Methods, systems, and computer readable media for mitigating 5G roaming spoofing attacks

Information

  • Patent Grant
  • 11825310
  • Patent Number
    11,825,310
  • Date Filed
    Wednesday, November 11, 2020
    3 years ago
  • Date Issued
    Tuesday, November 21, 2023
    6 months ago
Abstract
Roaming spoofing attacks can be initiated during N32-c handshake procedure used for inter-PLMN communication in 5G network. One example solution described herein uses the SEPP to mitigate the N32-c roaming spoofing attacks by cross validating the sender attribute present in N32-c handshake security capability exchange messages against the endpoint identity in the X.509v3 certificate shared during TLS handshake and the remote SEPP identity configured in the SEPP's local database.
Description
PRIORITY CLAIM

This application claims the priority benefit of Indian Provisional Patent Application Serial No. 202041041754, filed Sep. 25, 2020, the disclosure of which is incorporated herein by reference in its entirety.


TECHNICAL FIELD

The subject matter described herein relates to enhancing security in 5G communication networks. More particularly, the subject matter described herein relates to methods, systems, and computer readable media for mitigating 5G roaming spoofing attacks.


BACKGROUND

In 5G telecommunications networks, the network node that provides service is referred to as a producer network function (NF). A network node that consumes services is referred to as a consumer NF. A network function can be both a producer NF and a consumer NF depending on whether it is consuming or providing service.


A given producer NF may have many service endpoints, where a service endpoint is the point of contact for one or more NF instances hosted by the producer NF. The service endpoint is identified by a combination of Internet protocol (IP) address and port number or a fully qualified domain name that resolves to an IP address and port number on a network node that hosts a producer NF. An NF instance is an instance of a producer NF that provides a service. A given producer NF may include more than one NF instance. It should also be noted that multiple NF instances can share the same service endpoint.


Producer NFs register with a network function repository function (NRF). The NRF maintains service profiles of available NF instances identifying the services supported by each NF instance. Consumer NFs can subscribe to receive information about producer NF instances that have registered with the NRF.


In addition to consumer NFs, another type of network node that can subscribe to receive information about NF service instances is a service communication proxy (SCP). The SCP subscribes with the NRF and obtains reachability and service profile information regarding producer NF service instances. Consumer NFs connect to the SCP, and the SCP load balances traffic among producer NF service instances that provide the required service or directly routes the traffic to the destination producer NF instance.


In addition to the SCP, other examples of intermediate proxy nodes or groups of network nodes that route traffic between producer and consumer NFs include the security edge protection proxy (SEPP), the service gateway, and nodes in the 5G service mesh. The SEPP is the network node used to protect control plane traffic that is exchanged between different 5G public land mobile networks (PLMNs). As such, the SEPP performs message filtering, policing and topology hiding for all application programming interface (API) messages.


One vulnerability that exists with the current 5G network architecture occurs on the N32 interface, which is the interface between SEPPs. As indicated above, an SEPP acts as the security screening node for a public land mobile network (PLMN). The N32 control or N32-c interface is used for the exchange of control messages with a remote SEPP. Initiation of communications on the N32-c interface involves a transport layer security (TLS) handshake procedure to establish a TLS connection. Initiation of communications also involves an N32-c security capability negotiation procedure, which involves the exchange of N32-c messages. During the N32-c security capability negotiation procedure, there is no validation of the remote endpoint's identity. The remote endpoint also does not validate the initiating SEPP's identity. Because of the lack of validation on the N32-c interface, the initiating and responding SEPPs are vulnerable to spoofing attacks where a third party impersonates one end of the N32-c communications to gain unauthorized access to the PLMN.


In light of these and other difficulties, there exists a need for methods, systems, and computer readable media for mitigating 5G roaming spoofing attacks.


SUMMARY

A method for mitigating 5G roaming spoofing attacks includes obtaining, by a security edge protection proxy (SEPP) and from a transport layer security (TLS) message from a first node, a first identifier for the first node. The method further includes obtaining, by the SEPP and from an N32-c security capability negotiation message from the first node, a second identifier for the first node. The method further includes comparing the first and second identifiers for the first node. The method further includes determining that first and second identifiers do not match and, in response, that second identifier for the first node is invalid. The method further includes, in response to determining that the second identifier for the first node is invalid, blocking inter-public land mobile network (PLMN) communications with the first node.


According to another aspect of the subject matter described herein, obtaining the first identifier for the first node from a TLS message includes obtaining the first identifier from a certificate contained a TLS certificate message.


According to another aspect of the subject matter described herein, the certificate comprises an X.509 certificate.


According to another aspect of the subject matter described herein, obtaining the first identifier for the first node includes extracting a fully qualified domain name (FQDN) for the first node from a subject alternative name field of the X.509 certificate.


According to another aspect of the subject matter described herein, the SEPP is a responding SEPP in an N32-c security capability negotiation procedure and wherein obtaining the second identifier for the first node includes extracting the second identifier for the first node from a sender attribute of a SecNegotiateReqData information element of the N32-c security capability negotiation message.


According to another aspect of the subject matter described herein, the SEPP is an initiating SEPP in an N32-c security capability negotiation procedure and wherein obtaining the second identifier for the first node includes extracting the second identifier for the first node from a sender attribute of a SecNegotiationRspData information element of the N32-c security capability negotiation message.


According to another aspect of the subject matter described herein, the method for mitigating 5G roaming security attacks includes obtaining, by the SEPP and from a TLS handshake message from a second node, a first identifier for the second node, obtaining a second identifier for the second node from an N32-c security capability negotiation message from the second node, comparing the first and second identifiers for the second node, determining that first and second identifiers match, performing a lookup in a peer SEPP database using one of the first and second identifiers for the second node, locating a matching identifier in the peer SEPP database, and in response to determining that the first and second identifiers for the second node match and that a matching identifier is present in the peer SEPP database, allowing inter-PLMN communications with the second node.


According to another aspect of the subject matter described herein, the method for mitigating 5G roaming security attacks includes obtaining, by the SEPP and from a TLS handshake message from a second node, an first identifier for the second node, obtaining, by the SEPP and from an N32-c security capability negotiation message from the second node, a second identifier for the second node, comparing the first and second identifiers for the second node, determining that first and second identifiers match, performing a lookup in a peer SEPP database using one of the first and second identifiers for the second node and failing to locate a matching identifier in the peer SEPP database, and in response to determining that the first and second identifiers for the second node match and that a matching identifier is not present in the peer SEPP database, blocking inter-PLMN communications from the second node.


According to another aspect of the subject matter described herein, a system for mitigating 5G roaming spoofing attacks includes a security edge protection proxy (SEPP) including at least one processor and a memory. The system further includes a 5G roaming spoofing attack mitigation module implemented by the at least one processor and configured to obtain, from a transport layer security (TLS) message from a first node, a first identifier for the first node, obtain, from an N32-c security capability negotiation message from the first node, a second identifier for the first node, compare the first and second identifiers for the first node, determine that first and second identifiers do not match and, in response, that second identifier for the first node is invalid, and, in response to determining that the second identifier for the first node is invalid, block inter-public land mobile network (PLMN) communications with the first node.


According to another aspect of the subject matter described herein, the 5G roaming spoofing attack mitigation module is configured to obtain the first identifier for the first node from a certificate contained in a TLS certificate message.


According to another aspect of the subject matter described herein, the 5G roaming spoofing attack mitigation module is configured to obtain the first identifier for the first node by extracting a fully qualified domain name (FQDN) for the first node from a subject alternative name field of the certificate.


According to another aspect of the subject matter described herein, the SEPP is a responding SEPP in an N32-c security capability negotiation procedure and wherein 5G roaming spoofing attack mitigation module is configured to obtain the second identifier for the first node by extracting the second identifier for the first node from a sender attribute of a SecNegotiateReqData information element of the N32-c security capability negotiation message.


According to another aspect of the subject matter described herein, the system of claim 9 wherein the SEPP is an initiating SEPP in an N32-c security capability negotiation procedure and wherein the 5G roaming spoofing attack mitigation module is configured to obtain the second identifier for the first node by extracting the second identifier for the first node from a sender information element attribute of a SecNegotiateRspData information element of the N32-c security capability negotiation message.


According to another aspect of the subject matter described herein, the 5G roaming spoofing attack mitigation module is configured to obtain, from a TLS handshake message from a second node, a first identifier for the second node, obtain, from an N32-c security capability negotiation message from the second node, a second identifier for the second node, compare the first and second identifiers for the second node, determine that first and second identifiers match, perform a lookup in a peer SEPP database using one of the first and second identifiers for the second node, locating a matching identifier in the peer SEPP database, and, in response to determining that the first and second identifiers for the second node match and that a matching identifier is present in the peer SEPP database, allow inter-PLMN communications with the second node.


According to another aspect of the subject matter described herein, the 5G roaming spoofing attack mitigation module is configured to obtain, from a TLS handshake message from a second node, a first identifier for the second node, obtain, from an N32-c security capability negotiation message from the second node, a second identifier for the second node, compare the first and second identifiers for the second node, determine that first and second identifiers match, perform a lookup in a peer SEPP database using one of the first and second identifiers for the second node and fail to locate a matching identifier in the peer SEPP database, and, in response to determining that the first and second identifiers for the second node match and that a matching identifier is not present in the peer SEPP database, block inter-PLMN communications from the second node.


According to another aspect of the subject matter described herein, a non-transitory computer readable medium having stored thereon executable instructions that when executed by a processor of a computer control the computer to perform steps is provided. The steps include obtaining, by a security edge protection proxy (SEPP) and from a transport layer security (TLS) message from a first node, a first identifier for the first node. The steps further include obtaining, by the SEPP and from an N32-c security capability negotiation message from the first node, a second identifier for the first node. The steps further include comparing the first and second identifiers for the first node; determining that first and second identifiers do not match and, in response, that second identifier for the first node is invalid. The steps further include, in response to determining that the second identifier for the first node is invalid, blocking inter-public land mobile network (PLMN) communications with the first node.


The subject matter described herein may be implemented in hardware, software, firmware, or any combination thereof. As such, the terms “function” “node” or “module” as used herein refer to hardware, which may also include software and/or firmware components, for implementing the feature being described. In one exemplary implementation, the subject matter described herein may be implemented using a computer readable medium having stored thereon computer executable instructions that when executed by the processor of a computer control the computer to perform steps. Exemplary computer readable media suitable for implementing the subject matter described herein include non-transitory computer-readable media, such as disk memory devices, chip memory devices, programmable logic devices, and application specific integrated circuits. In addition, a computer readable medium that implements the subject matter described herein may be located on a single device or computing platform or may be distributed across multiple devices or computing platforms.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter described herein will now be explained with reference to the accompanying drawings of which:



FIG. 1 is a network diagram illustrating an exemplary 5G network architecture;



FIG. 2 is a message flow diagram illustrating the exchange of transport layer security (TLS) and N32-c messages between SEPPs;



FIG. 3 is a network diagram illustrating a hacker impersonating an SEPP;



FIG. 4 is a message flow diagram illustrating validation of identities presented in N32-c messages exchanged between SEPPs;



FIG. 5 is a diagram illustrating the blocking of messages by a responding SEPP upon a validation failure on the N32-c interface;



FIG. 6 is a diagram illustrating the blocking of messages by an initiating SEPP upon a validation failure on the N32-c interface;



FIG. 7 is a block diagram illustrating an exemplary architecture of an SEPP for mitigating 5G roaming spoofing attacks; and



FIG. 8 is a flow chart illustrating an exemplary method for mitigating 5G roaming spoofing attacks.





