Methods, systems, and computer readable media for user controlled policy sharing

Abstract
According to one aspect, the subject matter described herein includes a method for user controlled policy sharing. The method includes receiving, from a first user device, a request to share with a second user device a policy attribute associated with the first user device. The method also includes generating a signaling message containing instructions to modify the policy attribute. The method further includes communicating the signaling message to a policy control function associated with the second user device.
Description
TECHNICAL FIELD

The subject matter described herein relates to user controlled policy sharing. More specifically, the subject matter relates to methods, systems, and computer readable media for user controlled policy sharing.


BACKGROUND

As telecommunication technology evolves, an increasing number of applications are available to users. Many of these applications (e.g., video on demand) utilize substantial network resources, particularly bandwidth. The utilization of such applications creates an ever increasing demand on the limited resources of telecommunications providers. In order to manage such resource demands, telecommunications providers often employ network policies to limit resource utilization. Employing a policy scheme allows a network provider to offer its most demanding users, who may be willing to pay greater service charges, the high quality of service (QoS) required by such resource-hungry applications. Additionally, policy schemes may help to ensure reliable service for all network users, who absent such policy schemes, might be adversely affected by the disproportionate utilization of network resources by users of such resource-hungry applications.


Another problem with existing network architectures is that there is no mechanism for user controlled sharing of policy attributes. For example, one user may have reserved but unused network bandwidth. There is currently no mechanism for the user to initiate sharing of the unused bandwidth with another user.


Accordingly, a need exists for methods, systems, and computer readable media for user controlled policy sharing.


SUMMARY

According to one aspect, the subject matter described herein includes a method for user controlled policy sharing. The method includes receiving, from a first user device, a request to share with a second user device a policy attribute associated with the first user device. The method also includes generating a signaling message containing instructions to modify the policy attribute. The method further includes communicating the signaling message to a policy control function associated with the second user device.


According to another aspect, the subject matter described herein includes a system for user controlled policy sharing. The system includes a communication interface. The system also includes a policy sharing module. The policy sharing module is configured to receive, from a first user device and via the communication interface, a request to share with a second user device a policy attribute associated with the first user device. The policy sharing module is also configured to generate a signaling message containing instructions to modify the policy attribute. The policy sharing module is further configured to communicate, via the communication interface, the signaling message to a policy control function associated with the second user device.


As used herein, the term “node” refers to a physical computing platform including one or more processors and memory.


As used herein, the terms “function” or “module” refer to software in combination with hardware (such as a processor) and/or firmware for implementing features described herein.


The subject matter described herein can be implemented in software in combination with hardware and/or firmware. For example, the subject matter described herein may be implemented in software executed by one or more processors. In one exemplary implementation, the subject matter described herein may be implemented using a non-transitory computer readable medium having stored thereon computer executable instructions that when executed by the processor of a computer control the computer to perform steps. Exemplary computer readable media suitable for implementing the subject matter described herein include non-transitory computer readable media, such as disk memory devices, chip memory devices, programmable logic devices, and application specific integrated circuits. In addition, a computer readable medium that implements the subject matter described herein may be located on a single device or computing platform or may be distributed across multiple devices or computing platforms.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter described herein will now be explained with reference to the accompanying drawings of which:



FIG. 1 is a network diagram illustrating an exemplary network environment for user controlled policy sharing according to an embodiment of the subject matter described herein;



FIG. 2 is a message flow diagram illustrating an exemplary message sequence in which policy sharing is performed by a policy sharing application function node for user controlled policy sharing according to an embodiment of the subject matter described herein;



FIG. 3 is a message flow diagram illustrating an exemplary message sequence in which policy sharing is performed by a policy control function node for user controlled policy sharing according to an embodiment of the subject matter described herein;



FIG. 4 is a message flow diagram illustrating an exemplary message sequence in which the sharing user devices are associated with distinct policy control function nodes and in which policy sharing is performed by one of the policy control function nodes for user controlled policy sharing according to an embodiment of the subject matter described herein;



FIG. 5 is a flow chart illustrating an exemplary process for user controlled policy sharing according to an embodiment of the subject matter described herein; and



FIG. 6 is a block diagram of an exemplary policy sharing node according to an embodiment of the subject matter described herein.





DETAILED DESCRIPTION

Methods, systems, and computer readable media for user controlled policy sharing are provided. FIG. 1 is a network diagram illustrating an exemplary network environment for user controlled policy sharing according to an embodiment of the subject matter described herein. Referring to FIG. 1, network environment 100 may include one or more user equipment (UE) nodes. UE nodes may include any device(s) through which a subscriber may access one or more applications and/or services provided by network environment 100, and may include tablet computers, laptop computers, pagers, mobile phones, smartphones, wireless modems, and other devices through which a subscriber may access applications and/or services provided by network environment 100. For example, network environment 100 may include UE 102 and UE 104. Network environment 100 may include one or more access networks, which may include nodes, functions, devices, and/or components for providing UE 102 and/or UE 104 access to applications, services, functions, or devices in one or more networks. For example, network environment 100 may include access networks 106 and 108. In one embodiment, access network 106 and/or access network 108 may be a radio access network (RAN). For example, access network 106 and/or access network 108 may be a global system for mobile communications (GSM) RAN (GRAN), a general packet radio service (GPRS) access network, a universal mobile telecommunications system (UMTS) RAN (UTRAN), an evolved UTRAN (eUTRAN), an Internet protocol (IP) connectivity access network (IPCAN), a code division multiple access (CDMA) network, an evolution-data optimized (EV-DO) network, a wideband CDMA (WCDMA) network, a high speed packet access (HPSA) network, an evolved HPSA (EHPSA+) network, or a long term evolution (LTE) access network. Access network 106 and/or access network 108 may include one or more receiver/transceiver nodes for wirelessly communicating with UE 102 and/or UE 104. For example, access network 106 may include receiver/transceiver nodes 110 for wirelessly communicating with UE 102 and access network 108 may similarly include receiver/transceiver nodes 112 for wirelessly communicating with UE 104.


