The subject matter described herein relates to routing messages to producer network functions in 5G communications networks. More particularly, the subject matter described herein relates to methods, systems, and computer readable media for preferred NF location routing using a service communications proxy.
In 5G telecommunications networks, the network node that provides service is referred to as a producer network function (NF). A network node that consumes services is referred to as a consumer NF. A network function can be both a producer NF and a consumer NF depending on whether it is consuming or providing service.
A given producer NF may have many service endpoints, where a service endpoint is a combination of fully qualified domain name (FQDN)/Internet protocol (IP) address and port number on a network node that hosts a producer NF. Producer NFs register with a network function repository function (NRF). The NRF maintains an NF profile of available NF instances and their supported services. Consumer NFs can subscribe to receive information about producer NF instances that have registered with the NRF.
In addition to consumer NFs, another type of network node that can query or subscribe to receive information about NF service instances is a service communication proxy (SCP). The SCP subscribes with the NRF and obtains reachability and service profile information regarding registered producer NF service instances. Consumer NFs connect to the service communication proxy, and the service communication proxy load balances or provides alternate/optimal routing among producer NF service instances that provide the required service or directly routes the traffic to the destination producer NF.
In addition to the SCP, other examples of intermediate proxy nodes or groups of network nodes that route traffic between producer and consumer NFs include the security edge protection proxy (SEPP), the service gateway, and nodes in the 5G service mesh. The SEPP is the network node used to protect control plane traffic that is exchanged between different 5G public land mobile networks (PLMNs). As such, the SEPP performs message filtering, policing and topology hiding for all application programming interface (API) messages.
The service gateway is a node that sits in front of a group of producer NFs that provide a given service. The service gateway may load balance incoming service requests among the producer NF that provide the service in a manner similar to the SCP.
The service mesh is a name for a group of intermediate proxy nodes that enable communications between producer and consumer NFs. The service mesh may include one or more SCPs, SEPPs, and service gateways.
One problem that occurs in 5G communications networks is that consumer NFs may not select optimal producer NFs to handle a particular service. For example, a consumer NF may obtain a list of producer NFs to handle a particular service request from an NRF. The NRF may execute an internal policy to adjust priority of producer NFs in the discovery response. However due to lack of basic information about location information of the consumer NF, the NRF may not be able to provide optimal guidance on priority of producer NFs. The consumer NF may execute internal policy to select one of the producer NFs to handle the service request. However, the consumer NF may not select an optimal producer in NF to handle the service request. For example, a consumer NF located in one geographic area may select a producer NF that is located in a different geographic area when there is an available producer NF in the same or closest data center as the consumer NF. In addition, in light of the number of consumer NFs, requiring each consumer NF to implement a preferred producer NF selection algorithm becomes a scalability problem.
Accordingly, in light of these difficulties, there exists a need for improved methods, systems, and computer readable media for selecting and routing service requests to producer NFs.
A method for preferred network function (NF) location based routing using a service communication proxy (SCP) includes receiving a service request message from a consumer NF. The method further includes performing, by an SCP, a lookup in a preferred NF location routing rules database at the SCP using at least one parameter extracted from the service request header or body of the message. The method further includes locating, by the SCP and in the preferred NF location routing rules database, a preferred NF location routing rule corresponding to the at least one parameter extracted from the header or body of the service request message. The method further includes selecting, by the SCP, a producer NF to process the service request based on application of the preferred NF location routing rule. The method further includes routing, by the SCP, the service request message to the producer NF.
According to another aspect of the subject matter described herein, receiving a service request message includes receiving a service request with indirect communication through SCP with or without delegated discovery from consumer and wherein selecting a producer NF includes obtaining a list of NFs from NFs registered with the SCP or querying a network function repository function (NRF) to obtain a list of NFs capable of providing the service and selecting the producer NF from the list.
According to another aspect of the subject matter described herein, performing the lookup in the preferred NF location routing rules database includes performing the lookup using a third generation partnership project (3GPP) service identifier in the service request message.
According to another aspect of the subject matter described herein, performing the lookup in the preferred NF location routing rules database includes performing the lookup using a subscription identifier or any other parameter present in header or body in addition to the service identifier.
According to another aspect of the subject matter described herein, performing the lookup using a subscription identifier or any other parameter present in header or body includes performing the lookup using the subscription identifier, wherein the subscription identifier comprises a subscription permanent identifier (SUPI) from the service request message.
According to another aspect of the subject matter described herein, selecting the producer NF using the preferred NF location routing rule includes selecting an available producer NF using a domain address as an indicator of location of the producer NF.
According to another aspect of the subject matter described herein, selecting the producer NF using the preferred NF location routing rule includes selecting an available producer NF using an Internet protocol address as an indicator location of the producer NF.
According to another aspect of the subject matter described herein, selecting the producer NF includes ordering a list of producer NFs according to priority specified by the preferred NF location routing rule and selecting a highest priority available producer NF in the list as the producer NF to process the service request message.
According to another aspect of the subject matter described herein, a system for preferred network function (NF) location based routing using a service communication proxy (SCP) is provided. The system includes an SCP including at least one processor and a memory. The system further includes a preferred NF location routing rules database located in the memory. The system further includes a preferred NF location routing module implemented by the at least one processor for receiving a service request message from a consumer NF, performing a lookup in a preferred NF location routing rules database using at least one parameter extracted from the service request message, locating, in the preferred NF location routing rules database, a preferred NF location routing rule corresponding to the at least one parameter extracted from the service request message, selecting a producer NF to process the service request based on application of the preferred NF location routing rule, and routing the service request message to the producer NF.
According to another aspect of the subject matter described herein, the preferred NF location routing module is configured to receive a service request with indirect communication through SCP with or without delegated discovery from consumer and select a producer NF by obtaining a list of NFs from NFs registered with the SCP or querying a network function repository function (NRF) to obtain a list of NFs capable of providing the service and selecting the producer NF from the list.
According to another aspect of the subject matter described herein, the preferred NF location routing module is configured to perform the lookup in the preferred NF location routing rules database using a third generation partnership project (3GPP) service identifier in the service request message.
According to another aspect of the subject matter described herein, the preferred NF location routing module is configured to perform the lookup in the preferred NF location routing rules database using a subscription permanent identifier (SUPI) or any other parameter present in the header or body of the service request message.
According to another aspect of the subject matter described herein, the preferred NF location routing module is configured to select an available producer NF using a domain identifier as an indicator of location of the producer NF.
According to another aspect of the subject matter described herein, the preferred NF location routing module is configured to select an available producer NF using an Internet protocol address as an indicator location of the producer NF.
According to another aspect of the subject matter described herein, the preferred NF location routing module is configured to order a list of producer NFs according to priority specified by the preferred NF location routing rule and select a highest priority available producer NF in the list as the producer NF to process the service request.
According to another aspect of the subject matter described herein, a non-transitory computer readable medium having stored thereon executable instructions that when executed by the processor of a computer control the computer to perform steps. The steps include receiving a service request message from a consumer NF. The steps further include performing a lookup in a preferred NF location routing rules database using at least one parameter extracted from the header or body of the service request message. The steps further include locating, in the preferred NF location routing rules database, a preferred NF location routing rule corresponding to the at least one parameter extracted from the service request message. The steps further include selecting a producer NF to process the service request based on application of the preferred NF location routing rule. The steps further include routing the service request message to the producer NF.
The subject matter described herein may be implemented in hardware, software, firmware, or any combination thereof. As such, the terms “function” “node” or “module” as used herein refer to hardware, which may also include software and/or firmware components, for implementing the feature being described. In one exemplary implementation, the subject matter described herein may be implemented using a computer readable medium having stored thereon computer executable instructions that when executed by the processor of a computer control the computer to perform steps. Exemplary computer readable media suitable for implementing the subject matter described herein include non-transitory computer-readable media, such as disk memory devices, chip memory devices, programmable logic devices, and application specific integrated circuits. In addition, a computer readable medium that implements the subject matter described herein may be located on a single device or computing platform or may be distributed across multiple devices or computing platforms.
The subject matter described herein will now be explained with reference to the accompanying drawings of which:
The subject matter described herein relates to methods, systems, and computer readable media for preferred NF location routing using an SCP. The subject matter may be implemented in a 5G system network architecture or a network architecture that includes both 5G and non-5G network elements.
