Methods relating to maintaining the structural integrity of deviated well bores

Information

  • Patent Grant
  • 7318473
  • Patent Number
    7,318,473
  • Date Filed
    Monday, March 7, 2005
    19 years ago
  • Date Issued
    Tuesday, January 15, 2008
    17 years ago
Abstract
Methods of enhancing at least partially the structural integrity of a longitudinal portion of a deviated well bore are provided. The methods include providing a gravel matrix composition; providing a longitudinal portion of a deviated well bore; and placing a sufficient amount of the gravel matrix composition in the longitudinal portion to enhance the structural support of the longitudinal portion. Optional additives may include curable resins, tackifiers, and/or the incorporation of a degradable material in the gravel matrix composition.
Description
BACKGROUND

The present invention relates to subterranean operations involving deviated well bores, and more particularly, to methods of maintaining the structural integrity and conductivity of deviated well bores.


A deviated well bore, as that term is used herein, refers to a well bore that is not substantially vertical. The term “deviated well bore,” as the term is used herein, also includes horizontal well bores. Deviated well bores are becoming more prevalent, because in part, they allow one rig and well head to drill and produce from a much larger reservoir area than a more traditional vertical well bore. Thus, deviated well bores are often an attractive option for producing desirable fluids from subterranean formations such as, for example, hydrocarbons from oil and gas reservoirs.


Although deviated well bores provide a variety of advantages, unfortunately, they can also present some serious drawbacks. One drawback of deviated well bores is that they can be prone, in some cases, to structural weaknesses relative to vertical well bores. Moreover, inserting and placing well bore casing in deviated well bores to counteract these potential weaknesses is often impractical and technically complex. Further, placing casing in a deviated well bore can be prohibitively expensive. As a result, many deviated well bores are simply left as open holes without any casing that might provide structural support, which may allow the deviated well bore to fail or collapse, which is undesirable. Well bore structural failures are extremely disadvantageous, because such failures can negatively affect the conductivity of the well bore among other problems. In some cases, a failure or collapse of a deviated well bore can result in a total production blockage of hydrocarbons or other desirable fluids from the well bore. Solely for illustrative purposes, FIG. 1 shows an example of a failed deviated well bore 110 with a partial open hole collapse 120 obstructing the production of hydrocarbons from the surrounding subterranean formation 130.


An example of one type of deviated well bore that is particularly prone to collapse is one penetrating a coal bed formation. Coal bed formations are particularly friable and fractured and, as such, are prone to collapse. Moreover, inserting casing in a coal bed formation to counteract the propensity for well bore collapse can potentially lead to an undesirable explosion because of the frequent presence of methane therein.


Another example of a deviated well bore that is particularly prone to structural failure is one that has been subjected to previous stimulation operations. Stimulation or fracturing operations can disturb a formation in such a way as to induce shifts or perturbations in the formation, thus leading to a greater risk of a structural failure of any type of deviated well bore drilled therein.


SUMMARY

The present invention relates to subterranean operations involving deviated well bores, and more particularly, to methods of maintaining the structural integrity and conductivity of deviated well bores.


An example of a method of enhancing at least partially the structural integrity of a longitudinal portion of a deviated well bore comprises providing a gravel matrix composition that comprises particulates having an average particle size of about 20 mesh or larger; providing a longitudinal portion of a deviated well bore; and placing a sufficient amount of the gravel matrix composition in the longitudinal portion to enhance the structural support of the longitudinal portion of the deviated well bore.


Another example of a method of enhancing at least partially the structural integrity of a longitudinal portion of a deviated well bore comprises providing a gravel matrix composition that comprises particulates and a curable resin; providing a longitudinal portion of a deviated well bore; placing a sufficient amount of the gravel matrix composition in the longitudinal portion to enhance the structural support of the longitudinal portion; allowing the curable resin to cure; allowing the gravel matrix composition to form; and producing fluids through the gravel matrix composition.


Another example of a method of enhancing at least partially the structural integrity of a longitudinal portion of a deviated well bore comprises providing a gravel matrix composition that comprises particulates and a tackifier; providing a longitudinal portion of a deviated well bore; placing a sufficient amount of the gravel matrix composition in the longitudinal portion to enhance the structural support of the longitudinal portion; allowing the gravel matrix composition to form; and producing fluids through the gravel matrix composition.


The objects, features, and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of preferred embodiments which follows.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present disclosure and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, wherein:



FIG. 1 shows a cross-sectional view of a deviated well bore illustrating a partial open hole collapse potentially obstructing the production of desirable fluids from the surrounding subterranean formation.



FIG. 2 illustrates a cross-sectional view showing the placement of a gravel matrix composition in a longitudinal portion of a deviated well bore in accordance with an embodiment of the present invention.





While the present invention is susceptible to various modifications and alternative forms, some embodiments thereof have been shown in the drawings and are herein described. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.


DESCRIPTION

The present invention relates to subterranean operations involving deviated well bores, and more particularly, to methods of maintaining the structural integrity and conductivity of deviated well bores.


To aid in describing certain aspects of the present invention, the terms “longitudinal” and “transverse” relative to a given deviated well bore are used herein. The “longitudinal axis” of a deviated well bore, as the term is used herein, refers to the direction in which the well bore is drilled. By contrast, the “transverse axis” of a deviated well bore, as the term is used herein, refers to the axis generally perpendicular to the longitudinal axis of the deviated well bore. Referring now to FIG. 2, as an example of the use of these terms, the axis X refers to the longitudinal axis of the deviated well bore. The axis Y refers to the transverse axis of the deviated well bore. An example of a longitudinal distance in a deviated well bore is illustrated in FIG. 2 as the distance spanning from a to b. An example of a transverse distance in a deviated well bore is illustrated in FIG. 2 as the distance spanning from c to d. As one skilled in the art will appreciate, the longitudinal axis and the transverse axis of a well bore may change direction as the direction of the well bore changes throughout the length of the well bore. Thus, a “longitudinal portion” of a deviated well bore, as the term is used herein, refers to any chosen length along the longitudinal axis of the deviated well bore.


In certain embodiments, the present invention provides methods useful for maintaining the structural integrity of a longitudinal portion of a deviated well bore while maintaining the conductivity thereof by placing a sufficient amount of a gravel matrix composition in a chosen longitudinal portion of the deviated well bore to enhance, at least to some degree, the structural support thereof.



FIG. 2 illustrates the placement of a gravel matrix composition 240 in a chosen longitudinal portion of a deviated well bore 10 in accordance with one embodiment of the present invention. The placement of the gravel matrix composition 240 in a chosen longitudinal portion of the deviated well bore 210 helps prevent a collapse or failure of the walls of the chosen longitudinal portion of the deviated well bore 210 and should permit the production of hydrocarbons through the gravel matrix composition 240 from the formation 230. As shown in FIG. 2, the gravel matrix composition may occupy the transverse distance spanning the walls of the well bore that is not otherwise occupied with other solid matter.


Gravel Particulates Suitable for Use in the Present Invention

In certain embodiments, the gravel matrix composition of the present invention may comprise any particulates suitable for use in subterranean operations. The term “gravel matrix,” as the term is used herein, refers to a consolidation of particulates within a well bore in a subterranean formation. The mechanism by which the gravel matrix composition consolidates within the deviated well bore is not important, e.g., through the use of curable resins, tackifying agents, interlocking gravel, and/or by mere placement in the deviated well bore; any suitable method can be used in conjunction with the present invention, including mechanical methods, e.g., interlocking gravel particulates. Suitable particulates include, but are not limited to, sand, bauxite, ceramic materials, glass materials, polymer materials, polytetrafluoroethylene materials, nut shell pieces, seed shell pieces, fruit pit pieces, wood, composite particulates, proppant particulates, and combinations thereof. Suitable composite materials may comprise a binder and a filler material wherein suitable filler materials include silica, alumina, fumed carbon, carbon black, graphite, mica, titanium dioxide, meta-silicate, calcium silicate, kaolin, talc, zirconia, boron, fly ash, hollow glass microspheres, solid glass, and combinations thereof. In certain exemplary embodiments, the particulates may comprise common sand. Suitable particulates may take any shape including, but not limited to, the physical shape of platelets, shavings, flakes, ribbons, rods, strips, spheroids, ellipsoids, toroids, pellets, tablets. Any variety of particulate size may be useful in the present invention. In certain embodiments, an average particulate size of 40 mesh or larger may be preferred. Placing a gravel matrix composition within a longitudinal portion of a deviated well bore may enhance, at least partially, the structural integrity of that portion of the deviated well bore. For a particular deviated well bore, a person of ordinary skill in the art, with the benefit of this disclosure, will recognize the particulate type, size, and amount to use to achieve a desired result of porosity and structural integrity of the deviated well bore thereby assuring continued permeability in the deviated well bore.


Resins Suitable for Use with the Present Invention

In certain embodiments, the particulates of the gravel matrix composition may optionally be coated or treated with a curable resin. The curable resin may provide, among other benefits, hardening of the particulates and/or consolidation of the particulates of the gravel matrix composition. In some cases, the resin may form a film around the particles, locking the particles into place. In this way, by preventing particulates from slipping past one another, the particulates may resist further compaction, which may preserve and/or improve porosity of the gravel matrix composition. Thus, depending on the type of resin used and the conditions thereof, a curable resin may, to varying extents, improve the structural integrity of the gravel matrix composition and/or improve the conductivity of the gravel matrix composition. The coating process may occur downhole, on the surface, or a combination of both. Further, the coating of the particulates may occur by batch mixing, by continuous “on-the-fly” mixing, or by a combination thereof.


Resins suitable for use in the consolidation fluids of the present invention include all resins known in the art that are capable of forming a hardened, consolidated mass. Many such resins are commonly used in subterranean consolidation operations, and some suitable resins include two-component epoxy-based resins, novolak resins, polyepoxide resins, phenol-aldehyde resins, urea-aldehyde resins, urethane resins, phenolic resins, furan resins, furan/furfuryl alcohol resins, phenolic/latex resins, phenol formaldehyde resins, polyester resins and hybrids and copolymers thereof, polyurethane resins and hybrids and copolymers thereof, acrylate resins, and mixtures thereof. Some suitable resins, such as epoxy resins, may be cured with an internal catalyst or activator so that when pumped downhole, they may be cured using only time and temperature. Other suitable resins, such as furan resins generally require a time-delayed catalyst or an external catalyst to help activate the polymerization of the resins if the cure temperature is low (i.e., less than 250° F.), but will cure under the effect of time and temperature if the formation temperature is above about 250° F., preferably above about 300° F. It is within the ability of one skilled in the art, with the benefit of this disclosure, to select a suitable resin for use in embodiments of the present invention and to determine whether a catalyst is required to trigger curing.


Selection of a suitable resin may be affected by the temperature of the subterranean formation to which the fluid will be introduced. By way of example, for subterranean formations having a bottom hole static temperature (“BHST”) ranging from about 60° F. to about 250° F., two-component epoxy-based resins comprising a hardenable resin component and a hardening agent component containing specific hardening agents may be preferred. For subterranean formations having a BHST ranging from about 300° F. to about 600° F., a furan-based resin may be preferred. For subterranean formations having a BHST ranging from about 200° F. to about 400° F., either a phenolic-based resin or a one-component HT epoxy-based resin may be suitable. For subterranean formations having a BHST of at least about 175° F., a phenol/phenol formaldehyde/furfuryl alcohol resin may also be suitable.


Any solvent that is compatible with the resin and achieves the desired viscosity effect is suitable for use in the present invention. It is within the ability of one skilled in the art, with the benefit of this disclosure, to determine whether and how much solvent is needed to achieve a suitable viscosity in a particular application.


One resin-type coating material suitable for use in the methods of the present invention is a two-component epoxy-based resin comprising a hardenable resin component and a hardening agent component. The first component is a hardenable resin component comprising a hardenable resin and an optional solvent. The solvent may be added to the resin to reduce its viscosity for ease of handling, mixing, and transferring. It is within the ability of one skilled in the art with the benefit of this disclosure to determine if and how much solvent may be needed to achieve a viscosity suitable to the subterranean conditions. Factors that may affect this decision include geographic location of the well and the surrounding weather conditions. An alternate way to reduce the viscosity of the liquid hardenable resin is to heat it. This method avoids the use of a solvent altogether, which may be desirable in certain circumstances. The second component is the liquid hardening agent component, which is comprised of a hardening agent, a silane coupling agent, a surfactant, an optional hydrolyzable ester for, inter alia, breaking gelled fracturing fluid films on the particulate material, and an optional liquid carrier fluid for, inter alia, reducing the viscosity of the liquid hardening agent component. It is within the ability of one skilled in the art with the benefit of this disclosure to determine if and how much liquid carrier fluid is needed to achieve a viscosity suitable to the subterranean conditions.


Examples of hardenable resins that can be used in the hardenable resin component include, but are not limited to, organic resins such as bisphenol A diglycidyl ether resin, butoxymethyl butyl glycidyl ether resin, bisphenol A-epichlorohydrin resin, polyepoxide resin, novolak resin, polyester resin, phenol-aldehyde resin, urea-aldehyde resin, furan resin, urethane resin, a glycidyl ether, and combinations thereof. The hardenable resin used is included in the hardenable resin component in an amount in the range of from about 60% to about 100% by weight of the hardenable resin component.


Any solvent that is compatible with the hardenable resin and achieves the desired viscosity effect is suitable for use in the hardenable resin component of the integrated consolidation fluids of the present invention. Some preferred solvents are those having high flash points (e.g., about 125° F.) because of, inter alia, environmental factors; such solvents include butyl lactate, butylglycidyl ether, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl formamide, diethyleneglycol methyl ether, ethyleneglycol butyl ether, diethyleneglycol butyl ether, propylene carbonate, methanol, butyl alcohol, d'limonene, fatty acid methyl esters, and combinations thereof. Other preferred solvents include aqueous dissolvable solvents such as, methanol, isopropanol, butanol, glycol ether solvents, and combinations thereof. Suitable glycol ether solvents include, but are not limited to, diethylene glycol methyl ether, dipropylene glycol methyl ether, 2-butoxy ethanol, ethers of a C2 to C6 dihydric alkanol containing at least one C1 to C6 alkyl group, mono ethers of dihydric alkanols, methoxypropanol, butoxyethanol, hexoxyethanol, and isomers thereof.


As described above, use of a solvent in the hardenable resin component is optional but may be desirable to reduce the viscosity of the hardenable resin component for ease of handling, mixing, and transferring. The amount of the solvent used in the hardenable resin component is in the range of from about 0.1% to about 30% by weight of the hardenable resin component.


Examples of the hardening agents that can be used in the liquid hardening agent component of the two-component consolidation fluids of the present invention include, but are not limited to, piperazine, derivatives of piperazine (e.g., aminoethylpiperazine), 2H-pyrrole, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, 3H-indole, indole, 1H-indazole, purine, 4H-quinolizine, quinoline, isoquinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, 4H-carbazole, carbazole, β-carboline, phenanthridine, acridine, phenathroline, phenazine, imidazolidine, phenoxazine, cinnoline, pyrrolidine, pyrroline, imidazoline, piperidine, indoline, isoindoline, quinuclindine, morpholine, azocine, azepine, 2H-azepine, 1,3,5-triazine, thiazole, pteridine, dihydroquinoline, hexa methylene imine, indazole, amines, aromatic amines, polyamines, aliphatic amines, cyclo-aliphatic amines, amides, polyamides, 2-ethyl-4-methyl imidazole, 1,1,3-trichlorotrifluoroacetone, and combinations thereof. The chosen hardening agent often effects the range of temperatures over which a hardenable resin is able to cure. By way of example and not of limitation, in subterranean formations having a temperature from about 60° F. to about 250° F., amines and cyclo-aliphatic amines such as piperidine, triethylamine, N,N-dimethylaminopyridine, benzyldimethylamine, tris(dimethylaminomethyl)phenol, and 2-(N2N-dimethylaminomethyl)phenol are preferred with N,N-dimethylaminopyridine most preferred. In subterranean formations having higher temperatures, 4,4′-diaminodiphenyl sulfone may be a suitable hardening agent. Hardening agents that comprise piperazine or a derivative of piperazine have been shown capable of curing various hardenable resins from temperatures as low as about 70° F. to as high as about 350° F. The hardening agent used is included in the liquid hardening agent component in an amount sufficient to consolidate the coated particulates. In certain embodiments of the present invention, the hardening agent used is included in the liquid hardenable resin component in the range of from about 40% to about 60% by weight of the liquid hardening agent component.


The silane coupling agent may be used, inter alia, to act as a mediator to help bond the resin to formation particulates and/or gravel particulates. Examples of suitable silane coupling agents include, but are not limited to, N-β-(aminoethyl)-γ-aminopropyl trimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and combinations thereof. The silane coupling agent used is included in the liquid hardening agent component in an amount capable of sufficiently bonding the resin to the particulate. In some embodiments of the present invention, the silane coupling agent used is included in the liquid hardenable resin component in the range of from about 0.1% to about 3% by weight of the liquid hardening agent component.