Network environment 100 may include one or more carrier networks. For example, network environment 100 may include carrier network 114. Carrier network 114 may include one or more bearer binding and event reporting function (BBERF) nodes, which may coordinate delivery of data to and from UE(s), and may be, for example, a service gateway (SGW) or a serving general packet radio service (GPRS) support node (SGSN). For example, carrier network 114 may include BBERF nodes 116 and 118, which may respectively coordinate delivery of data to and from UE 102 and UE 104. Carrier network 114 may include one or more policy control function nodes, which may be, for example, resource admission control subsystem (RACS) nodes and/or policy and charging rules function (PCRF) nodes. PCRF nodes may serve as central policy decision points within network environment 100 and may aid one or network operators associated with network environment 100 in making real-time, subscriber specific, policy decisions that may be utilized to provide varying levels of QoS. For example, carrier network 114 may include PCRF nodes 120 and 122, which may serve as central policy decision points within network environment 100 for UE 102 and UE 104. In some embodiments, PCRF node 120 may serve as the policy control function for UE 102 and UE 104. In some embodiments, PCRF node 120 may serve as the policy control function for UE 102 and PCRF node 122 may serve as the policy control function for UE 104.


As policy decision points for carrier network 114, PCRF nodes 120 and/or 122 may take operator defined service policies, subscription information pertaining to a user, and other data into account to build policy decisions. Policy decisions may be formulated as policy control and charging (PCC) rules, for example, Gx rules contained in credit control messages. PCC rules may contain information about user plane traffic expressed as a service data flow (SDF) or packet filter. A packet filter may take the form of an Internet protocol (IP) five-tuple specifying: (1) source IP address(es), (2) destination IP address(es), (3) source port number(s), (4) destination port number(s), and (5) application protocol(s) (e.g., transmission control protocol (TCP), user datagram protocol (UDP)). All IP packets matching a packet filter of a PCC rule may be designated an SDF.


Flow-based charging models may provide operators associated with network environment 100 with the ability to gate (e.g., allow/block), charge, or vary QoS for SDFs identified by SDF filters according to specified policy control and charging rules. PCC rules may contain information that allows the filtering of traffic to identify packets belonging to a particular SDF (e.g., IP multimedia subsystem (IMS), file transfer protocol (FTP), browsing) and allow an operator to define how a particular SDF is to be charged (e.g., different media streams within a single packet data protocol (PDP) context.) PCC rules may be requested by a policy and charging enforcement function (PCEF) node (e.g., by a packet data network (PDN) gateway in an evolved packet system (EPS)), at bearer establishment, upon a specified trigger event, and/or upon bearer termination. Such a request may be made using a Gx reference point towards a PCRF. PCC rules may specify one or more QoS policy attributes, for example, a guaranteed download bit rate, a minimum download bit rate, a maximum download bit rate, a permitted SDF, a permitted QoS class, a permitted access point name (APN), a permitted destination IP address, and a download quota.


Carrier network 114 may include one or more policy enforcement function nodes, which may be PCEF nodes, and may be placed in line between one or more access networks and one or more PCRF nodes. For example, carrier network 114 may include PCEF nodes 124 and 126, which may respectively be placed in line between access networks 106 and 108 and PCRF nodes 120 and 122. PCEF nodes 124 and 126 may be, for example, gateway GPRS support nodes (GGSN) or PDN gateways. As policy enforcement points, PCEF nodes 124 and 126 may request and receive policy rules from PCRF nodes 120 and 122 via, for example, the Gx interface.


In accordance with embodiments of the subject matter described herein, carrier network 114 may include a policy sharing module for user controlled policy sharing. In some embodiments, a policy sharing module may be included as part of a policy sharing application function (AF) node. For example, carrier network 114 may include policy sharing AF node 128 for user controlled policy sharing. In some embodiments, a policy sharing module may be included as part of one or more policy control function nodes. For example, PCRF node 120 and/or PCRF node 122 may include a policy sharing module for user controlled policy sharing. In some embodiments, a policy sharing module may be operative to communicate with one or more of a subscription profile repository (SPR), a subscription binding repository (SBR), and a home subscriber server (HSS), any of which may contain information that may be utilized to identify a policy control function associated with a particular subscriber or UE node. For example, carrier network 114 may include SPR/SBR/HSS node 130 and one or more of policy sharing AF node 128, PCRF node 120, and PCRF node 122 may be operative to communicate with SPR/SBR/HSS node 130 to obtain information that may be utilized to identify a policy control function associated with UE 102 and/or UE 104.


In accordance with embodiments of the subject matter described herein, a user of network environment 100 may utilize a policy sharing module to share a policy attribute (e.g., SDF gating policy attribute, QoS policy attribute, charging policy attribute, etc.) with another user of network environment 100. For example, UE 102 may be associated with a policy that provides a guaranteed minimum bandwidth for streaming video from a specific provider (e.g., a premium subscription). A user of UE 102 may desire to share a video from the specified provider with a user of UE 104. UE 104, however, may not be associated with a policy that provides guaranteed minimum bandwidth, and thus may be unable to view the video either entirely or in a satisfactory manner. Accordingly, the user of UE 102 may desire to “share” a policy attribute associated with UE 102 (e.g., the guaranteed minimum bandwidth for streaming video from the specified provider) with UE 104, enabling UE 104's user to view the video in a satisfactory manner. In accordance with embodiments of the subject matter described herein, UE 102's user may utilize a policy sharing module to share such a policy attribute with UE 104.



