Seizure disorders, including epilepsy, can affect daily activities of adults and children. Seizures can develop in early childhood or adolescence. Seizure disorders can be associated with abnormal electrical activity in the brain resulting in temporary loss of consciousness, body convulsions, unusual movements and staring spells, all of which affect daily activities and the health of the affected individual. Current treatments for seizure disorders, including seizure disorders in individuals with autism, fragile X syndrome, Angelman syndrome, Costello syndrome, cardio facio cutaneous syndrome (CFC), neurofibromatosis type I, Noonan syndrome and Coffin-Lowry syndrome, can include drug therapy, such as anticonvulsant drugs. However, such treatments can result in unwanted side-effects and may not treat the underlying cause of the seizure disorder.
The invention is generally directed to methods of treating a seizure disorder in an individual by administering compositions that include a Ras inhibitor and/or an 3-hydroxy-3-methylglutaryl-Coenzyme A reductase inhibitor.
In an embodiment, the invention is a method of treating a subject having a seizure disorder, comprising the step of administering a composition that includes at least one Ras inhibitor.
In another embodiment, the invention is a method of treating a subject having a seizure disorder, comprising the step of administering a composition that includes at least one 3-hydroxy-3-methylglutaryl-Coenzyme A reductase inhibitor.
The methods of the invention have the advantage of normalizing synaptic signaling in the central nervous system to thereby treat an underlying cause of the seizure disorder.
A description of example embodiments of the invention follows. The features and other details of the invention, either as steps of the invention or as combinations as parts of the invention, will now be particularly described and pointed out in the claims. It will be understood that the particular embodiments of the invention are shown by way of illustration and not as limitations of the invention. The principle features of this invention can be employed in various embodiments without departing from the scope of the invention.
In an embodiment, the invention is a method of treating a subject having a seizure disorder, comprising the step of administering a composition that includes at least one Ras inhibitor.
In another embodiment, the invention is a method of treating a subject having a seizure disorder, comprising the step of administering a composition that includes at least one 3-hydroxy-3-methylglutaryl-Coenzyme A reductase inhibitor.
Ras (RAt Sarcoma) proteins (also referred to herein as “Ras”) are guanosine-nucleotide-binding proteins (G-proteins) involved in all signaling. Genes encoding Ras proteins were initially identified as oncogenes. Ras is associated with the plasma membrane of a cell because of prenylation and palmitoylation or the combination of prenylation and a polybasic sequence adjacent to the prenylation site. The carboxy-terminal CaaX amino acid sequence of Ras is initially farnesylated at a cysteine residue in the cytoplasm of the cell, which permits Ras to loosely insert into the endoplasmatic reticulum and other cellular membranes. The aaX tripeptide of Ras is then cleaved from the carboxy-terminus of Ras by a prenyl-protein specific endoprotease and the resulting carboxy-terminus methylated by a methyltransferase. Electrostatic interactions between the positively charged basic sequence of Ras with negative charges at the inner surface of the plasma membrane account for the predominant localization of Ras at the cell surface.
“Ras inhibitor,” as used herein, means a compound that prevents activation of a Ras protein. In an embodiment, a Ras inhibitor can bind Ras, thereby preventing Ras from hydrolying GTP (guanosine triphosphate) and, thus, preventing activation of downstream signaling pathways.
The carboxy-terminal membrane targeting region of Ras has an aaX motif that is modified by farnesyl transferase resulting in the addition of a 15-carbon isoprenoid (farnesyl group). In an embodiment, the Ras inhibitor is a farnesyl transferase inhibitor.
“Farnesyl transferase inhibitor,” as used herein, mean that the Ras inhibitor prevents the addition of a farnesyl group to Ras.
In an embodiment, the farnesyl transferase inhibitor is a 3-hydroxy-3-methylglutaryl-Coenzyme A reductase inhibitor (also referred to herein as “statins”).
“A 3-hydroxy-3-methylglutaryl-Coenzyme A reductase inhibitor,” as used herein, mean that the compound prevents the enzymatic activity of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase. In an embodiment, the 3-hydroxy-3-methylglutaryl-Coenzyme A reductase inhibitor inhibits cell signaling via Ras. In another embodiment, the 3-hydroxy-3-methylglutaryl-Coenzyme A reductase inhibitor prevents cell signaling through pathways other than Ras and is not a Ras inhibitor. For example, the 3-hydroxy-3-methylglutaryl-Coenzyme A reductase inhibitor can inhibit glycogen synthase kinase 3beta (GSK3beta) signaling.
Statins are compounds that low cholesterol levels by inhibiting the enzyme HMG (3-hydroxy-3-methyl-glutaryl)-Coenzyme A (also referred to herein as “CoA”) reductase. HMG-CoA reductase is the rate-controlling enzyme of the mevalonate pathway, which produces cholesterol and other isoprenoids. In mammalian cells, HMG-CoA reductase is normally suppressed by cholesterol derived from the internalization and degradation of low density lipoprotein (LDL) by the LDL receptor and oxidized species of cholesterol. Competitive inhibitors of HMG-CoA reductase induce the expression of LDL receptors in the liver, which, in turn, increase the catabolism of plasma LDL and lower the plasma concentration of cholesterol. HMG-CoA reductase is anchored in the membrane of the endoplasmic reticulum in the cytoplasm of cells. In an embodiment, the 3-hydroxy-3-methylglutaryl-Coenzyme A reductase inhibitor can include at least one member selected from the group consisting of Formulas I and II:
In another embodiment, the invention is a method of treating a seizure disorder in a subject comprising administering a composition that includes at least one of a MEK inhibitor or an ERK (extracellular signal-regulated kinase) inhibitor (also referred to as a “MAPK (mitogen-activated protein kinase) inhibitor”).
Ras, when activated, activates RAF kinase, a protein kinase that phosphorylates and activates MEK (MEK1 and MEK2). Phosphorylated MEK activates ERK, which, in turn, alters cellular processes.