Any surfactant compatible with the hardening agent and capable of facilitating the coating of the resin onto particles in the subterranean formation may be used in the hardening agent component of the integrated consolidation fluids of the present invention. Such surfactants include, but are not limited to, an alkyl phosphonate surfactant (e.g., a C12-C22 alkyl phosphonate surfactant), an ethoxylated nonyl phenol phosphate ester, one or more cationic surfactants, and one or more nonionic surfactants. Mixtures of one or more cationic and nonionic surfactants also may be suitable. Examples of such surfactant mixtures are described in U.S. Pat. No. 6,311,773, the relevant disclosure of which is incorporated herein by reference. The surfactant or surfactants used are included in the liquid hardening agent component in an amount in the range of from about 1% to about 10% by weight of the liquid hardening agent component.


While not required, examples of hydrolyzable esters that can be used in the hardening agent component of the integrated consolidation fluids of the present invention include, but are not limited to, a mixture of dimethylglutarate, dimethyladipate, and dimethylsuccinate; sorbitol; catechol; dimethylthiolate; methyl salicylate; dimethyl salicylate; dimethylsuccinate; ter-butylhydroperoxide; and combinations thereof. When used, a hydrolyzable ester is included in the hardening agent component in an amount in the range of from about 0.1% to about 3% by weight of the hardening agent component.


Use of a diluent or liquid carrier fluid in the hardenable resin composition is optional and may be used to reduce the viscosity of the hardenable resin component for ease of handling, mixing, and transferring. Any suitable carrier fluid that is compatible with the hardenable resin and achieves the desired viscosity effects is suitable for use in the present invention. Some preferred liquid carrier fluids are those having high flash points (e.g., above about 125° F.) because of, inter alia, environmental factors; such solvents include those solvents previously described for use with the hardenable resin component.


Tackifiers Suitable for Use in the Present Invention

In certain embodiments, the particulates of the gravel matrix composition may be coated with tackifiers. The coating process may occur downhole, on the surface, or in both locations. Tackifiers can, among other benefits, reduce the migration or production of formation fines. Additionally, tackifiers may provide some limited resistance to compaction by coating the particulates with a film that may help to prevent slippage of the particles past one another.


Tackifiers suitable for use in the present invention include non-aqueous tackifying agents, aqueous tackifying agents, silyl-modified polyamides, and curable resin compositions that are capable of curing to form hardened substances. In addition to encouraging the particulates to form aggregates, the use of tackifiers may reduce fines migration or undesirable production of fines. Tackifiers may be applied on-the-fly, applying the substance to the particulates at the well site, directly prior to pumping the fluid-gravel mixture into the well bore.


Tackifying agents suitable for use in the consolidation fluids of the present invention comprise any compound that, when in liquid form or in a solvent solution, will form a non-hardening coating upon a particulate. A particularly preferred group of tackifying agents comprise polyamides that are liquids or in solution at the temperature of the subterranean formation such that they are, by themselves, non-hardening when introduced into the subterranean formation. A particularly preferred product is a condensation reaction product comprised of commercially available polyacids and a polyamine. Such commercial products include compounds such as mixtures of C36 dibasic acids containing some trimer and higher oligomers and also small amounts of monomer acids that are reacted with polyamines. Other polyacids include trimer acids, synthetic acids produced from fatty acids, maleic anhydride, acrylic acid, and the like. Such acid compounds are commercially available from companies such as Witco Corporation, Union Camp, Chemtall, and Emery Industries. The reaction products are available from, for example, Champion Technologies, Inc. and Witco Corporation. Additional compounds which may be used as tackifying compounds include liquids and solutions of, for example, polyesters, polycarbonates and polycarbamates, natural resins such as shellac and the like. Other suitable tackifying agents are described in U.S. Pat. Nos. 5,853,048 and 5,833,000, the relevant disclosures of which are herein incorporated by reference.


Tackifying agents suitable for use in the present invention may be either used such that they form non-hardening coating or they may be combined with a multifunctional material capable of reacting with the tackifying compound to form a hardened coating. A “hardened coating,” as used herein, means that the reaction of the tackifying compound with the multifunctional material will result in a substantially non-flowable reaction product that exhibits a higher compressive strength in a consolidated agglomerate than the tackifying compound alone with the particulates. In this instance, the tackifying agent may function similarly to a hardenable resin. Multifunctional materials suitable for use in the present invention include, but are not limited to, aldehydes such as formaldehyde, dialdehydes such as glutaraldehyde, hemiacetals or aldehyde releasing compounds, diacid halides, dihalides such as dichlorides and dibromides, polyacid anhydrides such as citric acid, epoxides, furfiraldehyde, glutaraldehyde or aldehyde condensates and the like, and combinations thereof. In some embodiments of the present invention, the multifunctional material may be mixed with the tackifying compound in an amount of from about 0.01 to about 50 percent by weight of the tackifying compound to effect formation of the reaction product. In some preferable embodiments, the compound is present in an amount of from about 0.5 to about 1 percent by weight of the tackifying compound. Suitable multifunctional materials are described in U.S. Pat. No. 5,839,510, the relevant disclosure of which is herein incorporated by reference. Other suitable tackifying agents are described in U.S. Pat. No. 5,853,048.


Solvents suitable for use with the tackifying agents of the present invention include any solvent that is compatible with the tackifying agent and achieves the desired viscosity effect. The solvents that can be used in the present invention preferably include those having high flash points (most preferably above about 125° F.). Examples of solvents suitable for use in the present invention include, but are not limited to, butylglycidyl ether, dipropylene glycol methyl ether, butyl bottom alcohol, dipropylene glycol dimethyl ether, diethyleneglycol methyl ether, ethyleneglycol butyl ether, methanol, butyl alcohol, isopropyl alcohol, diethyleneglycol butyl ether, propylene carbonate, d'limonene, 2-butoxy ethanol, butyl acetate, furfuryl acetate, butyl lactate, dimethyl sulfoxide, dimethyl formamide, fatty acid methyl esters, and combinations thereof.


Degradable Materials Suitable for Use in the Present Invention

In certain embodiments, a degradable material may optionally be incorporated into the gravel matrix composition, in part, to improve the permeability of the gravel matrix composition after degradation. The degradable material is incorporated in the gravel matrix composition, preferably uniformly. After the requisite time period dictated by the characteristics of the particular degradable material used, the degradable material undergoes an irreversible degradation. This degradation, in effect, causes the degradable material to substantially be removed from the gravel matrix composition. As a result, interstices and voids may be created in the gravel matrix composition. These interstices and voids may enhance the permeability and porosity of the gravel matrix composition, which may result in, inter alia, enhanced conductivity through the deviated well bore. In certain preferred embodiments, these voids are channel-like and interconnected so that the permeability of the gravel matrix composition is further enhanced.


In certain embodiments, the gravel matrix composition may be both treated with a curable resin and have a degradable material incorporated therein. The curable resin may, among other benefits, harden the quantity of particulates in place to reduce further adjustment or movement of the particulates, particularly after degradation of the degradable material.


A variety of degradable materials may optionally be used with the present invention. Examples of degradable materials that may optionally be used with the present invention include, but are not limited to, degradable polymers, dehydrated compounds, salts, or mixtures thereof. The differing molecular structures of the degradable materials that are suitable for the present invention give a wide range of physical properties as well as the possibility of regulating the degradation rate.


As for degradable polymers, a polymer is considered to be “degradable” herein if the degradation is due to, inter alia, chemical and/or radical process such as hydrolysis, oxidation, enzymatic degradation, or UV radiation. The degradability of a polymer depends at least in part on its backbone structure. For instance, the presence of hydrolyzable and/or oxidizable linkages in the backbone often yields a material that will degrade as described herein. The rates at which such polymers degrade are dependent on the type of repetitive unit, composition, sequence, length, molecular geometry, molecular weight, morphology (e.g., crystallinity, size of spherulites, and orientation), hydrophilicity, hydrophobicity, surface area, and additives. Also, the environment to which the polymer is subjected may affect how it degrades, e.g., temperature, presence of moisture, oxygen, microorganisms, enzymes, pH, and other factors.


Suitable examples of degradable polymers that may be used in accordance with the present invention include, but are not limited to, those described in the publication of Advances in Polymer Science, Vol. 157, entitled “Degradable Aliphatic Polyesters” edited by A. C. Albertsson, pp. 1-138. Specific examples include homopolymers, random, block, graft, and star- and hyper-branched aliphatic polyesters. Such suitable polymers may be prepared by polycondensation reactions, ring-opening polymerizations, free radical polymerizations, anionic polymerizations, carbocationic polymerizations, and coordinative ring-opening polymerization, e.g., lactones, and any other suitable process. Specific examples of suitable polymers include polysaccharides such as dextran or cellulose; chitin; chitosan; proteins; aliphatic polyesters; poly(lactide); poly(glycolide); poly(ε-caprolactone); poly(hydroxybutyrate); poly(anhydrides); aliphatic polycarbonates; poly(orthoesters); poly(amino acids); poly(ethylene oxide); and polyphosphazenes. Of these suitable polymers, aliphatic polyesters and polyanhydrides are preferred.


