The subject matter described herein relates to network policy control. More particularly, the subject matter described herein relates to methods, systems, and computer readable media for network metadata based policy control.
In long term evolution (LTE) networks, the policy and charging rules function (PCRF) is the network entity that implements policy control decision flow and charging functionality. A separate entity, the policy and charging enforcement function (PCEF), implements policies in accordance with instructions from the PCRF. The interface between the PCRF and the PCEF is referred to as the Gx interface. The PCEF is typically co-located with a service node, such as a gateway GPRS support node (GGSN).
In LTE networks, the PCRF typically implements operator defined policy rules for each subscriber. For example, a subscriber may contract with the network operator for a particular amount of network bandwidth across all applications, and the operator may define rules that are used by the PCRF to instruct the PCEF to enforce those rules. When a subscriber seeks to access a network service, such as a video download service to the subscriber's mobile phone, a node referred to as an application function (AF), which provides the video download service, contacts the PCRF to request a particular amount of bandwidth for the video download. The PCRF evaluates the request to determine whether the requested bandwidth is within the contract limit for the subscriber. If the requested bandwidth is within the contract limit, the PCRF instructs the PCEF to allocate the requested bandwidth.
In some instances, it may be desirable to implement agreements between network operators and third parties, such as retailers, to provide enhanced services to subscribers, for example, when the subscribers visit a particular retailer or other entity. There is not believed to be a mechanism defined in current LTE network standards for implementing such agreements.
It may also be desirable to allow network operators to automatically provide enhancements to subscribers based on group subscriber behavior. For example, a retailer or other entity may be willing to enter an agreement with a network operator if the network operator provides incentives when groups of subscribers are present in the retailer's location.
Accordingly, there exists a need for methods, systems, and computer readable media for network metadata based policy control.
The subject matter described herein includes methods, systems, and computer readable media for network metadata based policy control. According to one aspect, a system for network metadata based policy control is provided. The system includes a network metadata directed policy server for obtaining network information for a plurality of subscribers, for deriving network metadata from the network information, for applying a network metadata policy manipulation rule for changing a value of an operator assigned policy control parameter for the subscribers, and for sending an instruction for changing the value of the network operator assigned policy control parameter for the subscriber. The system further includes a policy and charging rules function (PCRF) node for receiving the instruction and for instructing a policy and charging enforcement function (PCEF) node to change the value of the operator assigned policy control parameter for the subscribers.
The subject matter described herein for network metadata based policy control can be implemented using a non-transitory computer readable medium having stored thereon executable instructions that when executed by the processor of a computer control the computer to perform steps. Exemplary computer readable media suitable for implementing the subject matter described herein include disk memory devices, chip memory devices, application specific integrated circuits, and programmable logic devices. In addition, a computer readable medium that implements the subject matter described herein may be located on a single device or computing platform or may be distributed across multiple devices or computing platforms.
In addition, the term “node” as used herein refers to a physical computing platform that implements all or a portion of the functionality described herein for network metadata based policy control. For example, a network node may include one or more microprocessors, memory, and network interfaces.
Preferred embodiments of the subject matter described herein will now be explained with reference to the accompanying drawings of which:
The subject matter described herein includes methods, systems, and computer readable media for network metadata based policy control. For example, it may be desirable for a network operator, such as XYZ Wireless Company, to implement an agreement with a retailer, such as Joe's Java, such that when a certain number of the network operator's subscribers are within the retailer's location or locations, the values of the operator assigned policy control parameters for the subscribers will be temporarily enhanced. For example, if the network operator's subscribers each typically receive a maximum download speed of one megabyte per second, that speed may be increased by 20% for 15 minutes if a certain number of those subscribers visit the retailer's location or locations. The network operator thus provides an incentive for its subscribers to visit the retailer. In return for the incentive and the execution of the policy rule, the retailer may compensate the network operator.