DETAILED DESCRIPTION

The subject matter described herein relates to methods, systems, and computer readable media for mitigating 5G roaming spoofing attacks. FIG. 1 is a block diagram illustrating an exemplary 5G system network architecture. The architecture in FIG. 1 includes NRF 100 and SCP 101, which may be located in the same home public land mobile network (HPLMN). As described above, NRF 100 may maintain profiles of available producer NF service instances and their supported services and allow consumer NFs or SCPs to subscribe to and be notified of the registration of new/updated producer NF service instances. SCP 101 may also support service discovery and selection of producer NF instances. SCP 101 may perform load balancing of connections between consumer and producer NFs. In addition, using the methodologies described herein, SCP 101 may perform preferred NF location based selection and routing.


NRF 100 is a repository for NF or service profiles of producer NF instances. In order to communicate with a producer NF instance, a consumer NF or an SCP must obtain the NF or service profile or the producer NF instance from NRF 100. The NF or service profile is a JavaScript object notation (JSON) data structure defined in Third Generation Partnership Project (3GPP) Technical Specification (TS) 29.510. The NF or service profile definition includes at least one of a fully qualified domain name (FQDN), an Internet protocol (IP) version 4 (IPv4) address or an IP version 6 (IPv6) address. In FIG. 1, any of the nodes (other than NRF 100) can be either consumer NFs or producer NFs, depending on whether they are requesting or providing services. In the illustrated example, the nodes include a policy control function (PCF) 102 that performs policy related operations in a network, a unified data management (UDM) function 104 that manages user data, and an application function (AF) 106 that provides application services. The nodes illustrated in FIG. 1 further include a session management function (SMF) 108 that manages sessions between access and mobility management function (AMF) 110 and PCF 102. AMF 110 performs mobility management operations similar to those performed by a mobility management entity (MME) in 4G networks. An authentication server function (AUSF) 112 performs authentication services for user equipment (UEs), such as user equipment (UE) 114, seeking access to the network.


A network slice selection function (NSSF) 116 provides network slicing services for devices seeking to access specific network capabilities and characteristics associated with a network slice. A network exposure function (NEF) 118 provides application programming interfaces (APIs) for application functions seeking to obtain information about Internet of things (IoT) devices and other UEs attached to the network. NEF 118 performs similar functions to the service capability exposure function (SCEF) in 4G networks.


A radio access network (RAN) 120 connects user equipment (UE) 114 to the network via a wireless link. Radio access network 120 may be accessed using a g-Node B (gNB) (not shown in FIG. 1) or other wireless access point. A user plane function (UPF) 122 can support various proxy functionality for user plane services. One example of such proxy functionality is multipath transmission control protocol (MPTCP) proxy functionality. UPF 122 may also support performance measurement functionality, which may be used by UE 114 to obtain network performance measurements. Also illustrated in FIG. 1 is a data network (DN) 124 through which UEs access data network services, such as Internet services.


SEPP 126 filters incoming traffic from another PLMN and performs topology hiding for traffic exiting the home PLMN. SEPP 126 may communicate with an SEPP in a foreign PLMN which manages security for the foreign PLMN. Thus, traffic between NFs in different PLMNs may traverse two SEPP functions, one for the home PLMN and the other for the foreign PLMN.


As stated above one problem with the existing 5G architecture is that the N32-c handshake does not validate remote endpoint identifications. In the absence of validation of endpoint identification, a malicious SEPP can try to spoof the identity of another SEPP and launch security attacks. The responding SEPP does not validate whether the N32 handshake messages are received from a legitimate initiating SEPP. Similarly, the initiating SEPP does not validate whether the N32-c handshake message is sent to a legitimate responding SEPP. The subject matter described herein addresses these and other difficulties by cross-validating the N32-c identity of an SEPP with a TLS layer identity and with peer SEPP identities stored in a peer SEPP database maintained by initiating and responding SEPPs.



FIG. 2 illustrates handshakes that occur between SEPPs on the N32 interface. In FIG. 2, initiating SEPP 126A and responding SEPP 126B exchange TLS handshake messaging and N32-c security capability negotiation messaging over the N32 interface. The TLS handshake involves the exchange of certificates, which can be used to validate the identity of the sender at the TLS layer and are difficult to spoof. However, there is no cross-validation between the identities exchanged during the TLS handshake with the identities exchanged during the N32-c security capabilities negotiation messaging. As a result, both initiating SEPP 126A and responding SEPP 126B are vulnerable to roaming spoofing attacks. A roaming spoofing attack is an attack where an attacker masquerades as a node in a network in which a mobile subscriber is roaming. In the case of spoofing the identity of a node during the N32-c security capability negotiation procedure, the attacker spoofs the identity of an SEPP serving a network in which a subscriber is roaming.



FIG. 3 illustrates an example of a hacker SEPP 300 masquerading as a legitimate SEPP. In FIG. 3, SEPP 126A located in PLMN1 may believe that it is communicating with peer SEPP 126B located in a PLMN2. However, hacker SEPP 300 may impersonate legitimate SEPP 126B and establish N32-c communications with SEPP 126A. Once such communications are established, hacker SEPP 300 may be able to obtain confidential subscriber information from PLMN1 and/or generate other types of attacks, such as denial of service attacks, on PLMN1.


To avoid or reduce the likelihood of a successful spoofing attack on the N32-c interface, SEPPs 126A and 126B may cross-validate N32-c identities with TLS identities and may also validate the N32-c identities with peer SEPP identities using a configured peer SEPP database. FIG. 4 illustrates exemplary cross validation that may be performed by initiating SEPP 126A and responding SEPP 126B. Referring to FIG. 4, initiating SEPP 126A and responding SEPP 126B may exchange TLS handshake messages over the N32-c interface to establish a TLS connection. The TLS handshake involves the exchange of client and server hello messages followed by the exchange of certificate messages. The certificate messages contain the X.509 certificate of the sender. The identity of the sender is contained in the X.509 certificate and is difficult to spoof because the X.509 certificate is signed by a certificate authority.


Accordingly, in one example, the sender's identity extracted from the X.509 certificate may be used to cross validate the sender's N32-c identity. The TLS handshake protocol is defined in Internet Engineering Task Force (IETF) Request for Comments (RFC) 5246 and includes the exchange of certificate messages by both ends of the TLS connection. The structure of a TLS handshake message defined in IETF RFC 5246, including the certificate message, appears below:

















enum {



  hello_request(0), client_hello(1), server_hello(2),



  certificate(11), server_key_exchange (12),



  certificate_request(13), server_hello_done(14),



  certificate_verify(15), client_key_exchange(16),



  finished(20), (255)



 } HandshakeType;



 struct {











  HandshakeType msg_type;
/*
handshake type */



  uint24 length;
/*
bytes in message */










  select (HandshakeType) {




   case hello_request:
HelloRequest;



   case client_hello:
ClientHello;



   case server_hello:
ServerHello;



   case certificate:
Certificate;



   case server_key_exchange:
ServerKeyExchange;



   case certificate_request:
CertificateRequest;



   case server_hello_done:
ServerHelloDone;



   case certificate_verify:
CertificateVerify;



   case client_key_exchange:
ClientKeyExchange;



   case finished:
Finished;



  } body;




 } Handshake;











As illustrated by the TLS handshake message structure, one of the defined handshake message types is the certificate message, which contains the certificate of the client or server, depending on whether the sender is functioning as a client or a server. In establishing secure TLS communications over the N32-c interface, mutual TLS or m-TLS is used where both ends of the TLS connection receive and validate the other end's X.509 certificate. IETF RFC 5246 indicates that the type of certificate must be X.509v3 unless expressly negotiated otherwise. The examples described herein used the X.509v3 certificate as an example, but the subject matter described herein is not limited to only using the identity of the sender extracted from an X.509v3 to validate an N32-c identity of a sender. The X.509v3 certificate format is defined in IETF RFC 3280. According to IETF RFC 3280, one extension or parameter that may be included in an X.509v3 certificate is the subject alternative names extension. The subject alternative names extension is defined as follows:
    • The subject alternative names extension allows additional identities to be bound to the subject of the certificate. Defined options include an Internet electronic mail address, a DNS name, an IP address, and a uniform resource identifier (URI). Other options exist, including completely local definitions. Multiple name forms,
    • and multiple instances of each name form, MAY be included. Whenever such identities are to be bound into a certificate, the subject alternative name (or issuer alternative name) extension MUST be used; however, a DNS name MAY be represented in the subject field using the domainComponent attribute as described in section 4.1.2.4.
    • Because the subject alternative name is considered to be definitively bound to the public key, all parts of the subject alternative name MUST be verified by the CA.


As indicated above, the subject alternative names extension of the X.509v3 certificate may contain a DNS name, IP address, or a URI that identifies the subject of the certificate and that is verified by the certificate authority. Because the subject alternative name is verified by the certificate authority, the subject alternative name is difficult to spoof. However, simply ensuring that a sender has a valid X.509 certificate does not validate the identity of the sender at the N32-c application level. To perform such cross-validation, initiating SEPP 126A and responding SEPP-126B may extract identities from N32-c messages and compare these identities to the identities extracted from the X-509 certificate shared during the TLS handshake. If the identities match, SEPPs 126A and 126B may perform a further validation step of comparing the identity extracted from either the N32-c message or the TLS message with a database of configured peer SEPP identities. If either validation fails, the SEPP may block inter-PLMN communications with the remote node, identifying the remote node as an attacker.


Returning to FIG. 4, after the TLS handshake messages are exchanged and a TLS connection is established between initiating SEPP 126A and responding SEPP 126B, initiating SEPP 126A sends an HTTP POST message to responding SEPP 126B. The HTTP POST message includes the SecNegotiateReqData information element, which includes the sender information element containing the FQDN of the sender. Responding SEPP 126B receives the HTTP POST message, extracts the FQDN of the sender from the SecNegotiateReqData information element, and validates the FQDN against the identity of the send obtained from the sender's X.509 certificate. In this case, it is assumed that the identities match. Accordingly, in the next step, responding SEPP 126B performs a lookup for the sender's identity the peer SEPP database maintained by responding SEPP 126B. It is assumed that the identity of initiating SEPP 126A is on present in the peer SEPP database of responding SEPP 126B, so both validations pass from the perspective of responding SEPP 126B, and, as a result, responding SEPP 126B will allow inter-PLMN communications from initiating SEPP 126A.


