The present invention involves methods of preparing coated particulates and using such coated particulates in subterranean applications such as production enhancement and sand control. More particularly, the present invention relates to methods of preparing particulates treated with an adhesive substance (such as a tackifying agent or curable resin) such that the particulates are able to resist sticking and clumping and need not be immediately used once they are prepared.
Subterranean operations often use particulates coated with an adhesive substance such as a tackifying agent or a curable resin. One example of a production stimulation operation using such coated particulates is hydraulic fracturing, wherein a formation is treated to increase its permeability by hydraulically fracturing the formation to create or enhance one or more cracks or “fractures.” In most cases, a hydraulic fracturing treatment involves pumping a proppant-free, viscous fluid (known as a pad fluid) into a subterranean formation faster than the fluid can escape into the formation so that the pressure in the formation rises and the formation breaks, creating an artificial fracture or enlarging a natural fracture. Then particulates known in the art as proppant are placed into the fracture to prevent the fracture form closing when the pumping pressure is released. A portion of the proppant may be coated with an adhesive substance to control the migration of the proppant particulates and/or to control the migration of formation sands and fines.
An example of a well completion operation using a treating fluid containing coated particulates is gravel packing. Gravel packing treatments are used, inter alia, to reduce the migration of unconsolidated formation particulates into the well bore. In gravel packing operations, particulates known in the art as gravel are carried to a well bore by a hydrocarbon or water treatment fluid. That is, the particulates are suspended in a treatment fluid, which may be viscosified, and the treatment fluid is pumped into a well bore in which the gravel pack is to be placed. The treatment fluid leaks off into the subterranean zone and/or is returned to the surface while the particulates are left in the zone. The resultant gravel pack acts as a filter to separate formation sands from produced fluids while permitting the produced fluids to flow into the well bore. A portion of the gravel may be coated with resin or tackifying agent, inter alia, to further help control the migration of formation fines. Typically, gravel pack operations involve placing a gravel pack screen in the well bore and packing the surrounding annulus between the sand control screen and the formation (or casing) with gravel designed to prevent the passage of formation sands through the pack. The sand control screen is generally a type of filter assembly used to support and retain the gravel placed during the gravel pack operation. A wide range of sizes and screen configurations are available to suit the characteristics of a particular well bore, the production fluid, and the subterranean formation sands. Such gravel packs may be used to stabilize a portion of a formation while causing minimal impairment to well productivity. The gravel is generally designed to prevent formation sands from occluding the screen or migrating with the produced fluids, and the screen is generally designed prevent the gravel from entering the well bore.
In some situations the processes of hydraulic fracturing and gravel packing are combined into a single treatment to provide stimulated production and an annular gravel pack to reduce formation sand production. Such treatments are often referred to as “frac pack” operations. In some cases, the treatments are completed with a gravel pack screen assembly in place, and the hydraulic fracturing treatment being pumped through the annular space between the casing and screen. In such a situation, the hydraulic fracturing treatment usually ends in a screen out condition creating an annular gravel pack between the screen and casing. This allows both the hydraulic fracturing treatment and gravel pack to be placed in a single operation.
The present invention involves methods of preparing coated particulates and using such coated particulates in subterranean applications such as production enhancement and sand control. More particularly, the present invention relates to methods of preparing particulates treated with an adhesive substance (such as a tackifying agent or curable resin) such that the particulates are able to resist sticking and clumping and need not be immediately used once they are prepared.
One embodiment of the present invention provides methods of treating a portion of a subterranean formation comprising: providing partitioned, coated particulates that comprise particulates, an adhesive substance, and a partitioning agent, and wherein the adhesive substance comprises an aqueous tackifying agent or a silyl modified polyamide; substantially slurrying the partitioned, coated particulates in a treatment fluid to create a particulate slurry; and, placing the particulate slurry into the portion of the subterranean formation.
Another embodiments of the present invention provides methods of creating a propped fracture in a portion of a subterranean formation comprising: providing at least one fracture in the portion of the subterranean formation; providing partitioned, coated particulates that comprise particulates, an adhesive substance, and a partitioning agent, and wherein the adhesive substance comprises an aqueous tackifying agent or a silyl modified polyamide; substantially slurrying the partitioned, coated particulates in a treatment fluid to create a particulate slurry; and, placing the particulate slurry into the at least one fracture in the portion of the subterranean formation so as to deposit at least a portion of the partitioned, coated particulates into the at least one fracture.
Another embodiments of the present invention provides methods of gravel packing along a portion of a well bore comprising: providing a portion of a well bore; providing partitioned, coated particulates that comprise particulates, an adhesive substance, and a partitioning agent, and wherein the adhesive substance comprises an aqueous tackifying agent or a silyl modified polyamide; substantially slurrying the partitioned, coated particulates in a treatment fluid to create a particulate slurry; and, placing the particulate slurry into the portion of the well bore so as to deposit at least a portion of the partitioned, coated particulates into that portion and to create a gravel pack therein.
The features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of preferred embodiments that follows.
The present invention involves methods of preparing coated particulates and using such coated particulates in subterranean applications such as production enhancement and sand control. More particularly, the present invention relates to methods of preparing particulates treated with an adhesive substance (such as a tackifying agent or curable resin) such that the particulates are able to resist sticking and clumping and need not be immediately used once they are prepared. By coating a partitioning agent onto particulates that have been treated with an adhesive substance, the methods of the present invention are capable of at least temporarily diminishing the “tackiness” of the treated particulates, thus preventing or minimizing the agglomeration of the particulates and the spreading of the adhesive substance onto equipment surfaces. In some embodiments of the present invention the coating used to at least temporarily diminishing the “tackiness” of the treated particulates may also be a treatment chemical useful in the subterranean environment. Suitable partitioning agents dissolve, degrade, or otherwise are removed from the surface of the particulate at a desired time such that the tackiness and/or curing performance of the adhesive substance is substantially restored once the partitioning agent is substantially removed. By least temporarily diminishing the tackiness of particulates coated with an adhesive substance the methods of the present invention are able to minimize the interaction of the adhesive substance with a treatment fluid or an equipment surface. As used herein, the term “tacky,” in all of its forms, generally refers to a substance having a nature such that it is (or may be activated to become) somewhat sticky to the touch.
Particulates coated with adhesive substances have a tendency to agglomerate and form masses of joined particulates rather than retaining their individual character. In the methods of the present invention, particulates are treated with an adhesive substance such as a tackifying agent and/or a curable resin and then the particulates are substantially coated with a partitioning agent to help the particulates retain their individual tacky or curable character. Some embodiments of the present invention describe methods of forming coated particulates that may be created and then stored and or shipped before use without excessive agglomeration even under temperature and stress loads commonly encountered by particulates such as proppant and gravel during handling and storage before use in a subterranean formation. In some embodiments of the present invention, the coated particulates may be created a few hours or several months before they are used.
Particulates suitable for use in the present invention may be comprised of any material suitable for use in subterranean operations. Suitable particulate materials include, but are not limited to, sand; bauxite; ceramic materials; glass materials; polymer materials; TEFLON® (polytetrafluoroethylene) materials; nut shell pieces; seed shell pieces; cured resinous particulates comprising nut shell pieces; cured resinous particulates comprising seed shell pieces; fruit pit pieces; cured resinous particulates comprising fruit pit pieces; wood; composite particulates and combinations thereof. Composite particulates may also be suitable, suitable composite materials may comprise a binder and a filler material wherein suitable filler materials include silica, alumina, fumed carbon, carbon black, graphite, mica, titanium dioxide, meta-silicate, calcium silicate, kaolin, talc, zirconia, boron, fly ash, hollow glass microspheres, solid glass, and combinations thereof.
In some embodiments of the present invention the particulate used may be a low quality particulate. The use of low-quality particulates may be particularly well suited for embodiments in which the particulates are to be coated with a tackifying agent or a curable resin. This is due, at least in part, to the fact that a coating of tackifying agent or resin may act to improve the performance of the low quality particulates. As used herein, the term “low-quality particulates” refers to particulates that do not meet at least one of the standards for sphericity, roundness, size, turbidity, acid solubility, percentage of fines, or crush resistance as recited in American Petroleum Institute Recommended Practices (API RP) standard numbers 56 and 58 for proppant and gravel respectively.
The API RP's describe the minimum standard for sphericity as at least 0.6 and for roundness as at least 0.6. As used herein, the terms “sphericity” and “roundness” are defined as described in the API RP's and can be determined using the procedures set forth in the API RP's.
API RP 56 also sets forth some commonly recognized proppant sizes as 6/12, 8/16, 12/20, 20/40, 30/50, 40/70, and 70/140. Similarly, API RP 58 also sets forth some commonly recognized gravel sizes as 8/16, 12/20, 16/30, 20/40, 30/50, and 40/60. The API RP's further note that a minimum percentage of particulates that should fall between designated sand sizes, noting that not more than 0.1 weight % of the particulates should be larger than the larger sand size and not more than a maximum percentage (1 weight % in API RP 56 and 2 weight % in API RP 58) should be smaller than the small sand size. Thus, for 20/40 proppant, no more than 0.1 weight % should be larger than 20 U.S. Mesh and no more than 1 weight % smaller than 40 U.S. Mesh.
API RP's 56 and 58 describe the minimum standard for proppant and gravel turbidity as 250 FTU or less. API RP 56 describes the minimum standard for acid solubility of proppant as no more than 2 weight % loss when tested according to API RP 56 procedures for proppant sized between 6/12 Mesh and 30/50 Mesh, U.S. Sieve Series and as no more than 3 weight % loss when tested according to API RP 56 procedures for proppant sized between 40/70 Mesh and 70/140 Mesh, U.S. Sieve Series. API RP 58 describes the minimum standard for acid solubility of gravel as no more than 1 weight % loss when tested according to API RP 58 procedures. API RP 56 describes the minimum standard for crush resistance of proppant as producing not more than the suggested maximum fines as set forth in Table 1, below, for the size being tested:
Similarly, API RP 58 describes the minimum standard for crush resistance of gravel as producing not more than the suggested maximum fines as set forth in Table 1, below, for the size being tested:
Resins suitable for use as an adhesive substance of the present invention include all resins known in the art that are capable of forming a hardened, consolidated mass. Many such resins are commonly used in subterranean operations, and some suitable resins include two component epoxy based resins, novolak resins, polyepoxide resins, phenol-aldehyde resins, urea-aldehyde resins, urethane resins, phenolic resins, furan resins, furan/furfuryl alcohol resins, phenolic/latex resins, phenol formaldehyde resins, polyester resins and hybrids and copolymers thereof, polyurethane resins and hybrids and copolymers thereof, acrylate resins, and mixtures thereof. Some suitable resins, such as epoxy resins, may be cured with an internal catalyst or activator so that when pumped down hole, they may be cured using only time and temperature. Other suitable resins, such as furan resins generally require a time-delayed catalyst or an external catalyst to help activate the polymerization of the resins if the cure temperature is low (i.e., less than 250° F.), but will cure under the effect of time and temperature if the formation temperature is above about 250° F., preferably above about 300° F. By way of further example, selection of a suitable resin may be affected by the temperature of the subterranean formation to which the fluid will be introduced. For subterranean formations having a BHST ranging from about 300° F. to about 600° F., a furan-based resin may be preferred. For subterranean formations having a BHST ranging from about 200° F. to about 400° F., either a phenolic-based resin or a one-component HT epoxy-based resin may be suitable. For subterranean formations having a BHST of at least about 175° F., a phenol/phenol formaldehyde/furfuryl alcohol resin may also be suitable. It is within the ability of one skilled in the art, with the benefit of this disclosure, to select a suitable resin for use in embodiments of the present invention and to determine whether a catalyst is required to trigger curing.
One resin coating material suitable for use in the proppant compositions of the present invention is a two-component epoxy based resin comprising a hardenable resin component and a hardening agent component. The hardenable resin component is comprised of a hardenable resin and an optional solvent. The second component is the liquid hardening agent component, which is comprised of a hardening agent, a silane coupling agent, a surfactant, an optional hydrolyzable ester for, inter alia, breaking gelled fracturing fluid films on the proppant particles, and an optional liquid carrier fluid for, inter alia, reducing the viscosity of the liquid hardening agent component. It is within the ability of one skilled in the art with the benefit of this disclosure to determine if and how much liquid carrier fluid is needed to achieve a viscosity suitable to the subterranean conditions.
Where the resin coating material of the present invention is a furan-based resin, suitable furan-based resins include, but are not limited to, furfuryl alcohol, a mixture furfuryl alcohol with an aldehyde, and a mixture of furan resin and phenolic resin. Where the resin coating material of the present invention is a phenolic-based resin, suitable phenolic-based resins include, but are not limited to, terpolymers of phenol, phenolic formaldehyde resins, and a mixture of phenolic and furan resins. Of these, a mixture of phenolic and furan resins is preferred. Where the resin coating material of the present invention is a HT epoxy-based resin, suitable HT epoxy-based components included, but are not limited to, bisphenol A-epichlorohydrin resin, polyepoxide resin, novolac resin, polyester resin, glycidyl ethers and mixtures thereof.
Yet another resin suitable for use in the methods of the present invention is a phenol/phenol formaldehyde/furfuryl alcohol resin comprising from about 5% to about 30% phenol, from about 40% to about 70% phenol formaldehyde, from about 10 to about 40% furfuryl alcohol, from about 0.1% to about 3% of a silane coupling agent, and from about 1% to about 15% of a surfactant. In the phenol/phenol formaldehyde/furfuryl alcohol resins suitable for use in the methods of the present invention, suitable silane coupling agents include, but are not limited to, n-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane. Suitable surfactants include, but are not limited to, an ethoxylated nonyl phenol phosphate ester, mixtures of one or more cationic surfactants and one or more non-ionic surfactants, and an alkyl phosphonate surfactant.
Tackifying agents suitable for use as an adhesive substance in the present invention include non-aqueous tackifying agents, aqueous tackifying agents, and silyl-modified polyamides.
