The present invention generally relates to methods of treatments using medical injection device accessories, and more specifically relates to methods of treatment using a medical syringe extrusion accessory designed to facilitate aliquot dosing.
The ability to accurately assess correct injection dosage is most commonly associated with visual cues. For example, volumetric marks already come printed or etched on the side of conventional syringe bodies, and this remains the most common form of measurement. A practitioner injects a certain amount of a substance, such as a drug, by verifying fluid level using these volumetric marks.
Even more generally, a physician can intake an amount of a drug to be injected into the syringe using the volumetric marks. Then, a practitioner can simply expel the entire volume into a patient in a single plunger run. Such a full expulsion of drug removed the need to only inject a portion of a drug in a syringe. Thus, for pharmaceutical drugs, the benefits of injecting the correct dosage should not require explanation.
However, in applications using sensitive drugs such as botulinum toxin or aesthetic soft tissue fillers, for example, hyaluronic acid-based dermal fillers such as Juvederm® XC, manufactured by Allergan, Inc., dose indication provides the practitioner with additional control over precise facial sculpting.
Additionally, with applications like botulinum toxin, injection of multiple small, precise doses of toxin may be advantageous over injection of a large bolus of the material.
Further, with fat grafting, injection of multiple small, precise doses of fat cell-containing material may be advantageous over injection of a single large bolus of the material. Smaller bolus injection increases retention of the injected material, possibly by providing greater vascularization of the material throughout the fat cells and improving survivability thereof. Injection of a large bolus is less likely to be retained long term as the injected fat cells are may be more prone to die, due to lack of vascularization, for example.
Many of these injectable materials, for example, dermal fillers and fat grafting materials, are not easily extruded through standard syringes and accompanying cannula. These materials tend to provide significant resistance to be pushed through a narrow cannula. The problem is even more exacerbated by the fact that these materials are often used for detailed precision work in facial contouring and body sculpting.
Injection devices, both manual and motorized, have been specifically developed, or at least proposed, to address these issues. Interestingly, many physicians prefer the use of manual conventional syringe injectors over electronically controlled, motorized devices. For at least this reason, there remains a need for devices (e.g., simple devices) that can be attached to a standard syringe and which provide better control over small aliquot dosing of relatively difficult to inject materials, for example, dermal fillers, fat grafting materials and the like.
The description provided in the background section should not be assumed to be prior art merely because it is mentioned in or associated with the background section. The background section may include information that describes one or more aspects of the subject technology.
Disclosed herein are mechanical dosing accessories and/or syringe extrusion accessories configured to be attached to, coupled to, or incorporated into standard syringes. The dosing accessories are configured to provide improved mechanical advantage or leverage and dosing capability, relative to a conventional syringe alone. In some embodiments, the accessories described can be used in conjunction with conventional syringes for injection of substances. The substances or products can be highly viscous such as, but not limited to, dermal fillers or fat grafting materials.
Various embodiments of the present disclosure are directed to methods of treatment using syringe extrusion accessories. The method may include providing a syringe having a medicinal fluid therein for administering to a patient, and coupling an attachment portion of an extrusion accessory having a handle and a pawl to a flange portion of the syringe. The handle may be hingedly coupled to the attachment portion. The pawl may have first and second ends, and be hingedly and rotatably coupled relative to the handle at a first position at the first end and at a second position between the first and second ends. The method may further include applying a force to translate the handle in a direction that is substantially perpendicular relative to a longitudinal axis of the syringe to cause axial movement of the second end of the pawl. The second end of the pawl may be engaged with a plunger of the syringe and axial movement of the second end of the pawl drives the plunger forward to extrude the medicinal fluid from the syringe.
In some embodiments, a method of dispensing a medicinal fluid in a predetermined dosage for treatment of a patient may include applying a force to translate a handle of an extrusion accessory, coupled to a syringe, in a direction that is substantially perpendicular relative to a longitudinal axis of the syringe. The extrusion accessory may include a pawl having first and second ends and may be hingedly and rotatably coupled relative to the handle at the first end of the pawl and at a position between the first and second ends. The application of force to the handle may move the second end of the pawl for engaging with and pushing a plunger of the syringe axially for extruding the medicinal fluid from the syringe.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the subject technology as claimed. It is also to be understood that other aspects may be utilized, and changes may be made without departing from the scope of the subject technology.
Embodiments of the present description are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements, wherein:
Generally described are syringe accessories such as, but not limited to mechanical dosing accessories and/or syringe extrusion accessories that can be attached to a conventional syringe and provide a transfer of perpendicular force to axial force for injection. In other embodiments, an accessory as described herein can be permanently mounted to a syringe using, for example, glue or adhesive. In still other embodiments, a syringe including an accessory as described herein can be produced as a single integrated device.
As illustrated in
Handle 102 can optionally include a finger indentation region 112 wherein a user can apply a substantially perpendicular force to a depressed portion thereby focusing the force to a substantially predetermined point on handle 102. Handle 102 can be configured to accept a substantially perpendicular input force and transfer that force to pawl 104.
Pawl 104 is operably attached to handle 102 through second hinge 110. Pawl 104 can have a generally sinusoidal shape having a first end 114 terminating at second hinge 110 and second end 116 terminating at one or more claws 118. First end 114 can be curved toward the proximal end 130 of syringe 122 when fully extended in use thereby achieving the translation of force provided by the accessories. Second end 116 can be curved toward the distal end of syringe 122 when fully extended in use.
