          3195





Leu Gln Leu Leu Cys Gln Asp Ala Arg Ala Leu Pro Thr Leu Arg


  3200          3205          3210





His Ala Phe Leu Val Gly Asp Ile Leu Thr Gln Ala Asp Val Ala


  3215          3220          3225





Leu Leu Gln Gln Val Ala Pro Arg Cys Ala Val Val Ser Tyr Tyr


  3230          3235          3240





Gly Ala Thr Glu Ala Gln Arg Ala Phe Gly Met Val Glu Ile Ala


  3245          3250          3255





Pro Gly Thr Ala Ala Gly Leu Thr Arg Asp Val Ile Ala Leu Gly


  3260          3265          3270





His Gly Ile Pro Gly Val Gln Leu Leu Val Leu Asn Gly Ala Gly


  3275          3280          3285





Thr Leu Ala Gly Ile Gly Glu Val Gly Glu Val Cys Ile Arg Ser


  3290          3295          3300





Pro His Leu Ala Arg Gly Tyr Arg Asp Asp Ala Ala Met Thr Ala


  3305          3310          3315





Arg Gln Phe Val Ala Asn Pro Phe Gly Gly Gly Asp Arg Leu Tyr


  3320          3325          3330





Arg Thr Gly Asp Leu Gly Arg Tyr Leu Pro Asp Gly Met Val Ala


  3335          3340          3345





Gly Leu Gly Arg Asn Asp Gln Gln Val Lys Leu Arg Gly Phe Arg


  3350          3355          3360





Ile Glu Leu Gly His Val Glu Ala Ala Leu Ala Arg Leu Pro Gln


  3365          3370          3375





Val Arg Glu Ala Val Val Leu Ala Leu Gly Ser Gly Glu Ala Arg


  3380          3385          3390





Arg Leu Val Ala Tyr Val Val Pro Arg Gly Thr Phe Asp Ala Asp


  3395          3400          3405





Ala Ala Ala Ala Ala Leu Arg Gly Thr Leu Pro Asp Tyr Met Arg


  3410          3415          3420





Pro Ala Ala Tyr Val Val Leu Glu Arg Leu Pro Leu Thr Pro Asn


  3425          3430          3435





Gly Lys Leu Asp Arg Arg Ala Leu Pro Ala Pro Ala Ala Thr Pro


  3440          3445          3450





Ala Val Ala Asp Thr Ala Pro Ala Thr Ala Leu Glu Ala Ser Leu


  3455          3460          3465





Cys Ala Leu Met Ala Glu Leu Leu Asn Arg Asp Ala Val Gly Pro


  3470          3475          3480





Ala Glu Asn Phe Phe Ala Leu Gly Gly His Ser Leu Leu Ala Thr


  3485          3490          3495





Arg Leu Val Ser Arg Ile Arg Ala Ala Cys Gly Val Gln Leu Pro


  3500          3505          3510





Leu Arg Ala Val Phe Glu Glu Pro Thr Pro Ala Ala Leu Ala Arg


  3515          3520          3525





Leu Val Glu Arg Ala Gly Gly Asp Asn Ala Gly Pro Ala Pro Arg


  3530          3535          3540





Glu Arg Ser Gly Trp His Pro Leu Ser Ser Gln Gln Gln Arg Leu


  3545          3550          3555





Trp Phe Leu Asp Arg Phe Glu Pro Ala Asn Pro Phe Tyr Asn Ile


  3560          3565          3570





Pro Leu Ala Leu Arg Leu Arg Gly Thr Leu Val Pro Ala Gln Leu


  3575          3580          3585





Gln Gln Ser Leu Asp Ala Leu Ala Ala Arg His Pro Ser Leu Arg


  3590          3595          3600





Thr Arg Phe Ala Thr Gln Asp Gly Gln Pro Val Gln Glu Ile Leu


  3605          3610          3615





Ala Pro Ala Ala Val Pro Leu Ala Leu Thr Asp Leu Thr Gly Leu


  3620          3625          3630





Ala Pro Ala Gln Arg Glu Glu Ala Ala Arg Arg Ala Ala Ala Thr


  3635          3640          3645





Val Thr Leu Gln Pro Phe Val Leu Glu Gln Gly Asn Leu Leu Arg


  3650          3655          3660





Ala Ala Leu Leu Arg Leu Asp Asp Ala Asp His Val Leu Val Leu


  3665          3670          3675





Val Val His His Ile Val Ser Asp Gly Arg Ala Gly Gly Ala Arg


  3680          3685          3690





Arg Arg Thr Arg Gly Val Tyr Arg Ala Gly Thr Thr Gly Gly Ala


  3695          3700          3705





Ala Ala Leu Pro Pro Leu Pro Leu His Tyr Ser Asp Phe Ala His


  3710          3715          3720





Trp Gln Arg Asp Trp Leu Gln Gln Pro Ala Ala Leu Arg Gln Leu


  3725          3730          3735





Ala Tyr Trp Asn Ala Gln Leu Ala Asp Ala Pro Ala Val His Ala


  3740          3745          3750





Leu Pro Leu Asp Arg Pro Arg Pro Ala Ile Gln Ser Tyr Arg Gly


  3755          3760          3765





Ala Thr His Gly Phe Ala Ile Gly Ala Ala Thr Leu Ala Gly Leu


  3770          3775          3780





Arg Glu Leu Ala Ala Ala Gln Ala Glu Pro Thr Thr Leu Phe Met


  3785          3790          3795





Val Leu Cys Ala Ala Phe Asn Val Leu Leu Tyr Arg His Ser Gly


  3800          3805          3810





Gln Ala Asp Leu Cys Ile Gly Thr Pro Ile Ala Asn Arg Gln His


  3815          3820          3825





Asp Gly Leu Asp Arg Val Val Gly Phe Phe Ala Asn Thr Leu Val


  3830          3835          3840





Leu Arg Ser Arg Pro Ala Pro Gly Gln Pro Phe Gln Gln Phe Leu


  3845          3850          3855





Arg Asp Val Arg Ala Thr Ala Leu Asp Ala Tyr Ala Asn Gln Asp


  3860          3865          3870





Ile Ala Phe Glu Arg Val Val Glu Ala Val Lys Pro Gln Arg His


  3875          3880          3885





Thr Ser His Ala Pro Leu Phe Gln Val Met Leu Ser Leu Gln Glu


  3890          3895          3900





Ser Leu Ala Leu Pro Gln Val Asp Asp Thr Leu Arg Leu Glu Ala