One type of tackifying agent suitable for use in the present invention is a non-aqueous tackifying agent. A particularly preferred group of non-aqueous tackifying agents comprise polyamides that are liquids or in solution at the temperature of the subterranean formation such that they are, by themselves, non-hardening when introduced into the subterranean formation. A particularly preferred product is a condensation reaction product comprised of a polyacid and a polyamine. Such condensation reaction products include compounds such as mixtures of C36 dibasic acids containing some trimer and higher oligomers and also small amounts of monomer acids that are reacted with polyamines. Other polyacids include trimer acids, synthetic acids produced from fatty acids, maleic anhydride, acrylic acid, and the like. Such acid compounds are commercially available from companies such as Witco Corporation, Union Camp, Chemtall, and Emery Industries. The reaction products are available from, for example, Champion Technologies, Inc. and Witco Corporation. Additional compounds which may be used as non-aqueous tackifying compounds include liquids and solutions of, for example, polyesters, polycarbonates and polycarbamates, natural resins such as shellac and the like. Other suitable non-aqueous tackifying agents are described in U.S. Pat. No. 5,853,048 issued to Weaver, et al. and U.S. Pat. No. 5,833,000 issued to Weaver, et al., the relevant disclosures of which are herein incorporated by reference.
Non-aqueous tackifying agents suitable for use in the present invention may be either used such that they form non-hardening coating or they may be combined with a multifunctional material capable of reacting with the non-aqueous tackifying agent to form a hardened coating. A “hardened coating” as used herein means that the reaction of the tackifying compound with the multifunctional material will result in a substantially non-flowable reaction product that exhibits a higher compressive strength in a consolidated agglomerate than the tackifying compound alone with the particulates. In this instance, the non-aqueous tackifying agent may function similarly to a hardenable resin. Multifunctional materials suitable for use in the present invention include, but are not limited to, aldehydes such as formaldehyde, dialdehydes such as glutaraldehyde, hemiacetals or aldehyde releasing compounds, diacid halides, dihalides such as dichlorides and dibromides, polyacid anhydrides such as citric acid, epoxides, furfuraldehyde, glutaraldehyde or aldehyde condensates and the like, and combinations thereof. In some embodiments of the present invention, the multifunctional material may be mixed with the tackifying compound in an amount of from about 0.01 to about 50 percent by weight of the tackifying compound to effect formation of the reaction product. In some preferable embodiments, the compound is present in an amount of from about 0.5 to about 1 percent by weight of the tackifying compound. Some other suitable multifunctional materials are described in U.S. Pat. No. 5,839,510 issued to Weaver, et al., the relevant disclosure of which is herein incorporated by reference.
Solvents suitable for use with the non-aqueous tackifying agents of the present invention include any solvent that is compatible with the non-aqueous tackifying agent and achieves the desired viscosity effect. Examples of solvents suitable for use in the present invention include, but are not limited to, butylglycidyl ether, dipropylene glycol methyl ether, butyl bottom alcohol, dipropylene glycol dimethyl ether, diethyleneglycol methyl ether, ethyleneglycol butyl ether, methanol, butyl alcohol, isopropyl alcohol, diethyleneglycol butyl ether, propylene carbonate, d'limonene, 2-butoxy ethanol, butyl acetate, furfuryl acetate, butyl lactate, fatty acid methyl esters, and combinations thereof. It is within the ability of one skilled in the art, with the benefit of this disclosure, to determine whether a solvent is needed to achieve a viscosity suitable to the subterranean conditions and, if so, how much.
Aqueous tackifyier agents suitable for use in the present invention are not significantly tacky when placed onto a particulate, but are capable of being “activated” (that is destabilized, coalesced and/or reacted) to transform the compound into a sticky, tackifying compound at a desirable time. Such activation may occur before, during, or after the aqueous tackifyier agent is placed in the subterranean formation. In some embodiments, a pretreatment may be first contacted with the surface of a particulate to prepare it to be coated with an aqueous tackifyier agent. Suitable aqueous tackifying agents are generally charged polymers that comprise compounds that, when in an aqueous solvent or solution, will form a non-hardening coating (by itself or with an activator) and, when placed on a particulate, will increase the continuous critical resuspension velocity of the particulate when contacted by a stream of water. The aqueous tackifyier agent may enhance the grain-to-grain contact between the individual particulates within the formation (be they proppant particulates, formation fines, or other particulates), helping bring about the consolidation of the particulates into a cohesive, flexible, and permeable mass.
Examples of aqueous tackifyier agents suitable for use in the present invention include, but are not limited to, acrylic acid polymers, acrylic acid ester polymers, acrylic acid derivative polymers, acrylic acid homopolymers, acrylic acid ester homopolymers (such as poly(methyl acrylate), poly (butyl acrylate), and poly(2-ethylhexyl acrylate)), acrylic acid ester co-polymers, methacrylic acid derivative polymers, methacrylic acid homopolymers, methacrylic acid ester homopolymers (such as poly(methyl methacrylate), poly(butyl methacrylate), and poly(2-ethylhexyl methacryate)), acrylamido-methyl-propane sulfonate polymers, acrylamido-methyl-propane sulfonate derivative polymers, acrylamido-methyl-propane sulfonate co-polymers, and acrylic acid/acrylamido-methyl-propane sulfonate co-polymers and combinations thereof. Methods of determining suitable aqueous tackifier agents and additional disclosure on aqueous tackifier agents can be found in U.S. patent application Ser. No. 10/864,061 and filed Jun. 9, 2004 and U.S. patent application Ser. No. 10/864,618 and filed Jun. 9, 2004 the relevant disclosures of which are hereby incorporated by reference.
Silyl-modified polyamide compounds suitable for use as an adhesive substance in the methods of the present invention may be described as substantially self-hardening compositions that are capable of at least partially adhering to particulates in the unhardened state, and that are further capable of self-hardening themselves to a substantially non-tacky state to which individual particulates such as formation fines will not adhere to, for example, in formation or proppant pack pore throats. Such silyl-modified polyamides may be based, for example, on the reaction product of a silating compound with a polyamide or a mixture of polyamides. The polyamide or mixture of polyamides may be one or more polyamide intermediate compounds obtained, for example, from the reaction of a polyacid (e.g., diacid or higher) with a polyamine (e.g., diamine or higher) to form a polyamide polymer with the elimination of water. Other suitable silyl-modified polyamides and methods of making such compounds are described in U.S. Pat. No. 6,439,309 issued to Matherly, et al., the relevant disclosure of which is herein incorporated by reference.
The coated particulates of the present invention may be suspended in any treatment fluid known in the art, including aqueous gels, viscoelastic surfactant gels, oleaginous gels, foamed gels and emulsions. Suitable aqueous gels are generally comprised of water and one or more gelling agents. The emulsions may be comprised of two or more immiscible liquids such as an aqueous gelled liquid and a liquefied, normally gaseous fluid, such as nitrogen. The preferred treatment fluids for use in accordance with this invention are aqueous gels comprised of water, a gelling agent for gelling the water and increasing its viscosity, and optionally, a cross-linking agent for cross-linking the gel and further increasing the viscosity of the fluid. The increased viscosity of the gelled or gelled and cross-linked treatment fluid, inter alia, reduces fluid loss and allows the fracturing fluid to transport significant quantities of suspended particulates. The treatment fluids also may include one or more of a variety of well-known additives such as breakers, stabilizers, fluid loss control additives, clay stabilizers, bactericides, and the like.
