Not Applicable
Computerized tomography (CT) involves the imaging of the internal structure of an object by collecting several projection images (“radiographic projections”) in a single scan operation (“scan”), and is widely used in the medical field to view the internal structure of selected portions of the human body. Typically, several two-dimensional projections are made of the object, and a three-dimensional representation of the object is constructed from the projections using various tomographic reconstruction methods. From the three-dimensional image, conventional CT slices through the object can be generated. The two-dimensional projections are typically created by transmitting radiation from a “point source” through the object, which will absorb some of the radiation based on its size, density, and atomic composition, and collecting the non-absorbed radiation onto a two-dimensional imaging device, or imager, which comprises an array of pixel detectors (simply called “pixels”). Such a system is shown in
In an ideal imaging system, rays of radiation travel along respective straight-line transmission paths from the source, through the object, and then to respective pixel detectors without generating scattered rays. However, in real systems, when a quantum of radiation is absorbed by a portion of the object, one or more scattered rays are often generated that deviate from the transmission path of the incident radiation. These scattered rays are often received by “surrounding” pixel detectors that are not located on the transmission path that the initial quantum of radiation was transmitted on, thereby creating errors in the electrical signals of the surrounding pixel detectors. Furthermore, in typical two-dimensional imagers, the radiation meant to be received by a pixel is often distributed by various components of the imager (e.g., scintillation plate), and received by surrounding pixels. Also, there is typically some electrical cross-talk in the electrical signals of the pixel detectors caused by the electrical circuitry that reads the array of pixel detectors. These two effects are often characterized by a point-spread function (PSF), which is a two-dimensional mapping of the amount of error caused in surrounding pixels by a given amount of radiation received by a central pixel. The surface of the PSF is similar to the flared shape of a trumpet output, with the greatest amount of error occurring in pixels adjacent to the central pixel. Each of these non-ideal effects creates spatial errors in the pixel data generated by the two-dimensional imager.
The scattered radiation causes artifacts (e.g., phantom images) and loss of resolution and contrast in the CT image slices produced by the radiation imaging system. The scattered radiation can also cause numerical errors in the image reconstruction algorithms (generally referred to as “CT number problems” in the art). All of the foregoing lead to image degradation. Accordingly, there is a need in the computerized tomography field to reduce the impacts of these spatial and temporal errors.
Several related inventions are disclosed by the present invention. The inventions may be used alone or in various combinations with one another. As used herein and in the claims, the action of obtaining an item, such as an estimate of a quantity, encompasses the action of receiving the item from an outside process, computer-program product, and/or system, and the action of generating the item by the claimed process, computer-program product, or system.
A first set of inventions relates to methods, computer-program products, and systems for estimating scattered radiation in a radiographic projection of an object using a symmetric kernel. The radiographic projection is generated by a two-dimensional imaging device irradiated by a radiation source spaced therefrom to provide a space for the object. The imaging device measures incident radiation at a plurality of pixels at corresponding locations on a two-dimensional surface, and the radiographic projection comprises a two-dimensional surface and a plurality of radiation values corresponding to a plurality of pixel locations of the imaging device. Each radiation value includes a primary radiation amount (e.g., component) representative of the radiation reaching the corresponding pixel along a direct path from the radiation source and a scattered radiation amount (e.g., component) representative of other radiation reaching the corresponding pixel.
An exemplary method embodiment according to the first set of inventions broadly comprises obtaining an estimate of a radiation amount associated with a first location of the radiographic projection, the radiation amount comprising one of a radiation amount emitted by the radiation source or the primary radiation amount at the first location. The exemplary method further comprises generating an estimate of scattered radiation at a plurality of locations of the radiographic projection using the estimate of the radiation amount at the first location and a kernel. The kernel generates a value representative of scattered radiation for a location of the radiographic projection in relation to the distance between that location and the first location. The kernel comprises at least two symmetric functions, each symmetric function having radial symmetry about the location of the first pixel location. The exemplary method further comprises storing the estimate of the scattered radiation in a computer-readable medium.
An exemplary computer-program product embodiment according to the first set of inventions broadly comprises instruction sets embodied on a computer-readable medium which, when executed by a processor of a computer system, cause the processor to implement the actions of the exemplary method embodiment. An exemplary system embodiment according to the first set of inventions broadly encompasses a radiation source, a two-dimensional imaging device, a processor, and a set of instructions stored on a computer-readable medium to implement actions that include the actions of the above exemplary method embodiment according to the first set of inventions.
A second set of inventions relates to methods, computer-program products, and systems for estimating scattered radiation in a radiographic projection of an object using an asymmetric kernel. The radiographic projection is generated by a two-dimensional imaging device irradiated by a radiation source spaced therefrom to provide a space for the object. The imaging device measures incident radiation at a plurality of pixels at corresponding locations on a two-dimensional surface, and the radiographic projection comprises a two-dimensional surface and a plurality of radiation values corresponding to a plurality of pixel locations of the imaging device. Each radiation value includes a primary radiation amount (e.g., component) representative of the radiation reaching the corresponding pixel along a direct path from the radiation source and a scattered radiation amount (e.g., component) representative of other radiation reaching the corresponding pixel.
An exemplary method embodiment according to the second set of inventions broadly comprises obtaining an estimate of a radiation amount associated with a first location of the radiographic projection, the radiation amount comprising one of a radiation amount emitted by the radiation source or the primary radiation amount at the first location. The exemplary method further comprises generating an estimate of scattered radiation at a plurality of locations of the radiographic projection using the estimate of the radiation amount at the first location and a kernel that generates a value representative of scattered radiation for a location of the radiographic projection in relation to the distance between that location and the first location, the kernel having a form that is asymmetric about the location of the first pixel location. The exemplary method further comprises storing the estimate of the scattered radiation in a computer-readable medium.
An exemplary computer-program product embodiment according to the second set of inventions broadly comprises instruction sets embodied on a computer-readable medium which, when executed by a processor of a computer system, cause the processor to implement the actions of the exemplary method embodiment. An exemplary system embodiment according to the second set of inventions broadly encompasses a radiation source, a two-dimensional imaging device, a processor, and a set of instructions stored on a computer-readable medium to implement actions that include the actions of the above exemplary method embodiment according to the second set of inventions.
A third set of inventions relates to methods, computer-program products, and systems for estimating scattered radiation in a radiographic projection of an object using two or more kernels having varied characteristics. Each kernel may have a symmetric form or an asymmetric form. The radiographic projection is generated by a two-dimensional imaging device irradiated by a radiation source spaced therefrom to provide a space for the object. The imaging device measures incident radiation at a plurality of pixels at corresponding locations on a two-dimensional surface, and the radiographic projection comprises a two-dimensional surface and a plurality of radiation values corresponding to a plurality of pixel locations of the imaging device. Each radiation value includes a primary radiation amount (e.g., component) representative of the radiation reaching the corresponding pixel along a direct path from the radiation source and a scattered radiation amount (e.g., component) representative of other radiation reaching the corresponding pixel.
An exemplary method embodiment according to the third set of inventions broadly comprises obtaining a plurality of estimates of a radiation amount associated at a corresponding plurality of locations of the radiographic projection, each radiation amount comprising one of a radiation amount emitted by the radiation source or the primary radiation amount at the corresponding location. The exemplary method further comprises generating an estimate of scattered radiation at a plurality of locations of the radiographic projection using an estimate of the radiation amount at a first location of the radiographic projection with a first kernel that generates a value representative of scattered radiation for a location of the radiographic projection in relation to the distance between that location and the first location, and further using an estimate of the radiation amount at a second location of the radiographic projection with a second kernel that generates a value representative of scattered radiation for a location of the radiographic projection in relation to the distance between that location and the second location. Each kernel comprises a form that relates its value to the distance, wherein the first and second kernels have different forms. The form of each kernel may be symmetric or asymmetric. The exemplary method further comprises storing the estimate of the scattered radiation in a computer-readable medium.
An exemplary computer-program product embodiment according to the third set of inventions broadly comprises instruction sets embodied on a computer-readable medium which, when executed by a processor of a computer system, cause the processor to implement the actions of the exemplary method embodiment. An exemplary system embodiment according to the third set of inventions broadly encompasses a radiation source, a two-dimensional imaging device, a processor, and a set of instructions stored on a computer-readable medium to implement actions that include the actions of the above exemplary method embodiment according to the third set of inventions.
A fourth set of inventions relates to methods, computer-program products, and systems for estimating scattered radiation in at least one shaded or partially shaded region of a radiographic projection. The estimate may be used to correct the radiographic projection or used to adjust the estimates of scattered radiation generated according to other inventions of the present application. The radiographic projection is generated by a two-dimensional imaging device irradiated by a radiation source spaced therefrom to provide a space for the object. The imaging device measures incident radiation at a plurality of pixels at corresponding locations on a two-dimensional surface, and the radiographic projection comprises a two-dimensional surface and a plurality of radiation values corresponding to a plurality of pixel locations of the imaging device. Each radiation value includes a primary radiation amount (e.g., component) representative of the radiation reaching the corresponding pixel along a direct path from the radiation source and a scattered radiation amount (e.g., component) representative of other radiation reaching the corresponding pixel. The radiographic projection has at least one region that has been at least partially shaded by a second object such that the region is irradiated by the penumbra of the source.
An exemplary method embodiment according to the fourth set of inventions broadly comprises fitting a mathematical form to a plurality of radiation values of the at least one region of the radiographic projection that has been at least partially shaded by a second object such that the region is irradiated by the penumbra of the source. The exemplary method further comprises generating an estimate of scattered radiation in the at least one region from the fitted mathematical form, and storing the estimate of the scattered radiation in a computer-readable medium.
An exemplary computer-program product embodiment according to the fourth set of inventions broadly comprises instruction sets embodied on a computer-readable medium which, when executed by a processor of a computer system, cause the processor to implement the actions of the exemplary method embodiment. An exemplary system embodiment according to the fourth set of inventions broadly encompasses a radiation source, a two-dimensional imaging device, a processor, and a set of instructions stored on a computer-readable medium to implement actions that include the actions of the above exemplary method embodiment according to the fourth set of inventions.
A fifth set of inventions relates to methods, computer-program products, and systems for estimating scattered radiation in a radiographic projection caused by the housing of an imaging device. These inventions are more fully claimed in the attached claims and described in the detailed description section.
The above inventions and other inventions of the present application, and additional embodiments thereof, are described in the Detailed Description with reference to the Figures. In the Figures, like numerals may reference like elements and descriptions of some elements may not be repeated.
System Overview.
System 100 further comprises a gantry 150 that holds radiation source 110, imaging device 120, and fan-blade drives 135 and 145 in fixed or known spatial relationships to one another, a mechanical drive 155 that rotates gantry 150 about an object disposed between radiation source 110 and imaging device 120, with the object being disposed between fan blades 130 and 140 on the one hand, and imaging device 120 on the other hand. The term gantry has a broad meaning, and covers all configurations of one or more structural members that can hold the above-identified components in fixed or known (but possibly movable) spatial relationships. For the sake of visual simplicity in the figure, the gantry housing, gantry support, and fan-blade support are not shown. These components do not form part of the present inventions. Also not shown are: a “bow tie” filter for radiation source 110, and a support table for the object (i.e., an object support member), neither of which form a part of the present inventions related to system 100. Additionally, system 100 further comprises a controller 160 and a user interface 165, with controller 160 being electrically coupled to radiation source 110, mechanical drive 155, fan-blade drives 135 and 145, imaging device 120, and user interface 165. User interface 165 provides a human interface to controller 160 that enables the user to at least initiate a scan of the object, and to collect measured projection data from the imaging device. User interface 165 may be configured to present graphic representations of the measured data.