In one embodiment, a network metadata directed policy server may collect network information regarding a plurality of subscribers and may derive network metadata from the received network information. For example, the network information may indicate locations of the operator's subscribers, and network metadata may include the number of the operator's subscribers currently visiting the retailer in one location or across plural business locations of the retailer. The network metadata directed policy server may then apply the rule to determine whether a threshold number of the subscribers are within the retailer's location or locations. The network metadata directed policy server may then instruct the PCRF to enhance the quality of service for the subscribers within the retailer's location or locations for a predetermined time period or until instructed to stop enhancing the quality of service. The PCRF may in turn instruct the PCEF to implement the policy that enhances the quality of service for the subscribers of the network operator that are in the particular retailer location or locations. In one embodiment, once the action specified by the policy is triggered, the PCRF or the network metadata directed policy server may generate a billing record for the enhancement of the QoS for the group of subscribers and use that record to collect revenue from the retailer as part of a previously negotiated business agreement between the network operator and the retailer.
In operation, network metadata directed policy server 100 implements the above-described network metadata based policy control rules, such as determining whether a certain number of a particular network operator's subscribers are within a particular retailer's location or locations and increasing data download bandwidth for the network operator's subscribers in the retailer's location or locations if the threshold requirement is met. Network metadata directed policy server 100 may communicate with PCRF 102 to temporarily increase or enhance QoS for the subscribers. PCRF 102 communicates with PCEF 104 to instruct PCEF 104 to implement the action specified by the policy control rule for subscriber devices 106.
Although in
In the above-described examples, network information sources include core network nodes, such as HLRs and HSSs. In an alternate example, network information sources 108 may also include mobile subscriber devices 106. For instance, proactive universal integrated circuit card (UICC) is a procedure where the UICC within a phone can issue a geographic location request to the phone to obtain the geographic position of the phone. The UICC can then be queried, for example, by PCEF 104, to provide the geographic position of the phone. PCEF 104 may provide the geographic position information to PCRF 102 and/or network metadata directed policy server 100, which can then use the geographic information to derive the network metadata, such as whether the phone is within the geographic domain of a particular retailer. Each mobile subscriber device 106 may determine its own location through any suitable mechanism, including an internal global positioning system (GPS) chip or through triangulation based on signals detected from different radio towers.
Referring to the message flow in
In messages 4 and 5, PCRF 102 signals PCEF 104 over the Gx interface to implement the policy to enhance the QoS attribute for the subscribers. In the illustrated example, the messaging sent over this interface includes re-authentication request (RAR) and re-authentication answer (RAA) messages. However, the present subject matter is not limited to these particular messages. Any messaging suitable for instructing a policy and charging enforcement node to implement subscriber specific policies is intended to be within the scope of the subject matter described herein.
In the case where the subscribers whose QoS attributes are being enhanced are in different locations, such as at plural locations of the same retailer, network metadata directed policy server 100 may identify the PCRF associated with each subscriber, and each PCRF will signal the PCEF currently enforcing policy rules for each subscriber. Binding information that indicates which sessions are being handled by which PCRF may be stored in the HSS or in a separate subscriber binding repository (SBR). In either case, network metadata directed policy server 100 may query the HSS or SBR for the information. In an alternate implementation, network metadata directed policy server 100 may subscribe to each PCRF in its network and obtain binding information as new sessions are established. In yet another alternate implementation, network metadata directed policy server 100 may obtain the binding information from a Diameter signaling router (DSR) that stores and/or generates such binding information.
Referring to the message flow illustrated in
The instructions sent by network metadata directed policy server 100 to enhance the QoS parameter for a particular subscriber are distinct from the instructions sent over the Rx interface by an application function (AF) to request quality of service for a particular session. Such a request must be made within the subscriber's operator assigned policy control parameters. The instructions sent by network metadata directed policy server 100 may enhance a quality of service parameter, such as total download bandwidth to be shared across all services, from the operator assigned value to an enhanced value. The enhanced value may be outside the scope of the parameter values that an application function can request. In other words, an application function may not be capable of modifying an operator controlled policy parameter beyond operator controlled limits set for the subscriber. Likewise, an application function may be incapable of implementing an agreement between a network operator and a third party, such as retailer. However, the subject matter described herein is not limited to enhancing a quality of service parameter that is global across services that a subscriber may request. The operator controlled quality of service parameter that is manipulated may be the download bandwidth assigned to a currently active session so that the quality of service for a particular subscriber or group of subscribers immediately improves for in-progress sessions in response to receiving the manipulation command.