Continuing with the message flow in FIG. 4, responding SEPP 126B sends an HTTP 200 OK message to initiating SEPP 126A. The HTTP 200 OK message includes the N32-c SecNegotiateRspData information element including the sender attribute. In FIG. 5, the sender attribute carries the FQDN of responding SEPP 126B. Initiating SEPP 126B receives the HTTP 200 OK message, extracts the sender's FQDN from the sender attribute of the SecNegotiateRspData information element, and compares the FQDN with the FQDN for the sender extracted from the TLS certificate message. In this case, the FQDNs are assumed to match. Accordingly, initiating SEPP 126A performs a further validation step of determining whether the identity of the sender is present in the peer SEPP database maintained by initiating SEPP 126A. In this example, the identity of the sender is assumed to be present, and, as such, initiating SEPP 126A allows inter-PLMN communications with responding SEPP 126B.



FIG. 5 illustrates the case where hacker SEPP 300 is the initiating SEPP with respect to the N32-c security capability negotiation procedure. In FIG. 5, hacker SEPP 300 initiates a TLS handshake with responding SEPP 126B. Responding SEPP 126B extracts the X.509 certificate from a TLS handshake message and extracts an identity presented by hacker SEPP 300 in the certificate. Hacker SEPP 300 communicates an identity to responding SEPP 126B in an N32-c SecNegotiateReqData information element of N32-c security capability negotiation message, which in the illustrated example is an HTTP POST message. Responding SEPP 126B extracts the identity presented by hacker SEPP 300 in the N32-c SecNegotiateReqData information element of the N32-c security capability negotiation message and compares the identity extracted from the SecNegotiateReqData information element of the N32-c security capability negotiation message with the identity extracted from the certificate obtained from the TLS message. In this case, the identities do not match. As a result, responding SEPP 126B determines that a validation failure has occurred. Accordingly, responding SEPP 126B blocks further communications from hacker SEPP 300.



FIG. 6 illustrates the case where the SEPP performing the TLS and N32-c identity cross validation is the initiating SEPP in the N32-c security capability negotiation transaction. In FIG. 6, initiating SEPP receives TLS and N32-c messages from hacker SEPP 300. Initiating SEPP 126A obtains the X.509 certificate from one of the TLS handshake messages. Initiating SEPP 126A extracts the identity from the X.509 certificate and compares the identity to an identity received from hacker SEPP 300 in the SecNegotiateRspData information element of the N32-c security capability negotiation message, which in the illustrated example, is an HTTP 200 OK message. In this case, the identities do not match. Accordingly, initiating SEPP 126A blocks further communications from hacker SEPP 300.



FIG. 7 is a block diagram illustrating an exemplary architecture for SEPP 126A or 126B. SEPP 126A or 126B includes at least one processor 700 and a memory 702. SEPP 126A or 126B further includes a 5G roaming spoofing mitigation module 704 that performs these steps described herein for cross-validating identities in N32-c messages with identities extracted from TLS messages. SEPP 126A or 126B further includes a peer SEP database 706 that is configured with identities of peer SEPPs with which inter-PLMN communications are allowed. 5G roaming spoofing mitigation module 704 may be implemented by processor 700 and may also perform the cross check of the N32-c identity presented by a remote node against the peer SEPP identities stored in database 706. If the identity of a remote node presented in an N32-c security capability negotiation message is not present in database 706 or if the cross check with the TLS identity fails, 5G roaming spoofing mitigation module 704 may block inter-PLMN communications with the remote node. If both identity cross checks pass, 5G roaming spoofing mitigation module 704 may allow inter-PLMN communications with the remote node.



FIG. 8 is a flow chart illustrating an exemplary method for mitigating 5G speaking attacks. Referring to FIG. 8, in step 800, the SEPP obtains a first identifier from a TLS message from a first node. For example, an initiating or responding SEPP 126A or 126B may extract an identity for a sending node from an alternative ID field of a X.509 certificate in a TLS message received from a sending node. The TLS message may be a certificate message exchanged with a remote node as part of the TLS handshake procedure used to establish the TLS connection with the remote node.


In step 802, the SEPP obtains, from an N32-c security capability negotiation message from the first node, a second identifier for the first node. For example, if the SEPP is an initiating SEPP for purposes of the N32-c security capability negotiation transaction, the initiating SEPP may extract the N32c identity from the sender ID attribute of an N32-c SecNegotiateRspData information element of the HTTP 200 OK message from the remote node. If the if the SEPP is a responding SEPP for purposes of the N32-c security capability negotiation transaction, the responding SEPP may extract the N32c identity from the sender ID attribute of an N32-c SecNegotiateReqData information element of an HTTP POST message from the remote node. Tables 1 and 2 shown below correspond to tables 6.1.5.2.2.1 and 6.5.1.2.2 of 3GPP TS 29.573, which illustrate the attributes that may be included in the SecNegotiateReqData and SecNegotiateRspData information elements that are part of the N32-c security capability negotiation.









TABLE 1







Definition of type SecNegotiateReqData











Attribute name
Data type
P
Cardinality
Description





sender
Fqdn
M
1
This IE shall uniquely






identify the SEPP that






is sending the response.






This IE is used to store






the negotiated security






capability against






the right SEPP.


supportedSecCapabilityList
array(SecurityCapability)
M
1 . . . N
This IE shall contain






the list of security






capabilities that the






requesting SEPP






supports.
















TABLE 2







Definition of type SecNegotiateRspData











Attribute name
Data type
P
Cardinality
Description





sender
Fqdn
M
1
This IE shall uniquely






identify the SEPP that






is sending the response.






This IE is used to store






the negotiated security






capability against






the right SEPP.


selectedSecCapability
SecurityCapability
M
1
This IE shall contain






the security






capability selected






by the responding






SEPP.










As can be seen from Tables 1 and 2, sender attribute is a mandatory parameter of both the SecNegotiateReqData and SecNegotiateRspData information elements and contains the FQDN of the SEPP that sends the request or response. It is this FQDN that can be cross validated with the TLS layer identity.


In step 804, the SEPP compares the first and second identifiers for the first node. For example, the SEPP may compare the TLS identifier extracted from the X.509 certificate with the N32-c identifier extracted from the SecNegotiateRspData or SecNegotiateReqData information element of the N32-c security capability negotiation message.


In step 806, if the identifiers do not match, control proceeds to step 808 where the SEPP classifies the second (N32-c) identity of the first node as invalid. Control then proceeds to step 810, where the SEPP blocks inter-PLMN communications from the first node.


Returning to step 806, if the TLS and N32-c application layer identities match, control proceeds to step 812 where the SEPP performs a lookup for the identity for the first node in the peer SEPP database. Since the identities from the TLS layer and the N32c (application) layer match in step 806, the lookup may be performed using either the TLS layer or N32-c layer identity. The peer SEPP database may be provisioned by the network operator with the identities of SEPPs with which a give SEPP in the operator's network is permitted to communicate. Such SEPPs are referred to herein as peer SEPPs because they may be associated with PLMNs of peer network operators.


In step 814, if the identity is present in the peer SEPP database, control proceeds to step 816 where the SEPP allows inter-PLMN communications with the first node. If the identity is not present in the database, control proceeds to step 810 where the SEPP blocks inter-PLMN communications with the first node.


The subject matter described herein improves network security between SEPPs and PLMNs by performing cross-validation of identities exchanged between SEPPs in different network protocol layers. By comparing an N32-c identity with a TLS layer identity that is difficult to spoof, the SEPPs described herein reduce the likelihood of a successful spoofing attack during the N32-c security capability exchange procedure. In addition, because the cross-validation steps described herein can be both the initiating and responding SEPP in an N32 security capability negotiation, the likelihood of an attacker successfully impersonating either end of an N32-c connection is reduced.


The disclosure of each of the following references is incorporated herein by reference in its entirety.


REFERENCES



  • 1. IETF RFC 5246; The Transport Layer Security (TLS) Protocol, Version 1.2; August 2008

  • 2. IETF RFC 3280; Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, April 2002.

  • 3. 3GPP TS 29.573; 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Public Land Mobile Network (PLMN) Interconnection; Stage 3 (Release 16) V16.3.0 (2020-07)

  • 4. 3GPP TS 33.501; 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Security Architecture and Procedures for the 5G System; (Release 16), V16.3.0 (2020-07).

  • 5. 3GPP TS 29.510; 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Network Function Repository Services; Stage 3 (Release 16), V16.4.0 (2020-07).



It will be understood that various details of the presently disclosed subject matter may be changed without departing from the scope of the presently disclosed subject matter. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation.