In imaging system 100, gantry 150 is rotated about the object during a scan such that radiation source 110, fan blades 130 and 140, fan-blade drives 135 and 145, and two-dimensional imaging device 120 circle around the object. More specifically, gantry 150 rotates these components about a scan axis, as shown in the figure, where the scan axis intersects the projection line, and is typically perpendicular to the projection line. The object is aligned in a substantially fixed relationship to the scan axis. The construction provides a relative rotation between the projection line on the one hand and the scan axis and an object aligned thereto on the other hand, with the relative rotation being measured by an angular displacement value θ. Mechanical drive 155 is mechanically coupled to gantry 150 to provide rotation upon command by controller 160. The two-dimensional imaging device comprises a two-dimensional array of pixels that are periodically read to obtain the data of the radiographic projections. Imaging device 120 has an X-axis and a Y-axis, which are perpendicular to each other. Imaging device 120 is oriented such that its Y-axis is parallel to the scan axis. For this reason, the Y-axis is also referred to as the axial dimension of imaging device 120, and the X-axis is referred to as the trans-axial dimension, or lateral dimension, of device 120. The X-axis is perpendicular to a plane defined by the scan axis and the projection line, and the Y-axis is parallel to this same plane. Each pixel is assigned a discrete X-coordinate (“X”) along the X-axis, and a discrete Y-coordinate (“Y”) along the Y-axis. In typical implementations, the size of the array is 1024 pixels by 768 pixels, measuring approximately 40 cm by 30 cm, with the longer dimension of the array being oriented parallel to the X-axis. As used herein, the discrete X-coordinates start at −Xpix/2 and end at Xpix/2 (e.g., Xpix=1024), and the discrete Y-coordinates start at −Ypix/2 and end at Ypix/2 (e.g., Ypix=768). A smaller number of pixels are shown in the figure for the sake of visual clarity. The imaging device may be centered on the projection line to enable full-fan imaging of the object, may be offset from the projection line to enable half-fan imaging of the object, or may be movable with respect to the projection line to allow both full-fan and half-fan imaging of objects. As an example of a half-fan configuration, the imaging device may be offset from the center by 16 centimeters in its X-dimension when the imaging device has a span in the X dimension of 40 centimeters.
Referring back to
Controller 160 comprises a processor, an instruction memory for storing instruction sets that direct the operation of the processor, a data memory that stores pixel and other data values used by the present inventions implemented by the imaging system, and an I/O port manager that provides input/output data exchange between processor 160 and each of radiation source 110, mechanical drive 155, fan-blade drives 135 and 145, and imaging device 120. The instruction memory and data memory are coupled to the main processor through a first bidirectional bus, and may be implemented as different sections of the same memory device. Because of the large amount of data provided by the two-dimensional imaging device, the I/O port manager is preferably coupled to the main processor through a second bidirectional bus. However, the I/O port manager may be coupled to the main processor by way of the first bidirectional bus. The operation of the processor is guided by a group of instruction sets stored in the instruction memory, which is an exemplary form of computer-readable medium. Some of these instruction sets may direct the processor to generate estimates of scattered radiation in one or more of the projections. Additional instruction sets may direct the processor to correct the projections according to scatter-correction methods disclosed by the present application, or may direct the processor to store the raw projection data to a computer-readable medium, from which it may be exported to another processor that performs the correction. Some exemplary instruction sets are described below in greater detail.
In exemplary imaging system 100 shown in
Sources of Radiation Scattering. In typical cone-beam systems, there are generally four possible components that can scatter the radiation: the bow-tie filter (if present), the object being scanned, an anti-scatter grid (if present), and the detector housing.
After Ib0 passes through the object, a first portion of it is scattered in various directions as a scatter profile Ios, while a second portion of it continues on toward the cover of imaging device 120 as profile Io0, but at an attenuated level. Several embodiments of inventions of the present application are used to generate estimates of the Ios profile, as described below in greater detail. The scattered radiation profile Ib0 also passes through the object, with a portion being absorbed, another portion being re-scattered, and the remaining portion being unaffected. The resulting scattered radiation from the bow-tie filter, as it exits the object, may be represented by the profile I′bs. Profile I′bs may be estimated by various computer-based models given the Ibs profile and an approximate phantom model of the object (e.g., a body of uniform material having approximately the same shape as the object, and having scatter and absorption characteristics near the average characteristics of the object). The scattered radiation profiles I′bs and Ios are additive.
To reduce the scattered radiation before it reaches imaging device 120, a scatter-absorbing grid (so-called “anti-scatter” gird) may be disposed between the object and imaging device 120. The grid generally comprises an array of elongated passageways having generally rectangular cross sections, with wider openings at the ends facing imaging device 120. The passageways are arranged to allow unobstructed paths for radiation that follow the straight-line paths from the source 110 to imaging device 120, and to absorb substantial amounts of the scattered radiation, which does not follow the straight-line paths. The effect of the grid is to substantially pass the non-scattered radiation Io0 from the object to imaging device 120, while absorbing substantial portions of the scatter radiation I″bs and Ios. As an advantage of the grid, the resulting scattered radiation that reaches the cover of imaging device 120 is substantially reduced; it may be represented by I″bs and I′os. As a disadvantage, the grid generally obscures portions of the imaging device 120 due to the finite wall thickness of the grid's passageways.
After the object radiation profile Io0 passes through the detector housing, a first portion of it is scattered in various directions as profile Ids, while a second portion of it continues to the pixel detectors of imaging device 120, but at an attenuated level, as profile Id0. The scattered radiation profiles I″bs and I′os also encounter some further scattering by the cover, resulting in scatter profiles I′″bs and I″os. Several embodiments of inventions of the present application are used to estimate the scattering effects of the cover so that it can be removed from the measurement. The scattering from a detector housing can sometimes be negligible, and can thus be ignored.
Several embodiments of the present invention are directed to correcting for the scattering caused by the object and the detector housing. For these embodiments, the simpler imaging chain shown in
Correction of Scatter From the Detector Housing. If scattering from the detector housing is not considered to be negligible, it may be corrected according to the following embodiments of the present inventions.
Our next task is to find a relationship between profiles Im and I1 that will allow an estimate of profile I1 to be generated from profile Im. For each pixel on the imaging device, we can allocate a pencil beam of radiation having incident radiation I1, and a primary beam value Ip. The primary beam value Ip is the value of the pencil beam that reaches the pixel after being attenuated and scattered by the detector housing. The measured value Im at the pixel location comprises the primary value Ip and the scatter from other pencil beams. For a detector housing having uniform construction, Ip is a constant fraction of I1, and can be related as Ip(x,y)=η·I1(x,y), for η slightly less than 1, such as η=0.9. A computer-based Monte-Carlo simulation of a pencil-beam of radiation interacting with the detector housing at a right angle was performed. The two-dimensional distribution of the scattered photons from the pencil beam is shown in
PScF(r)=a1·e−a
where a1 through a5 are fitting parameters. The fitting result is shown in
As indicated above, the incident radiation I1 can be modeled as an array of pencil beams, with the measured value Im at the pixel location comprising the primary value Ip and the scatter from other pencil beams. That is, the radiation received by the imaging device 120 at any point (x,y), which is Im(x,y), is equal to the sum of Ip(x,y) and the scatter contributions from the other pencil beams. This may be written mathematically as:
The latter quantity can be identified as the two-dimensional convolution of Ip and PScF multiplied by SPR, which can be denoted as SPR·Ip(x,y){circle around (x)}PScF(x,y). Using this, we can write:
Im(x,y)=Ip(x,y)+SPR·Ip(x,y){circle around (x)}PScF(x,y). [3]
As is known in the mathematics art, the Fourier transform of two convolved functions is equal to the multiplication of their Fourier transforms. Thus, taking the Fourier transform of each side of equation [3], we have:
ℑ{Im(x,y)}=ℑ{Ip(x,y)}+SPR·ℑ{Ip(x,y)}·ℑ{PScF(x,y)}
which may be rewritten as:
The inverse Fourier transform of equation [4] may be taken to obtain I1(x,y) as follows:
The denominator can be readily pre-computed, and Ip(x,y) can be generated by a Fourier transform of Im(x,y), followed by a division operation with the pre-computed denominator, and then followed by an inverse Fourier transform of the resulting division operation. This is generally faster than computing the convolution. I1(x,y) may then be generated as I1(x,y)=Ip(x,y)/η. But since the η factor also exists in the air scan (I0) and will be cancelled out during reconstruction, and does not affect object scatter estimation, we can virtually neglect it and its actual value.
A simpler approach can be taken by approximating Ip(x,y) in the convolution produce in equation [3] with Im(x,y) (or a fraction thereof) as follows:
Im(x,y)=Ip(x,y)+SPR·Im(x,y){circle around (x)}PScF(x,y), [6]
which can be rewritten as:
Ip(x,y)=[Im(x,y)−SPR·Im(x,y){circle around (x)}PScF(x,y)]. [7]
I1(x,y) may then be generated as I1(x,y)=Ip(x,y)/η. The convolution product may be generated by multiplying the Fourier transfer of Im(x,y) with a precomputed Fourier transform of PScF(x,y), and thereafter taking the inverse Fourier transform of the multiplication product. As a practical matter, the calibration parameter SPR may be spatially variant. The variation may be caused by non-uniformities in the thicknesses of the housing's topmost layers, and/or variations in the thickness from the housing's top surface to the scintillator layer. In such a case, SPR can be modeled as a matrix, rather than a scalar, and the multiplication with the convolution in equation [7] becomes an inner product.
In typical implementations, an estimate of the scatter component {SPR·Ip(x,y){circle around (x)}PScF(x,y)} is generated on coarse grid of super pixels, where each super pixel represents a small group of pixels values and where SPR (in the case of it being a matrix) and Ip(x,y) are each generated as an average of values from its group. Ip(x,y) may be estimated as Im(x,y), a fraction thereof, or estimated by either of equations [5] or [7]. After the scatter component is generated on the coarse grid of super pixels, it may be interpolated/extrapolated to provide scatter values for all of the real pixels. A corrected radiographic projection may then be generated as a difference between Im(x,y) and the scatter component, divided by η, or as a truncated difference between Im(x,y) and the scatter component, divided by η. The truncated difference may comprise generating the ratio of the scatter component to Im(x,y), processing the ratio by filtering its values over the spatial domain and/or limiting its values of the ratio to a range (such 0 to 0.8), and then multiplying Im(x,y) by one minus the processed ratio. The use of super pixels and generating average values for use therewith are described below in greater detail. The full grid may also be used in generating the scatter component and Ip(x,y).
In the above ways, the radiation profile I1 incident on the detector housing can be generated from the measured radiation profile Im. From there, the I1 can be used in the estimation of Io0, I″bs, and I′os in the imaging chain shown in
Radiation Scattering in the Object. Scattered radiation profiles from the object are material- and geometry-dependent, and, hence, are significantly more complicated than the scattered radiation profiles generated from the detector housing described above. Prior art methods have assumed symmetric point-scatter functions for the object, with the functions being based on responses through uniform slabs. One set of inventions of the present application relates to a new form of a symmetric point-scatter function that provides improved projection-correction results. Another set of inventions of the present application relates to constructing two or more instances of the new symmetric form for two or more respective ranges of object thickness, and applying the instances of the new symmetric form to regions of a radiographic projection according to a measure of the object thickness in the regions. Yet another set of inventions of the present application relates to a new class of asymmetric point-scatter functions that provide improved projection-correction results relative to symmetric point-scatter functions. Yet another set of inventions of the present application relates to constructing two or more instances of the new asymmetric form for two or more respective ranges of object thickness, and applying the instances of the new asymmetric form to regions of a radiographic projection according to a measure of the object thickness in the regions. Each of these invention sets is discussed below in greater detail, starting with the new form of a symmetric point-scatter function.
Symmetric Point-Scatter Functions. In contrast to prior art approaches, one invention set of the present application encompasses symmetric point-scatter functions (“kernels”) that comprise the sum of two or more symmetric functions. In preferred embodiments, the central portion of the scatter distribution (near the pencil-beam axis) is primarily modeled by one of the functions, while the tail portions are primarily modeled by the other symmetric function(s). In one embodiment, each function comprises a Gaussian function, and the kernel comprises the form:
where x and y are the location coordinates on the pixel array of the scattered radiation modeled by Sk(*), xm and yn are the coordinates of the location where the pencil beam terminates on the pixel array, I0 is the initial radiation intensity of the pencil beam before striking the object, Ibp is the scatter-free radiation intensity of the pencil beam after passing through the object and as measured at the coordinates xm and yn on the pixel array, where A, B, α, β, σ1, and σ2 are the fitting parameters, and where r2=(x−xm)2+(y−yn)2 (r is the radial distance from point (x,y) to point (xm, yn)). Ibp does not have scattered radiation in it, and is called the primary radiation of the object, or beam primary signal, because it represents information about the region of the object traversed by the pencil-beam, and because its value is used by the tomographic reconstruction process to construct 3-D and images of the object. Constant A and the first two factors of equation [8] primarily account for the overall amount of scattering along the pencil beam and for beam hardening effects. They also normalize kernel Sk(*) to Ibp. The last term of equation [8] primarily accounts for the spatial distribution of the scatter. It comprises two Gaussian functions, both being functions of r2=(x−xm)2+(y−yn)2.
The kernel form of equation [8] is normalized to Ibp. It provides the ratio of scattered radiation received at point (x,y) to the primary radiation Ibp received at point (xm,yn), and is dimensionless. The actual scattered radiation caused by the pencil beam is equal to the quantity Ibp·Sk(*). The kernel form of equation [8] may instead be normalized to the incident radiation I0 by multiplying it with the quantity Ibp/I0, which may be easily done by adding 1 to the value of α. This normalized form may be called SkIo(*), and the actual scattered radiation caused by the pencil beam would be equal to the quantity I0·SkIo(*). SkIo(*) has the same form of equation [8] except for a different value for α. Inventions of the present application may be practiced with each of normalized kernel forms. In addition, each of the normalized kernels SkIo(*) and Sk(*) may comprise one or more symmetric functions, each of which may comprise a Gaussian function and/or other function.
Parameters A, B, σ1, and σ2 may be chosen so that the central portion of the scatter distribution is primarily modeled by one of the Gaussian functions, while the tail portions are primarily modeled by the other Gaussian function. For exemplary uses of Sk(*), it will be convenient to group the first two terms and the constant A together as an amplitude function SA(I0, Ibp), which is a function of I0 and Ibp, and to represent the third term as a form factor SFF(x−xm, y−yn), which is only a function of the coordinates x,y and the beam coordinates xm,yn:
Sk(x−xm,y−yn,I0,Ibp)=SA(I0,Ibp)·SFF(x−xm,y−yn). [8A]
For this form, both I0 and Ibp are functions of xm and yn, which means that SA(I0, Ibp) is a function of xm and yn for this form.
As the parameters are different for each of the forms shown in
For imaging devices 120 that have small dimensions relative to their distance to the object, the scatter profile Ios may be generated from a scatter kernel Sk(*) as follows:
As equation [9] is based from equation [8A], both Ibp and SA(I0, Ibp) are functions of xm and yn. The latter part of equation [9] may be recognized as the two-dimensional convolution of the product [Ibp·SA(*)] with SFF(*), giving:
Ios(x,y)=[Ibp(x,y)·SA(I0,Ibp)]{circle around (x)}SFF(x,y), [10]
where each of Ibp and SA(I0, Ibp) are now functions of x and y for the convolution form. Since the Fourier transform of two convolved functions is equal to the multiplication of their Fourier transforms, the profile Ios can be generated from the Fourier transforms as follows:
Ios(x,y)=ℑ−1{ℑ{Ibp(x,y)·SA(I0,Ibp)}·ℑ{SFF(x,y)}} [11]
where ℑ{*} denotes a Fourier transform operation, and ℑ−1{*} denotes an inverse Fourier transform. In equations [10] and [11], each of I0, Ibp, and SA(I0, Ibp) is a function of coordinates x and y (instead of the pencil beam coordinates xm and yn). In practice, the summation of equation [9] and the convolution of equation [10] are done over the finite area of the pixel array, which means that contributions from pencil beams that terminate outside of the array are not reflected in Ios(x,y). This can affect the scatter values at the edges of the array, and ways for compensating for finite-area summation are described below. It should be said that this is not a problem if the radiation shadow of the object falls within the pixel array. In this case, there is no scattering contribution from pencil beams that terminate outside of the pixel array.
The Fourier transform of form factor SFF(x,y) has primarily low-frequency components because of its Gaussian form. As is known in the mathematics art, the Fourier transform of a Gaussian is another Gaussian, and Gaussian forms have primarily low-frequency components. Because of the summation in equation [9] and convolution in equation [10], the scattered radiation profile Ios(x,y) is relatively smooth (i.e., slowly varying) over the x,y domain, and its Fourier transform has primarily low-frequency components. Accordingly, the Fourier transforms in equation [11] can be generated from a decimated set of data (e.g., [Ibp(x,y)·SA(I0, Ibp)]) on a coarse grid, which considerably speeds the generation of the Fourier transform. As an example, the values of [Ibp(x,y)·SA(I0, Ibp)] associated with a 1024 by 768 pixel array for a human torso may be decimated (reduced down to) a 104 by 30 array of “super pixels”, where the value of each super pixel represents the values of [Ibp(x,y)·SA(I0, Ibp)] over a 9-by-25 block or 10-by-26 block of real pixels. Each super pixel may have its location at the center of its respective block, and may be generated from pixel values of [Ibp(x,y)·SA(I0,Ibp)] within the block, such as by generating an average of all or a portion of the values. Here, the term “average” has broad meaning where the “average” can be computed as a mean, a median, a strict average, or as any other conventional central tendency value, and may include truncating the pixel values (i.e., removing pixel values at the distal ends of the data distribution). The Fourier transform of the form factor, ℑ{SFF(x,y)}, may be generated by using the values of the SFF(x−xm, y−yn) at the grid locations of the super pixels. The results of the inverse Fourier transform from equation [11] may be computed for the grid locations of the super pixels, and the results of the inverse Fourier transform may be interpolated/extrapolated onto the real pixel array. The Fourier transforms and inverse Fourier transform used herein may be implemented by any of the known discrete Fourier transform processes. In addition, the Fourier transform of the form factor ℑ{SFF(x,y)} need only be generated once, and may be used for all of projections of the scan.
The array of super pixel blocks may be centered within the pixel array, leaving a margin of unused pixels around the array. This margin, in combination with the extrapolation of the inverse Fourier transform data at the edges of the full array, can be used to overcome loss of information caused by the fact that scatter contributions from the pencil beams that terminate outside the area of the pixel array are not reflected in the values of Ios(x,y) near the edges of the pixel array. As another approach of overcoming the loss of information, the Fourier transforms may be generated on an expanded array of super pixels that comprises the above-described array of super pixels for the interior of the pixel array plus a band of “dummy” super pixels for the margin of unused pixels around the pixel array, and also optionally for areas outside of the pixel array surrounding the array. Values of [Ibp(x,y)·SA(I0,Ibp)] at the super pixels may be extrapolated onto the dummy super pixels, the Fourier transforms and inverse Fourier transform may be generated and processed using the expanded array, and the results of the inverse Fourier transform may be interpolated to the full pixel array.