Partitioning agents suitable for use in the present invention are those substances that will dissipate once the particulates are introduced to a treatment fluid, such as a fracturing or gravel packing fluid. Partitioning agents suitable for use in the present invention should not detrimentally interfere with the adhesive substance on the particulate, and should not detrimentally interfere with the treatment fluid or the subterranean operation being performed. This does not mean that the chosen partitioning agent must be inert. Rather, in some embodiments of the present invention the partitioning agent is also a treatment chemical that has a beneficial effect on the subterranean environment, or the operation, or both. In preferred embodiments, the partitioning agent is coated onto the adhesive substance-coated particulate in an amount of from about 1% to about 20% by weight of the coated particulate. In preferred embodiments, the substantially the entire surface of the adhesive substance coating is coated with partitioning agent.
Partitioning agents suitable for use in the present invention are those materials that are capable of coating onto the adhesive substance pre-coating on the particulate and reducing its tacky character. Suitable partitioning agents may be substances that will quickly dissipate in the presence of the treatment fluid. Examples of suitable partitioning agents that will dissolve quickly in an aqueous treatment fluid include solid salts (such as rock salt, fine salt, KCl, and other solid salts known in the art), barium sulfate, lime, benzoic acid, polyvinyl alcohol, sodium carbonate, sodium bicarbonate, molybdenum disulfide, sodium hydroxide graphite, zinc, lime, quebracho, lignin, lignite, causticized lignite, lignosulfonate, chrome lignosulfonate, napthalenesulfonate, uintahite (gilsonite), polyvinvyl alcohol, and mixtures thereof. One skilled in the art will recognize that where lime (calcium carbonate) is chosen for use as a partitioning agent in the present invention it may be used in any of its forms, including quicklime, hydrated lime, and hydraulic lime. The partitioning agent also may be a substance that dissipates more slowly in the presence of the treatment fluid. Partitioning agents that dissolve more slowly may allow the operator more time to place the coated particulates. Examples of suitable partitioning agents that will dissolve more slowly in an aqueous treatment fluid include calcium oxide, degradable polymers, such as polysaccharides; chitins; chitosans; proteins; aliphatic polyesters; poly(lactides); poly(glycolides); poly(ε-caprolactones); poly(hydroxybutyrates); poly(anhydrides); aliphatic polycarbonates; poly(orthoesters); poly(amino acids); poly(ethylene oxides); and poly(phosphazenes); and mixtures thereof.
Where the treatment fluid is an oleaginous treatment fluid, examples of suitable partitioning agents that will dissolve in an oleaginous treatment fluid include wax, gilsonite, sulfonated asphalt, naphthalenesulfonate, oil soluble resins, and combinations thereof. Some suitable oil soluble resins include, but are not limited to, styrene-isoprene copolymers, hydrogenated styrene-isoprene block copolymers, styrene ethylene/propylene block copolymers, styrene isobutylene copolymers, styrene-butadiene copolymers, polybutylene, polystyrene, polyethylene-propylene copolymers, and combinations thereof
The chosen partitioning agent should be able to at least temporarily reduce the tacky nature of the adhesive substance coated onto the particulate, but it may also perform other functions. For example, some embodiments of the present invention coat a particulate with a resin and then use a partitioning agent that is a resin hardening agent. In other embodiments the partitioning agent may act as a scale inhibitor, corrosion inhibitor, parrafin remover, gel breaker, crosslink de-linker, gas hydrate inhibitor, or any other solid treatment chemical that can be coated on top of an adhesive substance to at least temporarily reduce its tacky nature.
Moreover, in some embodiments the adhesive substance and partitioning agent may be coated onto a particulate in layers. By way of example, a particulate may be coated with an adhesive substance and then coated with a partitioning agent and then coated again with an adhesive substance and then coated again with a partitioning agent. In such a case the first and second coatings of the adhesive substance need not be the same and the first and second coatings of the partitioning agent need not be the same. As will be understood by one skilled in the art, more than two layers of adhesive substances and partitioning agents may be used. This may be particularly useful in situations wherein it is desirable to delay the release of a partitioning agent that also acts as a treatment chemical. For example, a first (inner) layer of partitioning agent may be a treatment chemical that is a gel breaker and a second layer of partitioning agent may be an inert, slowly dissolving partitioning agent. Also for example, the first (inner) layer of partitioning agent may be a crosslinker, with a second layer of partitioning agent being a slowly dissolving partitioning agent. Also for example, the first (inner) layer of partitioning agent may be a hardenable resin component, with a second layer being an inert dissolving agent, and a third layer being a hardening agent component.
Some embodiments of the methods of the present invention provide methods for treating subterranean formations using partitioned, coated particulates wherein the coated particulates are made by substantially coating particulates with an adhesive substance to create adhesive-coated particulates and then substantially covering the adhesive-coated particulates with a partitioning agent to create partitioned, coated particulates.
Suitable partitioned, coated particulates may be used in a variety of subterranean treatments including fracturing, gravel packing, and frac-packing treatments wherein the partitioned, coated particulates are generally substantially slurried into a treatment fluid to create a partitioned, coated particulate slurry that may then be placed into a desired location within a portion of a subterranean formation.
To facilitate a better understanding of the present invention, the following examples of some of the preferred embodiments are given. In no way should such examples be read to limit the scope of the invention.
A sample of bauxite particulates was pre-coated with a high temperature epoxy resin and another sample was pre-coated with a furan resin; each sample contained 7.8 cc of resin per 250 grams of particulate. Sodium bicarbonate powder (20 grams) was then covered onto each of the resin coated samples to form coated particulates. The samples of particulates were stored at room temperature for three days. After that time the samples, still substantially non-agglomerated, were mixed in an aqueous-based fracturing fluid and formed a slurry concentration of 7 pounds of particulates per gallon of fracturing fluid. The sodium bicarbonate covering dissolved as the particulates were mixed into the fracturing fluid. The coated particulates of the present invention proved capable of retaining their individual character even after being stored for a period of time.
The slurry was then crosslinked, stirred for an hour at 180° F., and then packed into a brass chamber and cured for at least 8 hours at 325° F. Core samples obtained from the cured particulates reflected consolidation strength of between 850 and 1,100 psi. Thus, the covering used to create the coated particulates did not act to impair consolidation.
High-molecular weight polyamide tackifying compound in the amount of 3 cc was dry coated directly onto 300 grams of 20/40-mesh Brady sand by hand stirring with a spatula to form a thin film of the compound on the sand grains. Afterward, 20 grams of KCl powder with average particle size distribution of 40 microns was hand stirred into the coated sand until the coated sand became dry. A sample of this dry coated sand was then mixed with water. The tackiness immediately returned to the coated sand.
Low-molecular weight polyamide tackifying compound in the amount of 3 cc was dry coated directly onto 300 grams of 20/40-mesh Brady sand by hand stirring with a spatula to form a thin film of the compound on the sand grains. Afterward, 20 grams of KCl powder with average particle size distribution of 40 microns was hand stirred into the coated sand until the coated sand became dry. A sample of this dry coated sand was then mixed with water. The coated sand immediately became tacky again.