Claims
  • 1. A method for mitigating 5G roaming spoofing attacks, the method comprising: obtaining, by a security edge protection proxy (SEPP) and from a transport layer security (TLS) message from a first node, a first identifier for the first node, wherein the first identifier for the first node is a fully qualified domain name (FQDN) of the first node located in a subject alternative name field of an X.509 certificate in the TLS message;obtaining, by the SEPP and from an N32-c security capability negotiation message from the first node, a second identifier for the first node, wherein the second identifier is an FQDN located in a sender attribute of a SecNegotiateRegData or SecNegotiateRspData information element of the N32-c security capability negotiation message;comparing the first and second identifiers for the first node;when the SEPP determines that first and second identifiers do not match: determining that second identifier for the first node is invalid; andin response to determining that the second identifier for the first node is invalid, blocking inter-public land mobile network (PLMN) communications with the first node; andwhen the SEPP determines that the first and second identifiers match: performing a lookup for either the first identifier or the second identifier for the first node in a peer SEPP database; andif either of the first identifier or the second identifier is present in the peer SEPP database, allowing inter-public land mobile network (PLMN) communications with the first node.
  • 2. The method of claim 1 wherein the TLS message comprises a TLS certificate message.
  • 3. The method of claim 1 wherein the SEPP is a responding SEPP in an N32-c security capability negotiation procedure and wherein obtaining the second identifier for the first node includes extracting the second identifier for the first node from a sender attribute of the Sec NegotiateReqData information element of the N32-c security capability negotiation message.
  • 4. The method of claim 1 wherein the SEPP is an initiating SEPP in an N32-c security capability negotiation procedure and wherein obtaining the second identifier for the first node includes extracting the second identifier for the first node from a sender attribute of the SecNegotiateRspData information element of the N32-c security capability negotiation message.
  • 5. The method of claim 1 comprising, in response to determining that the first and second identifiers for the first node match and that a matching identifier is not present in the peer SEPP database, blocking inter-PLMN communications from the first node.
  • 6. A system for mitigating 5G roaming spoofing attacks, the system comprising: a security edge protection proxy (SEPP) including at least one processor and a memory; anda 5G roaming spoofing attack mitigation module implemented by the at least one processor and configured to: obtain, from a transport layer security (TLS) message from a first node, a first identifier for the first node, wherein the first identifier for the first node is a fully qualified domain name (FQDN) of the first node located in a subject alternative name field of an X.509 certificate in the TLS message;obtain, from an N32-c security capability negotiation message from the first node, a second identifier for the first node, wherein the second identifier is an FQDN located in a sender attribute of a SecNegotiateReqData or Sec NegotiateRspData information element of the N32-c security capability negotiation message;compare the first and second identifiers for the first node;when the 5G roaming spoofing attack mitigation module determines that first and second identifiers do not match, the 5G roaming spoofing attack mitigation module is configured to: determine that second identifier for the first node is invalid; andin response to determining that the second identifier for the first node is invalid, block inter-public land mobile network (PLMN) communications with the first node; andwhen the 5G roaming spoofing attack mitigation module determines that first and second identifiers match, the 5G roaming spoofing attack mitigation module is configured to:perform a lookup for either the first identifier or the second identifier for the first node in a peer SEPP database; andif either of the first identifier or the second identifier is present in the peer SEPP database, allow inter-public land mobile network (PLMN) communications with the first node.
  • 7. The system of claim 6 wherein the TLS message comprises a TLS certificate message.
  • 8. The system of claim 6 wherein the SEPP is a responding SEPP in an N32-c security capability negotiation procedure and wherein 5G roaming spoofing attack mitigation module is configured to obtain the second identifier for the first node by extracting the second identifier for the first node from a sender attribute of the SecNegotiateReqData information element of the N32-c security capability negotiation message.
  • 9. The system of claim 6 wherein the SEPP is an initiating SEPP in an N32-c security capability negotiation procedure and wherein the 5G roaming spoofing attack mitigation module is configured to obtain the second identifier for the first node by extracting the second identifier for the first node from a sender information element attribute of the SecNegotiateRspData information element of the N32-c security capability negotiation message.
  • 10. The system of claim 6 wherein the 5G roaming spoofing attack mitigation module is configured to, in response to determining that the first and second identifiers for the first node match and that a matching identifier is not present in the peer SEPP database, block inter-PLMN communications from the first node.
  • 11. A non-transitory computer readable medium having stored thereon executable instructions that when executed by a processor of a computer control the computer to perform steps comprising: obtaining, by a security edge protection proxy (SEPP) and from a transport layer security (TLS) message from a first node, a first identifier for the first node, wherein the first identifier for the first node is a fully qualified domain name (FQDN) of the first node located in a subject alternative name field of an X.509 certificate in the TLS message;
  • 12. The non-transitory computer readable medium of claim 11 wherein the TLS message comprises a TLS certificate message.
Priority Claims (1)
Number Date Country Kind
202041041754 Sep 2020 IN national
US Referenced Citations (259)
Number Name Date Kind
6091958 Bergkvist et al. Jul 2000 A
6151503 Chavez Nov 2000 A
6292666 Siddiqui et al. Sep 2001 B1
6308075 Irten et al. Oct 2001 B1
6343215 Calabrese et al. Jan 2002 B1
6591101 Shimbori Jul 2003 B1
7043754 Arnouse May 2006 B2
7567661 Wood et al. Jul 2009 B1
8045956 Sun et al. Oct 2011 B2
8145234 Leonard et al. Mar 2012 B1
8509074 Roberts et al. Aug 2013 B1
8615217 Ravishankar et al. Dec 2013 B2
8879431 Ridel et al. Nov 2014 B2
9015808 Koller et al. Apr 2015 B1
9060263 Carames et al. Jun 2015 B1
9106428 Matthews et al. Aug 2015 B2
9106769 Kanode et al. Aug 2015 B2
9191803 Patel et al. Nov 2015 B2
9240946 Cai et al. Jan 2016 B2
9374840 Monedero Recuero Jun 2016 B2
9538335 Bank et al. Jan 2017 B1
9628994 Gunyel et al. Apr 2017 B1
9681360 Salyers et al. Jun 2017 B1
9912486 Sharifi Mehr Mar 2018 B1
10009751 Gundavelli et al. Jun 2018 B2
10021738 Mehta et al. Jul 2018 B1
10045326 Blanchard et al. Aug 2018 B2
10168413 Annamalai et al. Jan 2019 B2
10212538 Russell Feb 2019 B2
10230726 Barkan Mar 2019 B2
10237721 Gupta et al. Mar 2019 B2
10306459 Patil et al. May 2019 B1
10470154 Chellamani et al. Nov 2019 B2
10511998 Vallur Dec 2019 B1
10616200 Kumar et al. Apr 2020 B2
10637838 Larios et al. Apr 2020 B1
10652850 Landais et al. May 2020 B2
10776791 Ferguson et al. Sep 2020 B2
10834045 Mahalank et al. Nov 2020 B2
10834571 Yau et al. Nov 2020 B1
10931668 Mehta Feb 2021 B2
10952063 Mehta Mar 2021 B2
10984128 Hoffer Apr 2021 B1
11050788 Livanos Jun 2021 B2
11068534 Svendsen Jul 2021 B1
11140555 Thai et al. Oct 2021 B2
11265695 Shah et al. Mar 2022 B2
11272560 Vivanco et al. Mar 2022 B1
11368839 Targali Jun 2022 B2
11411925 Kumar et al. Aug 2022 B2
11516671 Rajput et al. Nov 2022 B2
11528251 Rajput et al. Dec 2022 B2
11553342 Mahalank et al. Jan 2023 B2
11622255 Iddya et al. Apr 2023 B2
11689912 Nair et al. Jun 2023 B2
20010046856 McCann Nov 2001 A1
20020080752 Johansson et al. Jun 2002 A1
20020098856 Berg et al. Jul 2002 A1
20020181448 Uskela et al. Dec 2002 A1
20020193127 Martschitsch Dec 2002 A1
20030087647 Hurst May 2003 A1
20040140908 Gladwin et al. Jul 2004 A1
20050182968 Izatt et al. Aug 2005 A1
20050232236 Allison et al. Oct 2005 A1
20060068762 Baldwin et al. Mar 2006 A1
20060193258 Ballai Aug 2006 A1
20060211406 Szucs et al. Sep 2006 A1
20060242414 Corson et al. Oct 2006 A1
20070011261 Madams et al. Jan 2007 A1
20070165527 Sultan et al. Jul 2007 A1
20070165626 Sultan et al. Jul 2007 A1
20070174082 Singh Jul 2007 A1
20070223372 Haalen et al. Sep 2007 A1
20070248032 Vasudevan et al. Oct 2007 A1
20070281718 Nooren Dec 2007 A1
20080004047 Hill et al. Jan 2008 A1
20080020704 Costa Jan 2008 A1
20080026778 Cai et al. Jan 2008 A1
20080045246 Murtagh et al. Feb 2008 A1
20080051061 Takahashi Feb 2008 A1
20080076430 Olson Mar 2008 A1
20080125116 Jiang May 2008 A1
20080168540 Agarwal et al. Jul 2008 A1
20080207181 Jiang Aug 2008 A1
20080222038 Eden Sep 2008 A1
20080259798 Loh et al. Oct 2008 A1
20090045251 Jaiswal et al. Feb 2009 A1
20090168719 Mercurio Jul 2009 A1
20090191915 Abramson et al. Jul 2009 A1
20090195349 Frader-Thompson et al. Aug 2009 A1
20100062789 Agarwal et al. Mar 2010 A1
20100098414 Kramer et al. Apr 2010 A1
20100100958 Jeremiah Apr 2010 A1
20100105355 Nooren Apr 2010 A1
20100130227 Farthofer et al. May 2010 A1
20100161817 Xiao et al. Jun 2010 A1
20100223222 Zhou et al. Sep 2010 A1
20100235911 Nooren Sep 2010 A1
20100240361 Jiang Sep 2010 A1
20100313024 Weniger et al. Dec 2010 A1
20110009085 Albanes et al. Jan 2011 A1
20110014939 Ravishankar et al. Jan 2011 A1
20110029655 Forbes, Jr. et al. Feb 2011 A1
20110063126 Kennedy et al. Mar 2011 A1
20110124317 Joo May 2011 A1
20110124334 Brisebois et al. May 2011 A1
20110158090 Riley et al. Jun 2011 A1
