METHODS, SYSTEMS, AND COMPOSITIONS FOR LEGUME-BASED PRODUCTION OF THERAPEUTIC PROTEINS AND THERAPEUTIC MEDICAL MATERIALS

Information

  • Patent Application
  • 20200115718
  • Publication Number
    20200115718
  • Date Filed
    June 18, 2018
    6 years ago
  • Date Published
    April 16, 2020
    4 years ago
Abstract
Methods and compositions for producing proteins such as growth factors, antibodies, or other therapeutic proteins in legumes. The present invention also features medical materials comprising legume material from a transgenic legume and a recombinant protein produced by the transgenic legume. The material may be a bandage, gauze, an injectable composition, or the like. The material may further comprise other elements such as non-active plant elements, synthetic elements, or medications. Soybean plants may be non-allergenic soybean plants.
Description
REFERENCE TO SEQUENCE LISTING

Applicant asserts that the information recorded in the form of an Annex C/ST.25 text file submitted under Rule 13ter.1(a), entitled UNIA 17.30_PCT_Sequence_Listing_ST25.txt, is identical to that forming part of the international application as filed. The content of the sequence listing is incorporated herein by reference in its entirety.


FIELD OF THE INVENTION

The present invention relates to protein production in legumes, more particularly to production of various proteins such as therapeutic proteins in legumes, and further to production of legume-based materials and therapeutic constructs comprising therapeutic proteins.


BACKGROUND OF THE INVENTION

Protein therapeutics have emerged as increasingly vital therapy for a wide range of conditions. For example, in diabetes, diabetic foot ulceration results in both acute and chronic wounds that are difficult to heal without growth factor administration, often resulting in amputation. In children, necrotizing enterocolitis often leads to malabsorption and requires growth factor administration for repairing damaged intestinal epithelia. While growth factors have increasingly been brought forward as biological therapeutic agents, their production, processing, and delivery to the recipient (e.g., human, animal, etc.), remains complex, expensive, and cumbersome.


The present invention features methods, systems, and compositions for producing proteins (e.g., therapeutic proteins) in legumes. Legumes may include but are not limited to alfalfa, clover, mesquite, tamarind, carob, peas, beans, peanuts or other legume nuts, lentils, and soybeans. The proteins produced by the legumes may be used for delivery in animals such as humans or other species. As a non-limiting example, the present invention features transgenic legumes expressing a gene to produce a growth factor, e.g., EGF, FGF, PDGF, VEGF, IGF, HSF, TGF-alpha, TGF-beta, etc. or bioregulatory or therapeutic proteins such as insulin, fibronectin or HIF-1 alpha.


Methods of production of said proteins (e.g., therapeutic proteins) may feature gene splicing into legumes. While the present invention discloses EGF production in soybeans, the specific genetic manipulative methodology described in the present invention is broadly applicable to a range of proteins (e.g., therapeutic proteins, e.g., growth factors) and a range of legumes.


The present invention also features methods to remove at least a portion of mutagenic and/or inflammatory elements of the soybean plant, e.g., selectively clone out or reduce expression of specific host (plant) proteins or factors that may be inflammatory when applied as a concomitant unprocessed therapeutic to an individual. As an example, some proteins expressed in soy ultimately may be inflammatory and/or allergenic to a human. Without wishing to limit the present invention to any theory or mechanism, it is believed that removing mutagenic and/or inflammatory elements of the soybean plant, e.g., when applied to humans or animals, will not reduce efficacy of the therapeutic protein.


The present invention also features methods for delivery of a protein (e.g., growth factor) from the plant (legume) source. Conventional methodologies may take a spliced in, transduced and translated human protein therapeutic raised in a cross-kingdom source, (e.g., a plant), and go through a range of processing steps to extract the human therapeutic. Without wishing to limit the present invention to any theory or mechanism, a potential downside or limitation of this type of approach may include a reduction in yield, a risk of protein denaturation, storage and stability issues, and/or an ultimate reduction in efficacy and possible safety. The present invention features a range of methods and products for delivery of the protein (e.g., therapeutic protein) using the plant substance as a delivery vehicle. The entire raw plant may be processed, or any other part or combination of parts. Methods of fabrication of raw materials include but are not limited to grinding, particulating, pulverizing, morselating and other alteration of mass means. In addition, the non-protein yielding elements of the plant may similarly be processed by the above techniques, stripped, sub-fractionated, or otherwise extracted to yield materials with a range of material properties and stiffness.


The present invention also features a range of protein therapeutic products that may be fabricated from these base materials into novel configurations with novel properties. As an example, these raw base materials may then be fabricated via a range of processing/manufacturing techniques including film formation—either alone or with intermixed adjuvants and binders including natural and synthetic gelation materials, e.g., PEG, PEG-lactide, Plutronics, Tetronics, Carbopol, Eudragits, Gelatins (see, for example, U.S. Pat. No. 6,290,729, the disclosure of which is incorporated herein by reference in its entirety), spray drying, drop casting, spin casting, extrusion, electrospinning, low-temperature thermoforming, micro- and nano-particle or micro- and nano-capsule formation and/or other related formation techniques. These materials may then be processed and admixed with other constructive elements to form specific delivery products that may be utilized for topical, dermal or enteral use. As an example of a novel construct, soybean bulk plant shaft material in combination with raw soy bean containing EGF has been micro pulverized, formed into a slurry and electrospun to yield a matte bandage and gauze, which may be applied directly to a wound such as a diabetic foot ulcer, a post-surgical incision site, or a non-healing sternal wound or mediastinitis site. Similarly, constructed products may be utilized in the animal domain, e.g., in significant wounds to a racehorse wherein non-healing wounds may result in animal euthanasia. Another example is the fabrication of an endoluminal stent-like construct that may be applied by balloon catheter endoluminally to the G.I. tract for local ulceration, either in the stomach or anywhere from mouth to anus. Novelty in the construct includes adding in non-active plant elements or synthetic elements that may be hygroscopic, leading to reduction of edema, removing of fluid from weeping wounds, and otherwise drying up a supportive wound bed. In the non-therapeutic elements, indicators markers and sensors may also be admixed to provide active probing and feedback information as to wound status and progression. In another formulation, non-allergenic soy may be admixed with binders as above and locally injected in the more superficial layers of skin to yield depots for local release of the therapeutic human agent. Also admixed in these constructs both topical and intradermal or enteral may be a range of synergistic medications that may be anti-inflammatory, anti-infective or anesthetic for pain reduction.


The present invention shows the feasibility of using plants as a biofactory to produce therapeutic agents for a delivery platform.


Without wishing to limit the present invention to any theory or mechanism, it is believed that there are a number of ways to eliminate inflammatory proteins, e.g., using genetic engineering approach, selective breeding using mutants from collections, conventional gene silencing via suppression, CRISPR mediated mutation, natural spontaneous mutation (e.g., used for a triple null soybean), etc. Using such a platform, the expression of a variety of different proteins including but not limited to EGF could be engineered.


See references Hemendrasinh J Rathod and Dhruti P Mehta. “A Review on Pharmaceutical Gel”. International Journal of Pharma and Drug Development (2016): 25-36; and Ganapathy et al., J Pharm Bioallied Sci. 2012 August; 4(Suppl 2): S334-S337.


SUMMARY OF THE INVENTION

The present invention features methods, systems, and compositions for plant-based production of proteins (e.g., therapeutic proteins) and therapeutic materials. For example, the present invention features transgenic legumes expressing a protein, the protein being an animal protein (e.g., a human protein, a human growth factor, etc.). In some embodiments, the protein is a therapeutic protein. In some embodiments, the transgenic legume is a soybean, a lentil, a bean, a pea, or a peanut. In some embodiments, the protein is a growth factor. In some embodiments, the protein is an antibody. In some embodiments, the animal protein is a human protein. In some embodiments, the transgenic legume is a non-allergenic legume. In some embodiments, the transgenic legume is a non-allergenic soybean.


