Methods of treatment using a bariatric sleeve

Information

  • Patent Grant
  • 9278020
  • Patent Number
    9,278,020
  • Date Filed
    Thursday, October 16, 2014
    10 years ago
  • Date Issued
    Tuesday, March 8, 2016
    8 years ago
Abstract
Method and apparatus for limiting absorption of food products in specific parts of the digestive system is presented. A gastrointestinal implant device is anchored in the stomach and extends beyond the ligament of Treitz. All food exiting the stomach is funneled through the device. The gastrointestinal device includes an anchor for anchoring the device to the stomach and a flexible sleeve to limit absorption of nutrients in the duodenum. The anchor is collapsible for endoscopic delivery and removal.
Description
BACKGROUND OF THE INVENTION

According to the Center for Disease Control (CDC), over sixty percent of the United States population is overweight, and almost twenty percent are obese. This translates into 38.8 million adults in the United States with a Body Mass Index (BMI) of 30 or above. The BMI is defined as a person's weight (in kilograms) divided by height (in meters), squared. To be considered clinically, morbidly obese, one must meet one of three criteria: BMI over 35, 100 lbs. overweight or 100% above ideal body weight. There is also a category for the super-obese for those weighing over 350 lbs.


Obesity is an overwhelming health problem. Because of the enormous strain associated with carrying this excess weight, organs are affected, as are the nervous and circulatory systems. In 2000, the National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK) estimated that there were 280,000 deaths directly related to obesity. The NIDDK further estimated that the direct cost of healthcare in the US associated with obesity is $51 billion. In addition, Americans spend $33 billion per year on weight loss products. In spite of this economic cost and consumer commitment, the prevalence of obesity continues to rise at alarming rates. From 1991 to 2000, obesity in the US grew by 61%. Not exclusively a US problem, worldwide obesity ranges are also increasing dramatically.


One of the principle costs to the healthcare system stems from the co-morbidities associated with obesity. Type-2 diabetes has climbed to 7.3% of the population. Of those persons with Type-2 diabetes, almost half are clinically obese, and two thirds are approaching obese. Other co-morbidities include hypertension, coronary artery disease, hypercholesteremia, sleep apnea and pulmonary hypertension.


Although the physiology and psychology of obesity are complex, the medical consensus is that the cause is quite simple—an over intake of calories combined with a reduction in energy expenditures seen in modern society. While the treatment seems quite intuitive, the institution of a cure is a complex issue that has so far vexed the best efforts of medical science. Dieting is not an adequate long-term solution for most people. Once an individual has slipped past the BMI of 30, significant changes in lifestyle are the only solution.


There have been many attempts in the past to surgically modify patients' anatomies to attack the consumption problem by reducing the desire to eat. Stomach saplings, or gastroplasties, to reduce the volumetric size of the stomach, therein achieving faster satiety, were performed in the 1980's and early 1990's. Although able to achieve early weight loss, sustained reduction was not obtained. The reasons are not all known, but are believed related to several factors. One of which is that the stomach stretches over time increasing volume while psychological drivers motivate patients to find creative approaches to literally eat around the smaller pouch.


There are currently two surgical procedures that successfully produce long-term weight loss; the Roux-en-Y gastric bypass and the biliopancreatic diversion with duodenal switch (BPD). Both procedures reduce the size of the stomach plus shorten the effective-length of intestine available for nutrient absorption. Reduction of the stomach size reduces stomach capacity and the ability of the patient to take in food. Bypassing the duodenum makes it more difficult to digest fats, high sugar and carbohydrate rich foods. One objective of the surgery is to provide feedback to the patient by producing a dumping syndrome if they do eat these food products. Dumping occurs when carbohydrates directly enter the jejunum without being first conditioned in the duodenum. The result is that a large quantity of fluid is discharged into the food from the intestinal lining. The total effect makes the patient feel light-headed and results in severe diarrhea. For reasons that have not been determined the procedure also has an immediate therapeutic effect on diabetes.


Although the physiology seems simple, the exact mechanism of action in these procedures is not understood. Current theory is that negative feedback is provided from both regurgitation into the esophagus and dumping when large volumes of the wrong foods are eaten. Eventually, patients learn that to avoid both these issues they must be compliant with the dietary restrictions imposed by their modified anatomy. In the BPD procedure, large lengths of jejunum are bypassed resulting in malabsorption and therefore, reduced caloric uptake. In fact, the stomach is not reduced in size as much in the BPD procedure so that the patient is able to consume sufficient quantities of food to compensate for the reduced absorption. This procedure is reserved for the most morbidly obese as there are several serious side effects of prolonged malabsorption.


Unfortunately, these procedures carry a heavy toll. The morbidity rate for surgical procedures is alarmingly high with 11% requiring surgical intervention for correction. Early small bowel obstruction occurs at a rate of between 2-6% in these surgeries and mortality rates are reported to be approximately 0.5-1.5%. While surgery seems to be an effective answer, the current invasive procedures are not acceptable with these complication rates. Laparoscopic techniques applied to these surgeries provide fewer surgical complications but continue to expose these very ill patients to high operative risk in addition to requiring an enormous level of skill by the surgeon. Devices to reduce absorption in the small intestines have been proposed (See U.S. Pat. No. 5,820,584 (Crabb), U.S. Pat. No. 5,306,300 (Berry) and U.S. Pat. No. 4,315,509 (Smit)). However, these devices have not been successfully implemented.


SUMMARY OF THE INVENTION

A method of treatment includes the steps of anchoring a gastrointestinal implant device including a sleeve extended within the intestine to limit the absorption of nutrients. For example, the implant includes a flexible sleeve open at both ends, and adapted to extend into the duodenum to limit absorption of nutrients in the duodenum. In this manner the sleeve can allow enzymes secreted in the duodenum to pass through the duodenum outside the sleeve. The method of treatment can also include a method treating type 2 diabetes.


The gastrointestinal implant device generally includes a flexible sleeve and a sleeve anchor. The gastrointestinal implant device can be inserted endoscopically in combination with a delivery catheter and can be removed endoscopically in combination with a removal device. The sleeve anchor can be a stent including a network of struts, coupled to a proximal portion of the sleeve. The sleeve anchor is adapted to be retained within the digestive system. For example, the device may be anchored distal to the pylorus, leaving the pylorus to function normally, or a stent may be retained within the pyloric orifice to hold the pylorus open. The sleeve anchor can be collapsible allowing the implant device to be removed. A stent may be covered by a proximal portion of the sleeve and sandwiched between a first inner layer and a second outer layer of the sleeve.


The sleeve may be of a length that chyme exiting the stomach funneled through the proximal end of the sleeve exits the sleeve through the distal end below the ligament of Treitz. The sleeve material may have a coefficient of friction of less than 0.2. The sleeve may be formed of low friction materials such as expanded polytetrafluoroethylene, a fluoropolymer, or low density polyethylene film and may be coated or impregnated with polyurethane or silicone to reduce permeability. The distal end of the sleeve may be directionally textured. The sleeve may also include an anti-buckling device coupled to the sleeve to reduce twisting and buckling of the sleeve.


The device may be anchored using barbs, sutures, and/or other anchor devices. For example, barbs extend from the exterior surface of the stent for anchoring the proximal portion of the sleeve to muscle. The barbs may be bidirectional. The barbs anchor the flexible sleeve to the pyloric muscle in the stomach.


The sleeve implant may be delivered into the intestine with a distal end of the sleeve everted into a proximal end thereof. Fluid pressure may be applied to the everted sleeve to push the sleeve distally to extend into the intestine. The proximal end of the sleeve is anchored in the gastrointestinal tract, such as in the stomach or distal to the pylorus.


In a particular method, a balloon catheter is introduced into a proximal opening of the implant, the balloon catheter comprising a catheter shaft and a balloon. At least a portion of the distal end of the flexible sleeve is folded inside the flexible sleeve. The balloon is inflated to seal the proximal opening of the gastrointestinal implant and fluid is injected through the catheter shaft into a lumen of the flexible sleeve. The fluid pushes the distal end of the flexible sleeve distally until the sleeve is fully deployed distal within the intestinal tract. A band may close the distal end of the flexible sleeve while it is folded and the fluid may be injected through the catheter shaft until the band falls off and passes through the intestine.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.



FIG. 1 is a sectional view of a portion of the digestive tract in a body;



FIG. 2 is a perspective view of a gastrointestinal implant device according to the principles of the present invention;



FIG. 3A is a plan view of the proximal portion of the gastrointestinal implant device shown in FIG. 2;



FIG. 3B is a cross-sectional view as taken along line A-A of FIG. 3A showing the stent and first inner layer and second outer layer of the sleeve shown in FIG. 2;



FIG. 4 is a perspective view of the gastrointestinal implant device with the second outer layer of the sleeve removed;



FIG. 5A is a sectional view of a body showing one embodiment of the gastrointestinal implant device implanted in the digestive system;



FIG. 5B is a sectional view of a body showing an alternative embodiment of the gastrointestinal implant device implanted in the digestive system;



FIG. 6 is a perspective view of a collapsible self-expanding stent in the gastrointestinal implant device;



FIG. 7 is a perspective view of the stent shown in FIG. 6 when compressed;



FIG. 8 is a perspective view of another embodiment of a stent when compressed;



FIG. 9 is a perspective view of the stent shown in FIG. 8 with the strut ends bent to provide opposed barbs;



FIG. 10 is a perspective view of the stent shown in FIG. 8 when expanded;



FIG. 11 illustrates the gastrointestinal device shown in FIG. 1 including an anti-buckling mechanism;



FIG. 12 is a perspective view of a catheter system for delivery of the gastrointestinal implant device;



FIG. 13 is a cross-sectional view of the inner shaft taken along line E-E of FIG. 12;



FIG. 14A is an expanded perspective view of the dead-bolt mechanism shown in FIG. 12;



FIG. 14B is a sectional view of the dead-bolt mechanism shown in FIG. 13A illustrating the sleeve retention wire threaded through the sleeve;



FIG. 15 is sectional view of a portion of the catheter system illustrating the collapsed stent stored inside the outer sheath;



FIG. 16A is a plan view of the catheter system illustrating the collapsed stent stored inside the outer sheath of the gastrointestinal implant device;



FIG. 16B is a plan view of the catheter system illustrating the gastrointestinal implant device after release of the stent from the outer sheath;



FIG. 16C is a plan view of the catheter system illustrating the expanded gastrointestinal implant device after the sleeve retention wire has been released;



