The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled A-1679-US—NP_Sequence_Listing_as_filed, created Nov. 20, 2012, which is 253 KB in size. The information in the electronic format of the Sequence Listing is incorporated herein by reference in its entirety.
This invention is in the field of methods of patient stratification and methods treatment using an interferon gamma (IFN-γ) inhibitor, as well as uses of IFN-γ inhibitors.
IFN-γ plays an important role in regulating the immune system. It is a cytokine with pleiotropic effects and is thought to play a role in mediating various autoimmune diseases, as well as immune responses to infectious agents and cancer cells. See, e.g., Heremans et al., Develop. Biol. Standard., 71: 113-119, in Symposium on Monoclonal Antibodies for Therapy, Prevention and in vivo diagnosis of human disease, Ultrecht, The Netherlands, 1989, S. Karger, Basel, 1990. Comparatively recent analyses of RNA and protein levels have yielded detailed information concerning the identities of collections of genes that are over- and under-expressed in biological samples from patients suffering from autoimmune diseases. For example, in patients suffering from a variety of automimmune diseases, type I (i.e., IFNα, IFNβA, IFNω, IFNε, and IFNκ) and/or type II (i.e., IFN-γ) interferon-induced genes are overexpressed. Baechler et al. (2003), Proc. Natl. Acad. Sci. 100(5): 2610-2615; Mavragani et al. (2010), Arthr. & Rheum. 62(2): 392-401; Pietrzak et al. (2008), Clinica Chimica Acta 394: 7-21; van Baarsen et al. (2006), Genes and Immunity 7: 522-531; Reynier et al. (2010), Genes and Immunity 11: 269-278; Fiorentino (2008), Arch. Dermatol. 144(10): 1379-1382. In the case of systemic lupus erythematosus (SLE), overexpression of these genes correlates with clinical and laboratory measures of disease activity. See, e.g., Bauer et al. (2006), PLoS Medicine 3(12): 2274-2284; Bauer et al. (2009), Arthr. & Rheum. 60(10): 3098-3107; Baechler et al. (2003), Proc. Natl. Acad. Sci. 100(5): 2610-2615. Type I and type II interferons affect expression of a distinct, but overlapping, set of genes, and such effects may vary depending on the tissue examined. See, e.g., van Baarsen et al. (2006), Genes and Immunity 7: 522-531 and Baechler et al. (2003), Proc. Natl. Acad. Sci. 100(5): 2610-2615.
Selection of the right patient group and dosage and assessment of patient response to a particular dosage on an ongoing basis can be key factors in the successful use of an IFN-γ inhibitor as a therapeutic for the treatment of autoimmune/inflammatory diseases. Many autoimmune/inflammatory diseases are episodic in nature and have variable clinical manifestations, and possibly also variable etiologies. Some of these diseases have long asymptomatic periods between symptoms or prior to the onset of symptoms. There is a need to determine whether a patient is a candidate for a particular treatment and/or whether an ongoing treatment is having the desired effects. Because of the biological variations between patients who are clinically diagnosed as having the same disease, it is possible that IFN-γ inhibitors may be efficacious for some patients having a particular disease and not for others. Such variations have, for example, been observed in rheumatoid arthritis patients, some of which respond to TNF inhibitors while others do not. See, e.g., Potter et al. (2010), Ann. Rheum Dis. 69: 1315-1320. Thus, it is highly desirable to distinguish patients for whom inhibition of IFN-γ is likely to be helpful from those for whom it is not. Further, the optimal dosage and nature of a particular IFN-γ inhibitor are likely to be important factors in the therapeutic suitability of a treatment, given the important role of IFN-γ in resistance to infections, among other vital functions. Thus, there is a need to assess the efficacy and safety of various doses and/or frequencies of dosing in asymptomatic, as well as symptomatic, periods of a disease. Methods provided herein utilize current technologies for assessing gene expression at the RNA and protein levels to provide more refined and effective methods of treatment using inhibitors of IFN-γ, of identifying optimal doses, and of identifying individuals who are likely to respond to treatment, and/or who are or are not responding to treatment.
Described herein are methods of treatment that include administration of an IFN-γ inhibitor to a patient and determination of levels of one or more biomarkers in a biological sample from the patient before and/or after administration of the IFN-γ inhibitor so as to assess the suitability as a treatment or the biological effects of the IFN-γ inhibitor. Such methods can inform decisions as to whether to initiate or continue treatment with an IFN-γ inhibitor. Also described are methods for distinguishing patients likely to benefit from treatment with an IFN-γ inhibitor from those unlikely to benefit by assessing the levels of one or more biomarkers in a biological sample from a patient as compared to the levels of the same biomarkers in biological samples from a healthy control group. Further described herein are methods of treatment that include the use of doses of an anti-IFN-γ antibody within a specified range and/or at a specified frequency of dosing.
Herein is described a method of treating a patient suffering from an IFN-γ-mediated disease comprising administering to the patient a monoclonal anti-human interferon gamma (anti-huIFN-γ) antibody at a dose, which can be from about 15 mg (mg) to about 300 mg or from about 30, 40, 50, or 60 mg to about 80, 120, 180, 200, 250, 300 or 400 mg, wherein expression at the RNA or protein level of one or more gene(s) listed in Table 1, 2, 4, 5, and/or 6 in a biological sample from the patient taken before the antibody is administered deviates from expression of that gene(s) in a control biological sample in a direction consistent with excess IFN-γ. In addition, described herein is a use of a monoclonal anti-huIFN-γ antibody as a medicament to treat a patient suffering from an IFN-γ-mediated disease, wherein the dose of the antibody administered is from about 15, 30, 40, 50, or 60 milligrams to about 80, 120, 180, 200, 250, or 300 milligrams and wherein expression at the RNA or protein level of one or more gene(s) listed in Table 1, 2, 4, 5, and/or 6 in a biological sample taken from the patient taken before the antibody is administered deviates from expression of that gene(s) in a control biological sample in a direction consistent with excess IFN-γ. In some embodiments, the expression of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, or 40 genes listed in Table 1, 2, 4, 5, and/or 6 in the biological sample from the patient deviates from the expression of those genes in the control biological sample in a direction consistent with excess IFN-γ. The biological sample from the patient can exhibit expression of one or more of the following human genes at the RNA or protein level that deviates from expression in the control biological sample in a direction consistent with excess IFN-γ: indoleamine 2,3-dioxygenase 1 (IDO1), ankyrin repeat domain 22 (ANKRD22), chemokine (C-X-C motif) ligand 9 (CXCL9), family with sequence similarity 26, member F (FAM26F), purinergic receptor P2Y, G-protein coupled, 14 (P2RY14), guanylate binding binding protein 5 (GBP5), serpin peptidase inhibitor, clade G, member 1 (SERPING1), Fc fragment of IgG, high affinity Ib, receptor (CD64), guanylate binding protein 1, interferon-inducible, 67 kDa (GBP1), chemokine (C-X-C motif) ligand 10 (CXCL10), ets variant 7 (ETV7), lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), serpin peptidase inhibitor clade B (ovalbumin), member 2 (SERPINB2), matrix metallopeptidase 19 (MMP19), radical S-adenosyl methionine domain containing 2 (RSAD2), heparin sulfate (glucosamine) 3-O-sulfotransferase 1 (HS3ST1), indoleamine 2,3-dioxygenase 2 (IDO2), programmed death ligand-1 (PD-L1), basic leucine zipper transcription factor, ATF-like 2 (BATF2), Fc fragment of IgG, high affinity Ib, receptor (FCGR1B or CD64), activating transcription factor 3 (ATF3), pyruvate dehydrogenase kinase, isozyme 4 (nuclear gene encoding mitochondrial protein; PDK4), and/or CD274. In some embodiments, the biological sample from the patient can exhibit elevated expression at the RNA or protein level of GBP1 as compared to expression in the control biological sample. The IFN-γ-mediated disease can be systemic lupus erythematosus (SLE), discoid lupus, lupus nephritis, psoriasis, or an inflammatory bowel disease, including Crohn's disease and ulcerative colitis. The dose of the anti-huIFN-γ antibody can be from about 40 mg or 60 mg to about 300 mg, from about 20 mg or 80 mg to about 200 or 250 mg, from about 60 or 100 mg to about 180 mg, or about 40, 50, 60, 70, 80, 90, 100, 120, 150, or 180 mg. The anti-huIFN-γ antibody can be administered subcutaneously or intravenously. A gluococorticoid and/or mycophenolate mofetil, azathioprine, leflunomide, methotrexate, or an anti-malarial can be administered concurrently with the antibody.
In another aspect, described herein is a method for treating a patient having an IFN-γ-mediated disease, for example SLE or an inflammatory bowel disease, with an IFN-γ inhibitor comprising: (a) determining the level(s) of expression in a biological sample from the patient of one or more genes listed in Tables 1, 2, 4, 5, and/or 6 at the RNA or protein level, wherein level of expression of the same gene(s) in a control biological sample is known or determined; (b) comparing the level(s) of expression of the gene(s) in the biological sample from the patient and in the control biological sample; and (c) if the level(s) of expression of the gene(s) in the biological sample from the patient deviate from the levels of expression of the gene(s) in the control biological sample in a direction consistent with excess IFN-γ, administering to the patient a therapeutically effective dose of an IFN-γ inhibitor. In addition, described herein is a use of an IFN-γ inhibitor as a medicament to treat a patient having an IFN-γ-mediated disease, for example SLE or an inflammatory bowel disease, (a) wherein the level(s) of expression in a biological sample from the patient of one or more gene(s) listed in Tables 1, 2, 4, 5, and/or 6 at the RNA or protein level is determined, (b) wherein the level(s) of expression of the same gene(s) in a control biological sample is known or determined, (c) wherein the level(s) of expression of the same gene(s) in the biological sample from the patient and the control biological sample are compared, and (d) wherein if the level(s) of expression of the gene(s) in the biological sample from the patient deviate from the levels of expression of the gene(s) in the control biological sample in a direction consistent with excess IFN-γ, a therapeutically effective dose of the IFN-γ inhibitor is administered. The one or more genes listed in Tables 1, 2, 4, 5, and/or 6 of (a) can include at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, or 40 genes. The IFN-γ inhibitor can be a human or humanized anti-huIFN-γ antibody. The dose of the anti-huIFN-γ antibody administered can be from about 15, 30, or 60 mg to about 300 mg, from about 20, 40, or 80 mg to about 250 mg, or from about 40, 50, or 60 mg to about 120, 150, 180 or 200 mg. The patient can have discoid lupus, lupus nephritis, psoriasis, ulcerative colitis, or Crohn's disease. The biological sample from the patient can exhibit expression of one or more of the following genes at the RNA or protein level that deviates from expression in the control biological sample in a direction consistent with excess IFN-γ: indoleamine 2,3-dioxygenase 1 (IDO1), ankyrin repeat domain 22 (ANKRD22), chemokine (C-X-C motif) ligand 9 (CXCL9), family with sequence similarity 26, member F (FAM26F), purinergic receptor P2Y, G-protein coupled, 14 (P2RY14), guanylate binding binding protein 5 (GBP5), serpin peptidase inhibitor, clade G, member 1 (SERPING1), Fc fragment of IgG, high affinity Ib, receptor (CD64), guanylate binding protein 1, interferon-inducible, 67 kDa (GBP1), chemokine (C-X-C motif) ligand 10 (CXCL10), ets variant 7 (ETV7), lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), serpin peptidase inhibitor clade B (ovalbumin), member 2 (SERPINB2), matrix metallopeptidase 19 (MMP19), radical S-adenosyl methionine domain containing 2 (RSAD2), heparin sulfate (glucosamine) 3-O-sulfotransferase 1 (HS3ST1), indoleamine 2,3-dioxygenase 2 (IDO2), programmed death ligand-1 (PD-L1), basic leucine zipper transcription factor, ATF-like 2 (BATF2), Fc fragment of IgG, high affinity Ib, receptor (FCGR1B or CD64), activating transcription factor 3 (ATF3), pyruvate dehydrogenase kinase, isozyme 4 (nuclear gene encoding mitochondrial protein; PDK4), and/or CD274. The IFN-γ inhibitor can be an anti-huIFN-γ antibody that has a heavy chain complementarity determining region 1 (CDR1) comprising the amino acid sequence of SEQ ID NO:34, a heavy chain complementarity determining region 2 (CDR2) comprising the amino acid sequence of SEQ ID NO:35, a heavy chain complementarity determining region 3 (CDR3) comprising the amino acid sequence of SEQ ID NO:36 or SEQ ID NO:37, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO:38, SEQ ID NO:39, or SEQ ID NO:40, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO:41 or SEQ ID NO:42, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO:43 or SEQ ID NO:44. A gluococorticoid and/or mycophenolate mofetil, azathioprine, leflunomide, methotrexate, or an anti-malarial can be administered concurrently with the antibody.
In another aspect, described herein is method for identifying a patient having an IFN-γ-mediated disease who can benefit from treatment with an IFN-γ inhibitor comprising: (a) determining the level(s) of expression in a biological sample from the patient of one or more of one of the genes listed in Table 1, 2, 4, 5, and/or 6 at the RNA or protein level, wherein level(s) of expression of the same gene(s) in a control biological sample is known or determined; (b) comparing the levels of expression of the gene(s) in the biological sample from the patient and in the control biological sample; and (c) if the level(s) of expression of the gene(s) in the biological sample from the patient deviate from the level(s) in the control biological sample in a direction consistent with excess IFN-γ, determining that the patient can benefit from treatment with an IFN-γ inhibitor and/or administering a therapeutically effective dose of an IFN-γ inhibitor. The one or more genes listed in Tables 1, 2, 4, 5, and/or 6 of (a) can include at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, or 40 genes. The one or more genes can be from Table 1, 2, 4, 5, or 6. In addition, described herein is a use of an IFN-γ inhibitor as a medicament for treating a patient having an IFN-γ-mediated disease, wherein the level(s) of expression in a biological sample from the patient of one or more of one of the genes listed in Table 1, 2, 4, 5, and/or 6 is determined at the RNA or protein level, wherein the level(s) of expression of the same gene(s) in a control biological sample is known or determined; wherein the level(s) of expression of the gene(s) in the biological sample from the patient and in the control biological sample are compared; and wherein if the level(s) of expression of the gene(s) in the biological sample from the patient deviate from the level(s) in the control biological sample in a direction consistent with excess IFN-γ, determining that the patient can benefit from treatment with an IFN-γ inhibitor and/or administering a therapeutically effective dose of an IFN-γ inhibitor. The IFN-γ inhibitor can be an anti-human IFN-γ antibody, for example an antibody comprising the amino acid sequences of SEQ ID NOs: 6 and 8, 10 and 12, 14, and 16, 14 and 31, or 30 and 12. The therapeutically effective dose can be from 60 mg to 500 mg, from 80 mg to 400 mg, from 100 mg to 350 mg, from 60 mg to 180 mg, or from 120 mg to 300 mg. The IFN-γ-mediated disease can be SLE including discoid lupus and lupus nephritis, an inflammatory bowel disease including Crohn's disease and ulcerative colitis, or psoriasis, among other IFN-γ-mediated diseases disclosed herein. The gene(s) can include one or more of the following genes: indoleamine 2,3-dioxygenase 1 (IDO1), ankyrin repeat domain 22 (ANKRD22), chemokine (C-X-C motif) ligand 9 (CXCL9), family with sequence similarity 26, member F (FAM26F), purinergic receptor P2Y, G-protein coupled, 14 (P2RY14), guanylate binding binding protein 5 (GBP5), serpin peptidase inhibitor, clade G, member 1 (SERPING1), Fc fragment of IgG, high affinity Ib, receptor (CD64), guanylate binding protein 1, interferon-inducible, 67 kDa (GBP1), chemokine (C-X-C motif) ligand 10 (CXCL10), ets variant 7 (ETV7), lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), serpin peptidase inhibitor clade B (ovalbumin), member 2 (SERPINB2), matrix metallopeptidase 19 (MMP19), radical S-adenosyl methionine domain containing 2 (RSAD2), heparin sulfate (glucosamine) 3-O-sulfotransferase 1 (HS3ST1), indoleamine 2,3-dioxygenase 2 (INDO2), programmed death ligand-1 (PD-L1), basic leucine zipper transcription factor, ATF-like 2 (BATF2), Fc fragment of IgG, high affinity Ib, receptor (FCGR1B or CD64), activating transcription factor 3 (ATF3), pyruvate dehydrogenase kinase, isozyme 4 (nuclear gene encoding mitochondrial protein; PDK4), and/or CD274. A gluococorticoid and/or mycophenolate mofetil, azathioprine, leflunomide, methotrexate, or an anti-malarial can be administered concurrently with the antibody.