Referring briefly back to the imaging chain of
I1(x,y)=Io0(x,y)+[Ibp(x,y)·SA(I0,Ibp)]{circle around (x)}SFF(x,y). [12]
In this use of the symmetric kernel, the coordinates x and y are known, and I0(x,y) can be measured by a calibration step. However, Ibp(x,y) is not known; in fact, Ibp(x,y) is the profile Io0 that is to be estimated from the I1(x,y). An iterative approach may be used to determine Io0(x,y) (and Ibp(x,y)) from equation [12]. Specifically, an estimated value IEST for Io0(x,y) (and Ibp(x,y)) may be used in the convolution term of equation [12], and a more refined estimate of Io0(x,y) may be generated as the difference between I1(x,y) and the convolution term as follows:
Io0(x,y)=I1(x,y)−[IEST(x,y)·SA(I0,IEST)]{circle around (x)}SFF(x,y). [12A]
The iterative approach is illustrated using one instance of the scatter kernel (an iterative approach using multiple instances of the scatter kernel will be illustrated later). An initial estimate I0o0(x,y) may be generated for Io0(x,y) and used to generate an initial value I1EST(x,y)=I0o0(x,y) and an initial value SA1(I0,I1EST) for the amplitude function SA(I0,IEST), where the superscripts denote the iteration number k=0, 1, 2, . . . K. The initial estimate I0o0(x,y) may be a fraction of I1(x,y), such as I1(x,y)/2, or the estimate for I1o0(x,y) generated for a prior projection in the object scan. An initial estimate of the product [IEST(x,y)·SA(I0,IEST)] may be generated as [I1EST(x,y)·SA1(I0,IEST)]. Next, a first iteration estimate I1o0(x,y) may be generated for Io0(x,y) by applying equation [12A] as follows:
I1o0(x,y)=I1(x,y)−[I1EST(x,y)·SA1(I0,I1EST)]{circle around (x)}SFF(x,y), [13]
where the convolution may be performed using Fourier transforms as described above. More refined estimates of IEST(x,y) and SA(I0, IEST) for the convolution term may then be generated from I1o0(x,y), and equation [13] may be reiterated to further refine the estimate for Io0(x,y). The following iteration approach may be used for subsequent iterations k=2 to K for generating refined estimates Iko0(x,y):
IkEST(x,y)=0.5*Ik-1o0(x,y)+0.5*Ik-2o0(x,y) [14A]
Iko0(x,y)=I1(x,y)−[IkEST(x,y)·SAk(I0,IkEST)]{circle around (x)}SFF(x,y) [14B]
Equation [14A] provides some damping on the rate of change of IkEST(x,y) and SAk(I0,IkEST) between the iterations compared to the selection of IkEST(x,y)=Ik-1o0(x,y) and SAk(I0,IkEST)=SA(I0, Ik-1o0), and minimizes the chances of the values of IkEST(x,y) and SAk(I0,IkEST) oscillating during the iterations. An equal weighting factor of 0.5 has been used in equation [14A], but different weighting factors may be used (at least the first weighting factor should be non-zero and both weighting factors should sum to 1). Equations [13] and [14] may be applied to the real pixel array, or to the super pixel array. In the latter case, the super pixel values for Iko0(x,y) and I1(x,y) may be generated as averages in the manner described above for the quantity [Ibp(x,y)·SA(I0, Ibp)], and, if the Fourier transform process has been used to generate [IkEST(x,y)·SAk(I0, IkEST)]{circle around (x)}SFF(x,y) with decimated data, the results of the inverse Fourier transform do not need to be interpolated/extrapolated. The iterations may be continued until the change between iteration values of [IkEST(x,y)·SAk(I0,IkEST)] and [Ik-1EST(x,y)·SAk-1(I0,Ik-1EST)] is below a desired (e.g., set) amount for a desired (e.g., set) number of pixels or super pixels, or until the change between iteration values of Iko0(x,y) and Ik-1o0(x,y) is below a desired amount for a desired number of pixels or super pixels. Additional criteria or other criteria may be used to determine when to stop the iterations, such as monitoring an average measure of the changes over the pixels or super pixels, and setting an upper limit to the number of iterations. If the iterations have been carried out on the super pixels, then one application of equation [14B] using the real pixel array may be used to generate Iko0(x,y) values over the real pixel array after the last iteration (k=K). For this, the convolution term may be generated on the super pixel array and then interpolated and extrapolated onto the real pixel array. The scattered radiation at any iteration, including the last iteration k=K, may be generated as:
Ikos(x,y)=[IkEST(x,y)·SAk(I0,IkEST)]{circle around (x)}SFF(x,y) [14C-1]
or as:
Ikos(x,y)=[Iko0(x,y)·SAk(I0,Iko0)]{circle around (x)}SFF(x,y) [14C-2]
Another exemplary iteration approach for subsequent iterations k=2 to K is as follows:
with [I1EST(x,y)·SA1(I0,I1EST)]=[I0o0(x,y)·SA(I0, I0o0)]. Equation [15A] generates a scatter estimate for the current iteration k as a weighted average of the scatter as generated from the most recent estimate of Io0 (which is Ik-1o0(x,y)) and the scatter used in the last iteration. Like Equation [14A], equation [15A] provides some damping on the rate of change of [IkEST(x,y)·SAk(I0,IkEST)] between the iterations, and minimizes the chances of the values [IkEST(x,y)·SAk(I0,IkEST)] oscillating during the iterations. An equal weighting factor of 0.5 has been used in equation [15], but different weighting factors may be used (at least the first weighting factor should be non-zero and both weighting factors should sum to 1). Equations [13] and [15] may be applied to the real pixel array, or to the super pixel array. In the latter case, the super pixel values for Iko0(x,y) and I1(x,y) may be generated as averages in the manner described above for the quantity [Ibp(x,y)·SA(I0, Ibp)], and, if the Fourier transform process has been used to generate [IkEST(x,y)·SAk(I0, IkEST)]{circle around (x)}SFF(x, y) with decimated data, the results of the inverse Fourier transform do not need to be interpolated/extrapolated. The above possible criteria for determining when to end the iterations of equation [14] may be used to determine when to end the iterations of equation [15]. If the iterations have been carried out on the super pixels, then one application of equation [15B] using the real pixel array may be used to generate Iko0(x,y) values over the real pixel array. For this, the convolution term may be generated on the super pixel array and then interpolated and extrapolated onto the real pixel array. The scattered radiation at any iteration, including the last iteration k=K, may be generated by the above equations [14C].
In equations [14B] and [15B], the term [IkEST(x,y)·SAk(I0, IkEST)]{circle around (x)}SFF(x, y) is preferably generated by the Fourier transform method, but can be generated by a full-space convolution using equation [10] or by a full-space summation using equation [9].
Skew Correction. The accuracy of equation [9] degrades somewhat at the edges of the imaging area in the case where the dimensions of an imaging device 120 are not small relative to distance between the imaging device and the object. This is because the radiation pencil beams at the edges make oblique angles to the surface of the imaging device 120, up to 9° in typical systems with imaging device 120 centered about the projection axis, and up to 14.5° in typical systems with device 120 offset from the projection axis for half-fan scanning. This causes the scattered radiation to strike the imaging device 120 at skewed angles, as illustrated in
d2/[d+tan(θxm)·(x−xm)+tan(θyn)·(y−yn)]2.
With the above observations, the following correction factor Z(x−xm, y−yn, θp, θxm, θyn) may be used to remove a substantial portion of the skewing effects:
where cos(θp)=D/[D2+xm2+yn2]1/2, tan(θyn)=xm/D, tan(θyn)=yn/D.
Correction factor Z(x−xm, y−yn, θp, θxm, θyn) is applied by multiplying it with Sk(x−xm, y−yn, Ibp) in equation [9]. Unfortunately, the form of Z(*) in equation [16] does not lead to a ready convolution form like equation [10]. This is because tan(θxm) and tan(θyn), which multiply the convolution differences (x−xm) and (y−yn) and change in value with xm and yn, cannot be regrouped with [Ibp(x,y)·SA(I0, Ibp)]. One approach is to use an approximate correction factor Z′(θp)=cos3(θp), which removes the mixed products and the dependence on x−xm, y−yn, θxm, and θyn. The approximate correction factor Z′(θp) can be grouped with [Ibp(x,y)·SA(I0, Ibp)] in equation [9], and leads to the following modified form of the convolution equation:
where SA′(I0, Ibp)=Z′(θxy)·SA(I0, Ibp), and where the argument to Z′(*) is now θxy instead of θp because of the convolution form (cos(θxy)=D/[D2+x2+y2]1/2). The generation of Ios(x,y) using the Fourier transforms of equation [11] then directly follows using SA′(I0,Ibp) in place of SA(I0,Ibp), as follows:
Ios(x,y)=ℑ−1{ℑ{Ibp(x,y)·SA′(I0,Ibp)}·ℑ{SFF(x,y)}}. [11A]
The iteration approaches illustrated by equations [13]-[15] also directly follow using IEST in place of Ibp and SA′(I0, IEST) in place of SA(I0, IEST).
To provide another approximate correction factor that can lead to a convolution form, Z(x−xm, y−yn, θp, θxm, θyn) may be linearized to provide:
This enables Ios(x,y) to be generated from the following sum of three convolutions:
where θp, θxm, θyn have been replaced by θxy, θx, θy, respectively, because of the convolution form (tan(θx)=x/D, tan(θy)=y/D). Ios(x,y) may be generated by Fourier transforms by taking the Fourier transforms of each of the bracketed terms (6 in total), multiplying the transforms corresponding to the convolution pairs to generate three multiplication products, summing the three multiplication products together, and taking the inverse Fourier transform of the summation. The iteration approaches illustrated by equations [13]-[15] also directly follow using IEST in place of Ibp, and using SA′(I0, IEST) in place of SA(I0, IEST).
Multiple Symmetric Kernel Forms for Different Thickness Ranges. As indicated above, another invention set of the present application relates to constructing two or more instances of the new symmetric form for two or more respective ranges of object thickness, and applying the instances of the new symmetric form to regions of a radiographic projection according to a measure of the object's thickness in the regions. An exemplary embodiment of the invention is illustrated with the kernel form instances Sk1(*), Sk2(*), and Sk3(*) and their corresponding thickness functions T1(*), T2(*), and T3(*) previously described with respect to
The summation-based equation [9] for Ios(x,y) may be expanded to include three separate double summations, one for each of the kernel instances: Sk1(*), Sk2(*), and Sk3(*). Each double summation may be only over the group of pixels covered by the kernel of the double summation. The expanded summation-based equation is as follows:
As equation [17] is based from equation [8A], both Ibp and SA(I0, Ibp) are functions of xm and yn. Any of the skew correction factors Z(*), Z′(*), or Z″(*) may be applied to equation [17] by multiplying it with each of the kernel instances. To obtain the corresponding convolution form for Ios(x,y), each kernel instance may be written as the product of its amplitude function and its form factor, e.g., Sk1(x−xm, y−yn, Ibp)=SA,1(I0, Ibp)·SFF,1(x, y), and each amplitude function may be set to a value of zero for pixels that are not covered by its kernel instance. For example, amplitude function SA,1(I0, Ibp) for Sk1(*) has zero values for the pixel locations in Groups 2 and 3, and non-zero values for the pixels in Group 1; amplitude function SA,2(I0,Ibp) for Sk2(*) has zero values for the pixel locations in Groups 1 and 3, and non-zero values for the pixels in Group 2, etc. With that format of the amplitude functions, the convolution form is readily identified as:
where each of Ibp, SA,1(I0, Ibp), SA,2(I0, Ibp), and SA,3(I0, Ibp) are now functions of x and y for the convolution form. If there are no pixels or super pixels in the third group, then the convolution [Ibp(x,y)·SA,3(I0,Ibp)]{circle around (x)}SFF,3(x, y) may be omitted from equation [18] and other similar equations provided below. Skew correction factors Z′(θp) may be applied to equation [18] by multiplying it with each of the amplitude functions, as was done with equation [10A]. The application of skew correction factors Z″(*) to equation [18] follows a similar form to that of equation [10B], but leads to the summation of nine convolution terms.
Since the Fourier transform of two convolved functions is equal to the multiplication of their Fourier transforms, the profile Ios from equation [18] can be generated from the Fourier transforms as follows:
Equation [19] is typically applied on the array of super pixels rather than the array of real pixels, using the same super pixel construction processes as described above with regard to equation [11]. In this regard, an average value of Ibp over the pixels covered by a super pixel may be used to determine which kernel instance to use for the super pixel. The Fourier transform of the form factors ℑ{SFF,1(x,y)}, ℑ{SFF,2(x,y)}, and ℑ{SFF,3(x,y)} may be generated by using the values of the form factors at the grid locations of the super pixels; they may be generated once, and may be used for all of the projections of the scan. The results of the inverse Fourier transform from equation [19] may be computed for the grid locations of the super pixels, and the results of the inverse Fourier transform may be interpolated/extrapolated onto the real pixel array in any of the above-described manners. The Fourier transforms and inverse Fourier transform used herein may be implemented by any of the known discrete Fourier transform processes. If there are no pixels or super pixels in the third group, then the Fourier product ℑ(Imn·SA,3(I0,Imn))·ℑ(SFF,3(x,y)) may be omitted from equation [19], and other similar equations provided below.