Therefore, the present invention is well adapted to carry out the objects and attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit and scope of this invention as defined by the appended claims.
The present invention is a continuation in part of U.S. patent application Ser. No. 10/794,076 filed on Mar. 5, 2004 now U.S. Pat. No. 7,063,151. Moreover, the present invention is related to U.S. application Ser. No. 11/072,355 entitled “Methods Using Particulates Coated With Treatment Chemical Partitioning Agents” (HES 2003-IP-011506U1P2) filed on the same date herewith, which is assigned to the assignee of the present invention, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2238671 | Woodhouse | Apr 1941 | A |
2703316 | Schneider | Mar 1955 | A |
2869642 | McKay et al. | Jan 1959 | A |
3047067 | Williams | Jul 1962 | A |
3123138 | Robichaux | Mar 1964 | A |
3176768 | Brandt et al. | Apr 1965 | A |
3199590 | Young | Aug 1965 | A |
3272650 | MacVittie | Sep 1966 | A |
3297086 | Spain | Jan 1967 | A |
3308885 | Sandiford | Mar 1967 | A |
3316965 | Watanabe | May 1967 | A |
3336980 | Rike | Aug 1967 | A |
3375872 | McLaughlin et al. | Apr 1968 | A |
3404735 | Young et al. | Oct 1968 | A |
3415320 | Young | Dec 1968 | A |
3492147 | Young et al. | Jan 1970 | A |
3659651 | Graham | May 1972 | A |
3681287 | Brown et al. | Aug 1972 | A |
3708013 | Dismuke | Jan 1973 | A |
3709298 | Pramann | Jan 1973 | A |
3754598 | Holloway, Jr. | Aug 1973 | A |
3765804 | Brandon | Oct 1973 | A |
3768564 | Knox et al. | Oct 1973 | A |
3784585 | Schmitt et al. | Jan 1974 | A |
3819525 | Hattenbrun | Jun 1974 | A |
3828854 | Templeton et al. | Aug 1974 | A |
3842911 | Know et al. | Oct 1974 | A |
3854533 | Gurley et al. | Dec 1974 | A |
3857444 | Copeland | Dec 1974 | A |
3863709 | Fitch | Feb 1975 | A |
3868998 | Lybarger et al. | Mar 1975 | A |
3888311 | Cooke, Jr. | Jun 1975 | A |
3912692 | Casey et al. | Oct 1975 | A |
3948672 | Harnsberger | Apr 1976 | A |
3955993 | Curtice | May 1976 | A |
3960736 | Free et al. | Jun 1976 | A |
4008763 | Lowe et al. | Feb 1977 | A |
4015995 | Hess | Apr 1977 | A |
4029148 | Emery | Jun 1977 | A |
4031958 | Sandiford et al. | Jun 1977 | A |
4042032 | Anderson et al. | Aug 1977 | A |
4070865 | McLaughlin | Jan 1978 | A |
4074760 | Copeland et al. | Feb 1978 | A |
4085801 | Sifferman et al. | Apr 1978 | A |
4127173 | Watkins et al. | Nov 1978 | A |
4169798 | DeMartino | Oct 1979 | A |
4172066 | Zweigle et al. | Oct 1979 | A |
4245702 | Haafkens et al. | Jan 1981 | A |
4273187 | Satter et al. | Jun 1981 | A |
4291766 | Davies et al. | Sep 1981 | A |
4305463 | Zakiewicz | Dec 1981 | A |
4336842 | Graham et al. | Jun 1982 | A |
4352674 | Fery | Oct 1982 | A |
4353806 | Canter et al. | Oct 1982 | A |
4387769 | Erbstoesser et al. | Jun 1983 | A |
4415805 | Fertl et al. | Nov 1983 | A |
4439489 | Johnson et al. | Mar 1984 | A |
4443347 | Underdown et al. | Apr 1984 | A |
4460052 | Gockel | Jul 1984 | A |
4470915 | Conway | Sep 1984 | A |
4493875 | Beck et al. | Jan 1985 | A |
4494605 | Wiechel et al. | Jan 1985 | A |
4498995 | Gockel | Feb 1985 | A |
4501328 | Nichols | Feb 1985 | A |
4526695 | Erbstosser et al. | Jul 1985 | A |
4527627 | Graham et al. | Jul 1985 | A |
4541489 | Wu | Sep 1985 | A |
4546012 | Brooks | Oct 1985 | A |
4553596 | Graham et al. | Nov 1985 | A |
4564459 | Underdown et al. | Jan 1986 | A |
4572803 | Yamazoe et al. | Feb 1986 | A |
4649998 | Friedman | Mar 1987 | A |
4664819 | Glaze et al. | May 1987 | A |
4665988 | Murphey et al. | May 1987 | A |
4669543 | Young | Jun 1987 | A |
4675140 | Sparks et al. | Jun 1987 | A |
4683954 | Walker et al. | Aug 1987 | A |
4694905 | Armbruster | Sep 1987 | A |
4715967 | Bellis et al. | Dec 1987 | A |
4716964 | Erbstoesser et al. | Jan 1988 | A |
4733729 | Copeland | Mar 1988 | A |
4739832 | Jennings, Jr. et al. | Apr 1988 | A |
4785884 | Armbruster | Nov 1988 | A |
4787453 | Hewgill et al. | Nov 1988 | A |
4789105 | Hosokawa et al. | Dec 1988 | A |
4796701 | Hudson et al. | Jan 1989 | A |
4797262 | Dewitz | Jan 1989 | A |
4800960 | Friedman et al. | Jan 1989 | A |
4809783 | Hollenbeck et al. | Mar 1989 | A |
4817721 | Pober | Apr 1989 | A |
4829100 | Murphey et al. | May 1989 | A |
4838352 | Oberste-Padtberg et al. | Jun 1989 | A |
4842072 | Friedman et al. | Jun 1989 | A |
4843118 | Lai et al. | Jun 1989 | A |
4848467 | Cantu et al. | Jul 1989 | A |
4848470 | Korpics | Jul 1989 | A |
4850430 | Copeland et al. | Jul 1989 | A |
4886354 | Welch et al. | Dec 1989 | A |
4888240 | Graham et al. | Dec 1989 | A |
4895207 | Friedman et al. | Jan 1990 | A |
4903770 | Friedman et al. | Feb 1990 | A |
4934456 | Moradi-Araghi | Jun 1990 | A |
4936385 | Weaver et al. | Jun 1990 | A |
4942186 | Murphey et al. | Jul 1990 | A |
4957165 | Cantu et al. | Sep 1990 | A |
4959432 | Fan et al. | Sep 1990 | A |
4961466 | Himes et al. | Oct 1990 | A |
4969522 | Whitehurst et al. | Nov 1990 | A |