The present invention also features compositions comprising the animal protein according the present invention. In some embodiments, the composition comprises soymilk.


The present invention also features methods of harvesting a recombinant protein expressed in a transgenic legume. In some embodiments, the method comprises processing an entire plant of the transgenic legume. In some embodiments, processing the entire plant comprises grinding. In some embodiments, processing the entire plant comprises micro pulverizing.


The present invention also features medical materials comprising an animal protein derived from a transgenic legume according to the present invention and at least a portion of the transgenic legume that produced said protein. In some embodiments, the material is for epidermal or dermal application. In some embodiments, the material comprises gauze or a bandage. In some embodiments, the material is constructed by spin-coating, drop casting, spin casting, extrusion, electrospinning, film formation, spraying, spray drying, drop casting, spin casting, extrusion, electrospinning, low-temperature thermoforming, micro-particle formation, nano-particle formation, micro-capsule formation, nano-capsule formation, or a combination thereof. In some embodiments, the medical material reduces inflammation. In some embodiments, the material further comprises a non-active plant element. In some embodiments, the material further comprises a synthetic element. In some embodiments, the element comprises an excipient or adjuvant. In some embodiments, the excipient or adjuvant comprises a colloidal binder, a gelatin, polyethylene glycol (PEG), PEG-lactide, Plutronics, Tetronics, Carbopol, Eudragits, or a combination thereof. In some embodiments, the element is hygroscopic. In some embodiments, the element is hydrophobic. In some embodiments the construct contains a hydrogel, aerogel or organogel element or material or a combination thereof or other gel or gellant materials similar to those discussed in Rathod and Mehta 2016. In some embodiments, the material further comprises a marker or sensor or means of detection. In some embodiments, the sensor is for providing feedback information as to status of the topical condition. In some embodiments, the sensor or marker is for pH detection or indication. In some embodiments, the sensor or marker is for detecting infection. In some embodiments, the material further comprises a medication. In some embodiments, the medication is an anti-inflammatory medication, an anti-bacterial medication, an anti-microbial medication, an antifungal medication, an anti-infective medication, an anesthetic medication, or a combination thereof. In some embodiments, the material further comprises a perfumant. In some embodiments, the material further comprises a compound or compounds for reducing odor. In some embodiments, the material further comprises non-allergenic soy. In some embodiments the material may contain and/or deliver a cell or cell product. As an example, the material may deliver live, dead or attenuated epithelial cells, platelets or white blood cells; in some embodiments the material may contain or deliver a cell product or constituent such as platelet-rich plasma or extract; in some embodiments the material may contain or deliver a viral vector, gene, plasmid, episome or bacteriophage, siRNA, aptamer, and the like genetic material.


The present invention also features a method of treating a topical condition, wherein the method may comprise applying to the topical condition a medical material according to the present invention.


The present invention also features methods and compositions for producing epidermal growth factor (EGF) (e.g., human EGF) in soybean seeds. For example, the present invention also features a method of producing human epidermal growth factor (hEGF). The method may comprise expressing a protein encoded by SEQ ID NO: 1 (a codon-optimized gene for EGF expression) in a transgenic soybean comprising a transgene according to SEQ ID NO: 1 (see FIG. 7 for SEQ ID NO: 1). In some embodiments, the method further comprises purifying said hEGF and/or reconstituting said hEGF in a solution. In some embodiments, the solution comprises soymilk.


As such, the present invention also features a nucleic acid according to SEQ ID NO: 1. The present invention also features a protein encoded by a nucleic acid according to SEQ ID NO: 1. The present invention also features a transgenic soybean expressing SEQ ID NO: 1. The present invention also features a soymilk composition comprising soybean-derived human epidermal growth factor (hEGF).


As previously discussed, the methods of the present invention are such that one does not necessarily have to process the soybean or other legume to extract the protein, which could reduce yield or risk damaging or denaturing the protein. Methods of the present invention may feature grinding and optionally processing the entire plant (e.g., not necessarily just the bean) to create a range of constructs including spun gauze, bandages injectable intradermal fields of local depots. In addition, this may be used in other open lumens and including the sinus for sinusitis, the mouth for oral ulcers and anywhere in the enteral tract. This may be formed into an enteral stent for local ulceration, and/or local delivery of other protein therapeutics. The present invention also features antibody production. Antibodies may be used for a range of indications including but not limited to inflammatory bowel disease.


Any feature or combination of features described herein are included within the scope of the present invention provided that the features included in any such combination are not mutually inconsistent as will be apparent from the context, this specification, and the knowledge of one of ordinary skill in the art. Additional advantages and aspects of the present invention are apparent in the following detailed description and claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention will become apparent from a consideration of the following detailed description presented in connection with the accompanying drawings in which:



FIG. 1A shows a schematic diagram of seed-specific gene expression cassettes, e.g., to direct ShEGF. For example, synthetically produced codon-optimized hEGF gene with an ER signal added to the amino-terminus driven by glycinin regulatory elements was transformed via biolistics into somatic soybean embryos. GLY refers to the glycinin promoter. LEA refers to late embryonic abundant protein promoter. The presence of ER signal peptide/retention tag may enhance the yield of EGF accumulated in the soybean seeds. FIG. 1B shows ELISA quantification for both the detection and amount of hEGF in total soluble dry seed protein extract from 7 ShEGF transgenic soybean lines. Independent homozygous lines, 1, 3, 4, 5, 6, 11, 13 were detected to contain hEGF up to 129 μg EGF/g seed compared to undetectable amounts in non-transgenic control (Wt). Values shown are mean +/− standard error (n=3).



FIG. 2 shows an analysis of total soluble protein by one-dimensional gel electrophoresis of hEGF expressing transgenic soybean seeds. Proteins from 3 independent homozygous EGF transgenic soybean lines (3, 4, 5) were extracted and compared to seed extracts from non-transgenic (Wt) and commercially available hEGF standard (STD+). M marker, kDa kilobases.



FIG. 3 shows an immunoblot of enriched small molecular weight soluble protein extracted from dry transgenic ShEGF soybean seeds. Protein extracts from two independent homozygous lines (5 and 4) are compared to both non-transgenic (Wt) and commercially available EGF standard (STD +). EGF was detected using an EGF specific antibody and indirect secondary antibody coupled to alkaline phosphatase. M marker; kDa kilodalton.



FIG. 4 shows mass spectroscopy data to detect the presence of EGF peptides in transgenic EGF soybean seeds. (A) Coverage of peptides detected in both commercially available EGF (green) and from transgenic soybean seeds (orange) using both trypsin (solid) and non-trypsin peptides (hatched). (B) Raw spectra data depicting the amino acid sequence CNCVVGYUGER detected from a low molecular weight enriched soluble dry seed protein extract from EGF transgenic soybean.



FIG. 5 shows soybean produced EGF displayed comparable bioactivity to commercially available EGF. Panel A. Soybean produced hEGF induces a rapid phosphorylation of Hela cell EGFR. Serum free media (SF) and SF media with soymilk alone does not induce EGFR phosphorylation and degradation. Soymilk from seeds producing ShEGF added at different concentrations (0.1, 0.05, 0.025 μg/ml) induced concentration-dependent EGFR degradation comparable to the effect of rhEGF. Serum free media and serum free media with non-transgenic soybean soymilk (negative controls) showed no effect on inducing pEGFR. In contrast soymilk from ShEGF soybeans given at different concentrations (0.1, 0.05, 0.025 μg/ml) induced pEGFR comparable to control rhEGF. pAKT indicates the functional activation of EGFR. Lamin B1 was used as a loading control. Panel B. Exogenous commercial rhEGF and ShEGF induces an internalization and degradation of EGFR in Hela cells shown as a decrease in abundance assayed by immunoblot. The results shown demonstrate that soymilk alone has no intrinsic bioactivity with respect to EGFR abundance. The rhEGF is not degraded in soymilk over 24 hours having the same bioactivity as control recombinant rhEGF. -Ctrl-SF media alone. Soy EGF and rhEGF are at 0.1 μg/ml. Lamin B1 was used as a loading control. Panel C. Shown is an immunohistochemical assay of Hela cells showing that ShEGF induces internalization of the EGFR comparable to that from control rhEGF. In C, the cells were first treated with soy/EGF or human EGF for 6 hours, fixed and then immunostained with EGFR antibody overnight. EGFR shows red staining while nucleus was stained by DAPI and shows blue staining.



