METHODS, SYSTEMS, AND DEVICES FOR GENERATING A COMPLEMENTARY OBJECT FOR A PRIMARY OBJECT BASED ON USER NEEDS AND AN ENVIRONMENT IN WHICH THE PRIMARY OBJECT AND THE COMPLEMENTARY OBJECT ARE UTILIZED

Information

  • Patent Application
  • 20230244196
  • Publication Number
    20230244196
  • Date Filed
    January 31, 2022
    2 years ago
  • Date Published
    August 03, 2023
    a year ago
Abstract
Aspects of the subject disclosure may include, for example, obtaining an image of an object over a communication network from a first communication device associated with a user, obtaining first information associated with the object, and receiving user-generated input over the communication network from the first communication device. The user-generated input indicates to generate a group of complementary objects associated with the object. Further embodiments can include, in response to receiving the user-generated input, providing instructions to generate the group of complementary objects over the communication network to a second communication device associated with the user based on the image of the object and the first information. The second communication device generates the group of complementary objects. Other embodiments are disclosed.
Description
FIELD OF THE DISCLOSURE

The subject disclosure relates to methods, systems, and devices for generating a complementary object for a primary object based on user needs and an environment in which the primary object and the complementary object are utilized.


BACKGROUND

In the current state of the art, a user can be assembling or repairing a machine (e.g., vehicle, electronic equipment, etc.) and may need a specialized tool or replacement part. In such instances, the user can likely visit a store or order online to purchase or obtain the specialized tool or replacement part. In other instances, a user can be interacting with a cross-reality environment with a cross-reality input device. In addition, the user would like to obtain an enhancement to the cross-reality input device to have an improved user experience in the cross-reality environment. The user may either order online or visit a store to purchase or obtain the enhancement to the cross-reality input device. Thus, the user can be limited in ways to obtain a specialized tool, replacement part, or enhancement to a cross-reality input device.





BRIEF DESCRIPTION OF THE DRAWINGS

Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:



FIG. 1 is a block diagram illustrating an exemplary, non-limiting embodiment of a communications network in accordance with various aspects described herein.



FIGS. 2A-2F are block diagrams illustrating example, non-limiting embodiments of systems functioning within the communication network of FIG. 1 in accordance with various aspects described herein.



FIGS. 2G-2J depict illustrative embodiments of methods in accordance with various aspects described herein.



FIG. 3 is a block diagram illustrating an example, non-limiting embodiment of a virtualized communication network in accordance with various aspects described herein.



FIG. 4 is a block diagram of an example, non-limiting embodiment of a computing environment in accordance with various aspects described herein.



FIG. 5 is a block diagram of an example, non-limiting embodiment of a mobile network platform in accordance with various aspects described herein.



FIG. 6 is a block diagram of an example, non-limiting embodiment of a communication device in accordance with various aspects described herein.





DETAILED DESCRIPTION

The subject disclosure describes, among other things, illustrative embodiments for obtaining an image of an object over a communication network from a first communication device associated with a user, obtaining first information associated with the object, and receiving user-generated input over the communication network from the first communication device. The user-generated input indicates to generate a group of complementary objects associated with the object. Further embodiments can include, in response to receiving the user-generated input, providing instructions to generate the group of complementary objects over the communication network to a second communication device associated with the user based on the image of the object and the first information. The second communication device generates the group of complementary objects. Other embodiments are described in the subject disclosure.


One or more aspects of the subject disclosure include a device, comprising a processing system including a processor, and a memory that stores executable instructions that, when executed by the processing system, facilitate performance of operations. The operations can comprise obtaining an image of an object over a communication network from a first communication device associated with a user, obtaining first information associated with the object, and receiving user-generated input over the communication network from the first communication device. The user-generated input indicates to generate a group of complementary objects associated with the object. Further operations can comprise, in response to receiving the user-generated input, providing instructions to generate the group of complementary objects over the communication network to a second communication device associated with the user based on the image of the object and the first information. The second communication device generates the group of complementary objects.


One or more aspects of the subject disclosure include a non-transitory machine-readable medium, comprising executable instructions that, when executed by a processing system including a processor, facilitate performance of operations. The operations can comprise obtaining an image of a part of a machine over a communication network from a first communication device associated with a user, obtaining first information associated with the part of the machine, and receiving user-generated input over the communication network from the first communication device. The user-generated input indicates to generate a group of complementary objects associated with the part of the machine. Further operations can comprise, in response to receiving the user-generated input, providing instructions to generate the group of complementary objects over the communication network to a three-dimensional printer associated with the user based on the image of the part of the machine and the first information. The three-dimensional printer generates the group of complementary objects.


One or more aspects of the subject disclosure include a method. The method can comprise obtaining, by a processing system including a processor, an image of a cross-reality input device for a cross-reality communication device over a communication network from a first communication device associated with a user, obtaining, by the processing system, first information associated with a cross-reality environment, and receiving, by the processing system, user-generated input over the communication network from the first communication device. The user-generated input can indicate required generation of a group of complementary objects associated with the cross-reality input device. Further, the method can comprise in response to receiving the user-generated input, providing, by the processing system, instructions to generate the group of complementary objects over the communication network to a second communication device associated with the user based on the image of the cross-reality input device and the first information, wherein the second communication device generates the group of complementary objects. In one embodiments, complementary objects can include additional sensors for the primary object, for example, gyroscopic sensors, light intensity sensors, infrared sensors, directional magnetometers, an array of additional microphones for spatialization, or additional radio communication devices to enhance or extend digital communication of the first communication device with the complementary objects. In another embodiments, the complementary objects may include additional beacons, indicators, or patterns to assist the recognition of the primary object in different uses and contexts. For example, the indicators may be optical and static (stickers, coloration, patterns, etc.) or optional and dynamic (LEDs, beacons, or other intermittent signaling). In another example, the indicators may be sonic in nature, emitting audible or inaudible signals that allow better coordination and synchronization with one or more cross-reality of secondary communication devices. In yet another example, beacons based on the emission of network-receivable communications, such as geo-spatial beacons, Bluetooth or WiFi based beacons, Near Field Communications (NFC) active or passive emission, or other protocol-based low-energy communication methods. In yet another example still, tactile actuators may be included as complementary objects. For example, the complementary objects may temporarily change the shape of the primary object (for example to create teeth or notches to emulate a physical key) such that the original primary object was unable to correctly trigger or actuate a change for cross-reality input or communication devices.


Referring now to FIG. 1, a block diagram is shown illustrating an example, non-limiting embodiment of a system 100 in accordance with various aspects described herein. For example, system 100 can facilitate in whole or in part generating a complementary object for a primary object (either physically or virtually) based on user needs and an environment in which the primary object and the complementary object are utilized. In particular, a communications network 125 is presented for providing broadband access 110 to a plurality of data terminals 114 via access terminal 112, wireless access 120 to a plurality of mobile devices 124 and vehicle 126 via base station or access point 122, voice access 130 to a plurality of telephony devices 134, via switching device 132 and/or media access 140 to a plurality of audio/video display devices 144 via media terminal 142. In addition, communication network 125 is coupled to one or more content sources 175 of audio, video, graphics, text and/or other media. While broadband access 110, wireless access 120, voice access 130 and media access 140 are shown separately, one or more of these forms of access can be combined to provide multiple access services to a single client device (e.g., mobile devices 124 can receive media content via media terminal 142, data terminal 114 can be provided voice access via switching device 132, and so on).


The communications network 125 includes a plurality of network elements (NE) 150, 152, 154, 156, etc. for facilitating the broadband access 110, wireless access 120, voice access 130, media access 140 and/or the distribution of content from content sources 175. The communications network 125 can include a circuit switched or packet switched network, a voice over Internet protocol (VoIP) network, Internet protocol (IP) network, a cable network, a passive or active optical network, a 4G, 5G, or higher generation wireless access network, WIMAX network, UltraWideband network, personal area network or other wireless access network, a broadcast satellite network and/or other communications network.


In various embodiments, the access terminal 112 can include a digital subscriber line access multiplexer (DSLAM), cable modem termination system (CMTS), optical line terminal (OLT) and/or other access terminal. The data terminals 114 can include personal computers, laptop computers, netbook computers, tablets or other computing devices along with digital subscriber line (DSL) modems, data over coax service interface specification (DOCSIS) modems or other cable modems, a wireless modem such as a 4G, 5G, or higher generation modem, an optical modem and/or other access devices.


In various embodiments, the base station or access point 122 can include a 4G, 5G, or higher generation base station, an access point that operates via an 802.11 standard such as 802.11n, 802.11ac or other wireless access terminal. The mobile devices 124 can include mobile phones, e-readers, tablets, phablets, wireless modems, and/or other mobile computing devices.


In various embodiments, the switching device 132 can include a private branch exchange or central office switch, a media services gateway, VoIP gateway or other gateway device and/or other switching device. The telephony devices 134 can include traditional telephones (with or without a terminal adapter), VoIP telephones and/or other telephony devices.