The time period during which the QoS parameter value is enhanced may be defined by a timer that expires or by start and stop messages sent by network metadata directed policy server 100. For example, network metadata directed policy server 100 may signal PCRF 102 at the initiation and termination of a policy enhancement period to define the term or time period during which QoS parameters are enhanced. Network metadata directed policy server 100 may internally monitor the QoS enhancement period and send the QoS enhancement termination signal to the PCRF at the end of the policy enhancement period. In an alternate implementation, network metadata directed policy server 100 may specify a duration in the initial instructions to enhance the QoS attribute, and PCRF 102 may only enhance the attribute for this duration. After the end of the QoS enhancement period, QoS parameter values for the subscribers may return to pre-enhancement levels. Either implementation is intended to be within the scope of the subject matter described herein.
In the embodiment illustrated in
In steps 404 and 406, network metadata directed policy server 100 applies a network metadata policy manipulation rule for changing a value of an operator assigned policy control parameter for the subscribers. If the condition of the rule is met, network metadata directed policy server 100 may determine that the QoS for subscribers within the business location should be increased temporarily. Accordingly, in step 408, network metadata directed policy server 100 generates an instruction for changing the network operator assigned policy control parameter for the subscribers. If the condition of the rule is not met, control returns to step 400 where network information is received and the process is repeated.
Returning to step 408, assuming that the condition is met, control proceeds to step 410, where PCRF 102 detects the instruction and instructs a PCEF to change the value of the operator assigned policy control parameter for the subscribers. For example, referring to
In the examples illustrated in
Providing network metadata based policy control allows network operators to enter agreements with retailers based on groups of subscribers visiting a retailer's location or locations. For example, if, as described above, a policy enhancement is triggered based on a group of subscribers being in a retailer's location or locations at the same time or within a predetermined time period of each other, the retailer's obligation to compensate the network operator may only be triggered when there is a substantial benefit to the retailer caused by the threshold number of subscribers visiting the retailer's location or locations. Providing policy enhancement incentives based on groups of subscribers, rather than individual subscribers, thus decreases the administrative cost of providing policy enhancement incentives by only triggering a retailer's compensation obligations when the threshold is met.
It will be understood that various details of the presently disclosed subject matter may be changed without departing from the scope of the presently disclosed subject matter. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation.