FIG. 2 is a message flow diagram illustrating an exemplary message sequence in which policy sharing is performed by a policy sharing application function node for user controlled policy sharing according to an embodiment of the subject matter described herein. Referring to FIG. 2, active packet data network (PDN) connection 200 may exist between UE 102 and PCEF node 124. Similarly, active PDN connection 202 may exist between UE 104 and PCEF node 126. As explained above with reference to FIG. 1, a user of UE 102 may desire to “share” a policy attribute associated with UE 102 (e.g., the guaranteed minimum bandwidth for streaming video from the specified provider) with UE 104, enabling UE 104's user to view the video in a satisfactory manner. At step 1, UE 102 may generate and communicate to policy sharing AF node 128, which may include a policy sharing module (not illustrated in FIG. 2), a UE initiated policy share request message. The policy share request message may be one or more of a short message service (SMS) message, a multimedia messaging service (MMS) message, an instant message, an email message, a Diameter message, an extensible markup language (XML) message, a session initiation protocol (SIP) message, a simple object access protocol (SOAP) message, or any other message suitable to convey the policy sharing request. The policy sharing module of policy sharing AF node 128 may receive the policy share request message and may begin the process of sharing the policy attribute requested. In some embodiments, the policy sharing module of AF node 128 may be configured to determine whether one or more of UE 102 and UE 104 is permitted to share the policy attribute. Such a determination may be made, for example, based on determining whether one or more of UE 102 and UE 104 are associated with a predetermined network operator. In some embodiments, the policy sharing module of AF node 128 may determine whether one or more of UE 102 and UE 104 are associated with a predetermined network operator by determining whether a mobile network code (MNC) portion of an international mobile subscriber identity (IMSI) respectively associated with UE 102 or UE 104 is associated with the predetermined network operator.


At step 2, the policy sharing module of policy sharing AF node 128 may generate and communicate to a policy control function associated with UE 102 (e.g., PCRF node 120) a signaling message instructing the policy control function to modify the policy attribute (e.g., to decrease the guaranteed minimum bandwidth for streaming video from the specified provider for UE 102). At step 3, the policy sharing module of policy sharing AF node 128 may generate and communicate to a policy control function associated with UE 104 (e.g., PCRF node 120) a signaling message instructing the policy control function to modify the policy attribute (e.g., to increase the guaranteed minimum bandwidth for streaming video from the specified provider for UE 104). In some embodiments, the policy sharing module of AF node 128 may be configured to generate the signaling message in response to having first determined that one or more of UE 102 and UE 104 are permitted to share the policy attribute. It is appreciated that the policy control function associated with UE 102 will not necessarily be the same as the policy control function associated with UE 104 (e.g., UE 102 and UE 104 may be associated with distinct PCRF nodes). In some embodiments, the policy sharing module of policy sharing AF node 128 may take steps (not illustrated) to update accounting and/or billing records to reflect the requested policy share between UE 102 and UE 104.


The policy control function associated with UE 102 (e.g., PCRF node 120) may receive the signaling message and, at step 4, may generate and communicate to a policy enforcement function associated with UE 102 (e.g., PCEF node 124) a PCC rule, via for example a re-auth request (RAR) message, that modifies the policy attribute (e.g., a rule for decreasing the guaranteed minimum bandwidth for streaming video from the specified provider for UE 102). In some embodiments the PCC rule may be configured to expire after a predetermined time period. At step 5, the policy enforcement function associated with UE 102 (e.g., PCEF node 124) may acknowledge receiving the PCC rule by generating and communicating to the policy control function associated with UE 102 (e.g., PCRF node 120) an acknowledgement message, for example, a re-auth answer (RAA) message.


Similarly, the policy control function associated with UE 104 (e.g., PCRF node 120) may receive the signaling message and, at step 6, may generate and communicate to a policy enforcement function associated with UE 104 (e.g., PCEF node 126) a PCC rule, via for example an RAR message, that modifies the policy attribute (e.g., a rule for increasing the guaranteed minimum bandwidth for streaming video from the specified provider for UE 104). In some embodiments the PCC rule may be configured to expire after a predetermined time period. At step 7, the policy enforcement function associated with UE 104 (e.g., PCEF node 126) may acknowledge receiving the PCC rule by generating and communicating to the policy control function associated with UE 104 (e.g., PCRF node 120) an acknowledgement message, for example, an RAA message. It is appreciated that the policy enforcement function associated with UE 102 need not be distinct from the policy enforcement function associated with UE 104 (e.g., UE 102 and UE 104 may both utilize the same PCEF node).


The policy enforcement function(s) associated with UE 102 and UE 104 (e.g., PCEF node 124 and PCEF node 126), having received PCC rules for modifying the policy attribute, may accordingly adjust the policy attribute for each of UE 102 and UE 104 as specified by the PCC rules (e.g., decrease the guaranteed minimum bandwidth for streaming video from the specified provider for UE 102 and increase the guaranteed minimum bandwidth for streaming video from the specified provider for UE 104), effectively “sharing” a policy attribute associated with UE 102 with UE 104.



FIG. 3 is a message flow diagram illustrating an exemplary message sequence in which policy sharing is performed by a policy control function node for user controlled policy sharing according to an embodiment of the subject matter described herein. Referring to FIG. 3, active PDN connection 300 may exist between UE 102 and PCEF node 124. Similarly, active PDN connection 302 may exist between UE 104 and PCEF node 126. As explained above with reference to FIG. 1, a user of UE 102 may desire to “share” a policy attribute associated with UE 102 (e.g., the guaranteed minimum bandwidth for streaming video from the specified provider) with UE 104, enabling UE 104's user to view the video in a satisfactory manner. At step 1, UE 102 may generate and communicate, to a policy sharing module of PCRF node 120, a UE initiated policy share request message. The policy sharing module of PCRF node 120 may receive the policy share request message and may begin the process of sharing the policy attribute requested. At step 2, the policy sharing module of PCRF node 120 may generate and communicate to policy control function(s) associated with UE 102 and UE 104 (e.g., a policy control function of PCRF node 120) a signaling message instructing the policy control function to modify the policy attribute for UE 102 and UE 104 (e.g., to decrease the guaranteed minimum bandwidth for streaming video from the specified provider for UE 102 and to increase the guaranteed minimum bandwidth for streaming video from the specified provider for UE 104). It is appreciated that the policy control function associated with UE 102 will not necessarily be the same as the policy control function associated with UE 104 (e.g., UE 102 and UE 104 may be associated with distinct PCRF nodes). In some embodiments, the policy sharing module of PCRF node 120 may take steps (not illustrated) to update accounting and/or billing records to reflect the requested policy share between UE 102 and UE 104.


