The subject matter described herein relates to routing messages relating to subscriptions in telecommunications networks. More particularly, the subject matter described herein relates to methods, systems, and computer readable media for optimized routing of messages relating to existing NF subscriptions using an intermediate forwarding NRF.
In 5G telecommunications networks, a network function that provides service is referred to as a producer network function (NF) or NF service producer. A network function that consumes services is referred to as a consumer NF or NF service consumer. A network function can be a producer NF, a consumer NF, or both, depending on whether the network function is consuming, producing, or consuming and producing a service. The terms “producer NF” and “NF service producer” are used interchangeably herein. Similarly, the terms “consumer NF” and “NF service consumer” are used interchangeably herein.
A given producer NF may have many service endpoints, where a service endpoint is the point of contact for one or more NF instances hosted by the producer NF. The service endpoint is identified by a combination of Internet protocol (IP) address and port number or a fully qualified domain name that resolves to an IP address and port number on a network node that hosts a producer NF. An NF instance is an instance of a producer NF that provides a service. A given producer NF may include more than one NF instance. It should also be noted that multiple NF instances can share the same service endpoint.
Producer NFs register with a network function repository function (NRF). The NRF maintains service profiles of available NF instances identifying the services supported by each NF instance. The terms “service profiles” and “NF profiles” are used interchangeably herein. Consumer NFs can subscribe to receive information about producer NF instances that have registered with the NRF.
In addition to consumer NFs, another type of network node that can subscribe to receive information about NF service instances is a service communications proxy (SCP). The SCP subscribes with the NRF and obtains reachability and service profile information regarding producer NF service instances. Consumer NFs connect to the service communications proxy, and the service communications proxy load balances traffic among producer NF service instances that provide the required service or directly routes the traffic to the destination producer NF instance.
In addition to the SCP, other examples of intermediate proxy nodes or groups of network nodes that route traffic between producer and consumer NFs include the security edge protection proxy (SEPP), the service gateway, and nodes in the 5G service mesh. The SEPP is the network node used to protect control plane traffic that is exchanged between different 5G public land mobile networks (PLMNs). As such, the SEPP performs message filtering, policing and topology hiding for all application programming interface (API) messages that are transmitted between PLMNs.
One problem in 5G communications networks occurs when NRFs are deployed in a geo-redundant manner, a consumer NF that creates a subscription with a remote NRF that fails, and the consumer NF cannot contact the mate of the remote NRF because the consumer NF does not know about the mate of the remote NRF. For example, if a consumer NF sends a create subscription request to an NRF located at site 1, and the NRF at site 1 does not have NF profile information for the producer NF instance identified in the subscription request, the NRF at site 1 will forward the subscription request to another NRF, which may be located at another site, which will be referred to as site 2. the subscription is created when the NRF at site 2 accepts the request and forwards the notification of the acceptance to the consumer NF. The consumer NF then communicates directly with the NRF at site 2 for subsequent messages relating to the subscription, such as messages to modify or delete the subscription. If the NRF at site 2 fails and its processing is taken over by a geo-redundant mate NRF at site 2, the consumer NF will not be able to contact the mate remote NRF to modify or delete the subscription because the consumer NF does not have knowledge of the mate remote NRF.
Accordingly, there exists a need for methods, systems, and computer readable media for optimized routing of messages relating to existing NRF subscriptions that avoids at least some of these difficulties.
A method for optimized routing of messages relating to existing network function (NF) subscriptions using an intermediate forwarding NF repository function (NRF) is provided. The method includes, at a first NRF, receiving a create subscription request from a consumer NF instance for creating a first NF subscription to receive notifications regarding a producer NF instance. The method further includes determining, by the first NRF, that the first NRF does not have an NF profile for the producer NF instance identified in the create subscription request and, in response, forwarding the create subscription request to a second NRF. The method further includes receiving, by the first NRF, a response from the second NRF indicating that the second NRF has created the first subscription, modifying the response so that subsequent messages from the consumer NF associated with the first NF subscription will be sent to the first NRF, and forwarding the response to the consumer NF instance. The method further includes receiving, by the first NRF, a message from the consumer NF instance relating to the first NF subscription. The method further includes determining, by the first NRF, that the second NRF is unavailable, and, in response, forwarding the message relating to the first NF subscription to a third NRF that functions as a mate of the second NRF. The term “mate NRF” as used herein, is intended to refer to any NRF that is capable of taking over the operations of a failed NRF when the NRF fails. Mate NRFs may exchange state information, including NF subscription information, to facilitate the switchover operation when a failure occurs. The term “mate NRF” includes any NRF in the same NRF set as another NRF.
According to another aspect of the subject matter described herein, the second and third NRFs are located at a geographically diverse site from the first NRF.
According to another aspect of the subject matter described herein, the first NRF comprises an intermediate forwarding NRF.
According to another aspect of the subject matter described herein, determining that the first NRF does not have an NF profile for the producer NF instance identified in the create subscription request includes performing a lookup in an NF profile database maintained by the first NRF using an NF instance ID obtained from the create subscription request message.
According to another aspect of the subject matter described herein, the method for optimized routing of messages relating to existing NF subscriptions at an intermediate forwarding NF includes, at the first NRF, selecting the second NRF to which the create subscription request is forwarded based on at least one of priority and capacity of the second NRF.
According to another aspect of the subject matter described herein, modifying the response includes replacing an identifier or address of the second NRF in a location header of the response with an identifier or address for the first NRF.
According to another aspect of the subject matter described herein, replacing the identifier or address of the second NRF in the location header of the response includes replacing the identifier or address of the second NRF with the identifier or address of the first NRF in an apiRoot of the location header of the response.
According to another aspect of the subject matter described herein, modifying the response includes appending an identifier or address of the second NRF to the location header of the response.
According to another aspect of the subject matter described herein, modifying the response includes using a token to separate the identifier or address of the second NRF from a subscription identifier.
According to another aspect of the subject matter described herein, receiving the message relating to the first NF subscription includes receiving a message for updating or deleting the first NF subscription.
According to another aspect of the subject matter described herein, a system for optimized routing of messages relating to existing network function (NF) subscriptions using an intermediate forwarding NF repository function (NRF) includes a first NRF including at least one processor and a memory. The system further includes an NF profiles database embodied in the memory for storing NF profiles of producer NF instances and maintaining subscriptions to the NF profiles by consumer NF instances. The system further includes an NF subscription message handler implemented by the at least one processor for: receiving a create subscription request from a consumer NF instance for creating a first NF subscription to receive notifications regarding a producer NF instance; determining, by the first NRF, that the first NRF does not have an NF profile for the producer NF instance identified in the create subscription request and, in response, forwarding the create subscription request to a second NRF; receiving a response from the second NRF indicating that the second NRF has created the first subscription, modifying the response so that subsequent messages from the consumer NF associated with the first NF subscription will be sent to the first NRF, and forwarding the response to the consumer NF instance; receiving a message from the consumer NF instance relating to the first NF subscription; and determining that the second NRF is unavailable, and, in response, forwarding the message relating to the first NF subscription to a third NRF that functions as a mate of the second NRF.
According to another aspect of the subject matter described herein, in determining that the first NRF does not have an NF profile for the producer NF instance identified in the create subscription request, the NF subscription message handler is configured to perform a lookup in the NF profile database using an NF instance ID obtained from the create subscription request.
According to another aspect of the subject matter described herein, the subscription message handler is configured to select the second NRF to which the create subscription request is forwarded based on at least one of priority and capacity of the second NRF.
According to another aspect of the subject matter described herein, in modifying the response, the NF subscription message handler is configured to replace an identifier or address of the second NRF in a location header of the response with an identifier or address for the first NRF.
According to another aspect of the subject matter described herein, in replacing the identifier or address of the second NRF in the location header of the response, the NF subscription message handler is configured to replace the identifier or address of the second NRF with the identifier or address of the first NRF in an apiRoot of the location header of the response.
According to another aspect of the subject matter described herein, in modifying the response, the NF subscription message handler is configured to append an identifier or address of the second NRF to the location header of the response and to use a token to separate the identifier or address of the second NRF from a subscription identifier.
According to another aspect of the subject matter described herein, the message relating to the first NF subscription comprises a message for updating or deleting the first NF subscription.
According to another aspect of the subject matter described herein, a non-transitory computer readable medium having stored thereon executable instructions that when executed by a processor of a computer control the computer to perform steps is provided. The steps include at a first network function (NF) repository function (NRF), receiving a create subscription request from a consumer NF instance for creating a first NF subscription to receive notifications regarding a producer NF instance. The steps further include determining, by the first NRF, that the first NRF does not have an NF profile for the producer NF instance identified in the create subscription request and, in response, forwarding the create subscription request to a second NRF. The steps further include receiving, by the first NRF, a response from the second NRF indicating that the second NRF has created the first NF subscription, modifying the response so that subsequent messages from the consumer NF associated with the first NF subscription will be sent to the first NRF, and forwarding the response to the consumer NF instance. The steps further include receiving, by the first NRF, a message from the consumer NF instance relating to the first NF subscription. The steps further include determining, by the first NRF, that the second NRF is unavailable, and, in response, forwarding the message relating to the first NF subscription to a third NRF that functions as a mate of the second NRF.
The subject matter described herein can be implemented in software in combination with hardware and/or firmware. For example, the subject matter described herein can be implemented in software executed by a processor. In one exemplary implementation, the subject matter described herein can be implemented using a non-transitory computer readable medium having stored thereon computer executable instructions that when executed by the processor of a computer control the computer to perform steps. Exemplary computer readable media suitable for implementing the subject matter described herein include non-transitory computer-readable media, such as disk memory devices, chip memory devices, programmable logic devices, and application specific integrated circuits. In addition, a computer readable medium that implements the subject matter described herein may be located on a single device or computing platform or may be distributed across multiple devices or computing platforms.
NRF 100 is a repository for NF or service profiles of producer NF instances. In order to communicate with a producer NF instance, a consumer NF or an SCP must obtain the NF or service profile of the producer NF instance from NRF 100. The NF or service profile is a JavaScript object notation (JSON) data structure defined in Third Generation Partnership Project (3GPP) Technical Specification (TS) 29.510. The NF or service profile definition includes at least one of a fully qualified domain name (FQDN), an Internet protocol (IP) version 4 (IPv4) address or an IP version 6 (IPv6) address.
In
The NFs illustrated in
A network slice selection function (NSSF) 116 provides network slicing services for devices seeking to access specific network capabilities and characteristics associated with a network slice. A network exposure function (NEF) 118 provides application programming interfaces (APIs) for application functions seeking to obtain information about Internet of things (IoT) devices and other UEs attached to the network. NEF 118 performs similar functions to the service capability exposure function (SCEF) in 4G networks.
A radio access network (RAN) 120 connects user equipment (UE) 114 to the network via a wireless link. Radio access network 120 may be accessed using a g-Node B (gNB) (not shown in
SEPP 126 filters incoming traffic from another PLMN and performs topology hiding for traffic exiting the home PLMN. SEPP 126 may communicate with an SEPP in a foreign PLMN which manages security for the foreign PLMN. Thus, traffic between NFs in different PLMNs may traverse two SEPP functions, one for the home PLMN and the other for the foreign PLMN.
As described above, one problem with the 3GPP network architecture for 5G networks is that consumer NFs that create subscriptions with remote NRFs may not be able to contact geo-redundant mated remote NRFs when the remote NRF with which a subscription was originally created fails.
The 5G core network elements described above with regard to
Similarly, the network operator may have mated NRFs and other 5G NFs located at a site that is geographically diverse from sites 1A and 1B. In
A network operator may have N NRF sets. In
In one service operation provided by 3GPP networks, specified in 3GPP TS 29.510 Section 5.2.2.5.4, when multiple NRFs are deployed in a PLMN, an NF instance can subscribe to changes of other NF instances registered with an NRF with which the NF instance is not directly interacting. The subscription message is forwarded by an intermediate forwarding NRF with which the subscribing NF is directly interacting. This scenario is illustrated in
In
If NRF-2A 100C determines that it does not have the requested subscription data, NRF-2A 100C identifies the next hop NRF and forwards the subscription request to that NRF. The next hop NRF may be selected based on operator-configured parameters, such as priority and/or capacity. The next hop NRF may perform similar operations to NRF-2A 100C. The subscription request may be forwarded to NRFs until the NRF that has the requested subscription data is reached or there are no more NRFs in the service provider's network to contact.
In the illustrated example, it is assumed that NRF-2A 100C either has the requested subscription data or is the last NRF to contact in the service provider's network. If the subscription is successfully created (i.e., NRF-2A 100C has the requested subscription data and accepts the request), control proceeds to step 3a, where NRF-2A 100C returns a 201 Created message to NRF-1A 100A. The 201 Created message indicates that the subscription is successfully created and includes the subscription ID as well as other subscription data, such as validity time. The payload body of the 201 Created message shall contain the representation describing the status of the request and the “Location” header shall be present and shall contain the URI of the created resource. The authority and/or deployment-specific string of the apiRoot of the created resource URI may differ from the authority and/or deployment-specific string of the apiRoot of the request URI received in the POST request.
In step 4a, NRF-1 100A forwards the 201 Created message to consumer NF 300. After receiving the 201 Created message, consumer NF 300 corresponds directly with NRF-2 100-C.
If the subscription request fails (i.e., because NRF-2A 100C does not have the requested subscription data and is the last hop NRF in the network), control proceeds to step 3b where NRF-2A 100C returns a 4XX or 5XX message to NRF-1A 100A. In step 4b, NRF-1A 100A forwards the 4XX or 5XX error message to consumer NF 300.
In some scenarios, a consumer NF may wish to modify or delete an existing subscription. One scenario in which a consumer NF may wish to modify a subscription is to change the validity time of the subscription to keep the subscription from expiring. Such a scenario is illustrated in
This operation is executed by updating the resource identified by “subscriptionID”. The operation is invoked by issuing an HTTP PATCH request on the URI representing the individual resource received in the location header field of the 201 Created response received during a successful subscription. In line 1 of the message flow in
The point to highlight here is that consumer NFs are not aware of all the NRF instances deployed as geo-redundant NRF sets and so will not be able to route to other NRF instances of the geo-redundant NRF-Set in case of failures. For example, if NRF-2A 100C fails after the subscription is created, consumer NF 300 will not be able to contact NRF-2B 100D (see
Another scenario in which a consumer NF may wish to send a message to an NRF regarding an existing subscription is when the consumer NF desires to delete the subscription. This scenario is illustrated in
In line 1, consumer NF 300 sends a delete message to NRF-2 100C. The delete message includes the subscription ID for the subscription identified in the 201 created response received from NRF-2A 100C (see
NRF-1A 100A determines that it does not have the requested subscription data for the target NF instance ID indicated in the subscription request. Accordingly, NRF-1A 100A in line 2 forwards the subscription request to a next hop NRF based on operator configured criteria, which may include priority, capacity, load balancing, or other criteria. In the illustrated example, NRF-1A 100A forwards the subscription request to NRF-2A 100C located in site 2A.
In line 3 of the message flow diagram NRF-2A 100C determines that it has the requested NF instance data for UDM-3 104C and responds with a 201 Created message that includes a subscription ID and a location header identifying NRF-2 100C as the NRF that accepted the subscription. In line 4 of the message flow diagram NRF-1A 100A receives the subscription response an forwards the response to AMF-1 110A.
In line 5 the message flow diagram AMF-1 110A sends an update or delete subscription request to the NRF identified in the location header in the subscription response message received in line 4. In the illustrated example, the update or delete message is sent to NRF-2A 100C. Line 6a of the message flow diagram indicates the case where NRF-2A 101C has the requested subscription data and responds with a 200 OK message indicating that the subscription has been successfully updated. Line 6b of the message flow diagram illustrates the case where NRF-2A 100C fails and is unable to respond to the update or delete subscription request. AMF-1 110A is unable to contact NRF 2B 100D because AMF-1 110A is not aware of NRF-2B 100D.
In order to avoid the difficulty illustrated by step 2b, an intermediate forwarding NRF may modify a subscription response received from a remote NRF to identify itself as the locus of the subscription so that the intermediate forwarding NRF will receive subsequent messages concerning the subscription. In the event of failure of a remote NRF but not all of the NRFs in an NRF set, the intermediate forwarding NRF may forward the subsequent messages to one of the available remote NRFs in an NRF set. This scenario is illustrated in
Referring to
In line 3 of the message flow diagram, NRF-2A 100C determines that it has the requested NF profile for UDM-3 104C and responds to the create subscription request by sending a 201 Created response message with the requested subscription data. The 201 Created response message includes a location header identifying NRF-2A 100C as the NRF that contains the NF profile information for the producer NF instance identified in the create subscription request. The 201 Created response message also includes a subscription identifier that identifies the subscription.
In line 4 of the message flow diagram, NRF-1A 100A receives the subscription response message and, prior to forwarding the subscription response message to the subscribing consumer NF, SMF-1 108, NRF 1A 100A modifies the subscription response by injecting its own identity, i.e., the identity of NRF-1A 100A, in the location header so that subsequent messages regarding the subscription will be sent to the intermediate forwarding NRF, NRF-1A 100A, instead of the NRF that includes the requested subscription data. In particular, NRF-1A 100A replaces the address or identity of NRF-2A 100C in the apiRoot of the location header of the response message with the address or identity of NRF-1A 100A. This can be seen in
NRF-1A 100A appends the address or identity of the NRF that contains the subscription data to the location header of the response message along with a token that separates the address or identity of the NRF from the subscription ID. This is illustrated by “<NRF2A-ID>+<token>+<subscriptionID>” appended to the location header of the response message sent to SMF-1 108 in line 5. Here, “<token>” acts as a separator between the subscription ID and the ID or address of the NRF that contains the subscription data.
Thus, in the message sent from NRF-1A 100A to the subscribing consumer NF, SMF-1 108, NRF-1A 100A is identified as the NRF that contains the subscription data so that subsequent messages will be sent to NRF-1A 100A. The ID or address of the NRF that includes the requested subscription data obtained from the apiRoot of the location header of the original response message is appended to the end of the location header of the response message so that the intermediate forwarding NRF can identify the NRF or NRF set to which subsequent messages concerning the subscription should be forwarded.
In line 5, SMF-1 108 sends an update or delete message concerning the subscription to the NRF identified in the apiRoot of the location header of the response message received by SMF-1 108 in line 4. In the illustrated example, the update or delete message is sent to the intermediate forwarding NRF, NRF-1A 100A. The message includes a location header to which the identity of the NRF that includes the subscription data as well as the subscription ID are included or appended. In the update or delete message in line 5, the identity of the NRF that contains the subscription data and the subscription ID is indicated by “<NRF2A-ID>+<token>+<subscriptionID>” at the end of the location header of the update or delete message. NRF-1A 100A, in response to receiving the update or delete message, determines, based on the presence of the identifier of the NRF that contains the subscription data that is appended to the location header of the response message, that the message should be forwarded to NRF-2A 100C, and forwards the update or delete message to NRF-2A 100C, as indicated by line 6. If NRF-2A 100C fails, NRF-1A 100A can resend the subscription update or delete message to NRF-2B 100D because NRF-1A 100A knows that NRF-2B 100D is a mate to NRF-2A 100C. In the message flow in
In step 1102, the process includes determining, by the first NRF that the first NRF does not include NF profile data for the producer NF instance identified in the subscription request message. For example, NRF-1A 100A may determine that it does not include an NF profile for the NF instance ID identified in the create subscription request message.
In step 1104, the process includes receiving, by the first NRF, a response from the second NRF to which the subscription request message was forwarded. For example, NRF-1A 100A may receive a response to a subscription request message from a remote NRF that contains the NF profile information for the NF instance identified in the create subscription request. The response may be a 201 Created message that includes a location header with an apiRoot portion identifying the NRF that sent the response message. Step 1104 further includes modifying the response message so that subsequent messages relating to the subscription will be forwarded to the first NRF. For example, NRF-1A 100A may replace the apiRoot containing the NF instance ID of the remote NRF in the location header of the response message with the NF instance ID of NRF-1A 100A. NRF-A 100A may append the NF instance ID received in the location header of the response message to the end of the location header in the outgoing response message and separate, using a token, the NF instance ID from the subscription ID.
In step 1106, the first NRF receives a message relating to the first NF subscription from a consumer NF. For example, NRF-1A 100A may receive an update or delete message relating to an existing subscription. As stated above, one example of a subscription update message is a message to refresh the validity time of a subscription when the time is about to expire. The update message may be sent to the NRF using an HTTP PATCH message with the subscription ID of the requested subscription and patch data, such as a replace operation and a suggested new validity time.
As indicated by line 5 in
Advantages of the subject matter described herein include network reachability from consumer NFs to all NRFs deployed in the network without requiring the consumer NFs to be configured with the identities of all the NRFs. By relying on an intermediate forwarding NRF to store the NRF topology information for the network, the scalability of the network architecture is increased over a solution where each consumer NF must be configured with all of the NRF topology information for a network. In addition, the solution described herein reduces the security surface for attacks, as all consumer NFs need not store the contact information of all NRFs.
The disclosure of each of the following references is hereby incorporated herein by reference in its entirety.
It will be understood that various details of the subject matter described herein may be changed without departing from the scope of the subject matter described herein. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation, as the subject matter described herein is defined by the claims as set forth hereinafter.
