Embodiments described relate to valve assemblies for positive displacement pumps used in high pressure applications. In particular, embodiments of positive displacement pumps employing mechanisms and supports for extending the life of pump valves, minimizing pump damage during operation, improving volumetric efficiency, modulating flow rate, and achieving better process control are described.
Positive displacement pumps are often employed at oilfields for large high pressure applications involved in hydrocarbon recovery efforts. A positive displacement pump may include a plunger driven by a crankshaft toward and away from a chamber in order to dramatically effect a high or low pressure on the chamber. This makes it a good choice for high pressure applications. Indeed, where fluid pressure exceeding a few thousand pounds per square inch (PSI) is to be generated, a positive displacement pump is generally employed.
Positive displacement pumps may be configured of fairly large sizes and employed in a variety of large scale oilfield operations such as drilling, cementing, coil tubing, water jet cutting, or hydraulic fracturing of underground rock. Hydraulic fracturing of underground rock, for example, often takes place at pressures of 10,000 to 15,000 PSI or more to direct a solids containing fluid through a well to release oil and gas from rock pores for extraction. Such pressures and large scale applications are readily satisfied by positive displacement pumps.
As noted, a positive displacement pump includes a plunger driven toward and away from a pressurizable chamber in order to achieve pumping of a solids containing fluid. More particularly, as the plunger is driven away from the chamber, pressure therein reduces allowing a discharge valve of the chamber to close. The chamber is thus sealed off from the external environment while the plunger remains in communication with the chamber. As such, the plunger continues its retreat away from the chamber generating a lowered pressure with respect to suction therein. Eventually, this lowered pressure will reach a level sufficient to open a suction valve of the pump in order to allow an influx of fluid into the chamber. Subsequently, the plunger may be driven toward the chamber to once again effect a high pressure therein. Thus, the suction valve may be closed, the discharge valve re-opened, and fluid expelled from the chamber as indicated above.
The actuation of the suction and discharge valves is achieved primarily through reliance on pressure conditions generated within the chamber. That is, the amount of pressure required to open or close each valve is a function of the physical characteristics of the valve along with a spring employed to hold the valve in a naturally closed position relative to the chamber. Unfortunately, this results in a lack of direct control over valve actuation and leaves an inherent inefficiency in operation of the valves. For example, opening of a valve requires generation of enough of a pressure change so as to overcome the weight of the valve and nature of its spring. This is of particular note regarding the suction valve where, rather than opening immediately upon closure of the discharge valve, a lowered pressure sufficient to overcome the weight and nature of the suction valve and its spring must first be generated within the chamber (i.e. net positive suction head (NPSH)). This time delay in opening of the suction valve is an inherent inefficiency in operation of the pump. Indeed, for a standard positive displacement pump employed at an oilfield, a pressure of between about 10 PSI and about 30 PSI may be required within the chamber before the suction valve is opened.
Reliance solely upon internal chamber pressure to actuate valves results in an inherent inefficiency and a lack of direct control as indicated above. One such concern is the fact that this manner of valve actuation often leaves the pump itself susceptible to significant damage as a result of cavitation and ‘water hammering’. That is, as the plunger moves away from the chamber decreasing pressure therein, the inherent delay in opening of the suction valve may lead to the cavitation and subsequent water hammering as described below.
During the delay in opening of the suction valve, and in conjunction with the generation of lowered pressure in the chamber, the fluid may undergo a degree of cavitation. That is, pockets of vapor may form within the fluid and it may begin to vaporize in the face of the lowered pressure. Formation of vapor in this manner may be followed by rapid compression of the vapor back into liquid as the plunger once again advances toward the chamber. This rapid compression of the liquid is accompanied by a significant amount of heat and may also result in transmitting a degree of shock through the pump, referred to as water hammering. All in all, a significant amount of pump damage may naturally occur based on the pressure actuated design of a conventional positive displacement pump.
In order to address pump damage resulting from cavitation and water hammering, techniques are often employed in which acoustic data generated by the pump is analyzed during its operation. However, reliance on the detection of acoustic data in order to address pump damage fails to substantially avoid the development of pump damage from cavitation and water hammering in the first place. Furthermore, it is not uncommon for the damaged pump to be employed in conjunction with an array of additional pumps at an oilfield. Thus, the damage may see its effects at neighboring pumps, for example, by placing added strain on these pumps or by translation of the damaging water hammering effects to these pumps. Indeed, cascading pump failure, from pump to pump to pump, is not an uncommon event where a significant amount of cavitation and/or water hammering is found.