4969523 | Martin et al. | Nov 1990 | A |
4986353 | Clark et al. | Jan 1991 | A |
4986354 | Cantu et al. | Jan 1991 | A |
4986355 | Casad et al. | Jan 1991 | A |
5030603 | Rumpf et al. | Jul 1991 | A |
5049743 | Taylor, III et al. | Sep 1991 | A |
5082056 | Tackett, Jr. | Jan 1992 | A |
5105886 | Strubhar | Apr 1992 | A |
5107928 | Hilterhaus | Apr 1992 | A |
5128390 | Murphey et al. | Jul 1992 | A |
5135051 | Fracteau et al. | Aug 1992 | A |
5142023 | Gruber et al. | Aug 1992 | A |
5165438 | Fracteau et al. | Nov 1992 | A |
5173527 | Calve | Dec 1992 | A |
5178218 | Dees | Jan 1993 | A |
5182051 | Bandy et al. | Jan 1993 | A |
5199491 | Kutts et al. | Apr 1993 | A |
5199492 | Surles et al. | Apr 1993 | A |
5211234 | Floyd | May 1993 | A |
5216050 | Sinclair | Jun 1993 | A |
5218038 | Johnson et al. | Jun 1993 | A |
5232955 | Caabai et al. | Aug 1993 | A |
5232961 | Murphey et al. | Aug 1993 | A |
5238068 | Fredickson | Aug 1993 | A |
5247059 | Gruber et al. | Sep 1993 | A |
5249628 | Surjaatmadja | Oct 1993 | A |
5256729 | Kutts et al. | Oct 1993 | A |
5273115 | Spafford | Dec 1993 | A |
5285849 | Surles et al. | Feb 1994 | A |
5293939 | Surles et al. | Mar 1994 | A |
5295542 | Cole et al. | Mar 1994 | A |
5320171 | Laramay | Jun 1994 | A |
5321062 | Landrum et al. | Jun 1994 | A |
5325923 | Surjaatmadja et al. | Jul 1994 | A |
5330005 | Card et al. | Jul 1994 | A |
5332037 | Schmidt et al. | Jul 1994 | A |
5335726 | Rodrogues | Aug 1994 | A |
5351754 | Hardin et al. | Oct 1994 | A |
5358051 | Rodrigues | Oct 1994 | A |
5359026 | Gruber | Oct 1994 | A |
5360068 | Sprunt et al. | Nov 1994 | A |
5361856 | Surjaatmajda et al. | Nov 1994 | A |
5363916 | Himes et al. | Nov 1994 | A |
5373901 | Norman et al. | Dec 1994 | A |
5377759 | Surles | Jan 1995 | A |
5381864 | Nguyen et al. | Jan 1995 | A |
5386874 | Laramay et al. | Feb 1995 | A |
5388648 | Jordan, Jr. | Feb 1995 | A |
5393810 | Harris et al. | Feb 1995 | A |
5396957 | Surjaatmadja et al. | Mar 1995 | A |
5402846 | Jennings, Jr. et al. | Apr 1995 | A |
5422183 | Sinclair et al. | Jun 1995 | A |
5423381 | Surles et al. | Jun 1995 | A |
5439055 | Card et al. | Aug 1995 | A |
5460226 | Lawton et al. | Oct 1995 | A |
5464060 | Hale et al. | Nov 1995 | A |
5475080 | Gruber et al. | Dec 1995 | A |
5484881 | Gruber et al. | Jan 1996 | A |
5492178 | Nguyen et al. | Feb 1996 | A |
5494103 | Surjaatmadja et al. | Feb 1996 | A |
5497830 | Boles et al. | Mar 1996 | A |
5498280 | Fistner et al. | Mar 1996 | A |
5499678 | Surjaatmadja et al. | Mar 1996 | A |
5501275 | Card et al. | Mar 1996 | A |
5505787 | Yamaguchi | Apr 1996 | A |
5512071 | Yam et al. | Apr 1996 | A |
5520250 | Harry et al. | May 1996 | A |
5522460 | Shu | Jun 1996 | A |
5529123 | Carpenter et al. | Jun 1996 | A |
5531274 | Bienvenu, Jr. | Jul 1996 | A |
5536807 | Gruber et al. | Jul 1996 | A |
5545824 | Stengel et al. | Aug 1996 | A |
5547023 | McDaniel et al. | Aug 1996 | A |
5551513 | Suries et al. | Sep 1996 | A |
5551514 | Nelson et al. | Sep 1996 | A |
5582249 | Caveny et al. | Dec 1996 | A |
5582250 | Constien | Dec 1996 | A |
5588488 | Vijn et al. | Dec 1996 | A |
5591700 | Harris et al. | Jan 1997 | A |
5594095 | Gruber et al. | Jan 1997 | A |
5595245 | Scott, III | Jan 1997 | A |
5597784 | Sinclair et al. | Jan 1997 | A |
5604184 | Ellis et al. | Feb 1997 | A |
5604186 | Hunt et al. | Feb 1997 | A |
5609207 | Dewprashad et al. | Mar 1997 | A |
5620049 | Gipson et al. | Apr 1997 | A |
5639806 | Johnson et al. | Jun 1997 | A |
5670473 | Scepanski | Sep 1997 | A |
5692566 | Surles | Dec 1997 | A |
5697440 | Weaver et al. | Dec 1997 | A |
5698322 | Tsai et al. | Dec 1997 | A |
5712314 | Surles et al. | Jan 1998 | A |
5732364 | Kalb et al. | Mar 1998 | A |
5765642 | Surjaatmadja | Jun 1998 | A |
5775425 | Weaver et al. | Jul 1998 | A |
5782300 | James et al. | Jul 1998 | A |
5783822 | Buchanan et al. | Jul 1998 | A |
5787986 | Weaver et al. | Aug 1998 | A |
5791415 | Nguyen et al. | Aug 1998 | A |
5799734 | Norman et al. | Sep 1998 | A |
5806593 | Suries | Sep 1998 | A |
5830987 | Smith | Nov 1998 | A |
5833000 | Weaver et al. | Nov 1998 | A |
5833361 | Funk | Nov 1998 | A |
5836391 | Jonasson et al. | Nov 1998 | A |
5836392 | Urlwin-Smith | Nov 1998 | A |
5837656 | Sinclair et al. | Nov 1998 | A |
5837785 | Kinsho et al. | Nov 1998 | A |
5839510 | Weaver et al. | Nov 1998 | A |
5840784 | Funkhouser et al. | Nov 1998 | A |
5849401 | El-Afandi et al. | Dec 1998 | A |
5849590 | Anderson, II et al. | Dec 1998 | A |
5853048 | Weaver et al. | Dec 1998 | A |
5864003 | Qureshi et al. | Jan 1999 | A |
5865936 | Edelman et al. | Feb 1999 | A |
5871049 | Weaver et al. | Feb 1999 | A |
5873413 | Chatterji et al. | Feb 1999 | A |
5875844 | Chatterji et al. | Mar 1999 | A |
5875845 | Chatterji et al. | Mar 1999 | A |
5875846 | Chatterji et al. | Mar 1999 | A |
5893383 | Fracteau | Apr 1999 | A |
5893416 | Read | Apr 1999 | A |