Number | Name | Date | Kind |
---|---|---|---|
6725278 | Gonzalez | Apr 2004 | B1 |
6748435 | Wang et al. | Jun 2004 | B1 |
7151945 | Myles et al. | Dec 2006 | B2 |
7706822 | Emeott et al. | Apr 2010 | B2 |
8306034 | Jang et al. | Nov 2012 | B2 |
8620858 | Backholm et al. | Dec 2013 | B2 |
8767705 | Göppner et al. | Jul 2014 | B2 |
8811228 | Lopez et al. | Aug 2014 | B2 |
8811372 | Li et al. | Aug 2014 | B2 |
8824449 | van der Wateren et al. | Sep 2014 | B2 |
9246762 | Watkins | Jan 2016 | B1 |
9386551 | Zhou et al. | Jul 2016 | B2 |
9667590 | Yan et al. | May 2017 | B2 |
10097504 | Backholm | Oct 2018 | B2 |
10299128 | Suthar et al. | May 2019 | B1 |
10361843 | Suthar et al. | Jul 2019 | B1 |
10595256 | Marupaduga et al. | Mar 2020 | B1 |
10609154 | Talebi Fard et al. | Mar 2020 | B2 |
10616934 | Talebi Fard et al. | Apr 2020 | B2 |
10637753 | Taft et al. | Apr 2020 | B1 |
10652098 | Kim | May 2020 | B2 |
10772062 | Albasheir et al. | Sep 2020 | B1 |
10778527 | Assali et al. | Sep 2020 | B2 |
10791044 | Krishan et al. | Sep 2020 | B1 |
10819636 | Goel | Oct 2020 | B1 |
10833938 | Rajput et al. | Nov 2020 | B1 |
11224009 | Krishan | Jan 2022 | B2 |
11271846 | Krishan | Mar 2022 | B2 |
11290549 | Krishan | Mar 2022 | B2 |
20040062278 | Hadzic et al. | Apr 2004 | A1 |
20040208183 | Balachandran et al. | Oct 2004 | A1 |
20050193096 | Yu et al. | Sep 2005 | A1 |
20050232407 | Craig et al. | Oct 2005 | A1 |
20060010224 | Sekar et al. | Jan 2006 | A1 |
20070050331 | Bauman et al. | Mar 2007 | A1 |
20070242738 | Park et al. | Oct 2007 | A1 |
20080165761 | Goppner et al. | Jul 2008 | A1 |
20090006652 | Kasatani | Jan 2009 | A1 |
20090024727 | Jeon et al. | Jan 2009 | A1 |
20090055835 | Zhu | Feb 2009 | A1 |
20090141625 | Ghai et al. | Jun 2009 | A1 |
20110078674 | Ershov | Mar 2011 | A1 |
20110202604 | Craig et al. | Aug 2011 | A1 |
20130029708 | Fox et al. | Jan 2013 | A1 |
20130198269 | Fleischman et al. | Aug 2013 | A1 |
20130272123 | Lee et al. | Oct 2013 | A1 |
20140075004 | Van Dusen et al. | Mar 2014 | A1 |
20140379901 | Tseitlin et al. | Dec 2014 | A1 |
20150039560 | Barker et al. | Feb 2015 | A1 |
20150071074 | Zaidi et al. | Mar 2015 | A1 |
20150119101 | Cui et al. | Apr 2015 | A1 |
20160156513 | Zhang et al. | Jun 2016 | A1 |
20160352588 | Subbarayan et al. | Dec 2016 | A1 |
20160380906 | Hodique et al. | Dec 2016 | A1 |
20170221015 | June et al. | Aug 2017 | A1 |
20180039494 | Lander et al. | Feb 2018 | A1 |
20180083882 | Krishan et al. | Mar 2018 | A1 |
20180213391 | Inoue | Jul 2018 | A1 |
20180262592 | Zandi et al. | Sep 2018 | A1 |
20180262625 | McCarley et al. | Sep 2018 | A1 |
20180285794 | Gray-Donald et al. | Oct 2018 | A1 |
20180324247 | Hood et al. | Nov 2018 | A1 |
20180324646 | Lee et al. | Nov 2018 | A1 |
20180343567 | Ashrafi | Nov 2018 | A1 |
20190007366 | Voegele et al. | Jan 2019 | A1 |
20190045351 | Zee et al. | Feb 2019 | A1 |
20190075552 | Yu et al. | Mar 2019 | A1 |
20190116486 | Kim et al. | Apr 2019 | A1 |
20190116521 | Qiao et al. | Apr 2019 | A1 |
20190140895 | Ennis, Jr. et al. | May 2019 | A1 |
20190158364 | Zhang et al. | May 2019 | A1 |
20190173740 | Zhang et al. | Jun 2019 | A1 |
20190174561 | Sivavakeesar | Jun 2019 | A1 |
20190182875 | Talebi Fard et al. | Jun 2019 | A1 |
20190191348 | Futaki et al. | Jun 2019 | A1 |
20190191467 | Dao et al. | Jun 2019 | A1 |
20190222633 | Howes et al. | Jul 2019 | A1 |
20190223093 | Watfa et al. | Jul 2019 | A1 |
20190230556 | Lee | Jul 2019 | A1 |
20190261244 | Jung et al. | Aug 2019 | A1 |
20190306907 | Andreoli-Fang et al. | Oct 2019 | A1 |
20190313236 | Lee et al. | Oct 2019 | A1 |
20190313437 | Jung et al. | Oct 2019 | A1 |
20190313469 | Karampatsis et al. | Oct 2019 | A1 |
20190335002 | Bogineni et al. | Oct 2019 | A1 |
20190335534 | Atarius et al. | Oct 2019 | A1 |
20190342229 | Khinvasara et al. | Nov 2019 | A1 |
20190342921 | Loehr et al. | Nov 2019 | A1 |
20190349901 | Basu Mallick et al. | Nov 2019 | A1 |
20190357092 | Jung et al. | Nov 2019 | A1 |
20190357216 | Jung et al. | Nov 2019 | A1 |
20190370028 | Shi et al. | Dec 2019 | A1 |
20190380031 | Suthar et al. | Dec 2019 | A1 |
20190394284 | Baghel et al. | Dec 2019 | A1 |
20190394624 | Karampatsis et al. | Dec 2019 | A1 |
20190394833 | Talebi Fard et al. | Dec 2019 | A1 |
20200008069 | Zhu et al. | Jan 2020 | A1 |
20200028920 | Livanos et al. | Jan 2020 | A1 |
20200045753 | Dao et al. | Feb 2020 | A1 |
20200045767 | Velev et al. | Feb 2020 | A1 |
20200053670 | Jung et al. | Feb 2020 | A1 |
20200053724 | MolavianJazi et al. | Feb 2020 | A1 |
20200053828 | Bharatia et al. | Feb 2020 | A1 |
20200059420 | Abraham | Feb 2020 | A1 |
20200059856 | Cui et al. | Feb 2020 | A1 |
20200084663 | Park et al. | Mar 2020 | A1 |
20200092423 | Qiao et al. | Mar 2020 | A1 |
20200092424 | Qiao et al. | Mar 2020 | A1 |
20200106812 | Verma et al. | Apr 2020 | A1 |
20200127916 | Krishan | Apr 2020 | A1 |
20200136911 | Assali et al. | Apr 2020 | A1 |
20200137174 | Stammers | Apr 2020 | A1 |
20200305033 | Keller et al. | Sep 2020 | A1 |
20200313996 | Krishan et al. | Oct 2020 | A1 |
20200314615 | Patil et al. | Oct 2020 | A1 |
20200336554 | Deshpande et al. | Oct 2020 | A1 |
20200404608 | Albasheir et al. | Dec 2020 | A1 |
20210007023 | Umapathy et al. | Jan 2021 | A1 |