  3905          3910          3915





Leu Thr Leu Asp Ser Ser Val Ala Arg Phe Asp Leu Thr Leu Ser


  3920          3925          3930





Leu Val Glu Glu Gly Gly Thr Leu Leu Ala Ala Phe Glu Tyr Asn


  3935          3940          3945





Thr Asp Leu Phe Asp Ala Ala Thr Ile Glu Arg Trp Ala Gly His


  3950          3955          3960





Phe Ser His Leu Leu Asp Ala Val Val Ala Thr Pro Gln Leu Ala


  3965          3970          3975





Leu Asp Arg Leu Pro Leu Leu Asp Asp Ala Glu Arg Arg Asp Val


  3980          3985          3990





Leu Leu Ala Ser Ala Gly Glu Arg Ala Gly Pro Val Gly Asp Thr


  3995          4000          4005





Val Leu His Ala Leu Phe Glu Gln Gln Ala Leu Ala His Pro Gln


  4010          4015          4020





Arg Cys Ala Ala Gln Ala Gly Ala Ala Ser Ile Thr Tyr Gly Glu


  4025          4030          4035





Leu Asn Thr Arg Ala Ala Glu Leu Ala Leu Arg Leu Arg His Ala


  4040          4045          4050





Gly Val Ala Ala Gly Asp Arg Val Ala Val His Ala Gln Arg Ser


  4055          4060          4065





Leu Glu Leu Leu Val Ala Leu Leu Gly Val Leu Lys Ala Gly Ala


  4070          4075          4080





Ala Tyr Val Pro Leu Asp Pro Ala Gln Pro Gln Glu Arg Leu Ala


  4085          4090          4095





His Met Leu Arg Asp Ser Ala Pro Ala Ala Val Leu Thr Gln Gln


  4100          4105          4110





Gly Leu Ala Gly Gly Ala Leu Leu Ala Ser Val Pro Cys Arg Val


  4115          4120          4125





Leu Leu Leu Asp Gly Pro Ala Ala Ala Ala Pro Ala Pro Leu Ala


  4130          4135          4140





Asp Val Leu Val Gln Pro His Asp Leu Ala Tyr Val Met Tyr Thr


  4145          4150          4155





Ser Gly Ser Thr Gly Met Pro Lys Gly Val Met Val Glu His Ala


  4160          4165          4170





Ser Ile Val Asn Thr Val Arg Ala His Val Arg Gln Cys Ala Leu


  4175          4180          4185





Gln Ala Gln Asp Arg Val Leu Gln Phe Val Ser Tyr Gly Phe Asp


  4190          4195          4200





Val Ser Ala Gly Glu Ile Phe Gly Ala Phe Ala Ala Gly Ala Thr


  4205          4210          4215





Leu Val Leu Arg Pro Asp Glu Leu Arg Val Pro Asp Glu Ala Phe


  4220          4225          4230





Ala Ala Phe Leu Arg Glu Gln Ala Val Thr Val Ala Asp Leu Pro


  4235          4240          4245





Ala Ala Phe Trp His Gln Trp Val His Glu Ile Ala Ala Gly Arg


  4250          4255          4260





Ser Leu Pro Gly Pro Ala Leu Arg Leu Val Leu Ala Gly Gly Glu


  4265          4270          4275





Lys Ala Asp Val Ala Arg Leu Arg Thr Trp Leu Thr Leu Pro Ala


  4280          4285          4290





Thr Arg His Val Arg Trp Ile Asn Ala Tyr Gly Pro Thr Glu Thr


  4295          4300          4305





Thr Val Asn Ala Ser Tyr Met Pro Tyr Asp Ala Leu Ser Glu Pro


  4310          4315          4320





Pro Ala Gly Glu Val Pro Ile Gly Arg Pro Ile Asp Asn Thr Val


  4325          4330          4335





Ala Tyr Val Leu Asp Ala His Leu Gln Pro Val Ala Phe Gly Ile


  4340          4345          4350





Ala Gly Glu Ile Tyr Leu Gly Gly Ala Gly Val Ala Arg Gly Tyr


  4355          4360          4365





Leu Asn Gln Pro Glu Leu Thr Glu Arg Ala Phe Val Ala Asp Pro


  4370          4375          4380





Phe Ala Gly Gly Ala Ala Arg Met Tyr Arg Ser Gly Asp Leu Gly


  4385          4390          4395





Arg Arg Leu Asp Asp Gly Thr Leu Glu Tyr Leu Gly Arg Asn Asp


  4400          4405          4410





Ser Gln Val Lys Leu Arg Gly Tyr Arg Ile Glu Leu Gly Glu Ile


  4415          4420          4425





Gln Ser Arg Leu Ala Thr Leu Asp Gly Val Arg Glu Ala Cys Val


  4430          4435          4440





Met Leu Arg Glu Val Ala Gly Thr Pro Arg Leu Val Ala Tyr Leu


  4445          4450          4455





Ala Ala Ala Glu Gly Met Gln Leu Ser Ala Ala Glu Leu Arg Arg


  4460          4465          4470





Met Leu Ala Ala Ser Leu Pro Asp Tyr Met Val Pro Ser Ala Phe


  4475          4480          4485





Val Trp Leu Pro Val Leu Pro Val Asn Ala Ser Gly Lys Val Glu


  4490          4495          4500





Thr Ala Ala Leu Pro Glu Pro Gly Pro Ala Asp Met Glu Ala Arg


  4505          4510          4515





Val Ile Glu Thr Pro Val Gly Ala Arg Glu Gln Leu Leu Ala Gln


  4520          4525          4530





Ile Trp Gln Asp Leu Leu Ala Leu Pro Gln Val Ser Arg Gln Asp


  4535          4540          4545





His Phe Phe Glu Leu Gly Gly His Ser Leu Met Val Val Thr Leu


  4550          4555          4560





Ile Asp Arg Leu His Gin His Asp Leu His Val Asp Val Arg Thr


  4565          4570          4575





Val Phe Ser Ser Pro Thr Leu Ala Ala Met Ala Ala Ala Leu Ala


  4580          4585          4590





Asp Arg Ala Gly Ala Thr Ala Ala Phe Val Ala Pro Pro Asn Leu


  4595          4600          4605





Ile Pro Gly Glu Phe Ala Ala Ser Ala Ser Thr Asp Gln Ala Asn


  4610          4615          4620





Phe Glu Glu Phe Glu Leu


  4625





(Nucleotide Sequence of eppC)