FIG. 17 is a perspective view of another embodiment of the catheter system shown in FIG. 12;



FIG. 18 is a sectional view of an everting catheter system for delivery of a longer length sleeve;



FIG. 19 is a perspective view of a retrieval device for removing the gastrointestinal implant device from the digestive tract;



FIG. 20 is a perspective view of the removal device engaged with the stent;



FIG. 21 is a perspective view of another embodiment of a gastrointestinal implant device;



FIG. 22 is a perspective view of the anchoring ring shown in FIG. 21;



FIG. 23 is a perspective view of the anchoring ring shown in FIG. 21 in a collapsed position for insertion and removal;



FIG. 24 is a perspective view of an anchor for anchoring the collapsible ring shown in FIG. 23 to the muscular tissue of the pyloric section of the stomach;



FIG. 25A is a perspective view of a delivery system for delivering the anchor after the gastrointestinal implant device has been placed in the stomach;



FIG. 25B is a plan view of the delivery system shown in FIG. 25A;



FIG. 25C is a cross-sectional view of the distal end of the catheter as taken along line B-B of FIG. 25A;



FIG. 25D is a perspective view of the gastrointestinal implant device illustrating the anchor engaged with the tissue;



FIG. 25E is a perspective view illustrating the barb engaging the tissue after delivery;



FIG. 26A is a plan view of the delivery system including a snare wire for holding the distal end of the sleeve in position;



FIG. 26B is a cross-sectional view taken along line CC of FIG. 26A through the inner sheath;



FIG. 26C is a cross-sectional view taken along line DD of FIG. 26A through the outer sheath showing the inner sheath within the outer sheath;



FIG. 26D is a cross-sectional view through the distal portion of the catheter showing the snare capturing the distal end of the sleeve;



FIG. 26E is a sectional view through the distal portion of the catheter showing the snare locking mechanism; and



FIG. 27 is a perspective view of the distal portion of the gastrointestinal implant device including texturing at the distal end.





DETAILED DESCRIPTION OF THE INVENTION

A description of preferred embodiments of the invention follows.



FIG. 1 is a sectional view of a portion of the digestive tract in a body. Food to be digested enters the stomach 102 through the cardiac orifice 110 from the esophagus. Chyme, a semi-fluid, homogeneous creamy or gruel-like material produced by gastric digestion in the stomach exits the stomach through the pyloric orifice (pylorus) 108 and enters the small intestine 112. The pylorus 108 is a distal aperture of the stomach 102 surrounded by a strong band of circular muscle. The small intestine, about nine feet in length, is a convoluted tube, extending from the pylorus to the ileo-caecal valve where it terminates in the large intestine. The small intestine has three sections, the duodenum 104, jejunum 106 and the ileum (not shown). The first eight to ten inch section of the small intestine, the duodenum, is the shortest, widest and most fixed part of the small intestine.


The duodenum has four sections: superior, descending, transverse and ascending which typically form a U-shape. The superior section is about two inches long and ends at the neck of the gall bladder. The descending section is about three to four inches long and includes a nipple shaped structure (papilla of vater) 114 through which pancreatic juice from the pancreas and bile produced by the liver and stored by the gall bladder enter the duodenum from the pancreatic duct. The pancreatic juice contains enzymes essential to protein digestion and bile dissolves the products of fat digestion. The ascending section is about two inches long and forms the duodenal-jejunal flexure 116 where it joins the jejunum 106, the next section of the small intestine. The duodenal-jejunal flexure 116 is fixed to the ligament of Treitz 118 (musculus supensionus duodeni). The juices secreted in the duodenum break the partially digested food down into particles small enough to be absorbed by the body. The digestive system is described in Gray's Anatomy (“Anatomy of the Human Body”, by Henry Gray) and “Human Physiology”, Vander, 3rd ed, McGraw Hill, 1980, the contents of which are incorporated herein by reference in their entirety.



FIG. 2 is a perspective view of a gastrointestinal implant device 200 according to the principles of the present invention. The gastrointestinal implant device 200 includes an elongated open-ended flexible sleeve or tube 202 having a first proximal opening 204 and a second distal opening 206. Within the sleeve 202 is a passageway that extends from the first proximal opening 204 to the second distal opening 206 for transporting the chyme exiting the stomach 102 (FIG. 1). The surface of the passageway (the interior surface of the implant device 200) is smooth to enable the chyme to easily pass through. The exterior surface of the implant device 200 is smooth to prevent tissue in-growth and to be non-irritating to the bowel.


Within the implant device 200 at the proximal end including the first proximal opening 204 is a collapsible self-expanding stent 208. The stent 208 includes a plurality of opposed barbs 210 for anchoring the implant device 200 to the muscular pylorus in the stomach 102. The diameter of the stent 208 is dependent on the diameter of the pyloric orifice 108 (FIG. 1) about 0.8″ to 1.1″ based on human anatomy variations. In one embodiment, the length l of the stent 208 is selected to extend through the pylorus 108 and keep the pylorus 108 permanently open to induce “dumping syndrome.” In an alternate embodiment, a stent with a shorter length l allows the pylorus 108 to open and close normally.


The sleeve material is thin and conformable so that it collapses in the intestine to a small volume to minimize bowel irritability. It has a low coefficient of friction (<0.20) so that chyme slides easily through it and the bowel slides easily around it. It is of low permeability to fluids so that the chyme does not touch the bowel wall and the digestive enzymes do not significantly breakdown the chyme. It is biologically inert and non-irritating to the tissues. One such material is expanded polytetrafluoroethylene (ePTFE), a fluoropolymer, with a wall thickness of about 0.006″ and an internodal distance of 20 microns. This material is hydrophobic but is slightly porous. However, these very small pores may plug over time. The porosity may be reduced by coating the material on the inside, outside or in the pores with dilute solutions of silicone or polyurethane. Another material is polyethylene with a wall thickness of less than 0.001″. Rubber-like materials typically have friction coefficients of 1-4, significantly stickier than these materials. However, in alternate embodiments other materials having similar characteristics can be used.


The sleeve 202 includes two layers of material at least at the proximal end. A first outer layer covers the exterior of the stent. The second inner layer covers the interior surface of the stent 208. The barbs 210 protrude from the exterior surface of the stent 208 through the first outer layer of the sleeve 208. The holes in the first outer layer through which the barbs 210 protrude are filled with an impervious material such as silicone or urethane to limit mixing of digestive juices with the chyme flowing through the passageway. The diameter of the sleeve 208 is selected such that the first outer layer of the sleeve 208 fits over the stent 208.


The sleeve length 212 ranges from about one foot to about five feet. The typical length of the sleeve 208 is about 1.5 feet from the anchor (barbs 210) in the pyloric region of the stomach to below the ligament of Treitz 118 (FIG. 1). The length 212 of the sleeve 202 is selected to bypass the duodenum 104 (FIG. 1) and a portion of the jejunum. The length is increased to further decrease absorption by bypassing a longer section of the jejunum 106 (FIG. 1). The length 212 of the sleeve 202 is variable and dependent on the patient's Body Mass Index (BMI). The procedure is a less invasive alternative to surgery for the treatment of obesity and morbid obesity and also provides a new treatment approach for type 2 diabetes.


The covered stent 208 can be collapsed into a sheath having a diameter less than ¼ inch to enable endoscopic delivery. Covering the exterior surface of the stent 208 with the first outer layer of the sleeve 202 permits endoscopic removal of the implant device 200 by preventing tissue in-growth on the exterior surface of the stent 208.


Markings can be added to the exterior surface of the sleeve 202 to detect the position and orientation of the sleeve on a fluoroscopic image and whether the sleeve is twisted. For example, a stripe can be painted down the length of the device 200 using tantalum impregnated ink, or tantalum bands can be bonded to the exterior surface of the device. If the sleeve 202 is twisted, the sleeve 202 can be untwisted by inserting a balloon into the proximal end of the device thereby sealing it, and then injecting water into the sleeve at low pressure.



FIG. 3A is a plan view of the proximal portion of the gastrointestinal implant device shown in FIG. 2. FIG. 3B is a cross-sectional view as taken along line AA of FIG. 3A showing the stent 208 and the first outer layer 300 and the second inner layer 302 of the sleeve 202 shown in FIG. 2. As described in conjunction with FIG. 2, the sleeve 202 includes a first outer layer 300 and a second inner layer 302. The first outer layer 300 is bonded to the second inner layer 300 at positions 306 below the distal end of the stent 208 and at positions 308, above the proximal end of the stent 208. A passageway 304 inside the second inner layer 302 of the sleeve 202 allows passage of chyme through the sleeve 202. The stent 208 is sandwiched between the first outer layer 300 and the second inner layer 302 at the proximal end of the sleeve 202 and is free to move at the distal end within the first outer layer 300 and the second inner layer 302 of the sleeve 202. The covered exterior surface of the stent 208 prevents tissue growth to allow removal of the implant device 200. The covered interior surface of the stent 208 provides a smooth passageway for chyme to bypass the duodenum 104.



FIG. 4 is a perspective view of the gastrointestinal implant device 200 with the first outer layer 300 of the sleeve 202 removed. The interconnecting struts which form the mesh (a network of struts) with diamond spaced openings are sufficiently flexible to allow the stent to be collapsed inside a delivery catheter and have sufficient elasticity to hold the pylorus open once the catheter is withdrawn. The force needed to hold the pylorus open is about 1-2 lbs. of radial force outward when the stent is compressed from its full diameter by 25%.



FIG. 5A is a sectional view of a body showing one embodiment of the gastrointestinal implant device 200 implanted in the digestive system. The first proximal end 204 of the implant device 200 is anchored to muscle in the pyloric portion of the stomach 102. The barbs 210 grip onto the muscle to anchor the implant device 200 in place so that the implant device 200 can not be dragged into the stomach or down into the intestines with movement of the stomach and the intestines. FIG. 5B is a sectional view of a body showing an alternative embodiment of the gastrointestinal implant device 200′ implanted distal to the pylorus 108.


The sleeve 202 extends over the ligament of Treitz 118 beyond the proximal jejunum. Extending the sleeve below the ligament of Treitz reduces the likelihood that the sleeve will move back through the duodenum 104 toward the stomach 102.