Aliphatic polyesters degrade chemically, inter alia, by hydrolytic cleavage. Hydrolysis can be catalyzed by either acids or bases. Generally, during the hydrolysis, carboxylic end groups are formed during chain scission, and these groups may enhance the rate of further hydrolysis. This mechanism is known in the art as “autocatalysis,” and is thought to make polyester matrices more bulk eroding.


Suitable aliphatic polyesters have the general formula of repeating units shown below:




embedded image



where n is an integer between 75 and 10,000 and R is selected from the group consisting of hydrogen, alkyl, aryl, alkylaryl, acetyl, heteroatoms, and mixtures thereof. Of the suitable aliphatic polyesters, poly(lactide) is preferred. Poly(lactide) is synthesized either from lactic acid by a condensation reaction or more commonly by ring-opening polymerization of cyclic lactide monomer. Since both lactic acid and lactide can achieve the same repeating unit, the general term poly(lactic acid), as used herein, refers to writ of Formula I without any limitation as to how the polymer was made such as from lactides, lactic acid, or oligomers, and without reference to the degree of polymerization or level of plasticization.


The lactide monomer exists generally in three different forms: two stereoisomers L- and D-lactide and racemic D,L-lactide (meso-lactide). The oligomers of lactic acid, and oligomers of lactide are defined by the formula:




embedded image



where m is an integer: 2≦m≦75. Preferably, m is an integer: 2≦m≦10. These limits correspond to number average molecular weights below about 5,400 and below about 720, respectively. The chirality of the lactide units provides a means to adjust, inter alia, degradation rates, as well as physical and mechanical properties. Poly(L-lactide), for instance, is a semi-crystalline polymer with a relatively slow hydrolysis rate. This slow hydrolysis rate could be desirable in applications of the present invention where a slower degradation of the degradable material is desired. Poly(D,L-lactide) may be a more amorphous polymer with a resultant faster hydrolysis rate. This faster rate may be suitable for other applications where a more rapid degradation may be appropriate. The stereoisomers of lactic acid may be used individually or combined in accordance with the present invention. Additionally, they may be copolymerized with, for example, glycolide or other monomers like ε-caprolactone, 1,5-dioxepan-2-one, trimethylene carbonate, or other suitable monomers to obtain polymers with different properties or degradation times. Additionally, the lactic acid stereoisomers can be modified by blending high and low molecular weight polylactide or by blending polylactide with other polyesters.


Aliphatic polyesters useful in the present invention may be prepared by substantially any of the conventionally known manufacturing methods such as those described in U.S. Pat. Nos. 6,323,307; 5,216,050; 4,387,769; 3,912,692; and 2,703,316, the relevant disclosure of which are incorporated herein by reference. In addition to the other qualities above, the plasticizers may enhance the degradation rate of the degradable polymeric materials.


Polyanhydrides are another type of particularly suitable degradable polymer useful in the present invention. Polyanhydride hydrolysis proceeds, inter alia, via free carboxylic acid chain-ends to yield carboxylic acids as final degradation products. The erosion time can be varied over a broad range of changes in the polymer backbone. Examples of suitable polyanhydrides include poly(adipic anhydride), poly(suberic anhydride), poly(sebacic anhydride), and poly(dodecanedioic anhydride). Other suitable examples include, but are not limited to, poly(maleic anhydride) and poly(benzoic anhydride).


The physical properties of degradable polymers depend on several factors such as the composition of the repeat units, flexibility of the chain, presence of polar groups, molecular mass, degree of branching, crystallinity, orientation, etc. For example, short chain branches reduce the degree of crystallinity of polymers while long chain branches lower the melt viscosity and impart, inter alia, elongational viscosity with tension-stiffening behavior. The properties of the material used can be further tailored by blending, and copolymerizing it with another polymer, or by a change in the macromolecular architecture (e.g., hyper-branched polymers, star-shaped, or dendrimers). The properties of any such suitable degradable polymers (e.g., hydrophobicity, hydrophilicity, rate of degradation) can be tailored by introducing select functional groups along the polymer chains. For example, poly(phenyllactide) will degrade at about ⅕th of the rate of racemic poly(lactide) at a pH of 7.4 at 55° C. One of ordinary skill in the art with the benefit of this disclosure will be able to determine the appropriate functional groups to introduce to the polymer chains to achieve the desired physical properties of the degradable polymers.


Dehydrated compounds may be used in accordance with the present invention as a degradable material. A dehydrated compound is suitable for use in the present invention if it will degrade over time as it is rehydrated. For example, a particulate solid anhydrous borate material that degrades over time may be suitable. Specific examples of particulate solid anhydrous borate materials that may be used include, but are not limited to, anhydrous sodium tetraborate (also known as anhydrous borax) and anhydrous boric acid. These anhydrous borate materials are only slightly soluble in water. However, with time and heat in a subterranean environment, the anhydrous borate materials react with the surrounding aqueous fluid and are hydrated. The resulting hydrated borate materials are substantially soluble in water as compared to anhydrous borate materials and as a result, degrade in the aqueous fluid. In some instances, the total time required for the anhydrous borate materials to degrade in an aqueous fluid is in the range of from about 8 hours to about 72 hours depending upon the temperature of the subterranean zone in which they are placed.


Salts may be used in accordance with the present invention as a degradable material. A salt is suitable for use in the present invention if it will degrade over time as it is solubilizes. For example, a rock salt that solubilizes or dissolves in an aqueous solution may be suitable. Specific examples of salts that may be used include, but are not limited to, rock salt, fine salt, sodium chloride, calcium chloride, potassium chloride, and other salts known in the art.


Blends of certain degradable materials and other compounds may also be suitable. One example of a suitable blend of materials is a mixture of poly(lactic acid) and sodium borate where the mixing of an acid and base could result in a neutral solution where this is desirable. Another example would include a blend of poly(lactic acid) and boric oxide. Other materials that undergo an irreversible degradation may also be suitable, if the products of the degradation do not undesirably interfere with either the conductivity of the particulate matrix or with the production of any of the fluids from the subterranean formation.


In choosing the appropriate degradable material, one should consider the degradation products that will result. Also, these degradation products should not adversely affect other operations or components. The choice of degradable material also can depend, at least in part, on the conditions of the well, e.g., well bore temperature. For instance, lactides have been found to be suitable for lower temperature wells, including those within the range of 60° F. to 150° F., and polylactides have been found to be suitable for well bore temperatures above this range. Also, poly(lactic acid) may be suitable for higher temperature wells. Dehydrated salts may also be suitable for higher temperature wells. Also, in some embodiments, a preferable result is achieved if the degradable material degrades slowly over time as opposed to instantaneously. In some embodiments, it may be desirable when the degradable material does not substantially degrade until after the degradable material has been substantially placed in a desired location within a subterranean formation.


If the application in which the degradable material will be used does not contain a component that will enable the degradable material to degrade, e.g., in a dry gas hole, then in alternative embodiments of the present invention, the degradable material can be mixed with inorganic or organic compounds to form what is referred to herein as a composite. In preferred alternative embodiments, the inorganic or organic compound in the composite is hydrated. Examples of the hydrated organic or inorganic solid compounds that can be used in the self-degradable diverting material include, but are not limited to, hydrates of organic acids or their salts such as sodium acetate trihydrate, L-tartaric acid disodium salt dihydrate, sodium citrate dihydrate, hydrates of inorganic acids or their salts such as sodium tetraborate decahydrate, sodium hydrogen phosphate heptahydrate, sodium phosphate dodecahydrate, amylose, starch-based hydrophilic polymers, and cellulose-based hydrophilic polymers. Of these, sodium acetate trihydrate is preferred. The lactide units of the aliphatic polyester and the releasable water of the organic or inorganic solid compound used are preferably present in the mixture in equal molar amounts. The degradable material is then, in a sense, self-degradable, in that the degradable material should at least partially degrade in the releasable water provided by the hydrated organic or inorganic compound which dehydrates over time when heated in the subterranean zone.


