The subject matter described herein relates to seamlessly authenticating users of non-3GPP access networks, either trusted or untrusted, using an authentication, authorization, and account (AAA) server, such as a 3GPP AAA server. More particularly, the subject matter described herein relates to methods, systems, and computer readable media for providing access network signaling protocol interworking for user authentication.
When a user seeks to connect to a non-3GPP access network, the user (e.g. a mobile device) may need to be authenticated with the 3GPP core network to access services, such as VoIP calling, that require core network elements. In one example, the access network may be a trusted or untrusted Wi-Fi network from the perspective of the core network, which may affect some of the parameters used for authentication.
One example of an authentication protocol that could be used to authenticate access network users to the core network is extensible authentication protocol (EAP). For example, EAP authentication can be used between the access network (e.g. a Wi-Fi access gateway (WAG)) and an AAA server in the core network if the signaling protocol used by the access and core networks to carry the authentication information is the same. However, access networks often use different signaling protocols, such as RADIUS, to carry authentication information than protocols, such as Diameter, used by AAA servers. In light of the different protocols and network nodes involved, there exists a need for seamlessly authenticating Wi-Fi and other non-3GPP access network users to cellular networks that use a different signaling protocol to carry authentication information.
The subject matter described herein includes methods, systems, and computer readable media for access network protocol interworking for user authentication. A method for access network signaling protocol interworking for user authentication includes receiving, from a node in an access network, a message formatted according to a signaling protocol of the access network and containing an authentication payload formatted according to an authentication protocol. The method further includes, in response to receiving the message, formulating a message formatted according to a signaling protocol of a cellular network, the message including the authentication payload formatted according to the authentication protocol. The method further includes forwarding the message formatted according to the signaling protocol of the cellular network to a node in the cellular network that implements the authentication protocol, the message including the authentication payload formatted according to the authentication protocol.
The subject matter described herein for signaling protocol interworking for user authentication may perform the signaling protocol interworking when the authentication protocol is implemented by a physical SIM card, a software implemented SIM card, or other hardware, software module, or firmware module in a user device implements an authentication protocol. Thus, user authentication as described herein is intended to each of the aforementioned implementations.
The subject matter described herein can be implemented in software in combination with hardware and/or firmware. For example, the subject matter described herein can be implemented in software executed by a processor. In one exemplary implementation, the subject matter described herein can be implemented using a non-transitory computer readable medium having stored thereon computer executable instructions that when executed by the processor of a computer control the computer to perform steps. Exemplary computer readable media suitable for implementing the subject matter described herein include non-transitory computer-readable media, such as disk memory devices, chip memory devices, programmable logic devices, and application specific integrated circuits. In addition, a computer readable medium that implements the subject matter described herein may be located on a single device or computing platform or may be distributed across multiple devices or computing platforms.
According to the subject matter described herein authentication may be performed automatically where the user is authenticated to both the access network and a cellular network that allows the user to access cellular network services while connected to a trusted or untrusted access network. For example, authentication may be initiated by the SIM of the user device according to the extensible authentication protocol (EAP). The base extensible authentication protocol is described in IETF RFC 3748, Extensible Authentication Protocol (EAP), June 2004. RADIUS support for EAP is described in IETF RFC 3579, RADIUS (Remote Dial In User Service) Support for Extensible Authentication Protocol (EAP), September 2003. EAP methods for third generation authentication are found in IETF RFC 4187, Extensible Authentication Protocol Method for 3rd Generation Authentication and Key Agreement (EAP-AKA), January 2006 and IETF RFC 5488, Extensible Authentication Protocol Method for 3rd Generation Authentication and Key Agreement (EAP-AKA′), May 2009. The use of EAP for SIM based authentication is described in IETF RFC 4186, Extensible Authentication Protocol Method for Global System for Mobile Communications (GSM) Subscriber Identity Modules (EAP-SIM), January 2006. The disclosure of each of these RFCs is incorporated herein by reference in its entirety.
EAP payloads must be communicated between the client in the access network, such as a Wi-Fi access gateway, and an AAA server to authenticate users who connect to an access network to the cellular network. The EAP SIM protocol RFC specifies RADIUS as the protocol for communicating EAP payloads between nodes in the access network. However, cellular networks may utilize Diameter for communicating with the AAA server. In other access networks, Diameter may be used for authentication, while the cellular network may use RADIUS for authentication. Because RADIUS and Diameter are different protocols, interworking is required to authenticate users who connect to an access network that uses one protocol to communicate authentication information with a cellular network that uses a different protocol to communicate authentication information.
As stated above, Diameter SWa is the protocol used between an untrusted non-3GPP IP access network and a 3GPP AAA server or proxy. Diameter STa is used between a trusted non-3GPP IP access network or proxy and a 3GPP access network or proxy. SWa and STA share the same Diameter STa application ID. The decision as to whether the non-3GPP access is trusted or untrusted is made by the 3GPP AAA server during the access and authorization procedure and communicated to the non-3GPP access network.
Because DSR 102 interfaces with both RADIUS and Diameter networks, DSR 102 includes internal components that perform the operations for Diameter-RADIUS protocol interworking.
RCL 300 includes a Diameter encapsulation/de-encapsulation module 304 for performing the encapsulation and de-encapsulation of RADIUS messages. For example, Diameter encapsulation/de-encapsulation module 304 may encapsulate ingress RADIUS messages in Diameter messages as described above. Diameter encapsulation/de-encapsulation module 304 may remove egress RADIUS messages from their encapsulating Diameter messages before forwarding the RADIUS messages over a RADIUS network. RCL 300 may also include a RADIUS/UDP message handler 306 that removes ingress RADIUS messages from user datagram protocol (UDP) datagrams and encapsulates egress RADIUS messages in UDP datagrams.
A mediation function implemented in DRL 302 triggers a RADIUS to Diameter interworking for authentication (RD-IWF) function 310 for formulating RADIUS and Diameter request/response messages. If the ingress protocol is RADIUS and the egress protocol is Diameter, interworking function 310 may formulate the proper Diameter request/response message to carry the authentication payload obtained from the received RADIUS message to the Diameter network. If the ingress protocol is Diameter and the egress protocol is RADIUS, interworking function 310 may formulate the proper RADIUS message to carry the authentication payload obtained from the received Diameter message to the RADIUS network. Interworking function 310 may also generate error messages towards the RADIUS network. DRL 302 or DCL 310 may generate error messages towards the Diameter network.
In one exemplary implementation, interworking function 310 may be implemented using scripts such that modifications in mapping of parameters between the signaling protocol of the access network and that of the cellular network can be changed without code modification. If, for example, a new protocol parameter mapping needs to be added, the user can simply create a script that implements the new mapping and interworking function 310 will execute the script to perform the required mapping.
DRL 302 routes RADIUS-directed messages received from interworking function 310, and RCL 300 de-encapsulates the RADIUS-directed messages and sends the messages to RADIUS client 100. For Diameter-directed messages received from interworking function 310, DRL 302 routes the messages to AAA server 104. A Diameter connection layer (DCL) 314 maintains Diameter connections with external nodes, such as AAA server 104. In
One type of signaling protocol interworking that may be performed by DSR 102 is illustrated in
In response to receiving the RADIUS access request message, DRL 302 triggers RD-IWF 310 to perform RADIUS-Diameter interworking. For the received RADIUS access request message, such interworking includes formulating a DER message and mapping parameters from the RADIUS message to the DER message. Accordingly, RD-IWF 110 formulates message 3, which is a DER message. The DER message includes a session ID parameter generated by RD-IWF 310, an authentication request type parameter specifying authorize_authenticate, the user name, the EAP payload, the calling station ID, a remote access type (RAT)-type derived from the NAS port type, and an access network (AN) ID derived from the NAS port type. Once RD-IWF 310 formulates the DER message, RD-IWF passes the message to DRL 302, which routes the DER message to AAA server 104.
Upon receiving the DER message, AAA server 104 performs a lookup in its subscriber database using user ID information extracted from the EAP payload. In this example, it is assumed that AAA server 104 locates a record for the subscriber and obtains EAP access challenge information from the record. Accordingly, AAA server 104 formulates message 4, which is a Diameter EAP answer (DEA) message. The DEA message identifies AAA server 104 as the origin host. The origin realm parameter is set to the realm of AAA server 104. The session ID parameter mirrors the session ID received in the DER message (message 3). The user name is set to the user name value received in the DER message. The EAP payload contains the authentication challenge information. The result code in this example indicates that an authentication record was successfully located. If an authentication record did not exist for the subscriber, the result code would indicate an authentication error or subscriber not found.
DSR 102 receives the DEA message. DRL 302 triggers RD-IWF 310 to perform Diameter to RADIUS mediation for the received DEA message. RD-IWF 310 determines based on the message type and the message destination that the egress protocol is RADIUS and sends the message to RCL 300. The message sent to RCL 300 may be the received DEA message with an added parameter identifying the DEA message as carrying RADIUS content. RCL 300 receives the DEA message and formulates message 6, which is a RADIUS access challenge message. The RADIUS access challenge message includes the user name, the EAP message from AAA server 104, the session ID for the authentication session assigned by RD-IWF 310. The DEA message also includes an origin host parameter identifying the origin host as AAA server 104. RCL 300 forwards the access challenge message to BNG 100.
Upon receiving the RADIUS access challenge message, BNG 100 forwards the authentication challenge information to the user device seeking authentication. The user device provides the challenge response information to BNG 100. BNG 100 formulates and sends message 7, which is a RADIUS access request message, to RCL 300. The access request message contains the same state as the access challenge message and the other attributes specified in message 1. The EAP payload in the access request message may carry the access challenge information.
Upon receiving the access request message, DSR 102 provides the message to RCL 300, which encapsulates the access request message in message 8, which is a Diameter DER message with the proprietary parameter identifying the message as containing RADIUS content. Mediation function 308 triggers RD-IWF 310 to process the DER message. RD-IWF 310 formulates message 9, which is a Diameter DER message. The Diameter DER message includes a destination host parameter obtained from a state AVP parameter, which the DSR sends to BNG 100 and BNG 100 echoes back. In this example, the destination host parameter would identify AAA server 104 as the destination host for the DER message. The session ID is the DER message is set to the session ID for the authentication session. The DER message includes the EAP payload, including the challenge response information from the user device. The other AVPs in the DER message may be the same as those in message 3. RD-IWF 310 may forward the DEA message to DRL 302, which routes the DER message (message 10) to AAA server 104.
Upon receiving the DER message, AAA server 104 extracts the EAP payload from the message, determines whether the authentication response information in the EAP payload matches the expected response, and determines an authentication result (i.e., successful or unsuccessful authentication). In this example, it is assumed that the authentication is successful. Accordingly, AAA server 104 formulates message 10, which is a DEA message, including a result code indicating successful authentication. The DEA message may also include an EAP payload and other parameters. AAA server 104 forwards the DEA message to DSR 102.
Upon receiving the DEA message, DRL 302 triggers RD-IWF 310 to perform a full translation of the DEA message. RD-IWF determines that the message is destined to a RADIUS destination, so RD-IWF 310 forwards the DEA message to RCL 300 for transmission of the corresponding RADIUS message. The DEA message may include a parameter indicating that the message carries RADIUS content. RCL 300 receives the DEA message, formulates a RADIUS access accept message including the EAP payload from the DEA message and forwards the access accept message to BNG 100. BNG 100 then informs the user device that authentication was successful. Thus, using the steps illustrated in
Table 1 shown below illustrates exemplary parameter mapping between a RADIUS access request message and a Diameter DER message that may be performed by RD-IWF 310.
In Table 1, values for Diameter AVPs formulated based on a received RADIUS access request message are illustrated. In the Table “O” stands for optional and “M” stands for mandatory.
Table 2 shown below illustrates exemplary values for RADIUS attributes that may be populated from a received Diameter message.
In
DSR 102 receives the DER message and, because the cellular network protocol is RADIUS, formulates message 2, which is a RADIUS access request message. The RADIUS access request message includes the user name, the EAP payload from the DER message, and the calling station ID. DSR 102 forwards the access request message to AAA server 104.
AAA server 104 receives the access request message and uses the calling station ID to perform a lookup in its subscriber database. In this example, it is assumed that AAA server 104 locates a record corresponding to the calling station. Accordingly, AAA server 104 formulates message 3, which is a RADIUS access challenge message. The access challenge message includes the user name, an EAP payload, and a session identifier. The EAP payload may include access challenge information. AAA server 104 sends the access challenge message to DSR 102.
DSR 102 receives the RADIUS access challenge message, determines that the outbound message should be a Diameter message, and formulates message 4, which is a Diameter DEA message. The DEA message includes the user name, an EAP payload including the access challenge information, the session identifier, and a result code that indicates whether the authentication lookup was successful. DSR 102 forwards the DEA message to WAG 100.
WAG 100 receives the DEA message, removes the access challenge information, and provides the access challenge information to the user device seeking authentication. The user device sends access challenge response to information to WAG 100. WAG 100 formulates a Diameter DER message including EAP payload that carries the challenge response information. The DER message also includes a user name, the calling station ID, an AA type parameter set to authentication only, and a session identifier. WAG 100 sends the DER message to DSR 102.
DSR 102 receives the DER message, determines that the outbound message should be a RADIUS message, and formulates message 6, which is a RADIUS access request message. The RADIUS access request message includes the EAP payload with the challenge response information, a user name, and a calling station ID. DSR 102 forwards the access request message to AAA server 104.
AAA server 104 receives the access request message, performs a lookup in its database to determine whether the challenge response information is equal to an expected response, and formulates a message 7, which is a RADIUS access response message. The RADIUS access response message includes an EAP payload that indicates results of the authentication, a user name, and the session ID. AAA server 104 sends the access response message to DSR 102.
DSR 102 receives the access response message, determines that the outbound message should be a Diameter message, and formulates a Diameter DEA message. The DEA message includes an EAP payload indicating successful authentication and a result code also indicating successful authentication. The DEA message also includes a user name and a session identifier. DSR 102 sends the DEA message to WAG 100.
WAG 100, upon receiving the DEA message, communicates with the user device to indicate that the authentication to the network is successful. After successful authentication, the user device can access the wireless access network as well as core network services.
In step 604, a message including the authentication payload and in the signaling protocol of the cellular network is forwarded to a node in the cellular network that implements the authentication protocol. For example, DSR 102 may forward a RADIUS or Diameter message with the EAP payload to AAA server 104.
In step 606, protocol interworking is performed between the node in the access network and the node in the cellular network to complete authentication of a subscriber according to the authentication protocol. For example, DSR 102 may convert between Diameter and RADIUS for subsequent message exchanges relating to authenticating a subscriber to the network. The authentication protocol may be any suitable authentication protocol, for example, EAP. Examples of such exchanges are illustrated in
In one exemplary implementation, the authentication protocol is implemented end to end between the node in the access network and the node in the cellular network. As a result, DSR 102 may perform the signaling protocol interworking to authenticate a subscriber while remaining stateless with respect to the authentication protocol.
As stated above, access network protocol interworking as described herein may be implemented on a DSR.
In the illustrated example, message processor 700 includes Diameter connection layer (DCL) 314 and DRL) 302. DCL 314 performs functions for establishing Diameter connections with other nodes over Diameter interfaces, such as SWa and STa interfaces. DRL 302 routes messages based on Diameter level information in the messages.
Message processor 702 includes RADIUS connection layer (RCL) 306 that establishes and maintains RADIUS connections with other nodes. RCL 306 encapsulates received RADIUS messages in Diameter messages, as described above. Message processor 702 also includes DRL 302 that routes Diameter messages based on Diameter level information. DRL 302, in one implementation, may also determine whether received messages require processing by interworking function 310.
Message processor 704 includes an address resolution module 712 that performs range based address resolution and individual subscriber identifier address resolution for RADIUS and Diameter messages. Such address resolution may include performing a lookup based on an international mobile station identifier (IMSI) or a mobile subscriber integrated services digital network (MSISDN) number in a message to determine the appropriate destination for the message and inserting the routing information in the messages for routing the messages to the appropriate destination. Message processor 704 may also include an RD interworking function 310 that performs the protocol interworking functions described herein. For example, RD interworking function 310 may perform the access network protocol interworking described above with respect to
Thus, when a Diameter message arrives at message processor 700, DRL 302 determines whether signaling protocol interworking processing is required. If signaling protocol interworking is required, DRL 302 sends the message to one of message processors 704 and 706 for protocol interworking. RD IWF 310 on the receiving message processor performs the required signaling protocol interworking and formulates the outbound message. Address resolution may be performed to determine the routing information for the outbound message. RD IWF 310 or address resolution module 712 forwards the message to the appropriate message processor 700 or 702 which forwards the message to its intended next hop.
Accordingly, the architecture illustrated in
In addition, because the authentication protocol is implemented end-to-end between the access network and the authenticating server in the cellular network, the signaling protocol interworking can be performed statelessly with respect to the authentication protocol. Stateless signaling protocol interworking may simplify the design and/or implementation of the protocol interworking function.
This application is a divisional of U.S. patent application Ser. No. 14/827,025, filed Aug. 14, 2015, the disclosure of which is incorporated herein by reference in its entirety.
| Number | Name | Date | Kind |
|---|---|---|---|
| 1872857 | Wesson et al. | Apr 1931 | A |
| 5878347 | Joensuu et al. | Mar 1999 | A |
| 6006098 | Rathnasabapathy et al. | Dec 1999 | A |
| 6298383 | Gutman et al. | Oct 2001 | B1 |
| 6836477 | West, Jr. et al. | Dec 2004 | B1 |
| 6967956 | Tinsley et al. | Nov 2005 | B1 |
| 7292592 | Rune | Nov 2007 | B2 |
| 7310307 | Das et al. | Dec 2007 | B1 |
| 7319857 | Baldwin et al. | Jan 2008 | B2 |
| 7551926 | Rune | Jun 2009 | B2 |
| 7738488 | Marsico et al. | Jun 2010 | B2 |
| 7792981 | Taylor | Sep 2010 | B2 |
| 7814015 | Benedyk et al. | Oct 2010 | B2 |
| 7844745 | Darbyshire et al. | Nov 2010 | B1 |
| 7916685 | Schaedler et al. | Mar 2011 | B2 |
| 7996541 | Marathe et al. | Aug 2011 | B2 |
| 8015293 | Schaedler et al. | Sep 2011 | B2 |
| 8532110 | McCann et al. | Sep 2013 | B2 |
| 8547908 | Marsico | Oct 2013 | B2 |
| 8615237 | Baniel et al. | Dec 2013 | B2 |
| 8737304 | Karuturi et al. | May 2014 | B2 |
| 8825060 | McCann et al. | Sep 2014 | B2 |
| 8831076 | Yen | Sep 2014 | B2 |
| 8918469 | Sprague et al. | Dec 2014 | B2 |
| 8942747 | Marsico | Jan 2015 | B2 |
| 9059948 | Schaedler et al. | Jun 2015 | B2 |
| 9148524 | Deo | Sep 2015 | B2 |
| 9288169 | Schaedler et al. | Mar 2016 | B2 |
| 9319378 | McCann | Apr 2016 | B2 |
| 9668134 | McCann | May 2017 | B2 |
| 9668135 | McCann | May 2017 | B2 |
| 20010028636 | Skog et al. | Oct 2001 | A1 |
| 20020147845 | Sanchez-Herrero | Oct 2002 | A1 |
| 20020194378 | Foti | Dec 2002 | A1 |
| 20020196775 | Tuohino et al. | Dec 2002 | A1 |
| 20030040280 | Koskelainen | Feb 2003 | A1 |
| 20030131151 | Roach et al. | Jul 2003 | A1 |
| 20040098612 | Lee et al. | May 2004 | A1 |
| 20040103157 | Requena et al. | May 2004 | A1 |
| 20040152469 | Yla-Outinen et al. | Aug 2004 | A1 |
| 20040205212 | Huotari et al. | Oct 2004 | A1 |
| 20040223489 | Rotsten et al. | Nov 2004 | A1 |
| 20040225878 | Costa-Requena et al. | Nov 2004 | A1 |
| 20040242227 | Huotari et al. | Dec 2004 | A1 |
| 20040246965 | Westman et al. | Dec 2004 | A1 |
| 20040260816 | Skog et al. | Dec 2004 | A1 |
| 20050007984 | Shaheen et al. | Jan 2005 | A1 |
| 20050009520 | Herrero et al. | Jan 2005 | A1 |
| 20050058125 | Mutikainen et al. | Mar 2005 | A1 |
| 20050078642 | Mayer et al. | Apr 2005 | A1 |
| 20050094594 | Roh | May 2005 | A1 |
| 20050120198 | Bajko et al. | Jun 2005 | A1 |
| 20050124341 | Myllymaki et al. | Jun 2005 | A1 |
| 20050136926 | Tammi et al. | Jun 2005 | A1 |
| 20050155036 | Tiainen et al. | Jul 2005 | A1 |
| 20050159156 | Bajko et al. | Jul 2005 | A1 |
| 20050227675 | Lim et al. | Oct 2005 | A1 |
| 20050235000 | Keil | Oct 2005 | A1 |
| 20060002308 | Na et al. | Jan 2006 | A1 |
| 20060030320 | Tammi et al. | Feb 2006 | A1 |
| 20060045249 | Li et al. | Mar 2006 | A1 |
| 20060068762 | Baldwin et al. | Mar 2006 | A1 |
| 20060068816 | Pelaez et al. | Mar 2006 | A1 |
| 20060077926 | Rune | Apr 2006 | A1 |
| 20060078119 | Jee et al. | Apr 2006 | A1 |
| 20060136557 | Schaedler et al. | Jun 2006 | A1 |
| 20060161512 | Schaedler et al. | Jul 2006 | A1 |
| 20060172730 | Matsuda | Aug 2006 | A1 |
| 20060221972 | Bhargava et al. | Oct 2006 | A1 |
| 20060259759 | Maino et al. | Nov 2006 | A1 |
| 20060274744 | Nagai et al. | Dec 2006 | A1 |
| 20070121596 | Kurapati et al. | May 2007 | A1 |
| 20070136590 | Nah et al. | Jun 2007 | A1 |
| 20070153995 | Fang et al. | Jul 2007 | A1 |
| 20070189215 | Wu et al. | Aug 2007 | A1 |
| 20070242637 | Dynarski et al. | Oct 2007 | A1 |
| 20070297419 | Askerup et al. | Dec 2007 | A1 |
| 20080039104 | Gu et al. | Feb 2008 | A1 |
| 20080256251 | Huotari et al. | Oct 2008 | A1 |
| 20090080440 | Balyan et al. | Mar 2009 | A1 |
| 20090089435 | Terrill et al. | Apr 2009 | A1 |
| 20090129271 | Ramankutty et al. | May 2009 | A1 |
| 20090156213 | Spinelli et al. | Jul 2009 | A1 |
| 20090177796 | Falk et al. | Jul 2009 | A1 |
| 20090196231 | Giaretta et al. | Aug 2009 | A1 |
| 20090196290 | Zhao et al. | Aug 2009 | A1 |
| 20090221310 | Chen et al. | Sep 2009 | A1 |
| 20090232011 | Li et al. | Sep 2009 | A1 |
| 20090264097 | Cai et al. | Oct 2009 | A1 |
| 20090265467 | Peles | Oct 2009 | A1 |
| 20090305684 | Jones et al. | Dec 2009 | A1 |
| 20090313379 | Rydnell et al. | Dec 2009 | A1 |
| 20100268814 | Cross et al. | Oct 2010 | A1 |
| 20100290392 | Rasanen et al. | Nov 2010 | A1 |
| 20100291923 | Zhou et al. | Nov 2010 | A1 |
| 20100299451 | Yigang et al. | Nov 2010 | A1 |
| 20100311392 | Stenfelt et al. | Dec 2010 | A1 |
| 20100331023 | Cai et al. | Dec 2010 | A1 |
| 20110040845 | Cai et al. | Feb 2011 | A1 |
| 20110116378 | Ramankutty et al. | May 2011 | A1 |
| 20110116382 | McCann et al. | May 2011 | A1 |
| 20110158090 | Riley | Jun 2011 | A1 |
| 20110165901 | Baniel et al. | Jul 2011 | A1 |
| 20110199906 | Kanode et al. | Aug 2011 | A1 |
| 20110200053 | Kanode et al. | Aug 2011 | A1 |
| 20110202612 | Craig et al. | Aug 2011 | A1 |
| 20110202614 | Craig et al. | Aug 2011 | A1 |
| 20110202676 | Craig et al. | Aug 2011 | A1 |
| 20110211574 | Li et al. | Sep 2011 | A1 |
| 20110225113 | Mann | Sep 2011 | A1 |
| 20110225280 | Delsesto et al. | Sep 2011 | A1 |
| 20110225281 | Riley et al. | Sep 2011 | A1 |
| 20110225306 | Delsesto et al. | Sep 2011 | A1 |
| 20110282904 | Schaedler et al. | Nov 2011 | A1 |
| 20110302244 | McCann et al. | Dec 2011 | A1 |
| 20110314178 | Kanode | Dec 2011 | A1 |
| 20120089993 | Alarcon et al. | Apr 2012 | A1 |
| 20120096177 | Rasanen | Apr 2012 | A1 |
| 20120124220 | Zhou et al. | May 2012 | A1 |
| 20120129488 | Patterson et al. | May 2012 | A1 |
| 20120155389 | McNamee et al. | Jun 2012 | A1 |
| 20120155470 | McNamee et al. | Jun 2012 | A1 |
| 20120177028 | Mo | Jul 2012 | A1 |
| 20120201203 | Miyagawa et al. | Aug 2012 | A1 |
| 20120202550 | Marsico | Aug 2012 | A1 |
| 20120207015 | Marsico | Aug 2012 | A1 |
| 20120224524 | Marsico | Sep 2012 | A1 |
| 20120224531 | Karuturi et al. | Sep 2012 | A1 |
| 20120225679 | McCann et al. | Sep 2012 | A1 |
| 20120226758 | Sprague | Sep 2012 | A1 |
| 20120226814 | Stucker | Sep 2012 | A1 |
| 20120236871 | Wallace et al. | Sep 2012 | A1 |
| 20120239771 | Rasanen | Sep 2012 | A1 |
| 20120311064 | Deo | Dec 2012 | A1 |
| 20130171990 | McCann | Jul 2013 | A1 |
| 20130246639 | Nedbal et al. | Sep 2013 | A1 |
| 20130279497 | Verma et al. | Oct 2013 | A1 |
| 20130304843 | Chow et al. | Nov 2013 | A1 |
| 20140207941 | McCann | Jul 2014 | A1 |
| 20140258423 | Schaedler et al. | Sep 2014 | A1 |
| 20140321278 | Cafarelli et al. | Oct 2014 | A1 |
| 20140342690 | Tanouchev et al. | Nov 2014 | A1 |
| 20140355523 | Congdon et al. | Dec 2014 | A1 |
| 20150036486 | McMurry et al. | Feb 2015 | A1 |
| 20150149656 | McMurry et al. | May 2015 | A1 |
| 20160373348 | Renzullo et al. | Dec 2016 | A1 |
| 20170048190 | McCann | Feb 2017 | A1 |
| 20170048202 | McCann | Feb 2017 | A1 |
| 20170048703 | McCann | Feb 2017 | A1 |
| 20170048704 | McCann | Feb 2017 | A1 |
| 20170126522 | McCann et al. | May 2017 | A1 |
| 20170238179 | McCann | Aug 2017 | A1 |
| Number | Date | Country |
|---|---|---|
| 1809072 | Jul 2006 | CN |
| 101001440 | Jul 2007 | CN |
| 101079742 | Nov 2007 | CN |
| 101247321 | Aug 2008 | CN |
| 101277541 | Oct 2008 | CN |
| 101483826 | Jul 2009 | CN |
| 101867873 | Oct 2010 | CN |
| 101945047 | Jan 2011 | CN |
| 102239481 | Nov 2011 | CN |
| 201080065174.6 | Jun 2015 | CN |
| 100037 | Jul 2016 | CN |
| 103477661 | Oct 2016 | CN |
| 201280019607.3 | Dec 2016 | CN |
| 201280013938.6 | Mar 2017 | CN |
| 201280018298.8 | Mar 2017 | CN |
| 201280018288.4 | Apr 2017 | CN |
| 1 357 720 | Oct 2003 | EP |
| 1 630 999 | Mar 2006 | EP |
| 2 107 725 | Oct 2009 | EP |
| 2 234 422 | Sep 2010 | EP |
| 2 242 205 | Oct 2010 | EP |
| 2 220 841 | Sep 2011 | EP |
| 1 846 832 | Apr 2012 | EP |
| 2 466 828 | Jun 2012 | EP |
| 2 522 103 | Nov 2012 | EP |
| 2 577 930 | Apr 2013 | EP |
| 2 681 940 | May 2016 | EP |
| 2 681 939 | Sep 2016 | EP |
| 2 522 102 | Nov 2016 | EP |
| 2 681 938 | Dec 2016 | EP |
| H10-98470 | Apr 1998 | JP |
| H11-224219 | Aug 1999 | JP |
| 2004-242326 | Aug 2004 | JP |
| 2006-513631 | Apr 2006 | JP |
| 4041038 | Jan 2008 | JP |
| 2009-537102 | Oct 2009 | JP |
| 2010-527520 | Aug 2010 | JP |
| 2010-0278884 | Dec 2010 | JP |
| 2013-527999 | Jul 2013 | JP |
| 5732550 | Jun 2015 | JP |
| 5758508 | Aug 2015 | JP |
| 5759064 | Aug 2015 | JP |
| 5938052 | Jun 2016 | JP |
| 5950943 | Jul 2016 | JP |
| 6091657 | Feb 2017 | JP |
| WO 2004064442 | Jul 2004 | WO |
| WO 2006066149 | Jun 2006 | WO |
| WO 2009058067 | May 2009 | WO |
| WO 2009070179 | Jun 2009 | WO |
| WO 2009086759 | Jul 2009 | WO |
| WO 2010139360 | Dec 2010 | WO |
| WO 2011082035 | Jul 2011 | WO |
| WO 2011082090 | Jul 2011 | WO |
| WO 2011082895 | Jul 2011 | WO |
| WO 2011156274 | Dec 2011 | WO |
| WO 2012106710 | Aug 2012 | WO |
| WO 2012118959 | Sep 2012 | WO |
| WO 2012118963 | Sep 2012 | WO |
| WO 2012118967 | Sep 2012 | WO |
| WO 2012119147 | Sep 2012 | WO |
| WO 2012154674 | Nov 2012 | WO |
| WO 2014116464 | Jul 2014 | WO |
| Entry |
|---|
| Applicant Initiated Interview Summary for U.S. Appl. No. 14/826,289 (dated Jul. 27, 2017). |
| Non-Final Office Action for U.S. Appl. No. 14/928,660 (dated Jul. 21, 2017). |
| Non-Final Office Action for U.S. Appl. No. 15/582,591 (dated Jun. 30, 2017). |
| Final Office Action for U.S. Appl. No. 14/742,679 (dated Jun. 30, 2017). |
| Non-Final Office Action for U.S. Appl. No. 14/826,289 (dated May 1, 2017). |
| Commonly-assigned, co-pending U.S. Appl. No. 15/582,591 for “Methods, Systems, and Computer Readable Media for Providing Access Network Protocol Interworking and Authentication Proxying,” (Unpublished, filed Apr. 28, 2017). |
| Communication pursuant to Article 94(3) EPC for European Application No. 12 751 783.7 (dated Mar. 15, 2017). |
| Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/827,015 (dated Mar. 10, 2017). |
| Letter Regarding Decision to Grant for Chinese Application No. ZL201280018288.4 (dated Feb. 14, 2017). |
| Letter Regarding Decision to Grant for Chinese Application No. ZL201280013938.6 (dated Feb. 3, 2017). |
| Non-Final Office Action for U.S. Appl. No. 14/742,679 (dated Feb. 2, 2017). |
| Letter Regarding Notice of Grant for Japanese Patent Application No. 2015-553784 (dated Jan. 24, 2017). |
| Notice of Allowance and Fee(s) Due for U.S. Appl. No. 14/827,025 (dated Jan. 20, 2017). |
| Letter Regarding Decision to Grant for Chinese Patent Application No. ZL201280018298.8 (dated Jan. 10, 2017). |
| Extended European Search Report for European Patent Application No. 12741984.4 (dated Dec. 20, 2016). |
| Applicant-Initiated Interview Summary for U.S. Appl. No. 14/827,025 (dated Dec. 13, 2016). |
| Decision to grant a European patent pursuant to Article 97(1) EPC for European Patent Application No. 12751812.4 (dated Nov. 24, 2016). |
| Non-Final Office Action for U.S. Appl. No. 14/827,015 (dated Oct. 31, 2016). |
| Decision to grant a European patent pursuant to Article 97(1) EPC for European Patent Application No. 10841605.8 (dated Oct. 27, 2016). |
| Letter Regarding Decision to Grant a Chinese Patent for Chinese Patent Appication No. ZL201280019607.3 (dated Oct. 10, 2016). |
| Notification of the Second Office Action for Chinese Patent Application No. 201280013938.6 (dated Oct. 9, 2016). |
| Notification of the Second Office Action for Chinese Patent Application No. 201280018288.4 (dated Sep. 5, 2016). |
| Communication under Rule 71(3) EPC for European Patent Application No. 12 751 812.4 (dated Sep. 2, 2016). |
| Non-Final Office Action for U.S. Appl. No. 14/827,025 (dated Aug. 26, 2016). |
| Decision to grant a European patent pursuant to Article 97(1) EPC for European Patent Applicaton.No. 12751986.6 (dated Aug. 19, 2016). |
| Intent to Grant for European Patent Application No. 10841605.8 (dated Aug. 12, 2016). |
| Letter Regarding Office Action for Japanese Patent Application No. 2015-553784 (dated Jul. 19, 2016). |
| Letter Regarding Notice of Grant for Chinese Patent Application No. ZL201280018297.3 (dated Jul. 4, 2016). |
| Communication under Rule 71(3) EPC for European Application No. 12 751 986.6 (dated Jun. 8, 2016). |
| Letter Regarding Notice of grant for Japanese Patent Application No. 2013-552714 (dated May 31, 2016). |
| Decision to grant a European patent pursuant to Article 97(1) EPC for European Application No.12752952.7 (dated Apr. 29, 2016). |
| Official Notice of Grant for Japanese Patent Application No. 2013-556860 (dated Apr. 26, 2016). |
| Notification of the First Office Action for Chinese Patent Application No. 201280018298.8 (dated Mar. 3, 2016). |
| Communication pursuant to Article 94(3) EPC for European Patent Application No. 10841605.8 (dated Feb. 22, 2016). |
| Communication under Rule 71(3) EPC for European Patent Application No. 12752952.7 (dated Feb. 10, 2016). |
| Letter Regarding Notice of Grant for Japanese Patent Application No. 2013-556855 (dated Feb. 2, 2016). |
| Notification of the First Office Action for Chinese Application No. 201280019607.3 (dated Feb. 1, 2016). |
| Notification of the First Office Action for Chinese Application No. 201280013938.6 (dated Jan. 27, 2016). |
| Notification of the First Office Action for Chinese Application No. 201280018297.3 (dated Jan. 15, 2016). |
| Notification of the First Office Action for Chinese Application No. 201280018288.4 (dated Dec. 29, 2015). |
| Communication pursuant to Article 94(3) EPC for European Application No. 12 751 986.6 (dated Dec. 22, 2015). |
| Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/748,547 (dated Dec. 11, 2015). |
| Letter Regarding Office Action for Japanese Patent Application No. 2013-552714 (dated Dec. 8, 2015). |
| Letter Regarding Final Rejection for Japanese Patent Application No. 2013-556860 (dated Nov. 17, 2015). |
| Communication of European publication number and information on the application of Article 67(3) EPC for European Application No. 14702996.1 (dated Nov. 4, 2015). |
| Commonly-assigned, co-pending U.S. Appl. No. 14/929,283 for “Methods, Systems, and Computer Readable Media for Remote Access Dial in User Service (RADIUS) Proxy and Diameter Agent Address Resolution,” (Unpublished, filed Oct. 31, 2015). |
| Commonly-assigned, co-pending U.S. Appl. No. 14/928,660 for “Methods, Systems, and Computer Readable Media for Remote Authentication Dial in User Service (RADIUS) Message Loop Detection and Mitigation,” (Unpublished, filed Oct. 30, 2015). |
| Notice of Allowance and Fee(s) Due and Applicant-Initiated Interview Summary for U.S. Appl. No. 14/190,071 (dated Oct. 30, 2015). |
| Advisory Action for U.S. Appl. No. 13/748,547 (dated Oct. 16, 2015). |
| Supplemental Notice of Allowability & Response to Rule 312 Communication for U.S. Appl. No. 13/465,552 (dated Aug. 27, 2015). |
| Commonly-assigned, co-pending U.S. Appl. No. 14/826,289 for “Methods, Systems, and Computer Readable Media for Providing Access Network Session Correlation for Policy Control,” (Unpublished, filed Aug. 14, 2015). |
| Commonly-assigned, co-pending U.S. Appl. No. 14/827,015 for “Methods, Systems, and Computer Readable Media for Providing Access Network Protocol Interworking and Authentication Proxying,” (Unpublished, filed Aug. 14, 2015). |
| Commonly-assigned, co-pending U.S. Appl. No. 14/827,025 for “Methods, Systems, and Computer Readable Media for Providing Access Network Signaling Protocol Interworking for User Authentication,” (Unpublished, filed Aug. 14, 2015). |
| Final Office Action for U.S. Appl. No. 13/748,547 (dated Aug. 10, 2015). |
| Letter Regarding Publication of Patent for Japanese Patent Application No. 2014-509509 (dated Aug. 5, 2015). |
| Letter Regarding Publication of Patent for Japanese Patent Application No. 2013-556857 (dated Aug. 5, 2015). |
| Letter Regarding Office Action for Japanese Patent Application No. 2013-556860 (dated Jul. 21, 2015). |
| Non-Final Office Action for U.S. Appl. No. 14/190,071 (dated Jul. 8, 2015). |
| Letter Regarding Publication of Patent for Japanese Patent Application No. 2013-556675 (dated Jun. 10, 2015). |
| Letter Regarding Notice of Grant for Japanese Patent Application No. 2014-509509 (dated Jun. 2, 2015). |
| Letter Regarding Notice of Grant for Japanese Patent Application No. 2013-556857 (dated May 26, 2015). |
| Notice of Allowance and Fee(s) Due and Examiner-Initiated Interview Summary for U.S. Appl. No. 13/465,552 (dated May 20, 2015). |
| Decision to Grant for Chinese Patent Application No. 201080065174.6 (dated Apr. 16, 2015). |
| Second Office Action for Japanese Patent Application No. 2013-556857 (dated Apr. 14, 2015). |
| Letter Regarding Notice of Grant for Japanese Patent Application No. 2013-556675 (dated Mar. 31, 2015). |
| Letter Regarding Office Action for Japanese Patent Application No. 2013-556855 (dated Feb. 24, 2015). |
| Notice of Allowance and Fee(s) Due and Examiner-Initiated Interview Summary for U.S. Appl. No. 13/192,410 (dated Feb. 12, 2015). |
| Applicant-Initiated Interview Summary for U.S. Appl. No. 13/465,552 (dated Feb. 9, 2015). |
| Notice of Panel Decision from Pre-Appeal Brief Review for U.S. Appl. No.13/192,410 (dated Feb. 4, 2015). |
| Extended European Search Report for European Patent Application No. 12751986.6 (dated Jan. 20, 2015). |
| Non-Final Office Action for U.S. Appl. No. 13/748,547 (dated Jan. 5, 2015). |
| Supplemental Notice of Allowability for U.S. Appl. No. 13/366,928 (dated Dec. 26, 2014). |
| Non-Final Office Action for U.S. Appl. No. 13/465,552 (dated Oct. 17, 2014). |
| Letter Regarding Office Action for Japanese Patent Application No. 2013-556675 (dated Sep. 30, 2014). |
| Final Office Action for U.S. Appl. No. 13/192,410 (dated Sep. 25, 2014). |
| First Office Action for Japanese Application No. 2013-556857 (dated Sep. 24, 2014). |
| Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/366,928 (dated Sep. 3, 2014). |
| Extended European Search Report for European Application No. 12752952.7 (dated Aug. 27, 2014). |
| Notification of the First Office Action for Chinese Application No. 201080065174.6 (dated Aug. 13, 2014). |
| Extended European Search Report for European Application No. 12751783.7 (dated Jul. 22, 2014). |
| Extended European Search Report for European Application No. 12751812.4 (dated Jul. 16, 2014). |
| Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/409,893 (dated Jul. 10, 2014). |
| Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/409,914 (dated Apr. 25, 2014). |
| Supplemental Notice of Allowability for U.S. Appl. No. 13/409,949 (dated Apr. 24, 2014). |
| Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Patent Application No. PCT/US2014/011548 (dated Mar. 28, 2014). |
| Non-Final Office Action for U.S. Appl. No. 13/366,928 (dated Mar. 21, 2014). |
| Non-Final Office Action for U.S. Appl. No. 13/192,410 (dated Feb. 20, 2014). |
| Communication of European publication number and information on the application of Article 67(3) EPC for European Application No. 12781800.3 (dated Feb. 12, 2014). |
| Advisory Action Before the Filing of an Appeal Brief for U.S. Appl. No. 13/366,928 (dated Feb. 10, 2014). |
| Extended European Search Report for European Application No. 10841605.8 (dated Feb. 3, 2014). |
| Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/409,949 (dated Jan. 14, 2014). |
| Final Office Action for U.S. Appl. No. 13/409,914 (dated Dec. 30, 2013). |
| Notification of Publication and Entry into Examination Procedure for Chinese Patent Application No. 201280013938.6 (dated Dec. 18, 2013). |
| Communication of European publication number and information on the application of Article 67(3) EPC for European Application No. 12751986.6 (dated Dec. 11, 2013). |
| Communication of European publication number and information on the application of Article 67(3) EPC for European Application No. 12751783.7 (dated Dec. 11, 2013). |
| Communication of European publication number and information on the application of Article 67(3) EPC for European Application No. 12751812.4 (dated Dec. 11, 2013). |
| Communication of European publication number and information on the application of Article 67(3) EPC for European Application No. 12741984.4 (dated Nov. 13, 2013). |
| Declaration of Mark Kanode for U.S. Appl. No. 13/409,893 (dated Nov. 1, 2013). |
| Advisory Action for U.S. Appl. No. 13/192,410 (dated Oct. 24, 2013). |
| Final Office Action for U.S. Appl. No. 13/366,928 (dated Oct. 23, 2013). |
| Applicant-Initiated Interview Summary for U.S. Appl. No. 13/192,410 (dated Oct.18, 2013). |
| Final Office Action for U.S. Appl. No. 13/409,949 (dated Sep. 19, 2013). |
| Advisory Action Before the Filing of an Appeal Brief for U.S. Appl. No. 13/409,893 (dated Sep. 13, 2013). |
| Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/974,869 (dated Aug. 19, 2013). |
| Final Office Action for U.S. Appl. No. 13/192,410 (dated Aug. 5, 2013). |
| Final Office Action for U.S. Appl. No. 13/409,893 (dated Jul. 1, 2013). |
| Non-Final Office Action for U.S. Appl. No. 13/409,914 (dated Jun. 7, 2013). |
| Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/412,352 (dated May 28, 2013). |
| Non-Final Office Action for U.S. Appl. No. 13/366,928 (dated Mar. 26, 2013). |
| Non-Final Office Action for U.S. Appl. No. 13/409,949 (dated Feb. 15, 2013). |
| Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/366,928 (dated Jan. 7, 2013). |
| Non-Final Office Action for U.S. Appl. No. 13/192,410 (dated Dec. 20, 2012). |
| Non-Final Office Action for U.S. Appl. No. 13/409,893 (dated Dec. 13, 2012). |
| Non-Final Official Action for U.S. Appl. No. 12/409,914 (dated Nov. 6, 2012). |
| Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Patent Application No. PCT/US2012/036784 (dated Nov. 1, 2012). |
| Non-Final Official Action for U.S. Appl. No. 13/412,352 (dated Oct. 26, 2012). |
| Communication of European publication number and information on the application of Article 67(3) EPC for European Patent Application No. 10841605.8 (dated Oct. 17, 2012). |
| Fajardo et al., “Diameter Base Protocol,” RFC 6733, pp. 1-152 (Oct. 2012). |
| Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Patent Application No. PCT/US2012/027281 (dated Jun. 15, 2012). |
| Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Patent Application No. PCT/US2012/027263 (dated Jun. 14, 2012). |
| Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Patent Application No. PCT/US2012/027736 (dated Jun. 12, 2012). |
| Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Patent Application No. PCT/US2012/023971 (dated Jun. 11, 2012). |
| Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Patent Application No. PCT/US2012/027269 (dated Jun. 11, 2012). |
| “Multi-Protocol Routing Agent User's Guide,” 910-6404-001 Revision A, Policy Management, Tekelec, pp. 1-70 (Jun. 2012). |
| Decision to grant a European patent pursuant to Article 97(1) EPC for European Application No. 05854512.0 (dated Mar. 15, 2012). |
| Communication under Rule 71(3) EPC for European application No. 05854512.0 (dated Nov. 11, 2011). |
| Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Patent Application No. PCT/US2010/061934 (dated Oct. 25, 2011). |
| Notice of Allowance and Fee(s) Due for U.S. Appl. No. 11/303,757 (dated May 11, 2011). |
| “3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Evolved Packet System (EPS); Mobility Management Entity (MME) and Serving GPRS Support Node (SGSN) related interfaces based on Diameter protocol (Release 10),” 3GPP TS 29.272, V10.2.0, pp. 1-95 (Mar. 2011). |
| 3GPP,“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Policy and Charging Control Architecture (Release 11),” 3GPP TS 23.203 V11.0.1, pp. 1-137 (Jan. 2011). |
| “Traffix Signaling Delivery Controller—One Platform to Deliver the Wonders of 4G,” Traffix Systems, The Diameter Control Plane Experts, pp. 1-7 (2011). |
| “Traffix Signaling Delivery Controller (SDC),” Traffix Systems, The Diameter Control Plane Experts, pp. 1-5 (2011). |
| “Traffix Signaling Delivery Controller (SDC) Diameter Gateway—Use Case Development Scenarios,” Traffix Systems, The Diameter Control Plane Experts, www.traffixsystems.com pp. 1-4 (2011). |
| “Traffix Signaling Delivery Controller Diameter Load Balancer: Scalability for your Control Plane,” Traffix Systems, The Diameter Control Plane Experts, www.traffixsystems.com, pp. 1-3 (2011). |
| Official Action for U.S. Appl. No. 11/303,757 (dated Dec. 22, 2010). |
| 3GPP, “3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Sh Interface based on the Diameter protocol; Protocol details (Release 8),” 3GPP TS 29.329, V8.8.0, pp. 1-20 (Dec. 2010). |
| Communication pursuant to Article 94(3) EPC for European Application No. 05 854 512.0 (dated Oct. 12, 2010). |
| “Digital cellular tellecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE; IP Multimedia Subsystem (IMS); Stage 2 (3GPP TS 23.228 version 9.4.0 Release 9),” ETSI TS 123 228, V9.4.0, pp. 1-130 (Oct. 2010). |
| “Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE; End-to-end Quality of Service (QoS) concept and architecture (3GPP TS 23.207 version 9.0.0 Release 9),” ETSI TS 123 207, V9.0.0, pp. 1-40 (Oct. 2010). |
| “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Charging management; Packet Switched (PS) domain charging (Release 9),” 3GPP TS 32.251, V9.4.0, pp. 1-76 (Oct. 2010). |
| “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Charging management; Diameter charging applications (Release 9),” 3GPP TS 32.299, V9.4.0, pp. 1-148 (Jun. 2010). |
| “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Charging management; Charging architecture and principles (Release 9),” 3GPP TS 32.240, V9.1.0, pp. 1-44 (Jun. 2010). |
| Znaty, “DIAMETER, GPRS, (LTE + ePC = EPS), IMS, PCC and SDM,” EFORT, pp. 1-229 (Part 1 of 2) (May 2010). |
| Znaty, “Diameter, GPRS, (LTE + ePC = EPS), IMS, PCC and SDM,” EFORT pp. 230-461 (Part 2 of 2) (May 2010). |
| 3GPP, “3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Policy and Charging Control signalling flows and Quality of Service (QoS) parameter mapping (Release 9),” 3rd Generation Partnership Project, TS 29.213 V9.2.0, pp. 1-129 (Mar. 2010). |
| “3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Policy and Charging Control over Gx reference point (Release 9),” 3GPP TS 29.212 V9.2.0, pp. 1-11 (Mar. 2010). |
| Communication pursuant to Article 94(3) EPC for European Application No. 05854512.0 (dated Feb. 8, 2010). |
| Final Official Action for U.S. Appl. No. 11/303,757 (dated Dec. 9, 2009). |
| “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Policy and charging control architecture (Release 9),” 3GPP TS 23.203, V9.3.0, pp. 1-123 (Dec. 2009). |
| Supplementary European Search Report for European Application No. 05854512.0 (dated Nov. 17, 2009). |
| Official Action for U.S. Appl. No. 11/303,757 (dated May 28, 2009). |
| “Cisco Content Services Gateway—2nd Generation Release 3.5 Installation and Configuration Guide,” Chapter 10: Configuring Gx Support, pp. 10-1-10-10, Chapter 11: Configuring Mobile PCC Support, pp. 11-1-11-8, URL: http://www.cisco.com/en/US/docs/wireless/csg2/3.5/installation/guide/csg3-51.pdf (Jun. 5, 2009). |
| Gundavelli et al., “Network Mobility (NEMO) Management Information Base,” RFC 5488, pp. 1-44 (Apr. 2009). |
| 3GPP, “3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; IP Multimedia (IM) Subsystem Sh interface; Signalling flows and message contents (Release 8),” 3GPP TS 29.328 V8.4.0, pp. 1-42 (Mar. 2009). |
| Final Official Action for U.S. Appl. No. 11/303,757 (dated Oct. 6, 2008). |
| Official Action for U.S. Appl. No. 11/303,757 (dated May 7, 2008). |
| Notification of Transmittal of the International Search Report and the Written Opinion corresponding to International Application No. PCT/US05/45813 (dated Mar. 24, 2008). |
| Official Action for U.S. Appl. No. 11/303,757 (dated Feb. 21, 2008). |
| Chiba et al., “Dynamic Authorization Extensions to Remote Authentication Dial in User Service (RADIUS),” RFC 5176, pp. 1-32 (Jan. 2008). |
| Restriction Requirment for U.S. Appl. No. 11/303,757 (dated Oct. 4, 2007). |
| “Tekelec Announces TekCore IMS Core Platform,” pp. 1-2 (Jun. 5, 2006). |
| “Operator Guidebook to IMS and New Generation Networks and Services,” www.morianagroup.com, Second Edition, 480 pgs. (Feb. 2006). |
| Liu et al., “IBM Technical Library, Introduction to Diameter,” pp. 1-9, http://www.ibm.com/developerworks/wireless/library/wi-diameter (Jan. 24, 2006). |
| Arkko et al., “Extensible Authentication Protocol Method for 3rd Generation Authentication and Key Agreement (EAP-AKA),” RFC 4187, pp. 1-79 (Jan. 2006). |
| Haverinen et al., “Extensible Authentication Protocol Method for Global System for Mobile Communications (GSM) Subscriber Identity Modules (EAP-SIM),” RFC 4186, pp. 1-80 (Jan. 2006). |
| Rouse, “Platform,” http://searchservervirtualization.techtarget.com.definition/platform, pp. 1-2, (2006-2009). |
| Camarillo et al., “The 3G IP Multimedia Subsystem (IMS), Merging the Internet and the Cellular Worlds,” Second Edition, pp. xvii-427 (2006). |
| Hakala et al., “Diameter Credit-Control Application,” RFC 4006, pp. 1-114 (Aug. 2005). |
| Calhoun et al., “Diameter Network Access Server Application,” RFC 4005, pp. 1-85 (Aug. 2005). |
| Calhoun et al., “Diameter Mobile IPv4 Application,” RFC 4004, pp. 1-53 (Aug. 2005). |
| “Operator Guidebook to IMS and New Generation Networks and Services,” www.morianagroup.com, First Edition, pp. 1-450 (Aug. 2005) (Part 1 of 2). |
| “Operator Guidebook to IMS and New Generation Networks and Services,” www.morianagroup.com, First Edition, pp. 451-934 (Aug. 2005) (Part 2 of 2). |
| Gonzalo et al., “The 3G IP Multimedia Subsystem,” Chapter 3: General Principles of the IMS Architecture, Chapter 5: Session Control in the IMS, pp. 29-39, 91-105 (Aug. 20, 2004). |
| “IP Multimedia Subsystem IMS Over and Applications,” 3G Americas, pp. 1-17 (Jul. 2004). |
| Aboba et al., “Extensible Authentication Protocol (EAP),” RFC 3748, pp. 1-67 (Jun. 2004). |
| “3rd Generation Partnership Project; technical Specification Group Core Network; IP Multimedia (IM) Session Handling; IM Call Model; Stage 2 (Release 6),” 3GPP TS 23.218, V6.1.0, pp. 1-56 (Mar. 2004). |
| “IMS Security Framework,” 3GPP2 S.R0086-0, Version 1.0, pp. 1-39 (Dec. 11, 2003). |
| “IP Multimedia Subsystem—Accounting Information Flows and Protocol,” 3GPP2 X.50013-008-0, Version 1.0, pp. 1-42 (Dec. 2003). |
| “IP Multimedia Subsystem—Charging Architecture,” 3GPP2 X.S0013-007-0, Version 1.0, pp. 1-16 (Dec. 2003). |
| “All-IP Core Network Multimedia Domain,” 3rd Generation Partnerships Project 2 (3GPP2), 3GPP2 X.S0013-000-0, Version 1.0, pp. i-ii and 1-14 (Dec. 2003). |
| “3rd Generation Partnership Project; Technical Specification Group Core Network; Cx and Dx Interfaces Based on the Diameter Protocol; Protocol Details (Release 5),” 3GPP TS 29.229, V5.6.0, pp. 1-23 (Dec. 2003). |
| Calhoun et al., “Diameter Base Protocol,” RFC 3588, pp. 1-147 (Sep. 2003). |
| Aboba et al., “RADIUS (Remote Authentication Dial in User Service) Support for Extensible Authentication Protocol (EAP),” RFC 3579, pp. 1-46 (Sep. 2003). |
| “Digital Cellular Telecommunications System (Phase 2+); Universal Mobile Telecommunications System (UMTS); IP Multimedia Subsystem (IMS); Stage 2 (Release 5),” 3GPP TS 23.228, V5.7.0, pp. 1-130 (Dec. 2002). |
| Olson et al., “Support for IPv6 in Session Description Protocol (SDP),” RFC 3266, pp. 1-5 (Jun. 2002). |
| Rosenberg et al., “SIP: Session Initiation Protocol,” RFC 3261, pp. 1-252 (Jun. 2002). |
| “ITP Operations Manual,” Cisco Systems, Inc. pp. 1-320 (May 1, 2002). |
| Howard, “Sipping IETF51 3GPP Security and Authentication,” http://www3.ietf.org/proceedings/01aug/slides/sipping-7/index.htm, 24 pgs. (Dowloaded from Internet on Dec. 16, 2005) (Sep. 13, 2001). |
| Calhoun et al., “Diameter Base Protocol,”draft-ietf-aaa-diameter-07, Section 6.3, p. 68 (Jul. 2001). |
| Narten et al., “Privacy Extensions for Stateless Address Autoconfiguration in IPv6,” RFC 3041, pp. 1-16 (Jan. 2001). |
| “Configuring ITP Optional Features,” IP Transfer Point, Cisco Systems, Inc., pp. 29-76 (2001). |
| “Cisco IP Transfer Point Q & A,” Cisco Systems, Inc., pp. 1-15 (1992-2001). |
| Faltstrom, “E.164 Number and DNS,” RFC 2916, pp. 1-10 (Sep. 2000). |
| Rigney et al., “RADIUS Accounting,” RFC 2866, pp. 1-26 (Jun. 2000). |
| Rigney et al., “Remote Authentication Dial in User Service (RADIUS),” RFC 2865, pp. 1-70 (Jun. 2000). |
| Vaha-Sipila, “URLs for Telephone Calls,” RFC 2806, pp. 1-20 (Apr. 2000). |
| Aboba et al., “The Network Access Identifier,” RFC 2486, pp. 1-8 (Jan. 1999). |
| Calhoun et al., “Diameter Proxy Server Extensions,” IETF Working Draft, draft-calhoun-diameter-proxy-01.txt, pp. 1-21 (Aug. 1, 1998). |
| Berners-Lee et al., “Uniform Resource Identifiers (URI): Generic Syntax,” RFC 2396, pp. 1-38 (Aug. 1998). |
| Tekelec, “Eagle® Feature Guide,” P/N 910-1225-01, pp. 1-208 (Jan. 1998). |
| Jalava, “Service Routing in 3GPP IP Multimedia Subsystem,” Nokia, pp. 1-16 (Publication Date Unknown). |
| Advisory Action Before the Filing of an Appeal Brief, Examiner-Initiated Interview Summary, and AFCP 2.0 Decision for U.S. Appl. No. 14/742,679 (dated Sep. 22, 2017). |
| Non-Final Office Action for U.S. Appl. No. 14/929,283 (dated Aug. 30, 2017). |
| Number | Date | Country | |
|---|---|---|---|
| 20170238178 A1 | Aug 2017 | US |
| Number | Date | Country | |
|---|---|---|---|
| Parent | 14827025 | Aug 2015 | US |
| Child | 15582503 | US |