Further described herein is a method for treating a patient suffering from an IFN-γ-mediated disease comprising: (a) determining the level(s) of expression at the RNA or protein level in a biological sample from the patient of one or more of the genes in Table 1, 2, 4, 5, and/or 6; (b) then administering to the patient a pharmacodynamically effective dose of an IFN-γ inhibitor, for example an anti-huIFN-γ antibody; (c) then determining the level of expression of the gene(s) of step (a) in a biological sample from the patient; and (d) if the level(s) of expression of the gene(s) determined in step (c), as compared to the level(s) of expression determined in step (a), is modulated in a direction consistent with inhibition of IFN-γ, then continuing treatment of the patient with another pharmacodynamically effective dose of the IFN-γ inhibitor. The one or more genes listed in Tables 1, 2, 4, 5, and/or 6 of (a) can include at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, or 40 genes. In addition, described herein is the use of an IFN-γ inhibitor antibody, for example an anti-huIFN-γ antibody, as a medicament for treating a patient suffering from an IFN-γ-mediated disease, wherein (a) the level of expression at the RNA or protein level in a biological sample from the patient of one or more of the genes in Table 1, 2, 4, 5, and/or 6 is determined, (b) then a pharmacodynamically effective dose of the IFN-γ inhibitor is administered to the patient, (c) then the level(s) of expression of the gene(s) of step (a) in a biological sample from the patient is determined, and (d) if the level(s) of expression of the gene(s) determined in step (c), as compared to the level(s) of expression determined in step (a), is modulated in a direction consistent with inhibition of IFN-γ, then continuing treatment of the patient with another pharmacodynamically effective dose of the IFN-γ inhibitor. For an IFN-γ inhibitor that is an anti-huIFN-γ antibody, the pharmacodynamically effective dose can be from about 15, 30, or 60 mg to about 300 mg, from about 20, 40, or 80 mg to about 250 mg, or from about 60 mg to about 180 or 220 mg. The IFN-γ-mediated disease can be selected from the group consisting of SLE, lupus nephritis, discoid lupus, psoriasis, and inflammatory bowel diseases including ulcerative colitis and Crohn's disease. The human genes whose level(s) of expression are determined in (a) and (c) can be selected from the group consisting of: indoleamine 2,3-dioxygenase 1 (IDO1), ankyrin repeat domain 22 (ANKRD22), chemokine (C-X-C motif) ligand 9 (CXCL9), family with sequence similarity 26, member F (FAM26F), purinergic receptor P2Y, G-protein coupled, 14 (P2RY14), guanylate binding binding protein 5 (GBP5), serpin peptidase inhibitor, clade G, member 1 (SERPING1), Fc fragment of IgG, high affinity Ib, receptor (CD64), guanylate binding protein 1, interferon-inducible, 67 kDa (GBP1), chemokine (C-X-C motif) ligand 10 (CXCL10), ets variant 7 (ETV7), lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), serpin peptidase inhibitor clade B (ovalbumin), member 2 (SERPINB2), matrix metallopeptidase 19 (MMP19), radical S-adenosyl methionine domain containing 2 (RSAD2), heparin sulfate (glucosamine) 3-O-sulfotransferase 1 (HS3ST1), indoleamine 2,3-dioxygenase 2 (IDO2), programmed death ligand-1 (PD-L1), basic leucine zipper transcription factor, ATF-like 2 (BATF2), Fc fragment of IgG, high affinity Ib, receptor (FCGR1B or CD64), activating transcription factor 3 (ATF3), pyruvate dehydrogenase kinase, isozyme 4 (nuclear gene encoding mitochondrial protein; PDK4), and/or CD274.
In another aspect, a method is described for treating a patient suffering from an IFN-γ-mediated disease, for example SLE, lupus nephritis, discoid lupus, psoriasis, or an inflammatory bowel disease, with an IFN-γ inhibitor, for example an anti-huIFN-γ antibody, comprising the following steps: (a) determining the level(s) of expression at the RNA or protein level of one or more genes listed in Tables 1, 2, 4, 5, and/or 6 in a biological sample from the patient; (b) thereafter administering a pharmacodynamically effective dose of the IFN-γ inhibitor to the patient; (c) thereafter determining the level(s) of expression of the gene(s) of (a) in a second biological sample from the patient; and (d) if the level(s) of expression of the gene(s) in second biological sample of (c) is substantially the same as that in the biological sample of (a) or if the level of expression of the gene(s) in second biological sample of (c) deviates from the level of expression in the biological sample of (a) in a direction that is consistent with an excess of IFN-γ, then treatment with the IFN-γ inhibitor can be discontinued. In another aspect, described herein is a use of an IFN-γ inhibitor, for example an anti-huIFN-γ antibody, as a medicament for treating a patient suffering from an IFN-γ-mediated disease, wherein (a) the level(s) of expression at the RNA or protein level of one or more genes listed in Tables 1, 2, 4, 5, and/or 6 in a biological sample from the patient can be determined; (b) thereafter a pharmacodynamically effective dose of the IFN-γ inhibitor can be administered to the patient; (c) thereafter the level(s) of expression of the gene(s) of (a) in a second biological sample from the patient can be determined; and (d) if the level(s) of expression of the gene(s) in second biological sample of (c) is substantially the same as that in the biological sample of (a) or if the level of expression of the gene(s) in second biological sample of (c) deviates from the level of expression in the biological sample of (a) in a direction that is consistent with an excess of IFN-γ, then the treatment with the IFN-γ inhibitor can be discontinued. The one or more genes listed in Tables 1, 2, 4, 5, and/or 6 of (a) can include at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, or 40 genes. Where the IFN-γ inhibitor is an anti-huIFN-γ antibody, the pharmacodynamically effective dose can be from about 15, 30, or 60 mg to about 80, 100, 120, 150, 200, 250, or 300 mg, from about 20, 40, or 80 mg to about 90, 100, 120, 150, 180, or 250 mg, or from about 60 mg to about 180 or 220 mg. The patient can be suffering from systemic lupus erythematosus, lupus nephritis and/or discoid lupus. The patient can be suffering from psoriasis or an inflammatory bowel disease, including Crohn's disease or ulcerative colitis. The genes whose level(s) of expression are determined in (a) and (c) can be selected from the group consisting of: indoleamine 2,3-dioxygenase 1 (IDO1), ankyrin repeat domain 22 (ANKRD22), chemokine (C-X-C motif) ligand 9 (CXCL9), family with sequence similarity 26, member F (FAM26F), purinergic receptor P2Y, G-protein coupled, 14 (P2RY14), guanylate binding binding protein 5 (GBP5), serpin peptidase inhibitor, clade G, member 1 (SERPING1), Fc fragment of IgG, high affinity Ib, receptor (CD64), guanylate binding protein 1, interferon-inducible, 67 kDa (GBP1), chemokine (C-X-C motif) ligand 10 (CXCL10), ets variant 7 (ETV7), lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), serpin peptidase inhibitor clade B (ovalbumin), member 2 (SERPINB2), matrix metallopeptidase 19 (MMP19), radical S-adenosyl methionine domain containing 2 (RSAD2), heparin sulfate (glucosamine) 3-O-sulfotransferase 1 (HS3ST1), indoleamine 2,3-dioxygenase 2 (IDO2), programmed death ligand-1 (PD-L1), basic leucine zipper transcription factor, ATF-like 2 (BATF2), Fc fragment of IgG, high affinity Ib, receptor (FCGR1B or CD64), activating transcription factor 3 (ATF3), pyruvate dehydrogenase kinase, isozyme 4 (nuclear gene encoding mitochondrial protein; PDK4), and/or CD274. A gluococorticoid and/or mycophenolate mofetil, azathioprine, leflunomide, methotrexate, or an anti-malarial can be administered concurrently with the antibody.
Any of the methods or uses described above or below that utilize an anti-huIFN-γ antibody can utilize an anti-huIFN-γ antibody which can have a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO:34, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO:35, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO:36 or SEQ ID NO:37, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO:38, SEQ ID NO:39, or SEQ ID NO:40, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO:41 or SEQ ID NO:42, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO:43 or SEQ ID NO:44. In specific embodiments, the heavy chain CDR3 can comprise the amino acid sequence of SEQ ID NO:36, the light chain CDR1 can comprise the amino acid sequence of SEQ ID NO:38, the light chain CDR2 can comprise the amino acid sequence of SEQ ID NO:41, and the light chain CDR3 can comprise the amino acid sequence of SEQ ID NO:43. The heavy chain variable region of the antibody can comprise the amino acid sequence of SEQ ID NO:6, SEQ ID NO:10, SEQ ID NO:14, or SEQ ID NO:30, and the light chain variable region of the antibody can comprise the amino acid sequence of SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:16, or SEQ ID NO:31. The heavy chain variable region can comprise the amino acid sequence of SEQ ID NO:6, and the light chain variable region comprises the amino acid sequence of SEQ ID NO:8. The heavy chain variable region can comprise the amino acid sequence of SEQ ID NO:10, and the light chain variable region can comprise the amino acid sequence of SEQ ID NO:12. The heavy chain variable region can comprise the amino acid sequence of SEQ ID NO:14, and the light chain variable region can comprise the amino acid sequence of SEQ ID NO:16. The heavy chain variable region can comprise the amino acid sequence of SEQ ID NO:30, and the light chain variable region can comprise the amino acid sequence of SEQ ID NO:12. The heavy chain variable region can comprise the amino acid sequence of SEQ ID NO:14, and the light chain variable region can comprise the amino acid sequence of SEQ ID NO:31. The anti-huIFN-γ antibody can be a human, humanized, or chimeric antibody of the IgG, IgM, IgE, IgD, or IgA isotype. The anti-huIFN-γ antibody can be an IgG1, IgG2, IgG3, or IgG4 antibody.
In another aspect, herein is described a method for treating a patient suffering from an IFN-γ-mediated disease comprising administering to the patient a dose of an anti-IFN-γ antibody such that the concentration of total IFN-γ protein in the patient's serum is maintained at a plateau concentration for at least about two weeks following administration of the antibody, wherein the antibody comprises the amino acid sequences of SEQ ID NO:6 and SEQ ID NO:8. The dose can comprise at least about 20, 40, 60, or 80 milligrams and not more than 100, 200, 300, 400, or 500 milligrams of an anti-IFN-γ antibody. The plateau concentration can be maintained for at least about 3, 4, 5, 6, or 8 weeks after the antibody is administered. The plateau concentration of IFN-γ protein in the patient's blood can be from about 100 pg/mL to about 2000 pg/mL and/or at least about 200 or 300 pg/mL. The anti-IFN-γ antibody can comprise a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO:34, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO:35, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO:36 or SEQ ID NO:37, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO:38, SEQ ID NO:39, or SEQ ID NO:40, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO:41 or SEQ ID NO:42, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO:43 or SEQ ID NO:44. The anti-IFN-γ antibody can comprise the amino acid sequences of SEQ ID NOs: 6 and 8, SEQ ID NOs: 10 and 12, SEQ ID NOs: 14 and 16, SEQ ID NOs: 30 and 12, or SEQ ID NOs: 14 and 31. The dose of the anti-IFN-γ antibody can be at least about 20, 40, 60, 80, 100, 150, 180, 200, 220, or 250 mg and/or not more than 180, 200, 220, 240, 260, 280, 300, 350, 400, 450, or 500 mg and can be administered subcutaneously or intravenously. The level of IFN-γ in the patient's serum can remain above about 100, 200, 250, 300, or 350 picograms per milliliter for at least about 14, 16, 18, 20, 25, 30, 35, 40, 45, or 50 days subsequent to a single dose. The IFN-γ-mediated disease can be psoriasis, SLE, lupus nephritis, discoid lupus, or an inflammatory bowel disease such as Crohn's disease or ulcerative colitis. A gluococorticoid and/or mycophenolate mofetil, azathioprine, leflunomide, methotrexate, or an anti-malarial can be administered concurrently with the antibody.
Also herein is described a method for identifying a patient that can benefit from treatment with an IFN-γ inhibitor comprising the following steps: obtaining a biological sample from the patient; determining the levels of IFN-γ protein in the biological sample; and comparing the levels of IFN-γ protein in the biological sample from the patient with the levels determined in a control biological sample; wherein if the levels of total IFN-γ protein in the biological sample from the patient are higher than those in the control biological sample, then the patient is identified as a patient that may benefit from treatment with an IFN-γ inhibitor; and wherein if the levels of IFN-γ protein in the biological sample from the patient are lower than or the same as those in the control biological sample, then the patient is identified as a patient that may not benefit from treatment with an IFN-γ inhibitor. The levels of IFN-γ protein determined can be the levels of total IFN-γ protein, meaning the total of free and bound IFN-γ protein. The IFN-γ inhibitor can be an anti-IFN-γ antibody. The anti-IFN-γ antibody can comprise a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO:34, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO:35, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO:36 or SEQ ID NO:37, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO:38, SEQ ID NO:39, or SEQ ID NO:40, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO:41 or SEQ ID NO:42, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO:43 or SEQ ID NO:44. The anti-IFN-γ antibody can comprise the amino acid sequences of SEQ ID NO:6, SEQ ID NO:10, SEQ ID NO:14, or SEQ ID NO:30 and SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:16, or SEQ ID NO:31. A gluococorticoid and/or mycophenolate mofetil, azathioprine, leflunomide, methotrexate, or an anti-malarial can be administered concurrently with the antibody.
In another embodiment, herein is described a method for treating an IFN-γ-mediated disease comprising administering a dose of an IFN-γ inhibitor such that the concentration of total IFN-γ protein in serum is maintained at a plateau concentration for at least about two, three, four, five, six, seven, eight, nine, or ten weeks after administration. The plateau concentration of total IFN-γ protein in serum can be from about 200 to about 2000 picograms per milliliter (pg/mL). The plateau concentration of total IFN-γ protein in serum can be at least about 250, 300, or 350 pg/mL and/or not more than 600, 800, 1000, or 1500 pg/mL. The IFN-γ inhibitor can be a protein that binds to IFN-γ, for example, an anti-IFN-γ antibody. The anti-IFN-γ antibody can comprise a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO:34, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO:35, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO:36 or SEQ ID NO:37, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO:38, SEQ ID NO:39, or SEQ ID NO:40, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO:41 or SEQ ID NO:42, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO:43 or SEQ ID NO:44. The anti-IFN-γ antibody can comprise the amino acid sequences of SEQ ID NO:6, SEQ ID NO:10, SEQ ID NO:14, or SEQ ID NO:30 and SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:16, or SEQ ID NO:31. Further doses of the IFN-γ inhibitor can be administered at a frequency that maintains a serum concentration of total IFN-γ that is at least half of the plateau concentration. A gluococorticoid and/or mycophenolate mofetil, azathioprine, leflunomide, methotrexate, or an anti-malarial can be administered concurrently with the antibody.
In still another aspect, herein is described a method of determining a suitable dose of an IFN-γ inhibitor for a patient comprising: determining the total IFN-γ protein concentration in a biological sample from the patient before dosing; administering the IFN-γ inhibitor to the patient at a first dosage amount; and determining the total IFN-γ protein concentration in similar biological samples from the patient periodically after dosing; wherein the first dosage amount is not suitable because it is too low if a plateau concentration of total IFN-γ protein lasting at least two weeks is not achieved or wherein the first dosage amount is high enough if a plateau concentration of total IFN-γ protein lasting at least two weeks is achieved. If the first dosage amount is high enough, the patient can maintain a plateau concentration of IFN-γ protein for at least about two, three, four, five, six, seven, eight, nine, or 10 weeks after dosing. If this is the case, after the concentration of IFN-γ protein has fallen below the plateau level, a second, lower dosage amount of the IFN-γ inhibitor can be administered and total IFN-γ protein concentrations in similar biological samples from the patient can be determined periodically after dosing at the second, lower dosage amount. If the first dosage amount is too low, a second, higher dosage amount of the IFN-γ inhibitor can be subsequently administered and total IFN-γ protein concentration in similar biological samples from the patient can be determined periodically after dosing at the second, higher dosage amount. The biological samples can be serum samples or peripheral blood samples. The IFN-γ inhibitor can be a protein that binds to IFN-γ, for example an anti-IFN-γ antibody, which can be an anti-huIFN-γ antibody. Such an anti-IFN-γ antibody can comprise a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO:34, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO:35, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO:36 or SEQ ID NO:37, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO:38, SEQ ID NO:39, or SEQ ID NO:40, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO:41 or SEQ ID NO:42, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO:43 or SEQ ID NO:44. Such an anti-IFN-γ antibody can comprise the amino acid sequences of SEQ ID NO:6, SEQ ID NO:10, SEQ ID NO:14, or SEQ ID NO:30 and SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:16, or SEQ ID NO:31. The anti-IFN-γ antibody can be a human or humanized antibody. A gluococorticoid and/or mycophenolate mofetil, azathioprine, leflunomide, methotrexate, or an anti-malarial can be administered concurrently with the antibody.