Using equation [18], the corresponding form of equation [12A] for generating an estimate of Io0(x,y) from I1(x,y) is as follows:
An iteration approach similar to equations [13]-[15] may used to generate an estimate of Io0(x,y). An initial estimate for I0o0(x,y) may be generated for Io0(x,y), such as using a fraction of I1(x,y), and used for IEST(x,y) in equation [20]. Each pixel value of the initial estimate I0o0(x,y) (IEST(x,y)) may be compared with the intensity values IA and IB to determine which kernel instance the pixel should be assigned to, as described above. Then, each kernel instance's amplitude function SA,1(I0,IEST), SA,2(I0,IEST), and SA,3(I0,IEST) is generated using the pixel values of I0o0(x,y) (IEST(x,y)) of the pixels that have been assigned to the kernel instance. Next, a first iteration estimate I1o0(x,y) may be generated for Io0(x,y) by applying equation [20] as follows, using our previous notation I1EST for the first iteration:
where the convolution may be performed using Fourier transforms as described above with reference to equation [19]. More refined estimates of IEST(x,y), SA,1(I0, IEST), SA,2(I0, IEST), and SA,3(I0, IEST) may then be generated from I1o0(x,y), and equation [21] may be reiterated to further refine the estimate for Io0(x,y). During this refinement, it is possible for there to be changes in the kernel assignments for some of the pixels (or super pixels). The following iteration approach similar to equation [14] may be used for subsequent iterations k=2 to K for generating refined estimates Iko0(x,y):
Equation [22A] provides some damping on the rate of change of IkEST(x,y) and the amplitude functions SA,1k(I0, IkEST), SA,2k(I0, IkEST), and SA,3k(I0, IkEST) between the iterations, and minimizes the chances of the function values oscillating during the iterations. An equal weighting factor of 0.5 has been used in equation [22A], but different weighting factors may be used (at least the first weighting factor should be non-zero and both weighting factors should sum to 1). Also, the kernel-instance assignment of the pixels (or super pixels) may be frozen for the latter iterations to prevent oscillations caused by switching assignments at group boundaries.
Equations [21] and [22] may be applied to the real pixel array, or to the super pixel array. In the latter case, the super pixel values for Iko0(x,y) and I1(x,y) may be generated as averages in the manner described above for equations [13]-[15], and, if the Fourier transform process (equation [19]) has been used to generate the convolution terms from decimated data, the results of the inverse Fourier transform do not need to be interpolated/extrapolated during the iterations. The iterations may be continued until the change between the current and previous values of each amplitude function, as multiplied by IkEST(x,y), is below a desired (e.g., set) amount for a desired (e.g., set) number of pixels or super pixels, or until the change between iteration values of Iko0(x,y) and Ik-1o0(x,y) is below a desired amount for a desired number of pixels or super pixels. Additional criteria or other criteria may be used to determine when to stop the iterations, as described above for equations [13]-[15]. If the iterations have been carried out on the super pixels, then one application of equation [22C] using the real pixel array may be used to generate Iko0(x,y) values over the real pixel array after the last iteration (k=K). For this, the convolution term may be generated on the super pixel array and then interpolated and extrapolated onto the real pixel array. The scattered radiation at any iteration, including the last iteration k=K, may be generated as:
Another iteration approach similar to that of equation [15] for subsequent iterations k=2 to K is as follows:
Each of equation [23A] generates a scatter estimate for the current iteration k as a weighted average of the scatter as generated from the most recent estimate of Io0 (which is Ik-1o0(x,y)) and the scatter used in the last iteration. Like Equation [22A], equations [23A] provide some damping on the rate of change of the amplitude functions between the iterations, and minimize the chances of the function values oscillating during the iterations. An equal weighting factor of 0.5 has been used in equation [23A], but different weighting factors may be used (at least the first weighting factor should be non-zero and both weighting factors should sum to 1). If the kernel assignment of a pixel or super pixel changes during an iteration, its IEST(*)·SA,X(*) value will be averaged with zero values for subsequent iterations if SA,X(*) changes from a non-zero value to a zero value, and its IEST(*)·SA,X(*) value will start from zero and be averaged with non-zero value for subsequent iterations if SA,X(*) changes from a zero value to a non-zero value, thereby providing a smooth transition. Equations [21] and [23] may be applied to the real pixel array, or to the super pixel array. In the latter case, the super pixel values for Iko0(x,y) and I1(x,y) may be generated as averages in the manner described above for equations [13]-[15], and, if the Fourier transform process (equation [19]) has been used to generate the convolution terms from decimated data, the results of the inverse Fourier transform do not need to be interpolated/extrapolated during the iterations. The above possible criteria for determining when to end the iterations of equation [22] may be used to determine when to end the iterations of equation [23]. If the iterations have been carried out on the super pixels, then one application of equation [23B] using the real pixel array may be used to generate Iko0(x,y) values over the real pixel array. For this, the convolution term may be generated on the super pixel array and then interpolated and extrapolated onto the real pixel array. The scattered radiation at any iteration, including the last iteration k=K, may be generated according to equations [22D].
In equations [22C] and [23B], the convolution terms are preferably generated by the Fourier transform method, but they can be generated by a full-space convolution using equation [18] or by a full-space summation using equation [17]. These implementations, though slow, would allow use of the full skew correction factor Z(θp). Skew correction factors Z′(θp) may be applied to each of equations [21], [22C] and [23B] by multiplying it with each of the amplitude functions, as was done with equation [10A]. The application of skew correction factors Z″(*) to each of equations [21], [22C] and [23B] follows a similar form to that of equation [10B], but leads to the summation of nine convolution terms, but which can be readily handled by the Fourier transform form of equation [19].
Asymmetric Point-Scatter Functions. As indicated above, yet another set of inventions of the present application relates to a new class of asymmetric point-scatter functions that provide improved projection-correction results relative to symmetric point-scatter functions. The new class of asymmetric point-scatter functions, also called asymmetric kernels, was discovered by the inventors through experiments on slabs of material with non-uniform thicknesses.
Over a range of object thicknesses, this asymmetric effect for a radiation pencil beam can be modeled by what we call an asymmetric kernel Ak(*). Ideally, the asymmetric kernel is a function of the point (x,y) where the scattered radiation terminates on device 120 and the point (xm,yn) where the pencil beam terminates on device 120, just as in the case of the symmetric kernels, and is also a function of the object thickness that the scattered radiation sees in traveling from point EP to point (x,y). In the context of the tomographic reconstruction, an object thickness τ(x,y) can be associated with each point (x,y) of imaging device 120, and can be estimated from the measured projection data according to the relation τ(x,y)=ln [I0/Io0(x,y)]/ρ, where μ is around 0.19 to 0.21 cm−1 for water- and soft-tissue like materials (density of ˜1 g/cc) irradiated by radiation with typical beam energies. However, τ(x,y) is the object thickness seen along the direct path from source 110 to the point (x,y), not the object thickness seen by the scattered radiation traveling from point EP to point (x,y). The scattered radiation to point (x,y) sees an object thickness that is between τ(x,y) and the object thickness seen by the pencil beam, the latter of which can be denoted at τ(xm,yn). For the wedge shape, the inventors have found that the object thickness seen by the scattered radiation can be estimated as follows:
where M is a factor of about 1.6 that is due to the difference in the lengths between the path from source 110 to point (x,y) and the path from point EP to point (x,y). Factor M is dependent upon the system configuration.
Referring to
where γ is a constant having a value of approximately −0.256·μ for the wedge object example, where η is around 0.19 to 0.21 cm−1 for water- and soft-tissue like materials (density of ˜1 g/cc) irradiated by radiation with typical beam energies. The unity term (“1”) in equation [25] models the uniform slab case, while the remaining term in equation [25] provides a variation based on object thickness that the scattered radiation sees as it travels to point (x,y) relative to the object thickness that it would see in the uniform slab case, the latter of which can be modeled by τ(xm,yn) since Aff(xm, yn, x, y) has been constructed to be multiplied with the scatter distribution found in the uniform slab case. The resulting curve is shown as a solid line (with no line indicators) in
A general thickness function T1(I0(x,y), Ibp(x,y)) may be constructed from measured empirical data; it may have a form as simple as T1(I0, Ibp)=ln {I0(x,y)/Ibp(x,y)}/μ, where μ is around 0.19 to 0.21 cm−1 for water- and soft-tissue like materials (density of PI g/cc) irradiated by radiation with typical beam energies. T1(*) may be used in place of τ(x,y) and τ(xm,yn) in Equation [25] with good results. If I0(x,y) is uniform or slowly varying, we may use the division property of logarithms to derive the following additional asymmetric form factor from equation [25]:
The use of equation [25] and the use of T1(*) in place of τ(x,y) in Equation [25] captures not only thickness variations, but also density variations in the object, which also can have asymmetric effects on the scattering. Thus, these forms are believed to be more general.
As it turns out, the factor M in equation [25] poses a challenge to using convolutions and Fourier transforms to generate the summation of the scatter kernels over the area of imaging device 120. The challenge can be readily overcome by using a value of M=1 instead of M=1.6, and adjusting the value of γ, which does not significantly degrade the fit. As another approach, it can be generally assumed that the object thickness varies in a piecewise linear manner from point (x,y) to point (xm,yn), and equation [24] can be approximated as follows:
which can be simply viewed as a ratio mixing of the thickness values based on the ratio mixing of the coordinates in the arguments of equation [24]. Equation [26] can be formally derived as follows. For simplicity, denote the point
as point (x′,y′), and denote its thickness as τ(x′,y′). Points (x,y) and (x′,y′) and their thickness values τ(x,y) and τ(x′,y′) may be used to provide a first equation for the slope of the piecewise linear approximation of the thickness. Similarly, points (x,y) and (xm,yn) and their thickness values τ(x,y) and τ(xm,yn) may be used to provide a second equation for the slope of the piecewise linear approximation of the thickness. The two slope equations may be equated and solved for τ(x′,y′). An approximation to the form factor of equation [25] follows from [26]:
which is a simple function of τ(x,y) and τ(xm,yn). We may also multiply Aff(*) or its approximations with the symmetric kernel form of equation [8] to obtain a curve that has excellent fit to the profile from the Monte Carlo simulation of the wedge object case (the curve with triangle indicators shown in
While the above forms of Aff(*),AffIbp(*), and their approximations have been illustrated with the wedge-shaped object, they work very well for oval-shaped objects, such as human torsos and limbs. From equations [27] and [27A], the following more general asymmetric form factors can be identified as:
Where j is an index, J has a value of one or more, and aj, bj, cj and dj are constants that can have positive, negative, or zero values, or values that vary with location (e.g., coordinates x and y), and where ƒ1(*) and ƒ2(*) are generalized functions that may have any form that includes their arguments. Corresponding generalized versions of equations [25] and [25A] may be obtained by replacing τ(x,y) with
and
With the above in mind, a general class of asymmetric kernels may have the following form:
AkG(xm,yn,x,y), [28]
where xm and yn are the location coordinates of the pencil beam, where x and y are the location coordinates of the scattered radiation modeled by AkG(*), and where AkG(*) may include values of the object thickness determined from the values of xm, yn, x, and y. The above discussion of equations [24]-[27] has touched on the following sub-class of the general class:
AkSC1(xm,yn,x−xm,y−yn)=SkG(xm,yn,x−xm,y−yn)·AffG(xm,yn,x,y), [29]
where SkG(xm, yn, x−xm, y−yn) is a general symmetric kernel form, and AffG(*) is a general asymmetric form factor to the asymmetric form factor of equation [25]. Each of SkG(*) and Aff(*) may include values of the object thickness or radiation intensity values determined from the values of xm, yn, x, and y. A further sub-class uses an approximate asymmetric form factor that depends on the difference of τ(x,y) and τ(xm,yn):
AkSC2(xm,yn,x−xm,y−yn)=SkG(xm,yn,x−xm,y−yn)·AffAprox(τxy−τbp), [30]
where τxy is shorthand for τ(x,y), and τbp is shorthand for τ(xm,yn). The symmetric kernel form of equation [8] may be combined with the approximate asymmetric form factor of equation [27] as follows:
AkA(xm,yn,x−xm,y−yn)=SA(I0,Ibp)·SFF(x−xm,y−yn)·{1+γ′·(τxy−τbp)} [31]
where γ′ may be equal to γ/M or be empirically determined.