After the gastrointestinal implant device 200 has been placed in the body and anchored in either the pyloric portion of the stomach or distal to the pylorus 108, chyme leaving the stomach passes through passageway 304 (FIG. 3B) inside the sleeve 202 and bypasses the duodenum 104 and proximal jejunum 106. By directing the chyme through the sleeve 202 the digestion and the absorption process in the duodenum 104 is interrupted. By interrupting mixing of the chyme with juices in the duodenum 104, partially digested food material is not broken down into particles small enough to be absorbed by the body. Further, there is no mixing of bile with the chyme until the chyme reaches the jejunum 106. The absorption of fats and carbohydrates is reduced by delaying the mixing of bile with the chyme.


The pyloric valve opens periodically to allow chyme to exit the stomach 102 to the duodenum 104. In one embodiment of the invention the length of the stent 208 is selected to keep the pyloric valve permanently open to induce “dumping syndrome.” By keeping the pylorus 108 open, the chyme empties rapidly into the sleeve 202 and passes down through the sleeve 202 and into the jejunum 106 with minimal digestion. This results in a “dumping syndrome” which is a reaction to excessive rapid dumping of chyme into the jejunum 106 causing the patient to feel ill, dizzy and nauseated. This syndrome is particularly enhanced when sugars and carbohydrates are eaten and passed directly into the jejunum 106.


To hold the pyloric valve open, the length of the stent 208 should be at least 1.5 inches so that the stent 208 extends from the anchoring position in the pyloric portion of the stomach through the pyloric orifice 108 (the opening from the stomach while the pyloric valve is open). The length of the stent is selected so that the distal end of the stent is above the papilla of vater 114 (FIG. 1). As shown, the stent 208 extends through the pyloric orifice 108 to hold the pyloric valve permanently open. In an alternative embodiment, the length of the stent 208 is selected such that the stent 208 ends at the stomach side of the pyloric orifice 108 allowing the pyloric valve to operate normally.


The sleeve 202 provides weight loss mechanisms by providing negative feedback, reduced fat digestion and reduced desire for food. The reduced fat digestion occurs because the sleeve 202 delays the mixing of bile and pancreatic juices with chyme from the stomach until after the chyme leaves the sleeve. The reduced desire for food may occur because the sleeve 202 blocks hormonal release from the duodenum.


After the chyme from the stomach has passed through the sleeve, the sleeve becomes extremely thin and floppy, permitting the sleeve to contour to the inner walls of the intestine. The sleeve is non-compliant and drapes away from the intestinal walls thereby permitting the pancreatic juice to flow unimpeded into the duodenum through the papilla of vater. The normal peristalsis of the bowel is used to propel the chyme through the intestines.



FIG. 6 is a perspective view of a collapsible self-expanding stent 600 in the gastrointestinal implant device 200 shown in FIG. 2 when expanded. The stent 600 is non-woven, collapsible and self-expanding, allowing endoscopic insertion and removal of the implant device 200. The stent 600 includes a plurality of flat struts 602 forming an open space pattern to ease collapsing while ensuring self-expansion. The open space pattern allows for collapsing into a catheter for endoscopic delivery and removal. The struts 602 may be manufactured from heat-treated spring steel such as Nitinol or MP35N.


In the embodiment shown, the stent has a length L of about 1.5 inches and has a diameter D of about 1 inch. The struts 602 are flat, about 0.010 inches wide and about 0.004 to 0.010 inches thick. The stent can be formed from a tube of material by laser cutting followed by expansion and heat setting, or other methods well known to those skilled in the art.


In an alternate embodiment, the struts 602 can be formed separately and the strut intersections can be welded or attached by other means well known to those skilled in the art. Visually the struts form sections 604 around the circumference of the stent. Each section has a series of triangles with each triangle defined by one distal strut connection 606 and two proximal strut connections 608, 610. The ratio of the collapsed diameter to the expanded diameter of the stent is roughly 1:4.


When expanded, the angle α between divergent strut sections is about 45-50 degrees and the diameter of the stent is about one inch. When compressed, the angle between divergent strut sections is about 5-6 degrees to reduce the diameter of the stent to about 0.21 inch for endoscopic delivery and removal. The elasticity of the struts permits this compression. When the radial compression is released, the elasticity of the struts causes the stent to expand to diameter D. The stent assumes its desired diameter as the elastic restoring forces seek their minimum stress.


The ends of the struts at the proximal end of the stent 600 are elongated and shaped to provide barbs 612 to anchor to the muscle in the pyloric portion of the stomach 102.



FIG. 7 is a perspective view of the stent 600 shown in FIG. 6 when compressed. The stent 600 is compressed until the angle between divergent strut sections is about 5-6 degrees to reduce the diameter D of the stent 600 to about 0.21 inch for endoscopic delivery and removal. The barbs 704 at the proximal end of the stent are elongated. The barbs 704 can be shaped to anchor the stent to the muscular pylorus.



FIG. 8 is a perspective view of another embodiment of a stent 800 when compressed. Pairs of barbs 802 at the proximal end of the stent 800 are elongated and can be shaped to provide opposed barbs to anchor the stent 800 in the muscle of the pylorus.



FIG. 9 is a perspective view of the compressed stent 800 shown in FIG. 8 with the strut ends 902, 900 bent to provide opposed barbs 904, 906. The barbs 904,906 engage the muscle of the pylorus to anchor the gastrointestinal implant device in the pylorus portion of the stomach. As shown in FIG. 2, the strut ends 900, 902 protrude outward from the outer surface of the stent 800 in opposite directions. They may be perpendicular to each other. The barbs 904, 906 at the ends of the respective opposed strut ends 900, 902 dig into the pylorus muscle to anchor the stent. The barbs 904, 906 at the end of the protruding opposed strut ends 900, 902 prevent movement of the stent 800 in either direction; that is, they prevent movement of the stent 800 into the stomach and prevent movement of the stent 800 down through the duodenum.



FIG. 10 is a perspective view of the stent 800 shown in FIG. 8 when expanded. As discussed in conjunction with FIG. 9, the barbs 904, 906 engage the muscle of the pylorus while the stent 800 is expanded. In the engaged position, the barbs 904, 906 spread radially outward from the longitudinal axis of the stent 800 such that the tips of the barbs come into contact and engage the tissue.



FIG. 11 illustrates the gastrointestinal device 1100 shown in FIG. 1 including an anti-buckling mechanism 1102. A flexible, anti-rotation, anti-buckling mechanism 1102 is attached to the sleeve 202 and extends from below the distal end of the stent along the length L of the sleeve to the distal end of the sleeve 202. In the embodiment shown, the anti-buckling mechanism 1102 is a guidewire device attached to the exterior surface of the outer layer of the flexible sleeve. Guidewire devices are well known to those skilled in the art. A first proximal end of the guidewire device 1104 is attached below the stent and a second distal end of the guidewire device 1106 is attached to the distal end of the flexible sleeve. The diameter of the guidewire ranges from about 0.010″ to about 0.016″.


The length of the sleeve 202 can be sized to just pass over the ligament of Treitz thereby bypassing only the duodenum and proximal jejunum 106. By doing this, it may not be necessary to provide any anti-buckling mechanisms in the sleeve 202 since the duodenum 104 is not very mobile compared to the jejunum 106. Typically, an anti-buckling mechanism 1102 is added to the exterior surface of a sleeve 202 having a length exceeding the length of the duodenum 104 and proximal jejunum 106.


The gastrointestinal implant device 200 is designed for endoscopic placement. FIG. 12 is a perspective view of a portion of a catheter system 1200 for delivery of the gastrointestinal implant device. The catheter system follows a guide wire 1212 through the esophagus and the stomach to the pylorus portion of the stomach. The guide wire 1212 enters a first inner lumen at the proximal end 1208 of the catheter system 1200 and exits the first inner lumen at the distal end 1222 of the catheter system 1200.


The catheter system 1200 includes an outer sheath 1202 for storing the stent 208 in collapsed form, a flange 1216 to pull back the outer sheath 1202 and a sleeve retention wire mechanism 1214 for releasing a sleeve retention wire 1210 from the proximal end of the flexible sleeve 202 after the stent has been released from the outer sheath 1202.


As described in conjunction with FIG. 2, the distal portion of the gastrointestinal implant device includes a flexible sleeve 202 which can negotiate the duodenum and the jejunum. A sleeve retention wire 1210 travels through a second inner lumen and exits the second inner lumen to secure the distal end of the sleeve 202 to an inner sheath 1226. The sleeve retention wire 1210 is coupled to the sleeve retention wire release mechanism 1214 for releasing the sleeve retention wire 1210 after the gastrointestinal implant device has been positioned in the pyloric section of the stomach. The release mechanism 1214 will be described later in conjunction with FIG. 16B.


The sleeve 202 is secured temporarily outside the inner sheath 1226 allowing for proper positioning of the gastrointestinal implant device and then for release. As shown, the sleeve 202 is secured by the sleeve retention wire 1210 using a dead-bolt mechanism 1206. Non-stick coatings such as Teflon on the sleeve retention wire 1210 are preferred to make release easier to accommodate tortuous anatomical pathways. The sleeve retention wire 1210 extends through the second inner lumen from the release mechanism 1214 of the catheter system 1200 to the dead-bolt mechanism 1206. The dead-bolt mechanism 1206 is described later in conjunction with FIG. 13A. The sleeve retention wire 1210 holds the sleeve in position. The distal end of the folded sleeve is released by the release mechanism 1214 by pulling the sleeve retention wire 1210 backward from the proximal end 1208 of the catheter.


As described in conjunction with FIG. 1, the proximal portion of the gastrointestinal device includes a covered stent. The covered stent does not enter the duodenum and thus is stiffer than the sleeve because it remains in the pylorus of the stomach. The stent in the gastrointestinal implant device is collapsed and stored in the outer lumen within the outer sheath 1202 between the flange 1216 and the distal end of the outer sheath 1202. The stent is supported in a collapsed form by the outer sheath 1202. The catheter 1200 is inserted into the digestive system through the esophagus to the pyloric section of the stomach. The proximal end of the outer sheath 1202 is positioned in the stomach, in the pylorus through the use of positioning ring 1224. After the outer sheath 1202 has been positioned, the stent is retracted from the outer lumen of the catheter by pulling flange 1216 toward the proximal end of the catheter system 1200. Upon release, the stent self-expands by its own elastic restoring force to engage the anchor portion with the stomach muscle at the pyloric section of the stomach.



FIG. 13 is a cross-sectional view of the inner shaft 1226 taken along line E-E of FIG. 12. The sleeve retention wire 1210 passes through a second inner lumen 1314 in the inner sheath 1226. The sleeve retention wire 1210 exits the second inner lumen 1314 and is threaded through folds of the sleeve 202 at 1302 in FIG. 14A. The sleeve retention wire 1210 re-enters the second inner lumen 1314 at 1302 (FIG. 14A). The guidewire 1212 passes through the first inner lumen 1310.