NRF 100 is a repository for NF profiles. In order to communicate with a producer NF, a consumer NF or an SCP must obtain the NF profile from NRF 100. The NF profile is a JavaScript object notation (JSON) data structure defined in 3GPP TS 29.510. The NF profile definition includes at least one of a fully qualified domain name (FQDN), an Internet protocol (IP) version 4 (IPv4) address or an IP version 6 (IPv6) address.
In
A network slice selection function (NSSF) 116 provides network slicing services for devices seeking to access specific network capabilities and characteristics associated with a network slice. A network exposure function (NEF) 118 provides application programming interfaces (APIs) for application functions seeking to obtain information about Internet of things (IoT) devices and other UEs attached to the network. NEF 118 performs similar functions to the service capability exposure function (SCEF) in 4G networks.
A radio access network (RAN) 120 connects UE 114 to the network via a wireless link. Radio access network 120 may be accessed using a g-Node B (gNB) (not shown in
SEPP 126 filters incoming traffic from another PLMN and performs topology hiding for traffic exiting the home PLMN. SEPP 126 may communicate with an SEPP in a foreign PLMN which manages security for the foreign PLMN. Thus, traffic between NFs in different PLMNs may traverse two SEPP functions, one for the home PLMN and the other for the foreign PLMN.
As stated above, one problem with conventional 5G service routing is that consumer NF may not select the optimal producer NF to handle a given service request.
In line 3 of the message flow diagram, the producer NF 104B sends an NRF registration request to NRF 100. Producer NF 104B is also a UDM. Producer NF 104B is located on the west coast with the domain udm.west.com. NRF 100 receives the registration request and stores the registration details regarding producer NF 104B. In line 4 of the message flow diagram, NRF 100 responds to the NRF registration request indicating that the registration was successful.
In line 5 of the message flow diagram, a consumer NF 110 sends a discovery request message to NRF 100. The discovery request message includes the type of service requested. NRF 100 receives the service discovery request and performs a lookup in its service database to identify potential producer NFs that provide the service. In line 6 of the message flow diagram, NRF 100 responds to the service discovery request with a list of one or more producer NFs that are capable of providing the requested service. In the illustrated example, it is assumed that NRF 100 responds with a list including producer NF 104A and producer NF 104B.
Consumer NF 110 receives the list of producer NFs from NRF 100 and selects one of the producer NFs to handle a service request based on internal policy of consumer NF 110. As stated above, consumer NF 110 may implement a suboptimal policy and select a producer NF that is located in a different or even a furthest data center from consumer NF 110, which may result in increased latency in providing the service.
Producer NFs 104A, 104B, and 104C publish their service details to an NRF 100. However, there is no way for producer NFs 104A, 104B, and 104C to publish general guidelines/attributes/information for the NRF or consumer NF to follow a certain priority with to use their services. A producer can publish and allow the domain range and other attributes which will make the producer NF either discoverable or undiscoverable at the NRF for given consumer domains. However, there is no way for producer NFs to publish the adjusted preference/priority list for a given consumer domains.
For a consumer NF, it is optional to include the requester-NF-instance-ID or the requester-NF-instance-FQDN in the discovery request. Therefore when the consumer NF sends a discovery request, the NRF does not always have the required data to generate the correct set of producer NFs with updated priority order for a given NF instance. As a result, the consumer NF may select a producer NF that is not the best possible producer NF to handle a service request. For example, in
In summary, when there are multiple producer NFs available, the 3GPP standards do not specify an approach or solution for the consumer NF to find preferred producers for each consumer's regions. Complex policies to select the closest producer based on operator policy is challenging to implement in consumer NF instances.
Accordingly, in light of these difficulties, an SCP at a geographical location may be configured with preferred NF location routing rules for selecting preferred producer NFs to handle service requests. An SCP is a more optimal location to implement preferred NF location routing rules because of its strategic position in the network. An SCP may implement preferred NF location routing rules upon receiving a service request with or without a producer NF selected by the consumer.
Referring to the message flow in
In line 2 of the message flow diagram, NRF 100 sends the service discovery response with the list of NFs to consumer NF 110. Consumer NF 110 receives the service discovery response and selects one of the producer NFs to handle the service request.
In line 3 of the message flow diagram, consumer NF 110 sends a service request to SCP 101. SCP 101 receives the service request and determines whether a preferred NF location routing rule is provisioned for the service request. In this example, it is assumed that a preferred NF location routing rule is provisioned. Accordingly, in line 4, SCP 101 applies the preferred NF location routing rule. In this example, it is assumed that application of the preferred NF location routing rule results in selection of producer NF 104A. Accordingly, in line 4, SCP 101 routes the service request to producer NF 104A.
As stated above, in another example, SCP 101 may implement preferred NF location routing without receiving selected producer NF from the consumer NF.
In line 4, SCP 101 applies preferred NF location routing rules to select one of the NFs from the list of NFs to handle the service request. In the illustrated example, it is assumed that application of the preferred NF location routing rule results in selection of producer NF 104A. Accordingly, in line 5 of the message flow diagram, SCP 101 sends the service request to producer NF 104A.
In Table 2, the priorities are assigned based on domain of producer NFs. 3GPP TS 29.510 (Releases 15 and 16) mandates that producer NFs register their services with fully qualified domain names (FQDNs) and/or IP address. Either one of these parameters may be used to implement preferred NF location routing rules as described herein. The FQDN contains producer service location given by its domain. For example, the domain pcf1.oracle.com indicates a policy control function host in the oracle.com domain. Similarly, operator deployments have IP subset ranges for given regions. The SCP can use domains or IP subset ranges to select the closest available producer NF to handle a given service request. Preferred NF location routing rules may be used to find or override consumer NF preferences for producer NF selection or reselection.
In Table 1, the routing rules are configured based on attributes available in header or body of service message. The first rule in Table 1 indicates that all initial session management policy control function (nudm-smpolicycontrol) service requests will have NF preferred location routing applied to select the preferred policy control function for handling the requests. Session management policy control service is performed by a PCF and includes provisioning, updating, and removing session-related policies for an SMF. It should be noted that the location priorities in Table 2 are specific and exclusive to an SCP's location. For example, in Table 2, the domain east.oracle.com is the most preferred domain, which indicates that the rules in Table 2 may be for an SCP located in the domain east.oracle.com. When an SCP configured with the preferential routing rules receives an initial service request requesting session management policy control (npcf-smpolicycontrol) service, the service request matches the first rule in Table 1. The action specified by the first rule in Table 1 is “Apply preferred domain routing for all initial messages for SM policy towards PCF instances”, which indicates that the domains in Table 2 should be applied in priority order to select a producer NF. In Table 2, the domains are listed in priority order. Accordingly, if the SCP has a list of PCFs capable of handling the service requests, the SCP will select the PCF with the most preferred domain according to the preference order listed in Table 2 and route the service request to the PCF instance having the FQDN that matches with most preferred domain.
The second rule in Table 1 indicates that initial and subsequent service requests for access and mobility policy control (npcf-am-policy-control) service with a specific subscription permanent identifier (SUPI) range will have NF preferred location routing rules applied. Access and mobility policy control services provides AMF access control and mobility management related policies to the AMF, which includes policy creation based on a request from the AMF during UE registration, 2) notification of the AMF of updated policies which are subscribed, and 3) deletion of the policy context for a UE. Thus, if an initial or subsequent message requesting npcf-am-policy control service is received by the SCP and the message has a SUPI within the range X-Y, the SCP will use the domain preferences in Table 2 to select a PCF to provide the npcf-am-policy-control service. If the message does not have a SUPI within the range X-Y, the action specified by the second rule in Table 1 will not apply. However, the fifth rule in Table 1 is a default rule indicating that preferred domain (location) based routing will be applied to all services if one of the more specific rules does not apply. Continuing with the example, a request for npcf-am-policy service with a SUPI range that does not match the second rule will still have preferred location-based routing applied because of the default fifth rule in Table 1.
The third rule in Table 1 indicates that when messages requesting nudm user equipment context management (nudm-uecm) service are received, preferred NF location routing will be applied only for subsequent messages for nudm registration for non-3GPP access. Nudm user equipment context management service provides the consumer NF with information relating to the UE's transaction information, allows the consumer NF to register and deregister it information for the service UE in the UDM, and allows the consumer NF to update UE context information in the UDM. The consumer of nudm-uecm service is an AMF. The producer NF is a UDM. Accordingly, if a message arrives at the SCP requesting nudm-uecm service, the SCP will determine if the message is an initial or subsequent message. If the message is a subsequent message, the SCP will determine whether the message is for non-3GPP access. If the message is for non-3GPP access, the SCP will use preferred domain order listed in Table 2 to select a UDM for providing the service and will route the message to the selected UDM.