Pawl 104 can be operably configured to move one or more claws 118 in generally axial direction 120. Pawl 104 can include one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, 13, 14, 15, 16, 17, 18, 19, 20, or more claws. As such, based on substantially perpendicular movement of handle 102, claws 118 can in turn be moved in axial direction 120 through second hinge 110.
Further, handle 102 is operably connected to attachment portion 106 through first hinge 108. Attachment portion 106 is configured to allow attachment of accessory 100 to syringe 122. In one embodiment, accessory 100 can be attached to syringe 122 at flange 124. Attachment portion 106 can be shaped to at least partially engage flange 124. In some embodiments, attachment portion 106 can engage between about 20% and about 80%, between about 30% and about 60%, between about 40% and about 60%, between about 50% and about 70%, or between about 60% and about 80% of flange 124. Attachment portion 106 can engage with flange 124 using a friction fit, a locking fit where attachment portion 106 includes locking features that snap and lock once the two parts are engaged, or a glue engagement wherein attachment portion 106 and flange 124 are glued together.
Substantially perpendicular force applied to handle 102 can be translated to force in axial direction 120. Claws 118 can engage plunger 126 and provide an axial force thereby driving plunger head 128 toward proximal end 130 of syringe 122.
Substantially perpendicular force can be applied at an angle 132 which is substantially perpendicular to syringe 122. Angle 132 can be about 1 degree, about 5 degrees, about 10 degrees, about 15 degrees, about 20 degrees, about 25 degrees, less than about 5 degrees, less than about 10 degrees, less than about 15 degrees, between about 1 degree and about 10 degrees, between about 1 degree and about 20 degrees, or between about 5 degrees and about 25 degrees.
This substantially perpendicular force can replace axial forces that typically must be applied to plunger finger surface 134. With highly viscous materials such as dermal fillers and fat grafting substances, substantial axial forces must be applied in order to extrude these materials from a needle or other delivery device attached to luer tip 136 or other attachment interface. This need to apply a substantial force to plunger finger surface 134 requires a user to balance applying axial forces to the syringe with resisting axial forces of a needle into the tissue.
In some embodiments, luer tip 136 or other attachment interface can be configured to attach to a cannula or needle which is suitable for introducing contents of syringe 122 into a target region of a patient for tissue bulking, augmentation or reconstructive purposes.
In other embodiments, luer tip 136 or other attachment interface can be configured to attach to flexible tubing or a conduit which is suitable for introducing contents of syringe 122 into a target region of a patient for tissue bulking, augmentation or reconstructive purposes. Such embodiments may allow for enhanced flexibility and ergonomic grip of a cannula or a needle.
A cannula or a needle as used herein can be a 10, 12, 14, 16, 18, 20, 22 up to 33 gauge, or other gauges. In some embodiments, the needle gauge may be one suitable for fat grafting or dermal filler purposes. In one embodiment, the needle gauge is between 10 and 33. The length of a needle can be any appropriate length known in the art. In one embodiment, the needle length is about 1/16 inch to about 3 inches, more generally about 1/16 inch to about 2 inches. A cannula or a needle may be blunt or sharp tipped.
Pawl 104 can be configured to engage with a given plunger style. Plungers can have various shapes for stem portion 138. For example, as illustrated in the Figures, stem 138 includes vertical appendage 140 and horizontal appendage 142. Thus, in one embodiment, pawl 104 can be split at second end 116 thereby straddling vertical appendage 140 without touching it and engaging both sides of horizontal appendage 142.
In other embodiments, stem portion 138 may have a cylindrical shape or circular cross-section. In such embodiments, pawl 104 can have a single second end 116 or an un-split second end. This single second end 116 can engage stem portion 138 along its cylindrical surface.
Various other stem shapes can be used and skilled artisans will understand how to modify pawl 104 to engage these types of plungers and translate substantially perpendicular force to axial force on the plunger.
In some embodiments, spring 144 can be provided to couple pawl 104 to handle 102 as illustrated in
In some embodiments, tracks can be provided on plunger 126 for claws 118 to engage. For example, as illustrated in
An exemplary track system can be configured to allow claws 118 to engage in one or more valleys 150 between adjacent teeth 148. In some embodiments, teeth 148 can have a generally rounded or oval surface preventing claw leverage onto the plunger. Each valley 150 between adjacent teeth 148 can be spaced a predetermined distance 152 from the next valley 150.
In other embodiments, teeth 148 can be configured to have a generally wave-like shape. When a claw is engaged in a valley 150 with a long front surface and a short back surface, claws 118 can provide force against the short wall of teeth 148. In some embodiments, an accessory 100 can include a plunger that has tracks that can be used with accessory 100. When a plunger is provided, the syringe plunger can be replaced with the provided plunger.
In other embodiments, a track or set of tracks can be provided to be attached to a plunger. In these embodiments, tracks can be glued to the plunger stem prior to use. In other embodiments, tracks can be snapped around a plunger stem.
Each valley 150 between adjacent ratcheting teeth 148 can be spaced 152 from the next valley. Each space 152 can be equivalent to a predetermined amount of substance ejected from the syringe. This is the case because movement of track 146 a particular distance moves plunger 126 which eventually moves plunger head 128 the same axial distance.
Accessory 100 can be formed of metal, a polymer, or a combination thereof. In some embodiments, accessory 100 can include materials such as, but not limited to, rigid thermoplastics, thermoplastic elastomers, silicones, glass, metals, composite materials, carbons fillers, or any combination thereof.