In another aspect, herein is described a method of treating a patient suffering from an IFN-γ-mediated disease, the method comprising: selecting a patient, wherein expression at the RNA or protein level of one or more gene(s) listed in Table(s) 1, 2, 4, 5, and/or 6 in a biological sample taken from the patient before treating the patient deviates from expression of that gene(s) in a control biological sample in a direction consistent with excess IFN-γ pathway activation; and administering to the patient a monoclonal human anti-human interferon gamma (anti-huIFN-γ) antibody at a dose of from about 20 milligrams to about 300 milligrams, wherein the antibody is an IgG1 antibody and comprises the amino acid sequences of SEQ ID NO:6 and SEQ ID NO:8. The IFN-γ-mediated disease can be selected from the group consisting of systemic lupus erythematosus (SLE), discoid lupus, lupus nephritis, inflammatory bowel diseases including Crohn's disease and ulcerative colitis, psoriasis, alopecia areata, Sjogren's syndrome, antiphospholipid syndrome, rheumatoid arthritis, multiple sclerosis, polymyositis, dermatomyositis, type I diabetes, sarcoidosis, macrophage activation syndrome (MAS), and hemophagocytic lymphohistiocytosis (HLH). The expression of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, or 50 genes listed in Table(s) 1, 2, 4, 5, and/or 6 in the biological sample from the patient can deviate from the expression of those genes in the control biological sample in a direction consistent with excess IFN-γ pathway activation. The biological sample from the patient can exhibit elevated expression at the RNA or protein level as compared to expression in the control biological sample of one or more of the following genes: indoleamine 2,3-dioxygenase 1 (IDO1), ankyrin repeat domain 22 (ANKRD22), chemokine (C-X-C motif) ligand 9 (CXCL9), family with sequence similarity 26, member F (FAM26F), purinergic receptor P2Y, G-protein coupled, 14 (P2RY14), guanylate binding binding protein 5 (GBP5), serpin peptidase inhibitor, clade G, member 1 (SERPING1), Fc fragment of IgG, high affinity Ib, receptor (CD64), guanylate binding protein 1, interferon-inducible, 67 kDa (GBP1), chemokine (C-X-C motif) ligand 10 (CXCL10), ets variant 7 (ETV7), and/or programmed death ligand-1 (PD-L1). The dose can be from about 20 milligrams to about 300 milligrams, from about 80 milligrams to about 200, 250, or 300 milligrams, or from about 20 milligrams to about 60, 70, or 80 milligrams. The antibody can comprise the amino acid sequences of SEQ ID NO:17 and SEQ ID NO:18 and can be administered subcutaneously or intravenously. A gluococorticoid and/or mycophenolate mofetil, azathioprine, leflunomide, methotrexate, or an anti-malarial can be administered concurrently with the antibody.
In another embodiment, herein is described a method for treating a patient having an IFN-γ-mediated disease with a human anti-huIFN-γ antibody comprising: (a) taking a biological sample from the patient before treatment, wherein level(s) of expression of one or more genes listed in Table(s) 1, 2, 4, 5, and/or 6 at the RNA or protein level in the biological sample is determined and wherein level(s) of expression of the same gene(s) in a control biological sample is known or determined; (b) comparing the levels of expression of the gene(s) in the biological sample from the patient and in the control biological sample; and (c) if the level(s) of expression of the gene(s) in the biological sample from the patient deviate from the level(s) of expression of the gene(s) in the control biological sample in a direction consistent with excess IFN-γ pathway activation, administering to the patient a therapeutically effective dose of the antibody at a dose of from about 30, 40, 50, 60, or 70 mg to about 80, 100, 120, 150, 180, 250, or 300 mg, wherein the antibody comprises the amino acid sequences of SEQ ID NO:6 and SEQ ID NO:8. The IFN-γ-mediated disease can be selected from the group consisting of systemic lupus erythematosus (SLE), discoid lupus, lupus nephritis, inflammatory bowel diseases including Crohn's disease and ulcerative colitis, psoriasis, alopecia areata, Sjogren's syndrome, antiphospholipid syndrome, rheumatoid arthritis, multiple sclerosis, polymyositis, dermatomyositis, type I diabetes, sarcoidosis, macrophage activation syndrome (MAS), and hemophagocytic lymphohistiocytosis (HLH). The levels of expression of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, or 50 genes from Table 5 or 6 deviate from the levels of expression of the genes in the control biological sample in a direction consistent with excess IFN-γ pathway activation. The biological sample from the patient can exhibit elevated expression at the RNA or protein level as compared to expression in the control biological sample of one or more of the following genes: indoleamine 2,3-dioxygenase 1 (IDO1), ankyrin repeat domain 22 (ANKRD22), chemokine (C-X-C motif) ligand 9 (CXCL9), family with sequence similarity 26, member F (FAM26F), purinergic receptor P2Y, G-protein coupled, 14 (P2RY14), guanylate binding binding protein 5 (GBP5), serpin peptidase inhibitor, clade G, member 1 (SERPING1), Fc fragment of IgG, high affinity Ib, receptor (CD64), guanylate binding protein 1, interferon-inducible, 67 kDa (GBP1), chemokine (C-X-C motif) ligand 10 (CXCL10), ets variant 7 (ETV7), programmed death ligand-1 (PD-L1), basic leucine zipper transcription factor, ATF-like 2 (BATF2), Fc fragment of IgG, high affinity Ib, receptor (FCGR1B or CD64), activating transcription factor 3 (ATF3), pyruvate dehydrogenase kinase, isozyme 4 (nuclear gene encoding mitochondrial protein; PDK4), and/or CD274. The dose administered can be from about 5, 10, 20, or 30 mg to about 60, 70, or 80 mg or can be from about 60, 70, 80, 90, 100, or 120 mg to about 150, 180, 200, or 250 mg. A gluococorticoid and/or mycophenolate mofetil, azathioprine, leflunomide, methotrexate, or an anti-malarial can be administered concurrently with the antibody.
In a further aspect, herein is described a method for treating a patient suffering from an IFN-γ-mediated disease comprising: (a) taking a biological sample from the patient before administering a human anti-huIFN-γ antibody in step (b), wherein the level(s) of expression at the RNA or protein level in the biological sample from the patient of one or more of the genes in Table(s) 1, 2, 4, 5, and/or 6 is determined; (b) administering to the patient a pharmacodynamically effective dose of the human anti-huIFN-γ antibody, wherein the antibody has a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO:34, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO:35, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO:36 or SEQ ID NO:37, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO:38, SEQ ID NO:39, or SEQ ID NO:40, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO:41 or SEQ ID NO:42, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO:43 or SEQ ID NO:44; (c) taking a second biological sample taken from the patient after administration of the antibody, wherein the level(s) of expression of the gene(s) of step (a) in the second biological sample are determined; and (d) if the level(s) of expression of the gene(s) determined in step (c), as compared to the level(s) of expression determined in step (a), is modulated in a direction consistent with inhibition of IFN-γ, then continuing treatment of the patient with another pharmacodynamically effective dose of the antibody. The IFN-γ-mediated disease can be selected from the group consisting of systemic lupus erythematosus (SLE), discoid lupus, lupus nephritis, inflammatory bowel diseases including Crohn's disease and ulcerative colitis, psoriasis, alopecia areata, Sjogren's syndrome, antiphospholipid syndrome, rheumatoid arthritis, multiple sclerosis, polymyositis, dermatomyositis, type I diabetes, sarcoidosis, macrophage activation syndrome (MAS), and hemophagocytic lymphohistiocytosis (HLH). The pharmacodynamically effective dose can be from about 5, 10, 20, 30, 40, 50, or 60 mg to about 60, 70, 80, 90, or 100 mg or from about 60, 70, 80, 90, or 100 mg to about 120, 150, 180, 200, or 250 mg. The heavy chain CDR3 can comprise the amino acid sequence of SEQ ID NO:36, the light chain CDR1 comprises the amino acid sequence of SEQ ID NO:38, the light chain CDR2 comprises the amino acid sequence of SEQ ID NO:41, and the light chain CDR3 comprises the amino acid sequence of SEQ ID NO:43. The heavy chain variable region of the antibody can comprise the amino acid sequence of SEQ ID NO:6, SEQ ID NO:10, SEQ ID NO:14, or SEQ ID NO:30, and the light chain variable region of the antibody can comprise the amino acid sequence of SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:16, or SEQ ID NO:31. The antibody can comprise the amino acid sequences of SEQ ID NOs:6 and 8, 10 and 12, 14 and 16, 30 and 12, or 14 and 31. The level(s) of expression of one or more of the following genes at the protein or RNA level can be determined in steps (a) and (c): indoleamine 2,3-dioxygenase 1 (IDO1), ankyrin repeat domain 22 (ANKRD22), chemokine (C-X-C motif) ligand 9 (CXCL9), family with sequence similarity 26, member F (FAM26F), purinergic receptor P2Y, G-protein coupled, 14 (P2RY14), guanylate binding binding protein 5 (GBP5), serpin peptidase inhibitor, clade G, member 1 (SERPING1), Fc fragment of IgG, high affinity Ib, receptor (CD64), guanylate binding protein 1, interferon-inducible, 67 kDa (GBP1), chemokine (C-X-C motif) ligand 10 (CXCL10), ets variant 7 (ETV7), programmed death ligand-1 (PD-L1), basic leucine zipper transcription factor, ATF-like 2 (BATF2), Fc fragment of IgG, high affinity Ib, receptor (FCGR1B or CD64), activating transcription factor 3 (ATF3), pyruvate dehydrogenase kinase, isozyme 4 (nuclear gene encoding mitochondrial protein; PDK4), and/or CD274. A gluococorticoid and/or mycophenolate mofetil, azathioprine, leflunomide, methotrexate, or an anti-malarial can be administered concurrently with the antibody.
In still a further aspect, provided is method for treating a patient suffering from an IFN-γ-mediated disease with a human anti-huIFN-γ antibody comprising the following steps: (a) taking a biological sample from the patient before administering a human anti-huIFN-γ antibody in step (b), wherein the level(s) of expression at the RNA or protein level of one or more genes listed in Table(s) 1, 2, 3, 5 and/or 6 in the biological sample are determined; (b) administering to the patient the human anti-human IFN-γ antibody, wherein the antibody has a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO:34, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO:35, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO:36 or SEQ ID NO:37, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO:38, SEQ ID NO:39, or SEQ ID NO:40, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO:41 or SEQ ID NO:42, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO:43 or SEQ ID NO:44; (c) taking a second biological sample taken from the patient taken after administration of the antibody, wherein the level(s) of expression of the gene(s) of (a) are determined in the second biological sample; and (d) if the level(s) of expression of the gene(s) in second biological sample of (c): (i) is modulated in a direction consistent with inhibition of IFN-γ as compared to the level(s) of expression in the biological sample determined in (a), then continuing treatment of the patient with another pharmacodynamically effective dose of the antibody; or (ii) is substantially the same as that in the biological sample of (a) or deviates from the level of expression in the biological sample of (a) in a direction that is consistent with an excess of IFN-γ, then treatment with the anti-human IFN-γ antibody is discontinued. The anti-human IFN-γ antibody can be a human or humanized IgG1 antibody. The dose of the antibody administered in (b) can be from about 20, 30, 40, 60, 80, or 100 mg to about 120, 150, 180, 200, 250, or 300 mg or from about 10, 20, or 30 mg to about 80 mg. The dose can be about 30, 40, 50, 60, 70, 80, 100, 120, 150, or 180 mg. The IFN-γ-mediated disease can be selected from the group consisting of systemic lupus erythematosus (SLE), discoid lupus, lupus nephritis, inflammatory bowel diseases including Crohn's disease and ulcerative colitis, psoriasis, alopecia areata, Sjogren's syndrome, antiphospholipid syndrome, rheumatoid arthritis, multiple sclerosis, polymyositis, dermatomyositis, type I diabetes, sarcoidosis, macrophage activation syndrome (MAS), and hemophagocytic lymphohistiocytosis (HLH). A gluococorticoid and/or mycophenolate mofetil, azathioprine, leflunomide, methotrexate, or an anti-malarial can be administered concurrently with the antibody.
In still a further aspect, herein is described a method for treating a patient suffering from SLE, lupus nephritis, discoid lupus, psoriasis, or an inflammatory bowel disease comprising administering to the patient a dose of at least about 15, 20, 30, 40, 50, 60, or 100 milligrams and not more than about 80, 90, 100, 120, 150, 180, 200, 250, or 300 milligrams of an anti-human IFN-γ antibody, wherein the anti-human IFN-γ antibody comprises a heavy chain CDR1 comprising the amino acid sequence of SEQ ID NO:34, a heavy chain CDR2 comprising the amino acid sequence of SEQ ID NO:35, a heavy chain CDR3 comprising the amino acid sequence of SEQ ID NO:36 or SEQ ID NO:37, a light chain CDR1 comprising the amino acid sequence of SEQ ID NO:38, SEQ ID NO:39, or SEQ ID NO:40, a light chain CDR2 comprising the amino acid sequence of SEQ ID NO:41 or SEQ ID NO:42, and a light chain CDR3 comprising the amino acid sequence of SEQ ID NO:43 or SEQ ID NO:44. The anti-IFN-γ antibody can comprise the heavy and light chain variable region amino acid sequences of SEQ ID NOs: 6 and 8, SEQ ID NOs: 10 and 12, SEQ ID NOs: 14 and 16, SEQ ID NOs: 30 and 12, or SEQ ID NOs: 14 and 31. Levels of expression of at least 5 genes listed in Table(s) 1, 2, 4, 5, and/or 6 in a biological sample taken from the patient after administration of the antibody can deviate from levels of these genes in a similar biological sample taken from the patient taken at baseline in a direction consistent with inhibition of IFN-γ. The dose of the anti-IFN-γ antibody can be from about 5, 10, 20, 30, or 40 milligrams to about 60, 70, 80, 90, or 100 milligrams or from about 60, 70, 80, 90, 100, or 120 milligrams to about 125, 150, 180, 200, or 250 milligrams. The dose can be administered subcutaneously or intravenously. The level of total IFN-γ protein in the patient's serum can remain above about 200 pg/mL for at least about 2 weeks subsequent to a single dose. A gluococorticoid, optionally prednisone, and/or mycophenolate mofetil, azathioprine, leflunomide, methotrexate, or an anti-malarial can be administered concurrently with the antibody.
In another embodiment, herein is described a method for identifying SLE, psoriasis, or inflammatory bowel disease patients that can benefit from treatment with a human anti-human IFN-γ antibody and treating such patients comprising the following steps: (a) obtaining a biological sample from the patient before administration of the antibody, wherein the level of total IFN-γ protein in the biological sample is determined; (b) administering to the patient a dose of the antibody; (c) obtaining a second biological sample from the patient after administration of the antibody, wherein the level of total IFN-γ protein in the second biological sample is determined; and (d) if the level of total IFN-γ protein determined in (c) is higher than the level determined in (a), then continuing treatment with the antibody; wherein the antibody is an IgG1 antibody and comprises the amino acid sequences of SEQ ID NO:6, SEQ ID NO:10, SEQ ID NO:14, or SEQ ID NO:30 and SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:16, or SEQ ID NO:31. The antibody can comprise the amino acid sequences of SEQ ID NO:6 and SEQ ID NO:8.
In another aspect, provided herein is a method for treating an IFN-γ-mediated disease comprising administering to a patient in need thereof a dose of a human anti-human IFN-γ antibody comprising the amino acid sequences of SEQ ID NO:6 and SEQ ID NO:8 such that the concentration of total IFN-γ protein in the patient's serum is maintained at a plateau concentration for at least about two, three, four, five, or six weeks following administration. The plateau concentration of total IFN-γ protein in serum can be from about 100, 200, or 300 pg/mL to about 2000 pg/mL.
Provided herein are methods of treatment using IFN-γ inhibitors, methods for identifying patients likely to benefit from such treatment, and methods for determining suitable dosages. The methods utilize techniques for determining levels of proteins and/or RNA transcripts in a biological sample. Using such techniques, overlapping sets of transcripts, the expression of which is modulated by IFN-γ ex vivo and by AMG 811 in vivo, have been defined. Similarly, it has been found that a particular set of transcripts and at least one serum protein is downregulated by an IFN-γ inhibitor in human patients in vivo, thus making it possible to determine dosages at which these effects are observable and to determine which transcripts in blood cells are regulated by IFN-γ in vivo. Dosages determined by such methods can be used to treat patients. Similarly, assay of these sets of transcripts can be used to predict which patients are likely to respond to treatment, i.e., those that overexpress genes whose expression can be downregulated by the IFN-γ inhibitor and/or those that are up- or down-regulated by activation of the IFN-γ pathway. Similarly, these techniques can be used to determine whether a particular dosage of an IFN-γ inhibitor is having a biological effect, especially in patients suffering from an episodic disease in which changes in symptoms may not be readily apparent. Further, if an IFN-γ inhibitor is not having a biological effect as measured by expression of such biomarkers, treatment with the IFN-γ inhibitor can be discontinued and, optionally, a new treatment can be initiated. Alternatively, if an IFN-γ inhibitor is having a biological effect as measured by biomarker expression, treatment with the IFN-γ inhibitor can be continued.
An “antibody,” as meant herein, can be a full length antibody containing two full length heavy chains (containing a heavy chain variable region (VH), a first constant domain (CH1), a second constant domain (CH2) and a third constant domain (CH3)) and two full length light chains (containing a light chain variable region (VL) and a light chain constant region (CL)). Alternatively, an antibody can contain only a single VH region or VL region, such as the single variable domain antibodies described in, e.g., U.S. Pat. No. 7,563,443. The portions of this reference describing such antibodies are incorporated herein by reference. An antibody can also be a fragment of a full length antibody that binds to the target antigen, which may also contain other sequences. For example, an antibody can be an a single chain antibody that comprises VH and VL regions joined by a peptide linker (i.e., an scFv), a Fab fragment, which may or may not include the hinge region, an scFv-Fc, among many other possible formats. The term “antibody” comprises any protein that includes at least one VH or VL region.
“Baseline,” as meant herein, is a timepoint before dosing begins in a clinical trial that can typically be up to about a month before dosing with a test drug or placebo begins.
A “biological sample,” as meant herein, is a sample of a liquid, such as blood or cerebrospinal fluid, or a solid piece of tissue, such as a skin biopsy or an excised tumor, taken from a patient. Two biological samples are said to be “similar” if they are taken from similar tissue. For example, two whole blood samples from different patients are similar, as meant herein. Further, two skin biopsies taken from lesions from different patients are also similar as meant herein.
A drug or treatment is “concurrently” administered with another drug or treatment, as meant herein, if it is administered in the same general time frame as the other drug, optionally, on an ongoing basis. For example, if a patient is taking Drug A once a week on an ongoing basis and Drug B once every six months on an ongoing basis, Drugs A and B are concurrently administered whether or not they are ever administered on the same day. Similarly, if Drug A is taken once per week on an ongoing basis and Drug B is administered only once or a few times on a daily basis, Drugs A and B are concurrently administered as meant herein. Similarly, if both Drugs A and B are administered for short periods of time either once or multiple times within a one month period, they are administered concurrently as meant herein as long as both drugs are administered within the same month.
A “control group,” as meant herein, is a group of healthy people to which a patient having a particular disease is compared in some way. For example, expression of certain genes at the protein or RNA level in a biological sample from a patient can be compared to expression of those genes in one or more similar biological samples from people in a control group. In some situations, normal ranges for levels of expression for particular genes can be established by analysis of biological samples from members of a control group. In such a situation, expression levels in a given sample from a patient having a disease can be compared to these established normal ranges to determine whether expression in the sample from the patient is normal or above or below normal.
A “control biological sample,” as meant herein, is (a) a group of biological samples from a “control group” that is compared to a similar biological sample from a patient or (b) a biological sample from non-diseased tissue from a patient that is compared to a biological sample from diseased tissue from the same patient. For example, a skin biopsy from non-lesional tissue from a discoid lupus patient can be a “control biological sample” for a skin biopsy from lesional tissue from the same discoid lupus patient. Alternatively, a group of skin biopsies from a healthy “control group” can be a “control biological sample” to which a skin biopsy from a discoid lupus patient can be compared. Alternatively, a group of blood samples from healthy people can be a “control biological sample” to which to compare a blood sample from an SLE patient.
“Determining the level of expression,” as meant herein, refers to determining the amount of expression of a gene in a biological sample at either the protein or RNA level. Such levels can be determined in biological samples from patients suffering from an IFN-γ-mediated disease and in control biological samples from healthy people or from non-diseased tissue from the patient (for example in a skin sample not having psoriatic plaques in a psoriasis patient). The comparison between a patient's biological sample from diseased tissue (or blood in a systemic disease) and a control biological sample can provide information as to whether the biomarkers in question are expressed at normal, elevated, or lowered levels. To assay for protein levels in liquid samples, enzyme-linked immunosorbent assay (ELISA) can be used. See, e.g., Berzofsky et al., Antigen-Antibody Interactions and Monoclonal Antibodies, Chapter 12 in F
An “IFN-γ inhibitor,” as meant herein, is a molecule, which can be a protein or a small molecule, that can inhibit the activity of IFN-γ as assayed by the A549 bioassay, which can be performed as follows.
One of the established properties of IFN-γ is its anti-proliferative effect on a variety of cell populations. See e.g. Aune and Pogue (1989), J. Clin. Invest. 84: 863-875. The human lung cell line A549 has been used frequently in publications describing the bioactivity of IFN-γ. See e.g. Aune and Pogue, supra; Hill et al. (1993), Immunology 79: 236-240. In general, the activity of an inhibitor is tested at a concentration of a stimulating substance, in this case IFN-γ, that falls within a part of the dose-response curve where a small change in dose will result in a change in response. One of skill in the art will realize that if an excessive dose of the stimulating substance is used, a very large dose of an inhibitor may be required to observe a change in response. Commonly used concentrations for a stimulating substance are EC80 and EC90 (the concentrations at which 80% or 90%, respectively, of the maximum response is achieved).
An IFN-γ dose-response curve can be generated to determine the EC90 for the lung epithelial carcinoma cell line A549. In subsequent experiments, different concentrations of an IFN-γ-inhibitor can be mixed with a fixed dose of IFN-γ, and the ability of the IFN-γ-inhibitor to inhibit the biological activity of the anti-proliferative effect of IFN-γ can be determined. The assay can be performed for 5 days, and proliferation can be measured by determining fluorescence generated by the reduction of ALAMARBLUE™ (AccuMed International, Inc., Chicago, Ill.), a dye used to indicate cell growth, by metabolically active, i.e., proliferating, cells. See e.g., de Fries and Mitsuhashi, 1995, J. Clin. Lab. Analysis 9(2): 89-95; Ahmed et al., 1994, J. Immunol. Methods 170(2): 211-24.
An “IFN-γ-mediated disease,” as meant herein, is a disease in which evidence from an in vitro or a non-human model system or from human patients indicates IFN-γ is likely to play a role in driving the course of the disease. Diseases that are included among “IFN-γ-mediated diseases” include, for example, diseases in which patient samples display elevated levels of a type I or II IFN or a type I-related “IFN signature” pattern of gene expression. See, e.g., Baechler et al. (2003), Proc. Natl. Acad. Sci. 100(5): 2610-2615; Bennett et al. (2003), J. Exp. Med. 197(6): 711-723. The portions of these references that describe the IFN signature pattern of gene expression are incorporated herein by reference. IFN-γ-mediated diseases include, for example, SLE, discoid lupus, lupus nephritis, alopecia areata, Graves' disease, Sjogren's syndrome, antiphospholipid syndrome, rheumatoid arthritis, juvenile idiopathic arthritis, psoriasis, psoriatic arthritis, dermatomyositis, polimyositis, bacterial septicemia, antigen/antibody complex diseases (Arthus-like syndromes), anaphylactic shock, multiple sclerosis (MS), type I diabetes, thyroiditis, graft versus host disease, transplant rejection, atherosclerosis, immune-mediated hepatic lesions, autoimmune hepatitis, inflammatory bowel diseases such as Crohn's disease and ulcerative colitis, giant cell arteritis, uveitis, macrophage activation syndrome (MAS), hemophagocytic lymphohistiocytosis (HLH), macrophage activation syndrome (MAS), sarcoidosis, and scleroderma.
The term “interferon signature” refers to the characteristic pattern of over- and under-expression of genes observed in response to type 1 interferons. See, e.g., Bennett et al. (2003), J. Exp. Med. 197(6): 711-723; Baechler et al. (2003), Proc. Natl. Acad. Sci 100(5): 2610-2615, the relevant portions of which are incorporated herein by reference.
The expression of a particular gene in a biological sample from a patient is said to “deviate” from the expression of that gene in a control biological sample or in a biological sample from the patient taken at a different time “in a direction consistent with excess IFN-γ” or “in a direction consistent with excess IFN-γ pathway activation” when it is found to be up- or down-modulated at the RNA or protein level in the same direction as noted in Table 1 below for blood samples stimulated with IFN-γ. Table 1 lists the group of genes that are up- or down-regulated in human whole blood from healthy volunteers in response to stimulation with IFN-γ ex vivo. Thus, for a gene to “deviate” from the expression of that gene in a control biological sample or in a biological sample from the patient taken at a different time “in a direction consistent with excess IFN-γ”, it must be listed in Table 1.
Similarly, the expression of a gene can be “modulated in a direction consistent with inhibition of IFN-γ” or “modulated in a direction consistent with IFN-γ pathway inhibition.” This means that the expression of the gene is decreased if the expression of that gene is up-regulated in response to ex vivo stimulation with IFN-γ as noted in Table 1, and that the expression is increased if the expression of that gene is down-regulated in response to ex vivo stimulation with IFN-γ as noted in Table 1.
A “monoclonal antibody,” as meant herein, is an antibody that specifically binds to an antigen at an epitope, wherein a preparation of the antibody contains substantially only antibodies having the same amino acid sequence, although there may be certain low levels of antibodies that include one or more alteration of certain amino acids or internal, amino-terminal, or carboxyterminal cleavages of the amino acid chain. Such minor alterations may occur during the production of the antibodies or during storage. In contrast, a preparation of a “polyclonal” antibody contains antibodies having many different amino acid sequences that bind to different epitopes on the same antigen. The term “monoclonal antibody” includes, without limitation, the following kinds of molecules: tetrameric antibodies comprising two heavy and two light chains such as an IgG, IgA, IgD, IgM, or IgE antibody; single chain antibodies (scFv's) containing a VH and a VL region joined by a peptide linker; variable domain antibodies as described in, for example, U.S. Pat. No. 7,563,443, the relevant portions of which are incorporated herein by reference, that comprise one or more single variable domains, each of which can, by itself, bind specifically to antigen; Fab, Fab′, or Fab(ab′)2 fragments; humanized or chimeric antibodies; various kinds of monovalent antibodies, including those described in U.S. Patent Application Publication 2007/0105199, the relevant portions of which are incorporated by reference herein; and bispecific antibodies, including those with mutationally altered constant regions such as those described in, e.g., U.S. Patent Application Publication 2010/0286374 or U.S. Patent Application Publication 2007/0014794; and scFv-Fc molecules.
A “pharmacodynamically effective dose,” as meant herein, is a dose of an IFN-γ inhibitor that can modulate the expression of a gene “in a direction consistent with inhibition of IFN-γ,” as defined herein. Genes regulated by IFN-γ ex vivo are listed in Table I.
A “plateau concentration,” as meant herein, is a concentration of total IFN-γ that is observed in a biological sample, such as peripheral blood or serum, taken from a patient after dosing with an IFN-γ inhibitor. The plateau concentration is higher than the concentration of total IFN-γ protein in a similar biological sample taken from the same patient at baseline, and once it is attained, it is “substantially maintained” for at least about 2, 3, 4, 5, 6, 7, 8, 9, or 10 weeks. A concentration is considered to be substantially maintained if it varies by no more than ±50% of its total value.
A “therapeutically effective dose,” as meant herein, is a dose that is effective to decrease one or more observable symptoms of a disease or to delay onset or mitigate the symptoms of a more serious condition that often follows after the condition that a patient is currently experiencing. A therapeutically effective dose may, but need not necessarily, completely eliminate all symptoms of the disease. For example, in lupus nephritis, a lowering of the degree of proteinuria and lowering or stabilization of serum concentration of creatinine would indicate an improvement in kidney function and, thus, an improvement in a symptom of the disease. Hence, a dose of an IFN-γ inhibitor that could cause a decrease in proteinuria and lower or stabilize serum creatinine concentration would be both a therapeutically effective dose and a phamacodynamically effective dose.
Interferons were first recognized for their ability to impede viral infections and are now known to also play important roles in mediating host defense against infection by bacteria and other pathogens, as well as in integrating early, innate immune responses and later adaptive immune responses. Decker et al. (2002), J. Clin. Invest. 109(10): 1271-1277. There are at least two types of human and murine interferons: the type I interferons, including primarily a number of IFNα subtypes and IFNβ, plus IFNω, IFNε, IFNδ, IFNτ, and IFNκ; and type II interferon, a class of one member, that is, IFN-γ. Sozzani et al. (2010), Autoimmunity 43(3): 196-203. Type I interferons are produced by most cell types under appropriate conditions and are known to play a role in resisting viral infection, whereas IFN-γ is produced by limited cell types, such as NK cells and activated Th1 cells, and is known to strengthen immune responses to unicellular microorganisms, intracellular pathogens, and viruses. In humans, type I and type II interferons bind to distinct receptors, which are, respectively, the interferon alpha/beta receptor (IFNAR, containing IFNAR1 and IFNAR2 chains) and the interferon gamma receptor (IFNGR, containing IFNGR1 and IFNGR2 chains). Both of these receptors are associated with Janus kinases which, along with other intracellular proteins, mediate the transcriptional activation of genes having interferon-stimulated response elements (IFNAR only) and genes having IFN-γ-activated site elements (both IFNAR and IFNGR). Decker et al. (2002), J. Clin. Invest. 109(10): 1271-1277; Trinchieri (2010), J. Exp. Med. 207(10): 2053-2063. Thus, although the sets of genes activated by type I and II interferons differ, there is considerable overlap in the two sets. See, e.g., Baechler et al. (2003), Proc. Natl. Acad. Sci. 100(5): 2610-2615; van Baarsen et al. (2006), Genes and Immunity 7: 522-531. Some differences may be related to different magnitudes of response of a particular gene to a given dose of type I or II interferon. Kariuki et al. (2009), J. Immunol. 182: 34-38
The relationship between the biological activities of type I and II interferons is complex and intertwined and dependent on the expression of other genes. Thus, different cell types can have differing responses to the IFNs. IFN-γ is a more potent activator of phagocytic cell and antigen-presenting cell function than type I interferons. Trinchieri (2010), J. Exp. Med. 207(10): 2053-2063. Both type I and II interferons can be produced in the course of an immune response. In some situations, type I interferons can inhibit production of IFN-γ, and in other situations, for example, in the absence of STAT1, type I interferons can increase IFN-γ production. Nguyen et al. (2000), Nature Immunol. 1(1): 70-76; Brinkman et al. (1993), J. Exp. Med. 178: 1655-1663; Trinchieri (2010), J. Exp. Med. 207(10): 2053-2063. Further, low levels of type I IFN produced during stimulation of dendritic cells are essential for production of IL-12 heterodimer, which induces production of IFN-γ. However, in the presence of high levels of type I IFN, production of IL-12 p40 is suppressed, thus limiting the production of IL-12 heterodimer. Thus, the relationship between type I and II interferons is already known to be complex and may be even more complex in vivo than is currently understood.
A number of diseases have been associated with changes in gene expression patterns that are thought to reflect elevated activity of IFNs. Some investigators refer to such a gene expression pattern as an “interferon signature,” which includes somewhat different groups of genes depending on exactly how the signature is defined. See, e.g., Baehler et al. (2003), Proc. Natl. Acad. Sci. 100(5): 2610-2615; Bennett et al. (2003), J. Exp. Med. 197(6): 711-723. Since IFN-γ- and type I IFN-activated genes are overlapping sets, an elevated interferon signature score could implicate elevated activity of IFN-γ and/or a type I IFN. In a number of autoimmune and/or inflammatory diseases, many of which characterized by extremely heterogeneous and episodic symptoms, it has been found that a substantial proportion of patients or persons at increased risk of disease have a gene expression pattern reflecting elevated IFN activity and/or have elevated levels of an IFN or a protein whose expression is known to be induced by type I IFN. These diseases include, for example, SLE (Bauer et al. (2006), PLoS Med. 2(12): 2274-2284; Armananzas et al. (2009), IEEE Transactions on Inform. Tech. in Biomed. 13(3): 341-350), systemic sclerosis (Sozzani et al. (2010), Autoimmunity 43(3): 196-203), alopecia areata (Ghoreishi et al. (2010), Br. J. Dermatol. 163: 57-62), Graves' disease (Ruiz-Riol et al. (2011), J. Autoimmunity 36: 189-200), Sjogren's syndrome (Sozzani et al. (2010), Autoimmunity 43(3): 196-203; Emamian et al. (2009), Genes Immun. 10: 285-296), antiphospholipid syndrome (Armañanzas et al. (2009), IEEE Transactions on Inform. Tech. in Biomed. 13(3): 341-350), inflammatory bowel diseases including Crohn's disease and ulcerative colitis (see, e.g., U.S. Pat. No. 6,558,661), rheumatoid arthritis (Dawidowicz et al. (2011), Ann. Rheum. Dis. 70: 117-121), psoriasis (Pietrzak et al. (2008), Clin. Chim. Acta 394: 7-21), multiple sclerosis (van Baarsen et al. (2006), Genes and Immunity 7: 522-531), dermatomyositis (Somani et al. (2008), Arch. Dermatol. 145(4): 1341-1349), polymyositis (Sozzani et al. (2010), Autoimmunity 43(3): 196-203), type I diabetes (Reynier et al. (2010), Genes Immun. 11: 269-278), sarcoidosis (Lee et al. 2011, Ann. Dermatol. 23(2): 239-241; Kriegova et al. (2011), Eur. Respir. J. 38: 1136-1144), and hemophagocytic lymphohistiocytosis (HLH; Schmid et al. (2009), EMBO Molec. Med. 1(2): 112-124).