The fourth rule in Table 1 indicates that preferred domain routing will be applied for any service messages towards a producer having the domain north.oracle.com. The fifth row in Table 1 indicates that preferred domain based routing will be applied for all services at the default if a specific rule is not provisioned as an exception. It should be noted that Table 6.3.1 of 3GPP TS 23.501 contains guidelines for selection and reselection of producer NFs that may be implemented by SCP 101. Since the data for selected preferred producer NFs is local to an SCP instance, the operator can configure different location preference rules for SCPs located in different regions. However, this is much easier than configuring every consumer NF to select preferred producer NF according to location.
In step 702, SCP 101 performs a lookup in the preferred NF location routing rules database using information from the service request. The information used to perform the lookup may include an identifier for the service type and other more specific parameters. Examples of parameters that identify service types are 3GPP service identifiers for nudm-sm-policycontrol, nudm-am-policycontrol, and nudm-uecm, which respectively identify session management policy control service, access and mobility policy control service, and UE context management service. Examples of other parameters from the service request that may be used to perform the lookup in the preferred NF location routing rules database include the SUPI, DNN and the domain of the requesting NF.
In step 704, the SCP locates a preferred NF location routing rule based on the information from the service request. For example, SCP 101 may locate a rule, such as one of the rules illustrated in Table 1, using parameters extracted from the service request message.
In step 706, the SCP selects a producer NF to process the service request based on application of the preferred NF location routing rule. For example, SCP 101 may utilize the domain preferences in Table 2 to select a producer NF that is preferred to handle a given service request. In an alternate example, selection may be performed based on IP address or other indication of location of the producer NF. In one example, the selected producer NF may be the producer NF with the highest domain or location preference that is capable of handling the service request.
In step 708, the service request is routed to the selected producer NF. For example, SCP 101 may route the service request to the producer NF selected using the preferred NF location routing rule.
While
If the message is an initial message, control proceeds to step 804 where it is determined whether there is a rule for preferred location-based routing of the message. If there is a rule, control proceeds to step 806 where it is determined whether an action rule is located. If a matching rule is located, control proceeds to step 808 where based on data in the request message, a list of producer NFs that can handle the request is generated. The SCP can obtain the list by querying the NRF. The list may contain producer NFs to which the SCP can route based on health, congestion, etc. Guidelines for producing such a list are found in section 6.3.1 of 3GPP TS 23.501 and section 4.17.12 of 3GPP TS 23.502.
After step 808, control proceeds to step 810 where it is determined whether the list includes one or more producer NFs. If the list contains one or more producer NFs, control proceeds to step 812 where it is determined whether the rule set contains any producer NFs with domains configured by the operator in the preferential set. If the list contains NFs in the preferential set, i.e., the rule has a producer NF whose domain matches with the preferences to the operator, then routing must be to one of the producer NFs in the preferred domain. In step 814, the list of producer NFs is ordered based on preferential domain order configured by the operator. In step 816, SCP 101 selects the first available producer NF from the ordered list and updates the request to set up routing to the selected producer NF. In step 818, SCP 101 routes to the selected producer NF.
Returning to step 802, if the message is not an initial message, control proceeds to step 820 where it is determined whether the provider is specified by the consumer and available for routing. If the provider is specified by the consumer and available for routing, control returns to step 818 where the messages are routed to the consumer specified producer NF.
In step 820, if the provider is not specified by the consumer for routing, control proceeds to step 822 where it is determined where there is any rule preferential location or domain based rule specified for the subsequent message. If there is a rule specified for the subsequent message, control proceeds to steps 806-818 where the rule is applied and used to select and route the message to the preferred NF. If a rule is not specified for the subsequent message, control proceeds to step 818 where the messages routed to a producer NF or rejected based on operator policy.
The subject matter described herein includes preferred NF location rules implemented by an SCP. Implementing preferred NF location routing rules is advantageous because implementing such rules improves the functionality of computer networks by reducing latency in service transactions between consumer NFs and producer NFs. Preferred NF location routing as described herein allows preferred NF selection based on service type and/or other message parameters, such as SUPI or domain. Preferred NF location routing also allows rerouting of service requests after an initial selection by a consumer NF and routing of service request that accounts for NF failure. Implementing preferred NF location routing rules at an SCP is advantageous because implementing the rules at the SCP reduces the need for NRF or consumer NFs to be provisioned with complex preferred NF location routing rules and thus makes scaling and updating of routing rules more efficient for a geographical location.
The disclosure of each of the following references is hereby incorporated herein by reference in its entirety:
It will be understood that various details of the presently disclosed subject matter may be changed without departing from the scope of the presently disclosed subject matter. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation.
Number | Name | Date | Kind |
---|---|---|---|
5381413 | Tobagi et al. | Jan 1995 | A |
5592672 | Grewal et al. | Jan 1997 | A |
5719861 | Okanoue | Feb 1998 | A |
6014558 | Thomas | Jan 2000 | A |
6105034 | Buckler | Aug 2000 | A |
6366577 | Donovan | Apr 2002 | B1 |
6385198 | Ofek et al. | May 2002 | B1 |
6404746 | Cave et al. | Jun 2002 | B1 |
6725278 | Gonzalez | Apr 2004 | B1 |
6725401 | Lindhorst-Ko | Apr 2004 | B1 |
6735291 | Schmid et al. | May 2004 | B1 |
6748435 | Wang et al. | Jun 2004 | B1 |
7151945 | Myles et al. | Dec 2006 | B2 |
7308499 | Chavez | Dec 2007 | B2 |
7706822 | Emeott et al. | Apr 2010 | B2 |
7742421 | Bantukul et al. | Jun 2010 | B2 |
7782776 | Shankar et al. | Aug 2010 | B2 |
7929419 | Sprague | Apr 2011 | B2 |
8023482 | Gong et al. | Sep 2011 | B2 |
8300637 | Bennett, III et al. | Oct 2012 | B1 |
8306034 | Jang et al. | Nov 2012 | B2 |
8498202 | Kanode et al. | Jul 2013 | B2 |
8620858 | Backholm et al. | Dec 2013 | B2 |
8645565 | Sparks et al. | Feb 2014 | B2 |
8767705 | Göppner et al. | Jul 2014 | B2 |
8811228 | Lopez et al. | Aug 2014 | B2 |
8811372 | Li et al. | Aug 2014 | B2 |
8824449 | van der Wateren et al. | Sep 2014 | B2 |