The accessories described herein can allow an operator to easily inject viscous substances or materials through any size needle known in the art by applying substantially perpendicular force to the handle. The accessories make the syringe easy to hold, manipulate and operate with one hand, and in some cases adjust easily with the operator's opposing hand. The accessories can allow the operator to precisely control the injection speed (or extrusion rate) being injected. The accessories can also allow an operator to still see the graduation or volume markings on the syringe body thereby allowing an operator to visualize initial volume, volume injected and remaining volume of substance in the syringe.
Further, the accessories described herein can have an ergonomic shape that allows the operator to hold and inject from the syringe easily. Unlike traditional syringes which do not conform to any ergonomic aspect of the hand, the present devices can have at least one ergonomic design shaped into the accessories such as finger indentation region 112. Additionally, the present accessories can accommodate operator hands of different sizes. Hand size accommodation can be accomplished by different device sizes, position-adjustable device handles or interchangeable device handles. For example, interchangeable handles can come in various predetermined sizes or can be personalized for a particular user.
Methods of using the accessories described are also contemplated. For example, in some embodiments, an accessory is provided and attached to a syringe preferably at the syringe flange 124 as illustrated in
Then, as illustrated in
When a particular spring force has been exhausted or a stop 154 on the underside of handle 102 has been reached, plunger 126 will not be moved axially any further as illustrated in
In other embodiments, full extension of accessory 100 can be achieved when pawl 104 abuts handle 102 at leading edge 162.
The force applied to move from predetermined angle 132 illustrated in
For example, in some embodiments, predetermined distance 152 can define a dosage of substance because predetermined distance 152 can cause axial movement of plunger head 128 a second pre-determined distance 160. This second pre-determined distance 160 in turn represents a particular volume of substance extruded from syringe 122.
In other embodiments, the use of accessory 100 may not deliver a predetermined amount of substance or material but rather the amount delivered may still require use of visual marks on syringe 122.
In any circumstance, whether pre-determined or manual delivery amounts, once full extension of accessory 100 is achieved, claws 118 can be disengaged from plunger 126 by pulling handle 102 upward and away from syringe 122 as illustrated in
In some embodiments, when spring 144 is used, the upward force 158 needed to disengage claws 118 from plunger 126 can be reduced. Also, using spring 144 can pull pawl 104 toward handle 102 thereby “re-setting” accessory 100 for subsequent delivery.
Kits including an accessory as described herein are also contemplated. A kit can include an accessory that is configured to be attached to a syringe and instructions for use. In other embodiments, a kit can include an accessory, a syringe and instructions for use. In still other embodiments, a kit can include an accessory, a syringe filled with an injectable substance or a separate vial including the substance, and instructions for use. In other embodiments, a kit can include a syringe including an integrated accessory. In other embodiments, a kit can include a syringe including an integrated accessory and an injectable substance within the syringe or in a vial in the kit.
Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
The terms “a,” “an,” “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.
Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
Certain embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
Furthermore, numerous references have been made to patents and printed publications throughout this specification. Each of the above-cited references and printed publications are individually incorporated herein by reference in their entirety.