20210044481 | Xu et al. | Feb 2021 | A1 |
20210168055 | Lair | Jun 2021 | A1 |
20210204200 | Krishan et al. | Jul 2021 | A1 |
20210235254 | Farooq | Jul 2021 | A1 |
20210274392 | Dao et al. | Sep 2021 | A1 |
20210385732 | Reyes et al. | Dec 2021 | A1 |
20220015023 | De-Gregorio-Rodriguez | Jan 2022 | A1 |
20220038999 | Sapra et al. | Feb 2022 | A1 |
20220060547 | Krishan | Feb 2022 | A1 |
20220070648 | Krishan | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
101366311 | Feb 2009 | CN |
101512971 | Aug 2009 | CN |
105635345 | Feb 2019 | CN |
WO 2017143915 | Aug 2017 | WO |
WO 2018174021 | Sep 2018 | WO |
WO 2018174516 | Sep 2018 | WO |
WO 2019034609 | Feb 2019 | WO |
WO 2019193129 | Oct 2019 | WO |
WO 2019220172 | Nov 2019 | WO |
WO 2020091934 | May 2020 | WO |
WO 2020263486 | Dec 2020 | WO |
WO 2021040827 | Mar 2021 | WO |
WO 2021138074 | Jul 2021 | WO |
WO 2022025987 | Feb 2022 | WO |
WO 2022025988 | Feb 2022 | WO |
WO 2022046170 | Mar 2022 | WO |
WO 2022050987 | Mar 2022 | WO |
WO 2022093319 | May 2022 | WO |
Entry |
---|
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Procedures for the 5G System (5GS); Stage 2 (Release 16),” 3GPP TS 23.502, V16.7.0, pp. 1-603 (Dec. 2020). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System architecture for the 5G System (5GS); Stage 2 (Release 16),” 3GPP TS 23.501, V16.7.0, pp. 1-450 (Dec. 2020). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Network Function Repository Services; Stage 3 (Release 17),” 3GPP TS 29.510, V17.0.0, pp. 1-245 (Dec. 2020). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Technical Realization of Service Based Architecture; Stage 3 (Release 17),” 3GPP TS 29.500, V17.1.0, pp. 1-90 (Dec. 2020). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for U.S. Patent Application Serial No. PCT/US2021/020122 (dated Jun. 1, 2021). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for U.S. Patent Application Serial No. PCT/US2021/020121 (dated Jun. 1, 2021). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 17/001,599 (dated May 17, 2021). |
Applicant-Initiated Interview Summary for U.S. Appl. No. 17/001,599 (dated May 5, 2021). |
Commonly-assigned, co-pending U.S. Appl. No. 17/193,337 for “Methods, Systems, and Computer Readable Media for Selecting Multiple Network Function Types Using a Single Discovery Request,” (Unpublished, filed Mar. 5, 2021). |
Commonly-assigned, co-pending U.S. Appl. No. 17/009,725 for “Methods, Systems, and Computer Readable Media for Service Communications Proxy (SCP)-Specific Prioritized Network Function (NF) Discovery and Routing,” (Unpublished, filed Sep. 1, 2020). |
Commonly-assigned, co-pending U.S. Appl. No. 17/001,599 for “Methods, Systems, and Computer Readable Media for Optimized Network Function (NF) Discovery and Routing Using Service Communications Proxy (SCP) and NF Repository Function (NRF),” (Unpublished, filed Aug. 24, 2020). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System architecture for the 5G System (5GS); Stage 2 (Release 16),” 3GPP TS 23.501 V16.5.1, pp. 1-440 (Aug. 2020). |
Commonly-assigned, co-pending U.S. Appl. No. 16/942,713 for “Methods, Systems, and Computer Readable Media for Providing Network Function Discovery Service Enhancements,” (Unpublished, filed Jul. 29, 2020). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Network Function Repository Services; Stage 3 (Release 16),” 3GPP TS 29.510 V16.4.0, pp. 1-192 (Jul. 2020). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Technical Realization of Service Based Architecture; Stage 3 (Release 16),” 3GPP TS 29.500 V16.4.0 pp. 1-79 (Jun. 2020). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Procedures for the 5G System (5GS); Stage 2,” 3GPP TS 23.502 V16.4.0 pp. 1-582 (Mar. 2020). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Network Function Repository Services; Stage 3 (Release 16),” 3GPP TS 29.510, V16.0.0, pp. 1-135 (Jun. 2019). |
Huawei, “eSBA: reselection of producer instance,” 3GPP TSG-SA2 Meeting #132, pp. 1-2 (Apr. 12, 2019). |
Docomo, “Update Solution 4 for implicit registration,” SA WG2 Meeting #129, pp. 1-2 (Oct. 15-19, 2018). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/730,799 (dated Jul. 30, 2021). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2021/024000 (dated Jun. 24, 2021). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for U.S. Patent Application Serial No. PCT/US2021/020120 (dated Jun. 1, 2021). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Technical Realization of Service Based Architecture; Stage 3 (Release 17),” 3GPP TS 29.500, V17.2.0, pp. 1-100 (Mar. 2021). |
Nokia et al., “Discussion paper on authorization for Model D Indirect communications”, 3GPP TSG SA WG3; S3-194380 (Nov. 11, 2019). |
Non-Final Office Action for U.S. Appl. No. 16/356,446 (dated Jun. 16, 2021). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application Serial No. PCT/US2020/065765 (dated Apr. 15, 2021). |
Ex Parte Quayle Action for U.S. Appl. No. 16/730,799 (Apr. 7, 2021). |
International Search Report and Written Opinion for Patent Cooperation Treaty Application Serial No. PCT/US2020/061885 (dated Feb. 4, 2021). |
International Search Report and Written Opinion for Patent Cooperation Treaty Application Serial No. PCT/US2020/057712 (dated Feb. 2, 2021). |