For imaging devices 120 that have small dimensions relative to their distance to the object, the scatter profile Ios from the object may be generated from any of the above asymmetric kernel forms, as represented by AkX(*), as follows:
For the asymmetric kernel form of equation [31], this may be written as:
As equation [33] is based from equation [8A], both Ibp and SA(I0, Ibp) are functions of xm and yn. Equation [33] may be separated into three double summations according to the three terms 1, γ′·τxy, and −γ′·τbp in the last quantity, which may be generated by three corresponding convolutions, as follows:
where each of Ibp(x,y) and SA(I0, Ibp) are now functions of x and y, and where (x,y) replaces (xm,yn) in accordance with the commonly used convolution operation notation ({circle around (x)}). The above can be simplified by combining the first two terms as follows:
Ios(x,y)=(1+γ′·τ(x,y))·{[Ibp(x,y)·SA(I0,Ibp)]{circle around (x)}SFF(x,y)}−[γ′·τ(x,y)·Ibp(x,y)·SA(I0,Ibp)]{circle around (x)}SFF(x,y). [34]
Equation [34] may be viewed as the addition of two convolution products; the first is the convolution of the product [Ibp(x,y)·SA(I0,Ibp)] with the symmetric form factor SFF(x,y) post-weighted by (1+γ′·τ(x,y)), and the second is the product [Ibp(x,y)·SA(I0,Ibp)] pre-weighted by γ′·τ(x,y) and thereafter convoluted with the symmetric form factor SFF(x,y). The following Fourier transform formulation readily follows:
Ios(x,y)=(1+γ′·τ(x,y))·ℑ−1{ℑ(Ibp(x,y)·SA(I0Ibp))·ℑ(SFF(x,y))}−ℑ−1{ℑ(γ′·τ(x,y)·Ibp(x,y)·SA(I0,Ibp))·ℑ(SFF(x,y))} [35]
where ℑ{*} denote a Fourier transform operation, and ℑ−1{*} denotes an inverse Fourier transform.
In equations [34] and [35], each of I0, Ibp, and SA(I0, Ibp) is a function of coordinates x and y (instead of the pencil beam coordinates xm and yn). As before, the scattered radiation profile Ios(x,y) is relatively smooth (i.e., slowly varying) over the x,y domain, and its Fourier transform has primarily low-frequency components. Accordingly, the Fourier transforms in equation [11] can be generated from a decimated set of data (e.g., [Ibp(x,y)·SA(I0,Ibp)]) on a coarse grid, such as the 104 by 30 array of super pixels previously described. In practice, the summation of equation [33] and the convolutions of equation [34] are done over the finite area of the pixel array, which means that contributions from pencil beams that terminate outside of the array are not reflected in Ios(x,y). This can affect the scatter values at the edges of the array, and the previously-described ways for compensating for it with regard to the application of the symmetric kernels may be used here. It should be said that this is not a problem if the radiation shadow of the object falls within the pixel array. In this case, there is no scattering contribution from pencil beams that terminate outside of the pixel array.
While we have used the approximation {1+γ′·(τxy−τbp)} in equation [33], other approximations may be used, such as {1+γ1·(τxy−τbp)+γ2·(τxy−τbp)2} or {1+γ3·(τxy−τbp)+γ4·(τxy2−τbp2)}. These forms, as well and may more, are contemplated by these inventions of the present application, and are covered by appropriate broad claims of the application.
Referring briefly back to the imaging chain of
In this use of the asymmetric kernel, the coordinates xn, yn, x, and y are known, and I0 can be measured by a calibration step. However, τ(x,y) and Ibp(x,y) are not known, with Ibp(x,y) being the profile Io0 that is to be estimated from the I1(x,y). In the applications of the symmetric kernels, an iterative approach was used to handle the unknown state of Ibp(x,y). For solving equation [36], a two-level iteration approach may be used as follows. A first tomographic reconstruction is performed using uncorrected projections, or projections corrected by the application of one or more symmetric kernels, to estimate the thickness values of the object for all the projections. Then, the value of Io0(x,y) (Ibp(x,y)) may be iterated in equation [36], using the estimated thickness values for τ(x,y), to generate estimates of scatter for each of the projections. Corrected projections may then be generated, and a second tomographic reconstruction may be preformed to provide more true results. If desired, these steps may be reiterated one or more times to further refine the corrections (e.g., a second round of thickness estimates can be generated from the results of second tomographic reconstruction, a second round of the corrected projections can then be generated from the second round of thickness estimates, and a third tomographic reconstruction can be generated from the second round of corrected projections).
However, using the tomographic reconstructions in this manner is computationally expensive and time-consuming. As another approach, we note that the object's thickness is substantially proportional to ln {I0/Ibp(x,y)}, which can be used as a proxy for the object thickness. A general thickness function T1(I0, Ibp(x,y)) may be constructed from measured empirical data; it may have a form as simple as T1(I0, Ibp)=ln {I0/Ibp(x,y)}/μ, where μ is around 0.19 to 0.21 cm−1 for water- and soft-tissue like materials (density of ˜1 g/cc) irradiated by radiation with typical beam energies. The use of the log-ratio of intensity values captures not only thickness variations, but also density variations in the object, which also can have asymmetric effects on the scattering. Accordingly, the use of T1(I0, Ibp) to provide the thickness values for τ(x,y) is currently believed to provide a more general modeling of the asymmetric effects. In addition, the use of T1(I0, Ibp) makes the term γ′·τ(x,y) independent of μ, therefore makes for an easier implementation. With this approach, a single level iteration approach may be constructed as follows. An initial estimate I0o0(x,y) may be generated for Io0(x,y). The initial estimate I0o0(x,y) may be a fraction of I1(x,y), such as I1(x,y)/2, or the estimate for I0o0(x,y) generated for a prior projection in the object scan. From the initial estimate I0o0(x,y), an estimated initial value I1EST(x,y) for Ibp(x,y) may be generated (I1EST(x,y)=I0o0(x,y)), and an initial value SA1(I0,IEST) for the amplitude function SA(I0,Ibp) may be generated. Also, an initial value τ1(x,y) for τ(x,y) may be estimated from the thickness function as τ1(x,y)=T1(I0, I1EST(x,y)). A first iteration estimate I1o0(x,y) may be generated for Io0(x,y) by applying equation [36] as follows:
where the convolutions may be performed using Fourier transforms as described above. More refined estimates of IEST(x,y) and SA(I0, IEST) may then be generated from I1o0(x,y), and equation [37] may be reiterated to further refine the estimate for Io0(x,y). The following iteration approach may be used for subsequent iterations k=2 to K for generating refined estimates Iko0(x,y):
IkEST(x,y)=0.5*Ik-1o0(x,y)+0.5*Ik-2o0(x,y) [38A]
τk(x,y)=T1(I0,IkEST(x,y)) [38B]
Iko0(x,y)=I1(x,y)−(1+γ′·τk(x,y))·{[IkEST(x,y)·SA(I0,IkEST)]{circle around (x)}SFF(x,y)}+[γ′·τk(x,y)·IkEST(x,y)·SA(I0,IkEST)]{circle around (x)}SFF(x,y). [38C]
Equation [38A] provides some damping on the rate of change of IkEST(x,y), SAk(I0, IkEST), and τk(x,y) between the iterations compared to the selection of IkEST(x,y)=Ik-1o0(x,y), and minimizes the chances of the values of IkEST(x,y), SAk(I0, IkEST), and τk(x,y) oscillating during the iterations. An equal weighting factor of 0.5 has been used in equation [38A], but different weighting factors may be used (at least the first weighting factor should be non-zero and both weighting factors should sum to 1). Equations [37] and [38] may be applied to the real pixel array, or to the super pixel array. In the latter case, the super pixel values for Iko0(x,y) and I1(x,y) may be generated as averages in the manner described above for the quantity [Ibp(x,y)·SA(I0, Ibp)], and, if the Fourier transform process has been used to generate the convolution terms with decimated data, the results of the inverse Fourier transforms do not need to be interpolated/extrapolated. The iterations may be continued until the change between iteration values of [IkEST(x,y)·SAk(I0,IkEST)] and [Ik-1EST(x,y)·SAk-1(I0,Ik-1EST)] is below a desired (e.g., set) amount for a desired (e.g., set) number of pixels or super pixels, or until the change between iteration values of Iko0(x,y) and Ik-1o0(x,y) is below a desired amount for a desired number of pixels or super pixels. Additional criteria or other criteria may be used to determine when to stop the iterations, such as monitoring an average measure of the changes over the pixels or super pixels, and setting an upper limit to the number of iterations. If the iterations have been carried out on the super pixels, then one application of equation [38C] using the real pixel array may be used to generate Iko0(x,y) values over the real pixel array after the last iteration (k=K). For this, the convolution term may be generated on the super pixel array and then interpolated and extrapolated onto the real pixel array. The scattered radiation at any iteration, including the last iteration k=K, may be generated as:
Another exemplary iteration approach similar to equation [15] for subsequent iterations k=2 to K is as follows:
[IkEST(x,y)·SAk(I0,IkEST)]=0.5·[Ik-1o0(x,y)·SA(I0,Ik-1o0)]+0.5·[Ik-1EST(x,y)·SAk-1(I0,Ik-1EST)] [39A]
Generate τk(x,y) from prior reconstruction, or as T1(I0,Ik-1o0(x,y)), or as 0.5·T1(I0,Ik-1o0(x,y))+0.5·τk-1(x,y) [39B]
with [I1EST(x,y)·SA1(I0,I1EST)]=[I0o0(x,y)·SA(I0, I0o0)]. Equation [39A] generates a scatter estimate for the current iteration k as a weighted average of the scatter as generated from the most recent estimate of Io0 (which is Ik-1o0(x,y)) and the scatter used in the last iteration. Equation [39B] can generate τk(x,y) for the current iteration k as a weighted average of the thickness generated from the most recent estimate of Io0 (which is Ik-1o0(x,y)) and τk-1(x,y) used in the last iteration. Like Equation [38A], equation [39A] provides some damping, and minimizes the chances of the values oscillating during the iterations. An equal weighting factor of 0.5 has been used in equation [39A], but different weighting factors may be used (at least the first weighting factor should be non-zero and both weighting factors should sum to 1). Equations [37] and [39] may be applied to the real pixel array, or to the super pixel array. In the latter case, the super pixel values for Iko0(x,y) and I1(x,y) may be generated as averages in the manner described above for the quantity [Ibp(x,y)·SA(I0, Ibp)], and, if the Fourier transform process has been used to generate the convolution terms with decimated data, the results of the inverse Fourier transforms do not need to be interpolated/extrapolated. The above possible criteria for determining when to end the iterations of equation [38] may be used to determine when to end the iterations of equation [39]. If the iterations have been carried out on the super pixels, then one application of equation [39C] using the real pixel array may be used to generate Iko0(x,y) values over the real pixel array. For this, the convolution term may be generated on the super pixel array and then interpolated and extrapolated onto the real pixel array. The scattered radiation at any iteration, including the last iteration k=K, may be generated using equations [38D].