Specific embodiments disclosed herein may be further limited in the claims using consisting of or and consisting essentially of language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the invention so claimed are inherently or expressly described and enabled herein.
In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.
This application is a continuation of U.S. patent application Ser. No. 15/011,897, filed Feb. 1, 2016, which is a continuation of U.S. patent application Ser. No. 14/284,285, filed May 21, 2014, which claims the benefit of U.S. Provisional Patent App. No. 61/826,878, filed May 23, 2013, the entire disclosure of each of which is incorporated herein by this specific reference.
Number | Name | Date | Kind |
---|---|---|---|
977282 | De Vilbiss | Nov 1910 | A |
1250114 | Bigelow et al. | Dec 1917 | A |
1558037 | Morton | Oct 1925 | A |
1591021 | Davis | Jul 1926 | A |
2007140 | Ragnar | Jul 1935 | A |
2302986 | Vollrath | Nov 1942 | A |
2491978 | Helfman | Dec 1949 | A |
2551902 | Rieck | May 1951 | A |
2737946 | Hein, Jr. | Mar 1956 | A |
2853070 | Julliard | Sep 1958 | A |
3086530 | Groom | Apr 1963 | A |
3161323 | Bent | Dec 1964 | A |
D202754 | Fnftolin | Nov 1965 | S |
D214112 | Langdon | May 1969 | S |
3517668 | Brickson | Jun 1970 | A |
3595231 | Pistor | Jul 1971 | A |
D224066 | McDonald | Jun 1972 | S |
3720211 | Kyrias | Mar 1973 | A |
3767085 | Cannon et al. | Oct 1973 | A |
3807048 | Malmin | Apr 1974 | A |
3910282 | Messer et al. | Oct 1975 | A |
3916777 | Earl | Nov 1975 | A |
3977574 | Thomas | Aug 1976 | A |
4064879 | Leibinsohn | Dec 1977 | A |
4240423 | Akhavi | Dec 1980 | A |
4240426 | Akhavi | Dec 1980 | A |
4273122 | Whitney et al. | Jun 1981 | A |
4326517 | Whitney et al. | Apr 1982 | A |
4346708 | Leeven | Aug 1982 | A |
4444560 | Jacklich | Apr 1984 | A |
4529401 | Leslie et al. | Jul 1985 | A |
4581022 | Leonard | Apr 1986 | A |
4617016 | Blomberg | Oct 1986 | A |
4624659 | Goldberg | Nov 1986 | A |
4671255 | Dubrul et al. | Jun 1987 | A |
4693684 | Blatherwick | Sep 1987 | A |
4695273 | Brown | Sep 1987 | A |
4699612 | Hamacher | Oct 1987 | A |
4710172 | Jacklich | Dec 1987 | A |
4710178 | Henri | Dec 1987 | A |
4719918 | Bonomo et al. | Jan 1988 | A |
4755169 | Sarnoff | Jul 1988 | A |
4759750 | Devries | Jul 1988 | A |
4779770 | Herold | Oct 1988 | A |
4800901 | Rosenberg | Jan 1989 | A |
4832692 | Box | May 1989 | A |
4841948 | Bauser et al. | Jun 1989 | A |
4841992 | Sasaki et al. | Jun 1989 | A |
4846886 | Fey et al. | Jul 1989 | A |
D303010 | Jabbusch | Aug 1989 | S |
4869717 | Adair | Sep 1989 | A |
4908029 | Bark et al. | Mar 1990 | A |
4955905 | Reed | Sep 1990 | A |
4957744 | dellaValle et al. | Sep 1990 | A |
5019053 | Hoffman | May 1991 | A |
5024656 | Gasaway et al. | Jun 1991 | A |
5046506 | Singer | Sep 1991 | A |
5066303 | Bark et al. | Nov 1991 | A |
5092348 | Dubrul et al. | Mar 1992 | A |
5100390 | Lubeck et al. | Mar 1992 | A |
5104375 | Lubeck et al. | Mar 1992 | A |
5116358 | Granger et al. | May 1992 | A |
5127436 | Campion et al. | Jul 1992 | A |
5141496 | Dalto et al. | Aug 1992 | A |
5211644 | VanBeek et al. | May 1993 | A |
5258013 | Granger et al. | Nov 1993 | A |
5270685 | Hagen | Dec 1993 | A |
5279544 | Gross | Jan 1994 | A |
5295980 | Ersek | Mar 1994 | A |
5305788 | Mayeux | Apr 1994 | A |
5318544 | Drypen | Jun 1994 | A |
5322511 | Armbruster et al. | Jun 1994 | A |
5344407 | Ryan | Sep 1994 | A |
5354279 | Hofling | Oct 1994 | A |
5368572 | Shirota | Nov 1994 | A |
5383851 | Mackinnon, Jr. | Jan 1995 | A |
5405330 | Zunitch et al. | Apr 1995 | A |
5433352 | Ronvig | Jul 1995 | A |
5478327 | McGregor et al. | Dec 1995 | A |
5540657 | Kurjan | Jul 1996 | A |
5549672 | Maddock et al. | Aug 1996 | A |
5611809 | Marshall et al. | Mar 1997 | A |
D378939 | Smith et al. | Apr 1997 | S |
5690618 | Smith et al. | Nov 1997 | A |
5752970 | Yoon | May 1998 | A |
5807340 | Pokras | Sep 1998 | A |
5817033 | DeSantis | Oct 1998 | A |
5823998 | Yamagata | Oct 1998 | A |
5824335 | Dorigatti et al. | Oct 1998 | A |
5846225 | Rosengart et al. | Dec 1998 | A |
5891106 | Butuzov | Apr 1999 | A |
5941845 | Tu et al. | Aug 1999 | A |