8879431 | Ridel et al. | Nov 2014 | B2 |
8954080 | Janakiraman et al. | Feb 2015 | B2 |
9071512 | Marsico | Jun 2015 | B2 |
9124537 | Kolze | Sep 2015 | B2 |
9246762 | Watkins | Jan 2016 | B1 |
9386551 | Zhou et al. | Jul 2016 | B2 |
9667590 | Yan et al. | May 2017 | B2 |
10097504 | Backholm | Oct 2018 | B2 |
10285155 | Dodd-Noble et al. | May 2019 | B1 |
10299128 | Suthar et al. | May 2019 | B1 |
10313362 | Ahuja et al. | Jun 2019 | B2 |
10361843 | Suthar et al. | Jul 2019 | B1 |
10595256 | Marupaduga et al. | Mar 2020 | B1 |
10609154 | Talebi Fard et al. | Mar 2020 | B2 |
10609530 | Patil | Mar 2020 | B1 |
10616934 | Talebi Fard et al. | Apr 2020 | B2 |
10637753 | Taft et al. | Apr 2020 | B1 |
10652098 | Kim | May 2020 | B2 |
10772062 | Albasheir et al. | Sep 2020 | B1 |
10778527 | Assali et al. | Sep 2020 | B2 |
10791044 | Krishan et al. | Sep 2020 | B1 |
10819636 | Goel | Oct 2020 | B1 |
10833938 | Rajput | Nov 2020 | B1 |
10880370 | Seenappa et al. | Dec 2020 | B2 |
11018971 | Mahalank et al. | May 2021 | B2 |
11082393 | Goel | Aug 2021 | B2 |
11109307 | Bartolomé Rodrigo et al. | Aug 2021 | B2 |
11159359 | Goel | Oct 2021 | B2 |
11224009 | Krishan | Jan 2022 | B2 |
11271846 | Krishan | Mar 2022 | B2 |
11290549 | Krishan | Mar 2022 | B2 |
11323413 | Goel | May 2022 | B2 |
20010039585 | Primak et al. | Nov 2001 | A1 |
20030086410 | Eikkula | May 2003 | A1 |
20030174649 | Shankar et al. | Sep 2003 | A1 |
20030223414 | Wong | Dec 2003 | A1 |
20040003069 | Wong | Jan 2004 | A1 |
20040062278 | Hadzic et al. | Apr 2004 | A1 |
20040088424 | Park et al. | May 2004 | A1 |
20040114744 | Trossen | Jun 2004 | A1 |
20040141473 | Buot | Jul 2004 | A1 |
20040158606 | Tsai | Aug 2004 | A1 |
20040205190 | Chong et al. | Oct 2004 | A1 |
20040208183 | Balachandran et al. | Oct 2004 | A1 |
20040221061 | Chavez | Nov 2004 | A1 |
20050181776 | Verma et al. | Aug 2005 | A1 |
20050193096 | Yu et al. | Sep 2005 | A1 |
20050207402 | Kobayashi et al. | Sep 2005 | A1 |
20050227685 | Costa Requena et al. | Oct 2005 | A1 |
20050232407 | Craig et al. | Oct 2005 | A1 |
20060010224 | Sekar et al. | Jan 2006 | A1 |
20060010321 | Nakamura et al. | Jan 2006 | A1 |
20060069776 | Shim et al. | Mar 2006 | A1 |
20060101143 | Garcia et al. | May 2006 | A1 |
20060104210 | Nielsen | May 2006 | A1 |
20060253563 | Yang et al. | Nov 2006 | A1 |
20070050331 | Bauman | Mar 2007 | A1 |
20070156909 | Osborn et al. | Jul 2007 | A1 |
20070191004 | Yamakawa et al. | Aug 2007 | A1 |
20070237311 | Ofir et al. | Oct 2007 | A1 |
20070242738 | Park et al. | Oct 2007 | A1 |
20080101293 | Woo et al. | May 2008 | A1 |
20080165761 | Goppner et al. | Jul 2008 | A1 |
20080280623 | Danne et al. | Nov 2008 | A1 |
20090006652 | Kasatani | Jan 2009 | A1 |
20090024727 | Jeon et al. | Jan 2009 | A1 |
20090055835 | Zhu | Feb 2009 | A1 |
20090141625 | Ghai et al. | Jun 2009 | A1 |
20090185494 | Li et al. | Jul 2009 | A1 |
20090222584 | Josefsberg et al. | Sep 2009 | A1 |
20090268723 | Przybysz | Oct 2009 | A1 |
20100261490 | Berry et al. | Oct 2010 | A1 |
20110078674 | Ershov | Mar 2011 | A1 |
20110202604 | Craig et al. | Aug 2011 | A1 |
20120079082 | Ding et al. | Mar 2012 | A1 |
20130029708 | Fox et al. | Jan 2013 | A1 |
20130039176 | Kanode et al. | Feb 2013 | A1 |
20130198269 | Fleischman et al. | Aug 2013 | A1 |
20130272123 | Lee et al. | Oct 2013 | A1 |
20140040975 | Raleigh et al. | Feb 2014 | A1 |
20140075004 | Van Dusen et al. | Mar 2014 | A1 |
20140379901 | Tseitlin et al. | Dec 2014 | A1 |
20150003296 | Fan et al. | Jan 2015 | A1 |
20150016266 | Dumitrescu et al. | Jan 2015 | A1 |
20150039560 | Barker et al. | Feb 2015 | A1 |
20150071074 | Zaidi et al. | Mar 2015 | A1 |
20150249588 | Leon et al. | Sep 2015 | A1 |
20150263987 | Klein et al. | Sep 2015 | A1 |
20150351084 | Werb | Dec 2015 | A1 |
20160142324 | Vihtari et al. | May 2016 | A1 |
20160149811 | Roch et al. | May 2016 | A1 |
20160156513 | Zhang et al. | Jun 2016 | A1 |
20160164788 | Goel et al. | Jun 2016 | A1 |
20160183156 | Chin et al. | Jun 2016 | A1 |
20160234119 | Zaidi et al. | Aug 2016 | A1 |
20160315743 | Nagaraj et al. | Oct 2016 | A1 |
20160344635 | Lee et al. | Nov 2016 | A1 |
20160350683 | Bester et al. | Dec 2016 | A1 |
20160352588 | Subbarayan et al. | Dec 2016 | A1 |
20160380906 | Hodique et al. | Dec 2016 | A1 |
20170187673 | Kaliski, Jr. et al. | Jun 2017 | A1 |
20170220367 | Li et al. | Aug 2017 | A1 |
20170221015 | June et al. | Aug 2017 | A1 |
20170353387 | Kwak et al. | Dec 2017 | A1 |
20180039494 | Lander et al. | Feb 2018 | A1 |
20180083882 | Krishan et al. | Mar 2018 | A1 |
20180159780 | Essigmann et al. | Jun 2018 | A1 |
20180183724 | Callard et al. | Jun 2018 | A1 |
20180205637 | Li | Jul 2018 | A1 |
20180213391 | Inoue | Jul 2018 | A1 |
20180227243 | Zhang et al. | Aug 2018 | A1 |
20180262592 | Zandi et al. | Sep 2018 | A1 |
20180262625 | McCarley et al. | Sep 2018 | A1 |
20180285794 | Gray-Donald et al. | Oct 2018 | A1 |
20180324247 | Hood et al. | Nov 2018 | A1 |
20180324646 | Lee et al. | Nov 2018 | A1 |
20180343567 | Ashrafi | Nov 2018 | A1 |
20190007366 | Voegele et al. | Jan 2019 | A1 |
20190036871 | Lapidous et al. | Jan 2019 | A1 |
20190045351 | Zee et al. | Feb 2019 | A1 |
20190075552 | Yu et al. | Mar 2019 | A1 |
20190116486 | Kim et al. | Apr 2019 | A1 |
20190116521 | Qiao et al. | Apr 2019 | A1 |
20190140895 | Ennis, Jr. et al. | May 2019 | A1 |
20190158364 | Zhang et al. | May 2019 | A1 |
20190173740 | Zhang et al. | Jun 2019 | A1 |
20190174561 | Sivavakeesar | Jun 2019 | A1 |
20190182875 | Talebi Fard et al. | Jun 2019 | A1 |
20190191348 | Futaki et al. | Jun 2019 | A1 |
20190191467 | Dao et al. | Jun 2019 | A1 |
20190222633 | Howes et al. | Jul 2019 | A1 |
20190223093 | Watfa et al. | Jul 2019 | A1 |
20190230556 | Lee | Jul 2019 | A1 |
20190238642 | Sesham et al. | Aug 2019 | A1 |
20190261244 | Jung et al. | Aug 2019 | A1 |
20190268270 | Fattah | Aug 2019 | A1 |
20190306251 | Talebi Fard et al. | Oct 2019 | A1 |
20190306907 | Andreoli-Fang et al. | Oct 2019 | A1 |
20190313236 | Lee et al. | Oct 2019 | A1 |
20190313437 | Jung et al. | Oct 2019 | A1 |
20190313469 | Karampatsis et al. | Oct 2019 | A1 |
20190335002 | Bogineni et al. | Oct 2019 | A1 |
20190335534 | Atarius et al. | Oct 2019 | A1 |
20190342229 | Khinvasara et al. | Nov 2019 | A1 |
20190342921 | Loehr et al. | Nov 2019 | A1 |
20190349901 | Basu Mallick et al. | Nov 2019 | A1 |
20190357092 | Jung et al. | Nov 2019 | A1 |
20190380031 | Suthar et al. | Dec 2019 | A1 |
20190394284 | Baghel et al. | Dec 2019 | A1 |
20190394624 | Karampatsis et al. | Dec 2019 | A1 |
20190394833 | Talebi Fard et al. | Dec 2019 | A1 |
20200007632 | Landais et al. | Jan 2020 | A1 |
20200008069 | Zhu et al. | Jan 2020 | A1 |
20200028920 | Livanos et al. | Jan 2020 | A1 |
20200029197 | Tandon et al. | Jan 2020 | A1 |
20200045753 | Dao et al. | Feb 2020 | A1 |
20200045767 | Velev et al. | Feb 2020 | A1 |
20200053670 | Jung et al. | Feb 2020 | A1 |
20200053724 | MolavianJazi et al. | Feb 2020 | A1 |
20200053828 | Bharatia et al. | Feb 2020 | A1 |
20200059420 | Abraham | Feb 2020 | A1 |
20200059856 | Cui et al. | Feb 2020 | A1 |
20200076764 | Robitzsch et al. | Mar 2020 | A1 |
20200084663 | Park et al. | Mar 2020 | A1 |
20200092423 | Qiao et al. | Mar 2020 | A1 |
20200092424 | Qiao et al. | Mar 2020 | A1 |
20200106812 | Verma | Apr 2020 | A1 |
20200127916 | Krishan | Apr 2020 | A1 |
20200136911 | Assali et al. | Apr 2020 | A1 |
20200137174 | Stammers et al. | Apr 2020 | A1 |
20200177629 | Hooda et al. | Jun 2020 | A1 |
20200192725 | Feldkamp | Jun 2020 | A1 |
20200305033 | Keller | Sep 2020 | A1 |