5908073 | Nguyen et al. | Jun 1999 | A |
5911282 | Onan et al. | Jun 1999 | A |
5916933 | Johnson et al. | Jun 1999 | A |
5921317 | Dewprashad et al. | Jul 1999 | A |
5924488 | Nguyen et al. | Jul 1999 | A |
5929437 | Elliott et al. | Jul 1999 | A |
5944105 | Nguyen | Aug 1999 | A |
5945387 | Chatterji et al. | Aug 1999 | A |
5948734 | Sinclair et al. | Sep 1999 | A |
5957204 | Chatterji et al. | Sep 1999 | A |
5960877 | Funkhouser et al. | Oct 1999 | A |
5960880 | Nguyen et al. | Oct 1999 | A |
5964291 | Bourne et al. | Oct 1999 | A |
5969006 | Onan et al. | Oct 1999 | A |
5977283 | Rossitto | Nov 1999 | A |
5994785 | Higuchi et al. | Nov 1999 | A |
RE36466 | Nelson et al. | Dec 1999 | E |
6003600 | Nguyen et al. | Dec 1999 | A |
6004400 | Bishop et al. | Dec 1999 | A |
6006835 | Onan et al. | Dec 1999 | A |
6006836 | Chatterji et al. | Dec 1999 | A |
6012524 | Chatterji et al. | Jan 2000 | A |
6016870 | Dewprashad et al. | Jan 2000 | A |
6024170 | McCabe et al. | Feb 2000 | A |
6028113 | Scepanski | Feb 2000 | A |
6028534 | Ciglenec et al. | Feb 2000 | A |
6040398 | Kinsho et al. | Mar 2000 | A |
6047772 | Weaver et al. | Apr 2000 | A |
6059034 | Rickards et al. | May 2000 | A |
6059035 | Chatterji et al. | May 2000 | A |
6059036 | Chatterji et al. | May 2000 | A |
6068055 | Chatterji et al. | May 2000 | A |
6069117 | Onan et al. | May 2000 | A |
6074739 | Katagiri | Jun 2000 | A |
6079492 | Hoogteijling et al. | Jun 2000 | A |
6098711 | Chatterji et al. | Aug 2000 | A |
6114410 | Betzold | Sep 2000 | A |
6123871 | Carroll | Sep 2000 | A |
6123965 | Jacon et al. | Sep 2000 | A |
6124246 | Heathman et al. | Sep 2000 | A |
6130286 | Thomas et al. | Oct 2000 | A |
6135987 | Tsai et al. | Oct 2000 | A |
6140446 | Fujiki et al. | Oct 2000 | A |
6148911 | Gipson et al. | Nov 2000 | A |
6152234 | Newhouse et al. | Nov 2000 | A |
6162766 | Muir et al. | Dec 2000 | A |
6169058 | Le et al. | Jan 2001 | B1 |
6172011 | Card et al. | Jan 2001 | B1 |
6172077 | Curtis et al. | Jan 2001 | B1 |
6176315 | Reddy et al. | Jan 2001 | B1 |
6177484 | Surles | Jan 2001 | B1 |
6184311 | O'Keefe et al. | Feb 2001 | B1 |
6187834 | Thayer et al. | Feb 2001 | B1 |
6187839 | Eoff et al. | Feb 2001 | B1 |
6189615 | Sydansk | Feb 2001 | B1 |
6192985 | Hinkel et al. | Feb 2001 | B1 |
6192986 | Urlwin-Smith | Feb 2001 | B1 |
6196317 | Hardy | Mar 2001 | B1 |
6202751 | Chatterji et al. | Mar 2001 | B1 |
6209643 | Nguyen et al. | Apr 2001 | B1 |
6209644 | Brunet | Apr 2001 | B1 |
6209646 | Reddy et al. | Apr 2001 | B1 |
6210471 | Craig | Apr 2001 | B1 |
6214773 | Harris et al. | Apr 2001 | B1 |
6231644 | Chatterji et al. | May 2001 | B1 |
6234251 | Chatterji et al. | May 2001 | B1 |
6238597 | Yim et al. | May 2001 | B1 |
6241019 | Davidson et al. | Jun 2001 | B1 |
6242390 | Mitchell et al. | Jun 2001 | B1 |
6244344 | Chatterji et al. | Jun 2001 | B1 |
6257335 | Nguyen et al. | Jul 2001 | B1 |
6260622 | Blok et al. | Jul 2001 | B1 |
6271181 | Chatterji et al. | Aug 2001 | B1 |
6274650 | Cui | Aug 2001 | B1 |
6279652 | Chatterji et al. | Aug 2001 | B1 |
6279656 | Sinclair et al. | Aug 2001 | B1 |
6283214 | Guinot et al. | Sep 2001 | B1 |
6302207 | Nguyen et al. | Oct 2001 | B1 |
6306998 | Kimura et al. | Oct 2001 | B1 |
6311773 | Todd et al. | Nov 2001 | B1 |
6321841 | Eoff et al. | Nov 2001 | B1 |
6323307 | Bigg et al. | Nov 2001 | B1 |
6326458 | Gruber et al. | Dec 2001 | B1 |
6328105 | Betzold | Dec 2001 | B1 |
6328106 | Griffith et al. | Dec 2001 | B1 |
6330916 | Rickards et al. | Dec 2001 | B1 |
6330917 | Chatterji et al. | Dec 2001 | B2 |
6350309 | Chatterji et al. | Feb 2002 | B2 |
6357527 | Norman et al. | Mar 2002 | B1 |
6364018 | Brannon et al. | Apr 2002 | B1 |
6364945 | Chatterji et al. | Apr 2002 | B1 |
6367165 | Huttlin | Apr 2002 | B1 |
6367549 | Chatterji et al. | Apr 2002 | B1 |
6372678 | Youngsman et al. | Apr 2002 | B1 |
6376571 | Chawla et al. | Apr 2002 | B1 |
6387986 | Moradi-Araghi et al. | May 2002 | B1 |
6390195 | Nguyen et al. | May 2002 | B1 |
6401817 | Griffith et al. | Jun 2002 | B1 |
6405797 | Davidson et al. | Jun 2002 | B2 |
6406789 | McDaniel et al. | Jun 2002 | B1 |
6408943 | Schultz et al. | Jun 2002 | B1 |
6422314 | Todd et al. | Jul 2002 | B1 |
6439309 | Matherly et al. | Aug 2002 | B1 |
6439310 | Scott, III et al. | Aug 2002 | B1 |
6440255 | Kohlhammer et al. | Aug 2002 | B1 |
6446727 | Zemlak et al. | Sep 2002 | B1 |
6448206 | Griffith et al. | Sep 2002 | B1 |
6450260 | James et al. | Sep 2002 | B1 |
6454003 | Chang et al. | Sep 2002 | B1 |
6458885 | Stengal et al. | Oct 2002 | B1 |
6485947 | Rajgarhia et al. | Nov 2002 | B1 |
6488091 | Weaver et al. | Dec 2002 | B1 |
6488763 | Brothers et al. | Dec 2002 | B2 |
6494263 | Todd | Dec 2002 | B2 |
6503870 | Griffith et al. | Jan 2003 | B2 |
6508305 | Brannon et al. | Jan 2003 | B1 |
6527051 | Reddy et al. | Mar 2003 | B1 |
6528157 | Hussain et al. | Mar 2003 | B1 |
6531427 | Shuchart et al. | Mar 2003 | B1 |