FIG. 14A is an expanded perspective view of the dead-bolt mechanism 1206 shown in FIG. 12. The sleeve 202 has been folded for delivery. The sleeve is wrapped around the inner sheath 1226 and bunched above the inner sheath 1226 The sleeve is held in folded position around the inner sheath 1226 by threading the sleeve retention wire 1210 through the folds of the sleeve 202. The sleeve retention wire 1210 exits the second inner lumen 1314 through an opening 1306 and pierces through folds of the sleeve 202 at 1304. Threading the sleeve retention wire 1210 through the folds of the sleeve 202 results in a plurality of small holes at the distal end of the sleeve 202. The holes are reinforced with silicone or urethane to avoid tears in the material. The sleeve retention wire 1210 re-enters the second inner lumen through a second hole 1302 and advances a sufficient distance within the second inner lumen toward the distal end of the second inner lumen to resist pulling out of the second inner lumen.



FIG. 14B is a sectional view of the dead-bolt mechanism 1206 shown in FIG. 14A illustrating the sleeve retention wire 1210 threaded through the sleeve. The sleeve retention wire 1210 exits the second inner lumen 1314 at 1306 and pierces through folds in the sleeve 202 at 1304. The sleeve retention wire 1210 re-enters the second inner lumen 1314 at 1302.



FIG. 15 is a sectional view of a portion of the catheter system shown in FIG. 12 illustrating the collapsed stent 208 stored inside the outer sheath 1202. The stent 208 is pre-compressed and held in a collapsed form inside the outer sheath 1202 of the catheter. The outer sheath 1202 is pulled back by the flange 1216 toward the proximal end of the catheter system 1200 to release the self-expanding stent 208. The stent radially expands under its own elastic restoring force. The guidewire 1212 is directed through the first inner lumen 1310 and the sleeve retention wire 1210 is directed through the second inner lumen in the inner sheath 1226. The inner sheath includes a first lumen through which the guidewire passes and a second lumen through which the sleeve retention wire passes.



FIGS. 16A-C illustrate a method for delivery of the gastrointestinal implant device. FIG. 16A is a plan view of the catheter system illustrating the collapsed stent stored inside the outer sheath 1202 of the gastrointestinal implant device. As described in conjunction with FIG. 12, the stent 208 is stored inside the outer sheath and the distal end of the sleeve 202 is secured outside the inner sheath 1226 by a sleeve retention wire 1210.



FIG. 16B is a plan view of the catheter system 1200 illustrating the gastrointestinal implant device after release of the stent 208 from the outer sheath 1202. The flange 1216 has been pulled back toward the proximal end of the catheter system 1200 to pull back the outer sheath 1202 from the stent and the stent 208 has self-expanded. The sleeve retention wire 1210 holds the distal end of the sleeve 202.


Once in place, the sleeve retention wire 1210 can be removed. As described previously in conjunction with FIG. 12, the sleeve retention wire 1210 is coupled to locking mechanism 1224. Handle 1600 in the locking mechanism 1214 acts as a pivot device to pull the sleeve retention wire 1210 from the dead-bolt mechanism 1206. The distal end of the gastrointestinal implant device is released by moving handle 1600 in a clockwise direction 1604. As the handle 1600 is moved in direction 1604, the sleeve retention wire 1210 threaded through the folds of the sleeve is pulled back through the second inner lumen 1314 and disengages from the sleeve at the distal end of the gastrointestinal implant device. The sleeve retention wire 1210 extends from the distal end of the gastrointestinal implant device through the second inner lumen 1314. The wire is connected to the handle 1600 at the proximal end of the catheter.



FIG. 16C is a plan view of the catheter system illustrating the expanded gastrointestinal implant device after the sleeve retention wire has been released. The handle 1600 has been moved in a clockwise direction and the sleeve retention wire 1210 has been pulled back through the second inner lumen 1314 to release the distal end of the sleeve 202.



FIG. 17 is a perspective view of another embodiment of the catheter system shown in FIG. 16. The catheter includes a ball 1800 coupled to the distal end 1222 of the inner sheath 1226 for guiding the catheter through the alimentary canal (e.g., to the pyloric portion of the stomach). The ball 1800 is small enough so that it can be pulled back through the gastrointestinal implant device after the gastrointestinal device has been delivered, the stent expanded and the sleeve retention wire 1210 has been released. The sleeve is shown uniformly folded 1204. However, the sleeve may not necessarily be uniformly folded.



FIG. 18 is a cross-section of an everting catheter system 1900 for delivery of a longer flexible sleeve. The gastrointestinal implant device 200 is shown with the stent sleeve anchor 1901 and the attached sleeve 1902 shown as delivered into the anatomy. The delivery catheter previously described is then removed. A balloon catheter 1906 is introduced into the stent sleeve anchor 1901 and the balloon 1908 inflated to seal the lumen of the stent 1901. The sleeve 1902 is folded inside itself and an elastic band 1912 is used to seal the end of the sleeve. Fluid is then injected through the balloon catheter shaft 1906 into the sleeve lumen 1910, filling the lumen and pressurizing it. The pressure of the fluid is used to push the inner sleeve distally towards 1904. When the sleeve 1902 has fully deployed distally, the elastic band 1912 falls off of the closed end of the sleeve 1902 and passes distally in the intestine until it is excreted. This mechanism permits deployment of a sleeve that is double the length of the delivered device. This may be needed as it is difficult to access the distal parts of the intestine with guidewires. This everting catheter system enables delivery of longer sleeves than are possible using only the delivery catheter described in conjunction with FIG. 12.



FIG. 19 is a perspective view of a retrieval device 2000 for removing the gastrointestinal implant device 200 from the digestive tract. As already described, the exterior surface of the stent 208 is covered with a material that prevents cellular in-growth allowing the stent 208 to be easily removed. The retrieval device 2000 includes an inner sheath 2004 and an outer sheath 2006. A plurality of fingers 2002 extend from the proximal end of the inner sheath 2004. The fingers 2002 engage the exterior surface of the gastrointestinal device. As the inner sheath 2004 is moved down over the fingers, the fingers 2002 pull radially inward to reduce the proximal stent diameter and pull the collapsed device into the outer sheath 2006.



FIG. 20 is a perspective view of the retrieval device 2000 engaged with the stent 208. The fingers 2002 of the retrieval device are positioned around the stent 208. As the inner sheath 2004 is pushed over the fingers 2002, the fingers pull radially inward on the proximal end of the stent 208 and the proximal end of the stent 208 is collapsed. After the stent 208 has been collapsed sufficiently such that the proximal stent diameter is less than the diameter of the outer sheath 2006, the stent is drawn into the outer sheath 2006. The entire gastrointestinal implant device can then easily be removed from the patient by pulling retrieval device 2000 through the stomach and the esophagus.



FIG. 21 is a perspective view of another embodiment of a gastrointestinal implant device 2200. The gastrointestinal implant device 2200 includes a sleeve 202 and an anchoring ring 2204. The distal end of the anchoring ring 2204 is bonded to the proximal end of the sleeve 202. A plurality of eyelets 2206 are distributed around the circumference of the proximal end of the ring for anchoring the device to the pyloric muscle using anchors shown in FIG. 24. The anchoring ring 2204 is made from a flexible material such as silicone allowing the ring 2204 to be collapsed for endoscopic insertion and removal.


The anchoring ring 2204 does not hold the pylorus open. However, in an alternate embodiment, the anchoring ring 2204 can be bonded to a stent with sufficient length and diameter to hold the pylorus open as described in conjunction with FIG. 2. The anchoring ring 2204 anchors the device and the stent holds the pylorus open.



FIG. 22 is a perspective view of the anchoring ring 2204 shown in FIG. 21 in the expanded position. The sleeve is bonded to the outer surface 2300 of the proximal end of the anchoring ring whose diameter is 0.8″ or about the same as the diameter of the sleeve. The anchoring ring 2204 includes at least four eyelets to anchor the device in place. The outer most diameter of the ring is about one inch. In an alternate embodiment there can be more than four eyelets.



FIG. 23 is a perspective view of the anchoring ring 2204 shown in FIG. 21 in a collapsed position for insertion and removal. The circular ring 2204 shown in FIG. 21 has been compressed to an oval shape allowing the anchoring ring to be inserted into the lumen of a catheter for delivery.



FIG. 24 is a perspective view of an anchor 2500 for anchoring the collapsible ring shown in FIG. 23 to the muscular tissue of the pyloric orifice. The anchor 2500 includes an anchor pin 2504 coupled to a second pin 2506 by a flexible shaft 2502. The anchor pin 2504 includes a shaped barb 2508 for locking the anchor 2500 into the tissue. The anchor 2500 is delivered after the collapsible ring has been positioned in the pyloric orifice. The anchor is guided so that the anchor pin 2504 is directed through a respective eyelet with the barbed portion of the anchor pin 2504 guided toward the tissue. After the barb 2508 has been locked into the tissue, the second pin 2506 sits inside the gastrointestinal implant device while the barbed portion 2508 of the anchor pin 2504 sits inside the pylorus muscle tissue. For removal of the gastrointestinal implant device from the body, the flexible shaft 2502 of the anchor 2500 is cut.



FIG. 25A is a perspective view of a delivery system 2600 for delivering the anchor 2500 after the gastrointestinal implant device has been placed in the pyloric orifice. The anchor 2500 is loaded in the distal end of a catheter having a single lumen tube 2600. The hollow, distal end of the delivery device is a sharp needle made to penetrate the pylorus muscle. In an alternate embodiment, the distal end of the delivery device can be formed in an arc to improve access to the eyelets 2206 through an endoscopic approach. The catheter 2600 includes a pusher 2604 for releasing the anchor 2500. The pusher 2604 is moved in a longitudinal direction 2602 to release the anchor 2500 from the lumen.