Elevated expression of genes whose expression is induced by IFNs is found in about half of adult SLE patients and the majority of pediatric SLE patients. Baechler et al. (2003), Proc. Natl. Acad. Sci. U.S.A.; 100: 2610-2615; Bennett et al. (2003), J. Exp. Med. 197: 711-723; Kirou et al. (2004), Arthr. & Rheum. 50: 3958-3967. Overexpression of some of these gene products at the protein level, such as CXCL10 (IP-10), CCL2 (MCP-1), and chemokine (C-C motif) ligand 19 (CCL19; also known as (MIP-3B), correlates with disease severity and is predictive of disease flares within a year. Bauer et al. (2009), Arthr. & Rheum 60(10): 3098-3107; Bauer et al. (2006), PLoS. Med. 3: e491; Lit et al. (2006), Ann. Rheum. Dis. 65: 209-215; Narumi et al. (2000), Cytokine 12: 1561-1565; Baechler et al. (2003), Proc. Natl. Acad. Sci 100(5): 2610-2615. Specifically, CXCL10 has been shown to be a major contributor to the overall association of disease with IFN signature and an independent predictor of future disease flare. Bauer et al. (2009), Arthritis & Rheum. 60: 3098-3107; Bauer et al. (2009), Arthritis Rheum. 60:S209.
A variety of other data suggest a pathogenic role for IFN-γ in SLE. Studies involving murine models of SLE consistently support the role of IFN-γ in the pathogenesis of disease. Balomenos et al. (1998), J. Clin. Invest. 101: 364-371; Jacob et al. (1987), J. Exp. Med. 166: 798-803; Peng et al. (1997), J. Clin. Invest 99: 1936-1946; Hron and Peng (2004), J. Immunol. 173: 2134-2142; Seery et al. (1997), J. Exp. Med. 186: 1451-1459. In addition, lupus-like syndromes have been observed in patients treated for a variety of diseases with IFN-γ and/or IFN-α. Wandl et al. (1992), Clin. Immunol. Immunopathol. 65(1): 70-74; Graninger et al. (1991), J. Rheumatol. 18: 1621-1622. A correlation between severity of disease activity and amounts of IFN-γ secreted by a patient's peripheral blood mononuclear cells in response to stimulation by lipopolysaccharide and phytohaemagglutinin has been observed. Viallard et al. (1999), Clin. Exp. Immunol. 115: 189-195. Similarly, peripheral blood T cells from SLE patients expressed significantly more IFN-γ in response to CD28 costimulation than did T cells from normal controls. Harigai et al. (2008), J. Immunol. 181: 2211-2219. Thus, many different kinds of evidence indicate that IFN-γ is likely to play a role in mediating SLE.
SLE is an autoimmune disease of unknown etiology marked by autoreactivity to nuclear self antigens. Its clinical manifestations are so diverse that it is questionable whether it is truly a single disease or a group of related conditions. Kotzin, B. L. 1996. Systemic lupus erythematosus. Cell 85:303-306; Rahman, A., and Isenberg, D. A. 2008. Systemic lupus erythematosus. N. Engl. J. Med. 358:929-939. Symptoms can include the following: constitutional symptoms such as malaise, fatigue, fevers, anorexia, and weight loss; diverse skin symptoms including acute, transient facial rashes in adults, bullous disease, and chronic and disfiguring rashes of the head and neck; arthritis; muscle pain and/or weakness; cardiovascular symptoms such as mitral valve thickening, vegetations, regurgitation, stenosis, pericarditis, and ischemic heart disease, some of which can culminate in stroke, embolic disease, heart failure, infectious endocarditis, or valve failure; nephritis, which is a major cause of morbidity in SLE; neurological symptoms including cognitive dysfunction, depression, psychosis, coma, seizure disorders, migraine, and other headache syndromes, aseptic meningitis, chorea, stroke, and cranial neuropathies; hemotologic symptoms including leucopenia, thrombocytopenia, serositis, anemia, coagulation abnormalities, splenomegaly, and lymphadenopathy; and various gastrointestinal abnormalities. Id; Vratsanos et al., “Systemic Lupus Erythematosus,” Chapter 39 in Samter's Immunological Diseases, 6th Edition, Austen et al., eds., Lippincott Williams & Wilkins, Philadelphia, P A, 2001.
Severity of symptoms varies widely, as does the course of the disease. SLE can be deadly. The disease activity of SLE patients can be rated using an instrument such as the Systemic Lupus Erythrmatosus Disease Activity Index (SLEDAI), which provides a score for disease activity that takes into consideration the following symptoms, which are weighted according to severity: seizure, psychosis, organic brain syndrome, visual disturbance, cranial nerve disorder, lupus headache, vasculitis, arthritis, myositis, urinary casts, hematuria, proteinuria, pyuria, new rash, alopecia, mucosal ulcers, pleurisy, pericarditis, low complement, increased DNA binding, fever, thrombocytopenia, and leucopenia. Bombardier et al. (1992), Arthr. & Rheum. 35(6): 630-640, the relevant portions of which are incorporated herein by reference. The treatments described herein can be useful in lessening or eliminating symptoms of SLE as measured by SLEDAI.
Another method for assessing disease activity in SLE is the British Isles Lupus Assessment Group (BILAG) index, which is a disease activity assessment system for SLE patients based on the principle of the physician's intention to treat. Stoll et al. (1996), Ann. Rheum Dis. 55: 756-760; Hay et al. (1993), Q. J. Med. 86: 447-458. The portions of these references describing the BILAG are incorporated herein by reference. A BILAG score is assigned by giving separate numeric or alphabetic disease activity scores in each of eight organ-based systems, general (such as fever and fatigue), mucocutaneous (such as rash and alopecia, among many other symptoms), neurological (such as seizures, migraine headaches, and psychosis, among many other symptoms), musculoskeletal (such as arthritis), cardiorespiratory (such as cardiac failure and decreased pulmonary function), vasculitis and thrombosis, renal (such as nephritis), and hematological. Id. The treatments described herein can be useful in lessening or eliminating symptoms of SLE as measured by the BILAG index.
Discoid lupus is a particular form of chronic cutaneous lupus in which the patient has circular lesions that occur most commonly in sun-exposed areas. The lesions can leave disfiguring scars. Up to about 25% of SLE patients develop discoid lupus lesions at some point in the course of their disease. These lesions may occur in patients that have no other symptoms of SLE. The symptoms that relate specifically to skin in cutaneous forms of lupus can be scored using the Cutaneous Lupus Erythematosus Disease Area and Severity Index (CLASI), which takes into consideration both disease activity (including erythema, scaling, and hypertrophy of the skin in various areas, as well as mucus membrane lesions and alopecia) and disease-related damage (including dyspigmentation, scarring, atrophy, and panniculitis of the skin as well as scarring of the scalp). Such symptoms can be affected by a treatment for discoid lupus such as an IFN-γ inhibitor. The CLASI is described in detail by Albrecht et al. (2005), J. Invest. Dermatol. 125: 889-894. The portions of this article that describe what the CLASI is, what symptoms are included in it, and how to use it are incorporated herein by reference. The treatments described herein can be useful for lessening or eliminating symptoms of discoid lupus as measured by the CLASI.
Another cutaneous disease that can be mediated by IFN-γ is psoriasis. Symptoms of psoriasis include itchy, dry skin that can be pink/red in color, thickened and covered with flakes. It is a common condition and is episodic in nature, that is, patients can experience flares and periods of remission. There are five type of psoriasis, erythrodermic, guttate, inverse, plaque, and pustular. Plaque psoriasis is the most common type. Clinical studies with an anti-human IFN-γ antibody indicate that inhibition of IFN-γ can lessen symptoms of psoriasis as measured by a Psoriasis Area and Severity Index (PASI) score, thus demonstrating that IFN-γ plays a role in mediating psoriasis, at least in some patients. International Application Publication WO 2003/097083.
The severity of disease in psoriasis patients can be measured in a variety of ways. One way disease activity is commonly measured in clinical trials the PASI score. A PASI score can range from 0 to 72, with 72 being the most severe disease. For purposes of PASI assessment, the body is considered to consist of four sections, legs, torso (that is, stomach, chest, back, etc.), arms, and head, which are considered to have 40%, 30%, 20%, and 10% of a person's skin, respectively. For each section, the percent of the area of skin affected is estimated and transformed into a grade of from 0 to 6, with 0 being no affected skin and 6 being 90-100% of the skin of the body section in question being affected. The severity of disease is scored by separately considering three features of the affected skin, redness (erythema), scaling, and thickness, and assigning a severity score of from 0 to 4 for each feature for each body section. The sum of the severity scores for all three features for each body section is calculated, and this sum is multiplied by the weight of the respective section as determined by how much of the total skin that body section contains and by the percent of the body section affected. After this number is calculated for each body section, these numbers are added to yield the PASI score. Thus, the PASI score can be expressed as follows:
PASI=0.1(score for percent of the head affected)(sum of 3 severity scores for the head)+0.2(score for percent of the arms affected)(sum of 3 severity scores for the arms)+0.3(score for percent of the torso affected)(sum of 3 severity scores for the torso)+0.4(score for percent of the legs affected)(sum of 3 severity scores for the legs)
The descriptions of PASI scores in the following two references are incorporated by reference herein: Feldman and Krueger (2005), Ann. Rheum. Dis. 64: 65-68, Langley and Ellis (2004), J. Am. Acad. Dermatol. 51(4): 563-69.
Many clinical trials refer to changes in PASI score over the course of the study. For example, a PASI 75 at a particular time point in a clinical trial means that the PASI score of a patient has decreased by 75% as compared to that patient's PASI score at baseline. Similarly a PASI 50 or a PASI 90 denotes a 50% or 90% reduction in PASI score.
Another commonly used measure of psoriasis severity in clinical trials is the static Physicians Global Assessment (sPGA). The sPGA is typically a six category scale rating ranging from 0=none to 5=severe. ENBREL® (etanercept), Package Insert, 2008. A sPGA score of “clear” or “minimal” (sometimes alternately referred to as “almost clear”) requires no or minimal elevation of plaques, no or only very faint redness, and no scaling or minimal scaling over <5% of the area of the plaques. ENBREL® (etanercept), Package Insert, 2008. The individual elements of psoriasis plaque morphology or degree of body surface area involvement are not quantified. Nonetheless, sPGA scores correlate to some extent with PASI scores. Langley and Ellis (2004), J. Am. Acad. Dermatol. 51(4): 563-69. The methods described herein lessen or eliminate psoriasis symptoms as measured by a PASI or an sPGA score.
Multiple sclerosis (MS) is an autoimmune disease characterized by damage to the myelin sheath that surrounds nerves, which leads to inhibition or total blockage of nerve impulses. The disease is very heterogeneous in clinical presentation, and there is a wide variation in response to treatment as well. van Baarsen et al. (2006), Genes and Immunity 7: 522-531. Environmental factors, possibly viral infection, as well as genetic susceptibility, are thought to play a role in causing MS. Id. Symptoms can include loss of balance, muscle spasms, tremors, weakness, loss of ability to walk, loss of coordination, various bowel and bladder problems, numbness, pain, tingling, slurred speech, difficulty chewing and swallowing, double vision, loss of vision, uncontrollable eye movements, and depression, among many other possible symptoms. In many patients episodes in which symptoms occur are interspersed with long periods of remission. A subset of MS patients exhibit a pattern of gene expression consistent with high type I IFN activity, although a correlation between this pattern of gene expression and disease severity has not been demonstrated. Id. The methods described herein can lessen or eliminate one or more symptoms of MS.
Type I diabetes is an autoimmune disease resulting in the destruction of insulin-producing β-cells in the pancreas, which leads to a lack of insulin. Antibodies against β-cell epitopes are detected in the sera of pre-diabetic patients, suggesting that there is an autoimmune process in progress during a long asymptomatic period that precedes the onset of clinical symptoms. Reynier et al. (2010), Genes and Immunity 11: 269-278. The lack of insulin leads to high glucose levels in the blood and urine causing a variety of symptoms including frequent urination, increased hunger and thirst, fatigue, and weight loss. It is generally treated with insulin, a treatment that must be continued indefinitely. The causes of type I diabetes are not completely clear, but are thought to include a genetic component. About thirty percent of non-diabetic siblings of diabetic patients are found to express high levels of RNAs encoded by a group genes activated by type I interferon, although diabetic patients do not overexpress these RNAs. Reynier et al. (2010), Genes and Immunity 11: 269-278. Such overexpression may be an indication of future disease. Since various strategies for inhibiting the progress of the disease are known and may be discovered in the future, it is useful to detect the disease before the onset of clinical symptoms. The methods described herein may be useful to detect and/or treat type I diabetes before and/or after the onset of clinical symptoms.
Inflammatory bowel diseases (IBDs) such as Crohn's disease and ulcerative colitis are also IFN-γ-mediated diseases as meant herein. Crohn's disease is chronic and debilitating inflammatory bowel disease that is thought to reflect a overly-active TH1-mediated immune response to the flora of the gut. The lesions of Crohn's disease can appear anywhere in the bowel and occasionally elsewhere in the gastrointestinal tract. Ulcerative colitis lesions, on the other hand, usually appear in the colon. The nature of the lesions is also different, but the diseases are sufficiently similar that is sometimes difficult to distinguish them clinically. See, e.g., U.S. Pat. No. 6,558,661.
A variety of evidence indicates that IFN-γ plays a role in inflammatory bowel diseases. Results from a clinical study using an anti-human IFN-γ antibody in patients with Crohn's disease indicated that the antibody produced dose dependent, though somewhat marginal, improvements in Crohn's Disease Activity Index (CDAI) scores. International Application Publication WO 2003/097082. The CDAI is described in Best et al. (1976), Gastroenterology 70: 439-444. The portions of this reference that describe the CDAI and how to use it are incorporated herein by reference. In addition, data from model systems for inflammatory bowel disease indicate that IFN-γ inhibition can be effective in reducing the symptoms of inflammatory bowel diseases. See, e.g., U.S. Pat. No. 6,558,661, the relevant portions of which are incorporated herein by reference. The methods described herein may be useful for selecting IBD patients to treat, for treating IBD patients, and/or for reducing or eliminating symptoms of IBD.
Sarcoidosis is a systemic granulomatous disease that can affect essentially any tissue, but it primarily affects the lung and lymphatic systems. It is characterized by the presence of noncaseating epithelioid cell granulomas in more than one organ system. Most commonly the granulomas are found in lung, lymph nodes, skin, liver, and/or spleen, among other possible sites. It can be fatal. For example, fibrosis of the lungs can lead to fatality. Increases in IFN-γ levels have been observed in sarcoidosis. Carter and Hunninghake, “Sarcoidosis,” Chapter 47 in Samter's Immunological Diseases, 6th Edition, Austen et al., eds., Lippincott Williams & Wilkins, Philadelphia, P A, 2001. IFN-γ plays a crucial role in the pathogenesis of sarcoidosis. See, e.g., Kriegova et al. (2011), Eur. Respir. J. 38: 1136-1143. The methods described herein may be useful for selecting sarcoidosis patients to treat, for treating sarcoidosis patients, and/or for reducing or eliminating symptoms of sarcoidosis.
Hemophagocytic lymphohistiocytosis (HLH) is a rare and often fatal disease having clinical manifestations including fever, hepatosplenomegaly, lymphadenopathy, jaundice and rash. Laboratory findings associated with HLH include lymphocytosis and histiocytosis and the pathologic finding of hemophagocytosis. Pancytopenia, elevated serum ferritin levels, and abnormal liver enzymes are also frequently present. IFN-γ has been clearly implicated in driving the disease process in a murine model for hemophagocytic anemia. Zoller et al. (2011), J. Exp. Med. 208(6): 1203-1214. The methods described herein may be useful for selecting HLH patients to treat, for treating HLH patients, and/or for reducing or eliminating symptoms of HLH.