The policy control function associated with UE 102 (e.g., the policy control function of PCRF node 120) may receive the signaling message and, at step 3, may generate and communicate to a policy enforcement function associated with UE 102 (e.g., PCEF node 124) a PCC rule, via for example an RAR message, that modifies the policy attribute (e.g., a rule for decreasing the guaranteed minimum bandwidth for streaming video from the specified provider for UE 102). In some embodiments the PCC rule may be configured to expire after a predetermined time period. At step 4, the policy enforcement function associated with UE 102 (e.g., PCEF node 124) may acknowledge receiving the PCC rule by generating and communicating to the policy control function associated with UE 102 (e.g., the policy control function of PCRF node 120) an acknowledgement message, for example, an RAA message.


Similarly, the policy control function associated with UE 104 (e.g., the policy control function of PCRF node 120) may receive the signaling message and, at step 5, may generate and communicate to a policy enforcement function associated with UE 104 (e.g., PCEF node 126) a PCC rule, via for example an RAR message, that modifies the policy attribute (e.g., a rule for increasing the guaranteed minimum bandwidth for streaming video from the specified provider for UE 104). In some embodiments the PCC rule may be configured to expire after a predetermined time period. At step 6, the policy enforcement function associated with UE 104 (e.g., PCEF node 126) may acknowledge receiving the PCC rule by generating and communicating to the policy control function associated with UE 104 (e.g., the policy control function of PCRF node 120) an acknowledgement message, for example, an RAA message. It is appreciated that the policy enforcement function associated with UE 102 need not be distinct from the policy enforcement function associated with UE 104 (e.g., UE 102 and UE 104 may both utilize the same PCEF node).


The policy enforcement function(s) associated with UE 102 and UE 104 (e.g., PCEF node 124 and PCEF node 126), having received PCC rules for modifying the policy attribute, may accordingly adjust the policy attribute for each of UE 102 and UE 104 as specified by the PCC rules (e.g., decrease the guaranteed minimum bandwidth for streaming video from the specified provider for UE 102 and increase the guaranteed minimum bandwidth for streaming video from the specified provider for UE 104), effectively “sharing” a policy attribute associated with UE 102 with UE 104.



FIG. 4 is a message flow diagram illustrating an exemplary message sequence in which the sharing user devices are associated with distinct policy control function nodes and in which policy sharing is performed by one of the policy control function nodes for user controlled policy sharing according to an embodiment of the subject matter described herein. Referring to FIG. 4, active PDN connection 400 may exist between UE 102 and PCEF node 124. Similarly, active PDN connection 402 may exist between UE 104 and PCEF node 126. As explained above with reference to FIG. 1, a user of UE 102 may desire to “share” a policy attribute associated with UE 102 (e.g., the guaranteed minimum bandwidth for streaming video from the specified provider) with UE 104, enabling UE 104's user to view the video in a satisfactory manner. At step 1, UE 102 may generate and communicate, to a policy sharing module of PCRF node 120, a UE initiated policy share request message. The policy sharing module of PCRF node 120 may receive the policy share request message and may begin the process of sharing the policy attribute requested. At step 2, the policy sharing module of PCRF node 120 may determine that UE 104 is not associated with PCRF node 120. Accordingly, the policy sharing module of PCRF node 120 may take steps to identify a policy control function associated with UE 104. For example, at step 3, the policy sharing module of PCRF node 120 may query SPR/SBR/HSS node 130 for information identifying a policy control function associated with UE 104. At step 4, SPR/SBR/HSS node 130 may respond to the query by returning information identifying a policy control function associated with UE 104 (e.g., PCRF node 122). At step 5, the policy sharing module of PCRF node 120 may generate and communicate to a policy control function associated with UE 102 (e.g., PCRF node 120) a signaling message instructing the policy control function to modify the policy attribute (e.g., to decrease the guaranteed minimum bandwidth for streaming video from the specified provider for UE 102). At step 6, the policy sharing module of PCRF node 120 may generate and communicate to a policy control function associated with UE 104 (e.g., PCRF node 122) a signaling message instructing the policy control function to modify the policy attribute (e.g., to increase the guaranteed minimum bandwidth for streaming video from the specified provider for UE 104). In some embodiments, the policy sharing module of PCRF node 120 may take steps (not illustrated) to update accounting and/or billing records to reflect the requested policy share between UE 102 and UE 104.


The policy control function associated with UE 102 (e.g., the policy control function of PCRF node 120) may receive the signaling message and, at step 7, may generate and communicate to a policy enforcement function associated with UE 102 (e.g., PCEF node 124) a PCC rule, via for example an RAR message, that modifies the policy attribute (e.g., a rule for decreasing the guaranteed minimum bandwidth for streaming video from the specified provider for UE 102). In some embodiments the PCC rule may be configured to expire after a predetermined time period. At step 8, the policy enforcement function associated with UE 102 (e.g., PCEF node 124) may acknowledge receiving the PCC rule by generating and communicating to the policy control function associated with UE 102 (e.g., the policy control function of PCRF node 120) an acknowledgement message, for example, an RAA message.


Similarly, the policy control function associated with UE 104 (e.g., PCRF node 122) may receive the signaling message and, at step 9, may generate and communicate to a policy enforcement function associated with UE 104 (e.g., PCEF node 126) a PCC rule, via for example an RAR message, that modifies the policy attribute (e.g., a rule for increasing the guaranteed minimum bandwidth for streaming video from the specified provider for UE 104). In some embodiments the PCC rule may be configured to expire after a predetermined time period. At step 10, the policy enforcement function associated with UE 104 (e.g., PCEF node 126) may acknowledge receiving the PCC rule by generating and communicating to the policy control function associated with UE 104 (e.g., PCRF node 122) an acknowledgement message, for example, an RAA message.


The policy enforcement function(s) associated with UE 102 and UE 104 (e.g., PCEF node 124 and PCEF node 126), having received PCC rules for modifying the policy attribute, may accordingly adjust the policy attribute for each of UE 102 and UE 104 as specified by the PCC rules (e.g., decrease the guaranteed minimum bandwidth for streaming video from the specified provider for UE 102 and increase the guaranteed minimum bandwidth for streaming video from the specified provider for UE 104), effectively “sharing” a policy attribute associated with UE 102 with UE 104.