A “MEK inhibitor,” as used herein, means a compound that prevents activation of MEK. Exemplary MEK inhibitors for use in the methods include XL518 ([3,4-difluoro-2-[(2-fluoro-4-iodophenyl)amino]phenyl][3-hydroxy-3-[(2R)-2-piperidinyl]-1-azetidinyl]methane; EXELIXIS), CI-1040 (2-(2-chloro-4-iodophenylamino)-N-(cyclopropylmethoxy)-3,4-difluorobenzamide); CAS No: 212631-79-3; MEDKOO BIOSCIENCE), PD0325901 (N-[(2R)-2,3-dihydroxypropoxy]-3,4-difluoro-2-[(2-fluoro-4-iodophenyl)amino]-benzamide); CAS No: 391210-10-9, CAYMAN CHEMICAL), SELUMETINIB (C17H15BrClFN4O3, CAS No.: 606143-52-6, SELLECKCHEM), GSK1120212 (N-[3-[3-cyclopropyl-5-[(2-fluoro-4-iodophenyl)amino]-3,4,6,7-tetrahydro-6,8-dimethyl-2,4,7-trioxopyrido[4,3-d]pyrimidin-1(2H)-yl]phenyl]acetamide); CAS No: 871700-17-3, ACTIVE BIOCHEM), AS703026 ((S)—N-(2,3-dihydroxypropyl)-3-((2-fluoro-4-iodophenyl)amino)isonicotinamide); CAS No: 1236699-92-5, SELLECKCHEM), AZD8330 (2-((2-fluoro-4-iodophenyl)amino)-N-(2-hydroxyethoxy)-1,5-dimethyl-6-oxo-1,6-dihydropyridine-3-carboxamide); CAS No.: 869357-68-6, SELLECKCHEM), PD318088 (5-bromo-N-(2,3-dihydroxypropoxy)-3,4-difluoro-2-[(2-fluoro-4-iodophenyl)amino]benzamide); CAS No: 391210-00-7; SELLECKCHEM), PD98059 (2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one), CAS No: 167869-21-8, REAGENTS DIRECT), U0126 (PROMEGA), TAK-733 (8-methylpyrido[2,3-d]pyrimidine-4,7(3H,8H)-dione); CAS No.: 1035555-63-5, SELLECKCHEM), ARRY-162 (NOVARTIS), ARRY-300 (NOVARTIS), PD184161 (5-bromo-2-[(2-chloro-4-iodophenyl)amino]-N-(cyclopropylmethoxy)-3,4-difluoro-benzamide); CAS No: 212631-67-9, CAYMAN CHEMICAL), and SL327 (alpha-[amino[(4-aminophenyl)thio]methylene]-2-(trifluoromethyl)benzeneacetonitrile); CAS No. 305350-87-2, TO C R1S). The chemical structures of exemplary MEK inhibitors appear in Table 1.
The MEK inhibitor ARRY-162 (NOVARTIS) has a MEK Enzyme IC50=12 nM; Malme-3M pERK IC50=11 nM; Human Whole Blood TPA-induced TNF-α=23 nM, IL-1β and IL-6=21 nM. Safety data for ARRY-162 is as follows: Genotoxicity: Negative; Cytochrome p450 Inhibition-IC50: >25 μM (5 major isoforms); Kinase selectivity screen has no activity against ˜200 other kinases at 1 μM; and receptor screen is clean against 25 receptors. In vivo efficacy of ARRY-162—Rat carrageenan paw edema: ED50˜7 mg/kg, PO, once; Rat Collagen-Induced Arthritis: ED50=3 mg/kg, PO, QD×7; and rat adjuvant-induced arthritis: ED50=10 mg/kg, PO, QD×7 (Winkler, J., et al., Inflamm. Res. Supplement 3: FC11.4 (2007); Winkler, J., et al., 9th Annual World Congress of Inflammation, July 2009, Tokyo, JP WS06-15).
An “ERK inhibitor,” as used herein, means a compound that prevents activation of ERK. Exemplary ERK inhibitors for use in the methods of the invention include FR180204 (5-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)-1H-pyrazolo[3,4-c]pyridazin-3-amine), CAS No: 865362-74-9, SANTA CRUZ BIOTECHNOLOGY), and CAY10561 N-[1-(3-chloro-4-fluorophenyl)-2-hydroxyethyl]-4-[4-(3-chlorophenyl)-1H-pyrazol-3-yl]-1H-pyrrole-2-carboxamide; CAS No: 933786-58-4, CAYMAN CHEMICAL), and AEZS-131 (AETERNA ZENTARIS). In another embodiment, the Ras inhibitor (e.g., farnesyl transferase inhibitor, 3-hydroxy-3-methylglutaryl-Coenzyme A reductase inhibitor) can be administered to a subject having a seizure disorder in combination with at least one compound that down regulates Group I mGluR signaling. The compound that down regulates Group I mGluR signaling can be administered to the subject before, concomitant with or after administration of the Ras inhibitor. The chemical structures of exemplary ERK inhibitors appear in Table 2.
In a further embodiment, at least one of a Ras inhibitor, a MEK inhibitor or an ERK (extracellular signal-regulated kinase) inhibitor (also referred to as a “MAPK (mitogen-activated protein kinase) inhibitor”) can be administered to the subject having a seizure disorder in combination with at least one compound that down regulates Group I mGluR signaling.
“Down regulates mGluR signaling,” as used herein, refers to any decrease or any inhibition in a cellular process or a cellular event or intermediate in a cellular event associated with any mechanism whereby metabotropic glutamate receptors (mGluRs) mediate a biological response. For example, down regulation can be the prevention or any decrease in binding of a signal external to a cell (a first messenger), such as a ligand (e.g., glutamate), to a Group I mGluR. Down regulation can be disruption of a cellular process following binding of an external signal (e.g., ligand) to an mGluR, such as the prevention of activation of adenylyl cyclase or phospholipase C (PLC). Down regulation can also be disruption of a cellular processes following binding of an external signal to Group I mGluR, such as the prevention of activation of a G-protein (Gs, Gq), a decrease in a G-protein (Gs, Gq) activation, prevention of activation of second messengers activated by Group I mGluR (e.g., cAMP, IP3, diacylglycerol (DAG)) or a decrease in the activity of an intracellular effector, such as a cAMP-dependent protein kinase, protein kinase C (PKC) or calcium release.
Down regulation of Group I mGluR signaling can also be a decrease or inhibition in the release of glutamate. A decrease or inhibition of glutamate release can be through activation of presynaptic Group II and/or Group III mGluRs by, for example, agonists of Group II and Group III mGluRs. An “agonist,” as used herein, is a compound that activates cell signaling. Exemplary Group II and Group III mGluR agonists for use in the invention include LY354740, L-AP4 (Capogna, M. Eur. J. Neurosci. 19: 2847-2858 (2004)) (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate ((2R,4R)-APDC), (2S,1′S,2′S)-2-(carboxycyclopropyl)glycine (L-CCG-1), N-Acetyl-L-aspartyl-L-glutamic acid (Spaglumic acid), (S)-3-carboxy-4-hydroxyphenylglycine ((S)-3C4HPG), (S)-4-carboxy-3-hydroxyphenylglycine ((S)-4C3HPG) and AMN 082 dihydrochloride (Flor et al., Neuropharmacology 49:244 (2005), the teachings of which are hereby incorporated by reference in its entirety).
