The present disclosure generally relates to the technical field of social networking. In particular methods, systems, and devices for facilitating ecommerce transactions via a social network are disclosed.
Social networking is becoming essential to many as a form of communication. Social networking applications enable a user to view content provided by other users. Users may also be able to view other content, for example, content providing information such as news, historical information, or other types of information. Ecommerce may be an important revenue source for social network operators. Therefore, improved methods of utilizing a social network to facilitate ecommerce are desired.
In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. Some embodiments are illustrated by way of example, and not limitation, in the figures of the accompanying drawings.
The description that follows includes systems, methods, techniques, instruction sequences, and computing machine program products that embody illustrative embodiments of the disclosure. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide an understanding of various embodiments of the inventive subject matter. It will be evident, however, to those skilled in the art, that embodiments of the inventive subject matter may be practiced without these specific details. In general, well-known instruction instances, protocols, structures, and techniques are not necessarily shown in detail.
QR codes, and other optical barcodes (e.g., Universal Product Code (UPC) barcodes, Aztec code, Data Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code), are a convenient way to share small pieces of information with users of mobile devices, wearable devices, and other smart devices. For instance, QR codes are two-dimensional optical barcodes that encode information readable by a device (e.g., a smart phone) equipped with a camera sensor.
Some disclosed embodiments are methods, devices, and systems to link an optical barcode to a product. Upon scanning of the optical barcode, the disclosed devices may display information regarding the product. In some embodiments, the product information may be displayed within an ecommerce system, such that a user can review details about the product, select product options such as colors and/or sizes, and purchase the product.
In some systems, social network users become accustomed to a particular user interface and after learning how the user interface operates, may operate it without substantial effort. Some such users may prefer to perform most of their tasks from within this “native” user interface. Some implementations of social networks may provide an ecommerce user interface for products offered by the social network itself. If a user of these social networks seeks to purchase products not offered by the social network, they may have to utilize a different user interface to do so. This makes the user's experience less desirable, at least because the user must learn to utilize two interfaces. In some cases, this may result is a reduced number of purchases by the social network user. For example, if the social network user may easily purchase products from a variety of vendors via the social network interface with which they have become familiar, they may purchase more than they would otherwise.
Some disclosed methods, devices, and systems provide for the use of a native user interface of a social network not only for an ecommerce experience with products offered by the social network itself, but also for products provided by other vendors not directly associated with the social network.
In the example shown in
The network 106 may include, or operate in conjunction with, an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), the Internet, a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a plain old telephone service (POTS) network, a cellular telephone network, a wireless network, a Wi-Fi® network, another type of network, or a combination of two or more such networks. For example, the network 106 or a portion of the network 106 may include a wireless or cellular network and the connection to the network 106 may be a Code Division Multiple Access (CDMA) connection, a Global System for Mobile communications (GSM) connection, or another type of cellular or wireless coupling. In this example, the coupling may implement any of a variety of types of data transfer technology, such as Single Carrier Radio Transmission Technology (1×RTT), Evolution-Data Optimized (EVDO) technology, General Packet Radio Service (GPRS) technology, Enhanced Data rates for GSM Evolution (EDGE) technology, third-Generation Partnership Project (3GPP) including 3G, fourth-generation wireless (4G) networks, Universal Mobile Telecommunications System (UMTS), High-Speed Packet Access (HSPA), Worldwide Interoperability for Microwave Access (WiMAX), Long-Term Evolution (LTE) standard, or others defined by various standard-setting organizations, other long-range protocols, or other data transfer technology.
The messaging server system 108 provides server-side functionality via the network 106 to a particular messaging client application 104. While certain functions of the messaging system 100 are described herein as being performed by either a messaging client application 104 or by the messaging server system 108, it will be appreciated that the location of certain functionality either within the messaging client application 104 or the messaging server system 108 is a design choice. For example, it may be technically preferable to initially deploy certain technology and functionality within the messaging server system 108, but to later migrate this technology and functionality to the messaging client application 104 where a client device 102 has a sufficient processing capacity.
The messaging server system 108 supports various services and operations that are provided to the messaging client application 104. Such operations include transmitting data to, receiving data from, and processing data generated by the messaging client application 104. This data may include message content, client device information, geolocation information, media annotation and overlays, message content persistence conditions, social network information, and live event information, as examples. Data exchanges within the messaging system 100 are invoked and controlled through functions available via user interfaces (UIs) of the messaging client application 104.
Turning now specifically to the messaging server system 108, an Application Programming Interface (API) server 110 is coupled to, and provides a programmatic interface to, an application server 112. The application server 112 is communicatively coupled to a database server 118, which facilitates access to a database 120 in which is stored data associated with messages processed by the application server 112.
The API server 110 receives and transmits message data (e.g., commands and message payloads) between the client device 102 and the application server 112. Specifically, the API server 110 provides a set of interfaces (e.g., routines and protocols) that can be called or queried by the messaging client application 104 in order to invoke functionality of the application server 112. The API server 110 exposes various functions supported by the application server 112, including account registration; login functionality; the sending of messages, via the application server 112, from a particular messaging client application 104 to another messaging client application 104; the sending of media files (e.g., images or video) from a messaging client application 104 to the application server 112, for possible access by another messaging client application 104; the setting of a collection of media data (e.g., story); the retrieval of a list of friends of a user of a client device 102; the retrieval of such collections; the retrieval of messages and content; the adding and deletion of friends to and from a social graph; the location of friends within a social graph; and the detecting of an application event (e.g., relating to the messaging client application 104).
The application server 112 hosts a number of applications and subsystems, including a messaging server application 114 and a social network system 116. The messaging server application 114 implements a number of message processing technologies and functions, particularly related to the aggregation and other processing of content (e.g., textual and multimedia content) included in messages received from multiple instances of the messaging client application 104. As will be described in further detail, the text and media content from multiple sources may be aggregated into collections of content (e.g., called stories or galleries). These collections are then made available, by the messaging server application 114, to the messaging client application 104. Other processor- and memory-intensive processing of data may also be performed server-side by the messaging server application 114, in view of the hardware requirements for such processing.
The social network system 116 supports various social networking functions and services, and makes these functions and services available to the messaging server application 114. To this end, the social network system 116 maintains and accesses an entity graph within the database 120. Examples of functions and services supported by the social network system 116 include the identification of other users of the messaging system 100 with whom a particular user has relationships or whom the user is “following,” and also the identification of other entities and interests of a particular user.