FIG. 5 is a flow chart illustrating an exemplary process for user controlled policy sharing according to an embodiment of the subject matter described herein. Referring to FIG. 5, in step 500 a request to share with a second user device a policy attribute associated with a first user device is received from the first user device. For example, the policy sharing module of PCRF node 120 may receive a policy share request message from UE 102 requesting to share its guaranteed minimum bandwidth for streaming video from the specified provider with UE 104. In step 502, a signaling message containing instructions to modify the policy attribute is generated. For example, the policy sharing module of PCRF node 120 may generate a signaling message instructing a policy control function associated with UE 104 (e.g., PCRF node 120) to modify the policy attribute (e.g., to increase the guaranteed minimum bandwidth for streaming video from the specified provider for UE 104). In step 504, the signaling message is communicated to a policy control function associated with the second user device. For example, the policy sharing module of PCRF node 120 may communicate the signaling message to a policy control function associated with UE 104 (e.g., PCRF node 120).



FIG. 6 is a block diagram of an exemplary policy sharing node according to an embodiment of the subject matter described herein. Referring to FIG. 6, PCRF node 120 and/or policy share AF node 128 may include communication interface 600 for sending and receiving messages. Communication interface 600 may be any interface capable of sending and/or receiving messages from other nodes, functions, and/or modules. PCRF node 120 and/or policy share AF node 128 may also include policy sharing module 602. Policy sharing module 602 may be configured to receive, from a first user device and via communication interface 600, a request to share with a second user device a policy attribute associated with the first user device. For example, policy sharing module 602 may be configured to receive, via communication interface 600, a policy share request message from UE 102 requesting to share its guaranteed minimum bandwidth for streaming video from the specified provider with UE 104. Policy sharing module 602 may also be configured to generate a signaling message containing instructions to modify the policy attribute. For example, policy sharing module 602 may be configured to generate a signaling message instructing a policy control function associated with UE 104 (e.g., PCRF node 120) to modify the policy attribute (e.g., to increase the guaranteed minimum bandwidth for streaming video from the specified provider for UE 104). Policy sharing module 602 may further be configured to communicate, via communication interface 600, the signaling message to a policy control function associated with the second user device. For example, policy sharing module 602 may be configured to communicate, via communication interface 600, the signaling message to a policy control function associated with UE 104 (e.g., PCRF node 120).


It will be understood that various details of the subject matter described herein may be changed without departing from the scope of the subject matter described herein. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation, as the subject matter described herein is defined by the claims as set forth hereinafter.

Claims
  • 1. A method for user controlled policy sharing, the method comprising: at a policy and charging rules function (PCRF): receiving, from a first user device, a user device initiated request to share with a second user device a policy attribute associated with the first user device;generating a signaling message containing instructions to modify the policy attribute; andcommunicating the signaling message to a policy control function associated with the second user device.
  • 2. The method of claim 1 comprising: receiving, by the policy control function associated with the second user device, the signaling message;generating, by the policy control function associated with the second user device, a policy control and charging (PCC) rule that modifies the policy attribute; andcommunicating, by the policy control function associated with the second user device and to a policy enforcement function associated with the second user device, the PCC rule.
  • 3. The method of claim 1 comprising: generating, by the PCRF, a PCC rule that modifies the policy attribute; andcommunicating, by the PCRF and to a policy enforcement function associated with the first user device, the PCC rule.
  • 4. The method of claim 3 wherein the PCRF comprises at least one of an application function (AF) and a resource admission control subsystem (RAGS).
  • 5. The method of claim 4 wherein the steps are performed at a network node that includes the at least one of the PCRF, the AF, and the RAGS.
  • 6. The method of claim 2 wherein the policy enforcement function associated with the second user device comprises a policy control and enforcement function (PCEF).
  • 7. The method of claim 2 wherein the PCC rule is configured to expire after a predetermined time period.
  • 8. The method of claim 1 comprising identifying the policy control function associated with the second user device, wherein identifying the policy control function includes querying at least one of a subscription profile repository (SPR), a subscription binding repository (SBR), and a home subscriber server (HSS).
  • 9. The method of claim 1 wherein the request comprises at least one of a short message service (SMS) message, a multimedia messaging service (MMS) message, an instant message, an email message, a Diameter message, an extensible markup language (XML) message, a session initiation protocol (SIP) message, and a simple object access protocol (SOAP) message.
  • 10. The method of claim 1 wherein the policy attribute specifies at least one of a guaranteed download bit rate, a minimum download bit rate, a maximum download bit rate, a permitted service data flow (SDF), a permitted QoS class, a permitted access point name (APN), a permitted destination Internet protocol (IP) address, and a download quota.
  • 11. The method of claim 1 wherein generating the signaling message comprises generating the signaling message in response to determining that at least one of the first user device and the second user device is permitted to share the policy attribute.
  • 12. The method of claim 11 wherein determining that at least one of the first user device and the second user device is permitted to share the policy attribute comprises determining that at least one of the first user device and the second user device is associated with a predetermined network operator.
  • 13. The method of claim 12 wherein determining that at least one of the first user device and the second user device is associated with a predetermined network operator comprises determining that at least one of a mobile network code (MNC) associated with the first user device and an MNC associated with the second user device is associated with the predetermined network operator.
  • 14. A system for user controlled policy sharing, the system comprising: a policy and charging rules function (PCRF) comprising: a communication interface;a policy sharing module implemented using a processor for executing instructions stored in a memory, wherein the policy sharing module is configured to:receive, from a first user device and via the communication interface, a user device initiated request to share with a second user device a policy attribute associated with the first user device;generate a signaling message containing instructions to modify the policy attribute; andcommunicate, via the communication interface, the signaling message to a policy control function associated with the second user device.
  • 15. The system of claim 14 wherein the policy control function associated with the second user device is configured to: receive the signaling message;generate a policy control and charging (PCC) rule that modifies the policy attribute; andcommunicate, to a policy enforcement function associated with the second user device, the PCC rule.
  • 16. The system of claim 14 wherein the PCRF is configured to: generate a PCC rule that modifies the policy attribute; andcommunicate, to a policy enforcement function associated with the first user device, the PCC rule.
  • 17. The system of claim 16 wherein the PCRF comprises at least one of an application function (AF) and a resource admission control subsystem (RAGS).
  • 18. The system of claim 17 wherein the PCRF is located at a network node that includes the at least one of the PCRF, the AF, and the RAGS.
  • 19. The system of claim 15 wherein the policy enforcement function associated with the second user device comprises a policy control and enforcement function (PCEF).
  • 20. The system of claim 15 wherein the PCC rule is configured to expire after a predetermined time period.
  • 21. The system of claim 14 wherein the policy sharing module is configured to identify the policy control function associated with the second user device by querying at least one of a subscription profile repository (SPR), a subscription binding repository (SBR), and a home subscriber server (HSS).
  • 22. The system of claim 14 wherein the request comprises at least one of a short message service (SMS) message, a multimedia messaging service (MMS) message, an instant message, an email message, a Diameter message, an extensible markup language (XML) message, a session initiation protocol (SIP) message, and a simple object access protocol (SOAP) message.
  • 23. The system of claim 14 wherein the policy attribute specifies at least one of a guaranteed download bit rate, a minimum download bit rate, a maximum download bit rate, a permitted service data flow (SDF), a permitted QoS class, a permitted access point name (APN), a permitted destination Internet protocol (IP) address, and a download quota.
  • 24. The system of claim 14 wherein the policy sharing module is configured to generate the signaling message in response to determining that at least one of the first user device and the second user device is permitted to share the policy attribute.
  • 25. The system of claim 24 wherein determining that at least one of the first user device and the second user device is permitted to share the policy attribute comprises determining that at least one of the first user device and the second user device is associated with a predetermined network operator.
  • 26. The system of claim 25 wherein determining that at least one of the first user device and the second user device is associated with a predetermined network operator comprises determining that at least one of a mobile network code (MNC) associated with the first user device and an MNC associated with the second user device is associated with the predetermined network operator.
  • 27. A non-transitory computer readable medium comprising computer executable instructions that when executed by a processor of a computer control the computer to perform steps comprising: at a policy and charging rules function (PCRF): receiving, from a first user device, a user device initiated request to share with a second user device a policy attribute associated with the first user device;generating a signaling message containing instructions to modify the policy attribute; andcommunicating the signaling message to a policy control function associated with the second user device.
PRIORITY CLAIM