6538576 | Schultz et al. | Mar 2003 | B1 |
6543545 | Chatterji et al. | Apr 2003 | B1 |
6552333 | Storm et al. | Apr 2003 | B1 |
6554071 | Reddy et al. | Apr 2003 | B1 |
6555507 | Chatterji et al. | Apr 2003 | B2 |
6569814 | Brady et al. | May 2003 | B1 |
6582819 | McDaniel et al. | Jun 2003 | B2 |
6593402 | Chatterji et al. | Jul 2003 | B2 |
6599863 | Palmer et al. | Jul 2003 | B1 |
6608162 | Chiu et al. | Aug 2003 | B1 |
6616320 | Huber et al. | Sep 2003 | B2 |
6620857 | Valet | Sep 2003 | B2 |
6626241 | Nguyen | Sep 2003 | B2 |
6632527 | McDaniel et al. | Oct 2003 | B1 |
6632892 | Rubinsztajn et al. | Oct 2003 | B2 |
6642309 | Komitsu et al. | Nov 2003 | B2 |
6648501 | Huber et al. | Nov 2003 | B2 |
6659179 | Nguyen | Dec 2003 | B2 |
6664343 | Narisawa et al. | Dec 2003 | B2 |
6667279 | Hessert et al. | Dec 2003 | B1 |
6668926 | Nguyen et al. | Dec 2003 | B2 |
6669771 | Tokiwa et al. | Dec 2003 | B2 |
6681856 | Chatterji et al. | Jan 2004 | B1 |
6686328 | Binder | Feb 2004 | B1 |
6705400 | Nugyen et al. | Mar 2004 | B1 |
6710019 | Sawdon et al. | Mar 2004 | B1 |
6713170 | Kaneka et al. | Mar 2004 | B1 |
6725926 | Nguyen et al. | Apr 2004 | B2 |
6725931 | Nguyen et al. | Apr 2004 | B2 |
6729404 | Nguyen et al. | May 2004 | B2 |
6732800 | Acock et al. | May 2004 | B2 |
6745159 | Todd et al. | Jun 2004 | B1 |
6749025 | Brannon et al. | Jun 2004 | B1 |
6763888 | Harris et al. | Jul 2004 | B1 |
6766858 | Nguyen et al. | Jul 2004 | B2 |
6776236 | Nguyen | Aug 2004 | B1 |
6832650 | Nguyen et al. | Dec 2004 | B2 |
6851474 | Nguyen | Feb 2005 | B2 |
6887834 | Nguyen et al. | May 2005 | B2 |
6978836 | Nguyen et al. | Dec 2005 | B2 |
7063151 | Nguyen et al. | Jun 2006 | B2 |
20010016562 | Muir et al. | Aug 2001 | A1 |
20020043370 | Poe | Apr 2002 | A1 |
20020048676 | McDaniel et al. | Apr 2002 | A1 |
20020070020 | Nguyen | Jun 2002 | A1 |
20030006036 | Malone et al. | Jan 2003 | A1 |
20030060374 | Cooke, Jr. | Mar 2003 | A1 |
20030114314 | Ballard et al. | Jun 2003 | A1 |
20030130133 | Vollmer | Jul 2003 | A1 |
20030131999 | Nguyen et al. | Jul 2003 | A1 |
20030148893 | Lungofer et al. | Aug 2003 | A1 |
20030186820 | Thesing | Oct 2003 | A1 |
20030188766 | Banerjee et al. | Oct 2003 | A1 |
20030188872 | Nguyen et al. | Oct 2003 | A1 |
20030196805 | Boney et al. | Oct 2003 | A1 |
20030205376 | Ayoub et al. | Nov 2003 | A1 |
20030230408 | Acock et al. | Dec 2003 | A1 |
20030234103 | Lee et al. | Dec 2003 | A1 |
20040000402 | Nguyen et al. | Jan 2004 | A1 |
20040014607 | Sinclair et al. | Jan 2004 | A1 |
20040014608 | Nguyen et al. | Jan 2004 | A1 |
20040040706 | Hossaini et al. | Mar 2004 | A1 |
20040040708 | Stephenson et al. | Mar 2004 | A1 |
20040040713 | Nguyen et al. | Mar 2004 | A1 |
20040048752 | Nguyen et al. | Mar 2004 | A1 |
20040055747 | Lee | Mar 2004 | A1 |
20040106525 | Willbert et al. | Jun 2004 | A1 |
20040138068 | Rimmer et al. | Jul 2004 | A1 |
20040149441 | Nguyen et al. | Aug 2004 | A1 |
20040152601 | Still et al. | Aug 2004 | A1 |
20040177961 | Nguyen et al. | Sep 2004 | A1 |
20040194961 | Nguyen et al. | Oct 2004 | A1 |
20040206499 | Nguyen et al. | Oct 2004 | A1 |
20040211559 | Nguyen et al. | Oct 2004 | A1 |
20040211561 | Nguyen et al. | Oct 2004 | A1 |
20040221992 | Nguyen et al. | Nov 2004 | A1 |
20040231847 | Nguyen et al. | Nov 2004 | A1 |
20040256099 | Nguyen et al. | Dec 2004 | A1 |
20040261995 | Nguyen et al. | Dec 2004 | A1 |
20040261997 | Nguyen et al. | Dec 2004 | A1 |
20050000731 | Nguyen et al. | Jan 2005 | A1 |
20050006093 | Nguyen et al. | Jan 2005 | A1 |
20050006095 | Justus et al. | Jan 2005 | A1 |
20050006096 | Nguyen et al. | Jan 2005 | A1 |
20050034862 | Nguyen et al. | Feb 2005 | A1 |
20050045326 | Nguyen | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
2063877 | May 2003 | CA |
0313243 | Oct 1988 | EP |
0528595 | Aug 1992 | EP |
0510762 | Nov 1992 | EP |
0643196 | Jun 1994 | EP |
0834644 | Apr 1998 | EP |
0853186 | Jul 1998 | EP |
0864726 | Sep 1998 | EP |
0879935 | Nov 1998 | EP |
0933498 | Aug 1999 | EP |
1001133 | May 2000 | EP |
1132569 | Sep 2001 | EP |
1326003 | Jul 2003 | EP |
1362978 | Nov 2003 | EP |
1394355 | Mar 2004 | EP |
1396606 | Mar 2004 | EP |
1398640 | Mar 2004 | EP |
1403466 | Mar 2004 | EP |
1464789 | Oct 2004 | EP |
1107584 | Mar 1968 | GB |
1264180 | Dec 1969 | GB |
1292718 | Oct 1972 | GB |
2382143 | Apr 2001 | GB |
WO9315127 | Aug 1993 | WO |
WO9407949 | Apr 1994 | WO |
WO9408078 | Apr 1994 | WO |
WO9408090 | Apr 1994 | WO |
WO9509879 | Apr 1995 | WO |
WO9711845 | Apr 1997 | WO |
WO9927229 | Jun 1999 | WO |
W0 0181914 | Nov 2001 | WO |
WO 0187797 | Nov 2001 | WO |
WO 0212674 | Feb 2002 | WO |
WO 03027431 | Apr 2003 | WO |
WO 2004037946 | May 2004 | WO |
WO 2004038176 | May 2004 | WO |
WO 2005021928 | Mar 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050194137 A1 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10794076 | Mar 2004 | US |
Child | 11072669 | US |