It is desirable to improve the operation and reliability of pumps, such as those comprising at least one active valve controlling for suction/discharge. It is desirable to improve the volumetric efficiency of pumps, reduce the likelihood of valve wear, and improved control of the pump operation including, but not limited to, the ability to control the volume output of the pump.
A method for operating at least one pump in a pump assembly comprises providing a pump assembly comprising a fluid end and a power end, the fluid end in communication with a fluid source and at least one downstream destination and comprising a pump housing for a pressurizable chamber, at least one valve for controlling fluid communication with the chamber, the at least one valve defining a normal duration of allowing fluid communication with the chamber during operation of the pump assembly, providing a valve actuation guide external to the chamber, the valve actuation guide coupled to the valve and operable to assist in controlling fluid communication with the chamber, operating the pump assembly, and actuating the valve actuation guide to change an aspect of the valve duration. In an embodiment, actuating further comprises changing an operating property of one of the pump assembly and a downstream destination. In an embodiment, actuating comprises reducing the valve duration below the normal valve duration. In an embodiment, actuating comprises increasing the valve duration above the normal valve duration.
In an embodiment, actuating comprises delaying the valve duration with respect to the normal valve duration. In an embodiment, actuating comprising accelerating the valve duration with respect to the normal valve duration. In an embodiment, providing a valve actuation guide comprises providing an electromagnetic power source coupled to at least one electromagnetic inductor and wherein the valve is of a magneto-responsive material. In an embodiment, providing a valve actuation guide comprises providing a mechanical arm disposed between the valve and the valve actuation guide, the mechanical arm coupling the valve and valve actuation guide. In an embodiment, actuating changes an operating property in the fluid end in the pump. In an embodiment, actuating changes a pumping rate of the pump assembly. In an embodiment, actuating changes a torque output of the pump assembly. In an embodiment, actuating changes a vibration output of the pump assembly.
In an embodiment, actuating comprises deactivating at least one of the valves and performing at least one diagnostic test on the pump assembly. The diagnostic test may comprise a one of a pressure test and a leak test. In an embodiment, actuating comprises actuating the valve to deactivate the chamber. Deactivating may comprise deactivating the chamber in response to a signal from the pump assembly. In an embodiment, actuating creates a pressure pulse to the at least one downstream destination. The pressure pulse may be utilized for sending a telemetric pressure signal to the at least one downstream destination. In an embodiment, actuating changes a suction head of the pump assembly. In an embodiment, actuating allows the chamber to be primed with the fluid source.
An embodiment of a method for operating at least one pump in a pump assembly comprises providing a pump assembly comprising a fluid end and a power end, the fluid end in communication with a fluid source and at least one downstream destination and comprising a pump housing defining a plurality of cylinders each pressurizable by a piston driven by the power end, at least a pair of valves for controlling fluid communication to and from the cylinders, the valves defining a normal duration of controlling fluid communication with the chamber during operation of the pump assembly, the fluid end, providing a valve actuation guide external to the chamber, the valve actuation guide coupled to at least one of the valves and operable to assist in controlling fluid communication with the chamber, operating the pump assembly, and actuating the valve actuation guide to change an aspect of the valve duration and change an operating property of the pump assembly. In an embodiment, actuating changes an operating property of a downstream destination.
An embodiment of a method for operating at least one pump in a pump assembly comprises providing a pump assembly, the pump assembly comprising a fluid end in communication with a fluid source and at least one downstream destination and comprising a pump housing defining a plurality of cylinders, and at least one suction valve and one discharge valve for controlling fluid communication to and from the cylinders, and a piston disposed in the cylinders for pressurizing the cylinders and a power end for driving the pistons, the suction and discharge valves defining a normal duration of controlling fluid communication with the cylinder during operation of the pump assembly, providing a valve actuation guide external to at least one of the cylinders, the valve actuation guide coupled to one of the suction valve and the discharge valve and operable to assist in controlling fluid communication with the cylinder, operating the pump assembly, and actuating the valve actuation guide to change an aspect of the valve duration. In an embodiment, actuating changes an operating property of one of the pump assembly and a downstream destination. In an embodiment, the fluid source comprises an oilfield fluid and the at least one downstream destination comprises a wellbore. In an embodiment, the method further comprises routing the oilfield fluid to the wellbore and performing at least one well services operation.