FIG. 6 shows differences (insignificant differences) between non-transgenic soybean seeds and the ShEGF transgenic seeds.



FIG. 7 shows the human EGF DNA sequence (SEQ ID NO: 23) and the optimized EGF DNA sequence for soybean transformation (SEQ ID NO: 1).



FIG. 8A shows an expression cassette targeted to the ER and having the 5′ ER sequence (pink) (SEQ ID NO: 24). The blue sequence shown is the human EGF protein (SEQ ID NO: 12)



FIG. 8B shows a construct with the ER sequence (SEQ ID NO: 24, pink), the human EGF protein sequence (SEQ ID NO: 12, blue), and the KHDEL sequence (pink, SEQ ID NO: 25)



FIG. 8C shows a nucleotide sequence for an expression cassette. Underlined is the NOT1 restriction site for cloning purposes. The red sequence is the ER directed 5′ sequence. The green sequence is the codon optimized sequence for EGF in soybean. Yellow refers to the ER retention sequence (encodes KDEL). This was not on all constructs.



FIG. 9 shows various constructs of the present invention. (A) Continuous or microporous construct; (B) Macroporous construct; (C) Vacuous, discontinuous or holey construct; (D) Fibrous or filamentous construct; (E) Construct with intra or subdermal penetration; (F) Constructs with intra or subdermal penetration



FIG. 10 shows applications of compositions of the present invention. (A) Therapeutic applied to wound topically; (B) Therapeutic applied to wound sub- or intra-dermally; (C) Combination of topical and sub and intra-dermal application.





DETAILED DESCRIPTION OF THE INVENTION

Referring now to FIG. 1-10, the present invention features methods and compositions for producing epidermal growth factor (EGF) (e.g., human EGF) in soybean seeds. For example, the present invention features methods for producing EGF in soybeans seeds, as well as genes for introducing into soybeans to produce EGF, transgenic soybeans engineered to produce EGF, and soymilk compositions comprising soybean-derived EGF.


The present invention shows the accumulation of human EGF (hEGF) in genetically engineered soybean seeds. Further, the present invention shows that the recombinant EGF is indistinguishable from authentic human EGF and is bioactive at stimulating EGF receptor (EGFR) activity. Briefly, the present invention utilizes transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N terminal. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7+/−3.1 to 129.0+/−36.7 ug EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicate that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF.


To produce hEGF in soybean, a strong soybean seed-specific promoter and terminator was used to regulate gene expression of a synthetic soybean codon optimized hEGF (ShEGF) gene that included an N-terminal 60 nucleotide ER-signal sequence (FIG. 1A). In the engineering strategy for the hEGF expression in soybean, the components of the prepro portions of hEGF were eliminated in preference to produce only the final recombinant hEGF product. To facilitate the co-translational transfer of the EGF into the ER lumen for disulfide bond formation a plant signal sequence was added so that the hEGF synthesized would be as a pre-hEGF. The Gly::ShEGF construct was used for biolistic transformation of soybean somatic embryo cells as outlined in Schmidt M A, Herman E M, Plant Biotechnol J. 2008; 6: 832-842; Schmidt M A, Herman E M, Mol Plant. 2008; 1: 910-924; Schmidt M A, Parrott W A, Hildebrand D F, Berg R H, Cooksey A, Pendarvis K, et al., Plant Biotechnol J. 2015; 13: 590-600; and Schmidt M A, Tucker D M, Cahoon E B, Parrott W A. Plant Cell Rep. 2004; 24: 383-391. Embryos were selected in liquid culture by hygromycin B and individual regenerated lines were separated, propagated, and induced to form cotyledonary embryos. The cotyledonary embryos were evaluated for hEGF production using EGF-specific ELISA that indicated a variation of heterologous protein production. The most promising EGF expressing lines were moved forward for regeneration by desiccating and subsequent germination. The initial T0 generation EGF transgenic plants were grown in the greenhouse and further selected by genomic PCR for an additional 2-3 generations. Additionally, each generation of seeds produced by the selected lines were assayed for hEGF content by ELISA. The hEGF content of each line in seeds representative of the homozygous population is shown in FIG. 1B. The lines varied in hEGF content but seeds within each line had a narrow range of hEGF accumulation. The EGF transgenic Line 5 produced in excess of 100 μg hEGF per gm dry seed weight, a level calculated to be much in excess of potential therapeutic requirements. By comparison, yeast stains have been used as an expression system for both human EGF and mouse EGF with the highest levels produced being from a multicopy insert Pichia pastoris clone secreting 49 μg EGF/ml. In both the mouse and human EGF yeast production systems, truncated versions of the EGF were detected.


The hEGF soybeans and non-transgenic soybeans were evaluated to determine the biochemical authenticity of the soybean-produced EGF protein. Using 1D SDS/PAGE and parallel immunoblots probed with anti-EGF, the soluble low molecular weight (<10 kDa) seed proteins and the Mr of the soybean-produced hEGF was evaluated. The total protein polypeptide of the hEGF expressing lines appeared to be identical to the standard parental control (See FIG. 2). Immunoblots of the 1D SDS/PAGE probed with anti-EGF showed a lack of an immunoreactive band in the non-transgenic soybean seed control and recognized a 6 kDa Mr band in the hEGF expressing Lines 5 and 4. The soybean-produced hEGF has the same apparent Mr as authentic recombinant hEGF fractioned in an adjacent lane (see FIG. 3). To further assess the soybean-synthesized hEGF the seed lysates were enriched in low Mr total proteins and concentrated. The crude low Mr proteins were reduced, alkylated, and cleaved with trypsin prior to analysis by mass spectrometry. The resulting data was queried with the hEGF sequence and exact matches for peptides encompassing the majority of the sequence of the complete mature hEGF protein were obtained (see FIG. 4). Together the data shows that transgenic soybeans successfully produced and accumulated hEGF that is the correct Mr, is immunoreactive with antibodies directed at authentic EGF in both ELISA and immunoblot assay, and that a majority mass spectrometry of fragments of the soybean-produced hEGF match the human EGF sequence.


Soybean-Milk is Compatible with EGF Bioactivity

To evaluate the potential of EGF activity in soymilk delivery, commercial recombinant human EGF (rhEGF) was added as a supplement to soymilk and the intrinsic activity of the EGF was tested with a HeLa cell assay. FIG. 5 shows the effects of soymilk on the display of the EGF receptor (EGFR) on Hela cells and the effect of commercial rhEGF supplement to soymilk. Soymilk does not modify the display of EGFR on Hela cells showing that soymilk alone is biologically inactive. The binding of EGF to EGFR results in the decrease of displayed EGFR as it is internalized into the HeLa cells. Hela cells treated with commercially available recombinant rhEGF-supplemented soymilk display the same decrease in EGFR as cells treated with rhEGF in media without soymilk. Parallel time-course experiments show that the effect of rhEGF binding to EFGR is rapid with a reduction of displayed EFGR occurring within 5 min of treatment and continuing out to at least 30 min. Together these assays show that at this time, soymilk has no apparent negative bioactivity with respect to both the binding of commercial rhEGF to the HeLa cell EGFR or the viability of the HeLa cells over the course of the assay.