20110173122 Singhal Jul 2011 A1
20110191835 Hawkes et al. Aug 2011 A1
20110217979 Nas Sep 2011 A1
20110225091 Plastina et al. Sep 2011 A1
20110246178 Arzelier Oct 2011 A1
20110307381 Kim et al. Dec 2011 A1
20120099715 Ravishankar et al. Apr 2012 A1
20120110637 Holtmanns et al. May 2012 A1
20120115512 Grainger et al. May 2012 A1
20120131121 Snyder et al. May 2012 A1
20120202481 Martin Aug 2012 A1
20120203663 Sinclair et al. Aug 2012 A1
20120207015 Marsico Aug 2012 A1
20130035118 Hamano et al. Feb 2013 A1
20130102231 Joseph et al. Apr 2013 A1
20130102310 Malonda Apr 2013 A1
20130171988 Yeung et al. Jul 2013 A1
20130276035 Walker et al. Oct 2013 A1
20130331063 Cormier et al. Dec 2013 A1
20140195630 Malik et al. Jul 2014 A1
20140199961 Mohammed et al. Jul 2014 A1
20140199996 Wang et al. Jul 2014 A1
20140259012 Nandlall et al. Sep 2014 A1
20140280645 Shuman et al. Sep 2014 A1
20140370922 Richards Dec 2014 A1
20140378129 Jiang et al. Dec 2014 A1
20150012415 Livne et al. Jan 2015 A1
20150038156 Kilpatrick, II et al. Feb 2015 A1
20150081579 Brown et al. Mar 2015 A1
20150094060 Kouridakis et al. Apr 2015 A1
20150119092 Yi et al. Apr 2015 A1
20150121078 Fu et al. Apr 2015 A1
20150188979 Almeras et al. Jul 2015 A1
20150244486 Liang et al. Aug 2015 A1
20150304220 Miyao Oct 2015 A1
20150304803 Chen et al. Oct 2015 A1
20150341341 Messerges Nov 2015 A1
20150350196 Toyonaga et al. Dec 2015 A1
20160088461 Jiang Mar 2016 A1
20160119773 Xu et al. Apr 2016 A1
20160156647 Engel et al. Jun 2016 A1
20160165432 Dubesset et al. Jun 2016 A1
20160183117 Hsu et al. Jun 2016 A1
20160183178 Marimuthu Jun 2016 A1
20160219043 Blanke Jul 2016 A1
20160234119 Zaidi et al. Aug 2016 A1
20160269566 Gundamaraju et al. Sep 2016 A1
20160292687 Kruglick Oct 2016 A1
20160337976 Wang et al. Nov 2016 A1
20160365983 Shahabuddin et al. Dec 2016 A1
20160381699 Rubin et al. Dec 2016 A1
20170006431 Donovan et al. Jan 2017 A1
20170142547 Hou et al. May 2017 A1
20170201778 Bailey et al. Jul 2017 A1
20170244676 Edwards Aug 2017 A1
20170245207 Stammers et al. Aug 2017 A1
20170245280 Yi et al. Aug 2017 A1
20170257866 Chaudhuri et al. Sep 2017 A1
20170272921 Kim et al. Sep 2017 A1
20170289048 Chao et al. Oct 2017 A1
20170295201 Peylo et al. Oct 2017 A1
20170345006 Kohli Nov 2017 A1
20170366499 De Boer et al. Dec 2017 A1
20180020324 Beauford Jan 2018 A1
20180109632 Stammers et al. Apr 2018 A1
20180109953 He Apr 2018 A1
20180115970 Chae et al. Apr 2018 A1
20180167906 Chellamani et al. Jun 2018 A1
20180205698 Gupta et al. Jul 2018 A1
20180220301 Gallagher et al. Aug 2018 A1
20180270765 Wang Sep 2018 A1
20180288127 Zaidi et al. Oct 2018 A1
20180288198 Pope et al. Oct 2018 A1
20180310162 Kim et al. Oct 2018 A1
20190007788 Russell Jan 2019 A1
20190037484 Davies et al. Jan 2019 A1
20190044932 Kumar et al. Feb 2019 A1
20190074982 Hughes Mar 2019 A1
20190090086 Graham et al. Mar 2019 A1
20190116624 Tandon et al. Apr 2019 A1
20190182875 Talebi Fard et al. Jun 2019 A1
20190253885 Bykampadi et al. Aug 2019 A1
20190306166 Konda et al. Oct 2019 A1
20190342217 Mazurek Nov 2019 A1
20190354709 Brinskelle Nov 2019 A1
20190364064 Gupta et al. Nov 2019 A1
20190364460 Bogineni et al. Nov 2019 A1
20200007538 Mehta Jan 2020 A1
20200036754 Livanos Jan 2020 A1
20200042799 Huang et al. Feb 2020 A1
20200053044 Mahalank et al. Feb 2020 A1
20200077260 Hancock et al. Mar 2020 A1
20200107291 Nayak et al. Apr 2020 A1
20200145432 Verma et al. May 2020 A1
20200169510 Kadosh et al. May 2020 A1
20200187089 Meredith et al. Jun 2020 A1
20200221541 Yan Jul 2020 A1
20200259896 Sachs et al. Aug 2020 A1
20200329363 Mehta Oct 2020 A1
20200344604 He et al. Oct 2020 A1
20200359218 Lee et al. Nov 2020 A1
20200404490 Thai et al. Dec 2020 A1
20210022070 Letor et al. Jan 2021 A1
20210111985 Mahalank et al. Apr 2021 A1
20210112012 Krishan et al. Apr 2021 A1
20210142143 Howard May 2021 A1
20210152494 Johnsen et al. May 2021 A1
20210168751 Stojanovski et al. Jun 2021 A1
20210176177 Kubo et al. Jun 2021 A1
20210194903 Medvedovsky et al. Jun 2021 A1
20210203636 Kumar et al. Jul 2021 A1
20210203643 Jost et al. Jul 2021 A1
20210211946 Li Jul 2021 A1
20210234706 Nair et al. Jul 2021 A1
20210243165 Bykampadi et al. Aug 2021 A1
20210250186 Bykampadi et al. Aug 2021 A1
20210258824 John et al. Aug 2021 A1
20210274436 Sun et al. Sep 2021 A1
20210297942 Bykampadi et al. Sep 2021 A1
20210321303 Nair et al. Oct 2021 A1
20210377138 Sun et al. Dec 2021 A1
20210377212 Holtmanns et al. Dec 2021 A1
20210399988 Labonte Dec 2021 A1
20210400538 Ke Dec 2021 A1
20210406038 Fetzer et al. Dec 2021 A1
20220021586 Kazmierski Jan 2022 A1
20220022027 Xin et al. Jan 2022 A1
20220022040 Mahalank et al. Jan 2022 A1
20220030413 Ben Henda et al. Jan 2022 A1
20220038394 Anubolu et al. Feb 2022 A1
20220052847 Gonzalez Cervantes et al. Feb 2022 A1
20220070674 Russell Mar 2022 A1
20220104112 Rajput Mar 2022 A1
20220124079 Patil et al. Apr 2022 A1
20220124479 Iddya Apr 2022 A1
20220124501 S Bykampadi et al. Apr 2022 A1
20220150212 deaRajput May 2022 A1
20220158847 Aggarwal et al. May 2022 A1
20220159445 Rajavelu May 2022 A1
20220174544 Taft et al. Jun 2022 A1
20220182923 Yao et al. Jun 2022 A1
20220191694 Rajput Jun 2022 A1
20220191763 Roeland et al. Jun 2022 A1
20220200951 Goel Jun 2022 A1
20220200966 De-Gregorio-Rodriguez et al. Jun 2022 A1
20220201489 Mahalank Jun 2022 A1
20220240084 Speidel et al. Jul 2022 A1
20220256312 Kim et al. Aug 2022 A1
20220264260 Chaurasia et al. Aug 2022 A1
20220272069 Verma et al. Aug 2022 A1
20220272541 Rajput et al. Aug 2022 A1
20220369091 Nair Nov 2022 A1
Foreign Referenced Citations (73)
Number Date Country
101277541 Oct 2008 CN
10135561 Jan 2009 CN
101742445 Jun 2010 CN
101917698 Dec 2010 CN
102656845 Sep 2012 CN
103179504 Jun 2013 CN
103444212 Dec 2013 CN
107800664 Mar 2018 CN
108307385 Jul 2018 CN
110035433 Jul 2019 CN
110800322 May 2021 CN
Z L201880040478.3 Apr 2022 CN
ZL202080007649.X Sep 2022 CN
1 067 492 Jan 2001 EP
1 906 682 Apr 2008 EP
2 204 955 Jul 2010 EP
2 785 125 Aug 2018 EP
3 493 569 Jun 2019 EP
3 646 630 Aug 2021 EP
3 662 630 Aug 2021 EP
3954146 Feb 2022 EP
3 821 630 Jul 2022 EP
4183154 May 2023 EP
3954146 Jun 2023 EP
2 548 005 Oct 2015 ES
2503973 Jan 2014 GB
401247 Jul 2022 IN
2008-053808 Mar 2008 JP
7038148 Mar 2022 JP
7113147 Aug 2022 JP
7133010 Aug 2022 JP
7133010 Sep 2022 JP
7198339 Dec 2022 JP
7234342 Mar 2023 JP
7246418 Mar 2023 JP
20180069737 Jun 2018 KR
WO 0188790 Nov 2001 WO
WO 2005091656 Sep 2005 WO
WO 2005101872 Oct 2005 WO
WO 2007084503 Jul 2007 WO
WO 2008053808 May 2008 WO
WO-2010021886 Feb 2010 WO
WO 2010045646 Apr 2010 WO
WO 2010105099 Sep 2010 WO
WO 2011010640 Jan 2011 WO
WO 2011047382 Apr 2011 WO
WO 2016201990 Dec 2016 WO
WO 2017082532 May 2017 WO
WO 2019158028 Aug 2018 WO
WO 2018202284 Nov 2018 WO
WO 2019005287 Jan 2019 WO
WO 2019027813 Feb 2019 WO
WO 2019224157 Nov 2019 WO
WO 2020013889 Jan 2020 WO
WO 2020033113 Feb 2020 WO
WO 2020036883 Feb 2020 WO
WO 2020164763 Aug 2020 WO
WO 2020174121 Sep 2020 WO
WO 2020179665 Sep 2020 WO
WO 2020210015 Oct 2020 WO
WO 2020257018 Dec 2020 WO
WO 2021138072 Jul 2021 WO
WO 2022015378 Jan 2022 WO
WO 2022046176 Mar 2022 WO
WO 2022066227 Mar 2022 WO
WO 2022066228 Mar 2022 WO
WO 2022086596 Apr 2022 WO
WO 2022098404 May 2022 WO
WO 2022103454 May 2022 WO
WO 2022132315 Jun 2022 WO
WO 2022132316 Jun 2022 WO
WO 2022182448 Sep 2022 WO
WO 2022240582 Nov 2022 WO
Non-Patent Literature Citations (259)
Entry
S3-181480_pub.date_16-April-2018.pdf (Year: 2018).
ETSI TS 129 573_pub.date_7-2020.pdf (Year: 2020).
S3-192180_pub.date_24-June-2019.pdf (Year: 2019).
Commonly-assigned, co-pending U.S. Appl. No. 17/129,441 for “Methods, Systems, and Computer Readable Media for Mitigating Spoofing Attacks on Security Edge Protection Proxy (SEPP) Inter-Public Land Mobile Network (INTER-PLMN) Forwarding Interface,” (Unpublished, filed Dec. 21, 2020).
Commonly-assigned, co-pending U.S. Appl. No. 17/129,487 for “Methods, Systems, and Computer Readable Media for Ingress Message Rate Limiting,” (Unpublished, filed Dec. 21, 2020).
Commonly-assigned, co-pending U.S. Appl. No. 17/125,943 for “Methods, Systems, and Computer Readable Media for Mitigating 5G Roaming Attacks for Internet of Things (IoT) Devices Based on Expected User Equipment (UE) Behavior Patterns,” (Unpublished, filed Dec. 17, 2020).
Commonly-assigned, co-pending U.S. Appl. No. 17/123,038 for “Methods, Systems, and Computer Readable Media for Message Validation in Fifth Generation (5G) Communications Networks,” (Unpublished, filed Dec. 15, 2020).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Network Function Repository Services; Stage 3 (Release 17),” 3GPP TS 29.510, V17.0.0, pp. 1-229 (Dec. 2020).
Commonly-assigned, co-pending U.S. Appl. No. 17/099,683 for “Methods, Systems, and Computer Readable Media for Validating Location Update Messages,” (Unpublished, filed Nov. 16, 2020).
Notice of Allowance and Fee(s) Due and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/379,488 (dated Oct. 23, 2020).
Commonly-assigned, co-pending U.S. Appl. No. 17/076,482 for “Methods, Systems, and Computer Readable Media for Validating a Session Management Function (SMF) Registration Request,” (Unpublished, filed Oct. 21, 2020).
Notice of Allowance and Fee(s) Due and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/024,422 (dated Oct. 21, 2020).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Security architecture and procedures for 5G system (Release 16),” 3GPP TS 33.501, V16.4.0, pp. 1-249 (Sep. 2020).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Public Land Mobile Network (PLMN) Interconnection; Stage 3 (Release 16),” 3GPP TS 29.573, V16.4.0, pp. 1-95 (Sep. 2020).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Authentication Server Services; Stage 3 (Release 16),” 3GPP TS 29.509, V16.5.0, pp. 1-60 (Sep. 2020).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Network Function Repository Services; Stage 3 (Release 16),” 3GPP TS 29.510, V16.5.0, pp. 1-208 (Sep. 2020).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Numbering, addressing and identification; (Release 16),” 3GPP TS 23.003, V16.4.0, pp. 1-141 (Sep. 2020).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Session Management Services; Stage 3 (Release 16),” 3GPP TS 29.502, V16.5.0, pp. 1-260 (Sep. 2020).