In various embodiments, the media terminal 142 can include a cable head-end or other TV head-end, a satellite receiver, gateway or other media terminal 142. The display devices 144 can include televisions with or without a set top box, personal computers and/or other display devices.


In various embodiments, the content sources 175 include broadcast television and radio sources, video on demand platforms and streaming video and audio services platforms, one or more content data networks, data servers, web servers and other content servers, and/or other sources of media.


In various embodiments, the communications network 125 can include wired, optical and/or wireless links and the network elements 150, 152, 154, 156, etc. can include service switching points, signal transfer points, service control points, network gateways, media distribution hubs, servers, firewalls, routers, edge devices, switches and other network nodes for routing and controlling communications traffic over wired, optical and wireless links as part of the Internet and other public networks as well as one or more private networks, for managing subscriber access, for billing and network management and for supporting other network functions.



FIGS. 2A-2F are block diagrams illustrating example, non-limiting embodiments of systems functioning within the communication network of FIG. 1 in accordance with various aspects described herein. Referring to FIG. 2A, in one or more embodiments, the system 200 can include a server 202a, and a server 202b communicatively coupled to each other over communication network 202c. Further, each of server 202a and server 202b can be communicatively coupled over communication network 202c to a communication device 202d and a communication device 202h, both of which are associated with user 202e. Communication network 202c can comprise a wireless communication network, a wired communication network, or a combination thereof. Each of server 202a and server 202b can comprise one or more servers in one location, one or more servers spanning more than one location, one or more virtual servers in one location, one or more virtual servers spanning more than one locations, one or more cloud servers, or a combination thereof. Each of communication device 202d and each communication device 202h can comprise a mobile phone, mobile device, smartphone, tablet computer, desktop computer, laptop computer, three-dimensional computer, virtual reality device, cross-reality device, augmented reality device, or a combination thereof.


In one or more embodiments, a user can be repairing a machine 202f with a broken part 202g. Thus, the user 202e is in need of a replacement part 202i to repair machine 202f. The user 202e can capture an image of the broken part 202g and/or the machine 202f (e.g., electronics equipment) with the camera associated with a communication device 202d (e.g., smartphone). Further, the server 202a can obtain an image of the broken part 202g and/or machine 202f over communication network 202c from communication device 202d. The server 202a can obtain information from server 202b, which can be associated with the manufacturer of the machine 202f. This information can include a specification for replacement part 202i. In addition, the server 202a can obtain user-generated input from communication device 202d that indicates that the user 202e would like the replacement part 202i be generated. In response to receiving the user-generated input, the server 202a can provide instructions, over communication network 202c, to the communication device 202h (e.g., three-dimensional (3D) printer) to generate the replacement part 202i. In response to receiving the instructions, the communication device 202h can generate the replacement part 202i. After the replacement part 202i has been generated, the user 202e can use the replacement part 202i to repair the machine 202f. Thus, the user can repair machine 202f without the need to order the replacement part 202i and wait for it to be delivered, or visit a store to purchase and/or obtain the replacement part 202i. In some embodiments, the replacement part 202i generated by communication device 202h can be a temporary replacement part, and the server 202a can order (online over the Internet) a permanent replacement part on behalf of user 202e and deliver it to user 202e accordingly.


Referring to FIG. 2B, in one or more embodiments, the system 205 can include a server 205a, and a server 205b communicatively coupled to each other over communication network 205c. Further, each of server 205a and server 205b can be communicatively coupled over communication network 205c to a communication device 205d and a communication device 205h, both of which are associated with user 205e. Communication network 205c can comprise a wireless communication network, a wired communication network, or a combination thereof. Each of server 205a and server 205b can comprise one or more servers in one location, one or more servers spanning more than one location, one or more virtual servers in one location, one or more virtual servers spanning more than one locations, one or more cloud servers, or a combination thereof. Each of communication device 205d and each communication device 205h can comprise a mobile phone, mobile device, smartphone, tablet computer, desktop computer, laptop computer, three-dimensional computer, virtual reality device, cross-reality device, augmented reality device, or a combination thereof.


In one or more embodiments, a user can be assembling a machine 205f that includes installing a part 205g of the machine. During assembly, the user 205e is in need a specialized tool 205i to install part 205g to complete assembly of machine 205f. The user 205e can capture an image of the part 205g and/or the machine 205f (e.g., electronics equipment) with the camera associated with a communication device 205d (e.g., smartphone). Further, the server 205a can obtain an image of the part 205g and/or machine 205f over communication network 205c from communication device 205d. The server 205a can obtain information from server 205b, which can be associated with the manufacturer of the machine 205f. This information can include specification for the specialized tool 205i. In addition, the server 205a can obtain user-generated input from communication device 205d that indicates that the user 205e would like the specialized tool 205i be generated. In response to receiving the user-generated input, the server 205a can provide instructions, over communication network 205c, to the communication device 205h (e.g., 3D printer) to generate the specialized tool 205i. In response to receiving the instructions, the communication device 205h can generate the specialized tool 205i. After the specialized tool 205i has been generated, the user 205e can use the specialized tool 205i to complete assembly of the machine 205f. Thus, the user 205e can complete assembly of machine 205f without the need to order the specialized tool 205i and wait for it to be delivered, or visit a store to purchase and/or obtain the specialized tool 205i.


In one or more embodiments, the user 205e can have a handicap (e.g., missing one or more fingers) that may inhibit use of a standard specialized tool. Consequently, the user 205e can capture images of their body part that would use the specialized tool utilizing the camera associated with communication device 205d and provide the captured images of the body part to server 205a over communication network 205c. Further, the server 205a can adjust the specifications of the specialized tool to accommodate the user's handicap as show in the capture images of the body part to provide instructions to the communication device 205h to generate an adjusted specialized tool. In response to receiving such instructions, the communication device 205h can generate the adjusted specialized tool.


Referring to FIG. 2C, in one or more embodiments, the system 210 can include a server 210a, and a server 210b communicatively coupled to each other over communication network 210c. Further, each of server 210a and server 210b can be communicatively coupled over communication network 210c to a communication device 210d and a communication device 210j, both of which are associated with user 210e. Communication network 210c can comprise a wireless communication network, a wired communication network, or a combination thereof. Each of server 210a and server 210b can comprise one or more servers in one location, one or more servers spanning more than one location, one or more virtual servers in one location, one or more virtual servers spanning more than one locations, one or more cloud servers, or a combination thereof. Each of communication device 210d and each communication device 210j can comprise a mobile phone, mobile device, smartphone, tablet computer, desktop computer, laptop computer, three-dimensional computer, virtual reality device, cross-reality device, augmented reality device, or a combination thereof.


In one or more embodiments, a user 210e can be assembling a machine 210g that includes installing a part 210h of the machine. During assembly, the user 210e may be confused how to install part 210h to complete assembly of machine 210g. The user 210e can capture an image of the part 210h and/or the machine 210g (e.g., electronics equipment) as well as pages of an owner manual 210i associated with the machine 210g with the camera associated with a communication device 210d (e.g., smartphone). Further, the server 210a can obtain an image of the part 210h and/or machine 210g as well pages of the owner manual 210i over communication network 210c from communication device 210d. The server 210a can obtain information from server 210b, which can be associated with the manufacturer of the machine 210g. This information can include cross-reality video content that includes instructional video content that illustrates the way in which to install part 210h into machine 210g. In addition, the server 210a can obtain user-generated input from communication device 210d that indicates that the user 210e would like to view the cross-reality video content. In response to receiving the user-generated input, the server 210a, can provide instructions, over communication network 210c, to the communication device 210j (e.g., cross-reality communication device/headset) to obtain the cross-reality video content from server 210a or server 210b and present the cross-reality video content on display 210k. After viewing the cross-reality video content that includes the instructional video content, the user 210e can complete assembly of the machine 210g.


Referring to FIG. 2D, in one or more embodiments, the system 215 can include a server 215a, and a server 215b communicatively coupled to each other over communication network 215c. Further, each of server 215a and server 215b can be communicatively coupled over communication network 215c to a communication device 215d, a communication device 215j, and communication device 215f, each of which are associated with user 215e. Communication network 215c can comprise a wireless communication network, a wired communication network, or a combination thereof. Each of server 215a and server 215b can comprise one or more servers in one location, one or more servers spanning more than one location, one or more virtual servers in one location, one or more virtual servers spanning more than one locations, one or more cloud servers, or a combination thereof. Each of communication device 215d, communication device 215f, and communication device 215j can comprise a mobile phone, mobile device, smartphone, tablet computer, desktop computer, laptop computer, three-dimensional computer, virtual reality device, cross-reality device, augmented reality device, or a combination thereof.