Soybean-Synthesized hEGF is Bioactive

To assess the bioactivity of soybean-produced hEGF, samples were prepared from both ShEGF transgenic soybean lines and non-transgenic controls that were used to stimulate HeLa cells to induce EGFR internalization, degradation and phosphorylation. As shown in FIG. 5, soybean-produced hEGF induces the internalization, degradation and phosphorylation of EGFR that is indistinguishable from the bioactivity of commercial rhEGF delivered in control samples. In contrast, samples prepared from control non-transgenic soybeans exhibited no apparent bioactivity showing the degradation and phosphorylation of EGFR is the result of EGF binding of either commercial rhEGF added to the media or from the hEGF produced by the transgenic soybeans. Together these results show that at this time, non-transgenic soybean seeds have no intrinsic EGF-mimic activity able to induce EGFR degradation or phosphorylation, while soybeans producing hEGF have identical activity in comparison to commercial rhEGF.


Synthesis of hEGF does not Affect Overt Soybean Seed Composition

To test for potential collateral composition in the hEGF-producing soybeans, the ShEGF transgenic and non-transgenic control soybeans were analyzed by non-targeted proteomics and metabolomics. Among the significant proteins identified include various well-documented allergens and anti-metabolite proteins. A comparison of standard soybeans with hEGF-producing soybean lines showed that there was no significant difference (p=0.01) between non-transgenic control and ShEGF transgenic soybeans aside from the targeted production of hEGF for any other proteins of concern. This data is available in PRIDE partner repository with the dataset identifier PXD003326 and 10.6019/PXD003326.


Non-targeted small molecule metabolomics was used to conduct a parallel analysis of the non-transgenic and hEGF soybeans. Again there were insignificant differences between non-transgenic soybean seeds and the ShEGF transgenic seeds (see FIG. 6) with one notable exception. Soybean highly regulates sulfur availability and its allocation into protein. From a nutritional perspective soybean is considered a somewhat sulfur deficient crop. There have been a number of biotechnology experiments to increase sulfur content be either modifying assimilation and biosynthesis pathways leading to methionine or over-expressing high-methionine proteins such as Maize zeins. Modifying sulfur by pathway or competition has an effect on sulfur-responsive proteins including the Bowman-Birk trypsin inhibitor (BBI) and beta chain of the storage protein conglycinin. EGF is a high sulfur content protein that broadly mimics BBI as a small globular protein synthesized by the ER and presumptively competing for sulfur amino acid charge tRNA. Expressing hEGF in soybean has an effect on metabolites involved in sulfur amino acid metabolism that is consistent with producing a protein of EGF's composition. Among the assayed molecules of particular note is the soybean molecule Genistein, an isoflavone that has been shown to affect the activity of tyrosine phosphatase in the signal cascade associated with EGF signaling. Genistein levels were determined to be the same in both the non-transgenic and hEGF-expressing soybean lines. This, too, helps demonstrate that the expression of hEGF in soybeans does not produce any incidental collateral consequences of concern for its potential therapeutic use.


EXAMPLE 1

The following Example describes non-limiting methods associated with the present invention.


Transgenic EGF Soybean Seeds

Epidermal growth factor protein from humans was produced in soybean seeds by constructing a plant gene expression cassette that involved a synthetic codon optimized EGF nucleotide sequence (protein sequence from Genbank accession CCQ43157). This 162 bp open reading frame was placed in-frame behind a 20-amino acid endoplasmic reticulum (ER) signal sequence from the Arabidopsis chitinase gene [30,31]. The ER-directed EGF encoding open reading frame was developmentally regulated by the strong seed-specific storage protein glycinin regulatory elements [31]. The entire seed specific cassette to direct EGF production was placed in a vector containing the hygromycin resistance gene under the strong constitutive expression of the potato ubiquitin 3 regulatory elements as previously described (Schmidt M A, Herman E M. The Collateral Protein Compensation Mechanism Can Be Exploited To Enhance Foreign Protein Accumulation In Soybean Seeds. Plant Biotechnol J. 2008; 6: 832-842; Schmidt M A, Herman E M. A RNAi knockdown of soybean 24 kda oleosin results in the formation of micro-oil bodies that aggregate to form large complexes of oil bodies and ER containing caleosin. Mol Plant. 2008; 1: 910-924; Schmidt M A, Parrott W A, Hildebrand D F, Berg R H, Cooksey A, Pendarvis K, et al. Transgenic soybean seeds accumulating β-carotene exhibit the collateral enhancements of high oleate and high protein content traits. Plant Biotechnol J. 2015; 13: 590-600). The result plasmid pGLY::ShEGF was sequenced using a glycinin promoter primer (5′ TCATTCAC CTTCCTCTCTTC 3′) to ensure the EGF open reading frame was placed correctly between the regulatory elements. Somatic soybean (Glycine max L. Merrill cv Jack (wild type)) embryos were transformed via biolistics using 30 mg/L hygromycin B selection and regenerated as previously described (Schmidt M A, Tucker D M, Cahoon E B, Parrott W A. Towards normalization of soybean somatic embryo maturation. Plant Cell Rep. 2004; 24: 383-391). Embryos from resistant lines were analyzed by genomic PCR to confirm the presence of inserted hygromycin cassette using primers specific to the hygromycin gene (HygF 5′CTCACTATTCCTTTGCCCTC3′ and HygR 5′CTGACCTATTGCATCTCCCG3′), cetyl trimethyl ammonium bromide (CTAB) extraction genomic DNA isolation and the following amplification conditions: 150 ng genomic DNA in 25 μl total reaction containing 200 nM primers and 3 U Taq polymerase (NEB) and the following cycling parameters (initial 95° C. 4 min then 45 cycles of 95° C. 30 s, 55° C. 45 s, 72° C. 90 s; followed by a final extension of 72° C. 7 min). Dry seeds from two successive generations of PCR positive plants were analyzed by ELISA for the expression of EGF protein until all 7 lines were confirmed to be homozygous. EGF transgenic soybean plants along with non-transgenic control wild type cultivar plants were grown side by side in a greenhouse at 25° C. under 16 h daylight with 1000 μm-2/s.


As previously discussed, the present invention features compositions comprising nucleic acid sequence, SEQ ID NO: 1 of Table 1 below. The vector of SEQ ID NO: 1 comprises a modified hEGF gene (the sequence within SEQ ID NO: 1 that encodes hEGF is outlined). The optimized hEGF nucleic acid sequence is not limited to SEQ ID NO: 1 and comprises a nucleic acid that encodes a peptide of interest.


In some embodiments, the nucleic acid is at least about 90% identical to SEQ ID NO: 1. In some embodiments, the nucleic acid is at least about 93% identical to SEQ ID NO: 1. In some embodiments, the nucleic acid sequence is at least about 95% identical to SEQ ID NO: 1. In some embodiments, the nucleic acid sequence is at least about 98% identical to SEQ ID NO: 1. In some embodiments, the nucleic acid sequence is at least about 99% identical to SEQ ID NO: 1. Non-limiting examples of such nucleic acid sequences can be found in Table 1 below. For example, SEQ ID NO: 2 and SEQ ID NO: 7 are sequences for a modified hEGF that is about 99% identical to SEQ ID NO: 1. SEQ ID NO: 3 and SEQ ID NO: 8 are sequences for a modified EGF that is about 98% identical to SEQ ID NO: 1; SEQ ID NO: 4 and SEQ ID NO: 9 are sequences for a modified EGF that is about 95% identical to SEQ ID NO: 1 (note that the bold letters in Table 1 are nucleotide substitutions as compared to SEQ ID NO: 1, and the codon underlined).