For any IFN-γ-mediated disease, it would be valuable to have a test to identify patients likely to benefit from a particular treatment. Due to the episodic nature of symptoms in many such diseases, it would also be desirable to be able to evaluate the biological effects of a given treatment without having to wait for the recurrence of symptoms, or lack thereof. Thus, in the methods described herein, expression of one or more biomarkers listed in Table 1, 2, 4, 5, and/or 6 can be measured before treatment begins as a method for determining whether genes regulated by IFN-γ are dysregulated in the patient. If so, an IFN-γ inhibitor may be an effective treatment. Expression of biomarkers (such as those in Table 1, 2, 4, 5, and/or 6) can also be measured after treatment has begun to determine whether the dosage of the IFN-γ inhibitor is having a biological effect. Such information can inform treatment decisions and may be correlated with clinical signs and symptoms of the disease. For example, if the IFN-γ inhibitor is not having a biological effect, treatment can be discontinued or a different dosage can be administered. If the IFN-γ inhibitor is having a biological effect, then the treatment can be continued. Such information can also be used to determine what doses are having a phamacodynamic effect, i.e., are modulating the expression of a gene or genes whose expression is regulated by IFN-γ.
Appropriate for use in the methods described herein are inhibitors of human IFN-γ, which can be proteins, small molecules, or proteins conjugated to non-protein moieties, such as, for example, a pegylated protein. The capacity of a particular small molecule or protein to inhibit the activity of human IFN-γ can be measured by the A549 bioassay described above.
Numerous proteins that are IFN-γ inhibitors are known. For example, anti-IFN-γ antibodies can inhibit IFN-γ. These can be human, humanized, or chimeric antibodies that bind to human IFN-γ and/or other mammalian homologs such a rhesus, cynomolgus monkey, chimpanzee, mouse, rabbit, rat, baboon, gorilla, and/or marmoset IFN-γ. They can be of the IgG, IgE, IgM, IgA, or IgD isotypes. They can be IgG1, IgG2, IgG3, or IgG4 antibodies. In some embodiments, these antibodies that contain the following pairs of heavy and light chain variable regions: SEQ ID NOs:6 and 8; SEQ ID NOs:10 and 12; SEQ ID NOs: 14 and 16; SEQ ID NOs:14 and 31; and SEQ ID NOs:30 and 12. Further, these antibodies can contain the following pairs of heavy and light chain amino acid sequences: SEQ ID NO:19 and SEQ ID NO:20; SEQ ID NO:17 and SEQ ID NO:18; SEQ ID NO:21 and SEQ ID NO:22; SEQ ID NO:32 and SEQ ID NO:20; or SEQ ID NO:21 and SEQ ID NO:33. These antibodies, which include an antibody called AMG 811 that is used in the clinical trials described in the Examples below, are described in detail in U.S. Pat. No. 7,335,743. The portions of U.S. Pat. No. 7,335,743 that describe these antibodies are incorporated herein by reference. These antibodies can contain a heavy chain CDR1 comprising SEQ ID NO:34, a heavy chain CDR2 comprising SEQ ID NO:35, a heavy chain CDR3 comprising SEQ ID NO:36 or SEQ ID NO:37, a light chain CDR1 comprising SEQ ID NO:38. SEQ ID NO:39, or SEQ ID NO:40, a light chain CDR2 comprising SEQ ID NO:41 or SEQ ID NO:42, and a light chain CDR3 comprising SEQ ID NO:43 or SEQ ID NO:44. In particular embodiments, the antibody can include the following heavy chain CDR1, CDR2, and CDR3 and light chain CDR1, CDR2, and CDR3, respectively: a) SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, and SEQ ID NO:43; b) SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:41, and SEQ ID NO:43; c) SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:41, and SEQ ID NO:43; or d) SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:40, SEQ ID NO:42, and SEQ ID NO:44.
Other IFN-γ inhibitors are also contemplated. Any monoclonal anti-IFN-γ antibody capable of inhibiting the activity of human IFN-γ can be used. Among these are the humanized anti-IFN-γ antibody fontolizumab (HUZAF® PDL Biopharma, Inc.). The sequences of the heavy and light chain variable regions of this antibody are reported in U.S. Patent Application Publication 2002/0091240 as SEQ ID NOs:6 and 8, respectively. These sequences and any other description of this antibody included in U.S. Patent Application Publication 2002/0091240 are incorporated herein by reference. The IFN-γ inhibitors described in U.S. Pat. No. 5,451,658 (the relevant portions of which, including the amino acid sequences of the inhibitors, are incorporated herein by reference) are among the IFN-γ inhibitors that can be used to perform the methods described herein. Similarly, IFN-γ inhibitors comprising a portion of a naturally occurring human IFN-γ receptor, the sequence of which is reported in Aguet et al. (1988), Cell 55: 273-280 (the relevant portions of which are incorporated herein by reference), can be used to practice the methods described herein. One such IFN-γ inhibitor is a fusion protein comprising the extracellular region of the human IFN-γ receptor fused to a human IgG1 Fc region, which is described in U.S. Pat. No. 6,558,661, the relevant portions of which are incorporated herein by reference. Other such IFN-γ inhibitors are the fusion proteins containing part or all of the extracellular regions of IFN-γ receptor a and IFN-γ receptor (3, as described is U.S. Patent Application Publication 2007/0020283, the relevant portions of which are incorporated herein by reference. Another IFN-γ inhibitor is the cytokine which is a specific antagonist of IFN-γ, which is described in U.S. Pat. No. 5,612,195, the relevant portions of which are incorporated herein by reference. Still other IFN-γ inhibitors are the genetically modified, inactivated protein derivatives of human IFN-γ described in U.S. Patent Application Publication 2010/0158865, the relevant portions of which are incorporated herein by reference. Further, a BCRF1 protein, which inhibits production of IFN-γ, is an IFN-γ inhibitor that can be used to practice the methods described herein. U.S. Pat. No. 5,736,390 describes such BCRF1 proteins, and the portions of U.S. Pat. No. 5,736,390 that describe these proteins and how to make them are incorporated herein by reference.
In addition, various chemical compounds (which are not proteins) are known to inhibit the synthesis of IFN-γ and are considered to be IFN-γ inhibitors, as meant herein. Among these are the bis phenol or phenoxy compounds and derivatives thereof described in U.S. Pat. No. 5,880,146. The portions of U.S. Pat. No. 5,880,146 that describes such compounds and how to make them are incorporated herein by reference. Similarly, the compounds described in U.S. Pat. No. 5,985,863 that inhibit production of IFN-γ by inhibiting production of IFN-γ inducing factor or inhibiting interleukin-1β converting enzyme are IFN-γ inhibitors that can be used to practice the methods described herein.
With regard to protein inhibitors of IFN-γ, these can be made by methods well known in the art. Antibodies, for example, can be made by introducing hybridoma cells that produce the antibody into the peritoneal cavity of a live mouse, a so-called ascites preparation. Hybridoma cells producing an antibody can also be cultured in vitro. Other in vivo methods of protein production include, for example, protein production in hen eggs, tobacco leaves, and milk. Protein inhibitors of IFN-γ can also be made in prokaryotic or eukaryotic host cells, including bacteria such as Escherichia coli, various yeasts including Saccharomyces cerevisiae and Pichia pastoris, and various kinds of mammalian cells including, without limitation, human cells, baby hamster kidney (BHK) cells, Chinese hamster ovary (CHO) cells, VERO, BHK, HeLa, CV1 (including Cos), MDCK, 293, 3T3, myeloma cell lines (e.g., NSO, NS1), PC12, and WI38 cells. Such host cells, into which nucleic acids encoding the desired protein have been introduced, can be cultured in appropriate culture medium, many of which are known in the art, and the desired protein can be recovered from the cell mass or the cell culture medium.
CHO cells are widely used for the production of complex recombinant proteins, e.g. cytokines, clotting factors, and antibodies (Brasel et al. (1996), Blood 88:2004-2012; Kaufman et al. (1988), J. Biol. Chem. 263:6352-6362; McKinnon et al. (1991), J. Mol. Endocrinol. 6:231-239; Wood et al. (1990), J. Immunol. 145:3011-3016). The dihydrofolate reductase (DHFR)-deficient mutant cell lines (Urlaub et al. (1980), Proc. Natl. Acad. Sci. U.S.A. 77: 4216-4220, which is incorporated by reference), DX811 and DG-44, are desirable CHO host cell lines because the efficient DHFR selectable and amplifiable gene expression system allows high level recombinant protein expression in these cells (Kaufman R. J. (1990), Meth. Enzymol. 185:537-566, which is incorporated by reference). In addition, these cells are easy to manipulate as adherent or suspension cultures and exhibit relatively good genetic stability. CHO cells and recombinant proteins expressed in them have been extensively characterized and have been approved for use in clinical commercial manufacturing by regulatory agencies. The methods of the invention can also be practiced using hybridoma cell lines that produce an antibody. Methods for making hybridoma lines are well known in the art. See e.g. Berzofsky et al. in Paul, ed., Fundamental Immunology, Second Edition, pp. 315-356, at 347-350, Raven Press Ltd., New York (1989). Cell lines derived from the above-mentioned lines are also suitable for making IFN-γ inhibitor proteins.
Described herein are methods for determining a pharmacodynamically effective dosage of an IFN-γ inhibitor for treating an IFN-γ mediated disease, as well as methods of treatment using such dosages. The method includes assaying for the expression of one or more genes at either the protein or RNA level both before and after administering an IFN-γ inhibitor. The gene(s) can be selected from the genes listed in Table 1 (genes whose expression is modulated in human blood by stimulation with IFN-γ ex vivo), Table 2 (twenty genes whose expression is modulated in human blood to the greatest extent by IFN-γ stimulation ex vivo), Table 3 (ten genes whose expression is modulated to the greatest extent by administration of AMG 811 in vivo), Table 5 (genes whose expression is modulated by a neutralizing human anti-human IFN-γ antibody in vivo), and/or Table 6 (genes whose expression is modulated in human blood by stimulation with IFN-γ ex vivo and whose expression is modulated by a neutralizing human anti-human IFN-γ antibody in vivo). Those doses that modulate the expression of one or more of these genes in a direction consistent with inhibition of IFN-γ can be used to treat an IFN-γ mediated disease.
Alternatively or in addition, a pharmacodynamically effective dosage and/or dosing frequency of an IFN-γ inhibitor can be determined by the effect of an IFN-γ inhibitor on the serum concentration of total IFN-γ protein. For example, some doses of an IFN-γ inhibitor, for example an IFN-γ binding protein such as AMG 811, can cause elevation of the serum levels of total IFN-γ. See
In a particular embodiment, at least the lower end of dosage ranges for treating patients having SLE and/or lupus nephritis with a human anti-human IFN-γ antibody called AMG 811 have been clarified. See Examples 3 and 4 and
For any IFN-γ inhibitor that contains a protein, for example an anti-huIFN-γ antibody such as AMG 811, the dose can be at least about 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, or 250 mg and/or may not exceed 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, or 2000 mg. For example, a per-treatment dose of about 15-500, 20-400, 30-300, 60-180, 80-200, or 100-200 milligrams of the antibody can be used to treat an IFN-γ-mediated disease. Alternatively, a per-treatment dose of about 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 270, 290, 300, 350, or 400 milligrams can be used.
Alternatively, a dose can be gauged on the basis of a patient's body weight. For example, a dose of at least about 0.1, 0.15, 0.2. 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, or 5.0 milligrams per kilogram (mg/kg) and/or not more than about 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, or 10 mg/kg can be administered. In some embodiments, the dose can be from about 0.2 mg/kg to about 10 mg/kg, from about 0.25 mg/kg to about 8 mg/kg, from about 0.5 mg/kg to about 5 mg/kg, from about 1 mg/kg to about 2 mg/kg, from about 1 mg/kg to about 3 mg/kg, or from about 3 mg/kg to about 5 mg/kg.
Alternatively, a dose can be administered on the basis of the calculated body surface area of a patient. For example, a dose of at least about 4, 6, 8, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 130, 140, 150, 160, 170, 180, or 190 milligrams per square millimeter (mg/mm2) and/or not more than 200, 220, 240, 260, 280, 300, 320, 340, 360, or 380 mg/mm2 can be administered. In some embodiments the dose can be from about 8 mg/mm2 to about 380 mg/mm2, from about 10 mg/mm2 to about 300 mg/mm2, from about 20 mg/mm2 to about 190 mg/mm2, from about 40 mg/mm2 to about 80 mg/mm2, from about 80 mg/mm2 to about 200 mg/mm2.
Since many IFN-γ-mediated diseases are chronic and/or recurrent, repeated doses of the IFN-γ inhibitor, optionally an anti-huIFN-γ antibody, may be required. Repeated doses can be administered, for example, twice per week, once a week, every two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve weeks, or once every one, two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve months.
It is always advantageous for clinicians and patients to be able to predict whether a given treatment will be effective for a particular patient. This is particularly true where the disease commonly includes long asymptomic periods, either alternating with symptomic periods or before the onset of symptoms. Provided herein are methods for determining which patients are likely to be successfully treated with an IFN-γ inhibitor. As discussed above, there are a number of IFN-γ mediated diseases. These include various autoimmune and inflammatory diseases including SLE, including discoid lupus and lupus nephritis, rheumatoid arthritis, type I diabetes, multiple sclerosis, psoriasis, dermatomyositis, sarcoidosis, HLH, and IBDs including Crohn's disease and ulcerative colitis, among a number of others. In the Examples below, it is shown that some genes whose expression was found to be upregulated by IFN-γ ex vivo are downregulated by an anti-human IFN-γ antibody in vivo. These genes are listed in Table 6 below.
Provided are methods for identifying patients suffering from an IFN-γ mediated disease likely to benefit from treatment with an IFN-γ inhibitor comprising determining whether the expression of one or more genes listed in Tables 1, 2, 4, 5, and/or 6 in a biological sample from the patient deviates from the expression of that gene(s) in a control biological sample in a direction consistent with excess IFN-γ. If the level of expression of one or more genes mentioned above in the biological sample from the patient deviates from the levels of expression in the control biological sample in a direction consistent with excess IFN-γ, it can indicate that the patient is a candidate for treatment with an IFN-γ inhibitor. The IFN-γ inhibitor can be an anti-huIFN-γ antibody or an IFN-γ receptor.
In another aspect, patients likely to benefit from treatment with an IFN-γ inhibitor can be identified by determining the levels of total IFN-γ in a biological sample from the patient as, for example, described in Example 3. Patients with undetectable or very low levels of total IFN-γ may not benefit from therapy with an IFN-γ inhibitor, for example an IFN-γ binding protein such an antibody. On the other hand, patients whose biological samples have total IFN-γ levels that are substantially higher than those detected in a control biological sample can benefit from therapy with an IFN-γ inhibitor, for example an IFN-γ binding protein such an antibody. Thus, determination of total IFN-γ levels in a biological sample from a patient can be used to identify patients likely to benefit from therapy with an IFN-γ inhibitor, for example an IFN-γ binding protein such as an anti-IFN-γ antibody.
The methods provided herein can be useful for patients and clinicians in deciding whether to continue a treatment with an IFN-γ inhibitor in a particular patient. In the clinical studies reported in the Examples below, it is reported that the expression of a number of genes is modulated in a statistically significant manner in response to treatment with an anti-huIFN-γ antibody. In a variable and episodic disease such as, for example, SLE or MS, it may be impossible to tell from clinical signs and symptoms whether a treatment is having an effect within a given time period, such as, for example, 1, 2, or 3 weeks or 1, 2, 3, 4, 5, or 6 months. If, however, the expression of a biomarker listed in Table 1, 2, 4, 5, and/or 6 is modulated in a direction consistent with inhibition of IFN-γ, then it can be known that the treatment is having a biological effect, even though the patient might not show immediate changes in signs and symptoms. In such a case, according to the judgment of a clinician, it can be reasonable to continue treatment. However, if the expression of a biomarker listed in Table 1, 2, 4, 5, and/or 6 is not modulated by the IFN-γ inhibitor or is modulated in a direction consistent with an excess of IFN-γ, and there is not a change in signs and symptoms, it could be reasonably concluded that the patient is not responding to treatment. In such a situation, according to a clinician's judgment, treatment with an IFN-γ inhibitor could be discontinued, and a different treatment could be initiated.
Provided are methods for determining the efficacy of an IFN-γ inhibitor such as an anti-huIFN-γ antibody. Such an anti-huIFN-γ antibody can comprise the amino acid sequence of SEQ ID NO: 6, 10, 14, or 30 and SEQ ID NO: 8, 12, 16, or 31 and/or can comprise a light chain CDR1 comprising SEQ ID NO:38, 39, or 40, a light chain CDR2 comprising SEQ ID NO:41 or 42, a light chain CDR3 comprising SEQ ID NO:43 or 44, a heavy chain CDR1 comprising SEQ ID NO:34, a heavy chain CDR2 comprising SEQ ID NO:35, and a heavy chain CDR3 comprising SEQ ID NO:36 or 37. A method for determining the efficacy of an IFN-γ inhibitor as a treatment for an IFN-γ-mediated disease can comprise the following steps: 1) determining the level of expression of one or more of the genes listed in Table 1, 2, 4, 5, and/or 6 in a biological sample from a patient at the protein or RNA level; 2) determining the level of expression of the same gene(s) in a biological sample from the patient after administration of the drug; 3) comparing the expression of the gene(s) in biological samples from the patient before and after administration of the drug; 4) determining that the drug has shown evidence of efficacy if the level of expression of the gene(s) in the biological sample taken after administration of the drug has been modulated in a direction consistent with inhibition of IFN-γ; and 5) continuing treatment with the drug if it is determined that the drug has shown evidence of efficacy and discontinuing treatment with the drug if it is determined that the drug has not shown evidence of efficacy.