FIG. 25B is a plan view of the delivery system 2600 shown in FIG. 25A. FIG. 25C is a cross-sectional view of the distal end of the catheter 2600 as taken along line B-B of FIG. 25B. As described in conjunction with FIG. 24, the anchor 2500 includes pins 2504, 2506 coupled by a flexible shaft 2502. The anchor 2500 is loaded in the lumen at the distal end of the catheter 2600. The anchor pin 2504 is placed in the distal end of the tube 2600 and the second pin 2506 in the proximal end. The barb 2508 on the anchor pin 2504 is pointed toward the proximal end of the tube 2506 to engage with the tissue upon release in the muscle tissue. The catheter is advanced to the center of the ring positioned in the pyloric orifice. The sharp end 2510 is then pushed through an eyelet and into the muscle tissue. The pusher 2506 is pushed in longitudinal direction 2602 to release the distal anchor 2506. Once the distal anchor is released, the delivery system is pulled back, dragging the proximal part of the anchor out of the delivery device with the flexible shaft going through the eyelet, and the proximal anchor portion resting on the inside of the device. In the embodiment of the ring shown in FIG. 22, four anchors 2506 are delivered to anchor the gastrointestinal implant device through the four eyelets.



FIG. 25D is a perspective view illustrating the sharp end 2510 of the needle inserted through an eyelet 2206 for delivery of the anchor 2500 to the tissue 2512. The distal end of the catheter is formed in an arc 2520 to improve access the eyelets 2206. The sharp end 2510 of the catheter is inserted through the eyelet 2206 into the tissue 2516. The anchor pin 2504 of the anchor has been pushed out from the lumen into the tissue 2512.



FIG. 25E is a perspective view illustrating the barb 2508 engaging the tissue 2512 after delivery. The catheter has been removed from the eyelet 2206 leaving the anchor pin 2504 engaging the tissue 2512.



FIGS. 26A-E illustrate an alternative embodiment of a locking mechanism for holding the distal end of the sleeve 202 in position during delivery of the gastrointestinal implant device. A snare wire 2656 is passed through one of the lumens of a catheter 2650 to the distal end. At the distal end, the end of the snare wire 2650 is looped back and attached to or anchored inside the catheter 2650. The folds of the sleeve 202 are advanced through this snare loop. The snare handle 2664 pulls and releases the snare wire 2656 to lock and release the distal end of the sleeve 202. The delivery system includes a pull tap 2666 for releasing a drawstring holding the stent in a collapsed position.



FIG. 26B is cross-sectional view taken along line C-C of FIG. 26A through the inner sheath 2650. The inner sheath has two lumens 2654, 2662 and has a diameter of about 0.078 inches. The first inner lumen 2564 is for passing a guidewire through the inner sheath and is about 0.04 inches in diameter. The second inner lumen 2662 is for passing the snare wire through the inner sheath and is about 0.02 inches in diameter. The end of the snare wire 2658 is anchored inside the inner sheath 2650.



FIG. 26C is a cross-sectional view taken along line DD of FIG. 26A through the outer sheath 2600 showing the inner sheath 2650 within the outer sheath 2600. The outer sheath has a inner diameter of about 0.1 inches and an outer diameter of about 0.143 inches. The open space inside the outer sheath can be used for passing a drawstring through the outer sheath.



FIG. 26D is a cross-sectional view through the distal portion of the catheter 2650 showing the snare capturing the distal end of the sleeve 202. The distal end of the sleeve 202 is captured by the snare wire 2656 by pulling the distal end of the sleeve through a loop formed by the snare wire 2656.



FIG. 26E is a sectional view through the distal portion of the catheter showing the snare locking mechanism. The distal end of the sleeve is locked by pulling the snare wire 2656 in a longitudinal direction 2664 toward the proximal end of the delivery system to capture the sleeve folds against the inner shaft. After the gastrointestinal implant device is properly positioned in the body, the snare wire is advanced in a longitudinal direction 2662 toward the distal end of the delivery system. This opens the snare wire 2656 and releases the sleeve 202.



FIG. 27 is a perspective view of the distal portion of the gastrointestinal implant device including texturing 2700. Texturing of the distal end of the sleeve can be added to ensure that the actions of peristalsis do not advance the sleeve proximally, towards the stomach, but keep the sleeve pulled taught in the intestine. At the distal end of the sleeve, texturing 2700 is added with a directional aspect to it. The texturing 2700 can be molded into the sleeve material or added by adhesive or thermal bonding methods. The texturing material contains includes fibril shapes that are directed proximally so that any peristaltic waves that travel proximally, will have less force on the sleeve than distal peristaltic waves.


The gastrointestinal implant device offers a new alternative where other means of weight loss and efforts at behavior modification have failed. Because the gastrointestinal implant device is endoscopically introduced, there is a reduced risk at insertion compared to surgery. The procedure is also completely reversible, making this approach the ideal solution for patients who are desperate to reverse behavioral patterns that have lead to weight gain.


When inserted in the body, the gastrointestinal implant device mimics the duodenal bypass of the Roux-en-Y procedure. The implanted device reduces caloric absorption by delaying enzyme mixing with food and provides the feedback produced by the Roux-en-Y procedure by producing dumping syndrome when high sugar meals are ingested. Rapid stomach emptying is encouraged by inserting a stent in the pylorus to hold the pylorus open and all food bypasses the duodenum and passes rapidly into the jejunum. The implant device is an improvement on the Roux-en-Y procedure because it is minimally invasive and reversible. In the treatment of the super-obese where aggressive weight loss is not achieved, the length of the implant device below the stent can be further increased to drive the patient close to the point of malabsorption.


The gastrointestinal implant device can be used to reduce Type 2 diabetes symptoms by bypassing the duodenum. Following gastric bypass surgery, patients commonly experience complete reversal of Type 2 diabetes. While the exact mechanism of this remarkable effect is not understood, the clinical result is reported in a high percentage of cases. Reversal of Type 2 diabetes after gastric bypass is described in “Potential of Surgery for Curing Type 2 Diabetes Mellitus” by Rubino et al. incorporated herein by reference in its entirety. Since the gastrointestinal implant device provides equivalent blockage of duodenal processes, a similar effect is elicited but without the trauma of surgery. In patients who are not obese but suffer Type 2 diabetes, a modified gastrointestinal implant device is inserted. This gastrointestinal implant device provides the necessary effect to hinder pancreatic processes and receptors without blocking absorption.


In the embodiment of the gastrointestinal implant device for treating diabetes, the length of the stent is selected to allow the pylorus to operate normally. The length of the sleeve is also reduced to mimic the duodenum bypass. The sleeve extends to just below the ligament of Treitz but does not extend further into the jejunum, thus allowing absorption to occur in the jejunum.


While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims
  • 1. A gastrointestinal implant device comprising: a flexible sleeve, open at both ends, one foot to five feet in length to extend into the intestine and adapted to limit absorption of nutrients in the intestine, thin and conformable so that it collapses in the intestine to a small volume and unsupported at a distal end; andan anchor comprising a network of struts, the network of struts comprising a plurality of diamond-shaped openings between the struts, the anchor being coupled to a proximal portion of the sleeve and configured to anchor the sleeve at or distal to the pylorus in the digestive system.
  • 2. The gastrointestinal implant device of claim 1, wherein the anchor is configured to be retained distal to the pylorus.
  • 3. The gastrointestinal implant device of claim 1, wherein the anchor is configured to be retained within the pyloric orifice.
  • 4. The gastrointestinal implant device of claim 1, wherein the anchor is collapsible.
  • 5. The gastrointestinal implant device of claim 1, wherein the sleeve is of a length that chyme exiting the stomach funneled through the proximal end of the sleeve exits the sleeve through the distal end below the ligament of Treitz.
  • 6. The gastrointestinal implant device of claim 1, wherein the sleeve material has a coefficient of friction of less than 0.2.
  • 7. The gastrointestinal implant device of claim 1, wherein the sleeve is formed of a fluoropolymer.
  • 8. The gastrointestinal implant device of claim 7, wherein the sleeve is coated with a coat of silicone.
  • 9. The gastrointestinal implant device of claim 7, wherein the sleeve is coated with a coat of polyurethane.
  • 10. The gastrointestinal implant device of claim 1, wherein the sleeve is formed of polyethylene.
  • 11. The gastrointestinal implant device of claim 1, wherein the distal end of the sleeve is directionally textured.
  • 12. The gastrointestinal implant device of claim 1, wherein the sleeve causes enzymes secreted in the duodenum to pass through the duodenum outside the sleeve.
  • 13. The gastrointestinal implant device of claim 1 in combination with a catheter to insert the flexible sleeve.
  • 14. The gastrointestinal implant device of claim 1 in combination with a removal device to remove the flexible sleeve.
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/098,750, filed May 2, 2011, which is a continuation of U.S. application Ser. No. 11/978,327, filed on Oct. 29, 2007, now U.S. Pat. No. 7,935,073, which is a divisional of U.S. application Ser. No. 11/001,794, filed on Nov. 30, 2004, now U.S. Pat. No. 7,347,875, which is a divisional of U.S. application Ser. No. 10/339,786, filed on Jan. 9, 2003, now U.S. Pat. No. 7,025,791, which claims the benefit of U.S. Provisional Application No. 60/430,321, filed Dec. 2, 2002. The entire teachings of the above applications are incorporated herein by reference.