This application claims the benefit of U.S. provisional patent application Ser. No. 61/515,484, filed Aug. 5, 2011.
Number | Name | Date | Kind |
---|---|---|---|
3917915 | Karras | Nov 1975 | A |
4162377 | Mearns | Jul 1979 | A |
4191860 | Weber | Mar 1980 | A |
4310727 | Lawser | Jan 1982 | A |
4313035 | Jordan et al. | Jan 1982 | A |
4385206 | Bradshaw et al. | May 1983 | A |
4754479 | Bicknell et al. | Jun 1988 | A |
4756020 | Fodale | Jul 1988 | A |
4769834 | Billinger et al. | Sep 1988 | A |
4788718 | McNabb et al. | Nov 1988 | A |
4897835 | Gaskill et al. | Jan 1990 | A |
4897870 | Golden | Jan 1990 | A |
4959849 | Bhusri | Sep 1990 | A |
4972461 | Brown et al. | Nov 1990 | A |
5008929 | Olsen et al. | Apr 1991 | A |
5150357 | Hopner et al. | Sep 1992 | A |
5291481 | Doshi et al. | Mar 1994 | A |
5315580 | Phaal | May 1994 | A |
5341608 | Mains, Jr. | Aug 1994 | A |
5402474 | Miller et al. | Mar 1995 | A |
5426688 | Anand | Jun 1995 | A |
5430709 | Galloway | Jul 1995 | A |
5438570 | Karras et al. | Aug 1995 | A |
5457692 | Ishinabe et al. | Oct 1995 | A |
5457729 | Hamann et al. | Oct 1995 | A |
5473596 | Garafola et al. | Dec 1995 | A |
5475732 | Pester, III | Dec 1995 | A |
5506893 | Buscher et al. | Apr 1996 | A |
5521902 | Ferguson | May 1996 | A |
5539804 | Hong et al. | Jul 1996 | A |
5546398 | Tucker et al. | Aug 1996 | A |
5550914 | Clarke et al. | Aug 1996 | A |
5572579 | Orriss et al. | Nov 1996 | A |
5579371 | Aridas et al. | Nov 1996 | A |
5583926 | Venier et al. | Dec 1996 | A |
5586177 | Farris et al. | Dec 1996 | A |
5592530 | Brockman et al. | Jan 1997 | A |
5598464 | Hess et al. | Jan 1997 | A |
5602909 | Carkner et al. | Feb 1997 | A |
5606600 | Elliott | Feb 1997 | A |
5610969 | McHenry et al. | Mar 1997 | A |
5610977 | Williams et al. | Mar 1997 | A |
5625681 | Butler, II | Apr 1997 | A |
5689555 | Sonnenberg | Nov 1997 | A |
5696816 | Sonnenberg | Dec 1997 | A |
5712908 | Brinkman et al. | Jan 1998 | A |
5740239 | Bhagat et al. | Apr 1998 | A |
5757895 | Aridas et al. | May 1998 | A |
5764745 | Chan et al. | Jun 1998 | A |
5768352 | Elliott et al. | Jun 1998 | A |
5768358 | Venier et al. | Jun 1998 | A |
5771284 | Sonnenberg | Jun 1998 | A |
5774532 | Gottlieb et al. | Jun 1998 | A |
5784443 | Chapman et al. | Jul 1998 | A |
5796813 | Sonnenberg | Aug 1998 | A |
5802145 | Farris et al. | Sep 1998 | A |
5812639 | Bartholomew et al. | Sep 1998 | A |
5867558 | Swanson | Feb 1999 | A |
5903726 | Donovan et al. | May 1999 | A |
5949871 | Kabay et al. | Sep 1999 | A |
5999525 | Krishnaswamy et al. | Dec 1999 | A |
6009160 | Sonnenberg | Dec 1999 | A |
6021126 | White et al. | Feb 2000 | A |
6028914 | Lin et al. | Feb 2000 | A |
6091957 | Larkins et al. | Jul 2000 | A |
6091959 | Souissi et al. | Jul 2000 | A |
6094573 | Heinonen et al. | Jul 2000 | A |
6097719 | Benash et al. | Aug 2000 | A |
6108332 | Kasiviswanathan | Aug 2000 | A |
6108782 | Fletcher et al. | Aug 2000 | A |
6111946 | O'Brien | Aug 2000 | A |
6115754 | Landgren | Sep 2000 | A |
6119014 | Alperovich et al. | Sep 2000 | A |
6128304 | Gardell et al. | Oct 2000 | A |
6128377 | Sonnenberg | Oct 2000 | A |
6134307 | Brouckman et al. | Oct 2000 | A |
6134314 | Dougherty et al. | Oct 2000 | A |
6134316 | Kallioniemi et al. | Oct 2000 | A |
6134432 | Holmes et al. | Oct 2000 | A |