Treatments exist for most IFN-γ-mediated diseases, even though many of these treatments are relatively ineffective, effective for only a subset of patients, and/or have substantial toxicities that limit patient tolerance of treatment. The IFN-γ inhibitors described herein can be combined with other existing therapies for IFN-γ-mediated diseases.
In particular, an SLE patient can be treated concurrently with another therapy for SLE plus an IFN-γ inhibitor such as an anti-IFN-γ antibody comprising SEQ ID NO:6 and SEQ ID NO:8 and/or comprising a light chain CDR1 comprising SEQ ID NO:38, a light chain CDR2 comprising SEQ ID NO:41, a light chain CDR3 comprising SEQ ID NO:43, a heavy chain CDR1 comprising SEQ ID NO:34, a heavy chain CDR2 comprising SEQ ID NO:35, and a heavy chain CDR3 comprising SEQ ID NO:36. Existing therapies for SLE include glucocorticoids such as prednisone, prednisolone, and methylprednisolone, antimalarials such as hydroxychloroquine, quinacrine, and chloroquine, retinoic acid, aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs), cyclophosphamide, dehydroepiandrosterone, mycophenolate mofetil, azathioprine, chlorambucil, methotrexate, tacrolimus, dapsone, thalidomide, leflunomide, cyclosporine, anti-CD20 antibodies such as rituximab, BLyS inhibitors such as belimumab, and fusion proteins such as abatacept. Methods of patient stratification and biomarker monitoring concurrently with treatment, as described herein, can be used in patients receiving such combination drug treatments.
In other embodiments a patient suffering from an inflammatory bowel disease (IBD), such as Crohn's disease or ulcerative colitis, can be concurrently treated with a therapy for IBD plus an IFN-γ inhibitor, such as an anti-huIFN-γ antibody comprising SEQ ID NO:6 and SEQ ID NO:8 and/or comprising a light chain CDR1 comprising SEQ ID NO:38, a light chain CDR2 comprising SEQ ID NO:41, a light chain CDR3 comprising SEQ ID NO:43, a heavy chain CDR1 comprising SEQ ID NO:34, a heavy chain CDR2 comprising SEQ ID NO:35, and a heavy chain CDR3 comprising SEQ ID NO:36. Existing therapies for IBD include sulfasalazine, 5-aminosalicylic acid and its derivatives (such as olsalazine, balsalazide, and mesalamine), anti-TNF antibodies (including infliximab, adalimumab, golimumab, and certolizumab pegol), corticosteroids for oral or parenteral administration (including prednisone, methylprednisone, budesonide, or hydrocortisone), adrenocorticotropic hormone, antibiotics (including metronidazole, ciprofloxacin, or rifaximin), azathioprine, 6-mercaptopurine, methotrexate, cyclosporine, tacrolimus, and thalidomide. Methods of patient stratification and biomarker monitoring concurrently with treatment, as described herein, can be used in patients receiving such combination drug treatments.
In other embodiments, a patient suffering from rheumatoid arthritis can be concurrently treated with a drug used for RA therapy plus an IFN-γ inhibitor, such as an anti-huIFN-γ antibody comprising SEQ ID NO:6 and SEQ ID NO:8 and/or comprising a light chain CDR1 comprising SEQ ID NO:38, a light chain CDR2 comprising SEQ ID NO:41, a light chain CDR3 comprising SEQ ID NO:43, a heavy chain CDR1 comprising SEQ ID NO:34, a heavy chain CDR2 comprising SEQ ID NO:35, and a heavy chain CDR3 comprising SEQ ID NO:36. Therapies for rheumatoid arthritis (RA) include non-steroidal anti-inflammatory drugs (NSAIDs) (such aspirin and cyclooxygenase-2 (COX-2) inhibitors), disease modifying anti-inflammatory drugs (DMARDs)(such as methotrexate, leflunomide, and sulfasalazine), anti-malarials (such as hydroxychloroquine), cyclophosphamide, D-penicillamine, azathioprine, gold salts, tumor necrosis factor inhibitors (such as etanercept, infliximab, adalimumab, golimumab, and certolizumab pegol), CD20 inhibitors such as rituximab, IL-1 antagonists such as anakinra, IL-6 inhibitors such as tocilizumab, inhibitors of Janus kinases (JAK)(such as tofacitinib), abatacept, and glucocorticoids, among others. Methods of patient stratification and biomarker monitoring concurrently with treatment, as described herein, can be used in patients receiving such combination drug treatments.
In another embodiment, a patient suffering from sarcoidosis can be concurrently treated with a drug used for sarcoidosis therapy plus an IFN-γ inhibitor, such as an anti-huIFN-γ antibody comprising SEQ ID NO:6 and SEQ ID NO:8 and/or comprising a light chain CDR1 comprising SEQ ID NO:38, a light chain CDR2 comprising SEQ ID NO:41, a light chain CDR3 comprising SEQ ID NO:43, a heavy chain CDR1 comprising SEQ ID NO:34, a heavy chain CDR2 comprising SEQ ID NO:35, and a heavy chain CDR3 comprising SEQ ID NO:36. Therapies for sarcoidosis include corticosteroids (may be topical or parenteral, depending on symptoms), salicylates (such as aspirin), and colchicine. Methotrexate, cyclophosphamide, azathioprine, and nonsteroidal anti-inflammatory drugs have also been used in sarcoidosis. Various other treatment strategies can be helpful for some of the many different symptoms of sarcoidosis. For example, heart arrhythmias can be treated with antiarrhythmics or a pacemaker. Hypercalcemia can be treated with hydration, reduction in calcium and vitamin D intake, avoidance of sunlight, or ketoconazole. Skin lesions can be treated with chloroquine, hydroxychloroquine, methotrexate, or thalidomide. Methods of patient stratification and biomarker monitoring concurrently with treatment, as described herein, can be used in patients receiving such a combination treatment including an IFN-γ inhibitor plus an existing treatment for sarcoidosis.
In another embodiment, a patient suffering from HLH can be concurrently treated with a drug used for HLH therapy plus an IFN-γ inhibitor such as an anti-huIFN-γ antibody comprising SEQ ID NO:6 and SEQ ID NO:8 and/or comprising a light chain CDR1 comprising SEQ ID NO:38, a light chain CDR2 comprising SEQ ID NO:41, a light chain CDR3 comprising SEQ ID NO:43, a heavy chain CDR1 comprising SEQ ID NO:34, a heavy chain CDR2 comprising SEQ ID NO:35, and a heavy chain CDR3 comprising SEQ ID NO:36. Therapies for HLH include corticosteroids, intravenous immunoglobulin, IL-1 inhibiting agents such as anakinra, VP-16, etoposide, cyclosporine A, dexamethasone, various other chemotherapeutics, bone marrow transplant or stem cell transplant, and antiviral and/or antibacterial agents. Any one or more of these therapies can be combined with an anti-huIFN-γ treatment. Further, methods of patient stratification and biomarker monitoring concurrently with treatment, as described herein, can be used in patients receiving such a combination treatment including an IFN-γ inhibitor plus an existing treatment for HLH.
The IFN-γ inhibitors and the other disease treatments described herein can be administered by any feasible method. Therapeutics that comprise a protein will ordinarily be administered by injection since oral administration, in the absence of some special formulation or circumstance, would lead to hydrolysis of the protein in the acid environment of the stomach. Subcutaneous, intramuscular, intravenous, intraarterial, intralesional, or peritoneal injection are possible routes of administration. Topical administration is also possible, especially for diseases involving the skin. Alternatively, IFN-γ inhibitors, and/or other therapeutics comprising a protein, can be administered through contact with a mucus membrane, for example by intra-nasal, sublingual, vaginal, or rectal administration or as an inhalant. Therapeutics that are small molecules can be administered orally, although the routes of administration mentioned above are also possible.
Having described the invention in general terms above, the following examples are offered by way of illustration and not limitation.
To define a group of genes regulated by IFN-γ, blood from healthy volunteers was collected into sodium heparin tubes, and then incubated at 37° C., 5% CO2 with or without 294 pM recombinant human IFN-γ for 0, 24, or 48 hours. After incubation, the blood was added to PAXGENE® whole blood tubes (Becton Dickenson Catalog #762165) and processed for RNA purification.
Total RNA was isolated from the PAXGENE® whole blood tubes using the PAXGENE® RNA Kit (Qiagen Catalog #762164) on the QIACUBE® automated sample prep system. Samples were labeled using the AGILENT® Low RNA Input Linear Amplification Kit PLUS, Two-Color (Agilent Catalog #5188-5340) per manufacturer's instructions. Briefly, double-stranded cDNA was reverse transcribed from about 300 nanograms of total RNA and acted as template for T7 RNA polymerase in an in vitro transcription reaction in which the target material was simultaneously amplified and labeled with cyanine 3- or cyanine 5-CTPs. The resulting fluorescent complementary RNA was hybridized to AGILENT® human whole genome 4x44K (Cat #G4112F) oligonucleotide microarrays per manufacturer's instructions.
Extracted feature intensities for each channel on each array were processed separately by subtracting the lower 0.1th percentile from all intensities and then taking the log base 2. The transformed intensities were mapped using a non-linear function to ensure the distribution of the intensities were comparable between arrays and channels. Arrays were hybridized using a loop-design that allowed estimation and removal of technical bias when averaging the technical repeats.
Samples were processed in batches that roughly corresponded to samples from individual cohorts but with a small number of samples repeated between batches to allow estimation and removal of batch effects. Finally, replicates of any identical sequences on the array were averaged to produce a value we called gene intensities.
In additional to the above processing, a pre-filtering step was applied. Reporters with low levels of expression were removed if 90% of the values fell below the limit of detection, defined as 1.96 standard deviations above mean background. Background was determined by a set of sequences on the array that are specifically designed to not hybridize with human sequences. Reporters with small dispersion are unlikely to be meaningfully changed, and so, to reduce noise, these were removed. They were defined as those where the fold change between the 5th and 95th percentile was less than 1.5.
Statistical analysis of the data to identify genes regulated ex vivo by IFN-γ was performed using a fixed-effects regression model containing factors for donor, time, treatment and all pair wise interactions terms. The treatment effect was similar at the two post-treatment times of 24 and 48 hours (data not shown), so these data were considered a single group to display the treatment effect. The significance threshold was defined at a false discovery rate of 5% and a fold change of 1.72. See Storey, J. D. 2002. A direct approach to false discovery rates. J. R. Statist. Soc. B. 64: 479-498, the relevant portions of which are incorporated herein by reference. The fold change was selected because we expected about 90% power to detect this fold change at a significance level of 0.001 assuming a standard deviation of 0.38. The results from this analysis are shown in
In
sapiens cDNA, mRNA sequence [BE926212]
sapiens cDNA clone UI-H-FT1-bjx-e-03-0-UI
sapiens cDNA clone IMAGE: 1688136 3′
sapiens cDNA, mRNA sequence [BE825944]
sapiens cDNA clone IMAGE: 341793 5′
sapiens } (exp = −1; wgp = 0; cg = 0), partial
Drosophila)
Homo sapiens cDNA clone BMFBGA09 5′,
Amino acid and nucleotide sequences included in publicly available database entries corresponding to the National Center for Biotechnology Information (NCBI) accession numbers listed in Table 1 above are incorporated herein by reference. Similarly, the sequences of the Agilent® probes are publicly available in the Gene Expression Omnibus (GEO) Database of NCBI. In particular, these sequences are among those disclosed for the Agilent-026652 Whole Human Genome Microarray 4x44K v2 and are incorporated herein by reference.
Gene dysregulation in SLE was initially examined in a study of 19 healthy volunteers and 39 lupus subjects, which included patients from the clinical trial described in Example 3 as well as other lupus patients. Further, these studies were extended to include patients participating in the clinical trial described in Example 4 below, which included lupus nephritis patients as well as patients having SLE without nephritis. Peripheral blood samples from healthy volunteers and from lupus patients (before dosing) were collected in serum separator tubes (red/black marble top) and processed for serum. Serum CXCL10, CCL2, C-C motif chemokine 5 (CCL5; also known as RANTES), and IL-18 concentrations were determined with commercially available ELISAs according to the manufacturers' instructions (R&D Systems, Minneapolis, Minn. and Medical & Biological Laboratories Co, Ltd, Des Plaines, Ill.). Samples were analyzed in triplicate and levels were quantified by interpolation from a standard curve run in parallel on each micro-titer plate. Log ratio of gene expression in lupus subjects relative to healthy subjects along with 95% confidence intervals were estimated using linear regression and expressed as fold change. See Kackar, R. N., and Harville, D. A. 1984. Approximations for Standard Errors of Estimators of Fixed and Random Effects in Mixed Linear-Models. Journal of the American Statistical Association 79: 853-862, the relevant portions of which are incorporated herein by reference.
The results are shown in
Similarly, gene dysregulation in SLE compared to healthy subjects at the RNA level was investigated using microarray analysis performed essentially as described in Example 1 except that the pre-filtering step was omitted. These results are reported in part in Table 2 below. Like the results displayed in
Described below is a phase 1, randomized, double-blind, placebo-controlled, single dose escalation study of an anti-huIFN-γ antibody (AMG 811) in subjects with mild, stable SLE. Anti-huIFN-γ antibodies, including AMG 811, are described herein (above under the heading “Interferon Gamma Inhibitors”) and in U.S. Pat. No. 7,335,743, the relevant portions of which are incorporated herein by reference. Adults aged 18 to 65 with a diagnosis of SLE (as defined by the American College of Rheumatology classification criteria) of at least 6 months duration were enrolled. Anti-malarials, leflunomide, or methotrexate, and up to 20 mg/day of prednisone (or equivalent) were permitted as concomitant therapies. The subjects had stable disease, that is, symptoms that were constant with no change in therapy for at least 30 days prior to randomization.
Twenty-six subjects with mild, stable SLE were enrolled in this Phase 1, single dose, double blind, randomized, placebo controlled, clinical trial. There were three subjects treated with active drug in each cohort (total of eighteen subjects) and eight subjects in the combined placebo group. The mean age was 43.3 years in the active group and 44.1 in the placebo group. The subjects were predominantly female (92%) and Caucasian (62%). The mean Systemic Lupus Erythematosus Disease Activity Index (SLEDAI; see Bombardier et al. (1992), Arthritis & Rheum. 35(6): 630-640, the relevant portions of which are incorporated herein by reference) score was low (2.3 and 3.8 for placebo and AMG 811 groups, respectively). Fifty percent of placebo subjects and 28% of the subjects receiving AMG 811 were on corticosteroids, receiving mean doses of 10 mg/day and 13.5 mg/day, respectively. Seventy five percent of placebo subjects and 100% of the subjects receiving AMG 811 were on anti-malarials, while a single subject in the AMG 811 group was on an immunosuppressant (methotrexate).
Each subject was treated with a single dose of AMG 811 (2 milligrams (mg) subcutaneous (SC), 6 mg SC, 20 mg SC, 60 mg SC, 180 mg SC, or 60 mg intravenous (IV)) or placebo (vehicle control) on day 1 of the study. The end of study (EOS) ranged from day 84 to day 196 depending on the dose level. Serum tube and PAXgene® blood RNA tube samples were collected from all cohorts at baseline, that is, on day 1 prior to dosing and at days 15, 56, and EOS after treatment. All samples were collected and included for analysis with the exception of one placebo EOS sample, one EOS sample from the 6 mg treated cohort, and two day 15 samples from the 20 mg cohort. One sample at the day 15 time point (60 mg IV) was subsequently determined to be from an unscheduled day 8 visit. As an actual day 15 sample was not available from this patient, and the expected drug exposure was not anticipated to be very different between day 8 and day 15, this sample was included with the day 15 results.
Total RNA was isolated from each sample and processed and analyzed by hybridization to a microarray as described in Example 1 above, except that the pre-filtering step to remove genes having low levels of expression was not performed.
These results are shown in the left panel of
More detailed data on these twenty genes from this experiment, as well as from the ex vivo stimulation experiment described in Example 1 and the comparison of healthy vs. SLE subjects described in Example 2, is shown in Table 2 below.