Group I mGluR signaling also can be down regulated by decreasing or inhibiting protein synthesis in response to mGluR activation with, for example, rapamycin (Bierer et al., PNAS 87:9231 (1990)). The protein synthesis in response to mGluR activation can be decreased or inhibited by decreasing or inhibiting the transcription, translation, posttranslational modifications, intracellular half-life and/or intracellular processing of signals mediated or activated by mGluR.
In a specific embodiment, suitable compounds that down regulate Group I mGluR can be Group I mGluR antagonists. An mGluR antagonist is a substance which diminishes or abolishes the effect of a ligand (or agonist) that activates an mGluR, for example GluR5 antagonists and mGluR1 antagonists. Exemplary suitable antagonists of mGluR5 are described in WO 01/66113, WO 01/32632, WO 01/14390, WO 01/08705, WO 01/05963, WO 01/02367, WO 01/02342, WO 01/02340, WO 00/20001, WO 00/73283, WO 00/69816, WO 00/63166, WO 00/26199, WO 00/26198, EP-A-0807621, U.S. Pat. No. 5,672,592, U.S. Pat. No. 5,795,877, U.S. Pat. No. 5,863,536, U.S. Pat. No. 5,880,112 and U.S. Pat. No. 5,902,817, all of which are incorporated by reference in their entirety.
In an embodiment, the subject treated by the methods of the invention has autism. The subject who has autism can further have fragile X syndrome.
In another embodiment, the subject treated by the methods of the invention can have fragile X syndrome. Fragile X mental retardation protein is a protein encoded by the fragile X mental retardation gene 1 (FMR-1). Fragile X syndrome, the most common form of genetically inherited mental retardation, is associated with a fragile site expressed as an isochromatid gap in the metaphase chromosome at map position Xq 27.3. A mutation in the 5′-untranslated region of the FMR1 gene, located on the X chromosome, results in fragile X syndrome (FXS). FMRP is not produced in fragile X syndrome. Genetic testing is available to provide a definitive diagnosis of fragile X syndrome by detecting the mutation in the FMR1 gene and its protein product, FMRP. Genetic testing can be performed on infants, children, adolescents and adults. One of ordinary skill in the art would be able to determine whether a subject has fragile X syndrome by employing established clinical criteria and genetic testing.
In a further embodiment, the subject treated by the methods of the invention can have autism, also referred to herein as “autism spectrum disorder.”
Autism spectrum disorder is a developmental disorder that affects an individual's ability to communicate, form relationships with others and respond appropriately to the environment. Some individuals with autism spectrum disorder are high functioning, with speech and intelligence within normal range. Other individuals with autism spectrum disorder may be nonverbal and/or have varying degrees of mental retardation. Autism spectrum disorder can include Asperger's syndrome and idiopathic autism (e.g., autism of unknown origin). One of ordinary skill in the art would be able to diagnosis an individual with autism spectrum disorder and determine whether the individual has idiopathic autism or Asperger's syndrome, employing well-known clinical criteria as described, for example, in Diagnostic and Statistical Manual of Mental Disorders (DSMMD) (4th ed., pp. 70-71) Washington, D.C., American Psychiatric, 1994.
For example, autism can be diagnosed by assessing the qualitative impairment in social interaction, such as marked impairment in the use of multiple nonverbal behaviors, such as eye-to-eye gaze, facial expression, body postures, gestures to regulate social interaction, failure to develop peer relationships appropriate to developmental level and a lack of spontaneous seeking to share enjoyment, interests, or achievements with other people (e.g., by a lack of showing, bringing, or pointing out objects of interest). The development of spoken language (not accompanied by an attempt to compensate through alternative modes of communication such as gesture or mime), a marked impairment in the ability to initiate or sustain a conversation with others and repetitive use of language or idiosyncratic language. Delayed or abnormal functioning in social interaction, language as used in social communication or symbolic or imaginative play prior to 3 years of age.
In an additional embodiment, the subject that has fragile X syndrome who is treated by the methods of the invention can have autism.
The subject treated by the methods of the invention can be a human subject that is treated as a child, an adolescent and an adult.
In another embodiment, subjects treated by the methods of the invention can have at least one condition selected from the group consisting of Angelman syndrome, Costello syndrome, cardio facio cutaneous syndrome, neurofibromatosis type I, Noonan syndrome and Coffin-Lowry syndrome. One of ordinary skill in the art would be able to diagnosis whether a subject has Angelman syndrome, Costello syndrome, cardio facio cutaneous syndrome, neurofibromatosis type I, Noonan syndrome and Coffin-Lowry syndrome.
Angelman Syndrome is a developmental disorder caused by loss of function of the maternal copy of the UBE3A gene. Symptoms of the disorder include developmental delay, intellectual disability, autism, sleep disturbances, movement disorders, and epilepsy (Mabb, A. M. et al., Trends in Neuroscience, June 2011, volume 34(6), pp. 293-303, the teachings of which are incorporated by reference in their entirety).
Costello Syndrome is a rare disorder caused by mutations in HRAS which result in over-active Ras protein. Symptoms include developmental delay, intellectual disability, loose skin, flexible joints, heart defects, and short stature. Seizures are associated with this disorder (Kawame, H. M. et al., American Journal of Medical Genetics, 2003, volume 118A(1), pp. 8-14; Krab, L. C. et al., Trends in Genetics, 2008, volume 24(10), pp. 498-510; Delrue, M. A. et al, American Journal of Medical Genetics, 2003, volume 123A(3), pp. 301-305, the teachings of all of which are incorporated by reference in their entirety).
Cardio Facio Cutaneous syndrome (CFC) syndrome is a disorder caused by mutations in the BRAF, MAP2K1 or MAP2K2 genes. It is characterized by abnormalities in the heart, skin and facial features, and is associated with developmental delay, intellectual disability, and seizures (Krab, L. C. et al., Trends in Genetics, 2008, volume 24(10), pp. 498-510, the teachings of which are incorporated by reference in their entirety).
Neurofibromatosis Type 1 is a developmental disorder caused by mutations in the NF1 gene. It is characterized by tumors in multiple organ systems and skin discoloration. Learning disabilities and epilepsy are associated with this disorder (Krab, L. C. et al., Trends in Genetics, 2008, volume 24(10), pp. 498-510; Vivarelli, R. S. et al., Journal of Child Neurology, 2003, volume 18(5), pp. 338-342, the teachings of all of which are incorporated by reference in their entirety).
Noonan syndrome is a disorder caused by mutations in the PTPN11, SOS1, RAFT, KRAS, NRAS or BRAF genes. It is characterized by abnormalities in the heart, skeletal structure and circulatory system. Intellectual disability and seizures are associated with this disorder (Krab, L. C. et al., Trends in Genetics, 2008, volume 24(10), pp. 498-510; Adachi, M. et al., Seizure, 2011, epub ahead of print, the teachings of all of which are incorporated by reference in their entirety).
Coffin-Lowry syndrome is a disorder that is caused by mutations in the RPS6KA3 gene. It is characterized by disruptions in multiple organ systems, and is associated with intellectual disability, enhanced acoustic startle response, and seizures (Touraine, R. L. et al., European Journal of Pediatrics, 2002, volume 161(4), pp. 179-187; Krab, L. C. et al., Trends in Genetics, 2008, volume 24(10), pp. 498-510, the teachings of all of which are incorporated by reference in their entirety).
The subject treated by the methods of the invention can have at least one seizure disorder selected from the group consisting of an audiogenic seizure disorder and an epileptic seizure disorder. Seizures, including audiogenic seizures, can occur in individuals with at least one of fragile X syndrome, autism, Angelman syndrome, Costello syndrome, cardio facio cutaneous syndrome, neurofibromatosis type I, Noonan syndrome and Coffin-Lowry syndrome. One of ordinary skill in the art would be able to diagnosis whether a subject has a seizure.
The Ras inhibitor (e.g., farnesyl transferase inhibitor, 3-hydroxy-3-methylglutaryl-Coenzyme A reductase inhibitor) can administered to the subject in a single dose or in multiple doses (i.e., more than one dose). Multiple doses can include multiple daily doses. Multiple doses can be 2, 3, 4, 5, 6, 7, 8, 9, 10 or more doses, which can be administered daily.
The Ras inhibitor (e.g., farnesyl transferase inhibitor, 3-hydroxy-3-methylglutaryl-Coenzyme A reductase inhibitor) can administered to the subject daily, weekly, monthly, yearly or for the lifetime of the subject.
The Ras inhibitor (e.g., farnesyl transferase inhibitor, 3-hydroxy-3-methylglutaryl-Coenzyme A reductase inhibitor), MEK inhibitor, ERK inhibitor, or Group I mGluR antagonist can be administered to the subject in at least one dose selected from the group consisting of a 1 mg dose, 5 mg dose, a 10 mg dose, a 20 mg dose, a 25 mg dose, a 40 mg dose, a 50 mg dose, a 80 mg dose, a 100 mg dose, a 120 mg dose, a 125 mg dose, a 160 mg dose, a 200 mg dose, a 400 mg dose and a 600 mg dose. The dose of the compound administered to the subject can be based on the weight of the subject, for example, a dose such as about 5 mg/kg, about 10 mg/kg, about 20 mg/kg, about 30 mg/kg, about 40 mg/kg, about 50 mg/kg, about 80 mg/kg, about 100 mg/kg, about 150 mg/kg or about 200 mg/kg.
The methods of the invention can be accomplished by the administration of the compounds of the invention (e.g., Ras inhibitors, MEK inhibitor, ERK inhibitor) to a subject (e.g., a human subject) by enteral or parenteral means. The route of administration can be by oral ingestion (e.g., tablet, capsule form) or intramuscular injection of the compound. Other routes of administration can include intravenous, intraarterial, intraperitoneal, or subcutaneous routes, nasal administration, suppositories and transdermal patches. The compounds employed in the methods of the invention can be administered in suitable excipients, including pharmaceutically acceptable salts.
The Ras inhibitors employed in the methods of the invention can include farnesyl transferase inhibitors. Exemplary farnesyl transferase inhibitors can include at least one member selected from the group consisting of a 3-hydroxy-3-methylglutaryl-Coenzyme A reductase inhibitor (e.g., Formulas I-VII), a farnesyl pyrophosphate (FPP) analog (e.g., Formulas VIII-X), a CAAC peptidomimetic (e.g., Formulas XI-XXII), a bisustrate inhibitor (e.g., Formulas XXIII-XXVI) and a nonpeptidomimetic inhibitor (e.g., Formulas XXVII-XXXII). The compounds of Formulas I-XXXII and exemplary doses for use in the methods of the invention are as described below.
LOVASTATIN (Formula I) (1S,3R,7S,8S,8aR)-8-{2-[(2R,4R)-4-hydroxy-6-oxooxan-2-yl]ethyl}-3,7-dimethyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl-(2S)-2-methylbutanoate; CAS No.: 75330-75-5 (MERCK & CO., INC., Germany) can be administered in a dose range of about 10 to about 100 mg/day.
SIMVASTATIN (Formula II) (1S,3R,7S,8S,8aR)-8-{2-[(2R,4R)-4-hydroxy-6-oxooxan-2-yl]ethyl}-3,7-dimethyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl 2,2-dimethylbutanoate; CAS No.: 79902-63-9 (MERCK & CO., INC., Germany) can be administered in a dose range of about 5 to about 100 mg/day.
FLUVASTATIN (Formula III) (3R,5S,6E)-7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3,5-dihydropxyhept-6-enoic acid; CAS No.: 93957-54-1 (NOVARTIS) can be administered in a dose range of about 20 to about 100 mg/day.
PRAVASTATIN (Formula IV) (3R,5R)-3,5-dihydroxy-7-((1R,2S,6S,8R,8aR)-6-hydroxy-2-methyl-8-{[(2S)-2-methylbutanoyl]oxy}-1,2,6,7,8,8a-hexahydronaphthalen-1-yl)-heptanoic acid; CAS No.: 81093-37-0 (BRISTOL-MYERS SQUIBB) can be administered in a dose range of about 20 to about 150 mg/day.
ROSUVASTATIN (Formula V) (3R,5S,6E)-7-[4-(4-fluorophenyl)-2-(N-methylmethanesulfonamido)-6-(propan-2-yl)pyrimidin-5-yl]-3,5-dihydroxyhept-6-enoic acid; CAS No.: 287714-41-4 (ASTRAZENECA) can be administered in a dose range of about 5 to about 50 mg/day.
PITAVASTATIN (Formula VI) (3R,5S,6E)-7-[2-cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl]-3,5-dihydroxyhept-6-enoic acid; CAS No.: 147511-69-1 (ELI LILLY) can be administered in a dose range of about 1 to about 5 mg/day.
ATORVASTATIN (Formula VII) (3R,5R)-7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-propan-2-ylpyrrol-1-yl]-3,5-dihydroxyheptanoic acid; CAS No.: 134523-00-5 (PFIZER) can be administered in a dose range of about 10 to about 100 mg/day.