The specific features of the degradable material may be chosen or modified to provide the gravel matrix composition with optimum conductivity while enhancing, at least to some degree, the structural support to a chosen longitudinal portion of a deviated well bore. Preferably, the degradable material is selected to have a size and shape similar to the size and shape of the curable particulates to help maintain substantial uniformity within the mixture. It is preferable that the particulates and the degradable material do not segregate within the gravel matrix composition. Whichever degradable material is used, the degradable materials may have any shape, depending on the desired characteristics of the resultant voids in the gravel matrix including, but not limited to, particles having the physical shape of platelets, shavings, flakes, ribbons, rods, strips, spheroids, toroids, pellets, tablets, or any other physical shape. The physical shape of the degradable material should be chosen so as to enhance the desired shape and relative composition of the resultant voids within the gravel matrix. For example, a rod-like particle shape may be suitable in applications wherein channel-like voids in the gravel matrix composition are desired. One of ordinary skill in the art with the benefit of this disclosure will recognize the specific degradable material and the preferred size and shape for a given application.


While resins, degradable materials, and tackifiers may optionally be used in the present invention, separately or in combination, the use of these components are not a necessary part of the present invention in certain embodiments.


In certain embodiments, a method of enhancing at least partially the structural integrity of a longitudinal portion of a deviated well bore comprises providing a gravel matrix composition that comprises particulates having an average particle size of about 20 mesh or larger; providing a longitudinal portion of a deviated well bore; and placing a sufficient amount of the gravel matrix composition in a chosen longitudinal portion of the deviated well bore to enhance the structural support of the longitudinal portion of the deviated well bore.


In certain embodiments, a method of enhancing at least partially the structural integrity of a longitudinal portion of a deviated well bore comprises providing a gravel matrix composition that comprises particulates and a curable resin; providing a longitudinal portion of a deviated well bore; placing a sufficient amount of the gravel matrix composition in a chosen longitudinal portion of the deviated well bore to enhance the structural support of the longitudinal portion of the deviated well bore; allowing the curable resin to cure; allowing the gravel matrix composition to form; and producing fluids through the gravel matrix composition.


In certain embodiments, a method of enhancing at least partially the structural integrity of a longitudinal portion of a deviated well bore comprises providing a gravel matrix composition that comprises particulates and a tackifier; providing a longitudinal portion of a deviated well bore; placing a sufficient amount of the gravel matrix composition in a chosen longitudinal portion of the deviated well bore to enhance the structural support of the longitudinal portion of the deviated well bore; allowing the gravel matrix composition to form; and producing fluids through the gravel matrix composition.


Placement of Gravel Matrix Compositions in Well Bores Suitable for Use in the Present Invention

The gravel matrix composition may be placed in a chosen longitudinal portion of a deviated well bore by a variety of methods recognizable by one of ordinary skill in the art with the benefit of this disclosure. In certain embodiments, the methods of the present invention may use coiled tubing to place the gravel matrix composition in a chosen longitudinal portion of a deviated well bore.


In certain embodiments, the gravel matrix composition can be pumped to its final destination via a carrier fluid. In still further embodiments, the gravel matrix composition may be delivered via a treatment fluid or fracturing fluid such as a pad fluid. In some instances, the carrier fluid may be a viscosified carrier fluid.


In certain embodiments, the coiled tubing may be removed simultaneously as the gravel matrix composition leaves the coiled tubing. In this way, the coiled tubing may deposit the gravel matrix composition throughout a chosen longitudinal portion of the deviated well bore. If desired, additional pressure can be applied with a displacement or other fluid to pack or further consolidate the gravel matrix composition in place.


The step of placing the gravel matrix composition in a longitudinal portion of a deviated well bore may occur before or after a fracturing operation. In some cases, the step of placing a gravel matrix composition in a longitudinal portion of a deviated well bore may occur concurrently with a portion of a fracturing or stimulation operation. In still further embodiments, the step of placing a gravel matrix composition in a longitudinal portion of a deviated well bore may occur before any flow back of fluid from a fracturing operation.


In certain embodiments, a method of placing a gravel matrix composition in a longitudinal portion of a deviated well bore comprises the steps of inserting a coiled tubing into the longitudinal portion of the deviated well bore; placing a sufficient amount of the gravel matrix composition in a chosen longitudinal portion of the deviated well bore to enhance the structural support of the longitudinal portion of the deviated well bore; placing the gravel matrix composition into the coiled tubing; flowing a fluid through the coiled tubing; and depositing the gravel matrix composition in a chosen longitudinal portion of the deviated well bore.


In other embodiments, the method of placing the gravel matrix composition in the longitudinal portion of the deviated well bore may further comprise the steps of applying pressure to the gravel matrix composition using a downhole fluid of sufficient pressure to consolidate the gravel matrix composition in place; and removing the coiled tubing from the longitudinal portion of the deviated well bore.


To facilitate a better understanding of the present invention, the following examples of certain embodiments are given. In no way should the following examples be read to limit, or define, the scope of the invention.


EXAMPLES
Example 1

Sand particulates were treated with a two-component epoxy-based resin, capable of forming a hardened, consolidated mass. The sand particulates were of an average particle size of 20/40 mesh. In this case, approximately 250 grams of treated sand particulates were mixed with approximately 300 ml of a gelled carrier fluid to form approximately a 7 lbs/gal slurry. The slurry was then packed into a brass chamber under vacuum. The chamber was then placed in an oven, and the treated particulates were allowed to cure at the various temperatures listed in Table 1. After allowing the treated particulates to cure for 40 hours, the consolidated resin-treated sand particulates was extruded from the brass chamber to obtain a core sample, which was then subjected to unconfined compressive strength (UCS) measurements. Table 1 shows the results of these tests performed on each of the samples, cured at various temperatures at different resin concentrations.









TABLE 1







CONSOLIDATION STRENGTH OF COATED PARTICLES











Unconfined Compressive




Strength (psi)



Resin
Temperature for 40 Hour Cure












Concentration
125° F.
175° F.
225° F.
















1%
134
134
291



2%
878
1073
910



3%
1483
1943
2050










Example 2

Bauxite particulates of an average particle size of 20/40 mesh were treated with a furan-based resin, capable of forming a hardened, consolidated mass. As in Example 1, the resulting slurry was placed in a brass chamber under vacuum to cure at various temperatures and resin concentrations. After a cure time of 20 hours in an oven, core samples were extruded from the brass chamber. Finally, the core samples were subjected to unconfined compressive strength measurements. Table 2 shows the unconfined compressive strength measured for each of the samples that were cured at various resin cure temperatures at different resin concentrations.









TABLE 2







CONSOLIDATION STRENGTH OF COATED PARTICLES











Unconfined Compressive




Strength (psi)



Resin
Temperature for 20 Hour Cure












Concentration
325° F.
375° F.
425° F.
















1%
33
108
79



2%
141
450
222



3%
473
1061
755










Thus, the present invention is well adapted to carry out the objects and attain the ends and advantages mentioned as well as those which are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit and scope of this invention as defined by the appended claims.