In one or more embodiments, a user 215e can have a cross-reality input device 215l (e.g., a wand in wizard cross-reality video game) to be used in conjunction with communication device 215j (e.g., cross-reality communication device/headset). Further, the user 215e would like to enhance the cross-reality input device 215l with a sensor 215g to better detect movement of the cross-realty input device when handled and utilized by the user 215e. The user 215e can capture an image of the cross-reality input device 215l with the camera associated with a communication device 215d (e.g., smartphone). Further, the server 215a can obtain an image of the cross-reality input device 215l over communication network 215c from communication device 215d. The server 215a can obtain information from server 215b, which can be associated with the manufacturer of the cross-reality input device 215l. This information can include cross-reality video content that includes specifications of sensor 215g. In addition, the server 215a can obtain user-generated input from communication device 215d that indicates that the user 205e would like to communication device 215f (e.g., 3D printer) to generate the sensor 215g. In response to receiving the user-generated input, the server 215a, can provide instructions, over communication network 215c, to the communication device 215f to generate the sensor. Further, after receiving the instructions from the server 215a, the communication device 215f can generate the sensor 215g. The user 215e can install the sensor to the cross-reality input device to be used in the cross-reality environment as presented in display 215k of communication device 215j. In some embodiments, a cross-reality environment for which the cross-reality input device is utilized comprises aspects of virtual reality, augmented reality, physical reality, or a combination thereof.


Referring to FIG. 2E, in one or more embodiments, the system 225 can include a server 225a, and a server 225b communicatively coupled to each other over communication network 225c. Further, each of server 225a and server 225b can be communicatively coupled over communication network 225c to a communication device 225d, and communication device 225j, each of which are associated with user 225e. Communication network 225c can comprise a wireless communication network, a wired communication network, or a combination thereof. Each of server 225a and server 225b can comprise one or more servers in one location, one or more servers spanning more than one location, one or more virtual servers in one location, one or more virtual servers spanning more than one locations, one or more cloud servers, or a combination thereof. Each of communication device 225d and communication device 225j can comprise a mobile phone, mobile device, smartphone, tablet computer, desktop computer, laptop computer, three-dimensional computer, virtual reality device, cross-reality device, augmented reality device, or a combination thereof.


In one or more embodiments, a user 225e can have a cross-reality input device 225l (e.g., a wand in wizard cross-reality video game) to be used in conjunction with communication device 225j (e.g., cross-reality communication device/headset). Further, the user 225e would like to enhance the cross-reality input device 225l with a sensor 225g within the cross-reality environment presented on display 225k of communication device 225j (e.g., cross-reality communication device/headset). The user 225e can capture an image of the cross-reality input device 225l with the camera associated with a communication device 225d (e.g., smartphone). Further, the server 225a can obtain an image of the cross-reality input device 225l over communication network 225c from communication device 225d. The server 225a can obtain information from server 225b, which can be associated with the manufacturer of the cross-reality input device 225l. This information can include specifications of sensor 225n to be generated in the cross-reality environment. In addition, the server 225a can obtain user-generated input from communication device 225d that indicates that the user 225e would like to communication device 225j (e.g., 3D printer) to generate the sensor 225n in the cross-reality environment. In response to receiving the user-generated input, the server 225a, can provide instructions, over communication network 225c, to the communication device 225j to generate the sensor 225n (e.g., virtual/cross-reality object) in the cross-reality environment. Further, after receiving the instructions from the server 225a, the communication device 225j can generate the sensor 225n (e.g., virtual/cross-reality object) in the cross-reality environment to be utilized by user 225e in conjunction with the cross-reality input device 225l within the cross-reality environment.


Referring to FIG. 2F, system 230 can comprise user communication devices 230a, a server that can include a user display/interaction engine 230b, a coordination needs/generation engine 230c, and user state/context alignment engine 230d as well as scanner/input sources 230e, and an item production device 230f (e.g., 3D printer). Further, the system 230 can include a group of transitions that include engaging a user session 230g and/or loading a user profile from a database 230h. In addition, the group of transitions can include user inputting area of interest 230j of the user and the server understanding the user context. The transitions 230g, 230i, 230j can include understanding a user needs which can be driven by context (e.g., machine assembly, entertainment, education, etc.), and personalization/enablement of an object for the user. Also, the group of transitions can include understanding the user context 230k and scanning an object or a user 2301 to gather their physical features. These transitions align the user's needs to collect available complementary objects. The user may provide specific example that illustrate a user's need, or provide a catalog of a prior, similar experience (e.g., assembly or repair of a machine). Based on the user's needs and inputted information, the server can determine how to provide/generate complementary objects. This can include adapting/augmenting a similar object in possession by the user. The group of transitions can include drafting a complementary object or item 230m. This can include, for example, engaging a 3D printer or cross-reality communication device to generate the complementary object. This generated object can be a physical object, or a virtual object that can be used with a virtual reality/augmented reality/mixed environment. Further, it can be rendered first in a virtual reality/augmented reality/mixed environment or vice-versa per user needs and/or request. This object can include customization, personalization, add-ons, etc. and be stored/accessible to the user within a specific software context but also outside. The user can have ownership rights on this customized object that has been created and may choose to provide permission other users, OEMs, etc. to use the design. For digital items/objects, the user can own this as a nonfungible token (NFT) object (e.g., it can be part of the group of complementary objects described herein) and be able to sell/lease accordingly. The system would recognize this object as NFT associated with his user and prevent misuse accordingly. Further, the group of transitions can include receiving user engagement and feedback 230n on the draft of the complementary object. This can include iteratively validating the complementary object. In addition, the server can provide build instructions 230o and then complete generation of the item 230p (e.g., by a 3D printer). This can include cataloging personalization of completed complementary object and linking to additional content to share as well as cataloging new interactions with the complementary object for future enhancement. In some embodiments, this can include generating the object from a material that is different from the original material of the part (3D printing of a plastic or resin part to replace a metal part). The system can suggest the appropriate material, or user can specify this.



FIGS. 2G-2J depict illustrative embodiments of methods in accordance with various aspects described herein. Referring to FIG. 2G, aspects of method 240 can be implemented by a server or a communication device described herein. Method 240 can include the server, at 240a, obtaining an image of an object over a communication network from a first communication device associated with a user. Further, the method 240 can include the server, at 240b, obtaining first information associated with the object. In addition, the method 240 can include the server, at 240c, receiving user-generated input over the communication network from the first communication device. The user-generated input indicates to generate a group of complementary objects associated with the object. Also, the method 240 can include the server, at 240d, providing instructions to generate the group of complementary objects over the communication network to a second communication device associated with the user based on the image of the object and the first information. The method 240 can include the second communication device, at 240e, generating the group of complementary objects.


In one or more embodiments, the method 240 can include the server, at 240f, obtaining first information from another server. Further, the method 240 can include the server, at 240g, obtaining the first information from the first communication device. In addition, the method 240 can include the server, at 240h, obtaining group of images from the first communication device. The first information comprises the group of images. The group of images can be of an owner's manual, images of the object or related objects, or of the user themselves.


In one or more embodiments, the object comprises a part of a machine, and the first information associated with the object comprises second information associated with the machine. In some embodiments, the second information comprises (images of) an owner's manual associated with the machine. In other embodiments, the second information comprises a group of images associated with the machine. In further embodiments, the group of complementary objects comprises a tool associated with the part of the machine. In additional embodiments, the second communication device comprises a first three-dimensional printer, and the second communication device generating the group of complementary objects comprises the first three-dimensional printer generating the tool associated with the part of the machine. In some embodiments, the group of complementary objects comprises a replacement part associated with the machine. In other embodiments, the second communication device comprises a second three-dimensional printer, and the second communication device generating the group of complementary objects comprises the second three-dimensional printer generating the replacement part associated with the part of the machine.


In one or embodiments, the object comprises a cross-reality input device for a cross-reality communication device that is associated with cross-reality environment, wherein the first information associated with the object comprises third information associated with the cross-reality environment. In some embodiments, the group of complementary objects comprise an additional part for the cross-reality input device. In other embodiments, the second communication device comprises a third three-dimensional printer, and the second communication device generating the group of complementary objects comprises the third three-dimensional printer generating the additional part for the cross-reality input device. In further embodiments, the second communication device comprises the cross-reality communication device, wherein the second communication device generating the group of complementary objects comprises the cross-reality communication device generating the additional part for the cross-reality input device.


In one or more embodiments, the second communication device comprises the first communication device. In further embodiments, the obtaining of the first information associated with the object comprises obtaining the first information associated with the object from the first communication device over the communication network. In additional embodiments, the obtaining of the first information associated with the object comprises obtaining the first information associated with the object from a server associated with the object over the communication network.


Referring to FIG. 2H, aspects of method 245 can be implemented by a server or a communication device described herein. Method 245 can include the server, at 245a, obtaining an image of a part of a machine over a communication network from a first communication device associated with a user. Further, the method 245 can include the server, at 245b, obtaining first information associated with the part of the machine. In addition, the method 245 can include the server, at 245c, receiving user-generated input over the communication network from the first communication device. The user-generated input indicates to generate a group of complementary objects associated with the part of the machine. Also, the method 245 can include the server, at 245d, providing instructions to generate the group of complementary objects over the communication network to a three-dimensional printer associated with the user based on the image of the part of the machine and the first information. The method 245 can include the three-dimensional printer, at 245e, generating the group of complementary objects.