An embodiment of a positive displacement pump is provided with a housing for a pressurizable chamber. The chamber may be defined in part by a valve thereof which may be employed for controlling fluid access to the chamber. The positive displacement pump may also include a valve actuation guide that is positioned at least partially external to the chamber and coupled to the valve so as to assist the controlling of the fluid access to the chamber.
These and other features and advantages of the present invention will be better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
a-12d are schematic timing diagrams, respectively, showing chamber pressure, percent open for suction and discharge valves, and discharge flow for embodiments of a pump assembly in various stages of operation.
Embodiments are described with reference to certain high pressure positive displacement pump assemblies for fracturing operations. However, other positive displacement pumps may be employed for a variety of other operations including cementing. Regardless, embodiments described herein employ positive displacement pumps with valves that are equipped with external actuation assistance. As such, valve actuation is not left solely to the buildup of cavitation-inducing conditions within a chamber of the pump which would have the potential to create significant pump damage through water hammering.
Referring now to
Continuing with reference to
With particular reference to
Continuing with reference to
In spite of the potential development of lowered pressure within the chamber 235 as indicated above, significant cavitation may be avoided. That is, valve actuation assistance may be provided to the suction valve 255 to effect its opening as depicted in
Avoidance of significant vaporization of operation fluid in this manner may substantially minimize the amount of pump damage that may otherwise result as the plunger 290 re-pressurizes and condenses the operation fluid. That is, water-hammering damage due to the rapid condensing of vaporized operation fluid may be largely avoided. As such, in the embodiment shown, the plunger 290 may be thrust toward the chamber 235, increasing the pressure therein. The pressure increase will ultimately be enough to effect opening of the discharge valve 250 overcoming the force supplied by the discharge spring 270.
In an embodiment where the pump 101 is to be employed in a fracturing operation, pressures may be achieved in the manner described above that exceed about 2,000 PSI, and more preferably, that exceed about 10,000 PSI or more. Furthermore, such a positive displacement pump 101 is particularly well suited for high pressure applications of abrasive containing operation fluids. In fact, embodiments described herein may be applied to cementing, coil tubing, water jet cutting, and hydraulic fracturing operations as indicated, to name a few.
As indicated, the valve actuation guide 200 is configured to assist in actuation of the suction valve 255 as detailed above. However, the valve actuation guide 200 may take a variety of configurations in order to provide such assistance. For example, in the particular embodiment of
As indicated above, the proper timing for actuation of the suction valve 255 is dependent upon the position of the plunger 290, relative to the chamber 235. Thus, as described below, a mechanism for synchronizing the timing of the valve actuation guide 200 and its crankshaft 207 with the plunger 290 may be provided. Additionally, in the embodiment shown, the arm 205 is reciprocated in a rectilinear manner so as to maintain isolation between the guide assembly 100 and the operation fluid supply 245. This may be achieved through the employment of a crankshaft 207 of a conventional rectilinear effectuating crank design. Alternatively, other methods of sealing between the guide assembly 100 and the operation fluid supply 245 may be employed or a tolerable degree of communication there-between may be allowed.
As indicated above, and with added reference to
Continuing with reference to
The valve actuation guide 200 described above includes a crankshaft 207 for actuating the suction valve 255 in both an open direction, as depicted in
Similarly, the embodiments depicted reveal the guide assembly 100 and actuation guide 200 adjacent only to the suction valve 255. That is, actuation of the discharge valve 250 is left to pressure conditions within the chamber 235. This may allow for ease of design similar to cam actuation noted above and may be a practical option in light of the fact that significant cavitation is unlikely correlated to any discharge valve 250 position. However, in an embodiment external assistance is provided to the discharge valve 250 in addition to the suction valve 255. That is, an additional actuation guide similar to the embodiments described above may be positioned adjacent the discharge valve 250 and coupled thereto in order to further enhance pump efficiency. This may take place by reducing the amount of time that might otherwise be required to open or close the discharge valve 250 based solely on the pressure within the chamber 235.