Alpha-hydroxyfarnesylphosphonic acid (Formula VIII)
J-104,871 (Formula IX) (4R*,5S*)-5-{N-[(1R,2R,4E)-5-(2-benzoxazolyl)-1-methyl-2-(3,4-methylenedioxyphenyl)-4-pentenyl]-N-(2-naphthylmethyl)carbamoyl}-1,3-dioxolane-2,2,4-tricarboxylicacid can be administered in a dose range of about 1 to about 50 mg/kg/day.
RPR-115135 (Formula X) (+/−)-11-[2-(2-methoxyphenyl)acryloyl]-1-phenyl-(1R,8R,9S,13S)-11-azatetracyclo[6.5.2.02,7.09,13]pentadeca-2,4,6-triene-9-carboxylic acid
BZA-5B (Formula XI) (Cys-(N-Me)-(BZA)-Met-COOMe); and BZA-2B (Cys-(N-Me)-(BZA)-Met-COOH)
L-731,734 (Formula XII) (2S,3 S)-2-(((2S,3 S)-2-(((R)-2-amino-3-mercaptopropyl)amino)-3-methylpentyl)amino)-3-methyl-N—((S)-2-oxotetrahydrofuran-3-yl)pentanamide
L-731,735 (Formula XIII) (S)-2-((2S,3S)-2-(((2S,3S)-2-(((R)-2-amino-3-mercaptopropyl)amino)-3-methylpentyl)amino)-3-methylpentanamido)-4-hydroxybutanoic acid
L-739,749 (Formula XIV) (S)-methyl 2-((S)-2-((2S,3S)-2-(((R)-2-amino-3-mercaptopropyl)amino)-3-methylpentyl)oxy)-3-phenylpropanamido)-4-(methylsulfonyl)butanoate; and L-739,750; (S)-2-((S)-2-(((2S,3S)-2-(((R)-2-amino-3-mercaptopropyl)amino)-3-methylpentyl)oxy)-3-phenylpropanamido)-4-(methylsulfonyl)butanoic acid
L-739,787 (Formula XV) (S)-2-(((2S,3S)-2-(((R)-2-amino-3-mercaptopropyl)amino)-3-methylpentyl)oxy)-N—((S)-1-hydroxy-4-(methylthio)butan-2-yl)-3-phenylpropanamide
L-744,832 (Formula XVI) (2S)-2-[[(2S)-2-[[(2S,3S)-2-[[(2R)-2-amino-3-mercaptopropyl]amino]-3-methylpentyl]oxy]-1-oxo-3-phenylpropyl]amino]-4-(methylsulfonyl)-butanoic acid 1-methylethyl ester
B581 (Formula XVII) (2S)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-amino-3-sulfanylpropyl]amino]-3-methylbutyl]amino]-3-phenylpropanoyl]amino]-4-methylsulfanylbutanoic acid
Cys-4-aminobenzoic-Met (Formula XVIII)
Cys-aminomethylbenzoic acid-Met (Formula XIX)
B956 and B1086
FTI-276 (Formula XXI) (S)-2-(5-(((R)-2-amino-3-mercaptopropyl)amino)-[1,1′-biphenyl]-2-ylcarboxamido)-4-(methylthio)butanoic acid
FTI-277 (Formula XXII) (S)-methyl 2-(5-(((R)-2-amino-3-mercaptopropyl)amino)-[1,1′-biphenyl]-2-ylcarboxamido)-4-(methylthio)butanoate
BMS-185878 (Formula XXIII)
BMS-184467 (Formula XXIV)
BMS (Formula XXV) 186511 [3-[[(2S)-1-[[(2S)-1-[[(2S)-1-methoxy-4-methylsulfanyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-oxopropyl]-[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trienyl]phosphinic acid
BMS-214662 (Formula XXVI) (3R)-3-benzyl-1-(1H-imidazol-5-ylmethyl)-4-thiophen-2-ylsulfonyl-3,5-dihydro-2H-1,4-benzodiazepine-7-carbonitrile can be administered in a dose range about 50 to about 200 mg/kg/week.
SCH54429 (Formula XXVII) 1-(8-chloro-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-yl)-4-(4-pyridinylacetyl)piperazine can be administered in a dose range of about 1 to about 50 mg/kg/day.
LONAFARNIB (Formula)(XVIII) (SCH66336) 4-(2-(4-(8-chloro-3,10-dibromo-6,11-dihydro-5H-benzo(5,6)cyclohepta(1,2-b)pyridin-11-yl)-1-piperidinyl)-2-oxoethyl)-1-piperidinecarboxamide can be administered in a dose range of about 25 to about 125 mg twice/day.
SCH 44342 (Formula XXIX) 1-(4-pyridylacetyl)-4-(8-chloro-5,6-dihydro-11Hbenzo[5,6] cyclohepta[1,2-b]pyridin-11-ylidene)piperidine can be administered in a dose range of about 1 to about 50 mg/kg/day.
SALIRASIB (Formula XXX) 2-[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trienyl]sulfanylbenzoic acid can be administered in a dose range about 1 to about 50 mg/kg/day.
ABT-100 (Formula XXXI) 4-[(2S)-2-(4-cyanophenyl)-2-hydroxy-2-(3-methylimidazol-4-yl)ethoxy]-3-[4-trifluoromethoxy)phenyl]benzonitrile can be administered in a dose range of about 1 to about 50 mg/kg/day.
TIPIFARNIB (Formula XXXII) (R115777) 6-[(R)-amino-(4-chlorophenyl)-(3-methylimidazol-4-yl)methyl]-4-(3-chlorophenyl)-1-methylquinolin-2-one can be administered in a dose range of about 50 to about 600 mg/day.
The prevalence of autism spectrum disorders (ASDs) has risen sharply over the past decade [1]. ASDs are developmental disorders characterized by deficits in social interaction, language, communication, and behavior [2]. Fragile X syndrome (FXS) is the leading single-gene cause of autism [3], and the most common form of heritable mental retardation in humans [4]. Characterized by cognitive deficits, developmental delay, and behavioral abnormalities, FXS is caused by the loss of FMRP, the product of the FMR1 gene [5, 6]. Evidence from both in vitro and in vivo studies suggests that FMRP is a repressor of translation [7-10].
Group 1 (Gp1) metabotropic glutamate receptors (mGluR1 and mGluR5) stimulate protein synthesis at synapses [11], and some lasting consequence of mGluR5 activation, such as long-term depression (LTD) of synaptic transmission in the CA1 region of hippocampus, are protein synthesis dependent [12-14]. Based on electrophysiological studies in Fmr1 KO mice, it has been suggested that FMRP represses the synthesis of proteins required for mGluR-LTD [15-17]. These and related data led to the “mGluR theory of FXS”, which proposes that mGluR5 and FMRP act in functional opposition, with mGluR5 driving translation and FMRP repressing this translation [18]. Excessive Gp1 mGluR-mediated protein synthesis in the absence of FMRP is posited to cause the synaptic pathophysiology that gives rise to multiple symptoms of the disease [19].