In one or more embodiments, the method 245 can include the server, at 245f, obtaining first information from another server. Further, the method 245 can include the server, at 245g, obtaining the first information from the first communication device. In addition, the method 245 can include the server, at 245h, obtaining group of images from the first communication device. The first information comprises the group of images.


In one or more embodiments, the first information comprises one of (images of) an owner's manual associated with the machine or a group of images associated with the machine, and the group of complementary objects comprises one of a replacement part associated with the machine or a tool associated with the part of the machine.


Referring to FIG. 2I, aspects of method 250 can be implemented by a server or a communication device described herein. Method 250 can include the server, at 250a, obtaining an image of a cross-reality input device for a cross-reality communication device over a communication network from a first communication device associated with a user. Further, method 250 can include the server, at 250b, obtaining first information associated with a cross-reality environment. In addition, the method 250 can include the server, at 250c, receiving user-generated input over the communication network from the first communication device. The user-generated input indicates to generate a group of complementary objects associated with the cross-reality input device. Also, the method 250 can include the server, at 250d, providing instructions to generate the group of complementary objects over the communication network to a second communication device associated with the user based on the image of the cross-reality input device and the first information. The method 250 can include the second communication device, at 250e, generating the group of complementary objects.


In one or more embodiments, the method 250 can include the server, at 250f, obtaining first information from another server. Further, the method 250 can include the server, at 250g, obtaining the first information from the first communication device. In addition, the method 250 can include the server, at 250h, obtaining group of images from the first communication device. The first information comprises the group of images. The group of images can be of the object or related objects.


In one or more embodiments, the second communication device can comprise a three-dimensional printer such that the method 250 can include the server, at 250i, providing instructions to the three-dimensional printer. Further, the second communication device can comprise a cross-reality communication device such that the method 250 can include the server, at 250j, providing instructions to the cross-reality communication device.


In one or more embodiments, the group of complementary objects comprises an additional part to the cross-reality input device such that the method 250 can include the three-dimensional printer, at 250k, generating the additional part. Further, the group of complementary objects comprises an additional part to the cross-reality input device such that the method 250 can include the cross-reality communication device, at 250k, generating the additional part.


In one or more embodiments, the group of complementary objects comprises a first additional part for the cross-reality input device, and the second communication device comprises a three-dimensional printer. The second communication device generating the group of complementary objects comprises the three-dimensional printer generating the first additional part for the cross-reality input device.


In one or more embodiments, the group of complementary objects comprises a second additional part for the cross-reality input device, and the second communication device comprises the cross-reality communication device. The second communication device generating the group of complementary objects comprises the cross-reality communication device generating the second additional part for the cross-reality input device.


Referring to FIG. 2J, in one or more embodiments, aspects of the method 260 can be implemented by a server and/or communication device, as described herein. The method 260 can include, the server determining whether an object at issue is a prior object at issue by obtaining a group of images of the object at issue from the communication device of the user and matching the group of images from previously stored images of the prior object at issue. Further, the method 260 can include the server, determining, at 260b, context from scanning the object at issue (e.g., object at issue is a broken part of a machine and the context is repair of the machine including installation of the part into the machine). In addition, the method 260 can include the server, at 260c, parsing and/or planning adaptation of the object at issue (e.g., generating instructions to produce a replacement part for the broken part). Also, the method 260 can include providing instructions to a local 3D printer or ordering a complementary object to the object issue (e.g., providing instructions to a local 3D printer to generate the replacement part). Further, the method 260 can include the server providing, at 260e instructions to the communication device of the user to automate or guide assembly or validate the complementary object (e.g., provide video content that includes instructions to install the replacement part into the machine). In addition, the method 260 can include the user interacting with a communication device to utilize the complementary object in its environment (e.g., physically, virtually, etc.).


While for purposes of simplicity of explanation, the respective processes are shown and described as a series of blocks in FIGS. 2G-2J, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described herein. Further, one or more blocks may be implemented in response to one or more other blocks.


In addition, some portions of embodiments can be combined with portions of other embodiments.


Referring now to FIG. 3, a block diagram 300 is shown illustrating an example, non-limiting embodiment of a virtualized communication network in accordance with various aspects described herein. In particular a virtualized communication network is presented that can be used to implement some or all of the subsystems and functions of system 100, the subsystems and functions of systems 200, 205, 210, 215, 225, 230, and methods 240, 245, 250, 260 presented in FIGS. 1, 2A-2J, and 3. For example, virtualized communication network 300 can facilitate in whole or in part generating a complementary object for a primary object (either physically or virtually) based on user needs and an environment in which the primary object and the complementary object are utilized.


In particular, a cloud networking architecture is shown that leverages cloud technologies and supports rapid innovation and scalability via a transport layer 350, a virtualized network function cloud 325 and/or one or more cloud computing environments 375. In various embodiments, this cloud networking architecture is an open architecture that leverages application programming interfaces (APIs); reduces complexity from services and operations; supports more nimble business models; and rapidly and seamlessly scales to meet evolving customer requirements including traffic growth, diversity of traffic types, and diversity of performance and reliability expectations.


In contrast to traditional network elements—which are typically integrated to perform a single function, the virtualized communication network employs virtual network elements (VNEs) 330, 332, 334, etc. that perform some or all of the functions of network elements 150, 152, 154, 156, etc. For example, the network architecture can provide a substrate of networking capability, often called Network Function Virtualization Infrastructure (NFVI) or simply infrastructure that is capable of being directed with software and Software Defined Networking (SDN) protocols to perform a broad variety of network functions and services. This infrastructure can include several types of substrates. The most typical type of substrate being servers that support Network Function Virtualization (NFV), followed by packet forwarding capabilities based on generic computing resources, with specialized network technologies brought to bear when general purpose processors or general purpose integrated circuit devices offered by merchants (referred to herein as merchant silicon) are not appropriate. In this case, communication services can be implemented as cloud-centric workloads.


As an example, a traditional network element 150 (shown in FIG. 1), such as an edge router can be implemented via a VNE 330 composed of NFV software modules, merchant silicon, and associated controllers. The software can be written so that increasing workload consumes incremental resources from a common resource pool, and moreover so that it is elastic: so, the resources are only consumed when needed. In a similar fashion, other network elements such as other routers, switches, edge caches, and middle-boxes are instantiated from the common resource pool. Such sharing of infrastructure across a broad set of uses makes planning and growing infrastructure easier to manage.


In an embodiment, the transport layer 350 includes fiber, cable, wired and/or wireless transport elements, network elements and interfaces to provide broadband access 110, wireless access 120, voice access 130, media access 140 and/or access to content sources 175 for distribution of content to any or all of the access technologies. In particular, in some cases a network element needs to be positioned at a specific place, and this allows for less sharing of common infrastructure. Other times, the network elements have specific physical layer adapters that cannot be abstracted or virtualized and might require special DSP code and analog front ends (AFEs) that do not lend themselves to implementation as VNEs 330, 332 or 334. These network elements can be included in transport layer 350.


The virtualized network function cloud 325 interfaces with the transport layer 350 to provide the VNEs 330, 332, 334, etc. to provide specific NFVs. In particular, the virtualized network function cloud 325 leverages cloud operations, applications, and architectures to support networking workloads. The virtualized network elements 330, 332 and 334 can employ network function software that provides either a one-for-one mapping of traditional network element function or alternately some combination of network functions designed for cloud computing. For example, VNEs 330, 332 and 334 can include route reflectors, domain name system (DNS) servers, and dynamic host configuration protocol (DHCP) servers, system architecture evolution (SAE) and/or mobility management entity (MME) gateways, broadband network gateways, IP edge routers for IP-VPN, Ethernet and other services, load balancers, distributers and other network elements. Because these elements do not typically need to forward large amounts of traffic, their workload can be distributed across a number of servers—each of which adds a portion of the capability, and which creates an elastic function with higher availability overall than its former monolithic version. These virtual network elements 330, 332, 334, etc. can be instantiated and managed using an orchestration approach similar to those used in cloud compute services.


The cloud computing environments 375 can interface with the virtualized network function cloud 325 via APIs that expose functional capabilities of the VNEs 330, 332, 334, etc. to provide the flexible and expanded capabilities to the virtualized network function cloud 325. In particular, network workloads may have applications distributed across the virtualized network function cloud 325 and cloud computing environment 375 and in the commercial cloud or might simply orchestrate workloads supported entirely in NFV infrastructure from these third-party locations.