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/390,159, filed Oct. 5, 2010; the disclosure of which is incorporated herein by reference in its entirety.

US Referenced Citations (188)
Number Name Date Kind
3917915 Karras Nov 1975 A
4162377 Mearns Jul 1979 A
4191860 Weber Mar 1980 A
4310727 Lawser Jan 1982 A
4313035 Jordan et al. Jan 1982 A
4385206 Bradshaw et al. May 1983 A
4754479 Bicknell et al. Jun 1988 A
4756020 Fodale Jul 1988 A
4769834 Billinger et al. Sep 1988 A
4788718 McNabb et al. Nov 1988 A
4897835 Gaskill et al. Jan 1990 A
4897870 Golden Jan 1990 A
4959849 Bhusri Sep 1990 A
4972461 Brown et al. Nov 1990 A
5008929 Olsen et al. Apr 1991 A
5150357 Hopner et al. Sep 1992 A
5291481 Doshi et al. Mar 1994 A
5315580 Phaal May 1994 A
5341608 Mains, Jr. Aug 1994 A
5402474 Miller et al. Mar 1995 A
5426688 Anand Jun 1995 A
5430709 Galloway Jul 1995 A
5438570 Karras et al. Aug 1995 A
5457692 Ishinabe et al. Oct 1995 A
5457729 Hamann et al. Oct 1995 A
5473596 Garafola et al. Dec 1995 A
5475732 Pester, III Dec 1995 A
5506893 Buscher et al. Apr 1996 A
5521902 Ferguson May 1996 A
5539804 Hong et al. Jul 1996 A
5546398 Tucker et al. Aug 1996 A
5550914 Clarke et al. Aug 1996 A
5572579 Orriss et al. Nov 1996 A
5579371 Aridas et al. Nov 1996 A
5583926 Venier et al. Dec 1996 A
5586177 Farris et al. Dec 1996 A
5592530 Brockman et al. Jan 1997 A
5598464 Hess et al. Jan 1997 A
5602909 Carkner et al. Feb 1997 A
5606600 Elliott Feb 1997 A
5610969 McHenry et al. Mar 1997 A
5610977 Williams et al. Mar 1997 A
5625681 Butler, II Apr 1997 A
5689555 Sonnenberg Nov 1997 A
5696816 Sonnenberg Dec 1997 A
5712908 Brinkman et al. Jan 1998 A
5740239 Bhagat et al. Apr 1998 A
5757895 Aridas et al. May 1998 A
5764745 Chan et al. Jun 1998 A
5768352 Elliott et al. Jun 1998 A
5768358 Venier et al. Jun 1998 A
5771284 Sonnenberg Jun 1998 A
5774532 Gottlieb et al. Jun 1998 A
5784443 Chapman et al. Jul 1998 A
5796813 Sonnenberg Aug 1998 A
5802145 Farris et al. Sep 1998 A
5812639 Bartholomew et al. Sep 1998 A
5867558 Swanson Feb 1999 A
5903726 Donovan et al. May 1999 A
5949871 Kabay et al. Sep 1999 A
5999525 Krishnaswamy et al. Dec 1999 A
6009160 Sonnenberg Dec 1999 A
6021126 White et al. Feb 2000 A
6028914 Lin et al. Feb 2000 A
6091957 Larkins et al. Jul 2000 A
6091959 Souissi et al. Jul 2000 A
6094573 Heinonen et al. Jul 2000 A
6097719 Benash et al. Aug 2000 A
6108332 Kasiviswanathan Aug 2000 A
6108782 Fletcher et al. Aug 2000 A
6111946 O'Brien Aug 2000 A
6115754 Landgren Sep 2000 A
6119014 Alperovich et al. Sep 2000 A
6128304 Gardell et al. Oct 2000 A
6128377 Sonnenberg Oct 2000 A
6134307 Brouckman et al. Oct 2000 A
6134314 Dougherty et al. Oct 2000 A
6134316 Kallioniemi et al. Oct 2000 A
6134432 Holmes et al. Oct 2000 A
6138023 Agarwal et al. Oct 2000 A
6181937 Joensuu Jan 2001 B1
6182086 Lomet et al. Jan 2001 B1
6188752 Lesley Feb 2001 B1
6208872 Schmidt Mar 2001 B1
6215790 Voit et al. Apr 2001 B1
6219551 Hentilä et al. Apr 2001 B1
6249572 Brockman et al. Jun 2001 B1
6252952 Kung et al. Jun 2001 B1
6272136 Lin et al. Aug 2001 B1
6301609 Aravamudan et al. Oct 2001 B1
6304565 Ramamurthy Oct 2001 B1
6321268 Dillon et al. Nov 2001 B1
6324183 Miller et al. Nov 2001 B1
6333931 LaPier et al. Dec 2001 B1
6363411 Dugan et al. Mar 2002 B1
6373930 McConnell et al. Apr 2002 B1
6393269 Hartmaier et al. May 2002 B1
6424621 Ramaswamy et al. Jul 2002 B1
6430176 Christie, IV Aug 2002 B1
6438223 Eskafi et al. Aug 2002 B1
6446127 Schuster et al. Sep 2002 B1
6453034 Donovan et al. Sep 2002 B1
6453158 Donovan et al. Sep 2002 B2
6456708 Copley et al. Sep 2002 B1
6466796 Jacobson et al. Oct 2002 B1
6470179 Chow et al. Oct 2002 B1
6480588 Donovan Nov 2002 B1
6496690 Cobo et al. Dec 2002 B1
6510164 Ramaswamy et al. Jan 2003 B1
6515997 Feltner et al. Feb 2003 B1
6516194 Hanson Feb 2003 B2
6535727 Abbasi et al. Mar 2003 B1