TABLE 1







Examples of Nucleic Acid Sequence Identity ≥ 90% to SEQ ID NO: 1













%


Seq


Alignment


ID


to SEQ ID


NO
Description
Nucleic Acid Sequence
NO: 1













1
Optimized EGF sequence for
tctctttcttcagccgaaaattccgatagtgagtgtc
100



soybean transformation
cactctcccatgatggctattgtttgcacgacgga





gtttgcatgtatattgaagctttggataagtacgcat





gtaactgcgttgtgggatatatcggtgaaagatgc





caatacagggacctcaaatggtgggagctgag





ataa






2
Optimized EGF sequence for
tctctttcttcagccgaaacttccgatagtgagtgtc
99



soybean transformation with 2
cactctcccatgatggctattgtttgcacgacgga




base substitution for 99%
gttcgcatgtatattgaagctttggataagtacgca




sequence identity to Seq ID 1
tgtaactgcgttgtgggatatatcggtgaaagatg





ccaatacagggacctcaaatggtgggagctga





gataa






3
Optimized EGF sequence for
tctctttcttcagccgaaaactccgctagtgagtgt
98



soybean transformation with 4
ccactctcccatgatggctattgtttgcacgacgg




base substitution for 98%
agttcgcatgtatattgaagctttggataagtacgc




sequence identity to Seq ID 1
atataactgcgttgtgggatatatcggtgaaagat





gccaatacagggacctcaaatggtgggagctg





agataa






4
Optimized EGF sequence for
tctctttcttcagccgaaaactccgctagtgagtgt
95



soybean transformation with 9


tca
ctctcccatgatggcgattgtttgcacgacgg





base substitution for 95%
agttcgcatgtatattgaagctttggataagtacgc




sequence identity to Seq ID 1
atataactgcgttgtggaatatcggtgaaaga







ggc
caatacagggacctcaaacggtgggagct






gagataa






5
Optimized EGF sequence for
tctctttcttcagccgaaaactccgctattgagtgtt
93



soybean transformation with 13

cactctcccctgatggcgattgtttgcacgacgga





base substitution for 93%
gttcgcatgtatattgaagctttgtataagtacgcat




sequence identity to Seq ID 1


at
aactgcgttgtggaatatatcggtgaaagagg







ccaatacaggaacctcaaacggtgggagctga






gataa






6
Optimized EGF sequence for
tctctttcttcagccgaaaactccgctattgagtgtt
90



soybean transformation with 18

cactctcccctgatggcgattgtttgcaagacgta





base substitution for 90%
gttcgcatgtatagtgaagctttgtataagtacgc




sequence identity to Seq ID 1
atataactgcgttgtggaatatctcggtgaaaga







ggc
caatacaggaacctcaaacggtggaagct






gagataa






7
Optimized EGF sequence for
tctctttcttcagccgaaaatcccgatagtgagtgt
99



soybean transformation with 2
ccactctgccatgctggctattgttcgcacgacgg




base substitution for 99%
agtttgcatgtatattgtagctgtggataagtacgc




sequence identity to Seq ID 1
atgtaactgcgctgtgggatatatcggtgcaagat





gccaatacagcgacctcaaatggtgggacccg





agataa






8
Optimized EGF sequence for
tctctttcttcagccgaaaatcccgatcgtgagtgt
98



soybean transformation with 4
ccactctgccatgctggctattgttcgcacgacgg




base substitution for 98%
agtttgcatgtatattgtagctgtggataagtacgc




sequence identity to Seq ID 1
atgtaactgcgctgtgggatatatcggtgcaagat





gccaatacagcgacctcaaatggtgggacccg





agataa






9
Optimized EGF sequence for
tctctttcttcagccgaaaatcccgatcgtgagtgt
95



soybean transformation with 9
ccactctgccatgctggctattgttcgcacgacgg




base substitution for 95%
agtttgcatgtatattgtagctgtggataagtacgc




sequence identity to Seq ID 1
atgtaactgctgtgggatatatcggtgcaagat





gccaatacagcgacctcaaatggtgggacccg





agataa






10
Optimized EGF sequence for
tctctttcttcagccgaaaatcccgatcgtgcgtgt
93



soybean transformation with 13
ccactctgccatgctgtctattgtcgcacgacgg




base substitution for 93%
agtttgcatgtatattgtagctgtggataagtacgc




sequence identity to Seq ID 1
atgtaactgcgctgtgggatatatcggtgcaagat





gccaatacagcgacctcaaatggtgggacccg





agataa






11
Optimized EGF sequence for
tctctttcttcagccgaaaatcccgatcgtgcgtgt
90



soybean transformation with 18

ctactctgccatgctgtctattgttcgcacgacag





base substitution for 90%

agtttgcatgtatattgtagctgtggataagtactc





sequence identity to Seq ID 1

atgtaactgcgctgtgggatgtatcggtgcaaga






tgccaatacagcgacctcaattggtgggagccg





agataa





Bold letters are nucleotide substitutions within a codon; the respective codon is


underlined






The vector comprises a nucleic acid that encodes a peptide of interest. In some embodiments, the nucleic acid sequence is at least about 90% identical to SEQ ID NO: 1. In some embodiments, the nucleic acid sequence is at least about 93% identical to SEQ ID NO: 1. In some embodiments, the nucleic acid sequence is at least about 95% identical to SEQ ID NO: 1. In some embodiments, the nucleic acid sequence is at least about 98% identical to SEQ ID NO: 1. In some embodiments, the nucleic acid sequence is at least about 99% identical to SEQ ID NO: 1. Non-limiting examples of resulting amino acid sequences encoded by such nucleic acid sequences can be found in Table 2 below. For example, SEQ ID NO: 12 and SEQ ID NO: 18 are amino acid sequences encoded by modified hEGF polynucleotide sequences of Seq ID NO: 2 and SEQ ID NO: 6, respectively, that are about 99% identical to SEQ ID NO: 1 (note that the bold letters in Table 2 are amino acid substitutions as compared to SEQ ID NO: 12).