Turning now to FIG. 4, there is illustrated a block diagram of a computing environment in accordance with various aspects described herein. In order to provide additional context for various embodiments of the embodiments described herein, FIG. 4 and the following discussion are intended to provide a brief, general description of a suitable computing environment 400 in which the various embodiments of the subject disclosure can be implemented. In particular, computing environment 400 can be used in the implementation of network elements 150, 152, 154, 156, access terminal 112, base station or access point 122, switching device 132, media terminal 142, and/or VNEs 330, 332, 334, etc. Each of these devices can be implemented via computer-executable instructions that can run on one or more computers, and/or in combination with other program modules and/or as a combination of hardware and software. For example, computing environment 400 can facilitate in whole or in part generating a complementary object for a primary object (either physically or virtually) based on user needs and an environment in which the primary object and the complementary object are utilized. Further, each of server 202a, server 202b, communication device 202d, communication device 202h, server 205a, server 205b, communication device 205d, communication device 205h, server 210a, server 210b, communication device 210d, communication device 210j, server 215a, server 215b, communication device 215d, communication device 215f, communication device 215j, cross-reality input device 215l, sensor 215g, server 225a, server 225b, communication device 225d, communication device 225j, cross-reality input device 225l, user communication devices 230a, server engines 230b, 230c, 230d, scanner/input sources 230e, item production devices 230f, and database 230h comprise computing environment 400.


Generally, program modules comprise routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the methods can be practiced with other computer system configurations, comprising single-processor or multiprocessor computer systems, minicomputers, mainframe computers, as well as personal computers, hand-held computing devices, microprocessor-based or programmable consumer electronics, and the like, each of which can be operatively coupled to one or more associated devices.


As used herein, a processing circuit includes one or more processors as well as other application specific circuits such as an application specific integrated circuit, digital logic circuit, state machine, programmable gate array or other circuit that processes input signals or data and that produces output signals or data in response thereto. It should be noted that while any functions and features described herein in association with the operation of a processor could likewise be performed by a processing circuit.


The illustrated embodiments of the embodiments herein can be also practiced in distributed computing environments where certain tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.


Computing devices typically comprise a variety of media, which can comprise computer-readable storage media and/or communications media, which two terms are used herein differently from one another as follows. Computer-readable storage media can be any available storage media that can be accessed by the computer and comprises both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer-readable storage media can be implemented in connection with any method or technology for storage of information such as computer-readable instructions, program modules, structured data or unstructured data.


Computer-readable storage media can comprise, but are not limited to, random access memory (RAM), read only memory (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices or other tangible and/or non-transitory media which can be used to store desired information. In this regard, the terms “tangible” or “non-transitory” herein as applied to storage, memory or computer-readable media, are to be understood to exclude only propagating transitory signals per se as modifiers and do not relinquish rights to all standard storage, memory or computer-readable media that are not only propagating transitory signals per se.


Computer-readable storage media can be accessed by one or more local or remote computing devices, e.g., via access requests, queries or other data retrieval protocols, for a variety of operations with respect to the information stored by the medium.


Communications media typically embody computer-readable instructions, data structures, program modules or other structured or unstructured data in a data signal such as a modulated data signal, e.g., a carrier wave or other transport mechanism, and comprises any information delivery or transport media. The term “modulated data signal” or signals refers to a signal that has one or more of its characteristics set or changed in such a manner as to encode information in one or more signals. By way of example, and not limitation, communication media comprise wired media, such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media.


With reference again to FIG. 4, the example environment can comprise a computer 402, the computer 402 comprising a processing unit 404, a system memory 406 and a system bus 408. The system bus 408 couples system components including, but not limited to, the system memory 406 to the processing unit 404. The processing unit 404 can be any of various commercially available processors. Dual microprocessors and other multiprocessor architectures can also be employed as the processing unit 404.


The system bus 408 can be any of several types of bus structure that can further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures. The system memory 406 comprises ROM 410 and RAM 412. A basic input/output system (BIOS) can be stored in a non-volatile memory such as ROM, erasable programmable read only memory (EPROM), EEPROM, which BIOS contains the basic routines that help to transfer information between elements within the computer 402, such as during startup. The RAM 412 can also comprise a high-speed RAM such as static RAM for caching data.


The computer 402 further comprises an internal hard disk drive (HDD) 414 (e.g., EIDE, SATA), which internal HDD 414 can also be configured for external use in a suitable chassis (not shown), a magnetic floppy disk drive (FDD) 416, (e.g., to read from or write to a removable diskette 418) and an optical disk drive 420, (e.g., reading a CD-ROM disk 422 or, to read from or write to other high capacity optical media such as the DVD). The HDD 414, magnetic FDD 416 and optical disk drive 420 can be connected to the system bus 408 by a hard disk drive interface 424, a magnetic disk drive interface 426 and an optical drive interface 428, respectively. The hard disk drive interface 424 for external drive implementations comprises at least one or both of Universal Serial Bus (USB) and Institute of Electrical and Electronics Engineers (IEEE) 1394 interface technologies. Other external drive connection technologies are within contemplation of the embodiments described herein.


The drives and their associated computer-readable storage media provide nonvolatile storage of data, data structures, computer-executable instructions, and so forth. For the computer 402, the drives and storage media accommodate the storage of any data in a suitable digital format. Although the description of computer-readable storage media above refers to a hard disk drive (HDD), a removable magnetic diskette, and a removable optical media such as a CD or DVD, it should be appreciated by those skilled in the art that other types of storage media which are readable by a computer, such as zip drives, magnetic cassettes, flash memory cards, cartridges, and the like, can also be used in the example operating environment, and further, that any such storage media can contain computer-executable instructions for performing the methods described herein.


A number of program modules can be stored in the drives and RAM 412, comprising an operating system 430, one or more application programs 432, other program modules 434 and program data 436. All or portions of the operating system, applications, modules, and/or data can also be cached in the RAM 412. The systems and methods described herein can be implemented utilizing various commercially available operating systems or combinations of operating systems.


A user can enter commands and information into the computer 402 through one or more wired/wireless input devices, e.g., a keyboard 438 and a pointing device, such as a mouse 440. Other input devices (not shown) can comprise a microphone, an infrared (IR) remote control, a joystick, a game pad, a stylus pen, touch screen or the like. These and other input devices are often connected to the processing unit 404 through an input device interface 442 that can be coupled to the system bus 408, but can be connected by other interfaces, such as a parallel port, an IEEE 1394 serial port, a game port, a universal serial bus (USB) port, an IR interface, etc.


A monitor 444 or other type of display device can be also connected to the system bus 408 via an interface, such as a video adapter 446. It will also be appreciated that in alternative embodiments, a monitor 444 can also be any display device (e.g., another computer having a display, a smart phone, a tablet computer, etc.) for receiving display information associated with computer 402 via any communication means, including via the Internet and cloud-based networks. In addition to the monitor 444, a computer typically comprises other peripheral output devices (not shown), such as speakers, printers, etc.


The computer 402 can operate in a networked environment using logical connections via wired and/or wireless communications to one or more remote computers, such as a remote computer(s) 448. The remote computer(s) 448 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment appliance, a peer device or other common network node, and typically comprises many or all of the elements described relative to the computer 402, although, for purposes of brevity, only a remote memory/storage device 450 is illustrated. The logical connections depicted comprise wired/wireless connectivity to a local area network (LAN) 452 and/or larger networks, e.g., a wide area network (WAN) 454. Such LAN and WAN networking environments are commonplace in offices and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which can connect to a global communications network, e.g., the Internet.


When used in a LAN networking environment, the computer 402 can be connected to the LAN 452 through a wired and/or wireless communication network interface or adapter 456. The adapter 456 can facilitate wired or wireless communication to the LAN 452, which can also comprise a wireless AP disposed thereon for communicating with the adapter 456.


When used in a WAN networking environment, the computer 402 can comprise a modem 458 or can be connected to a communications server on the WAN 454 or has other means for establishing communications over the WAN 454, such as by way of the Internet. The modem 458, which can be internal or external and a wired or wireless device, can be connected to the system bus 408 via the input device interface 442. In a networked environment, program modules depicted relative to the computer 402 or portions thereof, can be stored in the remote memory/storage device 450. It will be appreciated that the network connections shown are example and other means of establishing a communications link between the computers can be used.


The computer 402 can be operable to communicate with any wireless devices or entities operatively disposed in wireless communication, e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, communications satellite, any piece of equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news stand, restroom), and telephone. This can comprise Wireless Fidelity (Wi-Fi) and BLUETOOTH® wireless technologies. Thus, the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices.


Wi-Fi can allow connection to the Internet from a couch at home, a bed in a hotel room or a conference room at work, without wires. Wi-Fi is a wireless technology similar to that used in a cell phone that enables such devices, e.g., computers, to send and receive data indoors and out; anywhere within the range of a base station. Wi-Fi networks use radio technologies called IEEE 802.11 (a, b, g, n, ac, ag, etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used to connect computers to each other, to the Internet, and to wired networks (which can use IEEE 802.3 or Ethernet). Wi-Fi networks operate in the unlicensed 2.4 and 5 GHz radio bands for example or with products that contain both bands (dual band), so the networks can provide real-world performance similar to the basic 10BaseT wired Ethernet networks used in many offices.


