Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature

Information

  • Patent Grant
  • 9962512
  • Patent Number
    9,962,512
  • Date Filed
    Friday, September 3, 2010
    14 years ago
  • Date Issued
    Tuesday, May 8, 2018
    6 years ago
Abstract
A system for supplying ventilatory support may include a nasal interface configured to communicate with a patient's nose while allowing the patient to breathe ambient air directly without flowing through the nasal interface. A nozzle may be associated with the nasal interface at a distance from a nose. The nozzle may be connectable to the gas delivery circuit and the gas delivery source. The nozzle may be capable of delivering gas into the nasal passage by creating negative pressure area near the nozzle and a positive pressure area near the entrance to the nose. A combination of gas from the gas delivery source and air entrained from the gas exiting the nozzle may provide ventilatory support.
Description
FIELD OF THE INVENTION

The present invention relates to the field of ventilation therapy for persons suffering from respiratory and breathing disorders, such as respiratory insufficiency and sleep apnea. More specifically, the present invention relates to providing open airway ventilation with methods and devices that use non-sealing non-invasive nasal ventilation patient interfaces.


BACKGROUND OF INVENTION

There is a need for a minimally obtrusive nasal mask and ventilation system that delivers mechanical ventilatory support or positive airway pressure, and which unencumbers the patient. There are a range of clinical syndromes that require ventilation therapy that would benefit from such a mask and system, such as respiratory insufficiency, airway or sleeping disorders, congestive heart failure, neuromuscular disease, and a range of situations that would be benefited, such as chronic, acute, emergency, mass casualty and pandemic situations.


Oxygen therapy is available with devices that do not encumber the patient. However, oxygen therapy is used for far less severe forms of clinical syndromes compared to ventilation therapy. For example, some nasal mask oxygen therapy systems have been developed for the purpose of delivering mixtures of air and oxygen by entraining air into the mask, however these are not considered ventilation therapy or respiratory support, because they do not mechanically help in the work of breathing. Recently, a variant of oxygen therapy has been employed, known as high flow oxygen therapy (HFOT). In this case, the oxygen flow rate is increased beyond standard long term oxygen therapy (LTOT), for example, above 15 LPM. Because of the high flow rate, the oxygen must be humidified to prevent drying out the patient's airway. It has been reported that HFOT can slightly reduce the patient's absolute pleural pressure during spontaneous breathing, thus have a slight effect on work of breathing. These systems are inefficient in that they consume a significant quantity of oxygen, rendering them non-mobile systems and encumbering the patient.


Respiratory support and ventilation therapies exist that provide mechanical ventilation (MV) to the patient, and mechanically contribute to the work of breathing. MV therapies connect to the patient by intubating the patient with a cuffed or uncuffed tracheal tube, or a sealing face or nasal mask or sealing nasal cannula. While helpful in supporting the work of breathing, the patient interfaces used for MV are obtrusive and/or invasive to the user, and MV does not facilitate mobility or activities of daily living, therefore encumbers that patient and is a drawback to many potential users. Non-invasive ventilation (NIV) exists which ventilates a patient with a face or nasal mask rather than requiring intubation, which can be an advantage in many situations. However, the patient cannot use their upper airway because the interface makes an external seal against the nose and/or mouth, and in addition the system is not mobile, the combination of which does not enable activities of daily living.


For treating obstructive sleep apnea (OSA), the gold standard ventilation therapy is continuous positive airway pressure (CPAP) or bilevel positive airway pressure (BiPAP), which is a variant to NIV in that the patient partially exhales through exhaust ports in the mask and back into large gas delivery tubing, rather than through an exhalation circuit as in MV. Continuous positive pressure applied by the ventilator to the patient by a nasal or face mask that seals against the nose or face prevents upper airway obstruction. While effective, this therapy has poor patient compliance because the patient interface is obtrusive to the patient and the patient unnaturally breathes through both a mask and gas delivery circuit.


In summary, existing therapies and prior art have the following disadvantages: they do not offer respiratory support or airway support in a manner that unencumbers the patient and (1) is non-invasive, and un-obtrusive such that it allows for mobility and activities of daily living, (2) allows the sensation of breathing from the ambient surroundings normally, and (3) is provided in an easily portable system or a system that can be easily borne or worn by the patient.


SUMMARY OF INVENTION

The invention provides ventilation to a patient using non-invasive open-airway ventilation (NIOV), and a non-sealing nasal mask interface with nozzles in free space that does not completely cover or seal the opening of the patient's mouth or nose.


Embodiments of the present invention may include a system for supplying ventilatory support, the system including a gas delivery source; a gas delivery circuit; a nasal interface configured to communicate with a patient's nose while allowing the patient to breathe ambient air directly without flowing through the nasal interface; a nozzle associated with the nasal interface at a distance from a nose, wherein the nozzle is connectable to the gas delivery circuit and the gas delivery source; and wherein the nozzle is capable of delivering gas into the nasal passage by creating negative pressure area near the nozzle and a positive pressure area near the entrance to the nose, wherein a combination of gas from the gas delivery source and air entrained from the gas exiting the nozzle provide ventilatory support.


Embodiments of the present invention may include a method for providing ventilatory support, the method including: providing a nasal interface that allows the patient to breathe ambient air through the nasal interface; providing a nozzle in free space associated with a proximal end of the nasal interface at a distance from a nose; adapting the nozzle to be in fluid communication with a gas delivery circuit and a gas delivery source, wherein the nozzle is capable of delivering gas into the nasal interface to create a negative pressure area near the nozzle and a positive pressure area near the entrance to the nose, and wherein a combination of gas from the gas delivery source and air entrained by the nozzle provides ventilatory support.


Certain embodiments of the systems and methods may also include that the positive pressure area may be created at a point outside the nose and distal to that point. The positive pressure area may be created at an edge of a nostril rim and distal to the edge. The positive pressure area may be created at a point in a nostril airway and distal to that point. The nasal interface may include a manifold, and wherein the manifold comprises the nozzle. The manifold may be configured to position the nozzle at a distance away from a nostril entrance, and may be configured to position the nozzle at an angle relative a centerline of a nostril airway. Embodiments of the present invention may include one or more sensors, wherein the one or more sensors comprise a sensing channel that extends away from the nozzle toward the nose terminating in the positive pressure area, and/or wherein the one or more sensors comprise a sensing channel that extends toward distally away from the nozzle. The sensing channel may extend into a nose. The sensing channel may extend to within approximately +/−5 mm from a nostril entrance. Embodiments of the present invention may include two or more nozzles per nostril. The nozzle may be an oval-shaped gas delivery nozzle orifice. The nozzle may include an array of multiple gas delivery nozzles arranged in a circular or oval pattern. Embodiments of the present invention may include a jet pump throat including a flow path. The jet pump throat may be associated with a manifold, and the nozzle may be associated with a jet pump throat flow path through the jet pump throat. The manifold may include an entrainment port in communication with the jet pump throat flow path. The nozzle may angle inward. The nozzle may angle inward at an angle of approximately 1-20 degrees. The nozzle may create an oval shaped gas delivery flow profile within a nostril airway. The nozzle may be rotatably adjustable. The nozzle may include at least one left nozzle and at least one right nozzle, wherein the spacing between the at least one left nozzle and the at least one right nozzle is adjustable. The at least one left nozzle and the at least one right nozzle may be rotate-ably adjustable. Spacing between a nostril entrance and nozzle may be adjustable. The nasal interface may be available in different sizes, differing in nozzle spacing, nozzle rotational orientation and nozzle distance to nostril entrance. The negative pressure area may extend from the nozzle to a location proximal to an entrance to a nose. A negative pressure may be less than ambient. The negative pressure may be approximately −5 to −28 cmH2O. The positive pressure area may extend from a location distal to the nozzle to an entrance to a nose. The positive pressure may be greater than ambient. The positive pressure may be approximately 0.01-0.50 psi. The combination of gas from the gas delivery source and the air entrained through entrained from the gas exiting the nozzle may be laminar flow within a nose. The nozzle may be positioned approximately 0-1.5 inches outside the entrance to the nose. Delivery of gas through the nozzle may be synchronized with a breathing pattern of a patient. The gas from the gas delivery source may be controlled by a wear-able ventilator. Ventilatory support may include reducing the work of breathing to treat respiratory insufficiency. Ventilatory support may include elevating airway pressure to treat sleep apnea. The nasal interface may include a connector for coupling the system to a bridge of the nose and aligning the at least one gas delivery jet nozzle with the entrance of the nose. The connector may include a ledge to position the nasal interface relative to an edge of a nostril rim. The connector may adjust the angle of the nozzle to be in alignment with a centerline of a nostril airway.


Embodiments of the present invention may include a system for supplying ventilatory support, the system including: a gas delivery source; a gas delivery circuit; a nasal interface configured to communicate with a patient's nose while allowing the patient to breathe ambient air directly without flowing through the nasal interface; a nozzle associated with the nasal interface at a distance from a nose, wherein the nozzle is connectable to the gas delivery circuit and the gas delivery source; a jet pump throat comprising a flow path through the jet pump throat, wherein the jet pump throat is associated with a manifold, and the nozzle is associated with a jet pump throat flow path through the jet pump throat; and an entrainment port in communication with the jet pump throat flow path, wherein the nozzle is capable of delivering gas into the nasal passage by creating negative pressure area near the nozzle within the jet pump throat flow path and a positive pressure area within the jet pump throat flow path distal to the nozzle, wherein a combination of gas from the gas delivery source and air entrained through the entrainment port provide ventilatory support. Certain embodiments of the systems and methods may include that ventilatory support includes reducing the work of breathing to treat respiratory insufficiency. Ventilatory support may include elevating airway pressure to treat sleep apnea.


Additional features, advantages, and embodiments of the invention are set forth or apparent from consideration of the following detailed description, drawings and claims. Moreover, it is to be understood that both the foregoing summary of the invention and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the invention as claimed.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate preferred embodiments of the invention and together with the detailed description serve to explain the principles of the invention.



FIG. 1 shows a prior art conventional oxygen delivery cannula for administering oxygen therapy.



FIG. 2 shows a prior art conventional non-invasive ventilation using a nose mask and using a CPAP or BiPAP ventilation mode.



FIG. 3 shows an unencumbered patient using an embodiment of the invention to receive work of breathing support while ambulating.



FIG. 4 is a schematic showing an exemplary system of the invention.



FIG. 5 shows an exemplary embodiment where an open non-sealing nasal ventilation mask is configured to be placed under the nose of the user, and which may extend bilaterally from the midline of the face to the sides of the nose.



FIG. 6 is a perspective view of the nasal mask assembly of FIG. 5.



FIG. 7 shows a front view schematic illustration of an embodiment of the nasal mask.



FIG. 8 shows an anterior-top-side view of the nasal mask of FIG. 5.



FIG. 9 shows a hidden line view of the nasal mask of FIG. 8, showing the gas flow path and breathing pressure sensing path.



FIG. 10 shows a top view of the nasal mask of FIG. 5.



FIG. 11 shows a hidden line view of the nasal mask of FIG. 10, showing the gas flow path and breathing pressure sensing path.



FIG. 12 shows a rear-top view of the nasal mask of FIG. 5.



FIG. 13 shows a hidden line view of the nasal mask of FIG. 12, showing the gas flow path and breathing pressure sensing path.



FIG. 14 shows a pattern created by flow emission from gas delivery nozzles.



FIG. 15 shows a pattern created by flow emission from gas delivery nozzles.



FIG. 16 shows an embodiment of the nasal mask shown in FIG. 5 with oval gas delivery nozzles.



FIG. 17 shows an embodiment of the nasal mask shown in FIG. 5 with multiple gas delivery nozzles arranged in an anatomically functional pattern.



FIG. 18 shows a hidden line view of the mask view of an embodiment of the nasal mask, showing the gas flow path and breathing pressure sensing path, in which the gas delivery nozzles are angled inward toward the midline.



FIG. 19 shows an embodiment of the mask shown in FIG. 5 with a jet pump throat with a Venturi inlet at the bottom of the mask manifold.



FIG. 20 shows a mask worn by a user with a jet pump throat with a Venturi inlet at the top of the manifold near the base of the throat.



FIG. 21 shows an alternative embodiment of the nasal mask where the gas delivery nozzles are positioned under the nose by a nose piece with extension arm.



FIG. 22 shows the pressure sensing and gas delivery flow patterns of the nasal mask of FIG. 21 in the nostril airway.



FIG. 23 shows the mask assembly of the nasal mask shown in FIG. 21.



FIG. 24 shows an alternate embodiment of the nasal mask shown in FIG. 21 in which the gas delivery nozzles are positioned under the nose with an extended nose piece.



FIG. 25 shows an embodiment of the nasal mask shown in FIG. 21 with a minimized nose piece and streamlined vertical and horizontal arms.



FIG. 26 shows an embodiment of the nasal mask shown in FIG. 21 in which the gas delivery nozzles are positioned under the nose by a head gear and bracket.



FIG. 27 graphically shows how the patient's work of breathing may be beneficially affected by the invention when the invention is used for lung disease or neuromuscular disease applications.



FIG. 28 graphically shows lung volume on the x-axis and lung pressure on the y-axis to illustrate how the lung volumes achieved with NIOV on a lung simulator bench model in comparison to conventional ventilation.



FIG. 29 graphically shows the lung volumes achieved with NIOV in comparison to oxygen therapy, using the lung simulator bench model.



FIG. 30A graphically shows a square waveform gas delivery pressure, according to one embodiment.



FIG. 30B graphically shows the volume delivery of FIG. 30A.



FIG. 30C graphically shows resulting lung pressure of FIG. 30A.



FIG. 30D graphically shows a sinusoidal waveform gas delivery pressure, according to one embodiment.



FIG. 30E graphically shows the volume delivery of FIG. 30D.



FIG. 30F graphically shows resulting lung pressure of FIG. 30D.



FIG. 30G graphically shows a square waveform gas delivery pressure for a portion of the inspiratory phase, according to one embodiment.



FIG. 30H graphically shows the volume delivery of FIG. 30G.



FIG. 30I graphically shows resulting lung pressure of FIG. 30G.



FIG. 30J graphically shows a multi-level waveform gas delivery pressure, according to one embodiment.



FIG. 30K graphically shows the volume delivery of FIG. 30J.



FIG. 30L graphically shows resulting lung pressure of FIG. 30J.



FIG. 31A graphically shows an ascending waveform gas delivery pressure, according to one embodiment.



FIG. 31B graphically shows the volume delivery of FIG. 31A.



FIG. 31C graphically shows resulting lung pressure of FIG. 31A.



FIG. 31D graphically shows a descending waveform gas delivery pressure, according to one embodiment.



FIG. 31E graphically shows the volume delivery of FIG. 31D.



FIG. 31F graphically shows resulting lung pressure of FIG. 31D.



FIG. 31G graphically shows a two-stage amplitude waveform gas delivery pressure for a portion of the inspiratory phase, according to one embodiment.



FIG. 31H graphically shows the volume delivery of FIG. 31G.



FIG. 31I graphically shows resulting lung pressure of FIG. 31G.



FIG. 31J graphically shows an oscillatory waveform gas delivery pressure, according to one embodiment.



FIG. 31K graphically shows the volume delivery of FIG. 31J.



FIG. 31L graphically shows resulting lung pressure of FIG. 31J.



FIG. 32 graphically shows the timing and amplitude of a breath frequency modulated gas flow amplitude delivery, according to one embodiment.





DETAILED DESCRIPTION OF THE EMBODIMENTS


FIG. 1 shows a prior art conventional oxygen delivery cannula 101 for administering oxygen therapy. Extensions 105 on the cannula 101 are configured to enter nares 103. A proximal end (not shown) of the cannula 101 is connected to an oxygen delivery device that delivers continuous flow oxygen at 1-6 LPM to the user's nose, or delivers a bolus of oxygen upon detection of an inspiratory effort. The system of FIG. 1 does not mechanically support the work of breathing of the patient, and is not believed to be effective in preventing moderate to severe forms of OSA. The cannula of FIG. 1 is also used with another oxygen delivery therapy, high flow oxygen therapy (HFOT), in which more than 15 LPM of humidified oxygen is delivered at a continuous flow rate to the user's nose. Due to the high flow required for HFOT, the system is non-portable and the oxygen must be humidified.



FIG. 2 shows a prior art respiratory support therapy for non-invasive ventilation (NIV), using a nose mask 201 in a bilevel positive airway pressure (BiPAP) ventilation mode. NIV is used to breathe for the patient, or can be used to help the breathing of a patient, in which case the patient's spontaneous breathing effort triggers the ventilator to deliver the pressure or volume-based mechanical ventilation (MV). All of the volume delivered to and from the lungs is delivered and removed from a ventilation circuit 203 and the nose mask 201.


A similar system to FIG. 2 can be used for OSA where a mask is sealed to the face so ventilation gas is provided by the ventilator and a portion of exhaled gas is exhaled through exhaust vents 205. NIV, continuous positive airway pressure (CPAP) and BiPAP are believed to be clinically effective modes and therapies for spontaneously breathing patients. These modes and therapies, however, do not facilitate activities of daily living (ADL's). For example, the ventilator cannot be borne by the patient, the patient cannot breathe room air naturally and freely because of the sealing mask, and the patient's upper airway cannot function normally and naturally because it is sealed off with the external mask seal, and in addition the gas delivery tubing is too bulky to realistically support mobility and ADL's.


Embodiments of the present invention will now be described with reference to the remaining figures. Respiratory support or airway support is provided in a manner and way that the patient is unencumbered. The non-invasive, non-sealing and unobtrusive systems and methods may allow for mobility and activities of daily life. The systems and methods allow for the sensation of breathing from ambient surroundings normally. The systems and methods provide an easily portable system that can be readily borne or worn by the patient, and gas delivery tubing that does not encumber the patient.


Systems and methods may include a gas delivery source, a gas delivery circuit, and a nasal interface that allow breathing ambient air through the nasal interface. A gas flow path through the nasal interface may have a distal gas flow path opening. A nozzle may be associated with a proximal end of the nasal interface a distance from the distal end gas flow path opening. In certain embodiments, at least a portion of an entrainment port may be between the nozzle and the distal end gas flow opening. The nozzle may deliver gas into the nasal interface to create a negative pressure area in the gas flow path at the entrainment port. The nasal interface and the nozzle may create a positive pressure area between the entrainment port and the distal end of the nasal interface. Gas from the gas delivery source and air entrained through the entrainment port may increase airway pressure.



FIG. 3 shows a patient 301 using an embodiment of the invention to provide mechanical ventilatory support, or work of breathing support, while being mobile. Conventional ventilators would require the patient to be stationary while receiving ventilatory support, or to use a wheel chair to carry the bulky and heavy equipment that is required for conventional ventilators. Conventional ventilators also require an encumbering sealing mask and large bore gas delivery tubing. The patient may also wear a ventilator module 307, which may be ultra-small that enables mobility when the invention is used for respiratory insufficiency. The ventilator may be coupled by tubing or other means 309 to an air and or oxygen supply 311. The ventilator module 307 may include a display 313 and/or input devices.


The present invention may include a non-sealing nasal mask patient interface, connected to the ventilator with small bore gas delivery tubing. The nasal mask may be uniquely non-sealing, so that the patient can inhale and exhale ambient air directly through the mask while receiving ventilatory support, in which there is negligible dead space volume in the mask. The mask may include a unique Venturi system that makes it possible for the ventilator to deliver relatively small amounts of gas to achieve relatively high levels of ventilatory support or airway pressure. The Venturi mask is described in more detail in FIGS. 6-31.


Various embodiments of the nasal interface 303 are described in detail in the following disclosure. The nasal interface 303 may be minimally obtrusive compared to standard masks, so that the patient can feel and act normally while receiving the therapy. For example, the patient can talk, swallow, eat or drink, and feel like they are breathing normally, with the nasal interface and therapy. The gas delivery tubing required may be very small compared to standard ventilator tubing, which more readily allows the patient to move around with the system, and to conceal the equipment and tubing needed for the therapy. The efficiency of the Venturi system in achieving therapeutic levels of lung or airway pressure while using low levels of gas volume, allows the gas supply to be relatively small, further enabling mobility of the patient, and or miniaturization of the ventilation equipment. A nasal interface may be configured to communicate with a patient's nose while allowing the patient to breathe ambient air directly without flowing through the nasal interface.


While FIG. 3 shows the patient using the invention for mobility, the invention can also be applied to sleep disordered breathing. In the later case, an advantage of the invention is that the mask and tubing is smaller than standard sleep apnea therapy masks and tubing. Additionally, the patient can have the sensation of breathing ambient air more directly making the therapy tolerable to the patient, rather than breathing through a machine, which is the sensation when using standard sleep apnea ventilation devices.



FIG. 4 is a block diagram describing an exemplary system of the invention. The exemplary system of FIG. 4 may be a wearable ventilator with portable gas source as shown in FIG. 3, or may be a different ventilator and/or gas source. Ventilator and patient interface features associated with the system are shown schematically. FIG. 4 depicts a non-invasive open nasal interface 400. The non-invasive open nasal interface will be described in various embodiments described herein, for example, in FIGS. 5-8B (curved nasal mask), FIGS. 9-15 (flexible joint), and FIGS. 16-25 and 29-31 (ergonomic configuration).


A ventilator module 401 may include or is in communication with several other functional accessories. The ventilator and the patient's internal anatomy from FIG. 3 are shown in schematic format in FIG. 4. A nasal airway pressure sensor 429 is typically included. A transmitter 403 may be included to transmit information regarding the patient, the patient's therapy, and the ventilator performance to a remote location for review, analysis, remote intervention, two-way communication, and archiving. For example, the patient's compliance with the therapy or utilization of the therapy can be monitored and assessed. Important information can be trended, for example the patient's breath rate, I:E ratio, oxygen usage, activity level, or depth of breathing. Also, information can be sent to a ventilator 433, such as for example, sending programming instructions for setting titration options for the ventilator output to meet the needs of the patient, or sending instructions to the patient. The patient can also send information or questions to a remote clinician through the ventilator and transmitter 403.


An oxygen source 407 and/or a compressed air source 409 can be included, typically external to the ventilator module 401. In certain embodiments, however, the oxygen source 407 and/or the compressed air source 409 can be internal to the ventilator module 401 if the therapy is being used for stationary use, for example, in the home. A blender 411 can be included to control the fractional delivered O2 in a gas delivery circuit 413. A pulse oximeter 415 can be used to titrate settings of the ventilator module 401 to meet the physiological needs of the patient, for example setting the correct oxygen blender setting or ventilator volume output. In addition to compressed supplies of oxygen and air gas, the ventilator module 401 can include internal or external air and oxygen generating systems 417, such as a compressor, pump or blower to create pressurized air, an oxygen generator and/or pump to create pressurized oxygen gas, and/or a compressed gas accumulator. The oxygen source can also be liquid oxygen, or a liquid oxygen generating system. An internal or external humidifier 405 can be included for extended uses of the therapy, or if using in dry climates.


As the therapy is frequently used to help ADL's, and to promote activity, a pedometer 419 and/or actigraphy sensor 421 can be included internal to or external to a ventilator module 401. Optional sensors may include a CO2 sensor 425, and/or an external breathing sensor unit 437. A CO2 sensing line 439 and/or an airway pressure sensing line 441 may be present. One or more other external sensors may be included. For example, other external sensors may include an external respiration sensor or respiration effort sensor 427, such as a respiratory muscle effort sensor, a chest impedance sensor 435, or other types of sensors, such as a tracheal or other microphone or vibration sensor 443 or acoustical or ultrasonic sensor. The one or more external sensors may be used either as a redundant sensor to a nasal airflow or nasal pressure sensor 429, or to complement the information obtained from the nasal airflow or nasal pressure sensor 429, or in place of the nasal airflow or nasal pressure sensor 429. An oral airflow breathing sensor may also be used, for example nasal airflow or nasal pressure sensor 429 may alternatively be an oral airflow sensor.


A drug delivery module 431 can be incorporated internally or externally to a ventilator module 401. Because of the challenges with current aerosolized drug delivery inhalers, the drug delivery module 431 can be used to propel and deposit medication particles deep in the respiratory system without a carrier propellant. Because the patient's using the therapy often may also require prescription medication, this may be a convenient and efficient way to administer the medication.


When the therapy is being used for respiratory support, the user may have two options: (1) wearing or toting the ventilator module 401 so that the user can be ambulatory or enjoy the activities of daily living, or (2) stationary use, in the event the patient plans on being stationary or does not have the ability to ambulate. For the later, the delivery circuit can optionally be provided in a 25-100 foot length, such that the gas source and ventilator module 401 can be stationary in the patient's home, while the patient can move around their home while wearing the interface and receiving the therapy. Or, the gas source can be stationary, and connected to the ventilator module 401 with a 25-100 foot hose, so that the patient can wear or tote the ventilator and be mobile within the range of the hose.


The ventilator module 401 may include one or more processors 445 and one or more memories 447 to analyze information and output therapies.


Ventilation gas 449 may exit at a speed that entrains ambient air 451, such that the combination of ventilation gas 449, entrained ambient air 451 and spontaneously inhaled air, if the patient is spontaneously breathing, is delivered 453 to the patient's airways, such as the nasal cavity 455, oropharyngeal airway 457, trachea 459, lung 461 and others, under power to create a clinically efficacious effect on the lung and airways. Patient may exhale 463 through the nose or mouth. Various airways are also included, such as nostril airway 473, nasal airway 475, oral airway 481, upper airway 477, and lower airway 479.


When using the invention, the patient breathes normally through their upper airway and through their nose, while receiving mechanical support through the interface. During exhalation, the exhaled gas preferably does not enter the gas delivery circuit but rather exits the nose or mouth directly to ambient air, or through, across or around the nasal interface 400 to ambient air. The patient can keep their mouth closed during use for example during inspiration, to help direct the mechanical support to the lower airways and past the oral cavity 465, base of the tongue 467, palate 469 and esophagus 471, or can use a mouth guard or chin band, if necessary. The patient may exhale through their mouth when using the therapy.



FIGS. 5-26 describe embodiments of the non-sealing open-airway nasal mask with nozzles in free space. Systems and methods are described for ventilating a patient in a manner that unencumbers the user, by using a nasal ventilation patient interface and system that allows the user to breathe ambient air around the interface. A gas delivery nozzle may be associated with the nasal interface at a distance from a nose. The nozzle is connectable to a gas delivery circuit and ventilator, and delivers gas front the nasal interface toward the nose. The nasal interface and the nozzle create a negative pressure area near the nozzle, and a positive pressure area near the entrance to the nose. A combination of gas from the ventilator and entrained air are delivered to the patient to support the work of breathing.



FIG. 5 describes an embodiment of the invention, showing a ventilation nasal mask assembly 500 with a nasal mask 501 configured to be placed under a nose 503 of a user, without sealing or impeding ambient air from freely flowing in and out of the nose 503. The nasal mask 501 may include a manifold 505. The nasal mask 501 may also include one or more breathing pressure sensing ports 507 or sensors, which are positioned close to an entrance to the nares. The nasal mask 501 may include one or more gas delivery nozzles 509 spaced a distance away from the entrance to the nose 503. The one or more gas delivery nozzles 509 may direct ventilation gas into the nasal airway, and entrain ambient air into the nasal airway.


Gas delivery tubing 511 and pressure sensing tubing 515 from a ventilator, as shown in FIG. 4, may be coupled to the manifold 505 at proximal ends of the manifold 505. The gas delivery tubing 511 and pressure sensing tubing 515 may be routed bilaterally away from the manifold 505 and around ears 513 of the user.



FIG. 6 shows an isometric view of the nasal mask assembly 500, including the nasal mask 501 at the distal end of the nasal mask assembly 500, gas delivery tubing 511 and pressure sensing tubing 515 attached to the manifold 505 at a distal end of the gas delivery tubing 511 and pressure sensing tubing 515, a Y connector 601 joining the gas delivery tubing 511 and pressure sensing tubing 515 at proximal ends of each arm of the gas delivery tubing 511 and pressure sensing tubing 515, and a combined gas delivery and pressure sensing tubing 603 extending from the Y connector 601 to a ventilator connector 605.


In certain embodiments, a rotatable joint 517 between the gas delivery tubing 511 and manifold 503 and/or a rotatable joint 519 between the pressure sensing tube 515 and manifold 503, may include detent settings. These detent setting joints 517, 519 can be used to adjust the angle of the manifold 503 to adjust the angle of the gas delivery nozzles 507 to be in alignment with the patient's nostril airway. Alternatively, the gas delivery tubing 511 and pressure sensing tubing 515 can be connectable to the manifold 503 in different rotational orientations to likewise align the gas delivery nozzles 507 with the patient's nostril airway.



FIG. 7 describes a front view cross-sectional schematic representation of a nasal mask 701, showing one exemplary side of the nasal mask 701, for example, the left side. FIG. 7 shows a nostril airway 703, a nostril wall 705, a nostril entrance 707, a gas delivery nozzle 713, a gas flow channel 711 through the gas delivery nozzle 713, a manifold 709 that integrates the gas delivery nozzle 713, a breathing pressure sensing cannula 715, and a distance 717 between the gas delivery nozzle 713 and the nostril entrance 707. A rounded distal tip of the gas delivery nozzle 713 may be used to assist in reduction of sound generated by gas exiting the gas delivery nozzle 713.



FIG. 7 shows a specific nozzle tip to illustrate that the nozzle tip might be flared or rounded for sound mitigation. The flare is an option.


Distance from Nozzle to Nose:


The gas delivery nozzle 713 may be integrated into a manifold 709, and the manifold 709 may be shaped, dimensioned and configured to position the gas delivery nozzle 713 at an ideal position under a nostril entrance 707. A distance of the gas delivery nozzle 713 to the nostril entrance 707 may be chosen to optimize the function of the Venturi created by the gas delivery nozzle 713 and the nares. Optimal function may be described as generating maximal pressure in the nostril airway 703 while the gas delivery is still comfortable and tolerable to the user.


Typically, laminar positive pressure flow should be developed before the airflow reaches deep into the nostril. This positive pressure flow may be defined by the area inside and distal to the gas flow cone defined by the gas exiting the gas delivery nozzle 713. The area outside of this cone is negative pressure created by the Venturi, which entrains ambient air into the nose and nasal passage, thus generating the energy required for mechanical ventilatory support. When this cone intersects with the internal wall of the nostril, the distal side of that intersecting point is positive pressure.


Alternatively, based on position of the gas delivery nozzle 713 and other operational parameters and device dimensions, this cone can be wider than the entrance to the nostril when it reaches the nostril. In this event, positive pressure occurs outside of the nostril and extends distally. Also alternatively, this cone can intersect with the nostril walls at a distance inside the nostril, thereby allowing a negative pressure zone to occur at the entrance to and slightly inside the nostril, but then transitioning to positive pressure distal to the intersecting point. Because the cross sectional geometry is non-uniform, for example, not a perfectly circular, there is variability with the gas flow cone intersecting points with the nostril wall, around the circumference of the cone and nostril. As will be described subsequently, specific embodiments of the nasal mask may address this nuance such that more uniform and predictable performance can be achieved.


In the embodiment of FIG. 7, the nostril entrance 707 may act as a jet pump inlet and the nasal passage may act as a jet pump throat. Intuitively, it would be expected that optimal function would dictate placing the gas delivery nozzle 713 at the nostril entrance 707 or slightly inside the nares; however, it was determined through empirical testing than in the average adult user, the optimal position for the gas delivery nozzle 713 to achieve optimal Venturi function is to place the gas delivery nozzle 713 approximately 0.950 inches from the nostril entrance 707.


Position of Breathing Pressure Sensing Port:


For embodiments of the invention to be effective, it may be necessary to measure and monitor breathing of the patient to properly synchronize a ventilator gas delivery control system with spontaneous breathing patterns of the patient, as desired clinically. Therefore, while the gas delivery nozzles 713 may be positioned ideally at a distance away from the user's nostril entrance 707, breathing pressure sensing cannula 715, breathing pressure sensing ports or other sensors may need to be placed near, at or inside the nostril entrance 707. For example, the distal end of the pressure sensing cannula 715 can be placed slightly inside the nose in the area where positive pressure has been created by the Venturi system.


It may be beneficial to have multiple locations for measuring pressure. For example, one location may be used for detecting and measuring the spontaneous breathing pressure of the patient, and a different location for measuring the pressure generated by the ventilation system. For example, a breathing pressure sensing port may be placed slightly inside the nostril entrance 707, and a ventilation gas pressure sensor may be placed outside the nostril entrance 707, or alternatively deeper inside the nostril airway 703.


The location of pressure sensing ports, such as the breathing pressure sensing cannula 715, may be selected to optimize accuracy and fidelity. For example, a breathing pressure sensing port, such as the breathing pressure sensing cannula 715, may be arranged so that it is located near the medial aspect of the nostril airway 703, or at the posterior aspect of the nostril airway 703. Multiple breathing pressure sensing locations may also be used. For example, a sensing port at a medial posterior aspect of the nostril airway 703 may be used to measure inhalation pressures accurately, and a sensing port at the anterior aspect of the nostril airway 703 may be used to measure exhalation pressures accurately.


In addition to a nostril airway breathing pressure sensor, other sensor types or locations may be used. For example, a microphone or ultrasonic sensor can be used to detect phases of breathing when placed on the user's neck to detect movements of air in the trachea. Other sensors and sensor locations can be used.


In addition to the ventilation pressure being measured by a pressure sensing port outside of the nose, at the nostril entrance, or inside the nostril airway, the ventilation pressure can be derived by other apparatus and methods. For example, a gas delivery pressure in the gas delivery circuit can be correlated to a delivered ventilation pressure that is delivered to the patient by the ventilation system by measuring key relevant patient parameters, such as airway resistance and respiratory track compliance, and correlating those parameters with delivered pressure based on a gas delivery pressure.