Claims
  • 1. A method of enhancing at least partially the structural integrity of a longitudinal portion of a deviated well bore comprising: providing a gravel matrix composition that comprises particulates having an average particle size of about 20 mesh or larger;inserting a coiled tubing into the longitudinal portion of the deviated well bore; andremoving the coiled tubing while placing a sufficient amount of the gravel matrix composition in the longitudinal portion to enhance the structural support of the longitudinal portion.
  • 2. The method of claim 1 wherein the gravel matrix composition comprises particulates having an average particle size of about 12 mesh or larger.
  • 3. The method of claim 1 wherein the gravel matrix composition comprises particulates having an average particle size of about 10 mesh or larger.
  • 4. The method of claim 1 wherein the particulates comprise composite particulates wherein the composite particulates comprise a binder and a filler material wherein the filler material comprises at least one filler material selected from the group consisting of: silica, alumina, a fumed carbon, carbon black, graphite, mica, titanium dioxide, meta-silicate, calcium silicate, kaolin, talc, zirconia, boron, fly ash, a hollow glass microsphere, solid glass, and any combination thereof.
  • 5. The method of claim 1 wherein the particulates comprise at least one particulate selected from the group consisting of: sand, bauxite, a ceramic material, a glass material, a polymer material, a polytetrafluoroethylene material, a nut shell piece, a seed shell piece, a fruit pit piece, wood, a composite particulate, a proppant particulate, and any combination thereof.
  • 6. The method of claim 1 wherein at least a portion of the particulates have a physical shape selected from the group consisting of: a platelet, a shaving, a flake, a ribbon, a rod, a strip, a spheroid, an ellipsoid, a toroid, a pellet, a tablet, and any combination thereof.
  • 7. A method comprising: providing a gravel matrix composition that comprises particulates having an average particle size of about 20 mesh or larger;providing a longitudinal portion of a deviated well bore;inserting a coiled tubing into the longitudinal portion of the deviated well bore; andremoving the coiled tubing while placing a sufficient amount of the gravel matrix composition in the longitudinal portion to enhance the structural support of the longitudinal portion.
  • 8. The method of claim 7 wherein the gravel matrix composition comprises particulates having an average particle size of about 12 mesh or larger.
  • 9. The method of claim 7 wherein the gravel matrix composition comprises particulates having an average particle size of about 10 mesh or larger.
  • 10. The method of claim 7 wherein the particulates comprise composite particulates wherein the composite particulates comprise a binder and a filler material wherein the filler material comprises at least one filler material selected from the group consisting of: silica, alumina, a fumed carbon, carbon black, graphite, mica, titanium dioxide, meta-silicate, calcium silicate, kaolin, talc, zirconia, boron, fly ash, a hollow glass microsphere, solid glass, and any combination thereof.
  • 11. The method of claim 7 wherein at least a portion of the particulates have a physical shape selected from the group consisting of: a platelet, a shaving, a flake, a ribbon, a rod, a strip, a spheroid, an ellipsoid, a toroid, a pellet, a tablet, and any combination thereof.
  • 12. The method of claim 7 wherein the particulates comprise at least one particulate selected from the group consisting of: sand, bauxite, a ceramic material, a glass material, a polymer material, a polytetrafluoroethylene material, a nut shell piece, a seed shell piece, a fruit pit piece, wood, a composite particulate, a proppant particulate, and any combination thereof.
  • 13. A method of enhancing at least partially the structural integrity of a longitudinal portion of a deviated well bore comprising: providing a gravel matrix composition that comprises particulates having an average particle size of about 20 mesh or larger;inserting a coiled tubing into the longitudinal portion of a deviated well bore; andplacing a sufficient amount of the gravel matrix composition in the longitudinal portion to enhance the structural support of the longitudinal portion while simultaneously removing the coiled tubing.
  • 14. The method of claim 13 wherein the gravel matrix composition comprises particulates having an average particle size of about 12 mesh or larger.
  • 15. The method of claim 13 wherein the gravel matrix composition comprises particulates having an average particle size of about 10 mesh or larger.
  • 16. The method of claim 13 wherein the particulates comprise composite particulates wherein the composite particulates comprise a binder and a filler material wherein the filler material comprises at least one filler material selected from the group consisting of: silica, alumina, a fumed carbon, carbon black, graphite, mica, titanium dioxide, meta-silicate, calcium silicate, kaolin, talc, zirconia, boron, fly ash, a hollow glass microsphere, solid glass, and any combination thereof.
  • 17. The method of claim 13 wherein at least a portion of the particulates have a physical shape selected from the group consisting of: a platelet, a shaving, a flake, a ribbon, a rod, a strip, a spheroid, an ellipsoid, a toroid, a pellet, a tablet, and any combination thereof.
  • 18. The method of claim 13 wherein the particulates comprise at least one particulate selected from the group consisting of: sand, bauxite, a ceramic material, a glass material, a polymer material, a polytetrafluoroethylene material, a nut shell piece, a seed shell piece, a fruit pit piece, wood, a composite particulate, a proppant particulate, and any combination thereof.
US Referenced Citations (434)
Number Name Date Kind
2238671 Woodhouse Apr 1941 A
2703316 Palmer Mar 1955 A
2869642 McKay et al. Jan 1959 A
3047067 Williams et al. Jul 1962 A
3123138 Robichaux Mar 1964 A
3176768 Brandt et al. Apr 1965 A
3199590 Young Aug 1965 A
3272650 MacVittie Sep 1966 A
3297086 Spain Jan 1967 A
3308885 Sandiford Mar 1967 A
3316965 Watanabe May 1967 A
3336980 Rike Aug 1967 A
3375872 McLaughlin et al. Apr 1968 A
3404735 Young et al. Oct 1968 A
3415320 Young Dec 1968 A
3492147 Young et al. Jan 1970 A
3659651 Graham May 1972 A
3681287 Brown et al. Aug 1972 A
3708013 Dismuke Jan 1973 A
3709298 Pramann Jan 1973 A
3754598 Holloway, Jr. Aug 1973 A
3765804 Brandon Oct 1973 A
3768564 Knox et al. Oct 1973 A
3784585 Schmitt et al. Jan 1974 A
3819525 Hattenbrun Jun 1974 A
3828854 Templeton et al. Aug 1974 A
3842911 Know et al. Oct 1974 A
3854533 Gurley et al. Dec 1974 A
3857444 Copeland Dec 1974 A
3863709 Fitch Feb 1975 A
3868998 Lybarger et al. Mar 1975 A
3888311 Cooke, Jr. Jun 1975 A
3912692 Casey et al. Oct 1975 A
3948672 Harnsberger Apr 1976 A
3955993 Curtice May 1976 A
3960736 Free et al. Jun 1976 A
4008763 Lowe Feb 1977 A
4015995 Hess Apr 1977 A
4029148 Emery Jun 1977 A
4031958 Sandiford et al. Jun 1977 A
4042032 Anderson et al. Aug 1977 A
4070865 McLaughlin Jan 1978 A
4074760 Copeland et al. Feb 1978 A
4085801 Sifferman Apr 1978 A
4127173 Watkins et al. Nov 1978 A
4169798 DeMartino Oct 1979 A
4172066 Zweigle et al. Oct 1979 A
4245702 Haafkens et al. Jan 1981 A
4273187 Satter et al. Jun 1981 A
4291766 Davies et al. Sep 1981 A
4305463 Zakiewicz Dec 1981 A
4336842 Graham et al. Jun 1982 A
4352674 Fery Oct 1982 A
4353806 Canter et al. Oct 1982 A
4387769 Erbstoesser et al. Jun 1983 A
4415805 Fertl et al. Nov 1983 A
4439489 Johnson et al. Mar 1984 A
4443347 Underdown et al. Apr 1984 A
4460052 Gockel Jul 1984 A
4470915 Conway Sep 1984 A
4493875 Beck et al. Jan 1985 A
4494605 Wiechel et al. Jan 1985 A
4498995 Gockel Feb 1985 A
4501328 Nichols Feb 1985 A
4526695 Erbstoesser et al. Jul 1985 A
4527627 Graham et al. Jul 1985 A
4541489 Wu Sep 1985 A
4546012 Brooks Oct 1985 A
4553596 Graham et al. Nov 1985 A
4564459 Underdown et al. Jan 1986 A
4572803 Yamazoe et al. Feb 1986 A
4649998 Friedman Mar 1987 A
4664819 Glaze et al. May 1987 A
4665988 Murphey et al. May 1987 A
4669543 Young Jun 1987 A
4675140 Sparks et al. Jun 1987 A
4683954 Walker et al. Aug 1987 A
4694905 Armbruster Sep 1987 A
4715967 Bellis et al. Dec 1987 A
4716964 Erbstoesser et al. Jan 1988 A
4733729 Copeland Mar 1988 A
4739832 Jennings, Jr. et al. Apr 1988 A
4785884 Armbruster Nov 1988 A
4787453 Hewgill et al. Nov 1988 A
4789105 Hosokawa et al. Dec 1988 A
4796701 Hudson et al. Jan 1989 A
4797262 Dewitz Jan 1989 A
4800960 Friedman et al. Jan 1989 A
4809783 Hollenbeck et al. Mar 1989 A
4817721 Pober Apr 1989 A
4829100 Murphey et al. May 1989 A
4838352 Oberste-Padtberg et al. Jun 1989 A
4842072 Friedman et al. Jun 1989 A
4843118 Lai et al. Jun 1989 A
4848467 Cantu et al. Jul 1989 A
4848470 Korpics Jul 1989 A
4850430 Copeland et al. Jul 1989 A
4886354 Welch et al. Dec 1989 A
4888240 Graham et al. Dec 1989 A
4895207 Friedman et al. Jan 1990 A
4903770 Friedman et al. Feb 1990 A
4934456 Moradi-Araghi Jun 1990 A
4936385 Weaver et al. Jun 1990 A
4942186 Murphey et al. Jul 1990 A
4957165 Cantu et al. Sep 1990 A
4959432 Fan et al. Sep 1990 A
4961466 Himes et al. Oct 1990 A
4969522 Whitehurst et al. Nov 1990 A
4969523 Martin et al. Nov 1990 A
4986353 Clark et al. Jan 1991 A
4986354 Cantu et al. Jan 1991 A
4986355 Casad et al. Jan 1991 A
5030603 Rumpf et al. Jul 1991 A
5049743 Taylor, III et al. Sep 1991 A
5082056 Tackett, Jr. Jan 1992 A
5105886 Strubhar et al. Apr 1992 A
5107928 Hilterhaus Apr 1992 A
5128390 Murphey et al. Jul 1992 A
5135051 Fracteau et al. Aug 1992 A
5142023 Gruber et al. Aug 1992 A
5165438 Fracteau et al. Nov 1992 A
5173527 Calve Dec 1992 A
5178218 Dees Jan 1993 A
5182051 Bandy et al. Jan 1993 A
5199491 Kutts et al. Apr 1993 A
5199492 Surles et al. Apr 1993 A
5211234 Floyd May 1993 A
5216050 Sinclair Jun 1993 A
5218038 Johnson et al. Jun 1993 A
5232955 Caabai et al. Aug 1993 A
5232961 Murphey et al. Aug 1993 A
5238068 Fredickson Aug 1993 A
5247059 Gruber et al. Sep 1993 A
5249628 Surjaatmadia Oct 1993 A
5256729 Kutts et al. Oct 1993 A
5273115 Spafford Dec 1993 A
5285849 Surles et al. Feb 1994 A
5293939 Surles et al. Mar 1994 A
5295542 Cole et al. Mar 1994 A
5320171 Laramay Jun 1994 A
5321062 Landrum et al. Jun 1994 A
5325923 Surjaatmadja et al. Jul 1994 A
5330005 Card et al. Jul 1994 A
5332037 Schmidt et al. Jul 1994 A
5335726 Rodrogues Aug 1994 A
5351754 Hardin et al. Oct 1994 A
5358051 Rodrigues Oct 1994 A
5359026 Gruber Oct 1994 A
5360068 Sprunt et al. Nov 1994 A
5361856 Surjaatmajda et al. Nov 1994 A
5363916 Himes et al. Nov 1994 A
5373901 Norman et al. Dec 1994 A
5377759 Surles Jan 1995 A
5381864 Nguyen et al. Jan 1995 A
5386874 Laramay et al. Feb 1995 A
5388648 Jordan, Jr. Feb 1995 A
5393810 Harris et al. Feb 1995 A
5396957 Surjaatmadja et al. Mar 1995 A
5402846 Jennings, Jr. et al. Apr 1995 A
5422183 Sinclair et al. Jun 1995 A
5423381 Surles et al. Jun 1995 A
5439055 Card et al. Aug 1995 A
5460226 Lawton et al. Oct 1995 A
5464060 Hale et al. Nov 1995 A
5475080 Gruber et al. Dec 1995 A
5484881 Gruber et al. Jan 1996 A
5492178 Nguyen et al. Feb 1996 A
5494103 Surjaatmadja et al. Feb 1996 A
5497830 Boles et al. Mar 1996 A
5498280 Fistner et al. Mar 1996 A
5499678 Surjaatmadja et al. Mar 1996 A
5501275 Card et al. Mar 1996 A
5505787 Yamaguchi Apr 1996 A
5512071 Yam et al. Apr 1996 A
5520250 Harry et al. May 1996 A
5522460 Shu Jun 1996 A
5529123 Carpenter et al. Jun 1996 A
5531274 Bienvenu, Jr. Jul 1996 A
5536807 Gruber et al. Jul 1996 A
5545824 Stengel et al. Aug 1996 A
5547023 McDaniel et al. Aug 1996 A
5551513 Suries et al. Sep 1996 A
5551514 Nelson et al. Sep 1996 A
5582249 Caveny et al. Dec 1996 A
5582250 Constein Dec 1996 A
5588488 Vijn et al. Dec 1996 A
5591700 Harris et al. Jan 1997 A
5594095 Gruber et al. Jan 1997 A
5595245 Scott, III Jan 1997 A
5597784 Sinclair et al. Jan 1997 A
5604184 Ellis et al. Feb 1997 A
5604186 Hunt et al. Feb 1997 A
5609207 Dewprashad et al. Mar 1997 A
5620049 Gipson et al. Apr 1997 A
5639806 Johnson et al. Jun 1997 A
5670473 Scepanski Sep 1997 A
5692566 Surles Dec 1997 A
5697440 Weaver et al. Dec 1997 A
5698322 Tsai et al. Dec 1997 A
5712314 Surles et al. Jan 1998 A
5732364 Kalb et al. Mar 1998 A
5765642 Surjaatmadja Jun 1998 A
5775425 Weaver et al. Jul 1998 A
5782300 James et al. Jul 1998 A
5783822 Buchanan et al. Jul 1998 A
5787986 Weaver et al. Aug 1998 A
5791415 Nguyen et al. Aug 1998 A
5799734 Norman et al. Sep 1998 A
5806593 Suries Sep 1998 A
5830987 Smith Nov 1998 A
5833000 Weaver et al. Nov 1998 A
5833361 Funk Nov 1998 A
5836391 Jonasson et al. Nov 1998 A
5836392 Urlwin-Smith Nov 1998 A
5837656 Sinclair et al. Nov 1998 A
5837785 Kinsho et al. Nov 1998 A
5839510 Weaver et al. Nov 1998 A
5840784 Funkhouser et al. Nov 1998 A
5849401 El-Afandi et al. Dec 1998 A
5849590 Anderson, II et al. Dec 1998 A
5853048 Weaver et al. Dec 1998 A
5864003 Qureshi et al. Jan 1999 A
5865936 Edelman et al. Feb 1999 A
5871049 Weaver et al. Feb 1999 A
5873413 Chatterji et al. Feb 1999 A
5875844 Chatterji et al. Mar 1999 A
5875845 Chatterji et al. Mar 1999 A
5875846 Chatterji et al. Mar 1999 A
5893383 Fracteau Apr 1999 A
5893416 Read Apr 1999 A
5908073 Nguyen et al. Jun 1999 A
5911282 Onan et al. Jun 1999 A
5916933 Johnson et al. Jun 1999 A
5921317 Dewprashad et al. Jul 1999 A
5924488 Nguyen et al. Jul 1999 A
5929437 Elliott et al. Jul 1999 A
5934376 Nguyen et al. Aug 1999 A
5944105 Nguyen Aug 1999 A
5945387 Chatterji et al. Aug 1999 A
5948734 Sinclair et al. Sep 1999 A
5957204 Chatterji et al. Sep 1999 A
5960877 Funkhouser et al. Oct 1999 A
5960880 Nguyen et al. Oct 1999 A
5964291 Bourne et al. Oct 1999 A
5969006 Onan et al. Oct 1999 A
5977283 Rossitto Nov 1999 A
5994785 Higuchi et al. Nov 1999 A
RE36466 Nelson et al. Dec 1999 E
6003600 Nguyen et al. Dec 1999 A
6004400 Bishop et al. Dec 1999 A
6006835 Onan et al. Dec 1999 A
6006836 Chatterji et al. Dec 1999 A
6012524 Chatterji et al. Jan 2000 A
6016870 Dewprashad et al. Jan 2000 A
6024170 McCabe et al. Feb 2000 A
6028113 Scepanski Feb 2000 A