SEQ ID NO 7










atgacattcc cacagcttct cgcccacctg cgcagccatt ccatccacct gaaggccgag
60






cagggcaagc tccaggtccg tgccgagaag ggcacggtcg atgccgagct gcgcacccag
120





ctcgccgccc acaaggaagc gctgctggcg ctgctcgccg gcgacccggc cgcctgtacc
180





tggaccgcgg cggcgccgcg catcacgccc gagatgctgc cgctggtgca gctgagccag
240





ggcgaaatcg atacgatcgt tgccgctacc gaaggtggcg cggcggcgat ccaggacatc
300





tacccgctgt cgccgctgca ggaaggcttc ctgttccacc acctgctgca ggccgagggc
360





gacgtctacc tggaacgggc gctgatcggc ttcgacagcc gggacaggct cgatgccttc
420





gtggcggcgc tgcagaaggt catcgaccgc cacgacatcc tgcgcagcag cgcgcgctgg
480





caggacctgt cgcgccaggt gcaggtggtg caccggcagg cgcgcctgcc ggtggtcgaa
540





ctgaagctgc ctgaaggcgg cgacggcatg gccgtgctga aggaagcgac cgatccgcgc
600





aagctgcgcc tggacctgca ggccgcaccg ctgctggcga cacgcatcgt gccggacggc
660





gccagcggcg gctggctgat ggcgctgctg cateaccata tggtgtgcga tcacgtgacg
720





ctcgaattca tcgtcggcga ggtcgcgctg atcctgggcg ggcgcgaggc gctgctgccg
780





ccggcactgc cgtaccggaa cttcatcgcg cagacgctgg cggtaccggc cagcgcgcac
840





gagggctact tcaagtcccg ccttgccgat gtgacggaaa ccaccgcgcc gttcggcgtg
900





ctgaacgtga tgggcgaggg cggcgaagtc agcgagggac acgtgcggct cgatggcgcg
960





ctggcccagc ggatccgcac gcaggcggcg cgcttcggcg tcactaccgc cgtcctgttc
1020





cacgtggcat gggcgcgcgt ggttgccctg tgcagcggcc gcgacgacgt cgtattcggt
1080





accgtgctgt ccggccgcct gcagggcagc gaagccgccg ggcgggtgct gggactgttc
1140





atcaacgcgc tgccgatccg cctcacgctg gccggacgca gtaccgaaca actggtgcgc
1200





gaaacctacg ccgacctgac cgcgttgctg gagcacgaac aggcgtcgtt gacgctggca
1260





caacaatgca gcggtatcgc ggcaccggcg ccgctgttca ccagcctgct caattatcgc
1320





cacagccacg gcggcgcact gcaggccgac ggccagtggg acggcatgcg cctgctcgat
1380





ttcggcgaac gcacgaacta tccgatcacc gtttccatcg acgacaccgg cgatggcttt
1440





gaactggagg cgcagtgcgt gaccgggatc gatcccgcgc gcatcgtgga ctacctggcg
1500





accgccttgg ccggcctggc cgatggcctg gcgggcggca aggccgccac cgagatggcg
1560





gtgttgccgg acgccgaacg gacccgcctg ctggagctga gccaaggcgg cccggcttat
1620





ggcgcggggc tgctgccggc cgaactgctg gcggcgcgct ggccgcagga tgccgccgcg
1680





atcgccgtca tcgatggcga gcgccacacg agctatgcgg agctggccgc attgagcaac
1740





cgcctggcgc agcagatgct ggcggccggc gccggacccg gcacccgcgt gggcgtcttc
1800





gccgagcgcg gactggcgat ggtcgtggcg ctgctcgcgg tcgtcaaggc gggcgccacc
1860





tatctgccgc tcgacaccgc gcacccggcc gaccgcctcg gccacatcct gaacgacagc
1920





gcccctgccg ccgtgatcct gcaggcaggg ctggagacgg cgctgccgcg gcacccggcg
1980





accgccatcg tgctcgatgc cgatggcatc gcgcgcggac tgccggcggc cccggaaagt
2040





gcgcccgacc tgcgcgcgct gggcgtaacg ccggccgacg cggcgtacgt catctacact
2100





tccggttcca ccgggctgcc gaaaggcgtt gccaattcgg gcgccggcct ggtgaaccgc
2160





ctggactggt tcgccaccga agtgctggat cacgtgccgg tcacggcgat gcgcaccagt
2220





atcagcttcg tcgactccgt caccgaagtc ctcgatacgc tgctggcggg cggcacgctg
2280





gtcgtcttcg acaaggccgc cacgctcgac ccggcgacct tcgcggaagg cacggcgcgc
2340





tatggcatct cccatctgat ggtggtgccg gcgctgctgc atcacgtgct ggaggtcgcg
2400





ccgtccgcgc tggcacgcgt gcgcaccgtg atcaccagcg gcgagcggct gccgccggaa
2460





ctggcgcagc gcctgaaggc cgccttcccg gccatccggc tggtgaacac gtacggctgc
2520





tccgaagtga acggtgacgc caccgcctgc gattgcgacg gcacggaagc gacggcaacc
2580





tccgtgatcg gccgtccgat cgcgggcgtg caggcgctgg tgctcgatgg tgcgcgccag
2640





ctggtaccgc tgggcgctac cggcgagatc tacctcggcg gcgtgggcgt ggcgggcggc
2700





tacctcaatc gtccggaatt gacggccgag cgcttcgtgc cgaaccccta cggtgcgggc
2760





ctgctgtaca agacgggcga cctggggcgc ctgcgcgccg acggcagcct ggaatacctg
2820





ggccgcaacg acttccaggt caagatgcgc ggcttccgca tcgaactggg cgaaatcgaa
2880





gcgcggctgc gcacccaccc tggcgtcagc gatgccgtcg tggtcgcgcg cacggagcgg
2940





gccggcgacc cgcgcctggc cgcgtacgtg ctgccgcgcc gcgagcgcgc cgcggcggcc
3000





gacgaggccg ggttcagcct gttctatrtc ggtgccacga cctccggagc gggggccgac
3060





aaataccggc tgtacctgga agcggcccgc ttcgccgacg acaacggctt cgaagccatc
3120





tggacacccg aacgccactt cgacgatgtg gctggcctgt atcccaaccc tgcgttgctg
3180





agcgccgcgc tggcgaccag cacgcgccgc gtgcacctgc gcgccggcag cgtggtgctg
3240





ccgctgcagc agccgatccg ggtggtcgag gactggtcgg tgctggacaa cctgaccggc
3300





gggcgggtcg gcgtcgcgat cgcctccggc tggcacatgc gcgacttcgt gctggcgccc
3360





gagcatcacg cgcagcgcca ccgcatcatg tacgaaggca tcgagaccgt gcgcgacctg
3420





tggcgcggca ctgcgcgttc gttccgcgac ggcgccggcc tgcagagcga aatccaggtc
3480





tatccacgcc cggtgcaggc cgagctgccg atgtggctga cgtcggccgg cgccaacgag
3540





accttcatcg aggctggccg gctgggactg aacctgctga cccacctgct gggccagacc
3600





atccaggaag tggccggcaa gatcgccctg taccgcgaat cgctgcagcg gcacggcttc
3660





gatccggaca gccgcaaggt cacgttgatg atccacacct acgtcggggc ggaccaggcg
3720





gctgccctgg cgcaggcacg cgagccgttc aagcgttaca tgaaggcgca cgtggggctg
3780





ctcaaatcgc tgtcggccac gctgacgcac gcggtcgaca acgtcgaaca ggaaaacctc
3840





gacagcctgg ccgagcacgc gttccagcgt tatgcgagca gcgcggcctt catcggctcg
3900





cccgagtcgt gcctgccgat ctatcggcag ttgcgcgagg cgggcgtcga cgaattcgcc
3960





tgcctgttcg actggatggc gccggaagaa gcgctggccg gactgccgca gttgcgccgg
4020





ctgcaggacc tggcgcgcag cgatgccccg ggcgtgcgcc agctgcgccg ccacctgttg
4080





gccgcgctgc ccgattacat ggtgccctcg acgttcagct acttggagcg gatgccgctg
4140





accgccagcg gcaaggtcaa ccgcctggcc ctgccggcgc ccgagcagca aagtacggaa
4200





cagacggcct tcgatgcgcc gcagggcgtc gaggagacct ccgtggcacg cctgtggcag
4260





gacatgctga acgttccgcc gatcgaccgc aacggcaact tcttcgagtt gggcggccac
4320





tccctgctgg ccgtgcagat gatcgccgcc gtgggcaagc tgttcgccac ggaggtgccg
4380





ctgcggcagc tgttcgccaa tccgaccgtc gccaaattcg ccgccgcgat tcgcgaacag
4440





tcgagcaatg cgaagcatcc gaacctggtc acgttgcgca agcgcggcag caaggcgccg
4500





ctgttcctgg tgcaccccgg cgaaggcgag atcggctacg cgcgcaatct ggcaccccat
4560





atcgccagcg acgtgccgct gtacggtttc gccgccaccg gcctcctgag cggcgaagcg
4620





ccgttgacgt cgatcgagga gatcgccagc cgctacgtgc gcgccatgcg ctcggtccag
4680





ccggaaggtc cgtaccgcat cgccggctgg tcggccggcg gcacgatcgc ctacgagatg
4740





gcccgtcagt tgctcggcgt ggaccagcag gtcgggttca tcggcctgct cgacaccgac
4800





ttcagctacg accacctgtt tgcccggacc gatggcgagg aggacctggc gttcgacgag
4860





atcaactcgc tgctcggtta cctgccaccg cggctgccgg ccgaggtcag cggggaagtg
4920





cgcctgctgg cgcagagccg cgacttcgat gcgctgctgg cgcgcatgca tgcgcacgat
4980





ttcatcccga aaggcgtcga tggcggcatc ctgcagcgcc acctcgccct gcgccatgcc
5040





ctggccgtgg cgctgtatcg ctatcagccg cagcgcctgc cgatcggcgt gacgctgttc
5100





tcggccagcg gcgaaagccg cgtcgacccg acgatcggct ggcgcgcgca ccacgcggcc
5160





gacctgctgc acctgatccc ggtcagcggc acgcactata cgatcgtcga ggagccgaac
5220





gtcatcgagc tgggcaaggc catcagcgcg gagctggccc gcagccagcc gaacggtccg
5280





gcaccgtacg cgccgcgcgt cgtcatccag agcggcatgg ccggcgaggc accgctgttc
5340





tgcgtgccgg gcgcgggcgc cagcgtctcg tcactgcacg aactggccca ggcgctgggc
5400





gagaacgtgc cggtccatgg cctgcaggcg cgcggcctgg acggcaccat gctgccgcat
5460





gccgacgtgc agtcggccgc gcgggcctat ctggccgccg tgcgcgacgt gcagccggcc
5520





gggccatacc ggctgctggg ccactcgttc ggcggctgga tcgctttcga gatggcgcag
5580





caactgacgg cggccggtga gacggtggag cagctggtcg tcatcgacag ccgcagcccg
5640





gcgccggaag gcacggcggt gcggcactac acccggatcg agacgctgct ggaactggtg
5700





gctctgtaca acctgcgcct ggccgacaag ctggccctga cggcggccga cttccggccg
5760





ctcaacccgg cggcgcaact ggccctgctg cacgagcacc tggtgcgcgc cggcctggtg
5820





tcgccgcggg cccaaccggg catgctggag ggcgtggtga acgtgctgca ggcgaacctg
5880





tcgacggtgt accggccagc cagggtgtat gaaggtgccc tgttgctggt caacgccagc
5940





gagcaggaag ggcgcggcga caatgccgcg cgggtggcgg cctggcgcag ccacgcgccg
6000





gcgctggtcg aggccgaggc gcctggcaat cacctgacgc tgctggcgtc gccgcacgtg
6060





gacgcggtgg ccagccgcat cctgggccag gtgccgagca tgctttga
6108











(Protein Sequence of eppC)