6564261 Gudjonsson et al. May 2003 B1
6571094 Begeja et al. May 2003 B1
6584183 Manto Jun 2003 B2
6611516 Pirkola et al. Aug 2003 B1
6633764 Garcia Oct 2003 B1
6718178 Sladek et al. Apr 2004 B1
6747970 Lamb et al. Jun 2004 B1
6760343 Krishnamurthy et al. Jul 2004 B1
6801781 Provost et al. Oct 2004 B1
6856676 Pirot et al. Feb 2005 B1
6963583 Foti Nov 2005 B1
6968052 Wullert, II Nov 2005 B2
7058036 Yu et al. Jun 2006 B1
7738891 Tenhunen et al. Jun 2010 B2
8305922 Cuervo Nov 2012 B2
8331229 Hu et al. Dec 2012 B1
8620263 Ravishankar et al. Dec 2013 B2
8681622 Chatterjee et al. Mar 2014 B2
20010031641 Ung et al. Oct 2001 A1
20010034224 McDowell et al. Oct 2001 A1
20020029189 Titus et al. Mar 2002 A1
20020058507 Valentine et al. May 2002 A1
20020111153 Hartmaier et al. Aug 2002 A1
20020150079 Zabawskyj et al. Oct 2002 A1
20030026289 Mukherjee et al. Feb 2003 A1
20030031160 Gibson Ang et al. Feb 2003 A1
20030037108 Peiffer et al. Feb 2003 A1
20030177281 McQuillan et al. Sep 2003 A1
20030203740 Bahl et al. Oct 2003 A1
20040003037 Fujimoto et al. Jan 2004 A1
20040153506 Ito et al. Aug 2004 A1
20040166878 Erskine et al. Aug 2004 A1
20040213393 Bedingfield et al. Oct 2004 A1
20040233840 Bye Nov 2004 A1
20040240638 Donovan Dec 2004 A1
20050027867 Mueller et al. Feb 2005 A1
20050070310 Caspi et al. Mar 2005 A1
20050202836 Schaedler et al. Sep 2005 A1
20060053197 Yoshimura et al. Mar 2006 A1
20060291488 Naqvi et al. Dec 2006 A1
20070185809 Duan Aug 2007 A1
20090207730 Stamoulis et al. Aug 2009 A1
20090225719 Zhi et al. Sep 2009 A1
20090245108 Wu et al. Oct 2009 A1
20090327112 Li et al. Dec 2009 A1
20100137002 Agarwal et al. Jun 2010 A1
20100161802 Tofighbakhsh et al. Jun 2010 A1
20100184403 Cai et al. Jul 2010 A1
20100287121 Li et al. Nov 2010 A1
20110003579 Cai et al. Jan 2011 A1
20110158090 Riley et al. Jun 2011 A1
20110170411 Wang et al. Jul 2011 A1
20110170412 Ramadas et al. Jul 2011 A1
20110208853 Castro-Castro et al. Aug 2011 A1
20110217979 Nas Sep 2011 A1
20110231540 Tai et al. Sep 2011 A1
20110246586 Steele Oct 2011 A1
20110307790 Pandya et al. Dec 2011 A1
20110317557 Siddam et al. Dec 2011 A1
20120026947 Miller et al. Feb 2012 A1
20120034900 Agarwal Feb 2012 A1
20120052866 Froehlich et al. Mar 2012 A1
20120059943 Castro et al. Mar 2012 A1
20120094685 Marsico Apr 2012 A1
20120096139 Cackowski et al. Apr 2012 A1
20120099715 Ravishankar et al. Apr 2012 A1
20120100849 Marsico Apr 2012 A1
20120129488 Patterson et al. May 2012 A1
20120140632 Norp et al. Jun 2012 A1
20120163297 Agarwal et al. Jun 2012 A1
20120176894 Cai et al. Jul 2012 A1
20120220330 Goldner et al. Aug 2012 A1
20120233325 Zhou et al. Sep 2012 A1
20120257499 Chatterjee et al. Oct 2012 A1
20130017803 Li et al. Jan 2013 A1
20130036215 Kupinsky et al. Feb 2013 A1
Foreign Referenced Citations (18)
Number Date Country
0 088 639 Sep 1983 EP
0 212 654 May 1987 EP
0 258 654 Mar 1988 EP
0 264 023 Apr 1988 EP
1 100 279 May 2001 EP
2 382 267 May 2003 GB
WO 8401073 Mar 1984 WO
WO 8603915 Jul 1986 WO
WO 8800419 Jan 1988 WO
WO 9914910 Mar 1999 WO
WO 0016583 Mar 2000 WO
WO 0035155 Jun 2000 WO
WO 0120920 Mar 2001 WO
WO 9733441 Mar 2001 WO
WO 0156308 Aug 2001 WO
WO 2006031678 Mar 2006 WO
WO 2012021344 Feb 2012 WO
WO 2013126057 Aug 2013 WO
Non-Patent Literature Citations (34)
Entry
Non-Final Office Action for U.S. Appl. No. 13/402,756 (May 10, 2013).
Non-Final Office Action for U.S. Appl. No. 13/274,936 (May 1, 2013).
Non-Final Office Action for U.S. Appl. No. 13/277,626 (Feb. 27, 2013).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Charging management; Diameter charging applications (Release 9), ” 3GPP TS 32.299 V9.4.0, pp. 1-148 (Jun. 2010).
3GPP, “Digital Cellular Telecommunications System (Phase 2+); Universal Mobile Telecommunications System (UMTS); Universal Subscriber Identity Module (USIM) Application Toolkit (USAT) (3GPP TS 31.111 version 8.3.0 Release 8),” ETSI TS 131 111 V8.3.0, pp. 1-102 (Oct. 2008).