Turning now to FIG. 5, an embodiment 500 of a mobile network platform 510 is shown that is an example of network elements 150, 152, 154, 156, and/or VNEs 330, 332, 334, etc. For example, platform 510 can facilitate in whole or in part generating a complementary object for a primary object (either physically or virtually) based on user needs and an environment in which the primary object and the complementary object are utilized. In one or more embodiments, the mobile network platform 510 can generate and receive signals transmitted and received by base stations or access points such as base station or access point 122. Generally, mobile network platform 510 can comprise components, e.g., nodes, gateways, interfaces, servers, or disparate platforms, that facilitate both packet-switched (PS) (e.g., internet protocol (IP), frame relay, asynchronous transfer mode (ATM)) and circuit-switched (CS) traffic (e.g., voice and data), as well as control generation for networked wireless telecommunication. As a non-limiting example, mobile network platform 510 can be included in telecommunications carrier networks and can be considered carrier-side components as discussed elsewhere herein. Mobile network platform 510 comprises CS gateway node(s) 512 which can interface CS traffic received from legacy networks like telephony network(s) 540 (e.g., public switched telephone network (PSTN), or public land mobile network (PLMN)) or a signaling system #7 (SS7) network 560. CS gateway node(s) 512 can authorize and authenticate traffic (e.g., voice) arising from such networks. Additionally, CS gateway node(s) 512 can access mobility, or roaming, data generated through SS7 network 560; for instance, mobility data stored in a visited location register (VLR), which can reside in memory 530. Moreover, CS gateway node(s) 512 interfaces CS-based traffic and signaling and PS gateway node(s) 518. As an example, in a 3GPP UMTS network, CS gateway node(s) 512 can be realized at least in part in gateway GPRS support node(s) (GGSN). It should be appreciated that functionality and specific operation of CS gateway node(s) 512, PS gateway node(s) 518, and serving node(s) 516, is provided and dictated by radio technology(ies) utilized by mobile network platform 510 for telecommunication over a radio access network 520 with other devices, such as a radiotelephone 575.


In addition to receiving and processing CS-switched traffic and signaling, PS gateway node(s) 518 can authorize and authenticate PS-based data sessions with served mobile devices. Data sessions can comprise traffic, or content(s), exchanged with networks external to the mobile network platform 510, like wide area network(s) (WANs) 550, enterprise network(s) 570, and service network(s) 580, which can be embodied in local area network(s) (LANs), can also be interfaced with mobile network platform 510 through PS gateway node(s) 518. It is to be noted that WANs 550 and enterprise network(s) 570 can embody, at least in part, a service network(s) like IP multimedia subsystem (IMS). Based on radio technology layer(s) available in technology resource(s) or radio access network 520, PS gateway node(s) 518 can generate packet data protocol contexts when a data session is established; other data structures that facilitate routing of packetized data also can be generated. To that end, in an aspect, PS gateway node(s) 518 can comprise a tunnel interface (e.g., tunnel termination gateway (TTG) in 3GPP UMTS network(s) (not shown)) which can facilitate packetized communication with disparate wireless network(s), such as Wi-Fi networks.


In embodiment 500, mobile network platform 510 also comprises serving node(s) 516 that, based upon available radio technology layer(s) within technology resource(s) in the radio access network 520, convey the various packetized flows of data streams received through PS gateway node(s) 518. It is to be noted that for technology resource(s) that rely primarily on CS communication, server node(s) can deliver traffic without reliance on PS gateway node(s) 518; for example, server node(s) can embody at least in part a mobile switching center. As an example, in a 3GPP UMTS network, serving node(s) 516 can be embodied in serving GPRS support node(s) (SGSN).


For radio technologies that exploit packetized communication, server(s) 514 in mobile network platform 510 can execute numerous applications that can generate multiple disparate packetized data streams or flows, and manage (e.g., schedule, queue, format . . . ) such flows. Such application(s) can comprise add-on features to standard services (for example, provisioning, billing, customer support . . . ) provided by mobile network platform 510. Data streams (e.g., content(s) that are part of a voice call or data session) can be conveyed to PS gateway node(s) 518 for authorization/authentication and initiation of a data session, and to serving node(s) 516 for communication thereafter. In addition to application server, server(s) 514 can comprise utility server(s), a utility server can comprise a provisioning server, an operations and maintenance server, a security server that can implement at least in part a certificate authority and firewalls as well as other security mechanisms, and the like. In an aspect, security server(s) secure communication served through mobile network platform 510 to ensure network's operation and data integrity in addition to authorization and authentication procedures that CS gateway node(s) 512 and PS gateway node(s) 518 can enact. Moreover, provisioning server(s) can provision services from external network(s) like networks operated by a disparate service provider; for instance, WAN 550 or Global Positioning System (GPS) network(s) (not shown). Provisioning server(s) can also provision coverage through networks associated to mobile network platform 510 (e.g., deployed and operated by the same service provider), such as the distributed antennas networks shown in FIG. 1(s) that enhance wireless service coverage by providing more network coverage.


It is to be noted that server(s) 514 can comprise one or more processors configured to confer at least in part the functionality of mobile network platform 510. To that end, the one or more processor can execute code instructions stored in memory 530, for example. It should be appreciated that server(s) 514 can comprise a content manager, which operates in substantially the same manner as described hereinbefore.


In example embodiment 500, memory 530 can store information related to operation of mobile network platform 510. Other operational information can comprise provisioning information of mobile devices served through mobile network platform 510, subscriber databases; application intelligence, pricing schemes, e.g., promotional rates, flat-rate programs, couponing campaigns; technical specification(s) consistent with telecommunication protocols for operation of disparate radio, or wireless, technology layers; and so forth. Memory 530 can also store information from at least one of telephony network(s) 540, WAN 550, SS7 network 560, or enterprise network(s) 570. In an aspect, memory 530 can be, for example, accessed as part of a data store component or as a remotely connected memory store.


In order to provide a context for the various aspects of the disclosed subject matter, FIG. 5, and the following discussion, are intended to provide a brief, general description of a suitable environment in which the various aspects of the disclosed subject matter can be implemented. While the subject matter has been described above in the general context of computer-executable instructions of a computer program that runs on a computer and/or computers, those skilled in the art will recognize that the disclosed subject matter also can be implemented in combination with other program modules. Generally, program modules comprise routines, programs, components, data structures, etc. that perform particular tasks and/or implement particular abstract data types.


Turning now to FIG. 6, an illustrative embodiment of a communication device 600 is shown. The communication device 600 can serve as an illustrative embodiment of devices such as data terminals 114, mobile devices 124, vehicle 126, display devices 144 or other client devices for communication via either communications network 125. For example, communication device 600 can facilitate in whole or in part generating a complementary object for a primary object (either physically or virtually) based on user needs and an environment in which the primary object and the complementary object are utilized. Further, each of server 202a, server 202b, communication device 202d, communication device 202h, server 205a, server 205b, communication device 205d, communication device 205h, server 210a, server 210b, communication device 210d, communication device 210j, server 215a, server 215b, communication device 215d, communication device 215f, communication device 215j, cross-reality input device 215l, sensor 215g, server 225a, server 225b, communication device 225d, communication device 225j, cross-reality input device 225l, user communication devices 230a, server engines 230b, 230c, 230d, scanner/input sources 230e, item production devices 230f, and database 230h comprise communication device 600.


The communication device 600 can comprise a wireline and/or wireless transceiver 602 (herein transceiver 602), a user interface (UI) 604, a power supply 614, a location receiver 616, a motion sensor 618, an orientation sensor 620, and a controller 606 for managing operations thereof. The transceiver 602 can support short-range or long-range wireless access technologies such as Bluetooth®, ZigBee®, Wi-Fi, DECT, or cellular communication technologies, just to mention a few (Bluetooth® and ZigBee® are trademarks registered by the Bluetooth® Special Interest Group and the ZigBee® Alliance, respectively). Cellular technologies can include, for example, CDMA-1X, UMTS/HSDPA, GSM/GPRS, TDMA/EDGE, EV/DO, WiMAX, SDR, LTE, as well as other next generation wireless communication technologies as they arise. The transceiver 602 can also be adapted to support circuit-switched wireline access technologies (such as PSTN), packet-switched wireline access technologies (such as TCP/IP, VoIP, etc.), and combinations thereof.


The UI 604 can include a depressible or touch-sensitive keypad 608 with a navigation mechanism such as a roller ball, a joystick, a mouse, or a navigation disk for manipulating operations of the communication device 600. The keypad 608 can be an integral part of a housing assembly of the communication device 600 or an independent device operably coupled thereto by a tethered wireline interface (such as a USB cable) or a wireless interface supporting for example Bluetooth®. The keypad 608 can represent a numeric keypad commonly used by phones, and/or a QWERTY keypad with alphanumeric keys. The UI 604 can further include a display 610 such as monochrome or color LCD (Liquid Crystal Display), OLED (Organic Light Emitting Diode) or other suitable display technology for conveying images to an end user of the communication device 600. In an embodiment where the display 610 is touch-sensitive, a portion or all of the keypad 608 can be presented by way of the display 610 with navigation features.


The display 610 can use touch screen technology to also serve as a user interface for detecting user input. As a touch screen display, the communication device 600 can be adapted to present a user interface having graphical user interface (GUI) elements that can be selected by a user with a touch of a finger. The display 610 can be equipped with capacitive, resistive or other forms of sensing technology to detect how much surface area of a user's finger has been placed on a portion of the touch screen display. This sensing information can be used to control the manipulation of the GUI elements or other functions of the user interface. The display 610 can be an integral part of the housing assembly of the communication device 600 or an independent device communicatively coupled thereto by a tethered wireline interface (such as a cable) or a wireless interface.


The UI 604 can also include an audio system 612 that utilizes audio technology for conveying low volume audio (such as audio heard in proximity of a human ear) and high volume audio (such as speakerphone for hands free operation). The audio system 612 can further include a microphone for receiving audible signals of an end user. The audio system 612 can also be used for voice recognition applications. The UI 604 can further include an image sensor 613 such as a charged coupled device (CCD) camera for capturing still or moving images.


The power supply 614 can utilize common power management technologies such as replaceable and rechargeable batteries, supply regulation technologies, and/or charging system technologies for supplying energy to the components of the communication device 600 to facilitate long-range or short-range portable communications. Alternatively, or in combination, the charging system can utilize external power sources such as DC power supplied over a physical interface such as a USB port or other suitable tethering technologies.


The location receiver 616 can utilize location technology such as a global positioning system (GPS) receiver capable of assisted GPS for identifying a location of the communication device 600 based on signals generated by a constellation of GPS satellites, which can be used for facilitating location services such as navigation. The motion sensor 618 can utilize motion sensing technology such as an accelerometer, a gyroscope, or other suitable motion sensing technology to detect motion of the communication device 600 in three-dimensional space. The orientation sensor 620 can utilize orientation sensing technology such as a magnetometer to detect the orientation of the communication device 600 (north, south, west, and east, as well as combined orientations in degrees, minutes, or other suitable orientation metrics).


The communication device 600 can use the transceiver 602 to also determine a proximity to a cellular, Wi-Fi, Bluetooth®, or other wireless access points by sensing techniques such as utilizing a received signal strength indicator (RSSI) and/or signal time of arrival (TOA) or time of flight (TOF) measurements. The controller 606 can utilize computing technologies such as a microprocessor, a digital signal processor (DSP), programmable gate arrays, application specific integrated circuits, and/or a video processor with associated storage memory such as Flash, ROM, RAM, SRAM, DRAM or other storage technologies for executing computer instructions, controlling, and processing data supplied by the aforementioned components of the communication device 600.


Other components not shown in FIG. 6 can be used in one or more embodiments of the subject disclosure. For instance, the communication device 600 can include a slot for adding or removing an identity module such as a Subscriber Identity Module (SIM) card or Universal Integrated Circuit Card (UICC). SIM or UICC cards can be used for identifying subscriber services, executing programs, storing subscriber data, and so on.


The terms “first,” “second,” “third,” and so forth, as used in the claims, unless otherwise clear by context, is for clarity only and does not otherwise indicate or imply any order in time. For instance, “a first determination,” “a second determination,” and “a third determination,” does not indicate or imply that the first determination is to be made before the second determination, or vice versa, etc.


In the subject specification, terms such as “store,” “storage,” “data store,” data storage,” “database,” and substantially any other information storage component relevant to operation and functionality of a component, refer to “memory components,” or entities embodied in a “memory” or components comprising the memory. It will be appreciated that the memory components described herein can be either volatile memory or nonvolatile memory, or can comprise both volatile and nonvolatile memory, by way of illustration, and not limitation, volatile memory, non-volatile memory, disk storage, and memory storage. Further, nonvolatile memory can be included in read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory. Volatile memory can comprise random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM). Additionally, the disclosed memory components of systems or methods herein are intended to comprise, without being limited to comprising, these and any other suitable types of memory.


Moreover, it will be noted that the disclosed subject matter can be practiced with other computer system configurations, comprising single-processor or multiprocessor computer systems, mini-computing devices, mainframe computers, as well as personal computers, hand-held computing devices (e.g., PDA, phone, smartphone, watch, tablet computers, netbook computers, etc.), microprocessor-based or programmable consumer or industrial electronics, and the like. The illustrated aspects can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network; however, some if not all aspects of the subject disclosure can be practiced on stand-alone computers. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.


In one or more embodiments, information regarding use of services can be generated including services being accessed, media consumption history, user preferences, and so forth. This information can be obtained by various methods including user input, detecting types of communications (e.g., video content vs. audio content), analysis of content streams, sampling, and so forth. The generating, obtaining and/or monitoring of this information can be responsive to an authorization provided by the user. In one or more embodiments, an analysis of data can be subject to authorization from user(s) associated with the data, such as an opt-in, an opt-out, acknowledgement requirements, notifications, selective authorization based on types of data, and so forth.


Some of the embodiments described herein can also employ artificial intelligence (AI) to facilitate automating one or more features described herein. The embodiments (e.g., in connection with automatically identifying acquired cell sites that provide a maximum value/benefit after addition to an existing communication network) can employ various AI-based schemes for carrying out various embodiments thereof. Moreover, the classifier can be employed to determine a ranking or priority of each cell site of the acquired network. A classifier is a function that maps an input attribute vector, x=(x1, x2, x3, x4 . . . xn), to a confidence that the input belongs to a class, that is, f(x)=confidence (class). Such classification can employ a probabilistic and/or statistical-based analysis (e.g., factoring into the analysis utilities and costs) to determine or infer an action that a user desires to be automatically performed. A support vector machine (SVM) is an example of a classifier that can be employed. The SVM operates by finding a hypersurface in the space of possible inputs, which the hypersurface attempts to split the triggering criteria from the non-triggering events. Intuitively, this makes the classification correct for testing data that is near, but not identical to training data. Other directed and undirected model classification approaches comprise, e.g., naïve Bayes, Bayesian networks, decision trees, neural networks, fuzzy logic models, and probabilistic classification models providing different patterns of independence can be employed. Classification as used herein also is inclusive of statistical regression that is utilized to develop models of priority.


As will be readily appreciated, one or more of the embodiments can employ classifiers that are explicitly trained (e.g., via a generic training data) as well as implicitly trained (e.g., via observing UE behavior, operator preferences, historical information, receiving extrinsic information). For example, SVMs can be configured via a learning or training phase within a classifier constructor and feature selection module. Thus, the classifier(s) can be used to automatically learn and perform a number of functions, including but not limited to determining according to predetermined criteria which of the acquired cell sites will benefit a maximum number of subscribers and/or which of the acquired cell sites will add minimum value to the existing communication network coverage, etc.


As used in some contexts in this application, in some embodiments, the terms “component,” “system” and the like are intended to refer to, or comprise, a computer-related entity or an entity related to an operational apparatus with one or more specific functionalities, wherein the entity can be either hardware, a combination of hardware and software, software, or software in execution. As an example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, computer-executable instructions, a program, and/or a computer. By way of illustration and not limitation, both an application running on a server and the server can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers. In addition, these components can execute from various computer readable media having various data structures stored thereon. The components may communicate via local and/or remote processes such as in accordance with a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems via the signal). As another example, a component can be an apparatus with specific functionality provided by mechanical parts operated by electric or electronic circuitry, which is operated by a software or firmware application executed by a processor, wherein the processor can be internal or external to the apparatus and executes at least a part of the software or firmware application. As yet another example, a component can be an apparatus that provides specific functionality through electronic components without mechanical parts, the electronic components can comprise a processor therein to execute software or firmware that confers at least in part the functionality of the electronic components. While various components have been illustrated as separate components, it will be appreciated that multiple components can be implemented as a single component, or a single component can be implemented as multiple components, without departing from example embodiments.


Further, the various embodiments can be implemented as a method, apparatus or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware or any combination thereof to control a computer to implement the disclosed subject matter. The term “article of manufacture” as used herein is intended to encompass a computer program accessible from any computer-readable device or computer-readable storage/communications media. For example, computer readable storage media can include, but are not limited to, magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips), optical disks (e.g., compact disk (CD), digital versatile disk (DVD)), smart cards, and flash memory devices (e.g., card, stick, key drive). Of course, those skilled in the art will recognize many modifications can be made to this configuration without departing from the scope or spirit of the various embodiments.