SEQ ID NO 8









Met Thr Phe Pro Gln Leu Leu Ala His Leu Arg Ser His Ser Ile His



1        5           10           15





Leu Lys Ala Glu Gln Gly Lys Leu Gln Val Arg Ala Glu Lys Gly Thr


      20           25           30





Val Asp Ala Glu Leu Arg Thr Gln Leu Ala Ala His Lys Glu Ala Leu


    35           40           45





Leu Ala Leu Leu Ala Gly Asp Pro Ala Ala Cys Thr Trp Thr Ala Ala


  50           55           60





Ala Pro Arg Ile Thr Pro Glu Met Leu Pro Leu Val Gln Leu Ser Gln


65           70           75           80





Gly Glu Ile Asp Thr Ile Val Ala Ala Thr Glu Gly Gly Ala Ala Ala


        85           90           95





Ile Gln Asp Ile Tyr Pro Leu Ser Pro Leu Gln Glu Gly Phe Leu Phe


      100          105          110





His His Leu Leu Gln Ala Glu Gly Asp Val Tyr Leu Glu Arg Ala Leu


    115          120          125





Ile Gly Phe Asp Ser Arg Asp Arg Leu Asp Ala Phe Val Ala Ala Leu


  130          135          140





Gln Lys Val Ile Asp Arg His Asp Ile Leu Arg Ser Ser Ala Arg Trp


145          150          155          160





Gln Asp Leu Ser Arg Gln Val Gln Val Val His Arg Gln Ala Arg Leu


        165          170          175





Pro Val Val Glu Leu Lys Leu Pro Glu Gly Gly Asp Gly Met Ala Val


      180          185          190





Leu Lys Glu Ala Thr Asp Pro Arg Lys Leu Arg Leu Asp Leu Gln Ala


    195          200          205





Ala Pro Leu Leu Ala Thr Arg Ile Val Pro Asp Gly Ala Ser Gly Gly


  210          215          220





Trp Leu Met Ala Leu Leu His His His Met Val Cys Asp His Val Thr


225          230          235          240





Leu Glu Phe Ile Val Gly Glu Val Ala Leu Ile Leu Gly Gly Arg Glu


        245          250          255





Ala Leu Leu Pro Pro Ala Leu Pro Tyr Arg Asn Phe Ile Ala Gln Thr


      260          265          270





Leu Ala Val Pro Ala Ser Ala His Glu Gly Tyr Phe Lys Ser Arg Leu


    275          280          285





Ala Asp Val Thr Glu Thr Thr Ala Pro Phe Gly Val Leu Asn Val Met


  290          295          300





Gly Glu Gly Gly Glu Val Ser Glu Gly His Val Arg Leu Asp Gly Ala


305          310          315          320





Leu Ala Gln Arg Ile Arg Thr Gln Ala Ala Arg Phe Gly Val Thr Thr


        325          330          335





Ala Val Leu Phe His Val Ala Trp Ala Arg Val Val Ala Leu Cys Ser


      340          345          350





Gly Arg Asp Asp Val Val Phe Gly Thr Val Leu Ser Gly Arg Leu Gln


    355          360          365





Gly Ser Glu Ala Ala Gly Arg Val Leu Gly Leu Phe Ile Asn Ala Leu


  370          375          380





Pro Ile Arg Leu Thr Leu Ala Gly Arg Ser Thr Glu Gln Leu Val Arg


385          390          395          400





Glu Thr Tyr Ala Asp Leu Thr Ala Leu Leu Glu His Glu Gln Ala Ser


        405          410          415





Leu Thr Leu Ala Gln Gln Cys Ser Gly Ile Ala Ala Pro Ala Pro Leu


      420          425          430





Phe Thr Ser Leu Leu Asn Tyr Arg His Ser His Gly Gly Ala Leu Gln


    435          440          445





Ala Asp Gly Gln Trp Asp Gly Met Arg Leu Leu Asp Phe Gly Glu Arg


  450          455          460





Thr Asn Tyr Pro Ile Thr Val Ser Ile Asp Asp Thr Gly Asp Gly Phe


465          470          475          480





Glu Leu Glu Ala Gln Cys Val Thr Gly Ile Asp Pro Ala Arg Ile Val


        485          490          495





Asp Tyr Leu Ala Thr Ala Leu Ala Gly Leu Ala Asp Gly Leu Ala Gly


      500          505          510





Gly Lys Ala Ala Thr Glu Met Ala Val Leu Pro Asp Ala Glu Arg Thr


    515          520          525





Arg Leu Leu Glu Leu Ser Gln Gly Gly Pro Ala Tyr Gly Ala Gly Leu


  530          535          540





Leu Pro Ala Glu Leu Leu Ala Ala Arg Trp Pro Gln Asp Ala Ala Ala


545          550          555          560





Ile Ala Val Ile Asp Gly Glu Arg His Thr Ser Tyr Ala Glu Leu Ala


        565          570          575





Ala Leu Ser Asn Arg Leu Ala Gln Gln Met Leu Ala Ala Gly Ala Gly


      580          585          590





Pro Gly Thr Arg Val Gly Val Phe Ala Glu Arg Gly Leu Ala Met Val


    595          600          605





Val Ala Leu Leu Ala Val Lys Ala Gly Ala Thr Tyr Leu Pro Leu


  610          615          620





Asp Thr Ala His Pro Ala Asp Arg Leu Gly His Ile Leu Asn Asp Ser


625          630          635          640





Ala Pro Ala Ala Val Ile Leu Gln Ala Gly Leu Glu Thr Ala Leu Pro


        645          650          655





Arg His Pro Ala Thr Ala Ile Val Leu Asp Ala Asp Gly Ile Ala Arg


      660          665          670





Gly Leu Pro Ala Ala Pro Glu Ser Ala Pro Asp Leu Arg Ala Leu Gly


    675          680          685





Val Thr Pro Ala Asp Ala Ala Tyr Val Ile Tyr Thr Ser Gly Ser Thr


  690          695          700





Gly Leu Pro Lys Gly Val Ala Asn Ser Gly Ala Gly Leu Val Asn Arg


705          710          715          720





Leu Asp Trp Phe Ala Thr Glu Val Leu Asp His Val Pro Val Thr Ala


        725          730          735





Met Arg Thr Ser Ile Ser Phe Val Asp Ser Val Thr Glu Val Leu Asp


      740          745          750





Thr Leu Leu Ala Gly Gly Thr Leu Val Val Phe Asp Lys Ala Ala Thr


    755          760          765





Leu Asp Pro Ala Thr Phe Ala Glu Gly Thr Ala Arg Tyr Gly Ile Ser


  770          775          780





His Leu Met Val Val Pro Ala Leu Leu His His Val Leu Glu Val Ala


785          790          795          800





Pro Ser Ala Leu Ala Arg Val Arg Thr Val Ile Thr Ser Gly Glu Arg


        805          810          815





Leu Pro Pro Glu Leu Ala Gln Arg Leu Lys Ala Ala Phe Pro Ala Ile


      820          825          830





Arg Leu Val Asn Thr Tyr Gly Cys Ser Glu Val Asn Gly Asp Ala Thr


    835          840          845





Ala Cys Asp Cys Asp Gly Thr Glu Ala Thr Ala Thr Ser Val Ile Gly


  850          855          860





Arg Pro Ile Ala Gly Val Gln Ala Leu Val Leu Asp Gly Ala Arg Gln


865          870          875          880





Leu Val Pro Leu Gly Ala Thr Gly Glu Ile Tyr Leu Gly Gly Val Gly


        885          890          895





Val Ala Gly Gly Tyr Leu Asn Arg Pro Glu Leu Thr Ala Glu Arg Phe


      900          905          910





Val Pro Asn Pro Tyr Gly Ala Gly Leu Leu Tyr Lys Thr Gly Asp Leu


    915          920          925





Gly Arg Leu Arg Ala Asp Gly Ser Leu Glu Tyr Leu Gly Arg Asn Asp


  930          935          940





Phe Gln Val Lys Met Arg Gly Phe Arg Ile Glu Leu Gly Glu Ile Glu


945          950          955          960





Ala Arg Leu Arg Thr His Pro Gly Val Ser Asp Ala Val Val Val Ala


        965          970          975