In equations [37]-[39] values for τ(x,y) may be provided by the above-described thickness function T1(*), by a prior tomographic reconstruction of the object, or by an estimated shape of the object. In equations [37], [38C] and [39C], the convolutions are preferably generated by the Fourier transform method, but can be generated by a full-space convolution using equation [34], or by a full-space summation using equation [33], or by a full-space summation using equation [33] with the form of equation [25] in place of {1+γ′·(τxy−τbp)}. These implementations, though slow, would allow use of the full skew correction factor Z(θp), or in the last case avoid the piecewise approximation used in equation [26]. Skew correction factors Z′(θp) may be applied to each of equations [37], [38C] and [39C] by multiplying it with each of the amplitude functions, as was done with equation [10A]. The application of skew correction factors Z″(*) to each of equations [37], [38C] and [39C] follows a similar form to that of equation [10B], but leads to the summation of six convolution terms, which can be readily handled by the Fourier transform form of equation [35]. This form for Ios(x,y) is provided below:
Multiple Asymmetric Kernel Forms for Different Thickness Ranges. As indicated above, another invention set of the present application relates to constructing two or more instances of the new asymmetric form for two or more respective ranges of object thickness, and applying the instances of the new symmetric form to regions of a radiographic projection according to a measure of the object's thickness in the regions. An exemplary embodiment of the invention is illustrated with three instances Ak1(*), Ak2(*), and Ak3(*) of an asymmetric kernel that comprise the previously described kernel instances Sk1(*), Sk2(*), and Sk3(*), respectively, multiplied by an asymmetric form factor Aff(*). Sk1(*), Sk2(*), and Sk3(*) were previously described with respect to
The summation-based equation [32] for Ios(x,y) may be expanded to include three separate double summations, one for each of the kernel instances: Ak1(*), Ak2(*), and Ak3(*). Each double summation may be only over the group of pixels covered by the kernel of the double summation. The expanded summation-based equation is as follows:
As equation [41] is based from equations [32] and [8A], both Ibp and SA(I0, Ibp) are functions of xm and yn. Any of the skew correction factors Z(*), Z′(*), or Z″(*) may be applied to equation [41] by multiplying it with each of the kernel instances. To obtain the corresponding convolution form for Ios(x,y), the asymmetric form factor may be approximated by equation [27], each symmetric kernel instance may be written as the product of its amplitude function and its form factor, e.g., Sk1(x−xm, y−yn, Ibp)=SA,1(I0,Ibp)·SFF,1(x,y), and each amplitude function may be set to a value of zero for pixels that are not covered by its kernel instance. For example, amplitude function SA,1(I0,Ibp) for Sk1(*) has zero values for the pixel locations in Groups 2 and 3, and non-zero values for the pixels in Group 1; amplitude function SA,2(I0,Ibp) for Sk2(*) has zero values for the pixel locations in Groups 1 and 3, and non-zero values for the pixels in Group 2, etc. With that format of the amplitude functions and the form of Aff(*) provided by equation [25], and with the convolution solution provided by equation [34], the convolution form for an exemplary multiple kernel implementation is:
where each of Ibp, SA,1(I0, Ibp), SA,2(I0, Ibp), and SA,3(I0, Ibp) are now functions of x and y for the convolution form, and where values for τ(x,y) may be provided by the above-described thickness function T1(*), by a prior tomographic reconstruction of the object, or by an estimated shape of the object. If there are no pixels or super pixels in the third group, then the last two convolution quantities may be omitted from equation [42] and other similar equations provided below. Skew correction factors Z′(θp) may be applied to equation [42] by multiplying it with each of the amplitude functions, as was done with equation [10A]. The application of skew correction factors Z″(*) to equation [42] follows a similar form to that of equation [40], but leads to the summation of 18 convolution terms.
Since the Fourier transform of two convolved functions is equal to the multiplication of their Fourier transforms, the profile Ios from equation [42] can be generated from the Fourier transforms as follows:
which can be simplified as follows to reduce the number of inverse Fourier transforms from six to two:
Equations [43] are typically applied on the array of super pixels rather than the array of real pixels, using the same super pixel construction processes as described above with regard to equations [11] and [35]. In this regard, an average value of Ibp over the pixels covered by a super pixel may be used to determine which kernel instance to use for the super pixel. The Fourier transform of the form factors ℑ{SFF,1(x,y)}, ℑ{SFF,2(x,y)}, and ℑ{SFF,3(x,y)} may be generated by using the values of the form factors at the grid locations of the super pixels; they may be generated once, and may be used for all of projections of the scan. The inverse Fourier transforms of equations [43] and the results of equations [43] may be computed for the grid locations of the super pixels, and the results of the inverse Fourier transforms may be interpolated/extrapolated onto the real pixel array in any of the above-described manners. The Fourier transforms and inverse Fourier transforms used herein may be implemented by any of the known discrete Fourier transform processes. If there are no pixels or super pixels in the third group, then the Fourier quantities for it in equations [43] may be omitted from the equation, and other similar equations provided below.
Using equation [42], the corresponding form of equation [12A] for generating an estimate of Io0(x,y) from I1(x,y) is as follows:
An iteration approach similar to equations [38] and [39] may used to generate and estimate of Io0(x,y). An initial estimate for I0o0(x,y) may be generated for Io0(x,y), such as using a fraction of I1(x,y). Each pixel value of the initial estimate I0o0(x,y) may be compared with the intensity values IA and IB to determine which kernel instance the pixel should be assigned to, as described above. Then, each kernel instance's amplitude function SA,1(I0,IEST), SA,2(I0,IEST), and SA,3(I0,IEST) is generated using the pixel values of I0o0(x,y) of the pixels that have been assigned to the kernel instance. Next, a first iteration estimate I1o0(x,y) may be generated for Io0(x,y) by applying equation [44] as follows:
where the convolution may be performed using Fourier transforms as described above with reference to equations [43]. More refined estimates of IEST(x,y), τ(x,y), SA,1(I0, IEST), SA,2(I0,IEST), and SA,3(I0, IEST) may then be generated from I1o0(x,y), and equation [45] may be reiterated to further refine the estimate for Io0(x,y). During this refinement, it is possible for there to be changes in the kernel assignments for some of the pixels (or super pixels). The following iteration approach similar to equation [14] may be used for subsequent iterations k=2 to K for generating refined estimates Iko0(x,y):
Equation [46A] provides some damping on the rate of change of IkEST(x,y), the thickness function τk(x,y), and the amplitude functions SA,1k(I0,IkEST), SA,2k(I0,IkEST), and SA,3(I0,IkEST) between the iterations, and minimizes the chances of the function values oscillating during the iterations. An equal weighting factor of 0.5 has been used in equation [46A], but different weighting factors may be used (at least the first weighting factor should be non-zero and both weighting factors should sum to 1). Also, the kernel-instance assignment of the pixels (or super pixels) may be frozen for the latter iterations to prevent oscillations caused by switching assignments at group boundaries.
Equations [45] and [46] may be applied to the real pixel array, or to the super pixel array. In the latter case, the super pixel values for Iko0(x,y) and I1(x,y) may be generated as averages in the manner described above for equations [13]-[15], and, if the Fourier transform process (equation [43]) has been used to generate the convolution terms from decimated data, the results of the inverse Fourier transforms do not need to be interpolated/extrapolated during the iterations. The iterations may be continued until the change between the current and previous values of each amplitude function, as multiplied by IkEST(x,y), is below a desired (e.g., set) amount for a desired (e.g., set) number of pixels or super pixels, or until the change between iteration values of Iko0(x,y) and Ik-1o0(x,y) is below a desired amount for a desired number of pixels or super pixels. Additional criteria or other criteria may be used to determine when to stop the iterations, as described above for equations [13]-[15]. If the iterations have been carried out on the super pixels, then one application of equation [46C] using the real pixel array may be used to generate Iko0(x,y) values over the real pixel array after the last iteration (k=K). For this, the convolution term may be generated on the super pixel array and then interpolated and extrapolated onto the real pixel array. The scattered radiation at any iteration, including the last iteration k=K, may be generated as:
or as:
Another iteration approach similar to that of equation [15] for subsequent iterations k=2 to K is as follows:
Generate τk(x,y) from prior reconstruction, or as T1(I0,Ik-1o0(x,y)), or as 0.5·T1(I0,Ik-1o0(x,y))+0.5·τk-1(x,y) [47B]
with [I1EST(x,y)·S1A,1(I0,I1EST)]=[I0o0(x,y)·SA,1(I0,Io0)],[I1EST(x,y)·S1A,2(I0,I1EST)]=[I0o0(x,y)·SA,2(I0,I0o0)], and [I1EST(x,y)·S1A,3(I0,I1EST)]=[I0o0(x,y)·SA,3(I0,I0o0)]. Like Equation [46A], equations [47A] provide some damping on the rate of change of the thickness and amplitude functions between the iterations, and minimizes the chances of the function values oscillating during the iterations. An equal weighting factor of 0.5 has been used in equation [47A], but different weighting factors may be used (at least the first weighting factor should be non-zero and both weighting factors should sum to 1). If the kernel assignment of a pixel or super pixel changes during an iteration, its IEST(*)·SA,X(*) value will be averaged with zero values for subsequent iterations if SA,X(*) changes from a non-zero value to a zero value, and its IEST(*)·SA,X(*) value will start from zero and be averaged with non-zero value for subsequent iterations if SA,X(*) changes from a zero value to a non-zero value, thereby providing a smooth transition. Equations [45]-[27] may be applied to the real pixel array, or to the super pixel array. In the latter case, the super pixel values for Iko0(x,y) and I1(x,y) may be generated as averages in the manner described above for equations [13]-[15], and, if the Fourier transform process (equation [43]) has been used to generate the convolution terms from decimated data, the results of the inverse Fourier transforms do not need to be interpolated/extrapolated during the iterations. The above possible criteria for determining when to end the iterations of equation [46] may be used to determine when to end the iterations of equation [47]. If the iterations have been carried out on the super pixels, then one application of equation [47C] using the real pixel array may be used to generate Iko0(x,y) values over the real pixel array. For this, the convolution term may be generated on the super pixel array and then interpolated and extrapolated onto the real pixel array. The scattered radiation at any iteration, including the last iteration k=K, may be generated using equations [46D].