Referring now to
Continuing with reference to
Returning to the embodiment depicted in
Similar to the crank-driven configuration of
As in the case of the crank-driven configuration of
Continuing now with reference to
In the embodiment of
As with prior embodiments detailed above, the electromagnetic driven configuration of
With particular reference to
Continuing with reference to the embodiments of
Referring now to
In the particular depiction of
Embodiments described herein above address cavitation, pump damage and even pump efficiency in a manner that does not rely solely upon internal pump pressure for valve actuation. As a result, delay in opening of the suction valve in particular may be avoided so as to substantially eliminate cavitation and subsequent water hammering. Indeed, as opposed to mere monitoring of pump conditions, embodiments described herein may be employed to actively avoid pump damage from water hammering.
In an embodiment, a pump assembly, such as the pump assembly 101 shown in
Each of the cylinders 610A-610C includes a suction valve 255 and a discharge valve 250. The suction valves 255 and the discharge valves 250 route the fluid from the suction manifold 612 to the discharge manifold 614 during operation of the pump assembly 101, as discussed hereinabove. As noted above, a typical valve arrangement of a fluid end includes suction valves 255 and discharge valves 250 biased by springs 275 and 270 that open or close based on the pressure within the pressurizable chamber 235. In such a typical valve arrangement, a normal operation with normal valve duration or timing based on the position of the plunger 290, the spring constant of the springs 275 and 270 may be determined. Such normal valve duration is typically expressed in terms of degrees of rotation of the crankshaft 606. Referring now to
Referring to
In an embodiment, all but one of the suction valves 255 may be held open by their respective valve actuation guide or guides 200, 300, or 450. In such an embodiment, the pump assembly 600 becomes a single cylinder pump because with the suction valve 255 held open, the plunger 290 of the cylinders 610A, 610B or 610C forces fluid back into the suction header 612 and not into the discharge header 614 through the discharge valve 250. The corresponding discharge valves 250 for the cylinders 610A, 610B or 610C may also be held closed for the cylinders 610A, 610B or 610C that have the suction valve 255 held open, such as when conducting a line pressure test after rigging up at a wellsite. By pumping with only one cylinder active, the outlet pressure of the pump assembly 600 may be controlled more easily and thereby avoid a risk of over-pressurizing the line being tested.
In an embodiment, a pump assembly, such as the pump assembly 600, is operated to provide pressurized fluid or the like to the discharge manifold 614. During operation, the number of cylinders 610A, 610B, and 610C that are actively pumping fluid may be varied by engaging or disengaging the respective valve actuation guide or guides 200, 300, or 450 for each cylinders 610A, 610B, and 610C. In this manner, the fluid end 604 may act in a manner similar to a transmission for the pump assembly 600 such that the gearing of the transmission 607b need not be changed during operation of the pump assembly 600. The number of cylinders 610A, 610B, and 610C that are active or actively pumping fluid may be varied to match the required torque and rate to the prime mover or engine 607a in lieu of changing gears in the transmission 607b. In an embodiment, the pump assembly 600 may not comprise a transmission 607b and the torque may be varied by activating and deactivating the number of cylinders 610A, 610B, and 610C that are active or actively pumping fluid. An activated cylinder, as defined herein, is a cylinder that is actively pumping fluid to the discharge manifold 614 and a deactivated cylinder is a cylinder that is not pumping fluid to the discharge manifold 614. Referring now to
In an embodiment, the respective valve actuation guide or guides 200, 300, or 450 for the valves 255 and 250 of each of the cylinders 610A, 610B, and 610C are actuated during the operation of the pump assembly 600 to vary the valve duration of the valves 255 and 250 of the pump assembly 600. The valve actuation guide or guides 200, 300, or 450 may be actuated to close the suction valve or valves 255 early in the pressure stroke (compared to a non-active valve) and thereby reduce the valve duration, which may increase the pumping rate of the pump assembly 600. The valve actuation guide or guides 200, 300, or 450 may be activated to close the suction valve or valves 255 later in the pressure stroke (compared to a non-active valve) and thereby increase the valve duration, which may decrease the pumping rate of the pump assembly 600, while ensuring that the pressurizable chamber 235 is not over-pressurized, such as by ensuring that at no time would both valves 255 or 250 be closed while the plunger 290 is in the pressure stroke. In an embodiment, the valve actuation guide or guides 200, 300, or 450 may be activated to close the suction valve or valves 250 later in the pressure stroke (compared to a non-active valve) thereby increasing the valve duration, whereby a higher pressure may be achieved due to the favorable geometry of the crank after max torque position.
In an embodiment, the respective valve actuation guide or guides 200, 300, or 450 for the valves 255 and 250 of each of the cylinders 610A, 610B, and 610C are actuated during the operation of the pump assembly 600 to delay or accelerate the valve duration of the valves 255 and 250 of the pump assembly 600. In such an embodiment, the valve duration is not increased or decreased but occurs earlier in the rotation of the crankshaft 606 (when accelerating the valve duration) or later in the rotation of the crankshaft 606 (when delaying the valve duration).
In an embodiment, the valve actuation guide or guides 200, 300, or 450 may be activated to keep the suction valve or valves 255 open and/or prevent the suction valve or valves 255 from closing, which may allow only pressure from the suction header 612 to be present on the packing 616 around the pump rods and thereby limit potential leaking around the packing 616. In addition, if it is determined that a valve 255 or 250 of one of the cylinders 610A, 610B or 610C is damaged or otherwise faulty, this cylinder 610A, 610B or 610C may be deactivated or shut down by forcing the valves 255 to remain open or closed and the pump assembly 600 may continue operation with the remaining cylinders 610A, 610B or 610C in normal operation. The deactivation of the cylinders 610A, 610B or 610C may be in response to a signal from a controller 620, discussed in more detail below. Such a signal may be, but is not limited to, a signal from a diagnostic sensor, a signal from control software of the pump assembly 600, a manual input from an operator, or the like.
In an embodiment, the valve actuation guide or guides 200, 300, or 450 may be activated to close the suction valve or valves 255 later in the pressure stroke (compared to a non-active valve) thereby increasing the valve duration or delaying the start of the valve duration, which may allow a cylinder 610A, 610B or 610C to be pressure tested.
In an embodiment, the respective valve actuation guide or guides 200, 300, or 450 for the valves 255 and 250 of each of the cylinders 610A, 610B, and 610C are actuated during the operation of the pump assembly 600 to vary the valve duration of the valves 255 and 250 of the pump assembly 600 in order to reduce the maximum amplitude vibration in the discharge header 614 as well as to improve volumetric efficiency of each of the cylinders 610A, 610B and 610C such as by varying the closing times of the discharge valves 250 to reduce vibration induced in the discharge header 614 and by ensuring that the valves 255 and 250 are closed quickly and/or without delay.
In an embodiment, the closing timing of the respective valve actuation guide or guides 200, 300, or 450 for the valves 255 of each of the cylinders 610A, 610B, and 610C may be increased during the operation of the pump assembly 600 in order to reduce the amount of fluid pumped in each cylinder 610A, 610B, and 610C and thereby reduce the suction head required for the pump assembly 600.
In an embodiment, the respective valve actuation guide or guides 200, 300, or 450 for the valves 255 and 250 of each of the cylinders 610A, 610B, and 610C are actuated during the operation of the pump assembly 600 to vary the valve duration of the valves 255 and 250 of the pump assembly 600 in order to generate and send pressure pulses in the discharge header 614 and further into the well 525 for, for example, communicating with a device (not shown) disposed within the well 525, as will be appreciated by those skilled in the art.
In an embodiment, a plurality of pump assemblies 600, such as the pump assemblies 600a, 600b, 600c, 600n, best seen in
In an embodiment, the respective valve actuation guide or guides 200, 300, or 450 may force the valves 255 to remain open and/or force the valves 250 to remain closed for one or more the cylinders 610A, 610B, and 610C during the operation of the pump assembly 600 in order to prevent an overpressure event for the cylinders 610A, 610B, or 610C, which may replace or supplement the use of burst discs in the fluid end 604, while ensuring that the pressurizable chamber 235 is not over-pressurized, such as by ensuring that at no time would both valves 255 or 250 be closed while the plunger 290 is in the pressure stroke.