Cheshire, S. et al., “Apple's DNS Long-Lived Queries protocol draft-sekar-dns-llq-06,” Internet Engineering Task Force (IETF), pp. 1-26 (Aug. 23, 2019). |
Advisory Action for U.S. Appl. No. 16/356,446 (dated Dec. 22, 2020). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/555,817 (dated Dec. 3, 2020). |
Commonly-assigned, co-pending U.S. Appl. No. 17/082,871 for “Methods, Systems, and Computer Readable Media for Rank Processing for Network Function Selection,” (Unpublished, filed Oct. 28, 2020). |
Commonly-assigned, co-pending U.S. Continuation-in-Part U.S. Appl. No. 17/074,553 for “Methods, Systems, and Computer Readable Media for Actively Discovering and Tracking Addresses Associated with 4G Service Endpoints,” (Unpublished, filed Oct. 19, 2020). |
“P-GW Administration Guide, StarOS Release 21.20,” Cisco, pp. 1-1164 (Oct. 11, 2020). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3 (Release 17),” 3GPP TS 24.301, V17.0.0, pp. 1-585 (Sep. 2020). |
3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Architecture enhancements to facilitate communications with packet data networks and applications (Release 16), 3GPP TS 23.682, V16.8.0, pp. 1-135 (Sep. 2020). |
Non-Final Office Action for U.S. Appl. No. 16/697,021 (dated Sep. 29, 2020). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/527,988 (dated Sep. 17, 2020). |
Final Office Action for U.S. Appl. No. 16/356,446 (dated Sep. 8, 2020). |
Commonly-assigned, co-pending U.S. Appl. No. 16/945,794 for “Methods, Systems, And Computer Readable Media For Preferred Network Function (NF) Location Routing Using Service Communications Proxy (SCP),” (Unpublished, filed Jul. 31, 2020). |
Ex Parte Quayle Action for U.S. Appl. No. 16/527,988 (Jun. 1, 2020). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/369,691 (dated May 12, 2020). |
Non-Final Office Action for U.S. Appl. No. 16/356,446 (dated May 11, 2020). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/176,920 (dated Apr. 16, 2020). |
Applicant-Initiated Interview Summary for U.S. Appl. No. 16/176,920 (dated Apr. 1, 2020). |
Non-Final Office Action for U.S. Appl. No. 16/176,920 (dated Mar. 6, 2020). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System architecture for the 5G System (5GS); Stage 2 (Release 16),” 3GPP TS 23.501 V16.4.0, pp. 1-430 (Mar. 2020). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application Serial No. PCT/US2019/053912 (dated Dec. 18, 2019). |
“5G; System architecture for the 5G System (5GS) (3GPP TS 23.501 version 15.6.0 Release 15),” ETSI TS 123 501, V15.6.0, pp. 1-168 (Oct. 2019). |
“5G; 5G System; Network function repository services; Stage 3 (3GPP TS 29.510 version 15.5.1 Release 15),” ETSI TS 129 510, V15.5.1, pp. 1-132 (Oct. 2019). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G Systems; Network Function Repository Services; Stage 3 (Release 16),” 3GPP TS 29.510 V.16.1.1, pp. 1-150 (Oct. 2019). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Technical Realization of Service Based Architecture; Stage 3 (Release 16),” 3GPP TS 29.500 V16.1.0, pp. 1-43 (Sep. 2019). |
“3rd Generation Partnership Project; Technical Specification Group Service and System Aspects; System Architecture for the 5G System (5GS); Stage 2 (Release 16),” 3GPP TS 23.501 V16.2.0, pp. 1-391 (Sep. 2019). |
“5G; 5G System; Technical Realization of Service Based Architecture; Stage 3 (3GPP TS 29.500 version 15.5.0 Release 15),” ETSI TS 129 500, V15.5.0, pp. 1-40 (Sep. 2019). |
Commonly-assigned, co-pending U.S. Appl. No. 16/527,988 for “Methods, Systems, and Computer Readable Media for Network Function (NF) Topology Synchronization,” (Unpublished, filed Jul. 31, 2019). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Network Function Repository Services; Stage 3 (Release 15),” 3GPP TS 29.510, V15.4.0, pp. 1-127 (Jun. 2019). |
Commonly-assigned, co-pending U.S. Appl. No. 16/369,691 for “Methods, System, and Computer Readable Media for Handling Multiple Versions of Same Service Provided by Producer Network Functions (NFs),” (Unpublished, filed Mar. 29, 2019). |
Commonly-assigned, co-pending U.S. Appl. No. 16/356,446 for “Methods, Systems, And Computer Readable Media For Locality-Based Selection And Routing Of Traffic To Producer Network Functions (NFs),” (Unpublished, filed Mar. 18, 2019). |
“3rd Generation Partnership Project; Technical Specification Group Network and Terminals; 5G Systems; Network Function Repository Services; Stage 3 (Release 15),” 3GPP TS 29.510, V15.2.0, pp. 1-113 (Dec. 2018). |
“3rd Generation Partnership Project; Technical Specification Group Network and Terminals; 5G Systems; Principles and Guidelines for Services Definition; Stage 3 (Release 15),” 3GPP TS 29.501, V15.2.0, pp. 1-66 (Dec. 2018). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on Enhancements to the Service-Based Architecture (Release 16),” 3GPP TR 23.742, V16.0.0, pp. 1-131 (Dec. 2018). |
Commonly-assigned, co-pending U.S. Appl. No. 16/176,920 for “Methods, Systems, and Computer Readable Media for Providing a Service Proxy Function in a Telecommunications Network Core Using a Service-Based Architecture,” (Unpublished, filed Oct. 31, 2018). |
“5G; 5G System; Network function repository services; Stage 3 (3GPP TS 29.510 version 15.1.0 Release 15),” ETSI TS 129 510, V15.1.0, pp. 1-87 (Oct. 2018). |
“5G; 5G System; Unified Data Repository Services; Stage 3 (3GPP TS 29.504 version 15.1.0 Release 15),” ETSI TS 129 504, V15.1.0, pp. 1-26 (Oct. 2018). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on Enhancements to the Service-Based Architecture (Release 16),” 3GPP TR 23.742, V0.3.0, pp. 1-64 (Jul. 2018). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on Enhancements to the Service-Based Architecture (Release 16),” 3GPP TR 23.742, V0.2.0, pp. 1-39 (Jun. 2018). |
“5G; Procedures for the 5G System (3GPP TS 23.502 version 15.2.0 Release 15),” ETSI TS 123 502 V15.2.0, pp. 1-46 (Jun. 2018). |
“Cisco Ultra 5G Packet Core Solution,” Cisco, White paper, https://www.cisco.com/c/dam/en/us/products/collateral/routers/network-convergence-system-500-series-routers/white-paper-c11-740360.pdf, pp. 1-11 (2018). |
Li et al., “Mobile Edge Computing Platform Deployment in 4G LTE Networks: A Middlebox Approach,” https://www.usenix.org/system/files/conference/hotedge18/hotedge18-papers-li.pdf, 6 pages (2018). |
Mayer, “RESTful APIs for the 5G Service Based Architecture,” Journal of ICT, vol. 6_1&2, pp. 101-116 (2018). |
“5G Service Based Architecture (SBA),” 5G, pp. 1-61 (downloaded Dec. 24, 2018). |
Scholl et al., “An API First Approach to Microservices Development,” Oracle, https://blogs.oracle.com/developers/an-api-first-approach-to-microservices-development, pp. 1-12 (Nov. 8, 2017). |
“Pseudo-CR on Service Discovery and Registration using NRF service,” Ericsson, 3GPP TSG CT4 Meeting #79, 3GPP TR 29.891—v0.3.0, pp. 1-4 (Aug. 21-25, 2017). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Domain Name System Procedures; Stage 3 (Release 13),” 3GPP TS 29.303 V13.4.0, pp. 1-69 (Jun. 2016). |
Preston-Werner, “Semantic Versioning 2.0.0”, Oracle, pp. 1-5 (Jun. 2013). |
“LTE and Beyond,” https://ytd2525.wordpress.com/2013/03/06/lte-and-beyond/, 3 pages (2013). |
Nichols et al., “Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,” Internet Engineering Task Force (IETF) Netwok Working Group Request for Comments (RFC) 2474, The Internet Society, pp. 1-20 (Dec. 1998). |
Communication of European Publication No. and Information on the Applicatoin of Article 67(3) EPC for European Patent Application Serial No. 20732441.9 (dated Apr. 6, 2022). |
Non-Final Office Action for Chinese Patent Application Serial No. 201980067968.7 (dated Mar. 3, 2022). |
First Examination Report for Indian Patent Application Serial No. 202147011137 (dated Mar. 9, 2022). |
Final Office Action for U.S. Appl. No. 16/945,794 (dated Feb. 8, 2022). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/497,879 for “Methods, Systems, and Computer Readable Media for Routing Inter-Public Land Mobile Network (Inter-PLMN) Messages Related to Existing Subscriptions with Network Function (NF) Repository Function (NRF) Using Security Edge Protection Proxy (SEPP)” (Unpublished, filed Oct. 21, 2021). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 17/001,599 (dated Nov. 17, 2021). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/356,446 (dated Sep. 30, 2021). |
Non-Final Office Action for U.S. Appl. No. 16/945,794 (dated Sep. 15, 2021). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/730,799 (dated Aug. 16, 2021). |
Communication of European publication No. and information on the application of Article 67(3) EPC for European Patent Application Serial No. 19791391.6 (dated Aug. 11, 2021). |
“Implementing Quality of Service Policies with DSCP,” Cisco, pp. 1-7 (Feb. 15, 2008). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/551,124 for “Methods, Systems, and Computer Readable Media for Enabling Forwarding of Subsequent Network Function Subscription Updates,” (Unpublished, filed Dec. 14, 2021). |
Notice of Allowance for U.S. Appl. No. 16/942,713 (dated Nov. 29, 2021). |
Notice of Allowance for U.S. Appl. No. 17/001,599 (dated Nov. 17, 2021). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Numbering, addressing and identification; (Release 17),” 3GPP TS 23.003, V17.3.0, pp. 1-145 (Sep. 2021). |
Ex Parte Quayle Action for U.S. Appl. No. 16/942,713 (dated Sep. 13, 2021). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/497,879 for “Methods, Systems, and Computer Readable Media for Routing Inter-Public Land Mobile Network (INTER-PLMN) Messages Related to Existing Subscriptions with Network Function (NF) Repository Function (NRF) Using Security Edge Protection Proxy (SEPP),” (Unpublished, filed Oct. 8, 2021). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/392,288 for “Methods, Systems, and Computer Readable Media for Optimized Routing of Service Based Interface (SBI) Request Messages to Remote Network Function (NF) Repository Functions Using Indirect Communications via Service Communications Proxy (SCP),” (Unpublished, filed Aug. 3, 2021). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Network Function Repository Services; Stage 3 (Release 17),” 3GPP TS 29.510, V17.2.0, pp. 1-256 (Jun. 2021). |
Non-Final Office Action for U.S. Appl. No. 17/193,337 (dated May 11, 2022). |
Advisory Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/945,794 (dated May 20, 2022). |
Number | Date | Country | |
---|---|---|---|
20220240171 A1 | Jul 2022 | US |