6138023 | Agarwal et al. | Oct 2000 | A |
6181937 | Joensuu | Jan 2001 | B1 |
6182086 | Lomet et al. | Jan 2001 | B1 |
6188752 | Lesley | Feb 2001 | B1 |
6208872 | Schmidt | Mar 2001 | B1 |
6215790 | Voit et al. | Apr 2001 | B1 |
6219551 | Hentilä et al. | Apr 2001 | B1 |
6249572 | Brockman et al. | Jun 2001 | B1 |
6252952 | Kung et al. | Jun 2001 | B1 |
6272136 | Lin et al. | Aug 2001 | B1 |
6301609 | Aravamudan et al. | Oct 2001 | B1 |
6304565 | Ramamurthy | Oct 2001 | B1 |
6321268 | Dillon et al. | Nov 2001 | B1 |
6324183 | Miller et al. | Nov 2001 | B1 |
6333931 | LaPier et al. | Dec 2001 | B1 |
6363411 | Dugan et al. | Mar 2002 | B1 |
6373930 | McConnell et al. | Apr 2002 | B1 |
6393269 | Hartmaier et al. | May 2002 | B1 |
6424621 | Ramaswamy et al. | Jul 2002 | B1 |
6430176 | Christie, IV | Aug 2002 | B1 |
6438223 | Eskafi et al. | Aug 2002 | B1 |
6446127 | Schuster et al. | Sep 2002 | B1 |
6453034 | Donovan et al. | Sep 2002 | B1 |
6453158 | Donovan et al. | Sep 2002 | B2 |
6456708 | Copley et al. | Sep 2002 | B1 |
6466796 | Jacobson et al. | Oct 2002 | B1 |
6470179 | Chow et al. | Oct 2002 | B1 |
6480588 | Donovan | Nov 2002 | B1 |
6496690 | Cobo et al. | Dec 2002 | B1 |
6510164 | Ramaswamy et al. | Jan 2003 | B1 |
6515997 | Feltner et al. | Feb 2003 | B1 |
6516194 | Hanson | Feb 2003 | B2 |
6535727 | Abbasi et al. | Mar 2003 | B1 |
6564261 | Gudjonsson et al. | May 2003 | B1 |
6571094 | Begeja et al. | May 2003 | B1 |
6584183 | Manto | Jun 2003 | B2 |
6611516 | Pirkola et al. | Aug 2003 | B1 |
6633764 | Garcia | Oct 2003 | B1 |
6718178 | Sladek et al. | Apr 2004 | B1 |
6747970 | Lamb et al. | Jun 2004 | B1 |
6760343 | Krishnamurthy et al. | Jul 2004 | B1 |
6801781 | Provost et al. | Oct 2004 | B1 |
6856676 | Pirot et al. | Feb 2005 | B1 |
6963583 | Foti | Nov 2005 | B1 |
6968052 | Wullert, II | Nov 2005 | B2 |
7058036 | Yu et al. | Jun 2006 | B1 |
7738891 | Tenhunen et al. | Jun 2010 | B2 |
8305922 | Cuervo | Nov 2012 | B2 |
8331229 | Hu et al. | Dec 2012 | B1 |
8620263 | Ravishankar et al. | Dec 2013 | B2 |
8681622 | Chatterjee et al. | Mar 2014 | B2 |
20010031641 | Ung et al. | Oct 2001 | A1 |
20010034224 | McDowell et al. | Oct 2001 | A1 |
20020029189 | Titus et al. | Mar 2002 | A1 |
20020058507 | Valentine et al. | May 2002 | A1 |
20020111153 | Hartmaier et al. | Aug 2002 | A1 |
20020150079 | Zabawskyj et al. | Oct 2002 | A1 |
20030026289 | Mukherjee et al. | Feb 2003 | A1 |
20030031160 | Gibson Ang et al. | Feb 2003 | A1 |
20030037108 | Peiffer et al. | Feb 2003 | A1 |
20030177281 | McQuillan et al. | Sep 2003 | A1 |
20030203740 | Bahl et al. | Oct 2003 | A1 |
20040003037 | Fujimoto et al. | Jan 2004 | A1 |
20040153506 | Ito et al. | Aug 2004 | A1 |
20040166878 | Erskine et al. | Aug 2004 | A1 |
20040213393 | Bedingfield et al. | Oct 2004 | A1 |
20040233840 | Bye | Nov 2004 | A1 |
20040240638 | Donovan | Dec 2004 | A1 |
20050027867 | Mueller et al. | Feb 2005 | A1 |
20050070310 | Caspi et al. | Mar 2005 | A1 |
20050202836 | Schaedler et al. | Sep 2005 | A1 |
20060053197 | Yoshimura et al. | Mar 2006 | A1 |
20060291488 | Naqvi et al. | Dec 2006 | A1 |
20070185809 | Duan | Aug 2007 | A1 |
20090172782 | Taglienti et al. | Jul 2009 | A1 |
20090207730 | Stamoulis et al. | Aug 2009 | A1 |