In an embodiment, the respective valve actuation guide or guides 200, 300, or 450 for the valves 255 and 250 of each of the cylinders 610A, 610B, and 610C may be sequentially actuated during operation of the pump assembly 600 such that only one of the cylinders 610A, 610B and 610C is active in order to perform diagnostic testing on the active cylinder 610A, 610B, or 610C and its respective valves 255 and 250, including, but not limited to, packing inspection, valve degradation, valve failure prediction, and the like.
In an embodiment, the respective valve actuation guide or guides 200, 300, or 450 may force the valves 255 to remain open and/or force the valves 250 to remain for one or more the cylinders 610A, 610B, and 610C during the operation of the pump assembly 600 in order to provide cavitation protection in the event that suction pressure decreases during operation in order to keep fluid flowing from the pump assembly 600 and prevent damage to components of the fluid end 604.
In an embodiment, the respective valve actuation guide or guides 200, 300, or 450 for the valves 255 and 250 of each of the cylinders 610A, 610B, and 610C are actuated during the operation of the pump assembly 600 to vary the valve duration of the valves 255 and 250 of the pump assembly 600 in order to generate pulses with the fracturing fluid 510 within the well 525, which may improve or enhance fracture propagation within the formation 515. The opening of the suction valves 255 and/or the discharge valves 250 may be synchronized to generate the pulse or resonance within the fracturing fluid 510.
In an embodiment, the respective valve actuation guide or guides 200, 300, or 450 for the suction valves 255 of each of the cylinders 610A, 610B, and 610C may force the valves 255 to remain open until the pressurizable chamber 235 is filled with fluid or primed, which may allow for improved priming of the fluid end 604.
In an embodiment, for the suction valves 255 of each of the cylinders 610A, 610B, and 610C may force the valves 255 to remain open until the pressurizable chamber 235 is filled with fluid or primed, which may reduce the need to recirculate fluid from the discharge manifold 614 back to the suction manifold.
In an embodiment, the respective valve actuation guide or guides 200, 300, or 450 for the valves 255 and 250 of each of the cylinders 610A, 610B, and 610C are actuated during the operation of the pump assembly 600 to vary the valve duration of the valves 255 and 250 of the pump assembly 600 such that the cylinders 610A, 610B, and 610C may be activated (pump), deactivated (not pump), or pump for only a portion of the stroke of the plunger 290 in order to improve torque fluctuation of the fluid end 604.
The valves 255 or 250 of the pump assembly 600 may be operated and/or controlled in a manner to provide a desired characteristic in the pumped material or fluid system downstream of the pump assembly 600. The valves 255 or 250 of the pump assembly 600 may be operated in a manner to provide a desired characteristic within the pump assembly 600, such as the fluid end body 604. The valves 255 or 250 of the pump assembly 600 may be operated and/or controlled in a manner to provide desired characteristics for observing the operation of the pump assembly 600. The valves 255 or 250 of the pump assembly 600 may be operated and/or controlled in a manner to enable a quicker or safer setup of a pump assembly 600 for operation. The valves 255 or 250 of the pump assembly 600 may be operated and/or controlled such that multiple pumps (such as those shown in
The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood as referring to the power set (the set of all subsets) of the respective range of values. Accordingly, the protection sought herein is as set forth in the claims below.
The preceding description has been presented with reference to presently preferred embodiments of the invention. Persons skilled in the art and technology to which this invention pertains will appreciate that alterations and changes in the described structures and methods of operation can be practiced without meaningfully departing from the principle, and scope of this invention. Accordingly, the foregoing description should not be read as pertaining only to the precise structures described and shown in the accompanying drawings, but rather should be read as consistent with and as support for the following claims, which are to have their fullest and fairest scope.
This application is a continuation-in-part application of application Ser. No. 12/113,488, filed on May 1, 2008, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application Ser. No. 60/917,366, entitled Valve for a Positive Displacement Pump filed on May 11, 2007, and Provisional Application Ser. No. 60/985,874, entitled Valve for a Positive Displacement Pump filed on Nov. 6, 2007, the disclosures of each of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60917366 | May 2007 | US | |
60985874 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12113488 | May 2008 | US |
Child | 12700302 | US |