TABLE 2







Examples of Amino Acid Sequence with Nucleic Acid Identity ≥ 90%










Seq


% Alignment


ID


to Seq ID


NO
Description
Amino Acid Sequence
NO: 1













12
Optimized EGF
SLSSAENSDSECPLSHDGYCLHDGVCMY
100



sequence for soybean
IEALDKYACNCVVGYIGERCQYRDLKWW




transformation
ELR






13
Optimized EGF
SLSSAETSDSECPLSHDGYCLHDGVRMY
99



sequence for soybean
IEALDKYACNCVVGYIGERCQYRDLKWW




transformation with 2
ELR




base substitution for 99%





sequence identity to Seq





ID 1







14
Optimized EGF
SLSSAETSASECPLSHDGYCLHDGVRMY
98



sequence for soybean
IEALDKYAYNCVVGYIGERCQYRDLKWW




transformation with 4
ELR




base substitution for 98%





sequence identity to Seq





ID 1







15
Optimized EGF
SLSSAETSASECSLSHDGDCLHDGVRMY
95



sequence for soybean
IEALDKYAYNCVVEYIGERGQYRDLKRWE




transformation with 9
LR




base substitution for 95%





sequence identity to Seq





ID 1







16
Optimized EGF
SLSSAETSAIECSLSPDGDCLHDGVRMYI
93



sequence for soybean
EALYKYAYNCVVEYIGERGQYRNLKRWE




transformation with 13
LR




base substitution for 93%





sequence identity to Seq





ID 1







17
Optimized EGF
SLSSAETSAIECSLSPDGDCLQDVVRMYS
90



sequence for soybean
EALYKYAYNCVVEYLGERGQYRNLKRW




transformation with 18


K
LR





base substitution for 90%





sequence identity to Seq





ID 1







18
Optimized EGF
SLSSAENADSECPLSHDGYCLHDGVCMY
99



sequence for soybean
IVALDKYACNCVVGYIGERCQYRDLKVWV




transformation with 2
ELR




base substitution for 99%





sequence identity to Seq





ID 1







19
Optimized EGF
SLSSAENADRECPLSHAGYCLHDGVCMY
98



sequence for soybean
IVALDKYACNCVVGYIGERCQYRDLKVWV




transformation with 4
ELR




base substitution for 98%





sequence identity to Seq





ID 1







20
Optimized EGF
SLSSAENADRECPLCHAGYCSHDGVCM
95



sequence for soybean
YIVALDKYACNCAVGYIGERCQYSDLKW




transformation with 9
WEPR




base substitution for 95%





sequence identity to Seq





ID 1







21
Optimized EGF
SLSSAENADRACPLCHAVYCSHDGVCM
93



sequence for soybean
YIVAVDKYACNCAVGYIGARCQYSDLKW




transformation with 13
WEPR




base substitution for 93%





sequence identity to Seq





ID 1







22
Optimized EGF
SLSSAENADRACLLCHAVYCSHDRVCMY
90



sequence for soybean
IVAVDKYSCNCAVGCIGARCQYSDLNWW




transformation with 18
EPR




base substitution for 93%





sequence identity to Seq





ID 1





Bold letters are nucleotide substitutions within a codon; the respective codon is underlined.






The present invention also features compositions comprising nucleic acid SEQ ID NO: 26 of Table 3 below. The vector of SEQ ID NO: 1 comprises a modified hEGF gene comprising a modified polynucleotide for the protein-coding region of hEGF, SEQ ID NO: 26 (the sequence within SEQ ID NO: 1 that encodes hEGF is outlined). The optimized hEGF nucleic acid protein-coding sequence is not limited to SEQ ID NO: 26 and comprises a nucleic acid that encodes a peptide of interest.


In some embodiments, the hEGF protein-coding nucleotide sequence is at least 90% identical to SEQ ID NO: 26. In some embodiments, the nucleic acid is at least 93% identical to SEQ ID NO: 26. In some embodiments, the nucleic acid is at least 95% identical to SEQ ID NO: 26. In some embodiments, the nucleic acid is at least 98% identical to SEQ ID NO: 26. In some embodiments, the nucleic acid is at least 99% identical to SEQ ID NO: 26. Non-limiting examples of such nucleic acid sequences can be found in Table 3 below. For example, SEQ ID NO: 27 is a sequence for a modified hEGF that is about 99% identical to SEQ ID NO: 26. SEQ ID NO: 28 is a sequence for a modified EGF that is about 98% identical to SEQ ID NO: 26; SEQ ID NO: 29 is a sequence for a modified EGF that is about 95% identical to SEQ ID NO: 26 (note that the bold letters in Table 3 are nucleotide substitutions as compared to SEQ ID NO: 26, and the codon underlined).









TABLE 3







Examples of Nucleic Acid Sequence Identity 90% to Coding Region of SEQ ID


NO: 26













%





Alignment


Seq


to SEQ ID


ID
Description
Nucleic Acid Sequence
NO: 26













26
Coding Region of SEQ ID: 1
aattccgatagtgagtgtccactctcccatgatgg
100




ctattgtttgcacgacggagtttgcatgtatattgaa





gctttggataagtacgcatgtaactgcgttgtggg





atatatcggtgaaagatgccaatacagggacct





caaatggtgggagctgagataa






27
Coding Region of SEQ ID: 1 with

acttccgatagtgagtgtccactctcccatgatgg

99



2 base substitution for 99%
ctattgtttgcacgacggagttcgcatgtatattga




sequence identity to Seq ID 26
agctttggataagtacgcatgtaactgcgttgtgg





gatatatcggtgaaagatgccaatacagggacc





tcaaatggtgggagctgagataa






28
Coding Region of SEQ ID: 1 with

aactccgctagtgagtgtccactctcccatgatgg

98



4 base substitution for 98%
ctattgtttgcacgacggagttcgcatgtatattga




sequence identity to Seq ID 26
agctttggataagtacgcatataactgcgttgtgg





gatatatcggtgaaagatgccaatacagggacc





tcaaatggtgggagctgagataa






29
Coding Region of SEQ ID: 1 with

aactccgctagtgagtgttcactctcccatgatgg

95



9 base substitution for 95%
cgattgtttgcacgacggagttcgcatgtatattga




sequence identity to Seq ID 26
agatttggataagtacgcatataactgcgttgtgg







aa
tatatcggtgaaagaggccaatacagggac






ctcaaacggtgggagctgagataa






30
Coding Region of SEQ ID: 1 with

aactccgctattgagtgttcactctcccctgatgg

93



12 base substitution for 93%
cgattgtttgcacgacggagttcgcatgtatattga




sequence identity to Seq ID 26
agctttgtataagtacgcatataactgcgttgtgga






atatatcggtgaaagaggccaatacaggaacct






caaacggtgggagctgagataa






31
Coding Region of SEQ ID: 1 with

aactccgctattgagtgttcactctcccctgatgg

90



17 base substitution for 90%
cgattgtttgcaagacgtagttcgcatgtatagtg




sequence identity to Seq ID 26
aagctttgtataagtacgcatataactgcgttgtgg







aa
tatctcggtgaaagaggccaatacaggaac






ctcaaacggtggaagctgagataa





Bold letters are nucleotide substitutions within a codon; the respective codon is underlined






The present invention also features compositions comprising nucleic acid sequence, SEQ ID NO: 32 of Table 4 below. The vector of SEQ ID NO: 1 comprises a modified hEGF gene comprising a polynucleotide for the non-hEGF protein coding region, SEQ ID NO: 32. The non-hEGF protein coding sequence of the optimized hEGF nucleotide is not limited to SEQ ID NO: 32. In some embodiments, the 3′ end of SEQ ID NO: 32 is operatively coupled to the 5′ end of SEQ ID NO: 26.


In some embodiments, the non-hEGF protein coding nucleotide sequence is at least 90% identical to SEQ ID NO: 32. Non-limiting examples of such nucleic acid sequences can be found in Table 4 below. For example, SEQ ID NO: 33 is a sequence that is at least 90% (<100%) identical to SEQ ID NO: 32 (note that the bold letters in Table 4 are nucleotide substitutions as compared to SEQ ID NO: 26, and the codon underlined).









TABLE 4







Examples of Nucleic Acid Sequence Identity ≥ 90% to Non-hEGF


Protein Coding Region of SEQ ID NO: 32










Seq


% Alignment to


ID
Description
Nucleic Acid Sequence
SEQID NO: 32





32
Optimized non-hEGF protein coding
tctctttcttcagccgaa
100



region nucleic acid sequence







33
Optimized non-hEGF protein coding
tctttttcttcagccgaa
≥95 < 100



region sequence with 1 base





substitution for at least 90%





sequence identity to Seq ID 32







34
Optimized non-hEGF protein coding
tctttttcttaagccgaa
≥90 < 95



region sequence with 2 base





substitution for at least 90%





sequence identity to Seq ID 32





Bold letters are nucleotide substitutions within a codon; the respective codon is underlined