The activation of Ras is dependent on its interaction with the plasma membrane, which requires posttranslational farnesylation [27-29]. Farnesyl transferase inhibitors (FTIs) prevent the farnesylation of Ras, and thereby reduce its activity. HMG-CoA Reductase inhibitors, such as Formula I, have FTI activity. Formula I crosses the blood brain barrier, and can interfere with p21 Ras farnesylation in the brain [31, 32]. Formula I is well tolerated in humans, and is approved to treat hyperlipidemia in both adults and children [33].
Although some pharmacological interventions exist for the anxiety, epilepsy, and mood disorders associated with fragile X syndrome, there are currently few effective treatment strategies targeted at the core pathophysiological mechanisms underlying seizure disorders in fragile X syndrome and autism [34]. As described herein, an in vitro assay that models the core pathological phenotype of excessive protein synthesis in the Fmr1 KO mouse was employed.
Excessive Protein Synthesis
Materials and Methods
Dorsal hippocampal slices were prepared from juvenile (postnatal day 25-32) WT and Fmr1 KO mice using the same metabolic labeling procedure described in [35]. Briefly, 500 μm slices were recovered in carbogenating, 32.5° C. ACSF (in mM: NaCl: 124, KCl: 3, NaH2PO4: 1.25, NaHCO3: 26, dextrose: 10, MgCl2: 1, CaCl2: 2, saturated with 95% O2 and 5% CO2), pre-incubated in actinomycin D (ActD, 25 μM) for 30 min to prevent transcription, and protein synthesis measured over 30 minutes via incorporation of a 35S-labeled methionine/cysteine mix (35S-Met/Cys).
Group I mGluR activate several signal pathways. To determine whether a MEK1/2-ERK1/2 inhibitor could rescue excessive protein synthesis in the Fmr1 KO, hippocampal slices were incubated with ±5 μM U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene) (TOCRIS BIOSCIENCE, Ellisville, Mo.) for 30 minutes, and performed metabolic labeling (±5 μM U0126) for an additional 30 min.
Formula I (LOVASTATIN in lactone form; SIGMA) was evaluated to determine whether it can selectively reduce the excessive protein synthesis seen in the Fmr1 KO. Hippocampal slices were incubated with vehicle or 100 μM Formula I (in lactone form) for 30 minutes, then protein synthesis measured ±100 μM Formula I for an additional 30 minutes.
Results
The data described herein show a significant elevation of basal protein synthesis in juvenile Fmr1 KO hippocampal slices as compared to wild type (WT) controls (WT 100±2%, KO 111±4%; n=12; *p=0.0267) (
After 5 minutes of treatment with 50 μM MPEP, an mGluR5 antagonist, protein synthesis in Fmr1 KO hippocampal slices were reduced to WT levels (WT 100±1%, KO 117±2%, WT MPEP 104±2%, KO MPEP 95±2%; n=8; ANOVA genotype x treatment p<0.05; t-test *p=0.0248) (
U0126 significantly reduces protein synthesis in Fmr1 KO, but not WT slices (WT: vehicle 100±6%, U0126 94±6%; KO: vehicle 115±4%, U0126 91±6%; n=9; ANOVA treatment p<0.0009, genotype x treatment p<0.03; t-test: KO *p=0.0051, WT p=0.153) (
These data show that Formula I, a Ras inhibitor, results in a significant reduction in ERK1/2 activation (WT: vehicle 100±5%, Formula 187±6%; KO: vehicle 94±5%, Formula 181±6%; n=13; ANOVA genotype p=0.3900, treatment p=0.0037, genotype x treatment p=0.9266; t-test: WT *p=0.0456, KO *p=0.0382), normalizes protein synthesis in the Fmr1 KO down to WT levels (WT: vehicle 100±3%, Formula 1100±3%; KO: vehicle 116±4%, Formula I (LOVASTN)104±2%; n=14; ANOVA genotype p=0.0121, treatment p=0.0660, genotype x treatment p=0.0332; t-test: KO *p=0.0129, WT p=0.815; n=14) (
Formula I corrects Audiogenic Seizures in the Fmr1 KO
The ability of SL 327 (alpha-[amino[(4-aminophenyl)thio]methylene]-2-(trifluoromethyl)benzeneacetonitrile) (TOCRIS BIOSCIENCE, Ellisville, Mo.), a brain-penetrant MEK1/2-ERK1/2 inhibitor, to correct AGS in the Fmr1 KO mouse. The structural formula of SL 327 is depicted as follows:
Materials and Methods
Fmr1 KO and WT mice were injected intraperitoneally (i.p.) with 100 mg/kg SL 327 or vehicle (50% DMSO in ddH2O). One hour later, mice were exposed to a seizure-inducing stimulus for 2 minutes, and scored for four stages of AGS: wild running (WR; pronounced, undirected running and thrashing), clonic seizure (violent spasms accompanied by loss of balance), tonic seizure (postural rigidity in limbs), and death [35, 37, 39]. All animals were injected and scored blind to genotype.
Results
Vehicle-treated Fmr1 KO mice exhibited a 73% incidence of AGS, which was significantly elevated over the 4% incidence observed in vehicle-treated WT mice (Table 3). SL 327 Treatment with SL327 completely eliminated AGS in the Fmr1 KO, dropping the incidence to 0% (Table 3).
To test whether Formula I could also correct AGS in the Fmr1 KO, experiments were repeated using 30 mg/kg Formula I. Treatment with Formula I also corrects AGS in the Fmr1 KO, lowering the incidence to 21% (Table 3). (Fisher's exact test (two-tail): WR: WT control vs. KO control ***p=0.0007, KO control vs. KO SL 327 *p=0.0101, KO control vs. KO Formula I *p=0.0183, KO control vs. WT SL 327 *p=0.0104, KO control vs. WT Formula I **p=0.0076; Clonic WT control vs. KO control *p=0.0106, KO control vs. KO SL 327 *p=0.0462, KO control vs. KO Formula I *p=0.0269, KO control vs. WT SL 327 *p=0.0448, KO control vs. WT Formula I *p=0.0183; Tonic WT control vs. KO control *p=0.0195, KO control vs. KO SL 327 *p=0.0478, KO control vs. KO Formula I *p=0.0125).
A significant challenge in the treatment of developmental seizure disorders, particularly in individuals with autism and fragile X syndrome, is finding a pharmaceutical agent that is safe for use in children. The data described herein show that treatment with the Ras inhibitor of Formula I after in vivo administration can decrease and prevent audiogenic seizures, which is a pathological condition observed in fragile X syndrome and autism.
Epilepsy is one of the most debilitating symptoms associated with autism spectrum disorders (ASD). The onset of epilepsy (epileptogenesis) within the first few years of life is correlated with increased risk of developing ASD[1]. Despite this, there remains little understanding of the mechanisms linking epilepsy to autism, and no targeted treatments for preventing epileptogenesis[2]. The most prevalent single-gene cause of autism is fragile X syndrome (FXS), a developmental disorder associated with intellectual disability and a high incidence of epilepsy[3]. The pathogenesis of FXS has been linked to excessive cerebral protein synthesis, which is downstream of constitutive activation of group I metabotropic glutamate receptor 5 (mGluR5)[4]. As described herein, Formula I (LOVASTATIN), a drug with an excellent safety profile that is prescribed and approved to treat hypercholesterolemia in children[9], decreases ERK1/2 signaling, normalizes excessive protein synthesis, and corrects AGS in the Fmr1 KO. LOVASTATIN, a Ras inhibitor, may be useful in the methods described herein as a treatment to block epileptogenesis in subjects, including humans with autism and humans with autism and fragile X syndrome.
Both autism and epilepsy are increasingly prevalent conditions, each affecting an estimated 1 in 100 individuals[10, 11]. About 30% of the ASD population has epilepsy. Studies have found that the manifestation of seizures within the first 3 years of life correlate with an increased incidence of ASD in at-risk children[2]. Childhood epileptogenesis may contribute to the progression of autism, underscoring the need for an effective prophylaxis for epilepsy that is safe for use during development. The genetic heterogeneity of autism, and of epilepsy, has made it difficult understand the molecular mechanisms linking the two disorders. To mitigate this complexity, a mouse model of FXS, a single-gene developmental disorder associated with about 30% incidence of both autism and epilepsy[13, 14] was employed in these studies. The Fmr1 KO is a suitable model because it involves the loss of a single gene of known function, and thus the genetic contribution to the pathophysiology can be attributed to loss of FMRP function. In addition, robust epilepsy phenotypes occur both in vitro, as measured by ictal discharges in hippocampal slices, and in vivo, as measured by increased susceptibility to AGS[14, 15] in the fragile X knock out mouse.
The FMR1 gene encodes for the translational repressor Fragile X Mental Retardation Protein (FMRP). Several pathological changes observed in FXS may stem from an elevation of basal protein synthesis in the nervous system due to a loss of FMRP. mGluR5-ERK1/2 pathway may be a contributor to the pathogenesis of FXS[16] Inhibition of mGluR5 or ERK1/2, as described herein, corrects the AGS phenotype observed in the Fmr1 KO mouseERK1/2 is a member of the larger MAP kinase (MAPK) signaling pathway, headed by the small GTPase Ras[17]. The HMG-CoA reductase inhibitor of Formula I has been shown to reduce ERK1/2 signaling in neurons in vitro and in vivo by limiting Ras activation. The maturation of Ras to its active conformation requires the addition of a farnesyl group, which facilitates interaction with the plasma membrane, and Formula I negatively regulates this process[20, 21]. Unlike many proposed therapies to treat seizure disorders, Formula I has an advantage because it has been approved by the Food and Drug Administration (FDA) to treat humans, including treatment of hypercholesterolemia in children [9, 22]. Formula I has an excellent safety profile, and is widely prescribed for long-term treatment in both adults and children.
Materials and Methods
Mice: Fmr1 KO (Jackson Labs) and WT littermates, bred on the C57BL6 or FVB background strains, were group housed and maintained in a 12:12 h light:dark cycle. An In vitro hippocampal slice assay was used herein to recapitulate the exaggerated protein synthesis phenotype seen in the Fmr1 KO[6]. Hippocampal slices were prepared from juvenile Fmr1 KO and wild type (WT) mice, pre-incubated in 10-50 μM Formula I or vehicle for 30 minutes, and protein synthesis measured for another 30 min via incorporation of a 35S-labeled methionine/cysteine mix.
Drugs: Formula I acid (EMD Biosciences), Formula I lactone (SIGMA), and actinomycin D (TOCRIS) were reconstituted according to manufacturer's instructions.
Metabolic labeling: Experiments were performed on male WT and Fmr1 KO mice (postnatal day 25-32), blind to genotype, as described herein. Briefly, 500 μm slices were recovered for 4 h in 32.5° C. ACSF (in mM: 124 NaCl, 3 KCl, 1.25 NaH2PO4, 26 NaHCO3, 10 dextrose, 1 MgCl2, 2 CaCl2, saturated with 95% O2 and 5% CO2), incubated for 30 min with 25 μM ActD±Formula I (10 μM or 50 μM), and transferred to fresh ACSF±drug with 10 μCi/ml 35S-Met/Cys (Perkin Elmer) for another 30 min. After labeling, slices were homogenized, and labeled proteins isolated by TCA precipitation. Samples were read with a scintillation counter and also subjected to a protein concentration assay (BIO-RAD). Final data were expressed as counts per minute (CPM) per μg protein, normalized to the 35S-Met/Cys ACSF used for incubation, and the average incorporation of all samples analyzed in that experiment.
Immunoblotting: Immunoblotting was performed, blind to genotype and treatment as described herein using primary antibodies to Ras (PIERCE), p-ERK1/2 (Thr202/Tyr204), or ERK1/2 (CELL SIGNALING TECHNOLOGY), and HRP-conjugated secondary antibodies (GE HEALTHCARE).
Ras activation assay: Slices (4-6 per animal) were prepared exactly as for metabolic labeling, and Ras-GTP isolated using the Active Ras Pull-Down and Detection kit (PIERCE) according to manufacturer's instructions.
AGS: Experiments were performed using male WT and Fmr1 KO littermates (P17-25) as described herein. For acute exposure experiments, mice were weighed and injected i.p. with: (A) 30 mg/kg Formula I acid or vehicle (10% DMSO in saline), (B) 100 mg/kg Formula I acid or vehicle (33% DMSO in saline), or (C) 30 mg/kg Formula I lactone or vehicle (50% DMSO in saline), returned to their home cages for 1 h. For oral administration experiments, mice were weaned onto standard rodent chow (BIO-SERV) formulated with 100 mg/kg IC Formula I (40 mg tablets, MYLAN INC.) or identical chow containing no Formula I, and allowed to feed ad libitum for 48 hours. Drug doses were chosen on based upon previous work [19, 23, 24]. Immediately prior to testing, mice were transferred to a quiet (about <60 dB ambient sound) room for 1 hour. Mice were then transferred to a transparent plastic test chamber and, after 1 minute of habituation, exposed to a 130 dB stimulus (recorded sampling of a modified personal alarm, RADIOSHACK model 49-1010) for about 2 minutes. Each testing session contained mice from both genotype and treatment groups. For each group, incidence of the following stages of AGS was calculated: wild running (WR; pronounced, undirected running and thRashing), clonic seizure (violent spasms accompanied by loss of balance), tonic seizure (postural rigidity in limbs), and death. All aspects of the experiments were performed blind to genotype.