Arg Thr Glu Arg Ala Gly Asp Pro Arg Leu Ala Ala Tyr Val Leu Pro


      980          985          990





Arg Arg Glu Arg Ala Ala Ala Ala Asp Glu Ala Gly Phe Ser Leu Phe


    995         1000          1005





Tyr Phe Gly Ala Thr Thr Ser Gly Ala Gly Ala Asp Lys Tyr Arg


  1010          1015          1020





Leu Tyr Leu Glu Ala Ala Arg Phe Ala Asp Asp Asn Gly Phe Glu


  1025          1030          1035





Ala Ile Trp Thr Pro Glu Arg His Phe Asp Asp Val Ala Gly Leu


  1040          1045          1050





Tyr Pro Asn Pro Ala Leu Leu Ser Ala Ala Leu Ala Thr Ser Thr


  1055          1060          1065





Arg Arg Val His Leu Arg Ala Gly Ser Val Val Leu Pro Leu Gln


  1070          1075          1080





Gln Pro Ile Arg Val Val Glu Asp Trp Ser Val Leu Asp Asn Leu


  1085          1090          1095





Thr Gly Gly Arg Val Gly Val Ala Ile Ala Ser Gly Trp His Met


  1100          1105          1110





Arg Asp Phe Val Leu Ala Pro Glu His His Ala Gln Arg His Arg


  1115          1120          1125





Ile Met Tyr Glu Gly Ile Glu Thr Val Arg Asp Leu Trp Arg Gly


  1130          1135          1140





Thr Ala Arg Ser Phe Arg Asp Gly Ala Gly Leu Gln Ser Glu Ile


  1145          1150          1155





Gln Val Tyr Pro Arg Pro Val Gln Ala Glu Leu Pro Met Trp Leu


  1160          1165          1170





Thr Ser Ala Gly Ala Asn Glu Thr Phe Ile Glu Ala Gly Arg Leu


  1175          1180          1185





Gly Leu Asn Leu Leu Thr His Leu Leu Gly Gln Thr Ile Gln Glu


  1190          1195          1200





Val Ala Gly Lys Ile Ala Leu Tyr Arg Glu Ser Leu Gln Arg His


  1205          1210          1215





Gly Phe Asp Pro Asp Ser Arg Lys Val Thr Leu Met Ile His Thr


  1220          1225          1230





Tyr Val Gly Ala Asp Gln Ala Ala Ala Leu Ala Gln Ala Arg Glu


  1235          1240          1245





Pro Phe Lys Arg Tyr Met Lys Ala His Val Gly Leu Leu Lys Ser


  1250          1255          1260





Leu Ser Ala Thr Leu Thr His Ala Val Asp Asn Val Glu Gln Glu


  1265          1270          1275





Asn Leu Asp Ser Leu Ala Glu His Ala Phe Gln Arg Tyr Ala Ser


  1280          1285          1290





Ser Ala Ala Phe Ile Gly Ser Pro Glu Ser Cys Leu Pro Ile Tyr


  1295          1300          1305





Arg Gln Leu Arg Glu Ala Gly Val Asp Glu Phe Ala Cys Leu Phe


  1310          1315          1320





Asp Trp Met Ala Pro Glu Glu Ala Leu Ala Gly Leu Pro Gln Leu


  1325          1330          1335





Arg Arg Leu Gln Asp Leu Ala Arg Ser Asp Ala Pro Gly Val Arg


  1340          1345          1350





Gln Leu Arg Arg His Leu Leu Ala Ala Leu Pro Asp Tyr Met Val


  1355          1360          1365





Pro Ser Thr Phe Ser Tyr Leu Glu Arg Met Pro Leu Thr Ala Ser


  1370          1375          1380





Gly Lys Val Asn Arg Leu Ala Leu Pro Ala Pro Glu Gln Gln Ser


  1385          1390          1395





Thr Glu Gln Thr Ala Phe Asp Ala Pro Gln Gly Val Glu Glu Thr


  1400          1405          1410





Ser Val Ala Arg Leu Trp Gln Asp Met Leu Asn Val Pro Pro Ile


  1415          1420          1425





Asp Arg Asn Gly Asn Phe Phe Glu Leu Gly Gly His Ser Leu Leu


  1430          1435          1440





Ala Val Gln Met Ile Ala Ala Val Gly Lys Leu Phe Ala Thr Glu


  1445          1450          1455





Val Pro Leu Arg Gln Leu Phe Ala Asn Pro Thr Val Ala Lys Phe


  1460          1465          1470





Ala Ala Ala Ile Arg Glu Gln Ser Ser Asn Ala Lys His Pro Asn


  1475          1480          1485





Leu Val Thr Leu Arg Lys Arg Gly Ser Lys Ala Pro Leu Phe Leu


  1490          1495          1500





Val His Pro Gly Glu Gly Glu Ile Gly Tyr Ala Arg Asn Leu Ala


  1505          1510          1515





Pro His Ile Ala Ser Asp Val Pro Leu Tyr Gly Phe Ala Ala Thr


  1520          1525          1530





Gly Leu Leu Ser Gly Glu Ala Pro Leu Thr Ser Ile Glu Glu Ile


  1535          1540          1545





Ala Ser Arg Tyr Val Arg Ala Met Arg Ser Val Gln Pro Glu Gly


  1550          1555          1560





Pro Tyr Arg Ile Ala Gly Trp Ser Ala Gly Gly Thr Ile Ala Tyr


  1565          1570          1575





Glu Met Ala Arg Gln Leu Leu Gly Val Asp Gln Gln Val Gly Phe


  1580          1585          1590





Ile Gly Leu Leu Asp Thr Asp Phe Ser Tyr Asp His Leu Phe Ala


  1595          1600          1605





Arg Thr Asp Gly Glu Glu Asp Leu Ala Phe Asp Glu Ile Asn Ser


  1610          1615          1620





Leu Leu Gly Tyr Leu Pro Pro Arg Leu Pro Ala Glu Val Ser Gly


  1625          1630          1635





Glu Val Arg Leu Leu Ala Gln Ser Arg Asp Phe Asp Ala Leu Leu


  1640          1645          1650





Ala Arg Met His Ala His Asp Phe Ile Pro Lys Gly Val Asp Gly


  1655          1660          1665





Gly Ile Leu Gln Arg His Leu Ala Leu Arg His Ala Leu Ala Val


  1670          1675          1680





Ala Leu Tyr Arg Tyr Gln Pro Gln Arg Leu Pro Ile Gly Val Thr


  1685          1690          1695





Leu Phe Ser Ala Ser Gly Glu Ser Arg Val Asp Pro Thr Ile Gly


  1700          1705          1710





Trp Arg Ala His His Ala Ala Asp Leu Leu His Leu Ile Pro Val


  1715          1720          1725





Ser Gly Thr His Tyr Thr Ile Val Glu Glu Pro Asn Val Ile Glu


  1730          1735          1740





Leu Gly Lys Ala Ile Ser Ala Glu Leu Ala Arg Ser Gln Pro Asn


  1745          1750          1755





Gly Pro Ala Pro Tyr Ala Pro Arg Val Val Ile Gln Ser Gly Met


  1760          1765          1770





Ala Gly Glu Ala Pro Leu Phe Cys Val Pro Gly Ala Gly Ala Ser


  1775          1780          1785





Val Ser Ser Leu His Glu Leu Ala Gln Ala Leu Gly Glu Asn Val


  1790          1795          1800





Pro Val His Gly Leu Gln Ala Arg Gly Leu Asp Gly Thr Met Leu


  1805          1810          1815





Pro His Ala Asp Val Gln Ser Ala Ala Arg Ala Tyr Leu Ala Ala


  1820          1825          1830





Val Arg Asp Val Gln Pro Ala Gly Pro Tyr Arg Leu Leu Gly His


  1835          1840          1845





Ser Phe Gly Gly Trp Ile Ala Phe Glu Met Ala Gln Gln Leu Thr


  1850          1855          1860





Ala Ala Gly Glu Thr Val Glu Gln Leu Val Val Ile Asp Ser Arg


  1865          1870          1875





Ser Pro Ala Pro Glu Gly Thr Ala Val Arg His Tyr Thr Arg Ile


  1880          1885          1890





Glu Thr Leu Leu Glu Leu Val Ala Leu Tyr Asn Leu Arg Leu Ala


  1895          1900          1905





Asp Lys Leu Ala Leu Thr Ala Ala Asp Phe Arg Pro Leu Asn Pro


  1910          1915          1920





Ala Ala Gln Leu Ala Leu Leu His Glu His Leu Val Arg Ala Gly


  1925          1930          1935





Leu Val Ser Pro Arg Ala Gln Pro Gly Met Leu Glu Gly Val Val


  1940          1945          1950