Methods, devices, and systems disclosed herein may provide the social messaging system 100 with ecommerce functions for products provided by the social network provider, and also for products provided by entities not closely affiliated with the social network provider. For example, separate corporations or separate organizations, with no common ownership, may provide products for sale within a native user interface of the social network system 116. A user of the social messaging system 100 may utilize the user interface native to the social messaging system 100 to perform ecommerce functions for these products, resulting in an easier to use ecommerce system, when compared to traditional social networking systems that may require a transition from a user interface of the social networking system to a separate ecommerce application when purchasing products provided by the separate organization or entity.
The ephemeral timer system 202 is responsible for enforcing the temporary access to content permitted by the messaging client application 104 and the messaging server application 114. To this end, the ephemeral timer system 202 incorporates a number of timers that, based on duration and display parameters associated with a message, or collection of messages (e.g., a SNAPCHAT story, such as the story component 404 discussed below), selectively display and enable access to messages and associated content via the messaging client application 104. Further details regarding the operation of the ephemeral timer system 202 are provided below.
The collection management system 204 is responsible for managing collections of media (e.g., collections of text, image, video, and audio data). In some examples, a collection of content (e.g., messages, including images, video, text, and audio) may be organized into an “event gallery” or an “event story.” Such a collection may be made available for a specified time period, such as the duration of an event to which the content relates. For example, content relating to a music concert may be made available as a “story” for the duration of that music concert. The collection management system 204 may also be responsible for publishing an icon that provides notification of the existence of a particular collection to the user interface of the messaging client application 104.
The annotation system 206 provides various functions that enable a user to annotate or otherwise modify or edit media content associated with a message. For example, the annotation system 206 provides functions related to the generation and publishing of media overlays for messages processed by the messaging system 100. For example, the annotation system 206 operatively supplies a media overlay (e.g., a SNAPCHAT filter) to the messaging client application 104 based on a geolocation of the client device 102. In another example, the annotation system 206 operatively supplies a media overlay to the messaging client application 104 based on other information, such as social network information of the user of the client device 102. A media overlay may include audio and visual content and visual effects. Examples of audio and visual content include pictures, texts, logos, animations, and sound effects. An example of a visual effect includes color overlaying. The audio and visual content or the visual effects can be applied to a media content item (e.g., a photo) at the client device 102. For example, the media overlay may include text that can be overlaid on top of a photograph generated by the client device 102. In another example, the media overlay includes an identification of a location (e.g., Venice Beach), a name of a live event, or a name of a merchant (e.g., Beach Coffee House). In another example, the annotation system 206 uses the geolocation of the client device 102 to identify a media overlay that includes the name of a merchant at the geolocation of the client device 102. The media overlay may include other indicia associated with the merchant. The media overlays may be stored in the database 120 and accessed through the database server 118.
In one exemplary embodiment, the annotation system 206 provides a user-based publication platform that enables users to select a geolocation on a map, and upload content associated with the selected geolocation. The user may also specify circumstances under which a particular media overlay should be offered to other users. The annotation system 206 generates a media overlay that includes the uploaded content and associates the uploaded content with the selected geolocation.
In another exemplary embodiment, the annotation system 206 provides a merchant-based publication platform that enables merchants to select a particular media overlay associated with a geolocation via a bidding process. For example, the annotation system 206 associates the media overlay of a highest-bidding merchant with a corresponding geolocation for a predefined amount of time.
The integrated ecommerce system 208 may facilitate ecommerce transactions using the messaging system 100. In some aspects, the integrated ecommerce system 208 may provide ecommerce capabilities via a native interface of the social networking system 100. The ecommerce capabilities may be provided not only for products offered by a provider of the social messaging system 100, but also for products offered by other entities or organizations not closely associated with the social messaging system 100 (e.g. organizations with completely different ownership than that of the provider of the social messaging system 100). The integrated ecommerce system 208 may accomplish this via implementation of a data driven ecommerce engine. The integrated ecommerce system may provide for importation of data files from multiple product vendors. Each of the import files may provide product information for a plurality of products offered by one of the vendors. An importation process may load a product database of the social messaging system 100 with the product information. Thereafter, the social messaging system 100, via the integrated ecommerce system 208, may offer a native ecommerce solution that is able to provide ecommerce functions for the imported products. Products of several vendors may be similarly imported into the social messaging system 100 via the integrated ecommerce system 208. By providing a native interface to products from multiple outside vendors, the integrated ecommerce system may provide for an improved user experience over other social messaging systems that require a user to transition from a social network interface to a different interface, such as a web interface, to perform ecommerce functions for products not associated with the social networking system itself.
The database 120 includes message data stored within a message table 614. An entity table 602 stores entity data, including an entity graph 304. Entities for which records are maintained within the entity table 602 may include individuals, corporate entities, organizations, objects, places, events, etc. Regardless of type, any entity regarding which the messaging server system 108 stores data may be a recognized entity. Each entity is provided with a unique identifier, as well as an entity type identifier (not shown).
The entity graph 304 furthermore stores information regarding relationships and associations between or among entities. Such relationships may be social, professional (e.g., work at a common corporation or organization), interested-based, or activity-based, merely for example.
The database 120 also stores annotation data, in the example form of filters, in an annotation table 312. Filters for which data is stored within the annotation table 312 are associated with and applied to videos (for which data is stored in a video table 310) and/or images (for which data is stored in an image table 308). Filters, in one example, are overlays that are displayed as overlaid on an image or video during presentation to a recipient user. Filters may be of varies types, including user-selected filters from a gallery of filters presented to a sending user by the messaging client application 104 when the sending user is composing a message. Other types of filters include geolocation filters (also known as geo-filters), which may be presented to a sending user based on geographic location. For example, geolocation filters specific to a neighborhood or special location may be presented within a user interface by the messaging client application 104, based on geolocation information determined by a Global Positioning System (GPS) unit of the client device 102. Another type of filter is a data filter, which may be selectively presented to a sending user by the messaging client application 104, based on other inputs or information gathered by the client device 102 during the message creation process. Examples of data filters include a current temperature at a specific location, a current speed at which a sending user is traveling, a battery life for a client device 102, or the current time.
Other annotation data that may be stored within the image table 608 is so-called “lens” data. A “lens” may be a real-time special effect and sound that may be added to an image or a video.
As mentioned above, the video table 310 stores video data which, in one embodiment, is associated with messages for which records are maintained within the message table 314. Similarly, the image table 308 stores image data associated with messages for which message data is stored in the entity table 302. The entity table 302 may associate various annotations from the annotation table 312 with various images and videos stored in the image table 308 and the video table 310.
A story table 306 stores data regarding collections of messages and associated image, video, or audio data, which are compiled into a collection (e.g., a SNAPCHAT story or a gallery). The creation of a particular collection may be initiated by a particular user (e.g., a user for whom a record is maintained in the entity table 302). A user may create a “personal story” in the form of a collection of content that has been created and sent/broadcast by that user. To this end, the user interface of the messaging client application 104 may include an icon that is user-selectable to enable a sending user to add specific content to his or her personal story.
A collection may also constitute a “live story,” which is a collection of content from multiple users that is created manually, automatically, or using a combination of manual and automatic techniques. For example, a “live story” may constitute a curated stream of user-submitted content from various locations and events. Users whose client devices have location services enabled and who are at a common location or event at a particular time may, for example, be presented with an option, via a user interface of the messaging client application 104, to contribute content to a particular live story. The live story may be identified to the user by the messaging client application 104, based on his or her location. The end result is a “live story” told from a community perspective.
A further type of content collection is known as a “location story,” which enables a user whose client device 102 is located within a specific geographic location (e.g., on a college or university campus) to contribute to a particular collection. In some embodiments, a contribution to a location story may require a second degree of authentication to verify that the end user belongs to a specific organization or other entity (e.g., is a student on the university campus).
The store database 380 stores associations between stores 382 and group or product identifier 384. For example, the group or product identifier 384 may cross reference a group identifier, such as group identifier 366, or a product identifier, such as product identifier 372. A store may include one or more groups and/or one or more products. Each row of the store database 380 may represent one product or group included in the store identified by the store id 384.
The video database 390 may store an association between a video identifier 384, data defining the video itself 384, and an attachment, identified via an attachment identifier 386. The attachment identifier may cross reference a group identifier, such as group identifier 366, or a product identifier, such as product identifier 372, or another (different) video 382.
The barcode detection component 402 may capture an image with an imaging sensor that may be integrated with a client device 102 in some aspects. The barcode detection component 402 may then analyze the captured image to identify a barcode included in the image. In various aspects, the barcode may take various forms. For example, as discussed above, in the some aspects, the barcode may be a Q/R code. In some aspects, the barcode may be a snapcode, as discussed below. In some aspects, the barcode may be a UPC barcode.
The product identification component 404 may identify a product based on the barcode detected by the barcode detection component 402. For example, the product identification component 404 may search a database that provides a mapping of barcodes to product information.
The catalog component 406 may identify product characteristics for the product identified by the product identification component. For example, the catalog component may search a product catalog that includes detailed information on products. For example, information such as size, color, and availability for a product may be determined by the catalog component 406.
The import component 408 may provide for importation of data define one or more products that can be displayed and purchased via the integrated ecommerce system 208.
The above referenced functional components of the integrated ecommerce system 208 are configured to communicate with each other (e.g., via a bus, shared memory, a switch, or APIs). Collectively, these components facilitate selective presentation of content to users.
As is understood by skilled artisans in the relevant computer and Internet-related arts, each functional component illustrated in
Furthermore, the various functional components depicted in
In alternative embodiments, the custom graphic 510 may be different from a company logo. The markings 520 are dots that are arranged in a pattern with a particular spacing or positioning readable by a machine. Although the barcode 500 shows the markings 520 as dots, other shapes and marks can be employed (e.g., squares or asymmetric shapes of various geometries). The markings 520 can be arranged in a uniform pattern or a non-uniform pattern. In some instances, the marks can be of different sizes or a uniform size. Additionally, the markings 520 can be in a predetermined arrangement or an arrangement that is dynamically determinable when decoding data from the markings. In some embodiments, the custom graphic 510 and the markings 520 can be surrounded by a bounding shape, such as an outer box 525. Although the outer box 525 of the diagram 500 is shown as a square with rounded corners, the outer box 525 can be in the form of a variety of other shapes with various geometries.
In an example embodiment, the client device 102 captures an image of the poster 604 that includes the optical barcode 606. The barcode detection component 402 receives the image data representing the image from the client device 102. In this example embodiment, the barcode detection component 402 is included in the client device 102 (e.g., an application executing on a smart phone of the user 410), although in other example embodiments, the barcode detection component 402 can reside on a server (e.g., a server of the social messaging system 100) that is communicatively coupled with the client device 102. Callout 616 portrays example image processing performed by the barcode detection module 402 to identify the barcode 606 in the image.
In block 710, an image is received. For example, in some aspects, an image including an optical barcode or a SnapCode may be received in block 710. In some aspects, the image may be received from a client device. In other aspects, process 700 may be performed by a client device 102, and the image may be received from an image sensor of the client device 102.
In block 720 an optical barcode is decoded from the image. In some aspects, the optical barcode may be included in a SnapCode, for example, as shown above with respect to
In block 730, an identifier is determined based on the barcode. For example, in some aspects, a database or other storage may store associations between barcodes and identifiers. As shown in the database 360, the barcode 362 may be associated with an identifier 364 by both being included in a single row of the database 360.
Decision block 732 determines whether any conditions associated with the barcode are met. For example, in some aspects, a barcode may only be used within a certain radius of a geographic location. Thus, if such a condition is linked to this barcode, for example, via the conditions column 391, block 732 may determine a geographic location of the device generating the image received in block 710. The determined geographic location may then be compared to the geographic location specified in the condition. If the geographic location of the device meets criteria specified by the condition, process 700 may move from decision block 732 to block 735. In some aspects, the geographic location of the device may be determined using GPS receiver integrated with the client device 102. In other aspects, an Internet Protocol (IP) address of the device may be used to identify an approximate geographic location of the client device 102. In some other aspects, conditions linked to a barcode may require a current time to be within a predetermined time range in order for the barcode to be active. In these aspects, the condition 391 for the barcode may obtain a current time at the device providing the image of block 710, and determine if the time is within a threshold time of a specified time. If the condition is met, process 700 moves from decision block 732 to block 735. Otherwise, processing may continue via the “No” branch of decision block 732.
In block 735, a type of the identifier is determined. For example, the identifier mapped to the barcode may identify a product, a group of products, a store, or a video in various aspects. As discussed above, the type of the identifier may be determined via predetermined rules. For example, if the identifier is a numerical value, different ranges of values may be utilized for the different types of identifiers. Alternatively, predetermined sequences of alpha or other characters may uniquely identify particular types of identifiers.
In some aspects, the identifier may be identified to be a product identifier. In this case, the identifier 364 decoded in block 720 may be used to search the product database 370 to identify one or more characteristics, such as a product description 378, product options, such as a choice of sizes 380 for the product, or a choice of color 382 for the product.
In some other aspects, the identifier may be identified as a group identifier. In this case, the identifier 364 may be utilized to search the group database 365 in some aspects to identify products included in the group.
In some aspects, the identifier may be identified as a store identifier. In this case, the identifier 364 may be utilized to search the store database 380 to identify products and/or groups of products included in the store.
In some aspects, the identifier may be identified as a video identifier. In this case, the identifier 364 may be utilized to search the video database to identify a video mapped to the barcode.
In block 740, information relating to the product/group/store/or video is displayed in a user interface. For example, if the barcode maps to a product identifier, a title of the product may be displayed, for example, based on the title 376 of the product database 370. In some aspects, an image of the product may be displayed based on the product image 384 stored in the product database 370. The description 378 may also be displayed in some aspects. In some aspects, the size choices 380 and/or color choices 382 may also be displayed in the user interface. In various aspects, block 740 may display any of the exemplary user interfaces shown below with respect to any of
In some aspects, if the barcode maps to a store identifier, a store user interface for the store may be displayed. For example, the store user interface may display information for a variety of products available in the store (e.g. as defined by the store database 380 in some aspects). The store user interface may also display store information, such as vendor name, and contact information.
In some aspects, if the barcode maps to a group identifier, a product group user interface may be displayed. For example, in some aspects, a product group user interface may display products within the group as defined by the group database 365.
In some aspects, if the barcode maps to a video, a video user interface may be displayed. The video user interface may allow a user to play a video, and in some aspects, to display a video attachment. For example, a video user interface may, in some aspects, allow a user to play a video as defined by the video 384, and display attachments defined by the attachment identifier 386. In some aspects, the attachment identifier may identify a product or a store or a group, or another video.
In block 750, input from the user interface is processed. In some aspects, the input may be provided via the user interface displayed in block 740. For example, in some aspects, input selecting one of the size or color may be received. The input may be utilized to transmit a purchase request for the product having the selected size and/or color in some aspects. In some aspects, block 750 may include grouping multiple products into a shopping cart or shopping bag.
In some other aspects, the multiple products may be identified via multiple corresponding barcodes. For example, a user may scan a first barcode, a first product may be identified based on the first barcode, and the first product may be associated with a shopping cart or shopping bag based on user input, for example, input selecting a purchase button or other indication. A second barcode may then be scanned and identified. A second product may be identified based on the second barcode, and added to the shopping cart or bag based on second user input. The two products are now associated via the shopping bag or cart. An ecommerce transaction may then be performed in some aspects based on the contents of the cart or bag. Thus, the ecommerce transaction, in some aspects, may be performed on at least the first and second products based on their association with the shopping cart or bag.
In some aspects, data derived from a transaction performed based on the first and second items may be included in an ephemeral message. For example, as discussed above, the ephemeral message may be deleted after a predetermined amount of time elapses after the message is generated or transmitted. The message may include, for example, one or more of images of the first and second items, descriptions of the first and second items.
Block 755 determines is a transaction has been completed. For example, block 755 may determine if a purchase transaction resulted from the barcode identified in block 730. A purchase resulting from the barcode may be defined as a purchase made in a user interface that is displayed in response to the barcode. The user interface may not be a single user interface, but may be a series of user interfaces within a user interface flow. For example, if the barcode results in a product page being displayed, and the product is added to a shopping cart. The user may then continue shopping, but eventually returns to the cart and makes a purchase, this would be an example of a purchase resulting from the barcode. If the shopping cart is abandoned or otherwise cleared, and the product is later purchased via another means unrelated to the barcode, then this purchase would not be resulting from the barcode.
If the transaction resulting from the barcode is complete, process 700 moves to block 760, which provides post transaction features. For example, as discussed above with respect to post transaction features 398, features may be made available to a user as a reward for purchasing in response to a barcode. These features may include filters, lens, stickers, or any social networking feature. In some aspects, these features may include an ability to friend one or more particular social network users. For example, in some aspects, a store managed by a celebrity may provide for a social network user to friend the celebrity in the social network 116 in response to making a purchase at the store. In some aspects, post transaction features may include offering discounts to users if a number of purchases reaches a predetermined threshold. These discounts may be offered, in some aspects, after every n number of purchases, with n being predetermined. In some aspects, other discounts may be offered to a user after x number of scans of a barcode. For example, some aspects of block 735 above may count a number of barcodes scanned by a user, and compare the number to x (or divide by x and determine a remainder).
In block 2104, input is received requested a database load for a vendor. For example, in some aspects, the input may be received from a user interface that provides for an import file to be identified. The import file may include data defining one or more products. The products may be offered by a particular vendor.
In block 2110, a product import file is opened. For example, in some aspects, a file may be received in block 2104 that includes product records. Each of the product records may be for products offered by a particular entity, such as a vendor. Each of the product records may, in some aspects, include fields corresponding to those of the product database 370. In some aspects, each product record may not include the vendor field 374, but may include a product identifier, a title, a product description, a list of size choices, a list of color choices, and a product image.
In block 2115, barcodes are generated for each product in the product import file. In block 2120, the generated barcodes and vendor information is written to a barcode database. For example, in some aspects, block 2115 populates entries in the barcode database 360. For example, the generated barcodes may be written to the barcode column 362, and/or vendor information may be written to the vendor column 363 for each of the generated barcodes. In some aspects, the vendor information includes a vendor identifier, which uniquely identifies a particular vendor offering products within the product import file. In some aspects, block 2120 may read product identifiers from the product import file and populate the product identifier column 364 of the barcode database based on the product identifiers in the import file. In some aspects, a combination of the vendor information and product identifier 364 may uniquely identify a product across all vendors, with the vendor information functioning to uniquely identify products when two or more products from different vendors have identical product identifiers.
In block 2125, product information is read from the product import file. As discussed above, this product information may include one or more product images, product descriptions, product option specifiers such as a list of possible colors, a list of possible sizes, product prices, product availability information, product titles, or other product information.
In block 2130, the product information is written to a product database, such as product database 370, discussed above with respect to
Software Architecture
As used herein, the term “component” may refer to a device, a physical entity, or logic having boundaries defined by function or subroutine calls, branch points, APIs, and/or other technologies that provide for the partitioning or modularization of particular processing or control functions. Components may be combined via their interfaces with other components to carry out a machine process. A component may be a packaged functional hardware unit designed for use with other components and a part of a program that usually performs a particular function of related functions.
Components may constitute either software components (e.g., code embodied on a machine-readable medium) or hardware components. A “hardware component” is a tangible unit capable of performing certain operations and may be configured or arranged in a certain physical manner. In various exemplary embodiments, one or more computer systems (e.g., a standalone computer system, a client computer system, or a server computer system) or one or more hardware components of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware component that operates to perform certain operations as described herein. A hardware component may also be implemented mechanically, electronically, or any suitable combination thereof. For example, a hardware component may include dedicated circuitry or logic that is permanently configured to perform certain operations.
A hardware component may be a special-purpose processor, such as a Field-Programmable Gate Array (FPGA) or an Application-Specific Integrated Circuit (ASIC). A hardware component may also include programmable logic or circuitry that is temporarily configured by software to perform certain operations. For example, a hardware component may include software executed by a general-purpose processor or other programmable processor. Once configured by such software, hardware components become specific machines (or specific components of a machine) uniquely tailored to perform the configured functions and are no longer general-purpose processors. It will be appreciated that the decision to implement a hardware component mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
A processor may be, or include, any circuit or virtual circuit (a physical circuit emulated by logic executing on an actual processor) that manipulates data values according to control signals (e.g., “commands,” “op codes,” “machine code,” etc.) and that produces corresponding output signals that are applied to operate a machine. A processor may, for example, be a Central Processing Unit (CPU), a Reduced Instruction Set Computing (RISC) processor, a Complex Instruction Set Computing (CISC) processor, a Graphics Processing Unit (GPU), a Digital Signal Processor (DSP), an ASIC, a Radio-Frequency Integrated Circuit (RFIC), or any combination thereof. A processor may further be a multi-core processor having two or more independent processors (sometimes referred to as “cores”) that may execute instructions contemporaneously.
Accordingly, the phrase “hardware component” (or “hardware-implemented component”) should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. Considering embodiments in which hardware components are temporarily configured (e.g., programmed), each of the hardware components need not be configured or instantiated at any one instance in time. For example, where a hardware component comprises a general-purpose processor configured by software to become a special-purpose processor, the general-purpose processor may be configured as respectively different special-purpose processors (e.g., comprising different hardware components) at different times. Software accordingly configures a particular processor or processors, for example, to constitute a particular hardware component at one instance of time and to constitute a different hardware component at a different instance of time. Hardware components can provide information to, and receive information from, other hardware components. Accordingly, the described hardware components may be regarded as being communicatively coupled. Where multiple hardware components exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) between or among two or more of the hardware components. In embodiments in which multiple hardware components are configured or instantiated at different times, communications between or among such hardware components may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware components have access.
For example, one hardware component may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware component may then, at a later time, access the memory device to retrieve and process the stored output. Hardware components may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information). The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented components that operate to perform one or more operations or functions described herein. As used herein, “processor-implemented component” refers to a hardware component implemented using one or more processors. Similarly, the methods described herein may be at least partially processor-implemented, with a particular processor or processors being an example of hardware. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented components.
Moreover, the one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), with these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., an API). The performance of certain of the operations may be distributed among the processors, not only residing within a single machine, but deployed across a number of machines. In some exemplary embodiments, the processors or processor-implemented components may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other exemplary embodiments, the processors or processor-implemented components may be distributed across a number of geographic locations.
In the exemplary architecture of
The operating system 2202 may manage hardware resources and provide common services. The operating system 2202 may include, for example, a kernel 2222, services 2224, and drivers 2226. The kernel 2222 may act as an abstraction layer between the hardware and the other software layers. For example, the kernel 2222 may be responsible for memory management, processor management (e.g., scheduling), component management, networking, security settings, and so on. The services 2224 may provide other common services for the other software layers. The drivers 2226 are responsible for controlling or interfacing with the underlying hardware. For instance, the drivers 2226 include display drivers, camera drivers, Bluetooth® drivers, flash memory drivers, serial communication drivers (e.g., Universal Serial Bus (USB) drivers), Wi-Fi® drivers, audio drivers, power management drivers, and so forth depending on the hardware configuration.
The libraries 2220 provide a common infrastructure that is used by the applications 2216 and/or other components and/or layers. The libraries 2220 provide functionality that allows other software components to perform tasks in an easier fashion than by interfacing directly with the underlying operating system 2202 functionality (e.g., kernel 2222, services 2224, and/or drivers 2226). The libraries 2220 may include system libraries 2244 (e.g., C standard library) that may provide functions such as memory allocation functions, string manipulation functions, mathematical functions, and the like. In addition, the libraries 2220 may include API libraries 2246 such as media libraries (e.g., libraries to support presentation and manipulation of various media formats such as MPEG4, H.264, MP3, AAC, AMR, JPG, and PNG), graphics libraries (e.g., an OpenGL framework that may be used to render 2D and 3D graphic content on a display), database libraries (e.g., SQLite that may provide various relational database functions), web libraries (e.g., WebKit that may provide web browsing functionality), and the like. The libraries 2220 may also include a wide variety of other libraries 2248 to provide many other APIs to the applications 2216 and other software components/modules.
The frameworks/middleware 2218 provide a higher-level common infrastructure that may be used by the applications 2216 and/or other software components/modules. For example, the frameworks/middleware 2218 may provide various graphic user interface (GUI) functions, high-level resource management, high-level location services, and so forth. The frameworks/middleware 2218 may provide a broad spectrum of other APIs that may be utilized by the applications 2216 and/or other software components/modules, some of which may be specific to a particular operating system 2202 or platform.
The applications 2216 include built-in applications 2238 and/or third-party applications 2240. Examples of representative built-in applications 2238 may include, but are not limited to, a contacts application, a browser application, a book reader application, a location application, a media application, a messaging application, and/or a game application. The third-party applications 2240 may include an application developed using the ANDROID™ or IOS™ software development kit (SDK) by an entity other than the vendor of the particular platform, and may be mobile software running on a mobile operating system such as IOS™, ANDROID™, WINDOWS® Phone, or other mobile operating systems. The third-party applications 2240 may invoke the API calls 2208 provided by the mobile operating system (such as the operating system 2202) to facilitate functionality described herein.
The applications 2216 may use built-in operating system functions (e.g., kernel 2222, services 2224, and/or drivers 2226), libraries 2220, and frameworks/middleware 2218 to create user interfaces to interact with users of the system. Alternatively, or additionally, in some systems interactions with a user may occur through a presentation layer, such as the presentation layer 2214. In these systems, the application/component “logic” can be separated from the aspects of the application/component that interact with a user.
Exemplary Machine
The machine 2300 may include processors 2304, memory/storage 2306, and I/O components 2318, which may be configured to communicate with each other such as via a bus 2302. The memory/storage 2306 may include a memory 2314, such as a main memory, or other memory storage, and a storage unit 2316, both accessible to the processors 2304 such as via the bus 2302. The storage unit 2316 and memory 2314 store the instructions 2310 embodying any one or more of the methodologies or functions described herein. The instructions 2310 may also reside, completely or partially, within the memory 2314, within the storage unit 2316, within at least one of the processors 2304 (e.g., within the processor's cache memory), or any suitable combination thereof, during execution thereof by the machine 2300. Accordingly, the memory 2314, the storage unit 2316, and the memory of the processors 2304 are examples of machine-readable media. In some aspect, the processors 410 and processors 2304 may be the same processors.
As used herein, the term “machine-readable medium,” “computer-readable medium,” or the like may refer to any component, device, or other tangible medium able to store instructions and data temporarily or permanently. Examples of such media may include, but are not limited to, random-access memory (RAM), read-only memory (ROM), buffer memory, flash memory, optical media, magnetic media, cache memory, other types of storage (e.g., Electrically Erasable Programmable Read-Only Memory (EEPROM)), and/or any suitable combination thereof. The term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, or associated caches and servers) able to store instructions. The term “machine-readable medium” may also be taken to include any medium, or combination of multiple media, that is capable of storing instructions (e.g., code) for execution by a machine, such that the instructions, when executed by one or more processors of the machine, cause the machine to perform any one or more of the methodologies described herein. Accordingly, a “machine-readable medium” may refer to a single storage apparatus or device, as well as “cloud-based” storage systems or storage networks that include multiple storage apparatus or devices. The term “machine-readable medium” excludes transitory signals per se.
The I/O components 2318 may include a wide variety of components to provide a user interface for receiving input, providing output, producing output, transmitting information, exchanging information, capturing measurements, and so on. The specific I/O components 2318 that are included in the user interface of a particular machine 2300 will depend on the type of machine. For example, portable machines such as mobile phones will likely include a touch input device or other such input mechanisms, while a headless server machine will likely not include such a touch input device. It will be appreciated that the I/O components 2318 may include many other components that are not shown in
In further exemplary embodiments, the I/O components 2318 may include biometric components 2330, motion components 2334, environment components 2336, or position components 2338, as well as a wide array of other components. For example, the biometric components 2330 may include components to detect expressions (e.g., hand expressions, facial expressions, vocal expressions, body gestures, or eye tracking), measure bio signals (e.g., blood pressure, heart rate, body temperature, perspiration, or brain waves), identify a person (e.g., voice identification, retinal identification, facial identification, fingerprint identification, or electroencephalogram-based identification), and the like. The motion components 2334 may include acceleration sensor components (e.g., accelerometer), gravitation sensor components, rotation sensor components (e.g., gyroscope), and so forth. The environment components 2336 may include, for example, illumination sensor components (e.g., photometer), temperature sensor components (e.g., one or more thermometers that detect ambient temperature), humidity sensor components, pressure sensor components (e.g., barometer), acoustic sensor components (e.g., one or more microphones that detect background noise), proximity sensor components (e.g., infrared sensors that detect nearby objects), gas sensors (e.g., gas detection sensors to detect concentrations of hazardous gases for safety or to measure pollutants in the atmosphere), or other components that may provide indications, measurements, or signals corresponding to a surrounding physical environment. The position components 2338 may include location sensor components (e.g., a GPS receiver component), altitude sensor components (e.g., altimeters or barometers that detect air pressure from which altitude may be derived), orientation sensor components (e.g., magnetometers), and the like.
Communication may be implemented using a wide variety of technologies. The I/O components 2318 may include communication components 2340 operable to couple the machine 2300 to a network 2332 or devices 2320 via a coupling 2324 and a coupling 2322 respectively. For example, the communication components 2340 may include a network interface component or other suitable device to interface with the network 2332. In further examples, the communication components 2340 may include wired communication components, wireless communication components, cellular communication components, Near Field Communication (NFC) components, Bluetooth® components (e.g., Bluetooth® Low Energy), Wi-Fi® components, and other communication components to provide communication via other modalities. The devices 2320 may be another machine or any of a wide variety of peripheral devices (e.g., a peripheral device coupled via a USB).
Moreover, the communication components 2340 may detect identifiers or include components operable to detect identifiers. For example, the communication components 2340 may include Radio Frequency Identification (RFID) tag reader components, NFC smart tag detection components, optical reader components (e.g., an optical sensor to detect one-dimensional bar codes such as Universal Product Code (UPC) bar code, multi-dimensional bar codes such as Quick Response (QR) code, Aztec code, Data Matrix, Dataglyph, MaxiCode, PDF4111, Ultra Code, UCC RSS-2D bar code, and other optical codes), or acoustic detection components (e.g., microphones to identify tagged audio signals). In addition, a variety of information may be derived via the communication components 2340, such as location via Internet Protocol (IP) geo-location, location via Wi-Fi® signal triangulation, location via detecting an NFC beacon signal that may indicate a particular location, and so forth.
Where a phrase similar to “at least one of A, B, or C,” “at least one of A, B, and C,” “one or more of A, B, or C,” or “one or more of A, B, and C” is used, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or any combination of the elements A, B, and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C may be present.
Changes and modifications may be made to the disclosed embodiments without departing from the scope of the present disclosure. These and other changes or modifications are intended to be included within the scope of the present disclosure, as expressed in the following claims.
A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever. The following notice applies to the software and data as described below and in the drawings that form a part of this document: Copyright 2017, SNAPCHAT, INC., All Rights Reserved.
Number | Name | Date | Kind |
---|---|---|---|
5754939 | Herz et al. | May 1998 | A |
6038295 | Mattes | Mar 2000 | A |
6158044 | Tibbetts | Dec 2000 | A |
6167435 | Druckenmiller et al. | Dec 2000 | A |
6205432 | Gabbard et al. | Mar 2001 | B1 |
6310694 | Okimoto et al. | Oct 2001 | B1 |
6484196 | Maurille | Nov 2002 | B1 |
6487586 | Ogilvie et al. | Nov 2002 | B2 |
6665531 | Soderbacka et al. | Dec 2003 | B1 |
6701347 | Ogilvie | Mar 2004 | B1 |
6711608 | Ogilvie | Mar 2004 | B1 |
6757713 | Ogilvie et al. | Jun 2004 | B1 |
6980909 | Root et al. | Dec 2005 | B2 |
7124164 | Chemtob | Oct 2006 | B1 |
7149893 | Leonard et al. | Dec 2006 | B1 |
7173651 | Knowles | Feb 2007 | B1 |
7243163 | Friend et al. | Jul 2007 | B1 |
7278168 | Chaudhury et al. | Oct 2007 | B1 |
7356564 | Hartselle et al. | Apr 2008 | B2 |
7376715 | Cunningham et al. | May 2008 | B2 |
7411493 | Smith | Aug 2008 | B2 |
7478402 | Christensen et al. | Jan 2009 | B2 |
7496347 | Puranik | Feb 2009 | B2 |
7519670 | Hagale et al. | Apr 2009 | B2 |
7535890 | Rojas | May 2009 | B2 |
7607096 | Oreizy et al. | Oct 2009 | B2 |
7703140 | Nath et al. | Apr 2010 | B2 |
7912896 | Wolovitz et al. | Mar 2011 | B2 |
8131597 | Hudetz | Mar 2012 | B2 |
8170957 | Richard | May 2012 | B2 |
8199747 | Rojas et al. | Jun 2012 | B2 |
8214443 | Hamburg | Jul 2012 | B2 |
8238947 | Lottin et al. | Aug 2012 | B2 |
8244593 | Klinger et al. | Aug 2012 | B2 |
8312097 | Siegel et al. | Nov 2012 | B1 |
8332475 | Rosen et al. | Dec 2012 | B2 |
8570907 | Garcia, Jr. et al. | Oct 2013 | B2 |
8718333 | Wolf et al. | May 2014 | B2 |
8724622 | Rojas | May 2014 | B2 |
8745132 | Obradovich | Jun 2014 | B2 |
8874677 | Rosen et al. | Oct 2014 | B2 |
8909679 | Root et al. | Dec 2014 | B2 |
8909714 | Agarwal et al. | Dec 2014 | B2 |
8909725 | Sehn | Dec 2014 | B1 |
8914752 | Spiegel | Dec 2014 | B1 |
8995433 | Rojas | Mar 2015 | B2 |
9040574 | Wang et al. | May 2015 | B2 |
9055416 | Rosen et al. | Jun 2015 | B2 |
9083770 | Drose et al. | Jul 2015 | B1 |
9094137 | Sehn et al. | Jul 2015 | B1 |
9100806 | Rosen et al. | Aug 2015 | B2 |
9100807 | Rosen et al. | Aug 2015 | B2 |
9111164 | Anderton | Aug 2015 | B1 |
9113301 | Spiegel et al. | Aug 2015 | B1 |
9148424 | Yang | Sep 2015 | B1 |
9191776 | Root et al. | Nov 2015 | B2 |
9204252 | Root | Dec 2015 | B2 |
9225805 | Kujawa et al. | Dec 2015 | B2 |
9225897 | Sehn et al. | Dec 2015 | B1 |
9237202 | Sehn | Jan 2016 | B1 |
9264463 | Rubinstein et al. | Feb 2016 | B2 |
9276886 | Samaranayake | Mar 2016 | B1 |
9294425 | Son | Mar 2016 | B1 |
9385983 | Sehn | Jul 2016 | B1 |
9396354 | Murphy et al. | Jul 2016 | B1 |
9407712 | Sehn | Aug 2016 | B1 |
9407816 | Sehn | Aug 2016 | B1 |
9430783 | Sehn | Aug 2016 | B1 |
9443227 | Evans et al. | Sep 2016 | B2 |
9482882 | Hanover et al. | Nov 2016 | B1 |
9482883 | Meisenholder | Nov 2016 | B1 |
9489661 | Evans et al. | Nov 2016 | B2 |
9491134 | Rosen et al. | Nov 2016 | B2 |
9532171 | Allen et al. | Dec 2016 | B2 |
9537811 | Allen et al. | Jan 2017 | B2 |
9560006 | Prado et al. | Jan 2017 | B2 |
9628950 | Noeth et al. | Apr 2017 | B1 |
9652896 | Jurgenson et al. | May 2017 | B1 |
9659244 | Anderton et al. | May 2017 | B2 |
9693191 | Sehn | Jun 2017 | B2 |
9705831 | Spiegel | Jul 2017 | B2 |
9742713 | Spiegel et al. | Aug 2017 | B2 |
9785796 | Murphy et al. | Oct 2017 | B1 |
9825898 | Sehn | Nov 2017 | B2 |
9854219 | Sehn | Dec 2017 | B2 |
9961520 | Brooks et al. | May 2018 | B2 |
20020047868 | Miyazawa | Apr 2002 | A1 |
20020073046 | David | Jun 2002 | A1 |
20020144154 | Tomkow | Oct 2002 | A1 |
20030052925 | Daimon et al. | Mar 2003 | A1 |
20030126215 | Udell | Jul 2003 | A1 |
20030217106 | Adar | Nov 2003 | A1 |
20040203959 | Coombes | Oct 2004 | A1 |
20050097176 | Schatz et al. | May 2005 | A1 |
20050198128 | Anderson | Sep 2005 | A1 |
20050223066 | Buchheit et al. | Oct 2005 | A1 |
20060242239 | Morishima et al. | Oct 2006 | A1 |
20060270419 | Crowley et al. | Nov 2006 | A1 |
20070038715 | Collins et al. | Feb 2007 | A1 |
20070064899 | Boss et al. | Mar 2007 | A1 |
20070073823 | Cohen et al. | Mar 2007 | A1 |
20070214216 | Carrer et al. | Sep 2007 | A1 |
20070233801 | Eren et al. | Oct 2007 | A1 |
20080055269 | Lemay et al. | Mar 2008 | A1 |
20080120409 | Sun et al. | May 2008 | A1 |
20080207176 | Brackbill et al. | Aug 2008 | A1 |
20080270938 | Carlson | Oct 2008 | A1 |
20080306826 | Kramer et al. | Dec 2008 | A1 |
20080313346 | Kujawa et al. | Dec 2008 | A1 |
20090042588 | Lottin et al. | Feb 2009 | A1 |
20090132453 | Hangartner et al. | May 2009 | A1 |
20100082427 | Burgener et al. | Apr 2010 | A1 |
20100131880 | Lee et al. | May 2010 | A1 |
20100185665 | Horn et al. | Jul 2010 | A1 |
20100306669 | Della Pasqua | Dec 2010 | A1 |
20110099507 | Nesladek et al. | Apr 2011 | A1 |
20110145564 | Moshir et al. | Jun 2011 | A1 |
20110202598 | Evans et al. | Aug 2011 | A1 |
20110213845 | Logan et al. | Sep 2011 | A1 |
20110286586 | Saylor et al. | Nov 2011 | A1 |
20110320373 | Lee et al. | Dec 2011 | A1 |
20120028659 | Whitney et al. | Feb 2012 | A1 |
20120173426 | Foster | Jul 2012 | A1 |
20120184248 | Speede | Jul 2012 | A1 |
20120209921 | Adafin et al. | Aug 2012 | A1 |
20120209924 | Evans et al. | Aug 2012 | A1 |
20120254325 | Majeti et al. | Oct 2012 | A1 |
20120278692 | Shi | Nov 2012 | A1 |
20120304080 | Wormald et al. | Nov 2012 | A1 |
20130071093 | Hanks et al. | Mar 2013 | A1 |
20130194301 | Robbins et al. | Aug 2013 | A1 |
20130290443 | Collins et al. | Oct 2013 | A1 |
20140032682 | Prado et al. | Jan 2014 | A1 |
20140122787 | Shalvi et al. | May 2014 | A1 |
20140201527 | Krivorot | Jul 2014 | A1 |
20140282096 | Rubinstein et al. | Sep 2014 | A1 |
20140325383 | Brown et al. | Oct 2014 | A1 |
20140359024 | Spiegel | Dec 2014 | A1 |
20140359032 | Spiegel et al. | Dec 2014 | A1 |
20150199082 | Scholler et al. | Jul 2015 | A1 |
20150227602 | Ramu et al. | Aug 2015 | A1 |
20160085773 | Chang et al. | Mar 2016 | A1 |
20160085863 | Allen et al. | Mar 2016 | A1 |
20160086670 | Gross et al. | Mar 2016 | A1 |
20160099901 | Allen et al. | Apr 2016 | A1 |
20160117656 | Xu | Apr 2016 | A1 |
20160180887 | Sehn | Jun 2016 | A1 |
20160277419 | Allen et al. | Sep 2016 | A1 |
20160321708 | Sehn | Nov 2016 | A1 |
20160359957 | Laliberte | Dec 2016 | A1 |
20160359987 | Laliberte | Dec 2016 | A1 |
20170032505 | Levieux | Feb 2017 | A1 |
20170161382 | Ouimet et al. | Jun 2017 | A1 |
20170263029 | Yan et al. | Sep 2017 | A1 |
20170287006 | Azmoodeh et al. | Oct 2017 | A1 |
20170295250 | Samaranayake et al. | Oct 2017 | A1 |
20170374003 | Allen et al. | Dec 2017 | A1 |
20170374508 | Davis et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
2887596 | Jul 2015 | CA |
2012000107 | Jan 2012 | WO |
2013008251 | Jan 2013 | WO |
2014194262 | Dec 2014 | WO |
2015192026 | Dec 2015 | WO |
2016054562 | Apr 2016 | WO |
2016065131 | Apr 2016 | WO |
2016112299 | Jul 2016 | WO |
2016179166 | Nov 2016 | WO |
2016179235 | Nov 2016 | WO |
2017176739 | Oct 2017 | WO |
2017176992 | Oct 2017 | WO |
2018005644 | Jan 2018 | WO |
Entry |
---|
Why QR Codes are on the Rise: The Economist Explains. Nov. 2, 2017 (Nov. 2, 2017). The Economist (Online) the Economist Newspaper NA, Inc. (Year: 2017). |
Castelluccia, Claude, “EphPub: Toward robust Ephemeral Publishing”, 19th IEEE International Conference on Network Protocols (ICNP), (Oct. 17, 2011), 18 pgs. |
Fajman, “An Extensible Message Format for Message Disposition Notifications”, Request for Comments: 2298, National Institutes of Health, (Mar. 1998), 28 pgs. |
Leyden, John, “This SMS will self-destruct in 40 seconds”, URL: http: www.theregister.co.uk 2005 12 12 stealthtext , (Dec. 12, 2005), 1 pg. |
Melanson, Mike, “This text message will self destruct in 60 seconds”, URL: http: readwrite.com 2011 02 11 this_text_message_will_self destruct_in_60_seconds, (Feb. 18, 2015), 4 pgs. |
Sawers, Paul, “Snapchat for iOS Lets You Send Photos to Friends and Set How long They're Visible for”, URL: https: thenextweb.com apps 2012 05 07 snapchat-for-ios-lets-you-send-photos-to-friends-and-set-how-long-theyre-visible-for , (May 7, 2012), 5 pgs. |
Shein, Esther, “Ephemeral Data”, Communications of the ACM, vol. 56, No. 9, (Sep. 2013), 20-22. |
Vaas, Lisa, “StealthText, Should You Choose to Accept It”, URL: http: www.eweek.com print c a MessagingandCollaboration StealthTextShouldYouChoosetoAcceptIt, (Dec. 13, 2005), 2 pgs. |