6028534 Ciglenec et al. Feb 2000 A
6040398 Kinsho et al. Mar 2000 A
6047772 Weaver et al. Apr 2000 A
6059034 Rickards et al. May 2000 A
6059035 Chatterji et al. May 2000 A
6059036 Chatterji et al. May 2000 A
6068055 Chatterji et al. May 2000 A
6069117 Onan et al. May 2000 A
6074739 Katagiri Jun 2000 A
6079492 Hoogteijling et al. Jun 2000 A
6098711 Chatterji et al. Aug 2000 A
6114410 Betzold Sep 2000 A
6123871 Carroll Sep 2000 A
6123965 Jacob et al. Sep 2000 A
6124246 Heathman et al. Sep 2000 A
6130286 Thomas et al. Oct 2000 A
6135987 Tsai et al. Oct 2000 A
6140446 Fujiki et al. Oct 2000 A
6148911 Gipson et al. Nov 2000 A
6152234 Newhouse et al. Nov 2000 A
6162766 Muir et al. Dec 2000 A
6169058 Le et al. Jan 2001 B1
6172011 Card et al. Jan 2001 B1
6172077 Curtis et al. Jan 2001 B1
6176315 Reddy et al. Jan 2001 B1
6177484 Surles Jan 2001 B1
6184311 O'Keefe et al. Feb 2001 B1
6187834 Thayer et al. Feb 2001 B1
6187839 Eoff et al. Feb 2001 B1
6189615 Sydansk Feb 2001 B1
6192985 Hinkel et al. Feb 2001 B1
6192986 Urlwin-Smith Feb 2001 B1
6196317 Hardy Mar 2001 B1
6202751 Chatterji et al. Mar 2001 B1
6209643 Nguyen et al. Apr 2001 B1
6209646 Reddy et al. Apr 2001 B1
6210471 Craig Apr 2001 B1
6214773 Harris et al. Apr 2001 B1
6231664 Chatterji et al. May 2001 B1
6234251 Chatterji et al. May 2001 B1
6238597 Yim et al. May 2001 B1
6241019 Davidson et al. Jun 2001 B1
6242390 Mitchell et al. Jun 2001 B1
6244344 Chatterji et al. Jun 2001 B1
6257335 Nguyen et al. Jul 2001 B1
6260622 Blok et al. Jul 2001 B1
6271181 Chatterji et al. Aug 2001 B1
6274650 Cui Aug 2001 B1
6279652 Chatterji et al. Aug 2001 B1
6279656 Sinclair et al. Aug 2001 B1
6283214 Guinot et al. Sep 2001 B1
6302207 Nguyen et al. Oct 2001 B1
6306998 Kimura et al. Oct 2001 B1
6311773 Todd et al. Nov 2001 B1
6321841 Eoff et al. Nov 2001 B1
6323307 Bigg et al. Nov 2001 B1
6326458 Gruber et al. Dec 2001 B1
6328105 Betzold Dec 2001 B1
6328106 Griffith et al. Dec 2001 B1
6330916 Rickards et al. Dec 2001 B1
6330917 Chatterji et al. Dec 2001 B2
6350309 Chatterji et al. Feb 2002 B2
6357527 Norman et al. Mar 2002 B1
6364018 Brannon et al. Apr 2002 B1
6364945 Chatterji et al. Apr 2002 B1
6367165 Huttlin Apr 2002 B1
6367549 Chatterji et al. Apr 2002 B1
6372678 Youngsman et al. Apr 2002 B1
6376571 Chawla et al. Apr 2002 B1
6387986 Moradi-Araghi et al. May 2002 B1
6390195 Nguyen et al. May 2002 B1
6401817 Griffith et al. Jun 2002 B1
6405797 Davidson et al. Jun 2002 B2
6406789 McDaniel et al. Jun 2002 B1
6408943 Schultz et al. Jun 2002 B1
6422314 Todd et al. Jul 2002 B1
6439309 Matherly et al. Aug 2002 B1
6439310 Scott, III et al. Aug 2002 B1
6440255 Kohlhammer et al. Aug 2002 B1
6446727 Zemlak et al. Sep 2002 B1
6448206 Griffith et al. Sep 2002 B1
6450260 James et al. Sep 2002 B1
6454003 Chang et al. Sep 2002 B1
6485947 Rajgarhia et al. Nov 2002 B1
6488091 Weaver et al. Dec 2002 B1
6488763 Brothers et al. Dec 2002 B2
6494263 Todd Dec 2002 B2
6503870 Griffith et al. Jan 2003 B2
6508305 Brannon et al. Jan 2003 B1
6527051 Reddy et al. Mar 2003 B1
6528157 Hussain et al. Mar 2003 B1
6531427 Shuchart et al. Mar 2003 B1
6538576 Schultz et al. Mar 2003 B1
6543545 Chatterji et al. Apr 2003 B1
6552333 Storm et al. Apr 2003 B1
6554071 Reddy et al. Apr 2003 B1
6555507 Chatterji et al. Apr 2003 B2
6569814 Brady et al. May 2003 B1
6575243 Pabst Jun 2003 B2
6582819 McDaniel et al. Jun 2003 B2
6593402 Chatterji et al. Jul 2003 B2
6599863 Palmer et al. Jul 2003 B1
6608162 Chiu et al. Aug 2003 B1
6616320 Huber et al. Sep 2003 B2
6620857 Valet Sep 2003 B2
6626241 Nguyen Sep 2003 B2
6632527 McDaniel et al. Oct 2003 B1
6632892 Rubinsztajn et al. Oct 2003 B2
6642309 Komitsu et al. Nov 2003 B2
6648501 Huber et al. Nov 2003 B2
6659179 Nguyen Dec 2003 B2
6664343 Narisawa et al. Dec 2003 B2
6667279 Hessert et al. Dec 2003 B1
6668926 Nguyen et al. Dec 2003 B2
6669771 Tokiwa et al. Dec 2003 B2
6681856 Chatterji et al. Jan 2004 B1
6686328 Binder Feb 2004 B1
6705400 Nguyen et al. Mar 2004 B1
6710019 Sawdon et al. Mar 2004 B1
6713170 Kaneko et al. Mar 2004 B1
6725931 Nguyen et al. Apr 2004 B2
6729404 Nguyen et al. May 2004 B2
6732800 Acock et al. May 2004 B2
6745159 Todd et al. Jun 2004 B1
6749025 Brannon et al. Jun 2004 B1
6763888 Harris et al. Jul 2004 B1
6766858 Nguyen et al. Jul 2004 B2
6776236 Nguyen Aug 2004 B1
6832650 Nguyen et al. Dec 2004 B2
6851474 Nguyen Feb 2005 B2
6887834 Nguyen et al. May 2005 B2
6978836 Nguyen et al. Dec 2005 B2
20010016562 Muir et al. Aug 2001 A1
20020043370 Poe Apr 2002 A1
20020048676 McDaniel et al. Apr 2002 A1
20020070020 Nguyen Jun 2002 A1
20030006036 Malone et al. Jan 2003 A1
20030060374 Cooke, Jr. Mar 2003 A1
20030114314 Ballard et al. Jun 2003 A1
20030130133 Vollmer Jul 2003 A1
20030148893 Lungofer et al. Aug 2003 A1
20030186820 Thesing Oct 2003 A1
20030188766 Banerjee et al. Oct 2003 A1
20030188872 Nguyen et al. Oct 2003 A1
20030196805 Boney et al. Oct 2003 A1
20030205376 Ayoub et al. Nov 2003 A1
20030230408 Acock et al. Dec 2003 A1
20030234103 Lee et al. Dec 2003 A1
20040000402 Nguyen et al. Jan 2004 A1
20040014607 Sinclair et al. Jan 2004 A1
20040014608 Nguyen et al. Jan 2004 A1
20040040706 Hossaini et al. Mar 2004 A1
20040040708 Stephenson et al. Mar 2004 A1
20040040713 Nguyen et al. Mar 2004 A1
20040048752 Nguyen et al. Mar 2004 A1
20040055747 Lee Mar 2004 A1
20040106525 Wilbert et al. Jun 2004 A1
20040138068 Rimmer et al. Jul 2004 A1
20040149441 Nguyen et al. Aug 2004 A1
20040152601 Still et al. Aug 2004 A1
20040152602 Boles Aug 2004 A1
20040177961 Nguyen Sep 2004 A1
20040194961 Nguyen et al. Oct 2004 A1
20040206499 Nguyen et al. Oct 2004 A1
20040211559 Nguyen et al. Oct 2004 A1
20040211561 Nguyen et al. Oct 2004 A1
20040221992 Nguyen et al. Nov 2004 A1
20040231845 Cooke, Jr. Nov 2004 A1
20040231847 Nguyen et al. Nov 2004 A1
20040256099 Nguyen et al. Dec 2004 A1
20040261995 Nguyen et al. Dec 2004 A1
20040261997 Nguyen et al. Dec 2004 A1
20050000731 Nguyen et al. Jan 2005 A1
20050006093 Nguyen Jan 2005 A1
20050006095 Justus et al. Jan 2005 A1
20050006096 Nguyen et al. Jan 2005 A1
20050034862 Nguyen et al. Feb 2005 A1
20050045326 Nguyen Mar 2005 A1
Foreign Referenced Citations (39)
Number Date Country
2063877 May 2003 CA
0313243 Oct 1988 EP
0528595 Aug 1992 EP
0 510 762 Oct 1992 EP
0643196 Jun 1994 EP
0834644 Apr 1998 EP
0853186 Jul 1998 EP
0864726 Sep 1998 EP
0 879 935 Nov 1998 EP
0933498 Aug 1999 EP
0 879 935 Oct 1999 EP
1001133 May 2000 EP
1132569 Sep 2001 EP
1326003 Jul 2003 EP
1362978 Nov 2003 EP
1394355 Mar 2004 EP
1396606 Mar 2004 EP
1398640 Mar 2004 EP
1403466 Mar 2004 EP
1464789 Oct 2004 EP
1107584 Mar 1968 GB
1264180 Dec 1969 GB
1292718 Oct 1972 GB
2382143 Apr 2001 GB
WO 9315127 Aug 1993 WO
WO 9407949 Apr 1994 WO
WO 9408078 Apr 1994 WO
WO 9408090 Apr 1994 WO
WO 9509879 Apr 1995 WO
WO 9711845 Apr 1997 WO
WO 9927229 Jun 1999 WO
WO 0181914 Nov 2001 WO
WO 0187797 Nov 2001 WO
WO 0212674 Feb 2002 WO
WO 03027431 Apr 2003 WO
WO 03027431 Apr 2003 WO
WO 2004037946 May 2004 WO
WO 2004038176 May 2004 WO
WO 2005021928 Mar 2005 WO
Related Publications (1)
Number Date Country
20060196661 A1 Sep 2006 US