Many of the transcripts that were most impacted by treatment with IFN-γ ex vivo, which are circled in
An example of the in vivo effect of AMG 811 on gene expression at the RNA level is provided by guanylate binding protein 1 (GBP1). Levels of GBP1 RNA observed in individual patients before dosing with AMG 811 on Day −1 and on Day 15 of the study (after dosing) are shown in the right panel of
To determine the effects of various doses of AMG 811 on CXCL10 protein expression, peripheral blood samples were taken and processed for serum, and CXCL10 protein concentrations were determined by ELISA assay. Differences between levels of protein expression at baseline and after a single dose of AMG 811 were estimated by a fixed-effects regression model containing factors for visit and dose, a random factor for subject, and an interaction term for visit and dose.
Levels of AMG 811 in serum were determined using a validated sandwich immunoassay at Amgen Inc., Thousand Oaks, Calif. Study samples were added to a plate coated with a mouse anti-AMG 811 monoclonal antibody. After capture of AMG 811 with the immobilized antibody, unbound materials were removed by a wash step. Biotin conjugated rabbit anti-AMG 811 polyclonal antibody (Amgen Inc., CA) was added to detect the captured AMG 811. After another incubation step with streptavidin-HRP, a tetramethylbenzidine (TMB) peroxide substrate solution (KPL Inc., MD) was added to produce a colorimetric signal, which was proportional to the amount of AMG 811 bound by the capture reagent. The color development was stopped by addition of H2SO4, and the optical density (OD) signal was measured at 450 nm with reference to 650 nm. The absorbance versus concentration relationship was regressed according to a four-parameter logistic (auto-estimate) regression model with a weighting factor of 1/Y. The lower limit of quantification (LLOQ) was 15.2 ng/mL. Results from the single-dose escalation study are shown in
2a
aOne subject in cohort 1 (receiving a dose of 2 mg) had only 2 measurable AMG 811 concentrations (data included where applicable)
bTime to maximum observed concentration (tmax) are presented as median (range of values observed)
cMean (standard deviation) maximum serum concentration achieved.
dMean (standard deviation) area under the curve value to last measured time point.
eMean (standard deviation) serum terminal half life.
Levels of total IFN-γ protein in patients dosed with AMG 811 were also determined. The total IFN-γ concentration in human serum was measured using a validated sandwich immunoassay at Amgen Inc., Thousand Oaks, Calif. Specifically, study samples were incubated with 25 μg/mL of AMG 811 at 37° C. to form IFN-γ-AMG 811 complexes prior to being added to a plate coated with a mouse anti-IFN-γ monoclonal antibody (Hycult Biotechnology, Uden, Netherlands). After capture of IFN-γ-AMG 811 complex with the immobilized anti-IFN-γ monoclonal antibody, unbound materials were removed by a wash step. Biotin conjugated rabbit anti-AMG 811 polyclonal antibody (Amgen Inc., CA) was added for detection of the captured IFNγ-AMG 811 complex. After another incubation step with streptavidin-HRP, a tetramethylbenzidine (TMB) peroxide substrate solution (KPL Inc., MD) was added to produce a colorimetric signal, which was proportional to the amount of IFNγ bound by the capture reagent. The color development was stopped by addition of H2SO4, and the optical density (OD) signal was measured at 450 nm with reference to 650 nm. The absorbance versus concentration relationship was regressed according to a four-parameter logistic (auto-estimate) regression model with a weighting factor of 1/Y. The LLOQ of the method was 50 pg/mL.
The total IFN-γ concentration represents both bound and free endogenous levels. Free IFN-γ levels were not assessed separately. An amount of AMG 811 sufficient to saturate all IFN-γ was added to the serum samples, and the resulting AMG 811:IFN-γ complexes were detected by means of the sandwich immunoassay, as described above. These results are shown in
In addition, these data suggest that dosing frequency can be adjusted so as to maintain levels of total IFN-γ at or near the plateau concentrations observed at the higher doses. For example, at a dose of 60 mg SC, a level of total IFN-γ of almost 400 pg/ml is achieved at early timepoints, which starts to drop off at about three or four weeks post-dosing. Dosing repeated about every 3, 4, 5, or 6 weeks could be beneficial at a dose of 60 mg SC. Similarly, at doses of 60 mg IV or 180 SC, levels of total IFN-γ of around 400 pg/ml are achieved, but start to drop off at about 8, 9, 10, 11, or 12 weeks post dosing. Dosing repeated about every 4, 6, 8, 9, 10, 11, 12, 13, or 14 weeks could be beneficial at doses of 180 mg SC or 60 mg IV.
These data also have surprising implications about the production and turnover of IFN-γ. Generally, IFN-γ is undetectable or detectable at only low levels in peripheral blood. The comparatively high levels of total IFN-γ detected upon dosing with AMG 811 indicate that IFN-γ is likely produced at much higher levels than are generally appreciated and rapidly clearly from circulation. The relatively high levels of IFN-γ detected in the presence of AMG 811 may be due to protection of the IFN-γ from degradation and/or reduced clearance by binding to AMG 811. This assay allows for a better determination of the total production of IFN-γ in an individual and can be useful for determination of dose, dosing frequency, and stratification purposes.
Additionally, although mean total IFN-γ levels observed in the 60 mg IV dose group were significantly higher than in other groups (
In addition to the single dose clinical trial described in Example 3, a multi-dose trial was initiated to determine the safety and tolerability of multiple subcutaneous doses of AMG 811 in SLE patients with or without lupus nephritis. Part A of the study included three cohorts, 1, 2, and 3, each containing eight SLE patients without lupus nephritis. To be eligible for cohorts 1-3, a patient must have been diagnosed with SLE at least 6 months before the start of the study. Prednisone at a dose of ≤20 mg/day was permitted during the study, as were concurrently administered medications used for treating SLE including mycophenolate mofetil, azathioprine, leflunomide, methotrexate, and anti-malarials. Two of the eight patients in each of cohorts 1-3 received three doses of placebo administered every four weeks, and the other six received three doses AMG 811 (6, 20, or 60 mg for cohorts 1, 2, and 3, respectively) administered every four weeks, that is on days 1, 29, and 57. Part B of the study will include cohorts, 4, 5, and 6. Patients in cohorts 4-6 are required to have been diagnosed with SLE at least 6 months before the start of the study and with proliferative glomerulonephritis, as evidenced by a renal biopsy and urine protein/creatinine ratio of >1 or a 24 hour urine protein level of >1 g/day. These patients were also permitted to take prednisone at a dose of 20 mg/day and to take SLE medications including mycophenolate mofetil, azathioprine, leflunomide, methotrexate, and anti-malarials. Cohorts 4 and 5, for which dosing is now complete, contained eight and twelve SLE patients that had lupus nephritis, respectively. Cohort 6 is to contain eight lupus nephritis patients. Two of the patients in each of cohorts 4 and 6 and three of the twelve patients in cohort 5 will receive (and, in some cases, have received) three doses of placebo administered every four weeks, and the other patients will receive three doses AMG 811 (20, 60, or 120 mg for cohorts 4, 5, and 6, respectively) administered every four weeks, that is, on days 1, 29, and 57. Blood samples will be taken at baseline, i.e., one to three days before dosing, and on days, 1 (after dosing), 3, 8, 15, 29, 57, 85, 113, and 197 (which was the end of the study (EOS)) to determine levels of expression of various biomarker genes. Samples will be analyzed for RNA expression by DNA array as described above in Example 3 or for expression of selected proteins by ELISA assay. Blood samples taken at baseline and on days 1 (after dosing), 3, 5, 8, 15, 22, 29 (pre-dosing), 43, 57 (pre- and post-dosing), 59, 61, 64, 71, 78, 85, 113, 141, 169, and 197 will be analyzed to assess a number of laboratory parameters. Twenty four hour urine samples were taken at baseline and on days 15, 29 (pre-dosing), 57 (pre-dosing), 85, 113, 141, 169, and 197 (EOS). Spot urine samples were taken at baseline and on days 3, 8, 15, 22, 29 (pre-dosing), 43, 57 (pre-dosing), 71, 85, 113, 141, 169, and 197 (EOS). Urine samples were analyzed for levels of urine protein using the a dye-binding assay (pyrocatechol violet-ammonium molybdate dye), which was analyzed in a “dry-slide” format using an automated laboratory analyzer such as the Ortho-Clinical VITROS® 5, 1 FS Chemistry Analyzer from Ortho Clinical Diagnostics. Creatinine levels in urine samples were assessed by a multi-step coupled enzymatic two-point rate colorimetric assay (creatinine amidohydrolase/creatine amidinohydrolase/sarcosine oxidase/peroxidase) analyzed using a dry-slide format and automated laboratory analyzer. Such an assay is described in, e.g., Guder et al. (1986), J. Clin. Chem. Clin Biochem. 24(11): 889-902.
In Table 4 below are listed the ten genes whose expression, as detected at the RNA level, was most significantly correlated with the concentration of AMG 811 in serum as assessed in the single dose clinical trial described in Example 3. Data from the multiple dose clinical trial described in Example 4 showed that the average of the expression levels of these ten genes was responsive to the dosage level of AMG 811.
Based on average RNA expression of the ten genes listed in Table 4, an “AMG 811 Score” could be assigned to each patient.
Data from cohorts 1-3 was combined to create
The data in
Data from the single dose clinical trial described above was used to compile a list of genes whose expression is significantly (with a p value <0.001) modulated (either up- or down-regulated) in vivo in SLE patients dosed with AMG 811 as compared to SLE patients dosed with placebo. This list of genes is shown in Table 5 below.
The amino acid and protein sequences included in the database entries having the accession numbers listed in Table 5 are incorporated herein by reference. In addition, the sequences of the AGILENT® probes are publicly available in GEO database of NCBI website as mentioned above.
These data indicate that administration of AMG 811 affects expression of many genes in vivo. Among these are a number of genes whose expression is also modulated by IFN-γ ex vivo as described in Example 1 and Table 1 above. A group of genes whose expression is modulated by IFN-γ ex vivo and by AMG 811 in vivo (in opposite directions), is listed in Table 6 below. The thresholds for being included in this list included (a) being included in Table 1 and (b) being significantly (p<0.05) modulated in vivo in patients receiving AMG 811 as compared to patients receiving placebo. This different cutoff value (as compared to p<0.001) for in vivo modulation by AMG 811 is appropriate and was used in view of the fact that this list was selected only from among the genes included in Table 1, rather than from the tens of thousands of genes represented in the array.
Assaying for levels of expression of one or more of the genes in Tables 1, 2, 4, 5, and/or 6 in a biological sample from a diseased patient, optionally an SLE patient, before treatment with an IFN-γ inhibitor, such as AMG 811, and comparison to levels of expression in a control biological sample can indicate which patients might benefit from treatment with an IFN-γ inhibitor. Patients expressing elevated levels of an RNA or protein that is downregulated in vivo by AMG 811 or decreased levels of an RNA or protein that is upregulated by AMG 811 in vivo might benefit from treatment with an IFN-γ inhibitor. Similarly, patients expressing elevated or lowered levels of an RNA or protein that is up- or down-regulated by IFN-γ could also benefit from treatment with an IFN-γ inhibitor. Further, comparison of expression levels of one or more of the genes listed in Tables 1, 2, 4, 5, and/or 6 before and after treatment with an IFN-γ inhibitor can indicate whether the IFN-γ inhibitor is having a biological effect in a particular patient in vivo. If so, continuing treatment can be advantageous for that patient. If not, treatment can be discontinued, or the IFN-γ inhibitor can be administered at a higher dose or at a greater frequency.
In
Clinical parameters related to kidney function were assessed for patients in cohorts 4 and 5 in this trial. Spot urine protein, spot urine creatinine, 24 hour urine protein, 24 hour urine creatinine, serum creatinine, serum albumin, antibodies against double stranded DNA, and complement factors C3 and C4 were assessed.
Urine protein amounts were determined by a dye-binding assay (pyrocatechol violet-ammonium molybdate dye) analyzed in a “dry slide” format using an automated laboratory analyzer. Samples used were either a collection of all the patient's urine over a 24 hour period (24 hour urine protein) or a single urine sample (spot urine protein). Urine creatinine was assessed by a multi-step coupled enzymatic two-point rate colorimetric assay (creatininie amidohydrolase/creatine amidinohydrolase/sarcosine oxidase/peroxidase) analyzed using a “dry slide” format in an automated laboratory analyzer.
Cohorts 4 and 5 comprised lupus nephritis patients receiving doses of 20 mg or 60 mg AMG 811, respectively, or placebo. Although some results from these cohorts are now available, the results are still blinded. Since only two of eight (cohort 4) and three of twelve (cohort 5) patients received placebo, differences in clinical parameters between cohorts 4 and 5 might indicate dose-dependent responses to AMG 811. Among the various measurements made, the following tests indicated no clear difference between cohorts 4 and 5: spot urine creatinine, 24 hour urine creatinine, serum creatinine, serum albumin, complement factors C3 and C4, and anti-double stranded DNA antibodies. On the other hand, urine protein in a 24 hour urine collection and the ratio of urine protein to urine creatinine (UPCR) clearly differed between cohorts 4 and 5, as shown in
A phase 1b single dose crossover study in discoid lupus has been enrolled. Sixteen subjects (of twenty planned subjects) with discoid lupus were dosed with a single dose of 180 milligrams of AMG 811 and a single dose of placebo, each administered subcutaneously, in one of two sequences. Per study protocol, twelve patients were to receive 180 mg SC of AMG 811 on day 1 and a dose of placebo on day 85, and eight patients were to receive a dose of placebo on day 1 and 180 mg SC of AMG 811 on day 85. However, enrollment of the study was stopped after sixteen patients had been enrolled. As primary endpoints of the study, treatment-emergent adverse events, vital signs, clinical laboratory tests, ECGs, and the incidence of binding and neutralizing antibodies to AMG 811 were monitored. Physical examinations were also to be performed.
In secondary endpoints of the study, the pharmacokinetic profile of AMG 811 is determined, and CLASI scores are determined. Expression of biomarkers in peripheral blood at the RNA level are assessed by hybridization to a DNA array as described above in samples taken at baseline (in the time period from three days prior to dosing to one day prior to dosing) and on days 15, 29, 57, 85, 99, 113, 141, 169, and 197 (which is the end of study). Analysis of selected biomarkers at the protein level by ELISA may also be performed. In addition, skin samples were taken at baseline and on days 15 and 57 for analysis of biomarker expression at the RNA level by hybridization to a DNA array. Selected biomarkers may also be assayed at the protein level in the skin samples using immunohistochemistry, immunofluorescence, or ELISA. Information available to date indicates that clinical parameters, such as improvements in the CLASI score, did not correlate clearly with dosing of AMG 811. The results of this trial are still blinded.
A phase 1b single dose, double-blind, placebo-controlled study in psoriasis is in progress. Nine subjects with moderate to severe plaque psoriasis (having a PASI score ≥10 and an affected body surface area ≥10) were enrolled in the study. The study is still blinded. Proceeding with a study plan that originally included ten, not nine, patients, seven or eight patients will receive drug, and one or two patients will receive placebo. Those that receive drug will receive (or have received) a single dose of 180 milligrams of AMG 811 on study day 1. As primary endpoints of the study, treatment-emergent adverse events, vital signs, clinical laboratory tests, ECGs, and the incidence of binding and neutralizing antibodies to AMG 811 were monitored. Physical examinations were also performed.
As secondary endpoints, clinicians assessed PASI scores, PGA scores, and target lesions. Photos were taken to document skin lesions. The pharmacokinetic profile of AMG 811 will also be determined. All of these primary and secondary endpoints were assessed at baseline (from three days to one day before dosing) and on days 15, 29, 43, 57, 85, and 113 (which is the end of study). Skin biopsies were taken at baseline and at baseline and on days 15 and 57 for analysis of biomarker expression at the RNA level as described above. In addition selected biomarkers may be assessed for expression at the protein level by ELISA for serum samples or by immunohistochemistry or immunofluorescence for skin biopsies.
In
This application is a continuation of and claims priority to U.S. patent application Ser. No. 15/693,160, filed Aug. 31, 2017 which is a continuation of Ser. No. 14/862,096, filed Sep. 22, 2015 which is a continuation of U.S. Non Provisional patent application Ser. No. 13/683,684, filed Nov. 21, 2012, which claims the benefit of U.S. Provisional Application Nos. 61/563,357, filed Nov. 23, 2011, 61/616,846, filed Mar. 28, 2012, and 61/651,900 filed May 25, 2012, each of which are hereby incorporated by reference herein in their entireties.
Number | Date | Country | |
---|---|---|---|
61651900 | May 2012 | US | |
61616846 | Mar 2012 | US | |
61563357 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15693160 | Aug 2017 | US |
Child | 17551098 | US | |
Parent | 14862096 | Sep 2015 | US |
Child | 15693160 | US | |
Parent | 13683684 | Nov 2012 | US |
Child | 14862096 | US |