In equations [45]-[47] values for τ(x,y) may be provided by the above-described thickness function T1(*), by a prior tomographic reconstruction of the object, or by an estimated shape of the object. In equations [46C] and [47C], the convolution terms are preferably generated by the Fourier transform method (equation [43]), but they can be generated by a full-space convolution using equation [42], or by a full-space summation using equation [41], or by a full-space summation using equation [41] with the form of equation [25] in place of {1+γ′·(τxy−τbp)}. These implementations, though slow, would allow use of the full skew correction factor Z(θp). Skew correction factors Z′(θp) may be applied to each of equations [45], [46C] and [47C] by multiplying it with each of the amplitude functions, as was done with equation [10A]. The application of skew correction factors Z″(*) to each of equations [45], [46C] and [47C] follows a similar form to that of equation [40], but leads to the summation of 18 convolution terms, but which can be readily handled by the Fourier transform form of equation [43].
Edge-Effect Compensation. Monte Carlo simulations of the kernel for a uniform-slab object show that, towards the edge of an object, higher-order scattering events are reduced due to the absence of scattering media. This reduces the amplitude of the scatter kernel at the object boundary by approximately 15%. These simulations are shown on a relative scale in
Several approaches may be used to account for the edge effect when generating estimates of Ios(x,y), such as by application of any of equations [9]-[12], [10A], [10B], [11A], [17]-[20], [32]-[36], [40]-[44], or when using estimates of Ios(x,y) in the equations for the iterative solutions [13]-[15], [21]-[23], [37]-[39], and [45]-[47]. A first exemplary approach is to identify the edge of the object in the pixel array or the super pixel array, to generate a kernel modification function Mk(x,y) that spans the array and accounts for the edge effect, and to multiply the kernel by Mk(x,y) in the above equations, such as by multiplying it with the kernel's amplitude function (e.g., SA(*)). The kernel modification function Mk(x,y) has a value of zero for pixels and super pixels that are outside of the radiation shadow of the object, a value of ˜0.85 at the edge, values between ˜0.85 and 1 inside the object near the edge, and values of 1 at the remaining interior pixels and super pixels of the object. For typical human objects, the object edges are generally parallel to the y-axis. Each pixel in the above exemplary 1024×768 pixel array measures 0.39 mm by 0.39 mm, and each of the above exemplary 9×25 or 10×26 super pixels for the exemplary array measures 3.5 mm by 9.75 mm. Thus, for a 7 cm to 12 cm span of the edge effect along a y-axis row of pixels or super pixels, the edge effect covers approximately 180 to 308 pixels, and approximately 20 to 34 super pixels.
A first exemplary method of generating the kernel modification function Mk(x,y) is as follows.
A second exemplary method of generating the kernel modification function Mk(x,y) according to the dashed straight line is as follows.
When compensating for edge effects in the content of the iterative solutions [13]-[15], [21]-[23], [37]-[39], and [45]-[47], the Mk(x,y) may be generated once per projection and used for all the iterations of the solution since the structure of the array need only depend upon the measured data I1(x,y) for the projection.
Another method of compensating for edge effects, and more generally the changes in secondary scattering events, is to modify the kernel constant “A” according to the form
A′(xm,yn)=A·{1+δ·[τAVG(xm,yn)−τ(xm,yn)]}, [48]
where δ is a constant coefficient, point (xm,yn) is the location on the pixel array where the pencil beam terminates, τ(xm,yn) is the object thickness seen by the pencil beam, and τAVG(xm,yn) is the average thickness of the object seen by a small cone of other pencil beams around the pencil beam. A′(xm,yn) then replaces the constant A in the equations as a matrix comprising spatially variant scaling. Equation [48] is a more generalized way of accounting for effects of thickness changes for the edge effects. τ(xm,yn) may be provided by the previously described thickness function T1(I0,Ibp). τAVG(xm,yn) may be generated over a small group of pixels around point (xm,yn) as follows:
Using the division property of logarithms, T1(*) can be written as T1(I0,Ibp)=ln {I0(xm,yn)/Ibp(xm,yn)}/μ=(1/μ)·[ln {I0(xm,yn)}−ln {Ibp(xm,yn)}]. Generally, I0(xm,yn) will be uniform in the small area around a point of and edge, and averages to the same value under the approximation of equation [49], and will cancel with a similar term in equation [48] for T1(I0,Ibp). Equation [48] can then be approximated as:
where AVG(*) is an averaging function. The approximation of equation [50] is simpler, but comprises the essential part of the approximation of equation [49] (both involve generating a difference between the logarithm of Ibp(x,y) at an edge location and the average of the logarithm of Ibp(x,y) around the edge location). Since both δ and μ are constants, they may be replaced by a single constant in equation [50].
Scatter-Anchoring. In some cases, there may be systematic errors in the scatter estimate generated by the above inventions. For example, if the object is off-center, then, for those projections where the object is closer to the detector than is expected, the scatter model will underestimate object scatter, whereas, for projections situated 180 degrees away, the object scatter model will overestimate object scatter. Other sources of systematic error may include the presence of material other than the material (e.g., water) upon which the object scatter kernels are based.
A first approach of addressing such systematic errors is to perform a first tomographic reconstruction of the object, and then adjust the kernels during a second subsequent tomographic reconstruction. Another approach is to measure scatter at one or more edges of the detector and use the measurements to scale the scatter estimate derived from the kernel model to bring the kernel model into agreement with the measurements. This approach is referred to as “anchoring,” and is described in greater detail below.
One approach of measuring the scatter is to shade one or more edges of the detector with collimator blades so that the direct radiation from radiation source 110 is effectively blocked in one or more bands at one or more corresponding edges of imaging device 120. This causes the non-scattered radiation Io0 from the object to be substantially zero within the bands. One or both sets of fan blades 130-140 shown in
The estimate of the scattered radiation generated using the kernels, such as by equations [14C], [22D], [38D], and [46D], may be compared to the detector values in the sub-bands for each radiographic projection. (If desired, the scatter in the sub-bands may be corrected for any scattering caused by the detector housing; such correction has a minimal effect since the object scattering is slowly varying.) If there is a significant difference, a scaling factor may be introduced into equations [13]-[15], [21]-[23], [37]-[39], and [45]-[47] to adjust the kernel model and bring it into agreement with measurements for the projection. The scaling factor may be a global constant that is multiplied with the scatter value generated for each super pixel or real pixel, or a global constant that is added with the scatter value generated for each super pixel or real pixel (or a combination of both approaches). The global constant may be generated from a least squares fitting method that minimizes the difference between the measured scatter radiation of the sub-bands and the scattered radiation generated by the kernel model, as adjusted by the global constant, at one or more locations in the sub-bands. Least squares fitting methods are well known to the mathematics art, and one of ordinary skill in the art can make and use these inventions of the present application without undue experimentation in view of this specification, and without a detailed explanation of least squares fitting methods. While
In addition, more elaborate fitting surfaces may be used. For example, the scaling factor may be allowed to vary linearly along each edge (or collinear set of small regions), and a least squares fitting method may be used to find a slope and offset for each edge. As another approach, a second or higher order polynomial may be used to fit the scaling factor along each edge (or collinear set of small regions). Then, the scaling factor may be interpolated to the interior of the array using any conventional interpolation method. While this method has been illustrated using all four edges, it may be implemented using one, two, or three edges, or with one or more small regions provided by the specially configured collimator. As another method, the scaling factors may be estimated for several selected areas along one or more of the edges, and a mathematical plane may be fitted to these scaling factors by a least squares fitting method. The equation of the mathematical plane may then be used to generate the scaling factors for all of the pixels and super pixels of the array.
A disadvantage of completely shading the edges of the detector to get the sub-bands of pure scattered radiation is that the imaging field-of-view is reduced. Another approach, which addresses this disadvantage, accounts for the penumbra effect and enables less shading to be used, such as shown by
Using the above approach, the scattered radiation values SC can be estimated at the penumbra edges using a much smaller amount of shading. These SC values may then be interpolated over the entire array in the various ways discussed above. Also, the specially configured collimator may be used in place of the fan blades to shade one or more small regions along one or more of the edges, rather than whole edges, and the scatter anchoring may be performed using one or more of these small regions. Such regions may be at the corners of the pixel array, and/or the midpoints of the edges, and/or points between.
Additional Projection Correction Methods. In addition to the above methods of generating corrected projections of the object (Io0(x,y)), a corrected radiographic projection may be generated as a truncated difference between the uncorrected projection I1(x,y) and the final scatter component IKos(x,y). The truncated difference may comprise generating the ratio of the scatter component IKos(x,y) to the uncorrected projection I1(x,y), processing the ratio by filtering its values over the spatial domain and/or limiting its values of the ratio to a range (such 0 to 0.8), and then multiplying I1(x,y) by one minus the processed ratio. This may be expressed as:
Io0(x,y)=I1(x,y)·{1−TRUNC(IKos(x,y)/I1(x,y)}. [51]
Results of Scatter Estimations. As indicated above, the estimates of scattered radiation in radiographic projections may be used to correct the projections, such as by subtracting the scatter estimates from the pixel values of the radiographic projections. The corrected projections may then be used in 3-D tomographic reconstructions of the object. We now show some results of the use of such corrections, with the scatter estimate being generated using the above-described multiple asymmetric kernels.
System and Computer Program Product Embodiments. Each of the above-described methods may be implemented by computer program products that direct a computer system to perform the actions of the methods. Each such computer program product may comprise sets of instructions embodied on a tangible computer-readable medium that direct the processor of a computer system to perform the corresponding actions. Examples of such computer-readable mediums are the instruction memory shown for controller 160 in
Exemplary system inventions of the present application may comprise radiation source 110, imaging device 120, and controller 160, in combination with various computer program product inventions and/or methods of the present application.
Any recitation of “a”, “an”, and “the” is intended to mean one or more unless specifically indicated to the contrary.
The terms and expressions which have been employed herein are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding equivalents of the features shown and described, it being recognized that various modifications are possible within the scope of the invention claimed.
Moreover, one or more features of one or more embodiments of the invention may be combined with one or more features of other embodiments of the invention without departing from the scope of the invention.
While the present invention has been particularly described with respect to the illustrated embodiments, it will be appreciated that various alterations, modifications, adaptations, and equivalent arrangements may be made based on the present disclosure, and are intended to be within the scope of the invention and the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
20030147491 | Gonzalez Trotter et al. | Aug 2003 | A1 |
20030215057 | Trotter et al. | Nov 2003 | A1 |
20040190679 | Waggener et al. | Sep 2004 | A1 |
20070189440 | Rinkel et al. | Aug 2007 | A1 |
20080304620 | Karellas | Dec 2008 | A1 |
20090202127 | Bertram et al. | Aug 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090290682 A1 | Nov 2009 | US |