20200313996 | Krishan et al. | Oct 2020 | A1 |
20200314615 | Patil | Oct 2020 | A1 |
20200336554 | Deshpande | Oct 2020 | A1 |
20200404608 | Albasheir et al. | Dec 2020 | A1 |
20200412597 | Goel et al. | Dec 2020 | A1 |
20210000723 | Strand et al. | Jan 2021 | A1 |
20210007023 | Umapathy et al. | Jan 2021 | A1 |
20210044481 | Xu et al. | Feb 2021 | A1 |
20210067480 | Goel | Mar 2021 | A1 |
20210067485 | Goel | Mar 2021 | A1 |
20210105214 | Goel et al. | Apr 2021 | A1 |
20210111985 | Mahalank et al. | Apr 2021 | A1 |
20210136602 | Pokkunuri | May 2021 | A1 |
20210168055 | Lair | Jun 2021 | A1 |
20210204200 | Krishan et al. | Jul 2021 | A1 |
20210235254 | Farooq | Jul 2021 | A1 |
20210273977 | Karasaridis | Sep 2021 | A1 |
20210274392 | Dao | Sep 2021 | A1 |
20210297935 | Belling | Sep 2021 | A1 |
20210367916 | Belling | Nov 2021 | A1 |
20210385286 | Wang et al. | Dec 2021 | A1 |
20210385732 | Reyes | Dec 2021 | A1 |
20220015023 | De-Gregorio-Rodriguez et al. | Jan 2022 | A1 |
20220060547 | Krishan | Feb 2022 | A1 |
20220070648 | Krishan | Mar 2022 | A1 |
20220131945 | Sapra et al. | Apr 2022 | A1 |
20220240171 | Singh | Jul 2022 | A1 |
Number | Date | Country |
---|---|---|
1700694 | Nov 2005 | CN |
101151861 | Mar 2008 | CN |
101366311 | Feb 2009 | CN |
101512971 | Aug 2009 | CN |
105635345 | Feb 2019 | CN |
109788078 | May 2019 | CN |
0 950 952 | Oct 1999 | EP |
1 175 074 | Jan 2002 | EP |
2 575 303 | Apr 2013 | EP |
333811 | Mar 2020 | IN |
2006-279805 | Oct 2006 | JP |
10-2004-0057858 | Jul 2004 | KR |
10-2005-0002335 | Jan 2005 | KR |
10-2006-0025869 | Mar 2006 | KR |
WO 0069140 | Nov 2000 | WO |
WO 0113228 | Feb 2001 | WO |
WO 2008019056 | Feb 2008 | WO |
WO 2008144927 | Dec 2008 | WO |
WO 2009018418 | Feb 2009 | WO |
WO 2011100629 | Aug 2011 | WO |
WO 2017143915 | Aug 2017 | WO |
WO 2018174021 | Sep 2018 | WO |
WO 2018174516 | Sep 2018 | WO |
WO 2019144321 | Jan 2019 | WO |
WO 2019034609 | Feb 2019 | WO |
WO 2019062596 | Apr 2019 | WO |
WO 2019076273 | Apr 2019 | WO |
WO 2019144321 | Aug 2019 | WO |
WO 2019215308 | Nov 2019 | WO |
WO 2019220172 | Nov 2019 | WO |
WO 2020091934 | May 2020 | WO |
WO 2020263486 | Dec 2020 | WO |
WO 2021040827 | Mar 2021 | WO |
WO 2021055998 | Mar 2021 | WO |
WO 2021138074 | Jul 2021 | WO |
WO 2022046170 | Mar 2022 | WO |
WO 2022050987 | Mar 2022 | WO |
WO 2022093319 | May 2022 | WO |
Entry |
---|
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Network Function Repository Services; Stage 3 (Release 16),” 3GPP TS 29.510 V16.4.0, pp. 1-206 (Jul. 2020). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Procedures for the 5G System (5GS); Stage 2 (Release 16),” 3GPP TS 23.502 V16.4.0, pp. 1-582 (Mar. 2020). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System architecture for the 5G System (5GS); Stage 2 (Release 16),” 3GPP TS 23.501 V16.4.0, pp. 1-430 (Mar. 2020). |
Hearing Notice for Indian Patent Application Serial No. 7526/CHENP/2012 (Feb. 10, 2021). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/601,380 (dated Jan. 19, 2021). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/082,871 for “Methods, Systems, and Computer Readable Media for Rank Processing for Network Function Selection,” (Unpublished, filed Oct. 28, 2020). |
Commonly-Assigned, co-pending U.S. Continuation-in-Part U.S. Appl. No. 17/074,553 for “Methods, Systems, and Computer Readable Media for Actively Discovering and Tracking Addresses Associated with 4G Service Endpoints,” (Unpublished, filed Oct. 19, 2020). |
Non-Final Office Action for U.S. Appl. No. 16/697,021 (dated Sep. 29, 2020). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/527,988 (dated Sep. 17, 2020). |
Final Office Action for U.S. Appl. No. 16/356,446 (dated Sep. 8, 2020). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/009,725 for “Methods, Systems, and Computer Readable Media for Service Communications Proxy (SCP)-Specific Prioritized Network Function (NF) Discovery and Routing,” (Unpublished, filed Sep. 1, 2020). |
Notice of Allowance and Fee(s) Due and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/453,955 (dated Aug. 26, 2020). |
Notification of the Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2020/034723 (dated Aug. 17, 2020). |
Non-Final Office Action for U.S. Appl. No. 16/555,817 (dated Aug. 7, 2020). |
Commonly-Assigned, co-pending U.S. Appl. No. 16/932,226 for “Methods, Systems, and Computer Readable Media for Monitoring Machine Type Communications (MTC) Device Related Information,” (Unpublished, filed Jul. 17, 2020). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application Serial No. PCT/US2020/035004 (dated Jul. 7, 2020). |
Ex Parte Quayle Action for U.S. Appl. No. 16/527,988 (Jun. 1, 2020). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/369,691 (dated May 12, 2020). |
Non-Final Office Action for U.S. Appl. No. 16/356,446 (dated May 11, 2020). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/176,920 (dated Apr. 16, 2020). |
Applicant-Initiated Interview Summary for U.S. Appl. No. 16/176,920 (dated Apr. 1, 2020). |
Non-Final Office Action for U.S. Appl. No. 16/176,920 (dated Mar. 6, 2020). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application Serial No. PCT/US2019/053912 (dated Dec. 18, 2019). |
Commonly-Assigned, co-pending U.S. Appl. No. 16/697,021 for “Methods, Systems, and Computer Readable Media for Diameter-Peer-Wide Egress Rate Limiting at Diameter Relay Agent (DRA),” (Unpublished, filed Nov. 27, 2019). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G Systems; Network Function Repository Services; Stage 3 (Release 16),” 3GPP TS 29.510 V.16.1.1, pp. 1-150 (Oct. 2019). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Technical Realization of Service Based Architecture; Stage 3 (Release 16),” 3GPP TS 29.500 V16.1.0, pp. 1-43 (Sep. 2019). |
“3rd Generation Partnership Project; Technical Specification Group Service and System Aspects; System Architecture for the 5G System (5GS); Stage 2 (Release 16),” 3GPP TS 23.501 V16.2.0, pp. 1-391 (Sep. 2019). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Architecture enhancements to facilitate communications with packet data networks and applications (Release 16),” 3GPP TS 23.682, V16.4.0, pp. 1-30 (Sep. 2019). |
Cheshire et al., “Apple's DNS Long-Lived Queries protocol,” Network Working Group, Apple, Inc., pp. 1-26 (Aug. 22, 2019). |
“Diameter and Diameter Applications,” Alcatel-Lucent, http://infodoc.alcatel-lucent.eom/html/0_add-h-f/93-0098-HTML/7750_SR_OS_Triple_Play_Guide/GX-PolicyMgmt.html, pp. 1-40 (Aug. 22, 2019). |
Commonly-Assigned, co-pending U.S. Appl. No. 16/527,988 for “Methods, Systems, and Computer Readable Media for Network Function (NF) Topology Synchronization,” (Unpublished, filed Jul. 31, 2019). |
“3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NG-RAN; NG Application Protocol (NGAP) (Release 15),” 3GPP TS 38.413, V15.4.0, pp. 1-328 (Jul. 2019). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Network Function Repository Services; Stage 3 (Release 16),” 3GPP TS 29.510, V16.0.0, pp. 1-135 (Jun. 2019). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Network Function Repository Services; Stage 3 (Release 15),” 3GPP TS 29.510, V15.4.0, pp. 1-127 (Jun. 2019). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Restoration Procedures (Release 16),” 3GPP TS 23.527, V16.0.0, pp. 1-19 (Jun. 2019). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Numbering, addressing and identification (Release 15),” 3GPP TS 23.003, V15.7.0, pp. 1-131 (Jun. 2019). |
“Class of Service Feature Guide (Routers and EX9200 Switches),” Junos® OS, Juniper Networks, pp. 1-1530 (Apr. 10, 2019). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System Architecture and 5G; Stage 2 (Release 16),” 3GPP TS 23.501, V16.0.0, pp. 1-318 (Mar. 2019). |
Penttinen, “5G Explained: Security and Deployment of Advanced Mobile Communications,” Chapter 6, Section 6.3.8 NRF, 2 pages (Feb. 2019). |
“Oracle Communications Diameter Signaling Router,” Release Notice, Release 8.3, E93179 Revision 02, Oracle, pp. 1-98 (Dec. 2018). |
“3rd Generation Partnership Project; Technical Specification Group Network and Terminals; 5G Systems; Network Function Repository Services; Stage 3 (Release 15),” 3GPP TS 29.510, V15.2.0, pp. 1-113 (Dec. 2018). |
“3rd Generation Partnership Project; Technical Specification Group Network and Terminals; 5G Systems; Principles and Guidelines for Services Definition; Stage 3 (Release 15),” 3GPP TS 29.501, V15.2.0, pp. 1-66 (Dec. 2018). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on Enhancements to the Service-Based Architecture (Release 16),” 3GPP TR 23.742, V16.0.0, pp. 1-131 (Dec. 2018). |
“Addressing 5G Network Function Requirements,” Intel® FPGAs and Intel Pac 5G QoS and IPSec Benchmarking, White Paper, pp. 1-8 (Oct. 2018). |
“5G; 5G System; Network function repository services; Stage 3 (3GPP TS 29.510 version 15.1.0 Release 15),” ETSI TS 129 510, V15.1.0, pp. 1-87 (Oct. 2018). |
“5G; 5G System; Unified Data Repository Services; Stage 3 (3GPP TS 29.504 version 15.1.0 Release 15),” ETSI TS 129 504, V15.1.0, pp. 1-26 (Oct. 2018). |
“CPS vDRA Configuration Guide,” Release 18.3.0 (Restricted Release)(1), Cisco, pp. 1-130 (Sep. 14, 2018). |
“How To Do Rate Limiting of Diameter Messages Using NetScaler,” Citrix Systems Inc., pp. 1-3 (Sep. 4, 2018). |
“5G; 5G System; Technical Realization of Service Based Architecture; Stage 3 (3GPP TS 29.500 version 15.0.0 Release 15),” ETSI TS 129 500, V15.0.0, pp. 1-29 (Jul. 2018). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on Enhancements to the Service-Based Architecture (Release 16),” 3GPP TR 23.742, V0.3.0, pp. 1-64 (Jul. 2018). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on Enhancements to the Service-Based Architecture (Release 16),” 3GPP TR 23.742, V0.2.0, pp. 1-39 (Jun. 2018). |
“5G; Procedures for the 5G System (3GPP TS 23.502 version 15.2.0 Release 15),” ETSI TS 123 502 V15.2.0, pp. 1-46 (Jun. 2018). |
“Cisco Ultra 5G Packet Core Solution,” Cisco, White paper, https://www.cisco.com/c/dam/en/us/products/collateral/routers/network-convergence-system-500-series-routers/white-paper-c11-740360.pdf, pp. 1-11 (2018). |
Li et al., “Mobile Edge Computing Platform Deployment in 4G LTE Networks: A Middlebox Approach,” https://www.usenix.org/system/files/conference/hotedge18/hotedge18-papers-li.pdf, 6 pages (2018). |
Mayer, “RESTful APIs for the 5G Service Based Architecture,” Journal of ICT, vol. 6_1&2, pp. 101-116(2018). |
“5G Service Based Architecture (SBA),” 5G, pp. 1-61 (downloaded Dec. 24, 2018). |
Scholl et al., “An API First Approach to Microservices Development,” Oracle, https://blogs.oracle.com/developers/an-api-first-approach-to-microservices-development, pp. 1-12 (Nov. 8, 2017). |
Brown et al., “Service-Based Architecture for 5G Core Networks,” Huawei, Heavy Reading, https://www.3g4g.co.uk/5G/5Gtech_6004_2017_11_Service-Based-Architecture-for-5G-Core-Networks_HR_Huawei.pdf, pp. 1-12 (Nov. 2017). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System Architecture for the 5G System; Stage 2 (Release 15),” 3GPP TS 23.501, V1.5.0, pp. 1-170 (Nov. 2017). |
“Pseudo-CR on Service Discovery and Registration using NRF service,” Ericsson, 3GPP TSG CT4 Meeting #79, 3GPP TR 29.891—v0.3.0, pp. 1-4 (Aug. 21-25, 2017). |
Carlton et al., “HTTP and DNS in a 5G World,” https://www.computerworld.com/article/3204594/http-and-dns-in-a-5g-world.html, pp. 1-5 (Jun. 30, 2017). |
Benacer et al., “A High-Speed Traffic Manager Architecture for Flow-Based Networking,” pp. 1-4 (2017). |
“Dynamically Reconfigurable Optical-Wireless Backhaul/Fronthaul with Cognitive Control Plane for Small Cells and Cloud-RANs: D3.1 Analysis of state of the art on scalable control plane design and techniques for user mobility awareness. Definition of 5G-XHaul control plane requirements,” European Commission, 5G-XHaul, pp. 1-107 (Jun. 31, 2016). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Domain Name System Procedures; Stage 3 (Release 13),” 3GPP TS 29.303 V13.4.0, pp. 1-69 (Jun. 2016). |
“Multi-Layer Security Protection for Signaling Networks,” Oracle Communications, Oracle white paper, pp. 1-9 (Jan. 2016). |
Kantola et al., “Policy-based communications for 5G mobile with customer edge switching,” Security and Communication Networks, vol. 9, pp. 3070-3082 (2016). |
Fielding et al. “Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content”, Internet Engineering Taskforce (IETF) Request for Comments: 7231, IEFT RFC 7231, pp. 1-102 (Jun. 2014). |
Abley et al., “A Mechanism for Remote-Triggered DNS Cache Flushes (DNS FLUSH),” Network Working Group, Google, pp. 1-12 (Jun. 24, 2013). |
Preston-Werner, “Semantic Versioning 2.0.0”, Oracle, pp. 1-5 (Jun. 2013). |
“LTE and Beyond,” https://ytd2525.wordpress.com/2013/03/06/lte-and-beyond/, 3 pages (2013). |
Fajardo et al., “Diameter Based Protocol,” Internet Engineering Task Force (IETF) Request for Comments: 6733, pp. 1-152 (Oct. 2012). |
Gulbrandsen et al., “A DNS RR for specifying the location of services (DNS SRV),” RFC 2782, pp. 1-12 (Feb. 2000). |
Nichols et al., “Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,” Internet Engineering Task Force (IEFT) Netwok Working Group Request for Comments (RFC) 2474, The Internet Society, pp. 1-20 (Dec. 1998). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/356,451 for “Methods, Systems, and Computer Readable Media for Resolution of Inter-Network Domain Names” (Unpublished, filed Jun. 23, 2021). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for U.S. Patent Application Serial No. PCT/US2021/020120 (dated Jun. 1, 2021). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for U.S. Patent Application Serial No. PCT/US2021/020122 (dated Jun. 1, 2021). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Network Function Repository Services; Stage 3 (Release 17),” 3GPP TS 29.510, V17.1.0, pp. 1-243 (Mar. 2021). |
Nokia et al., “Discussion paper on authorization for Model D Indirect communications”, 3GPP TSG SA WG3; S3-194380 (Nov. 11, 2019). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/697,021 (dated Jun. 21, 2021). |
Non-Final Office Action for U.S. Appl. No. 16/356,446 (dated Jun. 16, 2021). |
Huawei, “eSBA: reselection of producer instance,” 3GPP TSG-SA2 Meeting #132, pp. 1-2 (Apr. 12, 2019). |
Docomo, “Update Solution 4 for implicit registration,” SA WG2 Meeting #129, pp. 1-2 (Oct. 15-19, 2018). |
International Search Report and Written Opinion for Patent Cooperation Treaty Application Serial No. PCT/US2020/061885 (dated Feb. 4, 2021). |
International Search Report and Written Opinion for Patent Cooperation Treaty Application Serial No. PCT/US2020/057712 (dated Feb. 2, 2021). |
Cheshire, S. et al., “Apple's DNS Long-Lived Queries protocol draft-sekar-dns-llq-06,” Internet Engineering Task Force (IETF), pp. 1-26 (Aug. 23, 2019). |