EGF Detection Via Immunoblot

Total soluble protein was extracted from dry seeds of two homozygous EGF lines and a non-transgenic control by repeated acetone washes followed by acetone precipitation with the protein pellet dissolved in water. Proteins with molecular weight 10 kDa and under were isolated by separately passing each extract through an Amicon Ultra centrifugal filter (Merck, Kenilworth N.J.). The samples were each suspended in sample buffer (50 mM Tris HCL, pH6.8 2% SDS (w/v), 0.7 M β-mercaptoethanol, 0.1% (w/v) bromphenol blue and 10% (v/v) glycerol) and then denaturated 5 min 95° C. Protein content was determined by Bradford assay. A 15% SDS-PAGE gel was used to separate 30 μg protein for each of the three samples: negative control wild type, Lines 4 and 5 of EGF transgenic soybean dry seeds. Commercially available human EGF (Gibco, Life Technologies, United Kingdom) was used at 0.5 μg as positive control. Gel was electroblotted onto Immobilon P transfer membrane (Millipore, Bedford Mass.) and blocked with 3% milk solution in TBS for at least 1 hr. Primary antibody was a commercially available anti-EGF (Calbiochem, San Diego Calif.) and was used in a 1:100 ratio in 3% BSA-TBS buffer overnight at room temperature. After 3 washes of 15 mins each with TBS buffer, the blot was incubated with a 1:10,000 ratio in TBS of secondary antibody anti-rabbit IgG Fabspecific alkaline phosphatase conjugate (Sigma, St. Louis Mo.). After 3 washes, the presence of the EGF protein was detected by using a color substrate (BCIP/NBT: final concentrations 0.02% (w/v) 5-bromo-4-chloro-3-indoyl phosphate and 0.03% (w/v) nitro blue tetrazolium in 70% (v/v) demenjkoplthylformadmide) (KPL, Gaithersburg Mass.).


EGF Quantification

Total soluble protein was extracted from dry soybean seeds as described previously (Schmidt M A, Herman E M. The Collateral Protein Compensation Mechanism Can Be Exploited To Enhance Foreign Protein Accumulation In Soybean Seeds. Plant Biotechnol J. 2008; 6: 832-842; Schmidt M A, Herman E M. A RNAi knockdown of soybean 24 kda oleosin results in the formation of micro-oil bodies that aggregate to form large complexes of oil bodies and ER containing caleosin. Mol Plant. 2008; 1: 910-924) from all 7 lines of pGLY::ShEGF transgenic plants along with non-transgenic seeds as a negative control. EGF was quantitated by commercially available human EGF ELISA assay (Quantikine ELISA kit from R&D systems, Minneapolis Minn.) according to the manufacturer's instructions. The provided positive control was used to create a standard curve in order to determine the amount of EGF in each soybean protein extract. Each homozygote EGF transgenic line was assayed with three biological replicates and results displayed as mean +/− standard error.


Seed Proteome Composition Analysis

Total soluble proteins were extracted, quantitated and suspended in sample loading buffer as previously described (Schmidt M A, Herman E M. The Collateral Protein Compensation Mechanism Can Be Exploited To Enhance Foreign Protein Accumulation In Soybean Seeds. Plant Biotechnol J. 2008; 6: 832-842; Schmidt M A, Herman E M. A RNAi knockdown of soybean 24 kda oleosin results in the formation of micro-oil bodies that aggregate to form large complexes of oil bodies and ER containing caleosin. Mol Plant. 2008; 1: 910-924). Approximately 30 μg of protein extract from dry seeds of 4 homozygous EGF lines were separated on a 4-20% gradient SDS-PAGE gel (BioRad, Hercules Calif.) along with extract from a non-transgenic seed. The gel was subsequently stained with 0.1% (w/v) Coomassie Brilliant Blue R250 in 40% (v/v) methanol, 10% (v/v) acetic acid overnight and then destained for approximately 3 hrs in 40% methanol, 10% acetic acid with frequent solution changes.


Mass Spectrometry Analysis to Detect EGF in Soybean Samples

Total soluble protein was extracted from 3 biological EGF transgenic soybean dry seed samples, lines 4, 5 and 6. As described above, proteins with molecular weights lowers than 10 kDa were concentrated using an Amicon Ultra centrifugal filter (Merck, Kenilworth N.J.). Non-transgenic seeds were used as a negative control and 5 μg commercially available EGF (as above in immunoblot section) was the positive control. Protein was precipitated by adjusting the solution to 20% (v/v) trichloroacetic acid and allowed to sit at 4° C. overnight. Precipitated proteins were pelleted using centrifugation, washed twice with acetone and then dried using vacuum centrifugation. The commercial EGF was not filtered or precipitated, only dried. Dried pellets were rehydrated with the addition of 10 μl 100 mM dithiothreitol in 100 mM ammonium bicarbonate and placed at 85° C. for 5 minutes to reduce disulphide bonds. Samples were then alkylated with addition of 10 μl iodacetamide in 100 mM ammonium bromide and placed at room temperature in the dark for 30 minutes. Two μg trypsin in 200 μl 100 mM ammonium bromide was added to each samples and placed in 37° C. overnight for enzymatic digestion. Post trypsin digest samples were desalted using a peptide reverse phase microtrap (Michrom BioResources, Auburn Calif.), dried and ultimately resuspended in 2 μl of 2% (v/v) acetonitrile, 0.1% (v/v) for-mic acid. Separation of peptides was performed using a Dionex U3000 splitless nanoflow HPLC system operated at 333 nl minute using a gradient from 2-50% acetonitrile over 60 minutes, followed by a 15 minute wash with 95% acetonitrile and a 15 minute equilibration with 2% acetonitrile. The C18 column, an in-house prepared 75 μm by 15 cm reverse phase column packed with Halo 2.7 μm, 90 Å C18 material (MAC-MOD Analytical, Chadds Ford Pa.) was located in the ion source just before a silica emitter. A potential of 2100 volts was applied using a liquid junction between the column and emitter. A Thermo LTQ Velos Pro mass spectrometer using a nanospray Flex ion source was used to analyze the eluate from the U3000. Scan parameters for the LTQ Velos Pro were one MS scan followed by 10 MS/MS scans of the 5 most intense peaks. MS/MS scans were performed in pairs, a CID fragmentation scan followed a HCD fragmentation scan of the same precursor m/z. Dynamic exclusion was enabled with a mass exclusion time of 3 min and a repeat count of 1 within 30 sec of initial m/z measurement. Spectra were collected over the entirety of each 90 minute chromatography run. Raw mass spectra were converted to MGF format using MSConvert, part of the ProteoWizard software library (Kessner D, Chambers M, Burke R, Agus D, Mallick P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics. 2008; 24: 2534-2536) X!tandem 2013.09.01.1 (Craig R, Beavis R C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics. 2004; 20: 1466-1467) and OMSSA (Geer L Y, Markey S P, Kowalak J A, Wagner L, Xu M, Maynard D M, et al. Open mass spectrometry search algorithm. J Proteome Res. 2004; 3: 958-964) algorithms were employed via the University of Arizona High Performance Computing Center to perform spectrum matching. Precursor and fragment mass tolerance were set to 0.2 Daltons for both OMSSA and X!tandem. Trypsin cleavage rules were used for both algorithms with up to 2 missed cleavages. Amino acid modifications search consisted of single and double oxidation of methionine, oxidation of proline, N-terminal acetylation, carbamidomethylation of cysteine, deamidation of asparagine and glutamine and phosphorylation of serine, threonine, and tyrosine. X!tandem xml and OMSSA xml results were filtered using Perl to remove any peptide matches with an E-value>0.05 as well as proteins identified by a single peptide sequence. The protein fasta database for Glycine max was downloaded on Aug. 5, 2015 from NCBI RefSeq with the addition of the EGF amino acid sequence. A randomized version of the Glycine max fasta was concatenated to the original as a way to assess dataset quality. The mass spectrometry proteo-mics data have been deposited to the ProteomeXchange Constortium (http://proteomecentral. proteomexchange.org) via the PRIDE partner repository (Guo J, Longshore S, Nair R, Warner B W. Retinoblastoma protein (pRb), but not p107 or p130, is required for maintenance of enterocyte quiescence and differentiation in small intestine. J Biol Chem. 2009; 284:134-40) with the dataset identifier PXD003326 and 10.6019/PXD003326.