In addition, the words “example” and “exemplary” are used herein to mean serving as an instance or illustration. Any embodiment or design described herein as “example” or “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs. Rather, use of the word example or exemplary is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.


Moreover, terms such as “user equipment,” “mobile station,” “mobile,” subscriber station,” “access terminal,” “terminal,” “handset,” “mobile device” (and/or terms representing similar terminology) can refer to a wireless device utilized by a subscriber or user of a wireless communication service to receive or convey data, control, voice, video, sound, gaming or substantially any data-stream or signaling-stream. The foregoing terms are utilized interchangeably herein and with reference to the related drawings.


Furthermore, the terms “user,” “subscriber,” “customer,” “consumer” and the like are employed interchangeably throughout, unless context warrants particular distinctions among the terms. It should be appreciated that such terms can refer to human entities or automated components supported through artificial intelligence (e.g., a capacity to make inference based, at least, on complex mathematical formalisms), which can provide simulated vision, sound recognition and so forth.


As employed herein, the term “processor” can refer to substantially any computing processing unit or device comprising, but not limited to comprising, single-core processors; single-processors with software multithread execution capability; multi-core processors; multi-core processors with software multithread execution capability; multi-core processors with hardware multithread technology; parallel platforms; and parallel platforms with distributed shared memory. Additionally, a processor can refer to an integrated circuit, an application specific integrated circuit (ASIC), a digital signal processor (DSP), a field programmable gate array (FPGA), a programmable logic controller (PLC), a complex programmable logic device (CPLD), a discrete gate or transistor logic, discrete hardware components or any combination thereof designed to perform the functions described herein. Processors can exploit nano-scale architectures such as, but not limited to, molecular and quantum-dot based transistors, switches and gates, in order to optimize space usage or enhance performance of user equipment. A processor can also be implemented as a combination of computing processing units.


As used herein, terms such as “data storage,” data storage,” “database,” and substantially any other information storage component relevant to operation and functionality of a component, refer to “memory components,” or entities embodied in a “memory” or components comprising the memory. It will be appreciated that the memory components or computer-readable storage media, described herein can be either volatile memory or nonvolatile memory or can include both volatile and nonvolatile memory.


What has been described above includes mere examples of various embodiments. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing these examples, but one of ordinary skill in the art can recognize that many further combinations and permutations of the present embodiments are possible. Accordingly, the embodiments disclosed and/or claimed herein are intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.


In addition, a flow diagram may include a “start” and/or “continue” indication. The “start” and “continue” indications reflect that the steps presented can optionally be incorporated in or otherwise used in conjunction with other routines. In this context, “start” indicates the beginning of the first step presented and may be preceded by other activities not specifically shown. Further, the “continue” indication reflects that the steps presented may be performed multiple times and/or may be succeeded by other activities not specifically shown. Further, while a flow diagram indicates a particular ordering of steps, other orderings are likewise possible provided that the principles of causality are maintained.


As may also be used herein, the term(s) “operably coupled to”, “coupled to”, and/or “coupling” includes direct coupling between items and/or indirect coupling between items via one or more intervening items. Such items and intervening items include, but are not limited to, junctions, communication paths, components, circuit elements, circuits, functional blocks, and/or devices. As an example of indirect coupling, a signal conveyed from a first item to a second item may be modified by one or more intervening items by modifying the form, nature or format of information in a signal, while one or more elements of the information in the signal are nevertheless conveyed in a manner than can be recognized by the second item. In a further example of indirect coupling, an action in a first item can cause a reaction on the second item, as a result of actions and/or reactions in one or more intervening items.


Although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement which achieves the same or similar purpose may be substituted for the embodiments described or shown by the subject disclosure. The subject disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, can be used in the subject disclosure. For instance, one or more features from one or more embodiments can be combined with one or more features of one or more other embodiments. In one or more embodiments, features that are positively recited can also be negatively recited and excluded from the embodiment with or without replacement by another structural and/or functional feature. The steps or functions described with respect to the embodiments of the subject disclosure can be performed in any order. The steps or functions described with respect to the embodiments of the subject disclosure can be performed alone or in combination with other steps or functions of the subject disclosure, as well as from other embodiments or from other steps that have not been described in the subject disclosure. Further, more than or less than all of the features described with respect to an embodiment can also be utilized.

Claims
  • 1. A device, comprising: a processing system including a processor; anda memory that stores executable instructions that, when executed by the processing system, facilitate performance of operations, the operations comprising:obtaining an image of an object over a communication network from a first communication device associated with a user;obtaining first information associated with the object;receiving user-generated input over the communication network from the first communication device, wherein the user-generated input indicates to generate a group of complementary objects associated with the object; andin response to receiving the user-generated input, providing instructions to generate the group of complementary objects over the communication network to a second communication device associated with the user based on the image of the object and the first information, wherein the second communication device generates the group of complementary objects.
  • 2. The device of claim 1, wherein the object comprises a part of a machine, wherein the first information associated with the object comprises second information associated with the machine.
  • 3. The device of claim 2, wherein the second information comprises an owner's manual associated with the machine.
  • 4. The device of claim 2, wherein the second information comprises a group of images associated with the machine.
  • 5. The device of claim 2, wherein the group of complementary objects comprises a tool associated with the part of the machine.
  • 6. The device of claim 5, wherein the second communication device comprises a first three-dimensional printer, wherein the second communication device generating the group of complementary objects comprises the first three-dimensional printer generating the tool associated with the part of the machine.
  • 7. The device of claim 2, wherein the group of complementary objects comprises a replacement part associated with the machine.
  • 8. The device of claim 7, wherein the second communication device comprises a second three-dimensional printer, the second communication device generating the group of complementary objects comprises the second three-dimensional printer generating the replacement part associated with the part of the machine.
  • 9. The device of claim 1, wherein the object comprises a cross-reality input device for a cross-reality communication device that is associated with cross-reality environment, wherein the first information associated with the object comprises third information associated with the cross-reality environment.
  • 10. The device of claim 9, wherein the group of complementary objects comprise an additional part for the cross-reality input device.
  • 11. The device of claim 10, wherein the second communication device comprises a third three-dimensional printer, wherein the second communication device generating the group of complementary objects comprises the third three-dimensional printer generating the additional part for the cross-reality input device.
  • 12. The device of claim 10, wherein the second communication device comprises the cross-reality communication device, wherein the second communication device generating the group of complementary objects comprises the cross-reality communication device generating the additional part for the cross-reality input device, wherein the additional part comprises a cross-reality object.
  • 13. The device of claim 1, wherein the group of complementary objects comprise a non-fungible token (NFT) object, wherein the user has the ability to perform one of sell or lease of the NFT object.
  • 14. The device of claim 1, wherein the second communication device comprises one of an output device that produces light frequencies or an output device that produces sound frequencies
  • 15. The device of claim 1, wherein the obtaining of the first information associated with the object comprises obtaining the first information associated with the object from a server associated with the object over the communication network.
  • 16. A non-transitory machine-readable medium, comprising executable instructions that, when executed by a processing system including a processor, facilitate performance of operations, the operations comprising: obtaining an image of a part of a machine over a communication network from a first communication device associated with a user;obtaining first information associated with the part of the machine;receiving user-generated input over the communication network from the first communication device, wherein the user-generated input indicates to generate a group of complementary objects associated with the part of the machine; andin response to receiving the user-generated input, providing instructions to generate the group of complementary objects over the communication network to a three-dimensional printer associated with the user based on the image of the part of the machine and the first information, wherein the three-dimensional printer generates the group of complementary objects.
  • 17. The non-transitory machine-readable medium of claim 16, wherein the first information comprises one of an owner's manual associated with the machine or a group of images associated with the machine, wherein the group of complementary objects comprises one of a replacement part associated with the machine or a tool associated with the part of the machine.
  • 18. A method, comprising: obtaining, by a processing system including a processor, an image of a cross-reality input device for a cross-reality communication device over a communication network from a first communication device associated with a user;obtaining, by the processing system, first information associated with a cross-reality environment;receiving, by the processing system, user-generated input over the communication network from the first communication device, wherein the user-generated input indicates to generate a group of complementary objects associated with the cross-reality input device; andin response to receiving the user-generated input, providing, by the processing system, instructions to generate the group of complementary objects over the communication network to a second communication device associated with the user based on the image of the cross-reality input device and the first information, wherein the second communication device generates the group of complementary objects.
  • 19. The method of claim 18, wherein the group of complementary objects comprises a first additional part for the cross-reality input device, wherein the second communication device comprises a three-dimensional printer, wherein the second communication device generating the group of complementary objects comprises the three-dimensional printer generating the first additional part for the cross-reality input device.
  • 20. The method of claim 18, wherein the group of complementary objects comprises a second additional part for the cross-reality input device, wherein the second communication device comprises the cross-reality communication device, wherein the second communication device generating the group of complementary objects comprises the cross-reality communication device generating the second additional part for the cross-reality input device, wherein the second additional part comprises a cross-reality object.