Asn Val Leu Gln Ala Asn Leu Ser Thr Val Tyr Arg Pro Ala Arg


  1955          1960          1965





Val Tyr Glu Gly Ala Leu Leu Leu Val Asn Ala Ser Glu Gln Glu


  1970          1975          1980





Gly Arg Gly Asp Asn Ala Ala Arg Val Ala Ala Trp Arg Ser His


  1985          1990          1995





Ala Pro Ala Leu Val Glu Ala Glu Ala Pro Gly Asn His Leu Thr


  2000          2005          2010





Leu Leu Ala Ser Pro His Val Asp Ala Val Ala Ser Arg Ile Leu


  2015          2020          2025





Gly Gln Val Pro Ser Met Leu


  2030          2035






Following assembly of the sequence derived from the two clones, a comparative analysis with published NRPS gene clusters was carried out to determine the module and domain organization of the deduced (putative) Empedopeptin biosynthetic NRPS complex, and any associated gene sequences. Associated sequences could encode enzymes involved in “tailoring” reactions, such as hydroxylation of the proline and aspartic acid residues in the peptide, or in the regulation of expression or export of the peptide.


The observed module and domain organization of the identified gene is illustrated in FIG. 1.


As illustrated in FIG. 1, the NRPS portion of the empedopeptin biosynthetic gene cluster spans a region of approximately 31 kb and consists of three NRPS genes, eppA, eppB, and eppC. The first two NRPS genes, eppA and eppB, are separated by an about 2.4 kb insert, which contains the open reading frames of a homoserine-O-succinyl-transferase-like enzyme (eppT), and a putative Zn-dependent hydrolase (eppH).


Also as illustrated in FIG. 2, the Epp biosynthetic complex consists of eight modules, of which eppA, eppB, and eppC encodes three, four and one (modules), respectively. Features of the Epp biosynthetic template include: (i) the Epp biosynthetic template starts with an initiation module (domain organization: A-PCP), rather than an elongation module (C-A-PCP); (ii) the coding region of module 5 contains about a 1 kb insert (shown as section with vertical bars), which separates the coding regions of the corresponding C and A domains. The 1 kb-insertion encodes an NRPS catalytic domain that is entirely unique. It has no identifiable homologues in publicly accessible data bases; and (iii) EppC encodes a single (termination) module (module 8). Moreover, the coding region of the adenylation (A) domain in module 8 is disrupted (between core motifs A8 and A9) by about a 1.2 kb insert, encoding a monooxygenase domain.


In FIG. 2, the following key was employed:

    • White=adenylation (A) domain;
    • Diagonal bars=thiolation (T) domain (also referred to as peptidyl-carrier protein domain);
    • Grey=condensation (C) domain;
    • Vertical bars=domain of unknown function;
    • Horizontal bars=monooxygenase (Ox) domain; and
    • Dots=thioesterase (Te) domain.


VI. FORMULATIONS, ADMINISTRATIONS, AND USES
A. Pharmaceutically Acceptable Compositions

The present invention includes within its scope pharmaceutically acceptable prodrugs of the compounds of the present invention. A “pharmaceutically acceptable prodrug” means any pharmaceutically acceptable salt, ester, salt of an ester, or other derivative of a compound of the present invention which, upon administration to a recipient, is capable of providing (directly or indirectly) a compound of this invention or an active metabolite or residue thereof. Preferred prodrugs are those that increase the bioavailability of the compounds of this invention when such compounds are administered to a mammal or which enhance delivery of the parent compound to a biological compartment relative to the parent species.


The term “pharmaceutically acceptable carrier, adjuvant, or vehicle” refers to a non-toxic carrier, adjuvant, or vehicle that does not destroy the pharmacological activity of the Empedopeptin with which it is formulated. Pharmaceutically acceptable carriers, adjuvants or vehicles that may be used in the compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.


Pharmaceutically acceptable salts of the compounds of this invention include those derived from pharmaceutically acceptable inorganic and organic acids and bases. Examples of suitable acid salts include acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptanoate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oxalate, palmoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, salicylate, succinate, sulfate, tartrate, thiocyanate, tosylate and undecanoate. Other acids, such as oxalic, while not in themselves pharmaceutically acceptable, may be employed in the preparation of salts useful as intermediates in obtaining the compounds of the invention and their pharmaceutically acceptable acid addition salts.


Salts derived from appropriate bases include alkali metal (e.g., sodium and potassium), alkaline earth metal (e.g., magnesium), ammonium and N+(C1-4 alkyl)4 salts. This invention also envisions the quaternization of any basic nitrogen-containing groups of the compounds disclosed herein. Water or oil-soluble or dispersible products may be obtained by such quaternization.


The compositions of the present invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term “parenteral” as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques. Preferably, the compositions are administered orally, intraperitoneally or intravenously. Sterile injectable forms of the compositions of this invention may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium.


For this purpose, any bland fixed oil may be employed including synthetic mono- or di-glycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents that are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions. Other commonly used surfactants, such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.


The pharmaceutically acceptable compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions. In the case of tablets for oral use, carriers commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added.


Alternatively, the pharmaceutically acceptable compositions of this invention may be administered in the form of suppositories for rectal administration. These can be prepared by mixing the agent with a suitable non-irritating excipient that is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug. Such materials include cocoa butter, beeswax and polyethylene glycols.


The pharmaceutically acceptable compositions of this invention may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.


Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches may also be used.


For topical applications, the pharmaceutically acceptable compositions may be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutically acceptable compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.


For ophthalmic use, the pharmaceutically acceptable compositions may be formulated as micronized suspensions in isotonic, pH adjusted sterile saline, or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with or without a preservative such as benzylalkonium chloride. Alternatively, for ophthalmic uses, the pharmaceutically acceptable compositions may be formulated in an ointment such as petrolatum.


The pharmaceutically acceptable compositions of this invention may also be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.


Most preferably, the pharmaceutically acceptable compositions of this invention are formulated for parenteral administration or specifically intramuscular injection.


The amount of the compounds of the present invention that may be combined with the carrier materials to produce a composition in a single dosage form will vary depending upon the host treated, the particular mode of administration. Preferably, the compositions should be formulated so that a dosage of between 0.01-100 mg/kg body weight/day of the modulator can be administered to a patient receiving these compositions.


It should also be understood that a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular disease being treated. The amount of a compound of the present invention in the composition will also depend upon the particular compound in the composition.


Depending upon the particular condition, or disease, to be treated or prevented, additional therapeutic agents, which are normally administered to treat or prevent that condition, may also be present in the compositions of this invention. As used herein, additional therapeutic agents that are normally administered to treat or prevent a particular disease, or condition, are known as “appropriate for the disease, or condition, being treated.”


In several pharmaceutical compositions comprising Empedopeptin, the carrier is water or saline.


VII. BIOLOGICAL ACTIVITY
Materials and Methods

Compounds:


The investigational agent, Empedopeptin, was purified from the culture broth of Empedobacter haloabium strain No. G393-B445 (ATCC 31962) as provided in Konishi, M., Sugawara, K., Hanada, M., Tomita, K., Tomatsu, K., Miyaki, T., and Kawaguchi, H. (1984) Empedopeptin (BMY-28117), a new depsipeptideantibiotic. 1. Production, isolation and properties. J. Antibiot. 37:949-957. The Empedopeptin was stored at −20° C. until the day of the MIC assay. Daptomycin (Lot# CDCX01) was obtained from Cubist, linezolid (Lot# LZD05003) from Pfizer, vancomycin (Lot# 016K1102) from Sigma-Aldrich, and oxacillin (Lot# 1101952) from BioChemika.


The solvent for all of the compounds was deionized water (DIW), and all of the compounds dissolved in the solvent. The stock solutions were allowed to stand in DIW for one hour at room temperature prior to testing to allow time for auto-sterilization. The stock concentration of the test compounds was 5120 μg/mL, resulting in the final test concentration range of 128-0.12 μg/mL.


The test organisms were originally received from clinical sources, or from the American Type Culture Collection. When received, the organisms were sub-cultured onto an appropriate agar medium. Following incubation, colonies were harvested from these plates and cell suspensions prepared and frozen at −80° C. On the day prior to assay, a frozen vial of each culture was thawed and the contents were streaked for isolation onto either Tryptic Soy Agar (Becton Dickinson, Sparks, Md.) or Tryptic Soy Agar (Enhanced Hemolysis; Becton Dickinson) supplemented with 5% sheep blood for streptococci. The agar plates were incubated overnight at 35° C. Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 were included as quality control isolates in the assay.


Test Medium:


The test medium for the broth microdilution testing was Mueller Hinton II broth (MHB II; BBL# 212322, Lot # 6024003, Becton Dickinson). The broth was prepared at 1.05× normal weight/volume to offset the 5% volume of the drug solution in the final test plates.


For streptococci, lysed horse blood (Lot # H88621; Cleveland Scientific, Bath, Ohio) was added to the MHB II at a final concentration of 2%.


CLSI guidelines recommend that Mueller-Hinton II broth be adjusted to contain 50 mg/L of Ca++ ions for proper daptomycin MIC results. Since Mueller-Hinton II broth has already been adjusted by the manufacturer to contain approximately 25 mg/L of Ca++ ions, an additional 25 mg/L of Ca++ ions was adjusted with 10 mg/mL of CaCl2.2H2O (Lot# 084K0215; Sigma-Aldrich) added at a rate of 0.1 mL/L of broth, for each desired increment of 1 mg/L. This supplemented Mueller-Hinton II broth was used only in wells containing daptomycin.


MIC Methodology:


MIC values were determined using a broth microdilution method as recommended by the Clinical and Laboratory Standards Institute (Clinical and Laboratory Standards Institutea. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Seventh Edition. Clinical and Laboratory Standards Institute document M7-A7 [ISBN 1-56238-587-9]. Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pa. 19087-1898 USA, 2006). Automated liquid handlers (Multidrop 384, Labsystems, Helsinki, Finland; Biomek 2000 and Multimek 96, Beckman Coulter, Fullerton Calif.) were used to conduct serial dilutions and make liquid transfers.


Wells of two standard 96-well microdilution plates (Falcon 3918; Becton Dickinson) were filled with 150 μL of DMSO using the Multidrop 384. These plates were used to prepare the drug “mother plates” that provided the serial drug dilutions for replicate “daughter plates”. The Biomek 2000 was used to transfer 150 μl of each stock solution from the wells of column 1 of a deep well plate to the corresponding wells in column 1 of the mother plate and to make eleven 2-fold serial dilutions in the mother plates. The wells of column 12 contained no drug and were the organism growth control wells. Each mother plate has the capacity to create a total of 12 daughter plates.


The daughter plates were loaded with 180 μL of one of the media described above using the Multidrop 384. The wells of the daughter plates ultimately contained 180 μL of MHB II, 10 μL of drug solution, and 10 μL of bacterial inoculum prepared in broth appropriate to the test organism (1.05×). The daughter plates were prepared on the Multimek 96 instrument, which transferred 10 μL of drug solution from each well of the mother plate to each corresponding well of each daughter plate in a single step.


Standardized inoculum of each organism was prepared following Clinical and Laboratory Standards Institute (Clinical and Laboratory Standards Instituteb. Performance Standards for Antimicrobial Susceptibility Testing; Sixteenth Informational Supplement. CLSI document M100-S16 [ISBN 1-56238-588-7]. Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pa. 19087-1898 USA, 2006) methods. The inoculum for each organism was dispensed into sterile reservoirs divided by length (Beckman Coulter), and the Biomek 2000 was used to inoculate the plates. Daughter plates were placed on the Biomek 2000 work surface in a reversed position so that inoculation occurred from low to high drug concentration. The Biomek 2000 delivered 10 μL of standardized inoculum into each well. This yielded a final cell concentration in the daughter plates of approximately 5×105 colony-forming-units/mL.


Plates were stacked 3 high, covered with a lid on the top plate, placed in plastic bags, and incubated at 35° C. for approximately 20 h. Following incubation, the microplates were removed from the incubator and viewed from the bottom using a plate viewer. An un-inoculated solubility control plate was observed for evidence of drug precipitation. The MIC was read and recorded as the lowest concentration of drug that inhibited visible growth of the organism.


Results:


All of the compounds were soluble in the stock solutions and in the microbiological test media (data not shown). Table 1 details the test organisms and phenotypes and the MIC data for the test agents.