US Referenced Citations (443)
Number Name Date Kind
1899781 Twiss Feb 1933 A
2464933 Kaslow Mar 1949 A
3780740 Rhea Dec 1973 A
4133315 Berman et al. Jan 1979 A
4134405 Smit Jan 1979 A
4246893 Berson Jan 1981 A
4265694 Boretos et al. May 1981 A
4270542 Plumley Jun 1981 A
4271827 Angelchik Jun 1981 A
4279251 Rüsch Jul 1981 A
4315509 Smit Feb 1982 A
4341218 U Jul 1982 A
4403604 Wilkinson et al. Sep 1983 A
4416267 Garren et al. Nov 1983 A
4501264 Rockey Feb 1985 A
4580568 Gianturco Apr 1986 A
4607618 Angelchik Aug 1986 A
4617932 Kornberg Oct 1986 A
4641653 Rockey Feb 1987 A
4648383 Angelchik Mar 1987 A
4763653 Rockey Aug 1988 A
4768507 Fischell et al. Sep 1988 A
4823808 Clegg et al. Apr 1989 A
4846836 Reich Jul 1989 A
4878905 Blass Nov 1989 A
4899747 Garren et al. Feb 1990 A
4905693 Ravo Mar 1990 A
4913141 Hillstead Apr 1990 A
4991594 Angelchik Feb 1991 A
5035706 Gianturco et al. Jul 1991 A
5037387 Quinn et al. Aug 1991 A
5041126 Gianturco Aug 1991 A
5057091 Andersen Oct 1991 A
5059166 Fischell et al. Oct 1991 A
5104399 Lazarus Apr 1992 A
5123917 Lee Jun 1992 A
5135516 Sahatjian et al. Aug 1992 A
5152756 Quinn et al. Oct 1992 A
5152782 Kowligi et al. Oct 1992 A
5176617 Fischell et al. Jan 1993 A
5190561 Graber Mar 1993 A
5236423 Mix et al. Aug 1993 A
5246456 Wilkinson Sep 1993 A
5254133 Seid Oct 1993 A
5279553 Winkler et al. Jan 1994 A
5282824 Gianturco Feb 1994 A
5290294 Cox et al. Mar 1994 A
5306300 Berry Apr 1994 A
5314444 Gianturco May 1994 A
5314472 Fontaine May 1994 A
5314473 Godin May 1994 A
5318530 Nelson, Jr. Jun 1994 A
5322501 Mahmud-Durrani Jun 1994 A
5330500 Song Jul 1994 A
5364353 Corfitsen et al. Nov 1994 A
5387235 Chuter Feb 1995 A
5389090 Fischell et al. Feb 1995 A
5401241 Delany Mar 1995 A
5405378 Strecker Apr 1995 A
5417697 Wilk et al. May 1995 A
5423851 Samuels Jun 1995 A
5443498 Fontaine Aug 1995 A
5456713 Chuter Oct 1995 A
5480423 Ravenscroft et al. Jan 1996 A
5492530 Fischell et al. Feb 1996 A
5507767 Maeda et al. Apr 1996 A
5507771 Gianturco Apr 1996 A
5522880 Barone et al. Jun 1996 A
5562697 Christiansen Oct 1996 A
5562728 Lazarus et al. Oct 1996 A
5569219 Hakki et al. Oct 1996 A
5571173 Parodi Nov 1996 A
5605530 Fischell et al. Feb 1997 A
5607442 Fischell et al. Mar 1997 A
5611787 Demeter et al. Mar 1997 A
5620763 House et al. Apr 1997 A
5624430 Eton et al. Apr 1997 A
5630797 Diedrich et al. May 1997 A
5634928 Fischell et al. Jun 1997 A
5639274 Fischell et al. Jun 1997 A
5643312 Fischell et al. Jul 1997 A
5662713 Andersen et al. Sep 1997 A
5665064 Bodicky et al. Sep 1997 A
5669932 Fischell et al. Sep 1997 A
5674289 Fournier et al. Oct 1997 A
5690642 Osborne et al. Nov 1997 A
5693084 Chuter Dec 1997 A
5695516 Fischell et al. Dec 1997 A
5697971 Fischell et al. Dec 1997 A
5713948 Uflacker Feb 1998 A
5715832 Koblish et al. Feb 1998 A
5718973 Lewis et al. Feb 1998 A
5720776 Chuter et al. Feb 1998 A
5722984 Fischell et al. Mar 1998 A
5730698 Fischell et al. Mar 1998 A
5733325 Robinson et al. Mar 1998 A
5735859 Fischell et al. Apr 1998 A
5735892 Myers et al. Apr 1998 A
5743874 Fischell et al. Apr 1998 A
5749825 Fischell et al. May 1998 A
5755777 Chuter May 1998 A
5759174 Fischell et al. Jun 1998 A
5772668 Summers et al. Jun 1998 A
5776186 Uflacker Jul 1998 A
5792144 Fischell et al. Aug 1998 A
5792172 Fischell et al. Aug 1998 A
5800456 Maeda et al. Sep 1998 A
5800526 Anderson et al. Sep 1998 A
5820584 Crabb Oct 1998 A
5824041 Lenker et al. Oct 1998 A
5824058 Ravenscroft et al. Oct 1998 A
5830229 Konya et al. Nov 1998 A
5840009 Fischell et al. Nov 1998 A
5843164 Frantzen et al. Dec 1998 A
5855601 Bessler et al. Jan 1999 A
5876445 Andersen et al. Mar 1999 A
5879282 Fischell et al. Mar 1999 A
5879370 Fischell et al. Mar 1999 A
5895391 Farnholtz Apr 1999 A
5910145 Fischell et al. Jun 1999 A
5913895 Burpee et al. Jun 1999 A
5919233 Knopf et al. Jul 1999 A
5925063 Khosravi Jul 1999 A
5925076 Inoue Jul 1999 A
5935161 Robinson et al. Aug 1999 A
5962620 Reich et al. Oct 1999 A
5963620 Frankel et al. Oct 1999 A
5964771 Beyar et al. Oct 1999 A
5976153 Fischell et al. Nov 1999 A
5984964 Roberts Nov 1999 A
5989280 Euteneuer et al. Nov 1999 A
6013019 Fischell et al. Jan 2000 A
6013085 Howard Jan 2000 A
6025044 Campbell et al. Feb 2000 A
6027508 Ren et al. Feb 2000 A
6027526 Limon et al. Feb 2000 A
6035856 LaFontaine et al. Mar 2000 A
6074673 Guillen Jun 2000 A
6077297 Robinson et al. Jun 2000 A
6086604 Fischell et al. Jul 2000 A
6099552 Adams Aug 2000 A
6102887 Altman Aug 2000 A
6120533 Fischell Sep 2000 A
6120534 Ruiz Sep 2000 A
6122536 Sun et al. Sep 2000 A
6132471 Johlin, Jr. Oct 2000 A
6146323 Fischell Nov 2000 A
6152956 Pierce Nov 2000 A
6165225 Antanavich et al. Dec 2000 A
6179868 Burpee et al. Jan 2001 B1
6187016 Hedges et al. Feb 2001 B1
6190403 Fischell et al. Feb 2001 B1
6200336 Pavcnik et al. Mar 2001 B1
6221043 Fischell et al. Apr 2001 B1
6221102 Baker et al. Apr 2001 B1
6241738 Dereume Jun 2001 B1
6241757 An et al. Jun 2001 B1
6245097 Inoue Jun 2001 B1
6251064 Silverman et al. Jun 2001 B1
6251132 Ravenscroft et al. Jun 2001 B1
6254629 Inoue Jul 2001 B1
6270521 Fischell et al. Aug 2001 B1
6293960 Ken Sep 2001 B1
6302891 Nadal Oct 2001 B1
6302917 Dua et al. Oct 2001 B1
6315708 Salmon et al. Nov 2001 B1
6322538 Elbert et al. Nov 2001 B1
6331190 Shokoohi et al. Dec 2001 B1
6332877 Michels Dec 2001 B1
6355056 Pinheiro Mar 2002 B1
6356782 Sirimanne et al. Mar 2002 B1
6375660 Fischell et al. Apr 2002 B1
6383214 Banas et al. May 2002 B1
6387114 Adams May 2002 B2
6401718 Johnson et al. Jun 2002 B1
6402779 Colone et al. Jun 2002 B1
6406792 Briquet et al. Jun 2002 B1
6428558 Jones et al. Aug 2002 B1
6442413 Silver Aug 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6458074 Matsui et al. Oct 2002 B1
6468298 Pelton Oct 2002 B1
6485409 Voloshin et al. Nov 2002 B1
6485515 Strecker Nov 2002 B2
6508833 Pavcnik et al. Jan 2003 B2
6514718 Heller et al. Feb 2003 B2
6520985 Burpee et al. Feb 2003 B1
6524335 Hartley et al. Feb 2003 B1
6524336 Papazolgou et al. Feb 2003 B1
6530951 Bates et al. Mar 2003 B1
6537247 Shannon Mar 2003 B2
6540775 Fischell et al. Apr 2003 B1
6540789 Silverman et al. Apr 2003 B1
6544291 Taylor Apr 2003 B2
6547817 Fischell et al. Apr 2003 B1
6558400 Deem et al. May 2003 B2
6558429 Taylor May 2003 B2
6565597 Fearnot et al. May 2003 B1
6572646 Boylan et al. Jun 2003 B1
6582460 Cryer Jun 2003 B1
6589213 Reydel Jul 2003 B2
6589275 Ivancev et al. Jul 2003 B1
6623518 Thompson et al. Sep 2003 B2
6635069 Teoh et al. Oct 2003 B1
6635079 Unsworth et al. Oct 2003 B2
6645239 Park et al. Nov 2003 B1
6652555 VanTassel et al. Nov 2003 B1
6656194 Gannoe et al. Dec 2003 B1
6656212 Ravenscroft et al. Dec 2003 B2
6669722 Chen et al. Dec 2003 B2
6675809 Stack et al. Jan 2004 B2
6676692 Rabkin et al. Jan 2004 B2
6695875 Stelter et al. Feb 2004 B2
6699263 Cope Mar 2004 B2
6699278 Fischell et al. Mar 2004 B2
6702857 Brauker et al. Mar 2004 B2
6706061 Fischell et al. Mar 2004 B1
6716208 Humes Apr 2004 B2
6716240 Fischell et al. Apr 2004 B2
6736840 Fischell et al. May 2004 B2
6740121 Geitz May 2004 B2
6755869 Geitz Jun 2004 B2
6764518 Godin Jul 2004 B2
6773440 Gannoe et al. Aug 2004 B2
6776791 Stallings et al. Aug 2004 B1
6802868 Silverman et al. Oct 2004 B2
6821291 Bolea et al. Nov 2004 B2
6845776 Stack et al. Jan 2005 B2
6855159 Tanner et al. Feb 2005 B1
6860901 Baker et al. Mar 2005 B1
6936065 Khan et al. Aug 2005 B2
6960233 Berg et al. Nov 2005 B1
6989024 Hebert et al. Jan 2006 B2
7006858 Silver et al. Feb 2006 B2
7011654 Dubrul et al. Mar 2006 B2
7011671 Welch Mar 2006 B2
7011673 Fischell et al. Mar 2006 B2
7025791 Levine et al. Apr 2006 B2
7033384 Gannoe et al. Apr 2006 B2
7037327 Salmon et al. May 2006 B2
7037344 Kagan et al. May 2006 B2
7066951 Chobotov Jun 2006 B2
7081132 Cook et al. Jul 2006 B2