20090225719 | Zhi et al. | Sep 2009 | A1 |
20090245108 | Wu et al. | Oct 2009 | A1 |
20090327112 | Li et al. | Dec 2009 | A1 |
20100137002 | Agarwal et al. | Jun 2010 | A1 |
20100161802 | Tofighbakhsh et al. | Jun 2010 | A1 |
20100184403 | Cai et al. | Jul 2010 | A1 |
20100287121 | Li et al. | Nov 2010 | A1 |
20110003579 | Cai et al. | Jan 2011 | A1 |
20110158090 | Riley et al. | Jun 2011 | A1 |
20110170411 | Wang et al. | Jul 2011 | A1 |
20110170412 | Ramadas et al. | Jul 2011 | A1 |
20110217979 | Nas | Sep 2011 | A1 |
20110231540 | Tai et al. | Sep 2011 | A1 |
20110246586 | Steele | Oct 2011 | A1 |
20110307790 | Pandya et al. | Dec 2011 | A1 |
20110317557 | Siddam et al. | Dec 2011 | A1 |
20120026947 | Miller et al. | Feb 2012 | A1 |
20120034900 | Agarwal | Feb 2012 | A1 |
20120052866 | Froehlich et al. | Mar 2012 | A1 |
20120059943 | Castro Castro et al. | Mar 2012 | A1 |
20120064878 | Castro Castro et al. | Mar 2012 | A1 |
20120084371 | Rajagopalan et al. | Apr 2012 | A1 |
20120094685 | Marsico | Apr 2012 | A1 |
20120096139 | Cackowski et al. | Apr 2012 | A1 |
20120099715 | Ravishankar et al. | Apr 2012 | A1 |
20120100849 | Marsico | Apr 2012 | A1 |
20120129488 | Patterson et al. | May 2012 | A1 |
20120140632 | Norp et al. | Jun 2012 | A1 |
20120163297 | Agarwal et al. | Jun 2012 | A1 |
20120176894 | Cai et al. | Jul 2012 | A1 |
20120220330 | Goldner et al. | Aug 2012 | A1 |
20120233325 | Zhou et al. | Sep 2012 | A1 |
20120257499 | Chatterjee et al. | Oct 2012 | A1 |
20130017803 | Li et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
0 088 639 | Sep 1983 | EP |
0 212 654 | May 1987 | EP |
0 258 654 | Mar 1988 | EP |
0 264 023 | Apr 1988 | EP |
1 100 279 | May 2001 | EP |
2 382 267 | May 2003 | GB |
58-215164 | Dec 1983 | JP |
62-200859 | Sep 1987 | JP |
1020030025024 | Mar 2003 | KR |
WO 8401073 | Mar 1984 | WO |
WO 8800419 | Jan 1988 | WO |
WO 8603915 | Jul 1988 | WO |
WO 9733441 | Sep 1997 | WO |
WO 9914910 | Mar 1999 | WO |
WO 0016583 | Mar 2000 | WO |
WO 0035155 | Jun 2000 | WO |
WO 0120920 | Mar 2001 | WO |
WO 0156308 | Aug 2001 | WO |
WO 2006031678 | Mar 2006 | WO |
WO 2012021344 | Feb 2012 | WO |
Entry |
---|
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. International PCT/US2012/026178 (Jul. 30, 2012). |
“About 3GPP: What is the difference between a SIM and a USIM? What is a UICC?,” About http://www.3gpp.org/FAQ#outil—sommaire—58, pp. 1-11 (Copyright 2012). |
“Smart Cards; Card Application Toolkit (CAT) (Release 10),” ETSI TS 102 223 V10.5.0, pp. 1-224 (Sep. 2011). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Universal Geographical Area Description (GAD) (Release 10),” 3GPP TS 23.032, pp. 1-29 (Mar. 2011). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Policy and Charging Control over Rx reference point (Release 9),” 3GPP TS 29.214 V9.3.0 pp. 1-44 (Mar. 2010). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Policy and Charging Control over Gx reference point (Release 9),” 3GPP TS 29.212 V9.2.0, pp. 1-111 (Mar. 2010). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/277,626 (Aug. 20, 2013). |
Non-Final Office Action for U.S. Appl. No. 13/274,936 (May 1, 2013). |
Non-Final Office Action for U.S. Appl. No. 13/277,626 (Feb. 27, 2013). |