“3rd Generation Partnership Project; Technical Specification Group Servces and System Aspects; System architecture for the 5G System (5GS); Stage 2 (Release 16),” 3GPP TS 23.501, V16.6.0, pp. 1-447 (Sep. 2020).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Procedures for the 5G Systems (5GS); Stage 2 (Release 16),” 3GPP TS 23.502, V16.6.0, pp. 1-597 (Sep. 2020).
Notice of Allowance and Fee(s) Due and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/100,172 (dated Sep. 14, 2020).
Commonly-assigned, co-pending U.S. Appl. No. 17/008,528 for “Methods, Systems, and Computer Readable Media for 5G User Equipment (UE) Historical Mobility Tracking and Security Screening Using Mobility Patterns,” (Unpublished, filed Aug. 31, 2020).
First Office Action for Chinese Application Serial No. 201880040477.9 (dated Aug. 5, 2020).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System architecture for the 5G System (5GS); Stage 2 (Release 16),” 3GPP TS 23.501, V16.5.1, pp. 1-440 (Aug. 2020).
Notification of Transmittal for the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2020/024234 (dated Jul. 16, 2020).
Non-Final Office Action for U.S. Appl. No. 16/379,488 (dated Jul. 15, 2020).
Commonly-assigned, co-pending U.S. Appl. No. 16/929,048 for “Methods, Systems, and Computer Readable Media for Mitigating 5G Roaming Security Attacks Using Security Edge Protection Proxy (SEPP),” (Unpublished, filed Jul. 14, 2020).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Architecture enhancements for 5G System (5GS) to support network data analytics services; (Release 16),” 3GPP TS 23.288, V16.4.0, pp. 1-66 (Jul. 2020).
Non-Final Office Action for U.S. Appl. No. 16/024,422 (dated Jul. 8, 2020).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Network Function Repository Services; Stage 3 (Release 16),” 3GPP TS 29.510, V16.4.0, pp. 1-192 (Jul. 2020).
Applicant-Initiated Interview Summary for U.S. Appl. No. 16/100,172 (dated Jun. 9, 2020).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Technical Realization of Service Based Architecture; Stage 3 (Release 16),” 3GPP TS 29.500, V16.4.0, pp. 1-79 (Jun. 2020).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Network Data Analytics Services; Stage 3 (Release 16),” 3GPP TS 29.520, V16.4.0, pp. 1-91 (Jun. 2020).
Communication of European publication number and information on the application of Article 67(3) EPC for European Application Serial No. 18731923.1 (dated Apr. 8, 2020).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Security architecture and procedures for 5G system (Release 16),” 3GPP TS 33.501, V16.2.0, pp. 1-227 (Mar. 2020).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Procedures for the 5G System (5GS); Stage 2 (Release 16),” 3GPP TS 23.502, V16.4.0, pp. 1-582 (Mar. 2020).
Non-Final Office Action for U.S. Appl. No. 16/100,172 (dated Mar. 6, 2020).
Notice of Allowance and Fee(s) Due and Examiner-Initiated Interview Summary for U.S. Appl. No. 15/666,300 (dated Feb. 13, 2020).
Commonly-assigned, co-pending U.S. Appl. No. 16/732,098 for “Methods, Systems, and Computer Readable Media for Implementing Indirect General Packet Radio Service (GPRS) Tunneling Protocol (GTP) Firewall Filtering Using Diameter Agent and Signal Transfer Point (STP),” (Unpublished, filed Dec. 31, 2019).
Advisory Action and Applicant-Initiated Interview Summary for U.S. Appl. No. 16/100,172 (dated Dec. 20, 2019).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; 5G Security Assurance Specification (SCAS) for the Security Edge Protection Proxy (SEPP) network product class (Release 16),” 3GPP TS 33.517, V16.1.0, pp. 1-17 (Dec. 2019).
“FS.19 Diameter Interconnect Security,” GSMA, pp. 1-3 (Dec. 20, 2019).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application Serial No. PCT/US2019/042203 (dated Nov. 11, 2019).
Applicant-Initiated Interview Summary for U.S. Appl. No. 15/666,300 (dated Oct. 29, 2019).
Final Office Action for U.S. Appl. No. 16/100,172 (dated Oct. 3, 2019).
“Technical Specification Group Core Network and Terminals; Evolved Packet System (EPS); Mobility Management Entity (MME) and Serving GPRS Support Node (SGSN) related interfaces based on Diameter protocol (Release 16),” 3GPP TS 29.272, V16.0.0, pp. 1-180 (Sep. 2019).
“Technical Specification Group Core Network and Terminals; Policy and Charging Control (PCC); Reference points (Release 16),” 3GPP TS 29.212, V16.1.0, pp. 1-285 (Sep. 2019).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application Serial No. PCT/US2019/028814 (dated Aug. 20, 2019).
Applicant-Initiated Interview Summary for U.S. Appl. No. 16/100,172 (dated Jul. 18, 2019).
Notice of Allowance and Fee(s) Due and Examiner-Initiated Interview Summary for U.S. Appl. No. 15/376,631 (dated Jul. 2, 2019).
“Technical Specification Group Core Network and Terminals; Mobile Application Part (MAP) specification (Release 15),” 3GPP TS 29.002, V15.5.0, pp. 1-1024 (Jun. 2019).
Non-Final Office Action for U.S. Appl. No. 15/666,300 (dated Jun. 27, 2019).
Decision on Appeal for U.S. Appl. No. 13/047,287 (Jun. 18, 2019).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Patent Application No. PCT/US2019/018990 (dated May 8, 2019).
Commonly-assigned, co-pending U.S. Appl. No. 16/379,488 for “Methods, Systems, and Computer Readable Media for Dynamically Learning and Using Foreign Telecommunication Network Mobility Management Node Information for Security Screening,” (Unpublished, filed Apr. 9, 2019).
Non-Final Office Action for U.S. Appl. No. 16/100,172 (dated Apr. 11, 2019).
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/035,008 (dated Jan. 18, 2019).
Advisory Action Before the Filing of an Appeal Brief and AFCP 2.0 Decision for U.S. Appl. No. 15/376,631 (dated Dec. 19, 2018).
Notice of Allowance and Fee(s) Due and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/408,155 (dated Oct. 31, 2018).
Sahu et al., “How 5G Registration Works,” http://5gblogs.com/5g-registration/, 10 pages (Oct. 12, 2018).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Patent Application No. PCT/US2018/043985 (dated Oct. 9, 2018).
Final Office Action for U.S. Appl. No. 15/376,631 (dated Oct. 5, 2018).
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 15/636,118 (dated Oct. 3, 2018).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2018/030319 (dated Aug. 20, 2018).
Final Office Action for U.S. Appl. No. 15/408,155 (dated Jul. 26, 2018).
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 15/636,118 (dated Apr. 27, 2018).
Non-Final Office Action for U.S. Appl. No. 15/376,631 (dated Apr. 18, 2018).
“Signalling Security in Telecom SS7/Diameter/5G,” Enisa, pp. 1-30 (Mar. 2018).
Examiner's Answer for U.S. Appl. No. 13/047,287 (dated Feb. 26, 2018).
Advisory Action Before the Filing of an Appeal Brief and AFCP 2.0 Decision for U.S. Appl. No. 15/376,631 (dated Feb. 2, 2018).
Non-Final Office Action for U.S. Appl. No. 15/408,155 (dated Jan. 9, 2018).
Final Office Action for U.S. Appl. No. 15/376,631 (dated Nov. 28, 2017).
“GSMA Guidelines for Diameter Firewall,” NetNumber Inc., pp. 1-7 (Sep. 12, 2017).
“Oracle Communications Diameter Signaling Router Main Differentiators,” Oracle White Paper, pp. 1-10 (Jul. 2017).
“LTE and EPC Roaming Guidelines,” GSM Association, Official Document IR.88, V 16.0, pp. 1-90 (Jul. 5, 2017).
Non-Final Office Action for U.S. Appl. No. 15/376,631 (dated Jun. 16, 2017).
“LTE International Roaming Whitepaper,” http://carrier.huawei.com/en/technical-topics/core-network/lte-roaming-whitepaper, pp. 1-16 (Downloaded May 12, 2017).
“Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); Universal Geographical Area Description (GAD) (3GPP TS 23.032 V 14.0.0 Release 14),” ETSI TS 123 032 V14.0.0, pp. 1-30 (May 2017).
Final Office Action for U.S. Appl. No. 13/047,287 (dated Mar. 10, 2017).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Functional stage 2 description of Location Services (LCS) (Release 14),” 3GPP TS 23.271 V14.1.0, pp. 1-181 (Mar. 2017).
“Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; Cx and Dx interfaces based on the Diameter protocol; Protocol details (3GPP TS 29.229 V 13.1.0 Release 13),” ETSI TS 129 229 V13.1.0, pp. 1-42 (Jan. 2017) .
“Edge Router (DEA),” http://www.mavenir.com/our-products/mobile/edge-router-dea, pp. 1-7 (Copyright 2017).
Non-Final Office Action for U.S. Appl. No. 13/047,287 (dated Aug. 25, 2016).
“Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); Numbering, addressing and identification (3GPP TS 23.003 V 12.9.0 Release 12),” ETSI TS 1 23 003 V12.9.0, pp. 1-93 (Mar. 2016).
“Syniverse Guide to LTE Roaming and Interoperability,” https://www.syniverse.com/assets/files/custom_content/lte-roaming-interoperability-guide.pdf, pp. 1-11 (Jan. 8, 2016).
“Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; Location Services (LCS); LCS Application Protocol (LCS-AP) between the Mobile Management Entity (MME) and Evolved Serving Mobile Location Centre (E-SMLC); SLs interface (3GPP TS 29.171 V 11.4.0 Release 11),” ETSI TS 129 171 V11.4.0, pp. 1-52 (Jan. 2016).
“Diameter Signaling Control (DSC),” https://www.extent.com/diameter-signaling-control-dsc/, pp. 1-3 (Copyright 2016).
Kotte, “Analysis and Experimental Verification of Diameter Attacks in Long Term Evolution Networks,” http://www.diva-portal.org/smash/get/diva2:951619/FULLTEXT01.pdf, pp. 1-72 (2016).
Advisory Action Before the Filing of an Appeal Brief for US. Appl. No. 13/047,287 (dated Oct. 16, 2015).
“The Dialogic® Helix™ Signaling Controller,” https://www.dialogic.com/-/media/products/docs/brochures/14090-helix-br.pdf, pp. 1-5 (Aug. 2015)
Final Office Action for U.S. Appl. No. 13/047,287 (dated Jun. 4, 2015).
“Digitial cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE; Location Services (LCS); Evolved Packet Core (EPC) LCS Protocol (ELP) between the Gateway Mobile Location Centre (GMLC) and the Mobile Management Entity (MME); SLg interface (3GPP TS 29.172 version 9.6.0 Release 9),”ETSI TS 129 172, V9.6.0, pp. 1-27 (Apr. 2015).
“Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE; Location Services (LCS); Diameter-based SLh interface for Control Plane LCS (3GPP TS 29.173 version 12.2.0 Release 12),” ETSI TS 129 173, V12.2.0., p. 1-20 (Oct. 2014).