Statistics: For biochemistry experiments, outliers greater than 2 standard deviations from the mean were removed, and significance was determined by two-way repeated measures mixed model ANOVA. If significant effects were found by ANOVA, post hoc analyses were performed to compare individual groups using two-tailed paired or unpaired (for Ras activation assays) Student's t-tests. For AGS experiments, significance was determined by two-tailed Fisher's exact test (for overall incidence) or Kolmogorov-Smirnov test (for severity score distribution).
As described herein, 50 μM Formula I normalizes protein synthesis in the Fmr1 KO down to WT levels (WT: veh 100±5%, 10 μM 103±4%; 50 μM 88±5%; KO: veh 119±6%, 10 μM 115±7%; 50 μM 91±4%; n=11; ANOVA genotype *p=0.0121, treatment p=0.0660, genotype x treatment *p=0.0332; post hoc t-test: WT vs. KO veh *p=0.019, KO veh vs. 50 μM *p=0.011) (
To examine whether Formula I application significantly inhibits Ras-ERK1/2 activation, the amount of active Ras in Formula I-treated slices was measured. Hippocampal slices were prepared from WT and Fmr1 KO, then incubated with 10-50 μM Formula I or vehicle as described above. Active (GTP-bound) Ras was isolated from homogenized slices using a GST-pull down assay, and compared to total Ras. These data show that 50 μM Formula I significantly reduces the amount of active Ras in both WT and Fmr1 KO hippocampal slices (WT: veh 100±11%, 10 μM 87±14%; 50 μM 61±12%; KO: veh 96±8%, 10 μM 89±8%; 50 μM 61±9%; ANOVA genotype x treatment *p=0.0462; n=8; post hoc t-test: WT veh vs. 50 μM *p=0.039, KO veh vs. 50 μM *p=0.015) (
To determine whether the observed downregulation of active Ras was accompanied by a concomitant decrease in ERK1/2 signaling, ERK1/2 phosphorylation in hippocampal slices exposed to 10-50 μM Formula I or vehicle for 1 hour was determined. Results from Western blot analysis reveal that 50 μM Formula I significantly reduces ERK1/2 activation in both WT and Fmr1 KO slices (WT: veh 100±7%, 10 μM 94±8%; 50 μM 84±5%; KO: veh 97±5%, 10 μM 90±6%; 50 μM 78±5%; ANOVA genotype p=0.3900, treatment *p=0.0037, genotype x treatment p=0.9266; n=13; post hoc t-test: WT veh vs. 50 μM *p=0.035, KO veh vs. 50 μM *p=0.008) (
The in vitro studies indicated that Formula I is effective in correcting the pathological excess in protein synthesis seen in the Fmr1 KO. To determine whether a reduction of epileptogenesis could be observed in vivo, AGS susceptibility in Fmr1 KO mice acutely injected with Formula I was determined. Enhanced susceptibility to AGS is one of the most robust phenotypes observed in the Fmr1 KO mouse, and is used to model the epilepsy observed in FXS patients [14, 15].
Fmr1 KO and WT mice were injected intraperitoneally (i.p.) with 30 mg/kg Formula I and, after one hour, exposed to a 130 dB seizure-inducing stimulus for 2 minutes (see Materials and Methods). For each mouse, four stages of increasing AGS severity were scored: wild running, clonic seizure, tonic seizure, or death[16]. Vehicle-treated Fmr1 KO mice exhibited about 74% incidence of AGS, and no seizures were observed in vehicle-treated WT mice (Fisher's exact test (FET): WT vs. KO *p=0.0002;
The Fmr1 KO AGS phenotype is seen in multiple mouse strains[15]. The beneficial effects of Formula I on AGS susceptibility in different strains of mice, C57BL6 mice and Fmr1 KO mice bred on the FVB background strain was determined. About 85% incidence of AGS in vehicle treated Fmr1 KO FVB mice[15] was observed, which was significantly higher than the 11% incidence observed in vehicle treated WT mice (FET: *p=0.002). Interestingly, Fmr1 KO FVB mice injected with 30 mg/kg Formula I exhibit about 64% incidence of AGS incidence, which is not significantly different from the vehicle treated group (FET: p=0.357;
In patients, Formula I is administered in its lactone form, which is metabolized into an active conformation (Formula I acid) in the body[9]. While our in vitro studies required the use of Formula I acid, confirmation that the in vivo administration of Formula I lactone could reduce AGS incidence and severity in the Fmr1 KO was made in AGS experiments using 30 mg/kg Formula I lactone. Formula I lactone significantly reduces AGS incidence from about 73% to about 20% (FET: *p=0.009; n=15;
To further investigate the viability of Formula I as a treatment in humans, Formula I was orally administrated to correct AGS incidence and severity in the Fmr1 KO. WT and Fmr1 KO mice were fed standard rodent chow supplemented with about 0.1% Formula I, which corresponds to a dose of about 10 mg/kg/day[24]. After a 48 hour exposure to either Formula I chow or control chow with the same formulation, mice were tested for AGS. Oral administration of Formula I significantly reduces AGS incidence (FET: KO con 71%, KO lov 25%, *p=0.003; n=21-24;
Preventing epileptogenesis in ASD patients could have a dramatic impact on the progression and severity of humans with epilepsy, including humans with autism and humans with fragile X syndrome who are autistic. Given the increasing prevalence of ASD, identifying an effective strategy for preventing epileptogenesis is of particular urgency. Ras inhibitors, such as Formulas I-XXXII may correct excessive protein synthesis and significantly reduces the incidence and severity of AGS in the Fmr1 KO. Ras inhibitors may be useful to treat seizures in FXS and other autism-linked developmental disorders.
The teachings of all patents, published applications and references cited herein are incorporated by reference in their entirety.
While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application is a continuation of International Application No. PCT/US2011/057099, which designated the United States and was filed on Oct. 20, 2011, published in English, claims the benefit of U.S. Provisional Application No. 61/405,446, filed on Oct. 21, 2010. The entire teachings of the above applications are incorporated herein by reference.
This invention was made with government support under HD046943 and R21MH090452 awarded by the National Institutes of Health. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61405446 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2011/057099 | Oct 2011 | US |
Child | 13862123 | US |