Final Office Action for U.S. Appl. No. 16/697,021 (dated Feb. 2, 2021). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Procedures for the 5G System (5GS); Stage 2 (Release 16),” 3GPP TS 23.502, V16.7.0, pp. 1-603 (Dec. 2020). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System architecture for the 5G System (5GS); Stage 2 (Release 16),” 3GPP TS 23.501, V16.7.0, pp. 1-450 (Dec. 2020). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Network Function Repository Services; Stage 3 (Release 17),” 3GPP TS 29.510, V17.0.0, pp. 1-245 (Dec. 2020). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Technical Realization of Service Based Architecture; Stage 3 (Release 17),” 3GPP TS 29.500, V17.1.0, pp. 1-90 (Dec. 2020). |
Applicant-Initiated Interview Summary for U.S. Appl. No. 16/697,021 (dated Jan. 26, 2021). |
Advisory Action for U.S. Appl. No. 16/356,446 (dated Dec. 22, 2020). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/555,817 (dated Dec. 3, 2020). |
Commonly-Assigned, co-pending U.S. Continuation-in-Part U.S. Appl. No. 17/102,404 for “Methods, Systems, and Computer Readable Media for Policing Access Point Name-Aggregate Maximum Bit Rate (APN-AMBR) Across Packet Data Network Gateway Data Plane (P-GW DP) Worker Instances.” |
“P-GW Administration Guide, StarOS Release 21.20,” Cisco, pp. 1-1164 (Oct. 11, 2020). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3 (Release 17),” 3GPP TS 24.301, V17.0.0, pp. 1-585 (Sep. 2020). |
3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Architecture enhancements to facilitate communications with packet data networks and applications (Release 16), 3GPP TS 23.682, V16.8.0, pp. 1-135 (Sep. 2020). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/001,599 for “Methods, Systems, and Computer Readable Media for Optimized Network Function (NF) Discovery and Routing Using Service Communications Proxy (SCP) And NF Repositor Function (NRF),” (Unpublished filed Aug. 24, 2020). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System architecture for the 5G System (5GS); Stage 2 (Release 16),” 3GPP TS 23.501 V16.5.1, pp. 1-440 (Aug. 2020). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Technical Realization of Service Based Architecture; Stage 3 (Release 16),” 3GPP TS 29.500 V16.4.0 pp. 1-79 (Jun. 2020). |
Notice of Publication for International Application Serial No. PCT/US2020/061885 (dated Jun. 3, 2021). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 17/001,599 (dated May 17, 2021). |
Advisory Action for U.S. Appl. No. 16/697,021 (dated May 7, 2021). |
Applicant-Initiated Interview Summary for U.S. Appl. No. 17/001,599 (dated May 5, 2021). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application Serial No. PCT/US2020/065765 (dated Apr. 15, 2021). |
Ex Parte Quayle Action for U.S. Appl. No. 16/730,799 (Apr. 7, 2021). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/555,817 (dated Mar. 24, 2021). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/156,149 for “Methods, Systems, and Computer Readable Media for Optimized Routing of Messages Relating to Existing Network Function (NF) Subscriptions Using an Intermediate Forwarding NF Repository Function (NRF),” (Unpublished, filed Nov. 9, 2020). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/102,404 for “Methods, Systems, and Computer Readable Media for Policing Access Point Name-Aggregate Maximum Bit Rate (APN-AMBR) Across Packet Data Network Gateway Data Plane (P-GW DP) Worker Instances,” (Unpublished, filed Sep. 23, 2020). |
“5G; System architecture for the 5G System (5GS) (3GPP TS 23.501 version 15.6.0 Release 15),” ETSI TS 123 501, V15.6.0, pp. 1-168 (Oct. 2019). |
“5G; 5G System; Network function repository services; Stage 3 (3GPP TS 29.510 version 15.5.1 Release 15),” ETSI TS 129 510, V15.5.1, pp. 1-132 (Oct. 2019). |
“5G; 5G System; Technical Realization of Service Based Architecture; Stage 3 (3GPP TS 29.500 version 15.5.0 Release 15),” ETSI TS 129 500, V15.5.0, pp. 1-40 (Sep. 2019). |
Non-Final Office Action for U.S. Appl. No. 16/601,380 (dated Sep. 15, 2020). |
Commonly-Assigned, co-pending U.S. Appl. No. 16/601,380 for “Methods, Systems, and Computer Readable Media for Distributing Network Function (NF) Topology Information Among Proxy Nodes and for Using the NF Topology Information for Inter-Proxy Node Message Routing,” (Unpublished, filed Oct. 14, 2019). |
Commonly-Assigned, co-pending International Application No. PCT/US19/53912 for “Methods, Systems, and Computer Readable Media for Providing a Service Proxy Function in a Telecommunications Network Core Using a Service-Based Architecture,” (Unpublished, filed Sep. 30, 2019). |
Commonly-Assigned, co-pending U.S. Appl. No. 16/176,920 for “Methods, Systems, and Computer Readable Media for Providing a Service Proxy Function in a Telecommunications Network Core Using a Service-Based Architecture,” (Unpublished, filed Oct. 31, 2018). |
Hearing Notice for Indian Application No. 1106/CHENP/2009 (May 28, 2015). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/197,566 (dated Feb. 20, 2015). |
Notification of the Second Office Action for Chinese Application No. 201180013381.1 (dated Feb. 10, 2015). |
Notification of Reexamination for Chinese Application No. 200880109633.9 (dated Jan. 29, 2015). |
Extended European Search Report for European Patent Application No. 08796925.9 (dated Nov. 21, 2014). |
Non-Final Office Action for U.S. Appl. No. 13/197,566 (dated Aug. 27, 2014). |
Notification of Reexamination for Chinese Patent Application No. 200880109633.9 (dated Jul. 28, 2014). |
Notification of the First Office Action for Chinese Application No. 201180013381.1 (dated Jun. 5, 2014). |
First Examination Report for Indian Patent Application No. 1106/CHENP/2009 (dated Jan. 28, 2014). |
Extended European Search Report for European Application No. 07836478.3 (dated Nov. 18, 2013). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/026,153 (dated Apr. 15, 2013). |
Communication of European Publication No. and Information on the Application of Article 67(3) EPC for European Patent Application No. 11742923.3 (dated Nov. 21, 2012). |
First Office Action for Chinese Patent Application No. 200820109633.9 (dated May 3, 2012). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2011/024645 (dated Oct. 28, 2011). |
Notice of Allowance for U.S. Appl. No. 11/510,284 (dated Dec. 9, 2010). |
Chinese Office Action for Chinese Patent Application No. 200780036907.1 (dated Oct. 11, 2010). |
Final Official Action for U.S. Appl. No. 11/510,284 (dated Jun. 22, 2010). |
Official Action for U.S. Appl. No. 11/510,284 (dated Feb. 23, 2010). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/183,406 (dated Feb. 12, 2010). |
3GPP, “3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Diameter-based Protocols Usage and Recommendations in 3GPP (Release 9),” 3GPP TR 29.909 V9.0.0 (Dec. 2009). |
Tsou et al., “Realm-Based Redirection in Diameter,” Internet Engineering Task Force, draft-ietf-dime-realm-based-redirect-02, pp. 1-7 (Oct. 27, 2009). |
Final Official Action for U.S. Appl. No. 11/510,284 (dated Jul. 9, 2009). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2008/071718 (dated Jan. 28, 2009). |
Official Action for U.S. Appl. No. 11/510,284 (dated Dec. 24, 2008). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US07/17329 (dated Feb. 15, 2008). |
A. B. Roach, “Session Initiation Protocol (SlP)-Specific Event Notification,” dynamicsoft, Network Working Group, pp. 1-38 (Jun. 2002). |
Rosenberg, “SIP Proxies,” www.dynamicsoft.com, pp. 1-30 (Jul. 2000). |
Wiesmann et al., “Understanding Replication in Databases and Distributed Systems,” IEEE, pp. 464-474 (Apr. 10, 2000). |
Wang et al., “A Signaling System Using Lightweight Call Sessions,” IEEE, pp. 697-706 (Mar. 26, 2000). |
Gribble et al., “The MultiSpace: an Evolutionary Platform for Infrastructural Services,” The University of California at Berkeley, pp. 157-170 (Jun. 6, 1999). |