5964737 | Caizza | Oct 1999 | A |
D424194 | Holdaway et al. | May 2000 | S |
6077251 | Ting et al. | Jun 2000 | A |
6102929 | Conway et al. | Aug 2000 | A |
6159233 | Matsuzawa | Dec 2000 | A |
6171276 | Lippe | Jan 2001 | B1 |
6183434 | Eppstein | Feb 2001 | B1 |
D441077 | Garito et al. | Apr 2001 | S |
6231552 | Jentzen | May 2001 | B1 |
6231570 | Tu et al. | May 2001 | B1 |
6283951 | Flaherty et al. | Sep 2001 | B1 |
6293925 | Safabash et al. | Sep 2001 | B1 |
6303518 | Aceti | Oct 2001 | B1 |
6312412 | Saied | Nov 2001 | B1 |
6432046 | Yarush et al. | Aug 2002 | B1 |
6451240 | Sherman et al. | Sep 2002 | B1 |
6482187 | Gibbs | Nov 2002 | B1 |
6488651 | Morris | Dec 2002 | B1 |
6551290 | Elsberry et al. | Apr 2003 | B1 |
6595960 | West et al. | Jul 2003 | B2 |
6607512 | Oliver | Aug 2003 | B2 |
6607513 | Down | Aug 2003 | B1 |
6611707 | Prausnitz et al. | Aug 2003 | B1 |
6613010 | Castellano | Sep 2003 | B2 |
6616448 | Friedman | Sep 2003 | B2 |
D483116 | Castellano | Dec 2003 | S |
6689095 | Garitano et al. | Feb 2004 | B1 |
6689103 | Palasis | Feb 2004 | B1 |
6780171 | Gabel | Aug 2004 | B2 |
6783514 | Tovey et al. | Aug 2004 | B2 |
6824526 | Castellano | Nov 2004 | B2 |
6896666 | Kochamba | May 2005 | B2 |
6901850 | Corominas | Jun 2005 | B2 |
6908453 | Fleming | Jun 2005 | B2 |
6936297 | Roby et al. | Aug 2005 | B2 |
6945952 | Kwon | Sep 2005 | B2 |
7004928 | Aceti | Feb 2006 | B2 |
7018356 | Wise et al. | Mar 2006 | B2 |
7033337 | Hjertman | Apr 2006 | B2 |
7041088 | Nawrocki et al. | May 2006 | B2 |
7047070 | Wilkinson et al. | May 2006 | B2 |
7048729 | Meglin et al. | May 2006 | B2 |
7097631 | Trautman | Aug 2006 | B2 |
7108681 | Gartstein | Sep 2006 | B2 |
7115108 | Wilkinson et al. | Oct 2006 | B2 |
7150726 | Dalton | Dec 2006 | B2 |
7302885 | Townsend | Dec 2007 | B2 |
7361163 | Cohen | Apr 2008 | B2 |
7419472 | Hibner et al. | Sep 2008 | B2 |
7442187 | Khayal et al. | Oct 2008 | B2 |
7494473 | Eggers et al. | Feb 2009 | B2 |
7504386 | Pressato et al. | Mar 2009 | B2 |
7556615 | Pettis et al. | Jul 2009 | B2 |
7559952 | Pinchuck | Jul 2009 | B2 |
7588547 | Deem | Sep 2009 | B2 |
7611495 | Gianturco | Nov 2009 | B1 |
7651475 | Angel | Jan 2010 | B2 |
7662110 | Flaherty | Feb 2010 | B2 |
7664545 | Westersten et al. | Feb 2010 | B2 |
7666339 | Chaouk et al. | Feb 2010 | B2 |
D615192 | Mudd et al. | May 2010 | S |
7722582 | Lina et al. | May 2010 | B2 |
7762983 | Arnissolle | Jul 2010 | B2 |
7850656 | McKay et al. | Dec 2010 | B2 |
7850683 | Elkins | Dec 2010 | B2 |
7878981 | Strother et al. | Feb 2011 | B2 |
7896837 | Wilkinson et al. | Mar 2011 | B2 |
D637287 | Mudd et al. | May 2011 | S |
7998170 | Cunningham | Aug 2011 | B2 |
8012139 | McKay et al. | Sep 2011 | B2 |
8029460 | Rush et al. | Oct 2011 | B2 |
8066629 | Dlugos | Nov 2011 | B2 |
8083722 | McKay et al. | Dec 2011 | B2 |
8088108 | Kraft | Jan 2012 | B2 |
8157830 | Wenchell | Apr 2012 | B2 |
8172815 | Down et al. | May 2012 | B2 |
8216190 | Gartstein | Jul 2012 | B2 |
8236021 | Kluge | Aug 2012 | B2 |
8291768 | Spiegel | Oct 2012 | B2 |
8303518 | Aceti | Nov 2012 | B2 |
8303545 | Schraga | Nov 2012 | B2 |
8343132 | Heneveld et al. | Jan 2013 | B2 |
8349554 | Bahrami et al. | Jan 2013 | B2 |
8353871 | Zimmerman | Jan 2013 | B2 |
8366643 | Deem | Feb 2013 | B2 |
8394118 | Jones et al. | Mar 2013 | B2 |
8409147 | Kraft | Apr 2013 | B2 |
8409185 | Burger | Apr 2013 | B2 |
8480630 | Mudd et al. | Jul 2013 | B2 |
8535278 | Mudd et al. | Sep 2013 | B2 |
8562571 | Mudd et al. | Oct 2013 | B2 |
8603028 | Mudd et al. | Dec 2013 | B2 |
8632501 | Kraft | Jan 2014 | B2 |
8636797 | Chitre et al. | Jan 2014 | B2 |
8657786 | Bahrami et al. | Feb 2014 | B2 |
8668675 | Chase | Mar 2014 | B2 |
8708965 | Boyden | Apr 2014 | B2 |
8712815 | Nichols et al. | Apr 2014 | B1 |
8821446 | Trautman | Sep 2014 | B2 |
8900181 | Knowlton | Dec 2014 | B2 |
8900186 | Pettis et al. | Dec 2014 | B2 |
8945060 | Bunch | Feb 2015 | B2 |
9017289 | Backes | Apr 2015 | B2 |
9017318 | Fourkas | Apr 2015 | B2 |
9039688 | Palmer, III | May 2015 | B2 |
9066712 | Fourkas | Jun 2015 | B2 |
9072498 | Elkins | Jul 2015 | B2 |
9101346 | Burger | Aug 2015 | B2 |
9113855 | Burger | Aug 2015 | B2 |
9149331 | Deem | Oct 2015 | B2 |
9155584 | Fourkas | Oct 2015 | B2 |
9180273 | Konstantino | Nov 2015 | B2 |
9214030 | Sole et al. | Dec 2015 | B2 |
9227023 | Kraft | Jan 2016 | B2 |
9241753 | Fourkas | Jan 2016 | B2 |
9254162 | Burger | Feb 2016 | B2 |
9289605 | Choi | Mar 2016 | B2 |
9314568 | Gurtner et al. | Apr 2016 | B2 |
9468748 | Bang | Oct 2016 | B2 |
20010008937 | Callegaro et al. | Jul 2001 | A1 |
20020010433 | Johnson | Jan 2002 | A1 |
20020026039 | Bellini et al. | Feb 2002 | A1 |
20020065483 | Leon | May 2002 | A1 |
20020133114 | Itoh | Sep 2002 | A1 |
20020151843 | Correa et al. | Oct 2002 | A1 |
20030028154 | Ros | Feb 2003 | A1 |
20030050602 | Pettis et al. | Mar 2003 | A1 |
20030078912 | Oliver | Apr 2003 | A1 |
20030144632 | Hommann et al. | Jul 2003 | A1 |
20030181863 | Ackley | Sep 2003 | A1 |
20030199883 | Laks | Oct 2003 | A1 |
20040010224 | Bodmeier | Jan 2004 | A1 |
20040015133 | Karim | Jan 2004 | A1 |
20040092927 | Podhajsky et al. | May 2004 | A1 |
20040147883 | Tsai | Jul 2004 | A1 |
20040192643 | Pressato et al. | Sep 2004 | A1 |
20040220532 | Caizza | Nov 2004 | A1 |
20050033362 | Grafton | Feb 2005 | A1 |
20050085767 | Menassa | Apr 2005 | A1 |
20050131353 | Mossanen-Shams et al. | Jun 2005 | A1 |
20050137496 | Walsh et al. | Jul 2005 | A1 |
20050177117 | Crocker et al. | Aug 2005 | A1 |
20050182446 | DeSantis | Aug 2005 | A1 |
20050192544 | Wolbring et al. | Sep 2005 | A1 |
20050215956 | Nerney | Sep 2005 | A1 |
20050261633 | Khalaj | Nov 2005 | A1 |
20060041320 | Matsuda | Feb 2006 | A1 |
20060079765 | Neer | Apr 2006 | A1 |
20060089594 | Landau | Apr 2006 | A1 |
20060150742 | Esnouf | Jul 2006 | A1 |
20070038181 | Melamud | Feb 2007 | A1 |
20070083155 | Muller | Apr 2007 | A1 |
20070085767 | Jung et al. | Apr 2007 | A1 |
20070100363 | Dollar et al. | May 2007 | A1 |
20070167920 | Hommann | Jul 2007 | A1 |
20070212385 | David | Sep 2007 | A1 |
20070250010 | Hohlfelder et al. | Oct 2007 | A1 |
20070270710 | Frass et al. | Nov 2007 | A1 |
20080015522 | Yeshurun | Jan 2008 | A1 |
20080033347 | D'Arrigo et al. | Feb 2008 | A1 |
20080058706 | Zhang | Mar 2008 | A1 |
20080058839 | Nobles | Mar 2008 | A1 |
20080071385 | Binette et al. | Mar 2008 | A1 |
20080097325 | Tanaka et al. | Apr 2008 | A1 |
20080108952 | Horvath et al. | May 2008 | A1 |
20080114305 | Gerondale | May 2008 | A1 |
20080119797 | Kim | May 2008 | A1 |
20080119876 | Price et al. | May 2008 | A1 |
20080161772 | Nayak | Jul 2008 | A1 |
20080167674 | Bodduluri et al. | Jul 2008 | A1 |
20080188816 | Shimazaki | Aug 2008 | A1 |
20080200758 | Orbay et al. | Aug 2008 | A1 |
20080281278 | Williams | Nov 2008 | A1 |
20090088703 | Azar | Apr 2009 | A1 |
20090124996 | Heneveld et al. | May 2009 | A1 |
20090125050 | Dixon | May 2009 | A1 |
20090143746 | Mudd et al. | Jun 2009 | A1 |
20090187118 | Kim | Jul 2009 | A1 |
20090234322 | Fischer | Sep 2009 | A1 |
20090240200 | Heneveld et al. | Sep 2009 | A1 |
20090247953 | Yeshurun | Oct 2009 | A1 |
20090259180 | Choi | Oct 2009 | A1 |
20090275917 | Azar | Nov 2009 | A1 |
20090287161 | Traub | Nov 2009 | A1 |
20090299328 | Mudd et al. | Dec 2009 | A1 |
20100006095 | Woodcock | Jan 2010 | A1 |
20100030152 | Lee et al. | Feb 2010 | A1 |
20100069848 | Alferness | Mar 2010 | A1 |
20100100114 | Berger | Apr 2010 | A1 |
20100121307 | Lockard | May 2010 | A1 |
20100152675 | McClintock | Jun 2010 | A1 |
20100152679 | Tezel | Jun 2010 | A1 |
20100179488 | Spiegel | Jul 2010 | A1 |
20100256594 | Kimmell | Oct 2010 | A1 |
20100256596 | Chomas | Oct 2010 | A1 |
20100280488 | Pruiitt et al. | Nov 2010 | A1 |
20100282774 | Greter et al. | Nov 2010 | A1 |
20100286618 | Choi | Nov 2010 | A1 |
20110009808 | AlGhamdi | Jan 2011 | A1 |
20110021905 | Patrick et al. | Jan 2011 | A1 |
20110028910 | Weber | Feb 2011 | A1 |
20110092916 | Tezel et al. | Apr 2011 | A1 |
20110137286 | Mudd et al. | Jun 2011 | A1 |
20110152926 | Vetrecin | Jun 2011 | A1 |
20110160674 | Holmes et al. | Jun 2011 | A1 |
20110172645 | Moga | Jul 2011 | A1 |
20110190974 | Holmes et al. | Aug 2011 | A1 |
20110202014 | Mutzbauer | Aug 2011 | A1 |
20110218494 | Assaf | Sep 2011 | A1 |
20110218497 | Assaf | Sep 2011 | A1 |
20110230839 | Bahrami et al. | Sep 2011 | A1 |