Non-Final Office Action for U.S. Appl. No. 13/047,287 (dated Sep. 25, 2014).
Supplemental Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/823,559 (dated Aug. 23, 2013).
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/823,559 (dated Aug. 1, 2013).
Email to U.S. Patent and Trademark Office dated Jun. 28, 2013.
Final Office Action for U.S. Appl. No. 12/823,559 (dated Apr. 11, 2013).
Final Office Action for U.S. Appl. No. 13/047,287 (dated Jan. 31, 2013).
Non-Final Office Action for U.S. Appl. No. 12/823,559 (dated Nov. 14, 2012).
“Digital cellular telecommunications system (Phase 2+); Universal Monile Telecommunications System (UMTS); LTE; Location Services (LCS); Service description; Stage1 (3GPP TS 22.071 V 11.0.0 Release 11,” ETSI TS 122 071 V11.0.0, pp. 1-50 (Oct. 2012).
Restriction and/or Election Requirement for U.S. Appl. No. 12/823,559 (dated Aug. 27, 2012).
Notice of Allowance and Fee(s) due for U.S. Appl. No. 12/581,739 (dated Aug. 8, 2012).
Non-Final Office Action for U.S. Appl. No. 13/047,287 (dated Jun. 6, 2012).
Notice of Allowance and Fee(s) Due and Examiner-Initiated Interview Summary for U.S. Appl. No. 12/581,739 (dated May 15, 2012).
Non-Final Office Action for U.S. Appl. No. 12/722,460 (dated Apr. 9, 2012).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Charging management; Diameter charging applications (Release 11),” 3GPP TS 32.299, V11.3.0, pp. 1-150 (Mar. 2012).
“Net-Net Diameter Director,” http://www.oracle.com/us/industries/communications/net-net-diameter-director-ds-1985034.pdf, pp. 1-9 (Copyright 2012).
Final Office Action for U.S. Appl. No. 12/581,739 (dated Dec. 30, 2011).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Policy and Charging Control (PCC) over Gx/Sd reference point (Release 11),” 3GPP TS 29.212, V11.3.0, pp. 1-171 (Dec. 2011).
Non-Final Office Action for U.S. Appl. No. 12/581,739 (dated Aug. 26, 2011).
Press Release, “SmartSynch SmartMeters Communicate Using the Largest and Most Available Wireless Networks in the World,” http://www.smartsynch.com/SmartSynch_gprs.htm, pp. 1-2 (Downloaded from the Internet on Jul. 5, 2011).
“Solution: Itron CENTRON GPRS,” Data Sheet, http://www.smartsynch.com/SmartSynch_itron_centron.htm, pp. 1-3 (Downloaded from the Internet on Jul. 5, 2011).
Myers, “SmartSynch Introduces Innovative ‘DCX’ Smart Grid Solution at DistribuTECH,” SmartSynch News, http://wwwappmesh.com/news/020309.htm, pp. 1-3 Feb. 3, 2009 (Downloaded from the Internet on Jul. 5, 2011).
“NES System Architecture,” Data Sheet, Copyright 2009, pp. 1-2 (Downloaded from the Internet on Jul. 5, 2011).
“Wireless M-Bus and ZigBee®-enabled GSM/GPRS/ EDG Gateway for Smart Metering Introduced,” Metering.com, http://www.metering.com/node/13550 Sep. 19, 2008, pp. 1-2 (Downloaded from the Internet on Jul. 5, 2011).
Notification of Transmittal of the Internatioanl Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2010/027043 (dated Oct. 19, 2010).
“Draft LS on network verification of UE provided location,” 3GPP TSG SA WG2 Meeting #81, pp. 1 (Oct. 11-15, 2010).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/U32009/061187 (dated May 17, 2010).
Press Release, “Echelon and T-Mobile Announce Alliance to Reduce the Cost of a Secure Smart Grid Network for Utilities,” Echelon Corp., http://www.3gamericas.org/index.cfm?fuseaction=pressreleasedisplay&pressreleaseid=2201, pp. 1-3 (Apr. 23, 2009).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Evolved Packet System (EPS); Mobility Management Entity (MME) and Serving GPRS Support Node (SGSN) related interfaces based on Diameter protocol (Release 8),” 3GPP TS 29.272, V8.1.1, pp. 1-57 (Jan. 2009).
“3rd Generation Partnership Project; Technical Specification Group Core Network; Unstructured Supplementary Service Data (USSD); Stage 2 (Release 8),” 3GPP TS 23.090, V8.0.0, pp. 1-32 (Dec. 2008).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Unstructured Supplementary Service Data (USSD)—Stage 1 (Release 8),” 3GPP TS 22.090, V8.0.0, pp. 1-10 (Dec. 2008).
“Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); Circuit Switched (CS) fallback in Evolved Packet System (EPS); Stage 2 (3GPP TS 23.272 V 8.0.0 Release 8),” ETSI TS 123 272 V8.0.0, pp. 1-42 (Nov. 2008).
3rd Generation Partnership Project “Technical Specification Group Core Network and Terminals; Study into routeing of MT-SMs via the HPLMN (Release 7),” 3GPP TR 23.840 V7.1.0 (Mar. 2007).
Hakala et al., “Diameter Credit-Control Application,” RFC 4006, pp. 1-115 (Aug. 2005).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Network Function Repository Services; Stage 3 (Release 16),” 3GPP TS 29.510, V16.4.0 pp. 1-206 (Jul. 2020).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Public Land Mobile Network (PLMN) Interconnection; Stage 3 (Release 16),” 3GPP TS 29.573, V16.3.0, pp. 1-86 (Jul. 2020).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Security architecture and procedures for 5G system (Release 16),” 3GPP TS 33.501, V16.3.0, pp. 1-248 (Jul. 2020).
Dierks et al., “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246, pp. 1-208 (Aug. 2008).
Housley et al., “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” RFC 3280, pp. 1-258 (Apr. 2002).
Notice of Allowance and Fee(s) Due and Examiner-Initiated Interview Summary for U.S. Appl. No. 17/185,934 (dated Jul. 21, 2022).
Non-Final Office Action for U.S. Appl. No. 17/099,683 (dated Jul. 15, 2022).
Decision to grant a European patent pursuant to Article 97(1) EPC for European Patent Application Serial No. 197108426 (dated Jun. 30, 2022).
Notice of Allowance for Chinese Application Serial No. 202080007649.X (dated Jun. 20, 2022).
Communication under Rule 71 (3) EPC Intention to Grant for European Patent Application Serial No. 19 749 059.2 (dated May 16, 2022).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority or the Declaration for International Application No. PCT/US2021/042853 (dated Oct. 18, 2021).
Advisory Action and Applicant-Initiated Interview Summary for U.S. Appl. No. 17/099,683 (dated May 23, 2022).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2022/013373 (dated Apr. 11, 2022).
Non-Final Office Action and Examiner Interview Summary for U.S. Appl. No. 16/929,048 (dated Apr. 14, 2022).
Notice of Allowance for U.S. Appl. No. 16/732,098 (dated Apr. 6, 2022).
Examination Report for Indian Application Serial No. 202147030053 (dated Mar. 22, 2022).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority or the Declaration for International Application No. PCT/US2021/057156 (dated Mar. 3, 2022).
Non-Final Office Action for Chinese Application Serial No. 202080007649.X (dated Mar. 2, 2022).
Non-Final Office Action for U.S. Appl. No. 17/076,482 (dated Apr. 1, 2022).
Nokia et al., “Support of the mapping from IP addressing information provided to an AF to the user identity,” 3GPP SA WG2 Meeting #142e pp. 1-3 (Nov. 16-20, 2020).
China Telecom, “KI #13, New Sol: Trigger Procedures for Requesting Analytics,” 3GPP SA WG2 Meeting #SZ-139E pp. 1-4 (Aug. 19-Sep. 2, 2020).
First Office Action for Japanese Application Serial No. 2021545918 (dated Mar. 8, 2022).
Non-Final Office Action for U.S. Appl. No. 17/129,487 (dated Mar. 21, 2022).
Intention to grant a European patent pursuant to Article 97(1) EPC for European Patent Application Serial No. 19710842.6 (dated Feb. 24, 2022).
Notice of Allowance for Chinese Application Serial No. 201880040478.3 (dated Feb. 28, 2022).
Notice of Allowance for Japanese Application Serial No. 2019572174 (dated Feb. 8, 2022).
Final Office Action for U.S. Appl. No. 17/099,683 (dated Feb. 15, 2022).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2021/057157 (dated Jan. 27, 2022).
Notification Concerning Availability of the Publication of the International Application for International Application No. PCT/US2021/024002 (dated Jan. 20, 2022).
Examination Report for Indian Application Serial No. 202147005810 (dated Jan. 24, 2022).
Examination Report for Indian Application Serial No. 202147001641 (dated Jan. 13, 2022).
Examination Report for Indian Application Serial No. 202047056970 (dated Jan. 13, 2022).
Commonly-assigned, co-pending U.S. Appl. No. 17/319,023 for “Methods, Systems, and Computer Readable Media for Conducting a Velocity Check for Outbound Subscribers Roaming to Neighboring Countries,” (Unpublished, May 12, 2021).
Nokia et al., “3gpp-Sbi-Consumer-Id,” 3GPP TSG-CT WG4 Meeting #101e pp. 1-4 (Nov. 3-13, 2020).
Nokia et al., “SBA Network Function certificate profile,” 3GPTT TSG-SA WG3 Meeting #98e pp. 1-5 (Mar. 2-6, 2020).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Security Aspects; Study on security aspects of the 5G Service Based Architecture (SBA) (Release 16),” 3GPP TR 33.855, V1.3.0 pp. 1-52 (Nov. 2018).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2021/042660 (dated Oct. 26, 2021).
Hearing Notice of Indian Application Serial No. 201947047367 (Oct. 11, 2021).
First Office Action for Japanese Application Serial No. 2019572174 (dated Sep. 14, 2021).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2021/033030 (dated Aug. 20, 2021).
First Office Action for Chinese Application Serial No. 201880040478.3 (dated Aug. 26, 2021).
Notification Concerning Availability of the Publication of the International Application for International Application No. PCT/US2020/065763 (dated Jul. 8, 2021).
Non-Final Office Action for U.S. Appl. No. 17/099,683 (dated Sep. 20, 2021).
“5G; Procedures for the 5G System (3GPP TS 23.502 version 15.3.0 Release 15),” ETSI TS 123 502, V15.3.0, pp. 1-330 (Sep. 2018).
“Edge Router (DEA),” Mavenir, pp. 1-7 (2017).
Press Release, “Echelon and T-Mobile Announce Alliance to Reduce the Cost of a Secure Smart Grid Network for Utilities,” Echelon Corp., https://www.tdworld.com/smart-utility/article/20956244/echelon-and-tmobile-announce-alliance-to-reduce-the-cost-of-a-secure-smart-grid-network-for-utilities, p. 1-10 (May 14, 2009).
Decision to grant a European patent pursuant to Article 97(1) EPC for European Patent Application Serial No. 18756018.0 (dated Jul. 29, 2021).
Decision to grant a European patent pursuant to Article 97(1) EPC for European Patent Application Serial No. 18731923.1 (dated Jul. 15, 2021).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2021/029977 (dated Jul. 9, 2021).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2021/029973 (dated Jul. 7, 2021).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2021/024002 (dated Jun. 29, 2021).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2021/024980 (dated Jun. 23, 2021).