Handley et al., “SIP: Session Initiation Protocol,” IETF RFC 2543, pp. 1-153 (Mar. 1999). |
Handley et al., “SDP: Session Description Protocol,” IETF RFC 2327, pp. 1-42 (Apr. 1998). |
S. Paul et al., “Reliable Multicast Transport Protocol (RMTP),” IEEE Journal on Selected Areas in Communications, vol. 15, No. 3, pp. 407-421 (Apr. 1997). |
Lin et al., “A Reliable Multicast Transport Protocol,” IEEE INFOCOM, pp. 1414-1424 (1996). |
Communication of European publication number and information on the application of Article 67(3) EPC for European Patent Application Serial No. 19791391.6 (dated Aug. 11, 2021). |
Decision for Refusal for Indian Patent Application Serial No. 7526/CHENP/2012 (dated Jul. 22, 2021). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/397,968 for “Methods, Systems, and Computer Readable Media for Processing Network Function (NF) Discovery Requests at NF Repository Function (NRF) Using Prioritized Lists of Preferred Locations,” (Unpublished, filed Aug. 9, 2021). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2021/024000 (dated Jun. 24, 2021). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/337,356 for “Methods, Systems, and Computer Readable Media for Applying or Overriding Preferred Locality Criteria in Processing Network Function (NF) Discovery Requests,” (Unpublished, filed Jun. 2, 2021). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System architecture for the 5G System (5GS); Stage 2 (Release 17),” 3GPP TS 23.501, V17.0.0, pp. 1-489 (Mar. 2021). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/200,777 for “Methods, Systems, and Computer Readable Media for Supporting Multiple Preferred Localities for Network Function (NF) Discovery and Selection Procedures” (Unpublished, filed Mar. 13, 2021). |
Non-Final Office Action for U.S. Appl. No. 17/074,553 (dated Aug. 18, 2021). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/730,799 (dated Aug. 16, 2021). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/392,288 for “Methods, Systems, and Computer Readable Media for Optimized Routing of Service Based Interface (SBI) Request Messages to Remote Network Function (NF) Repository Functions Using Indirect Communications Via Service Communications Proxy (SCP)” (Unpublished, filed Aug. 3, 2021). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/730,799 (dated Jul. 30, 2021). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Principles and Guidelines for Services Definition; Stage 3 (Release 17),” 3GPP TS 29.501, V17.2.0, p. 1-78 (Jun. 2021). |
Non-Final Office Action for U.S. Appl. No. 17/082,871 (dated Feb. 7, 2022). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/356,461 for “Methods, Systems and Computer Readable Media for Optimizing Network Traffic Distribution using Timeslot-Based Tracked Producer Network Function (NF) Performance During Producer NF Selection” (Unpublished, filed Jun. 23, 2021). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/485,284 for “Methods, Systems and Computer Readable Media For Providing Priority Resolver for Resolving Priorities and Network Function (NF) Instances” (Unpublished, filed Sep. 24, 2021). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/356,446 (dated Sep. 30, 2021). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2021/033031 (dated May 18, 2021). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/468,076 for “Methods, Systems, and Computer Readable Media for Using Service Communications Proxy (SCP) or Security Edge Protection Proxy (SEPP) to Apply or Override Preferred-Locality Attribute During Network Function (NF) Discovery” (Unpublished, filed Sep. 7, 2021). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/487,142 for “Methods, Systems, and Computer Readable Media for Network Function Discovery Using Preferred-Locality Information” (Unpublished, filed Sep. 28, 2021). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Numbering, addressing and identification; (Release 17),” 3GPP TS 23.003, V17.1.0, pp. 1-143 (Mar. 2021). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Session Management Services; Stage 3 (Release 17),” 3GPP 29.502, V17.1.0, pp. 1-299 (Jun. 2021). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Principles and Guidelines for Services Definition; Stage 3 (Release 17),” 3GPP TS 29.501, V17.2.0, pp. 1-78 (Jun. 2021). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Technical Realization of Service Based Architecture; Stage 3 (Release 17).” 3GPP TS 29.500, V17.2.0, pp. 1-100 (Mar. 2021). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Security architecture and procedures for 5G system (Release 17),” 3GPP TS 33.501, V17.1.0, pp. 1-256 (Mar. 2021). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Public Land Mobile Network (PLMN) Interconnection; Stage 3 (Release 17),” 3GPP TS 29.573, V17.0.0, pp. 1-100 (Mar. 2021). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/203,693 for “Methods, Systems, and Computer Readable Media for Hypertext Transfer Protocol (HTTP) Stream Tuning for Load and Overload Control,” (Unpublished, filed Mar. 16, 2021). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Procedures for the 5G System (5GS); Stage 2 (Release 17),” 3GPP TS 23.502, V17.0.0, pp. 1-646. |
Vixie et al., “Dynamic Updates in the Domain Name System (DNS UPDATE),” Network Working Group, RFC 2136, pp. 1-26 (Apr. 1997). |
Notice of Allowance for U.S. Appl. No. 17/156,149 (dated May 24, 2022). |
Notice of Allowance for U.S. Appl. No. 17/156,149 (dated Apr. 19, 2022). |
Communication of European Publication No. and Information on the Applicatoin of Article 67(3) EPC for European Patent Application Serial No. 20732441.9 (dated Apr. 6, 2022). |
Non-Final Office Action for Chinese Patent Application Serial No. 201980067968.7 (dated Mar. 3, 2022). |
First Examination Report for Indian Patent Application Serial No. 202147011137 (dated Mar. 9, 2022). |
Commonly-Assigned, co-pending U.S. Appl. No. 17/543,989 for “Methods, Systems, and Computer Readable Media for Dynamic Adjustment to Network Function Profile for Discovery Responses” (Unpublished, filed Dec. 17, 2021). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 17/074,553 (dated Dec. 29, 2021). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 17/001,599 (dated Nov. 17, 2021). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 17/102,404 (dated Oct. 7, 2021). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2021/033031 (dated Sep. 16, 2021). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Security architecture and procedures for 5G system (Release 17),” 3GPP TS 33.501, V17.3.0, pp. 1-258 (Sep. 2021). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Network Function Repository Services: Stage 3 (Release 17),” 3GPP TS 29.510, V17.3.0, pp. 1-271 (Sep. 2021). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System architecture for the 5G System (5GS); Stage 2 (Release 17),” 3GPP TS 23.501, V17.2.0, pp. 1-542 (Sep. 2021). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Technical Realization of Service Based Architecture; Stage 3 (Release 17),” 3GPP TS 29.500, V17.4.0, pp. 1-109 (Sep. 2021). |
“Implementing Quality of Service Policies with DSCP,” Cisco, pp. 1-7 (Feb. 15, 2008). |
Notice of Allowance for U.S. Appl. No. 17/200,777 (dated Jun. 30, 2022). |
Notice of Allowance for U.S. Appl. No. 17/009,725 (dated Jun. 13, 2022). |
Notice of Publication for European Patent Application Serial No. 20733169.5 (dated Jun. 9, 2022). |
Final Office Action for U.S. Appl. No. 17/082,871 (dated Jun. 6, 2022). |
Number | Date | Country | |
---|---|---|---|
20220038545 A1 | Feb 2022 | US |