Cell Culture, Western Blotting and Immunocytochemistry

Hela cells (obtained from American Tissue Culture Collection) were cultured in Minimum Essential Media (MEM) complemented with 10% Fetal Bovine Serum (FBS), 100 units/ml penicillin, and 100 μg/ml streptomycin. For western blotting assay, cells grown in 6-well plate were kept in serum free MEM media for 24 hours. Cells were then either kept in serum free medium (control) or stimulated with soymilk alone, soy EGF or commercial recombined human EGF for different time period as indicated. Cells were lysed by directly adding 1×SDS sample buffer (50 mM Tris-HCl, pH 6.8, 10% glycerol, 2% SDS and 5% β-ME) to the cells after washing 3 times with 1×PBS. EGF bio-activity was determined via EGFR phosphorylation and down-stream AKT phosphorylation. Total EGFR was also measured since EGFR is known to undergo internalization when stimulated with EGF. Antibodies used in western blot are anti-p-EGFR (Tyr1068) (#2234, Cell Signaling Technology), anti-total EGFR (#06-847, Millipore), anti-p-AKT (#4060, Cell Signaling Technology) and anti-Lamin B1 (#13435, Cell Signaling Technology) [40]. For immunocytochemistry assay, cells were grown on coverslip in 6-well plate and kept in serum free media for 24 hours before stimulation, cells were then either kept in serum free media (control) or stimulated with human or soy EGF for 6 hours. Cells were washed with PBS and fixed with 4% formalin. EGFR was labeled using anti-EGFR antibody (#4267, Cell Signaling Technology) and detected with Alexa Fluor 594 Goat anti-rabbit IgG (# A11012, Life Technology). The cell nuclei were shown using mounting medium with DAPI (# H-1200, Vectorshield).


Various modifications of the invention, in addition to those described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. Each reference cited in the present application is incorporated herein by reference in its entirety.


Although there has been shown and described the preferred embodiment of the present invention, it will be readily apparent to those skilled in the art that modifications may be made thereto which do not exceed the scope of the appended claims. Therefore, the scope of the invention is only to be limited by the following claims. Reference numbers recited in the claims are exemplary and only for ease of review by the patent office and are not limiting in any way. In some embodiments, the figures presented in this patent application are drawn to scale, including the angles, ratios of dimensions, etc. In some embodiments, the figures are representative only and the claims are not limited by the dimensions of the figures. In some embodiments, descriptions of the inventions described herein using the phrase “comprising” includes embodiments that could be described as “consisting of”, and as such the written description requirement for claiming one or more embodiments of the present invention using the phrase “consisting of” is met.


The reference numbers recited in the below claims are solely for ease of examination of this patent application, and are exemplary, and are not intended in any way to limit the scope of the claims to the particular features having the corresponding reference numbers in the drawings.

Claims
  • 1. A transgenic legume expressing a protein, the protein being an animal or human protein.
  • 2. The transgenic legume of claim 1, wherein the transgenic legume is a soybean, a lentil, a bean, a pea, or a peanut.
  • 3. The transgenic legume of claim 1, wherein the expressed protein is a therapeutic protein, a bioregulatory protein, or an antibody.
  • 4. The transgenic legume of claim 3, wherein the protein is a growth factor, wherein the growth factor includes EGF, FGF, PDGF, VEGF, IGF, HSF, TGF-alpha, TGF-beta, TNF-alpha, IL-1, Interferons, or a combination thereof.
  • 5. The transgenic legume of claim 4, wherein the EGF protein is encoded by nucleic acid sequence according to SEQ ID NO: 1 or SEQ ID NO: 26 or a polynucleotide at least 90% identical thereto, wherein the polynucleotide encodes a protein having hEGF activity, or a functional fragment thereof.
  • 6. The transgenic legume of claim 5, wherein the nucleotide sequence encodes a protein of SEQ ID NO: 12 or a polynucleotide sequence at least 90% identical thereto encoding a protein having hEGF activity, or a functional fragment thereof.
  • 7. The transgenic legume of claim 3, wherein the bioregulatory or therapeutic protein, comprises insulin, fibronectin, or HIF-1 alpha.
  • 8. The transgenic legume of claim 1, wherein the transgenic legume is a non-allergenic legume, wherein the transgenic legume is a non-allergenic soybean.
  • 9. A composition comprising the animal or human protein according to any of claims 1-8, wherein the composition comprises soymilk.
  • 10. A method of harvesting a recombinant protein expressed in a transgenic legume according to any of claims 1-9, said method comprising processing an entire plant of the transgenic legume.
  • 11. The method of claim 10, wherein processing the entire plant comprises grinding. micro pulverizing, particulating, or morselating.
  • 12. A medical material comprising an animal or human protein derived from a transgenic legume according to any of claims 1-11 and at least a portion of the transgenic legume that produced said animal protein.
  • 13. The medical material of claim 10, wherein the material is for epidermal or dermal application, wherein the material comprises a partially vacuous, discontinuous or holey construct, wherein the medical material is fabricated as a gauze, mesh, sheet, film, fibrous construct, or a bandage, wherein the material is constructed by spin-coating, drop casting, spin casting, extrusion, electrospinning, film formation spraying, spray drying, drop casting, spin casting, extrusion, electrospinning, low-temperature thermoforming, micro-particle formation, nano-particle formation, micro-capsule formation, nano-capsule formation, or a combination thereof.
  • 14. The medical material of claim 13 further comprising a non-active plant element, a synthetic element, excipient, or adjuvant.
  • 15. The medical material of claim 14, comprises hydrogel, aerogel or organogels or a combination thereof, wherein the excipient or adjuvant comprises a colloidal binder, a gelatin, polyethylene glycol (PEG), PEG-lactide, Plutronics, Tetronics, Carbopol, Eudragits, Agar, Pectin, Guar gum, alginates, PVA, carboxymethycellulose, Hyaluronic acid, or a combination thereof.
  • 16. The medical material of claim 15, wherein the element is hygroscopic or hydrophobic.
  • 17. The medical material of claim 13 further comprising a marker or sensor or means of detection, wherein the sensor is for providing feedback information as to status of the topical condition and subepidermal or subdermal condition under or adjacent to the applied location.
  • 18. The medical material of claim 17, wherein the marker is a pH indicator, wherein the marker is for detecting infection.
  • 19. The medical material of claim 13 further comprising a medication, wherein the medication is an anti-inflammatory medication, an anti-bacterial medication, an anti-microbial medication, an antifungal medication, an anesthetic medication, or a combination thereof.
  • 20. The medical material of claim 13 further comprising a perfumant, wherein the medical material comprises a compound for reducing odor.
  • 21. The medical material of claim 13 further comprising non-allergenic soy, a cell, or cell product, wherein the material comprises or delivers a cell product or constituent such as platelet-rich plasma (prp) or extract, a viral vector, gene, plasmid, episome or bacteriophage, siRNA, aptamer, genetic material, bacteriophage, or a combination thereof, wherein the cell or cell product delivers live, dead or attenuated epithelial cells, platelets or white blood cells, or a combination thereof.
  • 22. A method of treating a topical condition, said method comprising applying to the topical condition a medical material according to any of claims 11-20, wherein the medical material reduces inflammation.
  • 23. A system of treatment involving application of the therapeutic construct, monitoring its status via the contained sensors/indicators and then removing and/or re-application pending sensor readout.
CROSS REFERENCE

This application claims priority to U.S. Provisional Patent Application No. 62/521,161 filed Jun. 16, 2017, the specification(s) of which is/are incorporated herein in their entirety by reference.

GOVERNMENT SUPPORT

This invention was made with government support under Grant No. R21 DK094065 awarded by NIH. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US18/38096 6/18/2018 WO 00
Provisional Applications (1)
Number Date Country
62521161 Jun 2017 US