20110238038 | Sefi | Sep 2011 | A1 |
20110263724 | Gurtner | Oct 2011 | A1 |
20110319865 | Buss | Dec 2011 | A1 |
20120041374 | Lee | Feb 2012 | A1 |
20120089211 | Curtis | Apr 2012 | A1 |
20120101475 | Wilmot | Apr 2012 | A1 |
20120123194 | Beckman | May 2012 | A1 |
20120123537 | Manesis et al. | May 2012 | A1 |
20120141532 | Blanda et al. | Jun 2012 | A1 |
20120150266 | Shalev | Jun 2012 | A1 |
20120245629 | Gross et al. | Sep 2012 | A1 |
20120259322 | Fourkas | Oct 2012 | A1 |
20120265064 | Bahrami et al. | Oct 2012 | A1 |
20120265171 | Thorne | Oct 2012 | A1 |
20120296206 | Bahrami et al. | Nov 2012 | A1 |
20130012865 | Sallberg et al. | Jan 2013 | A1 |
20130018325 | Schiller et al. | Jan 2013 | A1 |
20130041346 | Alon | Feb 2013 | A1 |
20130096531 | Estepa et al. | Apr 2013 | A1 |
20130122068 | Fermanian et al. | May 2013 | A1 |
20130131632 | Mudd et al. | May 2013 | A1 |
20130131633 | Mudd et al. | May 2013 | A1 |
20130150826 | Almohizea | Jun 2013 | A1 |
20130184648 | Inou et al. | Jul 2013 | A1 |
20130184696 | Fourkas | Jul 2013 | A1 |
20130197446 | Gustafsson | Aug 2013 | A1 |
20130197449 | Franklin et al. | Aug 2013 | A1 |
20130211374 | Hetherington | Aug 2013 | A1 |
20130253289 | Hadvary | Sep 2013 | A1 |
20130274655 | Jennings | Oct 2013 | A1 |
20130274670 | Mudd et al. | Oct 2013 | A1 |
20130280755 | Hubert | Oct 2013 | A1 |
20130310763 | Mudd et al. | Nov 2013 | A1 |
20140012227 | Sigg et al. | Jan 2014 | A1 |
20140018770 | Sutkin | Jan 2014 | A1 |
20140018835 | Scherkowski | Jan 2014 | A1 |
20140066845 | Mudd et al. | Mar 2014 | A1 |
20140088502 | Matheny et al. | Mar 2014 | A1 |
20140088553 | Hetherington | Mar 2014 | A1 |
20140114279 | Klinghoffer | Apr 2014 | A1 |
20140121587 | Sallberg et al. | May 2014 | A1 |
20140128685 | Na | May 2014 | A1 |
20140128810 | Ozawa et al. | May 2014 | A1 |
20140162901 | Bahrami et al. | Jun 2014 | A1 |
20140170299 | Gill | Jun 2014 | A1 |
20140228950 | Whitcup et al. | Aug 2014 | A1 |
20140228971 | Kim | Aug 2014 | A1 |
20140249504 | Franklin et al. | Sep 2014 | A1 |
20140257190 | Yue et al. | Sep 2014 | A1 |
20140309590 | Bahrami et al. | Oct 2014 | A1 |
20140343481 | Ignon | Nov 2014 | A1 |
20140350514 | Levin | Nov 2014 | A1 |
20140350516 | Schwab | Nov 2014 | A1 |
20140350517 | Dominguez | Nov 2014 | A1 |
20140350518 | Franklin et al. | Nov 2014 | A1 |
20140350536 | Allison | Nov 2014 | A1 |
20150025459 | Kimmel | Jan 2015 | A1 |
20150025563 | Mosharrafa et al. | Jan 2015 | A1 |
20150119875 | Fischell et al. | Apr 2015 | A1 |
20150126929 | Franklin et al. | May 2015 | A1 |
20150141956 | Hoffman et al. | May 2015 | A1 |
20150157809 | Park et al. | Jun 2015 | A1 |
20150209265 | Horne | Jul 2015 | A1 |
20150343147 | Franklin et al. | Dec 2015 | A1 |
20160007990 | Solish et al. | Jan 2016 | A1 |
20160058488 | Fourkas | Mar 2016 | A1 |
20160095984 | Franklin et al. | Apr 2016 | A1 |
20160114144 | Sumida | Apr 2016 | A1 |
20160144125 | Franklin | May 2016 | A1 |
20160207253 | Down et al. | Jul 2016 | A9 |
20160213854 | Schwab et al. | Jul 2016 | A1 |
20160263358 | Unger | Sep 2016 | A1 |
20160303314 | Momose | Oct 2016 | A1 |
20170080154 | Mudd et al. | Mar 2017 | A1 |
20170290987 | Mandaroux et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
2088857 | Nov 1991 | CN |
2088857 | Nov 1991 | CN |
2535071 | Feb 2003 | CN |
200960353 | Oct 2007 | CN |
0362484 | Apr 1990 | EP |
0205915 | Jul 1990 | EP |
0167662 | Dec 1990 | EP |
0648474 | Apr 1995 | EP |
0809968 | Dec 1997 | EP |
1051988 | Nov 2000 | EP |
1486218 | Dec 2004 | EP |
1395320 | Jun 2006 | EP |
1859827 | Nov 2007 | EP |
1923086 | May 2008 | EP |
2189173 | May 2010 | EP |
2335755 | Jun 2011 | EP |
2422832 | Feb 2012 | EP |
2103262 | Feb 2013 | EP |
2184016 | Apr 2013 | EP |
2671516 | Dec 2013 | EP |
53011 | Sep 1945 | FR |
2622457 | May 1989 | FR |
2857654 | Jan 2005 | FR |
2336783 | May 2003 | GB |
209387 | Sep 2007 | IN |
20120007473 | Jan 2012 | KR |
101246570 | Mar 2013 | KR |
20130036921 | Apr 2013 | KR |
20130130436 | Dec 2013 | KR |
20130132196 | Dec 2013 | KR |
20140029007 | Mar 2014 | KR |
2286803 | Nov 2006 | RU |
WO 90001349 | Feb 1990 | WO |
WO 92013579 | Aug 1992 | WO |
