The subject matter described herein relates to methods and systems for restoration or recovery of mass storage devices. More particularly, the subject matter described herein relates to methods, systems, and computer readable media for partition and cache restore.
To improve performance of personal computers or other computing systems, traditional hard disk drives (HDDs), which have relatively large capacity but are relatively slow, may be combined with solid state drives (SDDs), which have relatively small capacity but are relatively fast. These so-called “dual drive” solutions may use the SSD as a cache for data coming from or going to the HDD. Dual drive caching solutions which include a HDD combined with either a small capacity caching Solid State Drive (SSD) or a larger capacity Solid State Hard Drive (SSHD) show significant performance increase compared to HDD alone when used with appropriate caching software/algorithm solution.
When setting up a newly purchased or received system, users have a better “out-of-box” experience if the original equipment manufacturer (OEM) or equipment supplier has pre-loaded the software onto both the HDD and the SSD/SSHD, which is colloquially referred to as “pinning” the software.
Many OEM PC vendors have the original OS in a hidden partition to be used as system recovery for either partial or full recovery. When this recovery is performed by conventional dual drive deployments, data in the HDD may be restored to the original pinned or preloaded state, but data in the caching SSD is not restored to the original pinned/pre-loaded state, however. As a result, users will not notice system improvement until the caching software begins to collect enough data to optimize the cache. The same problem occurs when a user restores a system from a previously-created backup: the data in the HDD may be restored but the caching information is not. In either scenario, until the cache is optimized, performance of the restored system may suffer.
Accordingly, in light of these disadvantages associated with conventional dual-drive implementations, there exists a need for methods, systems, and computer readable media for partition and cache restore.
According to one aspect, the subject matter described herein includes a method for partition and cache restore. The method includes, in a computing platform having a mass storage device and a non-volatile cache storage device that operates as a cache for the mass storage device: providing, in a first location within the mass storage device, a first image of data; providing, in a second location within the mass storage device, a second image of data; and copying the first image of data from the first location within the mass storage device to a third location within the mass storage device and copying the second image of data from the second location within the mass storage device into the cache storage device.
According to another aspect, the subject matter described herein includes a system for partition and cache restore. The system includes a computing platform having a mass storage device that contains a first image of data in a first location within the mass storage device and a second image of data in a second location within the mass storage device, and a non-volatile cache storage device that operates as a cache for the mass storage device. The computing platform is configured to copy the first image of data from the first location within the mass storage device to a third location within the mass storage device and copy the second image of data from the second location within the mass storage device into the cache storage device.
The subject matter described herein can be implemented in software in combination with hardware and/or firmware. For example, the subject matter described herein can be implemented in software executed by a processor. In one exemplary implementation, the subject matter described herein can be implemented using a non-transitory computer readable medium having stored thereon computer executable instructions that when executed by the processor of a computer control the computer to perform steps. Exemplary computer readable media suitable for implementing the subject matter described herein include non-transitory computer-readable media, such as disk memory devices, chip memory devices, programmable logic devices, and application specific integrated circuits. In addition, a computer readable medium that implements the subject matter described herein may be located on a single device or computing platform or may be distributed across multiple devices or computing platforms.
Preferred embodiments of the subject matter described herein will now be explained with reference to the accompanying drawings, wherein like reference numerals represent like parts, of which:
In accordance with the subject matter disclosed herein, systems, methods, and computer readable media for partition and cache restore are provided. Reference will now be made in detail to exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
In one embodiment, mass storage device 102 and cache storage device 104 are separate units, e.g., each with its own interface to the host system. Alternatively, mass storage device 102 and cache storage device 104 may be components within a single storage entity, e.g., both devices may be contained within a single case which has a single interface to the host system. Examples of single storage entities containing both mass storage and non-volatile cache storage include, but are not limited to solid state hard disk drives (SSHD) and hybrid hard disk drives (HHDD).
The principles described herein are not limited to the above-described configurations, but apply to any configuration having both mass storage and non-volatile cache storage devices, including configurations in which the mass storage device is redundant array of independent disks (RAID), configurations in which the cache storage device is shared among multiple mass storage devices, and configurations in which the cache storage device is distributed across multiple physical devices, to name a few examples. In one embodiment, cache storage device may include volatile storage.
In the embodiment illustrated in
Computing platform 100 is configured to perform a partition and cache restore operation that includes copying first image of data 106 from first location 108 to a third location 114 within mass storage device 102 and copying second image of data 110 from second location 112 into cache storage device 104.
Thus, in contrast to conventional systems that restore only the contents of a hard disk drive or other mass storage device, computing platform 100 is configured to restore at least some of the contents of the cache within cache storage device 104. By restoring not only the contents of a hard disk drive but also the contents of the cache, computing platform 100 is immediately put into a cache optimization state that conventional systems would achieve only after some amount of operation time. The result for the user is that computing platform 100 may feel more responsive because often-used data is present in the cache immediately after the restore.
In one embodiment, first location 108 and second location 112 within mass storage device 102 are hidden, e.g., located in a hidden partition or partitions, in order to protect them from accidental or intentional overwrite during operation of computing platform 100. In the embodiment illustrated in
In the embodiment illustrated in
At step 202, a second image of data is provided in a second location within the mass storage device. In
At step 204, the first image of data is copied from the first location within the mass storage device to a third location within the mass storage device. In
At step 206, the second image of data is copied from the second location within the mass storage device into the non-volatile cache storage device. In
The example in which the first image of data contains a portion of an OS and the second image of data contains the data that would be contained in an optimized cache is a convenient one to use for the purposes of illustration (and will be used for the purposes of additional illustration below), but the subject matter described herein is not limited to only those kinds of data. First image of data 106, for example, may be application data, user data, system data, search index data, device driver data, and indeed may be any kind of data that may be present within a mass storage device such as mass storage device 102. Likewise, second image of data 110 may be any type of data that may be present within non-volatile cache storage device 104.
Continuing with the example illustrated in
In one scenario, the first and second images 106 and 110 may be provisioned to mass storage device 102 prior to deployment of computing platform 100. For example, an original equipment manufacturer, or “OEM”, may pre-load mass storage device 102 by placing a copy of an operating system, for example, in the first location 108 and placing cache data, which may include portions of the OS along with cache meta data, into second location 112. This is illustrated in
In another scenario, first and second images 106 and 110 may be stored to mass storage device 102 by a user of computing platform 100, such as during a back-up operation. This is illustrated in
In the embodiment illustrated in
There are a number of advantages of the subject matter disclosed herein. Users will perceive the performance benefits of partition and cache restore immediately, and will not have to wait for the caching software to learn again from its restored state. This means that users will experience “fresh out of the box” performance after a recovery or restoration. The principles described herein also would be of great benefit in scenarios where computers are completely refreshed periodically, such as in shops and libraries or other places where computers may be provided for use by the public.
It will be understood that various details of the subject matter described herein may be changed without departing from the scope of the subject matter described herein. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation.