The subject matter described herein relates to network policy. More specifically, the subject matter relates to methods, systems, and computer readable media for providing user receptivity driven policy in a communications network.
A policy and charging rules function (PCRF), or policy engine, at its most basic level, is a server that deploys a set of operator-created business rules in a communications network. These rules can be used to define how broadband network resources should be allocated to subscribers and applications and under what conditions. The PCRF is a policy decision point that may be centrally located in the network and communicates with access edge devices (e.g., policy enforcement points), applications, and operational support systems/business support systems (OSS/BSS) platforms to manage subscriber and network information according to the established rules. Policy rules encompass the business and technological rules that govern which network services a subscriber can access, at what bandwidth level, when, and for how long. Generally speaking, the PCRF queries, coordinates, and adjusts all of the network resources needed to provide the required services to individual, authorized subscribers. As such, the PCRF operates solely in the control plane and does not operate in the data plane. More specifically, the PCRF identifies appropriate policy rules by querying a subscription profile repository (SPR) and enforces them by sending them to, for example, a policy and charging enforcement function (PCEF).
Currently, network users have little or no control over the type of content (e.g., advertising, political solicitations, etc.) that they are willing to receive or the network policies that are applied to their communications. Instead, these rules may be determined by the network operator yet it may be desirable to allow users to have some control over the network policies that are applied to them.
Accordingly, in light of these difficulties, a need exists for improved methods, systems, and computer readable media for providing user receptivity driven policy in a communications network.
Methods, systems, and computer readable media for providing user receptivity driven policy in a communications network are disclosed. One method includes storing subscriber preference information indicating a willingness of a subscriber to receive a first type of content as well as policy and charging enhancement information associated with the subscriber preference information. Content is received from a content provider. Based on the subscriber preference information, it is determined whether the subscriber is willing to receive the content. In response to determining that the subscriber is willing to receive the content, the content is communicated to the subscriber and a policy and charging rules function (PCRF) is communicated with for temporarily enhancing a network or charging policy of the subscriber based on the policy charging enhancement information.
Another exemplary method according to the subject matter described herein includes storing subscriber preference information indicating an attribute of willingness of a subscriber to receive a type of content. The method further includes generating a policy and charging rule based at least in part on the attribute of willingness of the subscriber to receive the content type. The method further includes communicating the policy and charging rule to a policy and charging enforcement function (PCEF).
Yet another method according to the subject matter described herein includes receiving media content of a first type for distribution to subscribers. The method further includes determining whether the media content should be distributed to a subscriber by accessing subscriber receptivity policy information indicating one or more attributes of willingness of a subscriber to receive media content of the first type. The method further includes in response to determining that the subscriber is willing to receive media content of the first type, distributing the media content to the subscriber.
A system for providing receptivity service in a communications network, the system includes a subscriber receptivity rules database for storing subscriber preference information indicating a willingness of a subscriber to receive a first type of content and for storing policy and charging enhancement information associated with the subscriber preference information. A receptivity rules server is configured to a receptivity rules server for receiving content of the first type from a content provider and determining, based on the subscriber preference information, if the subscriber is willing to receive the content. In response to determining that the subscriber is willing to receive the content, the receptivity rules server is configured to communicate the content to the subscriber and communicate with a policy and charging rules function (PCRF) for temporarily enhancing a network or charging policy of the subscriber based on the policy and charging enhancement information.
Another system according to the subject matter described herein includes a subscriber receptivity rules database for storing subscriber preference information indicating an attribute of willingness of a subscriber to receive a first type of content. The system further includes a policy and charging rules function (PCRF) for generating a policy and charging rule based at least in part on the attribute of willingness of the subscriber to receive the media content of the first type and for communicating the policy and charging rule to a policy and charging enforcement function (PCEF).
According to yet another aspect, the subject matter described herein includes a system for distributing media content to a subscriber in a communications network based on subscriber receptivity policy. The system includes a receptivity rules database for storing subscriber receptivity policy information indicating one or more attributes of willingness of a subscriber to receive media content of a first type. The system further includes a receptivity service content gateway for receiving media content of the first type for distribution to subscribers, for accessing the database to determine whether a subscriber is willing to receive the content of the first type, and for distributing the media content to the subscriber in response to determining that the subscriber is willing to receive the media content of the first type.
The subject matter described herein can be implemented in software in combination with hardware and/or firmware. For example, the subject matter described herein can be implemented in software executed by a processor. In one exemplary implementation, the subject matter described herein can be implemented using a non-transitory computer readable medium having stored thereon executable instructions that when executed by the processor of a computer control the processor to perform steps. Exemplary non-transitory computer readable media suitable for implementing the subject matter described herein include chip memory devices or disk memory devices accessible by a processor, programmable logic devices, and application specific integrated circuits. In addition, a computer readable medium that implements the subject matter described herein may be located on a single computing platform or may be distributed across plural computing platforms.
The subject matter described herein will now be explained with reference to the accompanying drawings of which:
The subject matter disclosed herein includes systems and methods for providing user receptivity driven policy in a communications network. According to one aspect, a subscriber may specify a willingness or receptiveness to receive certain types of content (e.g., advertisements, solicitations, etc.) In response to the subscriber agreeing to receive certain types of content, a network operator is able to reward the subscriber with enhanced policy and charging rules/service flow quality of service (QoS).
In one, embodiment, a receptivity rules server may be configured to store subscriber preferences/settings/rules regarding the willingness of the subscriber to receive various types of content (e.g., advertising content, political solicitation advertising content, pollster solicitation content, charitable donation solicitation content). Receptivity rules may include any number of qualifying attributes such as: type of content (e.g., restaurant ads, hotel ads, movie ads), content media type (e.g., video, picture, text, audio), content delivery mode (e.g., via receptivity client connection, via text message service, via multimedia message service, via voice service, via instant message service, via email service), time of day, day of week, roaming status (e.g., only when in-network, only when roaming out of network, only when roaming in a specific roaming service provider), geo-location of subscriber (e.g., only when subscriber is within a specific geo-location coordinate range or proximity, only when subscriber is within a specific city, state, zip code, area code, only when subscriber is near a specific landmark (e.g., airport, shopping mall), subscriber presence status (e.g., only when presence status is “available”).
A receptivity service content gateway (RCG) server may be configured to receive “content” (e.g., advertisements, solicitations) from various third party entities, businesses, or organizations. This content may be of various media types such as video, audio, text, and pictures. In one embodiment, the RCG receives and stores this content and in other embodiments the RCG may directly deliver the content without performing any caching. By storing received content, the RCG can receive content from a content provider at a time when the subscriber is either not in communication with the RCG server or not receptive to receiving the provided content. At some point later in time (e.g., when the subscriber logs in/connects to the RCG, or when the subscriber changes his/her receptivity preferences in the RRS) the RCG can provide that content to Sub1. For example, the RCG can be configured to maintain content provided by a content provider for 30 days and distribute this content to all subscribers with the appropriate receptivity settings for those 30 days. At the end of 30 days, the content is purged from the content storage DB at the RCG.
The content may be classified by either the content provider or the RCG according to a number of attributes including, but not limited to, content type (e.g., restaurant ad, hotel ad, movie ad, etc.), media type, geo-location relevance (e.g., only relevant to receptive subscribers at or near GPS coordinates X,Y, only relevant to receptive subscribers near the airport, etc.).
In one example, receptivity client software executed on a subscriber's handset may connect to the RCG and the RCG may identify receptivity preference rules associated with the subscriber and select and distribute appropriate content to the receptivity client software for display to the subscriber. The subscriber may also connect to the RCG server from a PC or laptop-based receptivity client and receive the same content. In yet another embodiment, a web browser (rather than the receptivity client) on the mobile phone or laptop/PC may be used to connect to the RCG and receive appropriate content.
Advantages of the subject matter described herein include the ability for a subscriber to increase his communications experience through enhanced policy and charging rules and QoS, which may include higher bandwidth or lower latency communications, lower fees, higher data caps, etc.
Receptivity rules stored in SRR database 102 may be provisioned by a subscriber to the receptivity service or by a third party on behalf of the subscriber. Provisioning may take place via a receptivity service client software application on a mobile or fixed communication terminal (e.g., smart phone, laptop or PC), or via a web interface. In one embodiment, a receptivity service client (not shown) may be installed on subscriber's mobile phone 104 which is adapted to communicate receptivity rules maintained by RRS 100.
Table 202 illustrates exemplary network policy enhancement rules that may be associated with Subscriber 1 in SRR database 102. In one embodiment, a network operator may provision a policy enhancement profile for Subscriber 1 in response to the willingness of Subscriber 1 to receive certain types of content. In the example shown, as a result of the receptivity preference rules specified by Subscriber 1 in table 200, the network operator may enhance Subscriber 1's network QoS policy by granting Subscriber 1 an additional 25% guaranteed download bitrate capacity for an unlimited time.
Referring to the message flow in
In step 316, RRS 100 signals PCRF 302 with policy and charging enhancement information for Sub1 using a policy update message that includes receptivity driven policy enhancement data for Sub1. RRS 100 may be notified of the connection establishment of Sub1 (not shown for simplicity). PCEF 300, PCRF 302, BBERF (not shown), mobility management entity (MME) (not shown), or other network entity may provide this notification if required.
In response to receiving the policy and charging rule enhancement information for Sub1 from RRS 100, in step 318, PCRF 302 may generate one or more policy control and charging (PCC) rules and install the rule(s) on PCEF 300 via a re-authorization request (RAR) message. Re-authorization answer acknowledgement message 320 and policy update acknowledgement message 322 may be sent to PCRF 302 and RRS 100, respectively. In step 324, PCRF 302 (and/or RRS 100) may generate an accounting record indicating the policy and charging rule enhancement event.
Referring to the message flow illustrated in
RCG 500 may be configured to receive “content” (e.g., advertisements, solicitations, etc.) from various third party entities such as businesses or other organizations. As mentioned above, this content may include media types such as video, audio, text, and pictures. In one embodiment, RCG 500 receives and stores this content. The content may be classified by either the content provider or RCG 500 according to a number of attributes including, but not limited to, content type (e.g., restaurant ad, hotel ad, movie ad, etc.), media type, geo-location relevance (e.g., only relevant to receptive subscribers at or near GPS coordinates X,Y, only relevant to receptive subscribers near the airport, etc.).
In this example, when receptivity client software (not shown) located on Sub1's handset 104 connects to RCG 500, RCG 500 identifies receptivity preference rules associated with Sub1 and selects and distributes the appropriate content to receptivity client software for display to the Sub1. It may be appreciated that in addition to using a mobile phone, Sub1 could also connect to RCG 500 server from a PC or laptop-based receptivity client and receive the same content via type of connection. In an alternate embodiment, a web browser on mobile phone or PC 104 could be used to connect to RCG 500 and receive appropriate content.
In the exemplary scenario shown, content may be received by RCG 500 from multiple content providers. Specifically, RCG 500 may receive restaurant advertising content from content provider X in content message 506, hotel advertising content from content provider Y in content message 508, and movie advertising content from content provider Z in content message 510. In step, 512, RCG 500 may then apply the previously provisioned receptivity preference rules stored in SRR database 102B and send only content of the type(s) that the subscriber has indicated they are willing to receive. In step 514, a connection is established between mobile client 104 and RCG 500. Finally, in this example it is assumed that Sub1 has indicated that they are willing to receive hotel and restaurant ad content but not movie ad content. As such, in step 516, RCG 500 only sends hotel ad content from provider Y and restaurant ad content from provider X to client 104.
RCG 500 may receive content (e.g., advertisements, solicitations, etc.) from various third party entities, businesses, and organizations. In this embodiment, RCG 500 receives and immediately distributes this content to all “connected” subscribers that have previously indicated receptiveness to such content (i.e., subscribers that have the appropriate receptivity rules specified). The content may be classified by either the content provider or RCG 500 according to a number of attributes including, but not limited to, content type (e.g., restaurant ad, hotel ad, movie ad, etc.), media type, geo-location relevance (e.g., only relevant to receptive subscribers at or near GPS coordinates <X,Y> only relevant to receptive subscribers near the airport, etc.).
In this example, if the receptivity client software (not shown) on Sub1's handset 104 is connected to RCG 500 server at the time that the content is received at RCG 500 from the content providers, the content may be distributed by RCG 500 to subscribers whose receptivity preference rules indicate a willingness to receive those types of content.
Thus, in the exemplary scenario shown, content may be received by RCG 500 from multiple content providers. Specifically, RCG 500 may receive restaurant advertising content from content provider X in content message 506, hotel advertising content from content provider Y in content message 508, and movie advertising content from content provider Z in content message 510. In step, 512, RCG 500 may then apply the previously provisioned receptivity preference rules stored in SRR database 102B and send only content of the type(s) that the subscriber has indicated they are willing to receive. At step 514, a connection is established between mobile client 104 and RCG 500. Finally, in this example it is assumed that Sub1 has indicated that they are willing to receive hotel and restaurant ad content but not movie ad content. As such, at step 516, RCG 500 only sends hotel ad content from provider Y and restaurant ad content from provider X to client 104.
For example, in step 700, RRS/RCG 504 may signal PCRF 302 requesting that PCRF 302 trigger PCEF 300 to establish a secondary PDP context/dedicated bearer connection between RRS/RCG 504 and receptivity service client software (not shown) associated with Sub1104. In step 702, PCRF 302 may send an RAR message to PCEF 300 for installing updated PCC rules for Sub1 and initiating a new context to RCG 504 for APN_X. In step 704, PCEF 300 may signal a BBERF (not shown) to establish a secondary PDP context or dedicated bearer connection between Sub1 and RCG 504. In step 706, PCEF 300 may return a RAA message for Sub1 to PCRF 302 and, in step 708, PCRF 302 may send a policy update acknowledgement message for Sub1 to RCG 504. Additionally, PCRF 302 (and/or RRS or SPR/HSS) may be configured to generate an accounting record indicating the temporary enhancement of network policy (aka rule enhancement event).
In step 802, policy and charging enhancement information associated with the subscriber preference information is stored. The policy and charging enhancement information may include one or more network parameters, attributes, or policies that may be adjusted, for example, by applying one or more PCC rules using a PCRF and PCEF. The policy and charging enhancement information may also include a maximum duration for the temporary network enhancement event. For example, exemplary policy and charging enhancement information 202 for Sub1 may include an increase in a guaranteed download bitrate of 25%.
In step 804, content of the first type is received from a content provider. For example, an image-based advertisement for a restaurant may be received by RCG 500 from content provider X 506.
In step 806, it is determined, based on the subscriber preference information, whether the subscriber is willing to receive the content. For example, RRS 100 and/or RCG 500 may perform a lookup in SRR database 102 based on the target subscriber's identifier and retrieve subscriber preference information indicating whether the subscriber is willingness to receive the restaurant-related advertising content.
In step 808, if the subscriber is willing to receive the content, the content is communicated to the subscriber. As mentioned above, if other criteria are also satisfied (i.e., between M-F and 1-5 pm), then Sub1 is willing to receive the content. Therefore, the content may be delivered by any suitable means to the subscriber's device. This may be a mobile phone, PC, laptop, etc. and may use different protocols or formats depending on the type of content to be delivered.
In step 810, if the subscriber is willing to receive the content, a PCRF is communicated with in order to temporarily enhance a network policy associated with the user based on the policy and charging enhancement information. For example, temporarily enhancing one or more attributes of a network policy may include increasing one of: a guaranteed download bitrate, a maximum download bitrate, a permitted service flow, a permitted quality of service (QoS) class, a permitted access point name (APN), a permitted destination IP address, a permitted destination port number, or a download quota. Temporarily enhancing a charging rule may include reducing the price per minute for calls, per megabyte downloaded for data, or per SMS message. In the scenario described above, Sub1 may receive a 25% increase in his guaranteed download bit rate. In one embodiment, communicating with PCRF 302 may include communicating at least some of the policy and charging enhancement information to PCRF 302. For example, policy and charging rule information for Sub1 may be communicated to PCRF 302 using an Sp interface answer message, though other suitable message types may be used without departing from the scope of the subject matter described herein.
It will be understood that various details of the subject matter described herein may be changed without departing from the scope of the subject matter described herein. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation, as the subject matter described herein is defined by the claims as set forth hereinafter.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/393,853 filed Oct. 15, 2010; the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3917915 | Karras | Nov 1975 | A |
4162377 | Mearns | Jul 1979 | A |
4191860 | Weber | Mar 1980 | A |
4310727 | Lawser | Jan 1982 | A |
4313035 | Jordan et al. | Jan 1982 | A |
4385206 | Bradshaw et al. | May 1983 | A |
4754479 | Bicknell et al. | Jun 1988 | A |
4756020 | Fodale | Jul 1988 | A |
4769834 | Billinger et al. | Sep 1988 | A |
4788718 | McNabb et al. | Nov 1988 | A |
4897835 | Gaskill et al. | Jan 1990 | A |
4897870 | Golden | Jan 1990 | A |
4959849 | Bhusri | Sep 1990 | A |
4972461 | Brown et al. | Nov 1990 | A |
5008929 | Olsen et al. | Apr 1991 | A |
5150357 | Hopner et al. | Sep 1992 | A |
5291481 | Doshi et al. | Mar 1994 | A |
5315580 | Phaal | May 1994 | A |
5341608 | Mains, Jr. | Aug 1994 | A |
5402474 | Miller et al. | Mar 1995 | A |
5426688 | Anand | Jun 1995 | A |
5430709 | Galloway | Jul 1995 | A |
5438570 | Karras et al. | Aug 1995 | A |
5457692 | Ishinabe et al. | Oct 1995 | A |
5457729 | Hamann et al. | Oct 1995 | A |
5473596 | Garafola et al. | Dec 1995 | A |
5475732 | Pester, III | Dec 1995 | A |
5506893 | Buscher et al. | Apr 1996 | A |
5521902 | Ferguson | May 1996 | A |
5539804 | Hong et al. | Jul 1996 | A |
5546398 | Tucker et al. | Aug 1996 | A |
5550914 | Clarke et al. | Aug 1996 | A |
5572579 | Orriss et al. | Nov 1996 | A |
5579371 | Aridas et al. | Nov 1996 | A |
5583926 | Venier et al. | Dec 1996 | A |
5586177 | Farris et al. | Dec 1996 | A |
5592530 | Brockman et al. | Jan 1997 | A |
5598464 | Hess et al. | Jan 1997 | A |
5602909 | Carkner et al. | Feb 1997 | A |
5606600 | Elliott | Feb 1997 | A |
5610969 | McHenry et al. | Mar 1997 | A |
5610977 | Williams et al. | Mar 1997 | A |
5625681 | Butler, II | Apr 1997 | A |
5689555 | Sonnenberg | Nov 1997 | A |
5696816 | Sonnenberg | Dec 1997 | A |
5712908 | Brinkman et al. | Jan 1998 | A |
5740239 | Bhagat et al. | Apr 1998 | A |
5757895 | Aridas et al. | May 1998 | A |
5764745 | Chan et al. | Jun 1998 | A |
5768352 | Elliott et al. | Jun 1998 | A |
5768358 | Venier et al. | Jun 1998 | A |
5771284 | Sonnenberg | Jun 1998 | A |
5774532 | Gottlieb et al. | Jun 1998 | A |
5784443 | Chapman et al. | Jul 1998 | A |
5796813 | Sonnenberg | Aug 1998 | A |
5802145 | Farris et al. | Sep 1998 | A |
5812639 | Bartholomew et al. | Sep 1998 | A |
5867558 | Swanson | Feb 1999 | A |
5903726 | Donovan et al. | May 1999 | A |
5949871 | Kabay et al. | Sep 1999 | A |
5999525 | Krishnaswamy et al. | Dec 1999 | A |
6009160 | Sonnenberg | Dec 1999 | A |
6021126 | White et al. | Feb 2000 | A |
6028914 | Lin et al. | Feb 2000 | A |
6091957 | Larkins et al. | Jul 2000 | A |
6091959 | Souissi et al. | Jul 2000 | A |
6094573 | Heinonen et al. | Jul 2000 | A |
6097719 | Benash et al. | Aug 2000 | A |
6108332 | Kasiviswanathan | Aug 2000 | A |
6108782 | Fletcher et al. | Aug 2000 | A |
6111946 | O'Brien | Aug 2000 | A |
6115754 | Landgren | Sep 2000 | A |
6119014 | Alperovich et al. | Sep 2000 | A |
6128304 | Gardell et al. | Oct 2000 | A |
6128377 | Sonnenberg | Oct 2000 | A |
6134307 | Broukman et al. | Oct 2000 | A |
6134314 | Dougherty et al. | Oct 2000 | A |
6134316 | Kallioniemi et al. | Oct 2000 | A |
6134432 | Holmes et al. | Oct 2000 | A |
6138023 | Agarwal et al. | Oct 2000 | A |
6181937 | Joensuu | Jan 2001 | B1 |
6182086 | Lomet et al. | Jan 2001 | B1 |
6188752 | Lesley | Feb 2001 | B1 |
6208872 | Schmidt | Mar 2001 | B1 |
6215790 | Voit et al. | Apr 2001 | B1 |
6219551 | Hentila et al. | Apr 2001 | B1 |
6249572 | Brockman et al. | Jun 2001 | B1 |
6252952 | Kung et al. | Jun 2001 | B1 |
6272136 | Lin et al. | Aug 2001 | B1 |
6301609 | Aravamudan et al. | Oct 2001 | B1 |
6304565 | Ramamurthy | Oct 2001 | B1 |
6321268 | Dillon et al. | Nov 2001 | B1 |
6324183 | Miller et al. | Nov 2001 | B1 |
6333931 | LaPier et al. | Dec 2001 | B1 |
6363411 | Dugan et al. | Mar 2002 | B1 |
6373930 | McConnell et al. | Apr 2002 | B1 |
6393269 | Hartmaier et al. | May 2002 | B1 |
6424621 | Ramaswamy et al. | Jul 2002 | B1 |
6430176 | Christie, IV | Aug 2002 | B1 |
6438223 | Eskafi et al. | Aug 2002 | B1 |
6446127 | Schuster et al. | Sep 2002 | B1 |
6453034 | Donovan et al. | Sep 2002 | B1 |
6453158 | Donovan et al. | Sep 2002 | B2 |
6456708 | Copley et al. | Sep 2002 | B1 |
6466796 | Jacobson et al. | Oct 2002 | B1 |
6470179 | Chow et al. | Oct 2002 | B1 |
6480588 | Donovan | Nov 2002 | B1 |
6496690 | Cobo et al. | Dec 2002 | B1 |
6510164 | Ramaswamy et al. | Jan 2003 | B1 |
6515997 | Feltner et al. | Feb 2003 | B1 |
6516194 | Hanson | Feb 2003 | B2 |
6535727 | Abbasi et al. | Mar 2003 | B1 |
6564261 | Gudjonsson et al. | May 2003 | B1 |
6571094 | Begeja et al. | May 2003 | B1 |
6584183 | Manto | Jun 2003 | B2 |
6611516 | Pirkola et al. | Aug 2003 | B1 |
6633764 | Garcia | Oct 2003 | B1 |
6718178 | Sladek et al. | Apr 2004 | B1 |
6747970 | Lamb et al. | Jun 2004 | B1 |
6760343 | Krishnamurthy et al. | Jul 2004 | B1 |
6801781 | Provost et al. | Oct 2004 | B1 |
6856676 | Pirot et al. | Feb 2005 | B1 |
6963583 | Foti | Nov 2005 | B1 |
6968052 | Wullert, II | Nov 2005 | B2 |
7058036 | Yu et al. | Jun 2006 | B1 |
7738891 | Tenhunen et al. | Jun 2010 | B2 |
8305922 | Cuervo | Nov 2012 | B2 |
8331229 | Hu et al. | Dec 2012 | B1 |
8620263 | Ravishankar et al. | Dec 2013 | B2 |
8681622 | Chatterjee et al. | Mar 2014 | B2 |
8903974 | Rajagopalan et al. | Dec 2014 | B2 |
8923879 | Hu et al. | Dec 2014 | B2 |
8996670 | Kupinsky et al. | Mar 2015 | B2 |
20010031641 | Ung et al. | Oct 2001 | A1 |
20010034224 | McDowell et al. | Oct 2001 | A1 |
20020029189 | Titus et al. | Mar 2002 | A1 |
20020058507 | Valentine et al. | May 2002 | A1 |
20020111153 | Hartmaier et al. | Aug 2002 | A1 |
20020150079 | Zabawskyj et al. | Oct 2002 | A1 |
20030026289 | Mukherjee et al. | Feb 2003 | A1 |
20030031160 | Gibson Ang et al. | Feb 2003 | A1 |
20030037108 | Peiffer et al. | Feb 2003 | A1 |
20030177281 | McQuillan et al. | Sep 2003 | A1 |
20030203740 | Bahl et al. | Oct 2003 | A1 |
20040003037 | Fujimoto et al. | Jan 2004 | A1 |
20040153506 | Ito et al. | Aug 2004 | A1 |
20040166878 | Erskine et al. | Aug 2004 | A1 |
20040213393 | Bedingfiled et al. | Oct 2004 | A1 |
20040233840 | Bye | Nov 2004 | A1 |
20040240638 | Donovan | Dec 2004 | A1 |
20050027867 | Mueller et al. | Feb 2005 | A1 |
20050070310 | Caspi et al. | Mar 2005 | A1 |
20050202836 | Schaedler et al. | Sep 2005 | A1 |
20060053197 | Yoshimura et al. | Mar 2006 | A1 |
20060291488 | Naqvi et al. | Dec 2006 | A1 |
20070185809 | Duan | Aug 2007 | A1 |
20080168099 | Skaf | Jul 2008 | A1 |
20090172782 | Taglienti et al. | Jul 2009 | A1 |
20090207730 | Stamoulis et al. | Aug 2009 | A1 |
20090225719 | Zhi et al. | Sep 2009 | A1 |
20090245108 | Wu et al. | Oct 2009 | A1 |
20090327079 | Parker | Dec 2009 | A1 |
20090327112 | Li et al. | Dec 2009 | A1 |
20100137002 | Agarwal et al. | Jun 2010 | A1 |
20100161802 | Tofighbakhsh et al. | Jun 2010 | A1 |
20100184403 | Cai et al. | Jul 2010 | A1 |
20100287121 | Li et al. | Nov 2010 | A1 |
20110003579 | Cai et al. | Jan 2011 | A1 |
20110158090 | Riley et al. | Jun 2011 | A1 |
20110170411 | Wang et al. | Jul 2011 | A1 |
20110170412 | Ramadas et al. | Jul 2011 | A1 |
20110208853 | Castro-Castro et al. | Aug 2011 | A1 |
20110217979 | Nas | Sep 2011 | A1 |
20110231540 | Tai et al. | Sep 2011 | A1 |
20110246586 | Steele | Oct 2011 | A1 |
20110307790 | Pandya et al. | Dec 2011 | A1 |
20110317557 | Siddam et al. | Dec 2011 | A1 |
20120026947 | Miller et al. | Feb 2012 | A1 |
20120034900 | Agarwal | Feb 2012 | A1 |
20120039175 | Sridhar et al. | Feb 2012 | A1 |
20120052866 | Froehlich et al. | Mar 2012 | A1 |
20120059943 | Castro Castro et al. | Mar 2012 | A1 |
20120084371 | Rajagopalan et al. | Apr 2012 | A1 |
20120094685 | Marsico | Apr 2012 | A1 |
20120099715 | Ravishankar et al. | Apr 2012 | A1 |
20120100849 | Marsico | Apr 2012 | A1 |
20120129488 | Patterson et al. | May 2012 | A1 |
20120140632 | Norp et al. | Jun 2012 | A1 |
20120163297 | Agarwal et al. | Jun 2012 | A1 |
20120176894 | Cai et al. | Jul 2012 | A1 |
20120220330 | Goldner et al. | Aug 2012 | A1 |
20120233325 | Zhou et al. | Sep 2012 | A1 |
20120257499 | Chatterjee et al. | Oct 2012 | A1 |
20130017803 | Li et al. | Jan 2013 | A1 |
20130036215 | Kupinsky et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
0 088 639 | Sep 1983 | EP |
0 212 654 | May 1987 | EP |
0 258 654 | Mar 1988 | EP |
0 264 023 | Apr 1988 | EP |
1 100 279 | May 2001 | EP |
2 039 119 | Aug 2010 | EP |
2 382 267 | May 2003 | GB |
58-215164 | Dec 1983 | JP |
62-200859 | Sep 1987 | JP |
1020030025024 | Mar 2003 | KR |
WO 8401073 | Mar 1984 | WO |
WO 8603915 | Jul 1986 | WO |
WO 8800419 | Jan 1988 | WO |
WO 9733441 | Sep 1997 | WO |
WO 9914910 | Mar 1999 | WO |
WO 0016583 | Mar 2000 | WO |
WO 0035155 | Jun 2000 | WO |
WO 0120920 | Mar 2001 | WO |
WO 0156308 | Aug 2001 | WO |
WO 2006031678 | Mar 2006 | WO |
WO 2012021344 | Feb 2012 | WO |
WO 2013126057 | Aug 2013 | WO |
Entry |
---|
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Policy and Charging Control over Gx reference point (Release 9),” 3GPP TS 29.212 V9.2.0 (Mar. 2010). |
Non-Final Office Action for U.S. Appl. No. 13/402,756 (May 10, 2013). |
Non-Final Office Action for U.S. Appl. No. 13/277,626 (Feb. 27, 2013). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2012/026178 (Jul. 30, 2012). |
Commonly-assigned, co-pending International Application No. PCT/US12/26178 for “Methods, Systems, and Computer Readable Media for Network Metadata Based Policy Control,” (Unpublished, filed Feb. 22, 2012). |
“About 3GPP: What is the difference between a SIM and a USIM? What is a UICC?,” About http://www.3gpp.org/FAQ#outil—sommaire—58, pp. 1-11 (Copyright 2012). |
“Smart Cards; Card Application Toolkit (CAT) (Release 10),” ETSI TS 102 223 V10.5.0, pp. 1-224 (Sep. 2011). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Universal Geographical Area Description (GAD) (Release 10),” 3GPP TS 23.032, pp. 1-29 (Mar. 2011). |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Charging management; Diameter charging applications (Release 9),” 3GPP TS 32.299 V9.4.0, pp. 1-148 (Jun. 2010). |
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Policy and Charging Control over Rx reference point (Release 9),” 3GPP TS 29.214 V9.3.0, pp. 1-44 (Mar. 2010). |
3GPP, “Digital Cellular Telecommunications System (Phase 2+); Universal Mobile Telecommunications System (UMTS); Universal Subscriber Identity Module (USIM) Application Toolkit (USAT) (3GPP TS 31.111 version 8.3.0 Release 8),” ETSI TS 131 111 V8.3.0, pp. 1-102 (Oct. 2008). |
“BICC Architecture and BICC Protocol Details,” Tekelec, p. 28-41 (2008). |
“BICC Signaling Router (BSR) Reference Architecture (WP005274),” Tekelec, p. 2-91 (2008). |
Jennings et al., “Session Initiation Protocol (SIP) URIs for Application such as Voicemail and Interactive Voice Response (IVR),” The Internet Society, RFC 4458 (Apr. 2006). |
“Interworking Between Session Initiation Protocol (SIP) and Bearer Independent Call Control Protocol or ISDN User Part,” ITU-T Q.1912.5, p. 1-101 (Mar. 2004). |
“Prepaid vs. Number Portability,” Power Point presentation (publication date unknown; electronic file creation date Jul. 29, 2003.). |
“Bearer Independent Call Bearer Control Protocol,” ITU-T Q.1950, p. 1-96 (Dec. 2002). |
Chang, “BICC Extension of SIP in Inter-Network Configuration,” Internet Engineering Task Force, draft-chang-sipping-bicc-network-00.txt, pp. 1-17 (Mar. 2002). |
Marshall et al., “SIP Extensions for Supporting Distributed Call State,” SIP Working Group, Internet Draft, pp. 1-12 (Aug. 2001). |
“Bearer Independent Call Control Protocol (Capability Set 2) and Signalling System No. 7 ISDN User Part: Formats and Codes,” ITU-T Q.1902.3, p. 1-141 (Jul. 2001). |
“Bearer Independent Call Control Protocol (Capability Set 2) and Signaling System No. 7 ISDN user part: General Functions of Messages and Parameters,” ITU-T Q.1902.2 (Jul. 2001). |
“Bearer Independent Call Control Protocol (Capability Set 2): Functional Description,” ITU-T Q.1902.1, p. 1-23 (Jul. 2001). |
“Bearer Independent Call Control Protocol,” ITU-T Q.1901 (Jun. 2000). |
Sugano et al., “Presence Information Data Format for IMPP,” Internet draft, draft-ietf-impp-pidf-01.text, Network Working Group, pp. 1-17 (Mar. 10, 2000). |
Liao et al., “SS7-TCAP/IP Interworking,” Internet Engineering Task Force, pp. 1-14 (Mar. 1999). |
De Ment, “The Evolution of Signaling,” NMS Communications, p. 1-28 (Publication Date Unknown). |
“Mobile Wireless Overview,” Cisco IOS Mobile Wireless Configuration Guide, pp. MWC-1-MWC-8 (Publication Date Unknown). |
Non-Final Office Action for U.S. Appl. No. 13/402,756 (Jun. 25, 2014). |
Non-Final Office Action for U.S. Appl. No. 13/244,237 (Apr. 3, 2014). |
Advisory Action Before the Filing of an Appeal Brief for U.S. Appl. No. 13/402,756 (Dec. 30, 2013). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/330,086 (Nov. 6, 2013). |
Final Office Action for U.S. Appl. No. 13/402,756 (Sep. 19, 2013). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/277,626 (Aug. 20, 2013). |
Communication of European publication number and information on the application of Article 67(3) EPC for European Application No. 12869126.8 (Dec. 3, 2014). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/402,756 (Nov. 20, 2014). |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/244,237 (Oct. 16, 2014). |
Final Office Action for U.S. Appl. No. 13/244,237 (Aug. 6, 2014). |
Extended European Search Report for European Application No. 12869126.8 (Nov. 11, 2015). |
Letter regarding Office Action for Japanese Patent Application No. 2014-558717 (Sep. 8, 2015). |
Number | Date | Country | |
---|---|---|---|
20120096139 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
61393853 | Oct 2010 | US |