WO 94012228 | Jun 1994 | WO |
WO 96025965 | Aug 1996 | WO |
WO 97028840 | Aug 1997 | WO |
WO 99048601 | Sep 1999 | WO |
WO 0100190 | Jan 2001 | WO |
WO 02055135 | Jul 2002 | WO |
WO 2004022603 | Mar 2004 | WO |
WO 2005095225 | Oct 2005 | WO |
WO 2006065837 | Jun 2006 | WO |
WO 2008086479 | Aug 2006 | WO |
WO 2006118804 | Nov 2006 | WO |
WO 2006133111 | Dec 2006 | WO |
WO 2007092929 | Aug 2007 | WO |
WO 2007140381 | Dec 2007 | WO |
WO-2007140381 | Dec 2007 | WO |
WO 2008019265 | Feb 2008 | WO |
WO 2008053481 | May 2008 | WO |
WO 2008072229 | Jun 2008 | WO |
WO 2008079824 | Jul 2008 | WO |
WO 2008148071 | Dec 2008 | WO |
WO 2009003135 | Dec 2008 | WO |
WO 2009035680 | Mar 2009 | WO |
WO 2009091099 | Jul 2009 | WO |
WO 2009098666 | Aug 2009 | WO |
WO 2009158145 | Dec 2009 | WO |
WO 2010028025 | Mar 2010 | WO |
WO 2011016785 | Feb 2011 | WO |
WO 2011073796 | Jun 2011 | WO |
WO 2011075731 | Jun 2011 | WO |
WO 2011109129 | Sep 2011 | WO |
WO 2011109130 | Sep 2011 | WO |
WO 2012054301 | Apr 2012 | WO |
WO 2012054311 | Apr 2012 | WO |
WO 2012127856 | Sep 2012 | WO |
WO 2012172424 | Dec 2012 | WO |
WO 2013005881 | Jan 2013 | WO |
WO 2013054165 | Apr 2013 | WO |
WO 2013055832 | Apr 2013 | WO |
WO 2013082112 | Jun 2013 | WO |
WO 2013106857 | Aug 2013 | WO |
WO 2014026044 | Feb 2014 | WO |
WO 2014034032 | Mar 2014 | WO |
WO 2012174464 | May 2014 | WO |
WO 2014064536 | May 2014 | WO |
WO 2014189161 | Nov 2014 | WO |
WO 2015007243 | Jan 2015 | WO |
WO 2015020982 | Feb 2015 | WO |
WO 2013065235 | Apr 2015 | WO |
WO 2015064031 | May 2015 | WO |
WO 2015105269 | Jul 2015 | WO |
WO 2015127339 | Aug 2015 | WO |
WO 2015149031 | Oct 2015 | WO |
WO 2016008845 | Jan 2016 | WO |
WO 2016022865 | Feb 2016 | WO |
WO 2016033584 | Mar 2016 | WO |
WO 2016033586 | Mar 2016 | WO |
Entry |
---|
Bleyer, “SIS Facial Implant 510(k) Summary,” Cook Biotech Inc., May 2005, 1 page. |
Davidenko et al., “Collagen-hyaluronic acid scaffolds for adipose tissue engineering”, ACTA Biomaterialia, vol. 6, No. 10, Oct. 1, 2010, pp. 3957-3968. |
Galderma, “New Restylane Skinboosters SmartClick delivery system wins prestigious Red Dot design award,” Jul. 4, 2014, retrieved from http://www.galderma.com/News/articleType/ArticleView/articleId/64/New-Restylane-Skinboosters-SmartClick-delivery-system-wins-prestigious-Red-Dot-design-award. |
Galderma, “Restylane Smart Click System Injection Device,” Mar. 2015, retrieved from http://www.red-dot-21.com/products/restylane-smart-click-system-injection-device-22169. |
Hamza et al., “A new external filling device in tissue expansion,” Plastic and Reconstructive Surgery, Mar. 1998, vol. 101, No. 3, pp. 813-815. |
Indian Patent Application No. 190/CHE/2002, filed Mar. 20, 2002, entitled A Subcutaneous Tissue Expander, 5 pages. |
Indian Patent Application No. IN2012KO01267 for Tissue Expander, February 8, 2017, 7 pages. |
International Search Report from PCT/US2016/021838, dated May 17, 2016, 3 pages. |
International Search Report and Written Opinion from PCT/US2009/045831, dated Feb. 24, 2010, 14 pages. |
International Search Report and Written Opinion from PCT/US2014/039265, dated Nov. 18, 2014, 18 pages. |
International Search Report and Written Opinion from PCT/US2014/039266, dated Aug. 26, 2014, 13 pages. |
Park et al., “Biological characterization of EDC-crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration”, Biomaterials, Elsevier Science Publishers BV, vol. 24, No. 9, Apr. 1, 2003, pp. 1631-1641. |
Prime Journal, “Galderma to launch two new syringes at AMWC 2014,” Mar. 2014, 4 pages. |
Turtlepin, “The Painless Direct Dermal Injector” Product Information, JM Biotech Co Ltd, 2013, 18 pages. |
Wang et al., “In vivo stimulation of de novo collagen production caused by cross-linked hyaluronic acid dermal filler injections in photodamaged human skin.”, Archives of Dermatology, American Medical Association, US, vol. 143, No. 2, Feb. 1, 2007, pp. 155-163. |
Number | Date | Country | |
---|---|---|---|
20190351146 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
61826878 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15011897 | Feb 2016 | US |
Child | 16510808 | US | |
Parent | 14284285 | May 2014 | US |
Child | 15011897 | US |