“BICC Architecture and BICC Protocol Details,” Tekelec, p. 28-41 (2008).
“BICC Signaling Router (BSR) Reference Architecture (WP005274),” Tekelec, p. 2-91 (2008).
Jennings et al., “Session Initiation Protocol (SIP) URIs for Application such as Voicemail and Interactive Voice Response (IVR),” The Internet Society, RFC 4458 (Apr. 2006).
“Interworking Between Session Initiation Protocol (SIP) and Bearer Independent Call Control Protocol or ISDN User Part,” ITU-T Q. 1912.5, p. 1-101 (Mar. 2004).
“Prepaid vs. Number Portability,” Power Point presentation (publication date unknown; electronic file creation date Jul. 29, 2003).
“Bearer Independent Call Bearer Control Protocol,” ITU-T Q.1950, p. 1-96 (Dec. 2002).
Chang, “BICC Extension of SIP in Inter-Network Configuration,” Internet Engineering Task Force, draft-chang-sipping-bicc-network-00.txt, pp. 1-17 (Mar. 2002).
Marshall et al., “SIP Extensions for Supporting Distributed Call State,” SIP Working Group, Internet Draft, pp. 1-12 (Aug. 2001).
“Bearer Independent Call Control Protocol (Capability Set 2) and Signalling System No. 7 ISDN User Part: Formats and Codes,” ITU-T Q.1902.3, p. 1-141 (Jul. 2001).
“Bearer Independent Call Control Protocol (Capability Set 2) and Signaling System No. 7 ISDN user part: General Functions of Messages and Parameters,” ITU-T Q.1902.2 (Jul. 2001).
“Bearer Independent Call Control Protocol (Capability Set 2): Functional Description,” ITU-T Q.1902.1, p. 1-23 (Jul. 2001).
“Bearer Independent Call Control Protocol,” ITU-T Q.1901 (Jun. 2000).
Sugano et al., “Presence Information Data Format for IMPP,” Internet draft, draft-ietf-impp-pidf-01.text, Network Working Group, pp. 1-17 (Mar. 10, 2000).
Liao et al., “SS7-TCAP/IP Interworking,” Internet Engineering Task Force, pp. 1-14 (Mar. 1999).
De Ment, “The Evolution of Signaling,” NMS Communications, p. 1-28 (Publication Date Unknown).
“Mobile Wireless Overview,” Cisco IOS Mobile Wireless Configuration Guide, pp. MWC-1-MWC-8 (Publication Date Unknown).
Advisory Action Before the Filing of an Appeal Brief for U.S. Appl. No. 13/402,756 (Dec. 30, 2013).
Final Office Action for U.S. Appl. No. 13/274,936 (Nov. 15, 2013).
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/330,086 (Nov. 6, 2013).
Final Office Action for U.S. Appl. No. 13/402,756 (Sep. 19, 2013).
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/277,626 (Aug. 20, 2013).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Application No. PCT/US2012/026178 (Jul. 30, 2012).
Commonly-assigned, co-pending International Application No. PCT/US12/26178 for “Methods, Systems, and Computer Readable Media for Network Metadata Based Policy Control,” (Unpublished, filed Feb. 22, 2012).
Commonly-assigned, co-pending U.S. Appl. No. 13/402,756 for “Methods, Systems, and Computer Readable Media for Network Metadata Based Policy Control,” (Unpublished, filed Feb. 22, 2012).
“About 3GPP: What is the difference between a SIM and a USIM? What is a UICC?,” About http://www.3gpp.org/FAQ#outil—sommaire—58, pp. 1-11 (Copyright 2012).
“Smart Cards; Card Application Toolkit (CAT) (Release 10),” ETSI TS 102 223 V10.5.0, pp. 1-224 (Sep. 2011).
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Universal Geographical Area Description (GAD) (Release 10),” 3GPP TS 23.032, pp. 1-29 (Mar. 2011).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Policy and Charging Control over Rx reference point (Release 9),” 3GPP TS 29.214 V9.3.0, pp. 1-44 (Mar. 2010).
“3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Policy and Charging Control over Gx reference point (Release 9),” 3GPP TS 29.212 V9.2.0, pp. 1-111 (Mar. 2010).
Related Publications (1)
Number Date Country
20120084371 A1 Apr 2012 US
Provisional Applications (1)
Number Date Country
61390159 Oct 2010 US