“3rd Generation Partnership Project; Technical Specification Group Services and Systems Aspects; Telecommunication management; Charging management; Diameter charging applications (Release 9),” 3GPP TS 32.299 V9.4.0, pp. 1-148 (Jun. 2010). |
3GPP, “Digital Cellular Telecommunications System (Phase 2+); Universal Mobile Telecommunications System (UMTS); Universal Subscriber Identity Module (USIM) Application Toolkit (USAT) (3GPP TS 31.111 version 8.3.0 Release 8),” ETSI TS 131 111 V8.3.0, pp. 1-102 (Oct. 2008). |
“BICC Architecture and BICC Protocol Details,” Tekelec, p. 28-41 (2008). |
“BICC Signaling Router (BSR) Reference Architecture (WP005274),” Tekelec, p. 2-91 (2008). |
Jennings et al., “Session Initiation Protocol (SIP) URIs for Application such as Voicemail and Interactive Voice Reponse (IVR),” The Internet Society, RFC 4458 (Apr. 2006). |
“Interworking Between Session Initiation Protocol (SIP) and Bearer Independent Call Control Protocol or ISDN User Part,” ITU-T Q.1912.5, p. 1-101 (Mar. 2004). |
“Prepaid vs. Number Portability,” Power Point presentation (publication date unknown; electronic file creation date Jul. 29, 2003.). |
“Bearer Independent Call Bearer Control Protocol,” ITU-T Q.1950, p. 1-96 (Dec. 2002). |
Chang, “BICC Extension of SIP in Inter-Network Configuration,” Internet Engineering Task Force, draft-chang-sipping-bicc-network-00.txt, pp. 1-17 (Mar. 2002). |
Marshall et al., “SIP Extensions for Supporting Distributed Call State,” SIP Working Group, Internet Draft, pp. 1-12 (Aug. 2001). |
“Bearer Independent Call Control Protocol (Capability Set 2) and Signalling System No. 7 ISDN User Part: Formats and Codes,” ITU-T Q.1902.3, p. 1-141 (Jul. 2001). |
“Bearer Independent Call Control Protocol (Capability Set 2) and Signaling System No. 7 ISDN user part: General Functions of Messages and Parameters,” ITU-T Q.1902.2 (July 2001). |
“Bearer Independent Call Control Protocol (Capability Set 2): Functional Description,” ITU-T Q.1902.1, p. 1-23 (Jul. 2001). |
“Bearer Independent Call Control Protocol,” ITU-T Q.1901 (Jun. 2000). |
Sugano et al., “Presence Information Data Format for IMPP,” Internet draft, draft-ietf-impp-pidf-01.text, Network Working Group, pp. 1-17 (Mar. 10, 2000). |
Liao et al., “SS7-TCAP/IP Interworking,” Internet Engineering Task Force, pp. 1-14 (Mar. 1999). |
De Ment, “The Evolution of Signaling,” NMS Communications, p. 1-28 (Publication Date Unknown). |
“Mobile Wireless Overview,” Cisco IOS Mobile Wireless Configuration Guide, pp. MWC-1-MWC-8 (Publication Date Unknown). |
Final Office Action for U.S. Appl. No. 13/274,936 (Nov. 15, 2013). |
Notice of Allowance and Fee(s) Due for U.S. Appl. 13/330,086 (Nov. 6, 2013). |
Email to U.S. Patent and Trademark Office dated Jun. 28, 2013. |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/244,237 (Oct. 16, 2014). |
Non-Final Office Action for U.S. Appl. No. 13/274,936 (Aug. 28, 2014) |
Final Office Action for U.S. Appl. No. 13/244,337 (Aug 6, 2014). |
Non-Final Office Action for U.S. Appl. No. 13/244,237 (Apr. 3, 2014). |
Advisory Action Before the Filing of an Appeal Brief for U.S. Appl. No. 13/274,936 (Feb. 3, 2014). |
Number | Date | Country | |
---|---|---|---|
20130036215 A1 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
61515484 | Aug 2011 | US |