7087088 Berg et al. Aug 2006 B2
7121283 Stack et al. Oct 2006 B2
7122058 Levine et al. Oct 2006 B2
7146984 Stack et al. Dec 2006 B2
7147865 Fishman et al. Dec 2006 B2
7152607 Stack et al. Dec 2006 B2
7160312 Saadat Jan 2007 B2
7211114 Bessler et al. May 2007 B2
7220237 Gannoe et al. May 2007 B2
7220284 Kagan et al. May 2007 B2
7229428 Gannoe et al. Jun 2007 B2
7267694 Levine et al. Sep 2007 B2
7314489 McKenna et al. Jan 2008 B2
7329285 Levine et al. Feb 2008 B2
7335224 Ohlenschlaeger Feb 2008 B2
7338520 Bailey et al. Mar 2008 B2
7347875 Levine et al. Mar 2008 B2
7354454 Stack et al. Apr 2008 B2
7476256 Meade et al. Jan 2009 B2
7507218 Aliski Mar 2009 B2
7513914 Schurr Apr 2009 B2
7608114 Levine et al. Oct 2009 B2
7611528 Goodson et al. Nov 2009 B2
7678068 Levine et al. Mar 2010 B2
7682330 Meade et al. Mar 2010 B2
7695446 Levine et al. Apr 2010 B2
7785361 Nikolchev et al. Aug 2010 B2
7803177 Hartley et al. Sep 2010 B2
7815589 Meade et al. Oct 2010 B2
7815671 Wright et al. Oct 2010 B2
7981163 Meade et al. Jul 2011 B2
8092510 Metcalf et al. Jan 2012 B2
8137301 Levine et al. Mar 2012 B2
8162871 Levine et al. Apr 2012 B2
8333797 Goodson et al. Dec 2012 B2
8486153 Levine et al. Jul 2013 B2
8579954 Licata Nov 2013 B2
8628583 Meade et al. Jan 2014 B2
8834405 Meade et al. Sep 2014 B2
8870806 Levine et al. Oct 2014 B2
9155608 Blaeser Oct 2015 B2
20010001817 Humes May 2001 A1
20010020190 Taylor Sep 2001 A1
20020022853 Swanson et al. Feb 2002 A1
20020032416 Utterberg et al. Mar 2002 A1
20020032487 Dua et al. Mar 2002 A1
20020065545 Leonhardt et al. May 2002 A1
20020081285 Parikh et al. Jun 2002 A1
20020091439 Baker et al. Jul 2002 A1
20020099439 Schwartz et al. Jul 2002 A1
20020107565 Greenhalgh Aug 2002 A1
20020120277 Hauschild et al. Aug 2002 A1
20020143387 Soetikno et al. Oct 2002 A1
20020147489 Hong et al. Oct 2002 A1
20020151953 Chobotov et al. Oct 2002 A1
20020177890 Lenker Nov 2002 A1
20020183768 Deem et al. Dec 2002 A1
20020183786 Girton Dec 2002 A1
20020188344 Bolea et al. Dec 2002 A1
20020193828 Griffin et al. Dec 2002 A1
20030009236 Godin Jan 2003 A1
20030032941 Boyle et al. Feb 2003 A1
20030040804 Stack et al. Feb 2003 A1
20030040808 Stack et al. Feb 2003 A1
20030050684 Abrams et al. Mar 2003 A1
20030055492 Shaolian et al. Mar 2003 A1
20030069539 Gandhi et al. Apr 2003 A1
20030074051 Freislinger-Luehrs Apr 2003 A1
20030109892 Deem et al. Jun 2003 A1
20030109931 Geitz Jun 2003 A1
20030109935 Geitz Jun 2003 A1
20030120265 Deem et al. Jun 2003 A1
20030149467 Linder et al. Aug 2003 A1
20030153927 DiPoto et al. Aug 2003 A1
20030191476 Smit Oct 2003 A1
20030199989 Stack et al. Oct 2003 A1
20030199990 Stack et al. Oct 2003 A1
20030199991 Stack et al. Oct 2003 A1
20030208260 Lau et al. Nov 2003 A1
20030216749 Ishikawa et al. Nov 2003 A1
20030225445 Derus et al. Dec 2003 A1
20030233140 Hartley et al. Dec 2003 A1
20040002468 Wadsworth et al. Jan 2004 A1
20040019388 Starkebaum Jan 2004 A1
20040024386 Deem et al. Feb 2004 A1
20040037865 Miller Feb 2004 A1
20040039452 Bessler Feb 2004 A1
20040044357 Gannoe et al. Mar 2004 A1
20040082963 Gannoe et al. Apr 2004 A1
20040092892 Kagan et al. May 2004 A1
20040092974 Gannoe et al. May 2004 A1
20040093063 Wright et al. May 2004 A1
20040093065 Yachia et al. May 2004 A1
20040098079 Hartley et al. May 2004 A1
20040107004 Levine et al. Jun 2004 A1
20040117004 Osborne et al. Jun 2004 A1
20040117031 Stack et al. Jun 2004 A1
20040122452 Deem et al. Jun 2004 A1
20040122453 Deem et al. Jun 2004 A1
20040122470 Deem et al. Jun 2004 A1
20040122526 Imran Jun 2004 A1
20040133147 Woo Jul 2004 A1
20040136971 Scharp et al. Jul 2004 A1
20040138525 Saadat et al. Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040138760 Schurr Jul 2004 A1
20040138761 Stack et al. Jul 2004 A1
20040143342 Stack et al. Jul 2004 A1
20040148034 Kagan et al. Jul 2004 A1
20040153167 Stack et al. Aug 2004 A1
20040158229 Quinn Aug 2004 A1
20040158331 Stack et al. Aug 2004 A1
20040172063 Li et al. Sep 2004 A1
20040172088 Knudson et al. Sep 2004 A1
20040172141 Stack et al. Sep 2004 A1
20040172142 Stack et al. Sep 2004 A1
20040172143 Geitz Sep 2004 A1
20040181242 Stack et al. Sep 2004 A1
20040193093 Desmond, III Sep 2004 A1
20040210243 Gannoe et al. Oct 2004 A1
20040220682 Levine et al. Nov 2004 A1
20040236363 Kieturakis et al. Nov 2004 A1
20040236401 Shin et al. Nov 2004 A1
20040249362 Levine et al. Dec 2004 A1
20050004681 Stack et al. Jan 2005 A1
20050043601 Kilcoyne et al. Feb 2005 A1
20050043817 McKenna et al. Feb 2005 A1
20050049718 Dann et al. Mar 2005 A1
20050055039 Burnett et al. Mar 2005 A1
20050060017 Fischell et al. Mar 2005 A1
20050075622 Levine et al. Apr 2005 A1
20050080395 Levine et al. Apr 2005 A1
20050080431 Levine et al. Apr 2005 A1
20050080480 Bolea et al. Apr 2005 A1
20050080491 Levine et al. Apr 2005 A1
20050085787 Laufer Apr 2005 A1
20050085923 Levine et al. Apr 2005 A1
20050090873 Imran Apr 2005 A1
20050096725 Pomeranz et al. May 2005 A1
20050096750 Kagan et al. May 2005 A1
20050107862 Ohlenschlaeger May 2005 A1
20050125020 Levine et al. Jun 2005 A1
20050125075 Levine et al. Jun 2005 A1
20050149114 Cartledge et al. Jul 2005 A1
20050171556 Murphy Aug 2005 A1
20050182481 Schlick et al. Aug 2005 A1
20050182483 Osborne et al. Aug 2005 A1
20050192614 Binmoeller Sep 2005 A1
20050216040 Gertner et al. Sep 2005 A1
20050216042 Gertner Sep 2005 A1
20050221072 Dubrow et al. Oct 2005 A1
20050228415 Gertner Oct 2005 A1
20050228504 Demarais Oct 2005 A1
20050240279 Kagan et al. Oct 2005 A1
20050256587 Egan Nov 2005 A1
20050267499 Stack et al. Dec 2005 A1
20050267533 Gertner Dec 2005 A1
20050273060 Levy et al. Dec 2005 A1
20060009858 Levine et al. Jan 2006 A1
20060064120 Levine et al. Mar 2006 A1
20060106332 Knudson et al. May 2006 A1
20060142836 Hartley et al. Jun 2006 A1
20060155312 Levine et al. Jul 2006 A1
20060161139 Levine et al. Jul 2006 A1
20060161172 Levine et al. Jul 2006 A1
20060161187 Levine et al. Jul 2006 A1
20060161265 Levine et al. Jul 2006 A1
20060212042 Lamport et al. Sep 2006 A1
20060252983 Lembo et al. Nov 2006 A1
20060265082 Meade et al. Nov 2006 A1
20060287734 Stack et al. Dec 2006 A1
20070005147 Levine et al. Jan 2007 A1
20070010864 Dann et al. Jan 2007 A1
20070027548 Levine et al. Feb 2007 A1
20070032879 Levine et al. Feb 2007 A1
20070049801 Lamport et al. Mar 2007 A1
20070083271 Levine et al. Apr 2007 A1
20080058772 Robertson et al. Mar 2008 A1
20080071383 Levine et al. Mar 2008 A1
20080097466 Levine et al. Apr 2008 A1
20080103604 Levine et al. May 2008 A1
20080172072 Pool Jul 2008 A1
20080208357 Melanson et al. Aug 2008 A1
20080221556 Johnson et al. Sep 2008 A1
20080221575 Betts Sep 2008 A1
20080221597 Wallace Sep 2008 A1
20080221702 Wallace Sep 2008 A1
20080223476 Stinson Sep 2008 A1
20080234834 Meade et al. Sep 2008 A1
20090012544 Thompson Jan 2009 A1
20110106273 Belhe May 2011 A1
20110245752 Levine et al. Oct 2011 A1
20110257580 Meade et al. Oct 2011 A1
20110264234 Baker Oct 2011 A1
20120184893 Thompson Jul 2012 A1
20120215152 Levine et al. Aug 2012 A1
20130331759 Neisz Dec 2013 A1
20140100512 Meade Apr 2014 A1
20140303543 Meade et al. Oct 2014 A1
20140350694 Behan Nov 2014 A1
Foreign Referenced Citations (79)
Number Date Country
33 26 061 Feb 1984 DE
0 480 667 Apr 1992 EP
0278937 Oct 1993 EP
0 686 379 Dec 1995 EP
0 506 918 Jan 1996 EP
0754017 Jan 1997 EP
0843538 May 1998 EP
0 857 471 Aug 1998 EP
0935977 Aug 1999 EP
0935977 Aug 1999 EP
1 481 649 Dec 2004 EP
1 504 778 Feb 2005 EP
1 504 778 Feb 2005 EP
04212348 Aug 1992 JP
05-305092 Nov 1993 JP
08-052165 Feb 1996 JP
2000-126304 May 2000 JP
2002-503114 Jan 2002 JP
2002-531169 Sep 2002 JP
WO 9206734 Apr 1992 WO
WO 9505132 Feb 1995 WO
WO 9618361 Jun 1996 WO
WO 9703624 Feb 1997 WO
WO 9808456 Mar 1998 WO
WO 9822045 May 1998 WO