TABLE 1







Minimal Inhibitory Concentration (MIC) Values for Empedopeptin,


Daptomycin, Linezolid, Oxacillin, and Vancomycin











Micromyx

MIC (μg/mL)














Organism
#
Phenotype
Empedopeptin
Daptomycin
Linezolid
Oxacillin
Vancomycin


















Enterococcus

101
VSE1;
4
1
8
16
4



faecalis


CLSI2 QC3




strain



Enterococcus

413

4LZDR

8
0.5
64
64
2



faecalis


from res.




dev. or other



Enterococcus

486
Van5 A
8
0.5
4
16
>128



faecalis




Enterococcus

1088
Van B
16
1
4
16
128



faecalis




Enterococcus

750
VanS
8
≦0.12
4
4
1



faecium




Enterococcus

1721

6DAPR

32
8
2
32
>128



faecium




Enterococcus

752
Van A
16
2
4
>128
>128



faecium




Enterococcus

1120
Van B
16
2
4
>128
32



faecium




Staphylococcus

100
CLSI QC
4
0.5
8
0.25
2



aureus


strain



Staphylococcus

1002
MSSA7,
4
0.5
4
0.5
1



aureus


macrolideR



Staphylococcus

1004
MRSA8,
8
0.25
4
16
1



aureus



9FAR




Staphylococcus

1016
FAR
8
0.25
8
32
1



aureus




Staphylococcus

1651
LZDR
4
0.5
64
128
1



aureus


clinical




isolate



Staphylococcus

1723
VISA10
4
1
4
>128
8



aureus




Staphylococcus

1727

11GMR

8
0.25
4
0.25
1



aureus




Staphylococcus

1730
Community-
4
0.5
8
32
2



aureus


acquired




MRSA



Staphylococcus

1731

12CHLR

4
0.25
8
0.25
1



aureus




Staphylococcus

106

13RAR

0.5
0.5
4
>128
1



aureus




Staphylococcus

835
MSSE14
8
0.5
4
≦0.12
2



epidermidis




Staphylococcus

108
MRSE15
8
0.5
4
64
4



epidermidis




Streptococcus

374
Wild type
1
≦0.12
4
16
0.5



pneumoniae




Streptococcus

375
parC, gyrB
2
≦0.12
4
≦0.12
0.5



pneumoniae




Streptococcus

376
parC, gyrA
2
≦0.12
4
≦0.12
0.25



pneumoniae




Streptococcus

379
parC, gyrA,
2
0.25
4
≦0.12
0.5



pneumoniae


gyrB



Streptococcus

927

16mef(A)

<0.12
≦0.12
2
16
0.5



pneumoniae




Streptococcus

928

17erm(B)

0.5
≦0.12
2
16
0.5



pneumoniae




Streptococcus

985
Susceptible
≦0.12
≦0.12
4
≦0.12
0.5



pyogenes




Streptococcus

942
macrolideR
≦0.12
≦0.12
4
≦0.12
0.5



pyogenes







1VSE—vancomycin-sensitive Enterococcus




2CLSI—Clinical and Laboratory Standards Institute




3QC—Quality Control




4LZD—linezolid




5Van—vancomycin




6DAP—daptomycin




7MSSA—methicillin-sensitive Staphylococcus aureus




8MRSA—methicillin-resistant Staphylococcus aureus




9FA—fusidic acid




10VISA—vancomycin-intermediate Staphylococcus aureus




11GM—gentamicin




12CHL—chloramphenicol




13RA—rifampin




14MSSE—methicillin-sensitive Staphylococcus epidermidis




15MRSE—methicillin-resistant Staphylococcus epidermidis




16mefA—macrolide resistance via efflux




17ermB—ribosomal erythromycin resistance







The quality control strain MIC data (Table 2) demonstrated that daptomycin, oxacillin, and vancomycin had MIC results within the CLSI quality control ranges for each, thereby validating the assay results for these agents. However, linezolid demonstrated MIC values one dilution higher than the specified CLSI range for both quality control organisms, therefore, the data for linezolid are not acceptable. Overall, linezolid yielded MIC values higher than typically seen for these organisms, consistent with the out-of-range quality control values. The linezolid data are included in Table 1; however, the values should be viewed with caution.









TABLE 2







Minimal Inhibitory Concentration (MIC) Values for CLSI Quality Control Strains











Micromyx

MIC (μg/mL)














Organism
#
Phenotype
Empedopeptin
Daptomycin
Linezolid
Oxacillin
Vancomycin






Staphylococcus

100b
MSSA;
4
0.5
8
0.25
2



aureus


CLSI QC




strain


CLSI



0.25-1
1-4
0.12-0.5
0.5-2


Recommended


Range



Enterococcus

101c
VSE;
4
1  
8
16   
4



faecalis


CLSI QC




strain


CLSI



  1-4
1-4
 8-32
  1-4


Recommended


Range






a Clinical and Laboratory Standards Institute (2)




b
Staphylococcus aureus ATCC 29213




c
Enterococcus faecalis ATCC 29212







The phenotypic characteristics were confirmed for all strains where the subject drug was included in the assay (for example, vancomycin-resistance evident for VRE, etc.). Empedopeptin demonstrated broad activity against Gram-positive bacteria, including strains resistant to other antibacterial agents. Against Enterococci, the range of MIC values was 4-32 μg/mL with most strains inhibited at 8-16 μg/mL. The most sensitive Enterococcal strain was E. faecalis 101 (MIC≈4 μg/mL) and the least sensitive was the daptomycin-resistant strain E. faecium 1721. Empedopeptin demonstrated activity against Van A and Van B Enterococci, as well as the linezolid-resistant strain.


Against staphylococci, Empedopeptin demonstrated MIC values in the range of 0.5-8 μg/mL, with the majority of strains inhibited in the range of 4-8 μg/mL. This included isolates resistant to oxacillin, linezolid, fusidic acid, gentamicin, chloramphenicol, and rifampin as well as intermediate-resistance to vancomycin.


Empedopeptin demonstrated greater potency against Streptococci than Enterococci or Staphylococci, inhibiting all strains of S. pneumoniae in the range of ≦0.12-2 μg/mL. This included strains carrying common quinolone resistance mutations, ermB (ribosomal erythromycin resistance), and mefA (macrolide resistance via efflux). Interestingly, the mefA strain was highly susceptible to Empedopeptin. Empedopeptin was also highly active against S. pyogenes inhibiting both test strains at ≦0.12 μg/mL (including the macrolide-resistant strain).


From these results, Empedopeptin has demonstrated activity against several Gram-positive bacteria; and, more importantly, Empedopeptin also demonstrated broad activity against several different antibiotic-resistant strains of bacteria.


OTHER EMBODIMENTS

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

Claims
  • 1. A method of inhibiting bacterial proliferation comprising: providing a pharmaceutical composition comprising Empedopeptin or a pharmaceutically acceptable salt thereof,wherein the bacteria comprises at least one Gram positive strain, and the Gram positive strain is resistant to glycopeptides, aminoglycosides, oxazolidinones, penicillins, macrolides, rifamycins, polypeptides, lipopeptides, chloramphenicol, or any combination thereof.
  • 2. The method of claim 1, wherein the Gram positive strain further comprises Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, or any combination thereof.
  • 3. The method of claim 2, wherein the Gram positive strain is further resistant to at least one of linezolid, oxacillin, vancomycin, daptomycin, erythromycin, methicillin, gentamicin, chloramphenicol, fusidic acid, rifampin, or combinations thereof.
  • 4. The method of claim 1, further comprising providing a second pharmaceutical composition, wherein the second pharmaceutical composition comprises a second antibiotic agent.
  • 5. An isolated nucleotide sequence comprising SEQ ID NO 1.
  • 6. An isolated protein sequence comprising SEQ ID NO 2.
  • 7. An isolated nucleotide sequence comprising SEQ ID NO 3.
  • 8. An isolated protein sequence comprising SEQ ID NO 4.
  • 9. An isolated nucleotide sequence comprising SEQ ID NO 5.
  • 10. An isolated protein sequence comprising SEQ ID NO 6.
  • 11. An isolated nucleotide sequence comprising SEQ ID NO 7
  • 12. An isolated protein sequence comprising SEQ ID NO 8.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of PCT patent application serial no PCT/US2008/002435, filed on Feb. 25, 2008, under 35 U.S.C. § 363, which claims priority to U.S. provisional application Ser. No. 60/903,487, filed Feb. 26, 2007; each of which is hereby incorporated by reference entirely.

Provisional Applications (1)
Number Date Country
60903487 Feb 2007 US
Continuation in Parts (1)
Number Date Country
Parent PCT/US2008/002435 Feb 2008 US
Child 12284954 US