Communication of European publication number and information on the application of Article 67(3) EPC for European Patent Application Serial No. 19710842.6 (dated Apr. 21, 2021).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Security Aspects; Study on security aspects of the 5G Service based Architecture (SBA) (Release 16),” 3GPP TR 33.855, V16.0.0, pp. 1-104 (Jul. 2020).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Security Assurance Specification (SCAS) threats and critical assets in 3GPP network product classes (Release 16),” 3GPP TR 33.926, V16.3.0, pp. 1-60 (Mar. 2020).
“New Annex for the SEPP in TR 33.926,” 3GPP TSG-SA WG3 Meeting #95-BIS, pp. 1-6 (Jun. 24-28, 2019).
“N32 message anti-spoofing within the SEPP,” 3GPP TSG SA WG3 (Security), Meeting #91, pp. 1-2 (Apr. 16-20, 2018).
Commonly-assigned, co-pending U.S. Appl. No. 17/185,934 for “Methods, Systems, and Computer Readable Media for Mitigating Location Tracking and Denial of Service (DoS) Attacks that Utilize Access And Mobility Management Function (AMF) Location Service,” (Unpublished, filed Feb. 25, 2021).
Communication under Rule 71(3) EPC Intention to grant for European Application Serial No. 18 756 018.0 (dated Feb. 24, 2021).
Commonly-assigned, co-pending U.S. Appl. No. 17/175,260 for “Methods, Systems, and Computer Readable Media for Short Message Delivery Status Report Validation,” (Unpublished, filed Feb. 12, 2021).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Service requirements for the 5G system; Stage 1 (Release 18),” 3GPP TS 22.261, V18.1.1, pp. 1-85 (Jan. 2021).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Procedures for the 5G System (5GS); Stage 2 (Release 16),” 3GPP TS 23.502, V16.7.1, pp. 1-603 (Jan. 2021).
Fajardo, V. et al., “Diameter Base Protocol, Internet Engineering Task Force (IETF),” RFC 6733, pp. 1-152 (Oct. 2012).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Numbering, addressing and identification; (Release 17),” 3GPP TS 23.003, V17.0.0, pp. 1-142 (Dec. 2020).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Wireless and wireline convergence access support for the 5G System (5GS) (Release 16),” 3GPP TS 23.316, V16.6.0, pp. 1-83 (Dec. 2020).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Security architecture and procedures for 5G system (Release 17),” 3GPP TS 33.501, V17.0.0, pp. 1-253 (Dec. 2020).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Common Data Types for Service Based Interfaces; Stage 3 (Release 17),” 3GPP TS 29.571, V17.0.0,pp. 1-128 (Dec. 2020).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Public Land Mobile Network (PLMN) Interconnection; Stage 3 (Release 16),” 3GPP TS 29.573 V16.5.0, pp. 1-98 (Dec. 2020).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Location Management Services; Stage 3 (Release 16),” 3GPP TS 29.572, V16.5.0, pp. 1-77 (Dec. 2020).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Access and Mobility Management Services; Stage 3 (Release 17),” 3GPP TS 29.518, V17.0.0, pp. 1-298 (Dec. 2020).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System architecture for the 5G System (5GS); Stage 2 (Release 16),” 3GPP TS 23.501, V16.7.0, pp. 1-450 (Dec. 2020).
SMS Test Numbers: SMS Fake Delivery Receipts, Fake DLR-Tel?-SMS Test Platform and SMS services, Nov. 6, 2020, pp. 1-6, https://telqtele.com/sms-fake-delivery-receipts-fake- dlr/.
Communication of European publication number and information on the application of Article 67(3) EPC for European Application Serial No. 18756018.0 (dated May 13, 2020).
3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; T8 reference point for Northbound APIs, (Release 15), 3GPP TS 29.122, V15.6.0, pp. 1-300 (Dec. 2019).
DeKok, “The Network Access Identifier,” Internet Engineering Task Force (IETF), RFC 7542, pp. 1-30 (May 2015).
Croft, N., “On Forensics: A Silent SMS Attack,” Information and Computer Security Architectures (ICSA) Research Group, Department of Computer Science, pp. 1-4, University of Pretoria, South Africa (2012).
Constantin, L., “Remote SMS attack can force mobile phones to send premium-rate text messages: Applications installed by operators on SIM cards can be exploited remotely for SMS fraud and DoS purposes,” IDG News Service, Dec. 19, 2011, pp. 1-5, IDG Communications, Inc., United States.
Communication of European publication number and information on the application of Article 67(3) EPC for European Patent Application Serial No. 19730571.7 (dated Apr. 8, 2021).
International Search Report for International Patent Application Serial No. PCT/US2020/065763 (dated Apr. 6, 2021).
First Examination Report for Indian Patent Application Serial No. 201947047367 (dated Mar. 31, 2021).
Notice of Allowance for Chinese Patent Application Serial No. 201880040477.9 (dated Mar. 29, 2021).
Communication under Rule 71(3) EPC Intention to Grant for European Patent Application Serial No. 18 731 923.1 (dated Mar. 22, 2021).
First Examination Report for Indian Patent Application Serial No. 201947047012 (dated Mar. 18, 2021).
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 17/099,683 (dated May 8, 2023).
Interview Summary for U.S. Appl. No. 17/099,683 (dated Apr. 17, 2023).
Final Office Action for U.S. Appl. No. 17/099,683 (dated Apr. 6, 2023).
Applicant-Initiated Interview Summary for U.S. Appl. No. 17/099,683 (dated Apr. 5, 2023).
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 17/008,528 (dated Mar. 30, 2023).
Office Action for Chinese Patent Application Serial No. 202080091056.6 (dated Mar. 25, 2023).
Applicant-Initiated Interview Summary for U.S. Appl. No. 17/123,038 (dated May 30, 2023).
Decision to Grant for European Patent Application 20720580.8 (dated May 11, 2023).
Notice of Publication for European Patent Application 21718461.3 (dated Apr. 26, 2023).
Final Office Action for U.S. Appl. No. 17/123,038 (dated Mar. 9, 2023).
Supplemental Notice of Allowability for U.S. Appl. No. 17/175,260 (dated Mar. 8, 2023).
Office Communication for U.S. Appl. No. 17/125,943 (dated Mar. 1, 2023).
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 17/175,260 (dated Feb. 27, 2023).
Applicant Initiated Interview Summary for U.S. Appl. No. 17/008,528 (dated Feb. 21, 2023).
Intent to Grant for Japanese Patent Application No. 2020-572898 (dated Feb. 14, 2023).
Intent to Grant for Japanese Patent Application No. 2021-506739 (dated Jan. 24, 2023).
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 17/319,023 (dated Feb. 10, 2023).
Non-Final Office Action for U.S. Appl. No. 17/125,943 (dated Feb. 9, 2023).
Supplemental Notice of Allowability for U.S. Appl. No. 17/076,482 (dated Jan. 19, 2023).
Non-Final Office Action for U.S. Appl. No. 17/129,441 (dated Jan. 19, 2023).
Intent to Grant for European Patent Application No. 18705270.9 (dated Dec. 8, 2022).
Applicant Initiated Interview Summary for U.S. Appl. No. 17/319,023 (dated Jan. 10, 2023).
Non-Final Office Action for U.S. Appl. No. 17/099,683 (dated Jan. 4, 2023).
Communication under Rule 71(3) EPC Intention to Grant for European Patent Application Serial No. 20 720 580.8 (dated Dec. 23, 2022).
Applicant-Initiated Interview Summary for U.S. Appl. No. 17/099,683 (dated Dec. 12, 2022).
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 17/076,482 (dated Dec. 1, 2022).
Notice to Grant for Japanese Patent Application Serial No. 2021-500828 (dated Nov. 25, 2022).
Examination Report for Indian Application Serial No. 202247032585 (dated Nov. 15, 2022).
Non-Final Office Action for Chinese Patent Application Serial No. 202080091056.6 (dated Oct. 27, 2022).
Non-Final Office Action for U.S. Appl. No. 17/008,528 (dated Nov. 10, 2022).
Notification of reasons for refusal for Japanese Patent Application No. 2020-572898 (dated Oct. 25, 2022).
Advisory Action for U.S. Appl. No. 17/076,482 (dated Oct. 25, 2022).
Final Office Action and Applicant-Initiated Interview Summary for U.S. Appl. No. 17/099,683 (dated Oct. 24, 2022).
Communication of European publication number and information on the application of Article 67(3) EPC for European Patent Application No. 20842462.2 (dated Oct. 12, 2022).
Decision to grant a European patent pursuant to Article 97(1) EPC for European Patent Application Serial No. 19749059.2 (dated Sep. 29, 2022).
Decision to Grant for Japanese Patent Application Serial. No. 2020-505462 (dated Aug. 2, 2022).
Non-Final Office Action for U.S. Appl. No. 17/319,023 (dated Sep. 28, 2022).
Non-Final Office Action for U.S. Appl. No. 17/123,038 (dated Sep. 30, 2022).
Communication of European publication number and information on the application of Article 67(3) EPC for European Patent Application Serial No. 20720580.8 (dated Jan. 19, 2022).
Non-Final Office Action for U.S. Appl. No. 17/175,260 (dated Aug. 29, 2022).
Notice of Allowance and Fee(s) Due and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/929,048 (dated Aug. 24, 2022).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority or the Declaration for International Application No. PCT/US2022/026415 (dated Aug. 12, 2022).
Notice to Grant for Japanese Patent Application Serial No. 2021-545918 (dated Jun. 28, 2022).
“5G; Policy and Charging Control signaling flows and parameter mapping (3GPP TS 29.513 version 15.6.0 Release 15),” ETSI TS 129 513, V15.6.0, pp. 1-92 (Jan. 2020).
Final Office Action for U.S. Appl. No. 17/076,482 (dated Aug. 5, 2022).
Notice of Allowance and Fee(s) Due and Examiner-Initiated Interview Summary for U.S. Appl. No. 17/129,487 (dated Jul. 25, 2022).
“5G; Architecture enhancements for 5G System (5GS) to support network data analytics services (3GPP TS 23.288 version 16.4.0 Release 16),” ETSI TS 123 288, V16.4.0, pp. 1-68 (Jul. 2020).
Notice of Allowance for U.S. Appl. No. 17/123,038 (dated Jun. 23, 2023).
Notice of Publication for European Patent Application No. 21720355.3 (dated Jun. 7, 2023).
Notice of Allowance and Fee(s) Due/Applicant-Initiated Interview Summary for U.S. Appl. No. 17/129,441 (dated Jul. 19, 2023).
Related Publications (1)
Number Date Country
20220104020 A1 Mar 2022 US