WO 9923953 May 1999 WO
WO 9944536 Sep 1999 WO
WO 0012027 Mar 2000 WO
WO 0028922 May 2000 WO
WO 0032137 Jun 2000 WO
WO 0042945 Jul 2000 WO
WO 0042949 Jul 2000 WO
WO 0059405 Oct 2000 WO
WO 0112256 Feb 2001 WO
WO 0135861 May 2001 WO
WO 0145485 Jun 2001 WO
WO 02081019 Oct 2002 WO
WO 02096327 Dec 2002 WO
WO 03017882 Jun 2003 WO
WO 03086246 Oct 2003 WO
WO 03086247 Oct 2003 WO
WO 03086360 Oct 2003 WO
WO 03094785 Nov 2003 WO
WO 2004000169 Dec 2003 WO
WO 2004004542 Jan 2004 WO
WO 2004004542 Jan 2004 WO
WO 2004014237 Feb 2004 WO
WO 2004019765 Mar 2004 WO
WO 2004019765 Mar 2004 WO
WO 2004021894 Mar 2004 WO
WO 2004037064 May 2004 WO
WO 2004037064 May 2004 WO
WO 2004049982 Jun 2004 WO
WO 2004064680 Aug 2004 WO
WO 2004064682 Aug 2004 WO
WO 2004064685 Aug 2004 WO
WO 2004069331 Aug 2004 WO
WO 2004069332 Aug 2004 WO
WO 2004073782 Sep 2004 WO
WO 2004087014 Oct 2004 WO
WO 2004087233 Oct 2004 WO
WO 2004093639 Nov 2004 WO
WO 2004093639 Nov 2004 WO
WO 2005011533 Feb 2005 WO
WO 2005060869 Jul 2005 WO
WO 2005060882 Jul 2005 WO
WO 2005082296 Sep 2005 WO
WO 2005110280 Nov 2005 WO
WO 2005110280 Nov 2005 WO
WO 2005117716 Dec 2005 WO
WO 2005118049 Dec 2005 WO
WO 2005120363 Dec 2005 WO
WO 2006016894 Feb 2006 WO
WO 2006034062 Mar 2006 WO
WO 2006078781 Jul 2006 WO
WO 2006078927 Jul 2006 WO
WO 2006088578 Aug 2006 WO
WO 2006102012 Sep 2006 WO
WO 2006133311 Dec 2006 WO
Non-Patent Literature Citations (48)
Entry
Bethge, N., et al., “Human tissue responses to metal stents implanted in vivo for the palliation of malignant stenoses,” Gastrointestinal Endoscopy 43:(1996).
Binkert, C. A., et al., “Benign and Malignant Stenoses of the Stomach and Duodenum: Treatment with Self-expanding Metallic Endoprostheses,” Radiology 199: 335-338 (1996).
Choostent™, Covered Esophageal Stent, Instructions, Retrieved from the Internet (http://mitech.co.kr/uploads/images/282/use guide esophachoo—english.pdf) on Jul. 26, 2005.
Dolan, K. et al., “Treating Diabetes in the Morbidly Obese by Laproscopic Gastric Banding,” Obesity Surgery 13:439-443 (2003).
Dormann, A.J. et al., “Self-expanding metallic stents for continuous dilation of benign stenosis in gastrointestinal tract-first results of long-term follow-up in interim stent application in pyloric and colonic obstructions,” Z Gastroenteral, 39:957-960 (2001).
Feretis, C., et al., “Palliation of Malignant Gastric Outlet Obstruction with Self-Expanding Metal Stents,” Endoscopy 28:225-228 (1996).
Final Office Action, U.S. Appl. No. 13/401,258, dated Aug. 6, 2014, “Bariatric Sleeve”.
Hwang, J.C., et al., “Covered Retrievable Tracheobronichial Hinged Stent: An Experimental Study in Dogs,” J. Vasc. Interv. Radiol., 12(12):1429-1436 (Dec. 2001).
International Search Report dated Mar. 26, 2009 for PCT/US2008/013540.
Irie, T., et al., “Relocatable Gianturco Expandable Metallic Stents1,” Radiology, 178:575-578 (1991).
Lee, B.H., et al., “New Self-Expandable Spiral Metallic Stent: Preliminary clinical Evaluation in Malignant Biliary Obstruction,” J. Vasc Interv Radiol., 6(4):635-640 (Jul.-Aug. 1995).
Lee, S.H., “The Role of Oesophageal Stenting in the Non-Surgical Management of Oesophageal Strictures,” British J. Radiology, 74:891-900 (Oct. 2001).
NDN 222-0253-9515-4: “Malignant obstruction of gastric outlet and duodenum: palliation with flexible covered metallic stents.” Medline(r) Database (2001 to present).
NDN 222-0318-2895-4: “Self-expanding metallic stents for continous dilatation of benign stenosis in gastrointestinal tract—first results of long-term follow-up in interim stent application in pyloric and colonic obstructions.” Medline(r) Database (2001 to present).
Non-Final Office Action for U.S. Appl. No. 13/170,785, “Intestinal Sleeve”; Date Mailed: Apr. 1, 2014.
Non-Final Office Action, U.S. Appl. No. 13/401,258, dated Jan. 8, 2014.
Notice of Allowance and Fee(s) Due dated Feb. 16, 2011 for U.S. Appl. No. 11/978,327.
Notice of Allowance and Fee(s) Due dated Oct. 29, 2009 for U.S. Appl. No. 11/493,487.
Notice of Allowance and Fees Due, dated Dec. 29, 2009, for U.S. Appl. No. 11/302,946, filed Dec. 13, 2005, consisting of 8 pages.
Notice of Allowance, U.S. Appl. No. 13/170,785, dated Jul. 8, 2014, “Intestinal Sleeve”.
Office Action dated Aug. 26, 2013 for U.S. Appl. No. 13/170,785.
Office Action dated Jul. 16, 2010 for U.S. Appl. No. 12/684,309.
Office Action dated Mar. 11, 2009 for U.S. Appl. No. 11/978,327.
Office Action dated Mar. 20, 2013 for U.S. Appl. No. 13/170,785.
Office Action dated Nov. 20, 2009 for U.S. Appl. No. 11/978,327.
Office Action dated Sep. 29, 2010 for U.S. Appl. No. 11/978,327.
Office Action dated Sep. 3, 2010 for U.S. Appl. No. 12/454,915.
Office Action dated Sep. 7, 2010 for U.S. Appl. No. 12/454,878.
Office Action, dated Oct. 1, 2012, for U.S. Appl. No. 13/170,785, 9 pages.
Office Action, U.S. Appl. No. 12/880,631, dated Dec. 1, 2011.
Park, B.P. et al., “Malignant Obstruction of Gastric Outlet and Duodenum: Palliation with Flexible Covered Metallic Stents,” Radiology, 219(3):679-683 (2001).
Parodi, J.C., M.D., “Endovascular Repair of Abdominal Aortic Aneurysms,” Advances in Vascular Surgery, vol. 1, pp. 85-105 (1993).
Pories, W.J., “Why Does the Gastric Bypass Control Type 2 Diabetes Mellitus?” Obesity Surgery, 2:303-313 (1992).
Pories, W.J., et al. , “Etiology of Type II Diabetes Mellitus: Role of the Foregut,” World J. Surg., 25:527-531 (2001).
Rubino, F. and J. Marescaux, “Effect of Duodenal-Jejunal Exclusion in a Non-obese Animal Model of Type 2 Diabetes, A New Perspective for an Old Disease,” Annals of Surgery 239(1):1-11, Jan. 2004.
Rubino, F., et al., “Potential of Surgery for Curing Type 2 Diabetes Mellitus,” Annals of Surgery, 236(5):554-559 (2002).
Sandha, G. S. and Marcon, N. E., “Expandable Metal Stents for Benign Esophageal Obstruction,” Gastrointestinal Endoscopy Clinics of North America 9:437-446 (1999).
Search Report issued in European Patent Application No. EP 11169684.5, Date of Search: Sep. 23, 2011, 6 pages.
Shim, C.S., et al., “Fixation of a Modified Covered Esophageal Stent: Its Clinical Usefulness for Preventing Stent Migration,” Endoscopy, 33(10):843-848 (Oct. 2001).
Song, H.Y., et al., “Benign and Malignant Esophageal Strictures: Treatment with a Polyurethane-Covered Retrievable Expandable Metallic Stent1,” Radiology, 203(3):747-752 (Jun. 1997).
Song, H.Y., et al., “Covered Retrievable Expandable Nitinol Stents in Patients with Benign Esophageal Strictures: Initial Experience1,” Radiology, 217:551-557 (Nov. 2000).
Song, H.Y., et al., “Tracheobronchial Strictures: Treatment with a Polyurethane-Covered Retrievable Expandable Nitinol Stent—Initial Experience,” Radiology, 213:905-912 (Dec. 1999).
Supplemental Notice of Allowability, U.S. Appl. No. 13/170,785, dated Aug. 15, 2014, “Intestinal Sleeve”.
U.S. Office Action in U.S. Appl. No. 11/302,946, mailed on Jun. 18, 2009.
U.S. Office Action in U.S. Appl. No. 11/493,487, mailed on Jul. 24, 2009.
Yates III, M. R., et al., “Palliation of Malignant Gastric and Small Intestinal Strictures With Self-Expandable Metal Stents,” Endoscopy 30:266-272 (1998).
Yoon, C.J., et al., “Removal of Retrievable Esophageal and Gastrointestinal Stents: Experience in 113 Patients,” American J. of Roentgenology, 183:1437-1444 (Nov. 2004).
Office Action for U.S. Appl. No. 14/305,518, entitled “Intestinal Sleeve”, dated: Apr. 3, 2015.
Related Publications (1)
Number Date Country
20150112241 A1 Apr 2015 US
Provisional Applications (1)
Number Date Country
60430321 Dec 2002 US
Divisions (2)
Number Date Country
Parent 11001794 Nov 2004 US
Child 11978327 US
Parent 10339786 Jan 2003 US
Child 11001794 US
Continuations (2)
Number Date Country
Parent 13098750 May 2011 US
Child 14515956 US
Parent 11978327 Oct 2007 US
Child 13098750 US