FIG. 8 shows a top-side view of the nasal mask 800 of an alternative embodiment of FIG. 5, showing gas delivery nozzles 809 and pressure sensing cannula 803. The gas delivery nozzles 809 may include a pair of exit ports 801 for both the right and left gas delivery nozzles 809. As discussed later, the dual exit ports 801 may improve the function and user tolerability of the device.



FIG. 9 shows a hidden line view of the nasal mask 800 and manifold 805 shown in FIG. 8, including a pressure sensing lumen 901 running from a first proximal end 903 of the manifold 805 to and through each of the pressure sensing cannula 803, and a gas delivery lumen 905 running from a second proximal end 907 of the manifold 805 to and through each of the exit ports 801. FIG. 10 shows a top view of the nasal mask 800 shown in FIG. 8, and FIG. 11 shows a hidden line view of the nasal mask 800 shown in FIG. 10. FIG. 12 shows a front-top view of the nasal mask 800 shown in FIG. 8, and FIG. 13 shows a hidden line view of the nasal mask 800 shown in FIG. 12.


Key dimensions and values of the ventilation nasal mask are indicated in Table 1. The parameters provided by the ventilation nasal mask and system are indicated in Table 2. Additional exemplary dimensions, values and materials of the ventilation nasal mask are indicated in Table 3.


Nozzle Patterns:


In certain situations, delivery of ventilation gas to the patient through one left and one right gas delivery nozzles may not develop the laminar flow desired due to the variability found in patient's nostril and nasal air passage geometries. Therefore, in certain embodiments of the invention, the mask's left and right gas delivery may each be performed by multiple nozzles.


For example, as shown in FIG. 8, a pair of left and a pair of right gas exit ports 801 may be incorporated in the manifold 805, such that the pattern created by the gas exiting the exit ports 801 is spread out in a pattern approximating the cross-sectional area of the nostril airway, and thus facilitating creating laminar positive pressure flow. The pattern 1401 created by flow emission from the exit ports 801 is shown in FIGS. 14 and 15. This flow and pressure head profile spreads out and smoothes out the flow profile, which may optimize the flow characteristics, and facilitate creating laminar positive pressure flow with minimal disturbance and resistance. Other embodiments may also be used. For example, an oval shaped gas delivery nozzle orifice 1601, as shown in FIG. 16, or a gas delivery nozzle array 1701 of individual gas delivery nozzles 1703, for example arranged in a circular or oval pattern, as shown in FIG. 17. Any nozzle pattern may be used.


In addition to the gas delivery nozzle pattern, the included angle between the gas flow path axis created by the left and right nozzles or nozzle patterns may be non-parallel. For example, as shown in FIG. 18, a nozzle gas flow path 1801 and exit axis can be angled inward, for example at an angle of approximately 0.5-20 degrees inward, and preferably approximately 2-6 degrees inward. This angle may align the ventilation gas flow entering the nostril airway with the nostril airway, which may optimize flow characteristics, and facilitate creating laminar positive pressure flow with minimal disturbance and resistance.



FIGS. 14 and 15 describe the gas flow path pattern entering the nose. As an example, a dual left and dual right gas delivery nozzle pattern is used in this description. As can be seen, the combined gas flow pattern created in the nostril airway by the dual nozzle arrangement may distribute the delivered flow and velocity profile evenly across the proper cross-section of the nostril airway path. This may improve positive pressure formation before the gas travels deep into the nasal airway, improve laminar flow, and reduce turbulence that could be irritating to the user. For example, if the flow profile is more concentrated, a high velocity flow can impinge on a nerve receptor on the inside of the nasal passage, which could be intolerable to the user. In testing, more focused flow profiles were found to irritate users, whereas a more distributed flow profile was found to be tolerable. The spacing, angle, rotational position, and or orientation of the nozzles can be adjustable, or the mask can be available in different sizes so that the flow pattern created by the nozzles matches the size and shape of the user's nasal anatomy. For example, when dual nozzles are used, the nozzle positions can be rotated to rotate the rotational position of the oval pattern created by the pair of nozzles, so that the oval pattern matches with the oval orientation of the user's nostril airway.


Nasal Mask with Jet Pump Throat:


In addition, as shown in FIGS. 19 and 20, the mask can include a jet pump throat section 1901. FIG. 19 has an entrainment port 1905 opening on bottom of a manifold 1907. FIG. 20 shows same throat section 1901, but has the entrainment ports 1905 on top of the manifold at the base of the throat section 1901. In FIG. 19, ambient air may be entrained through the bottom of the manifold 1907. In FIG. 20, ambient air may be entrained past the top of the manifold 1907.


The jet pump throat section 1901 can be useful in creating consistent performance of the ventilation system from one person to another, by minimizing the effect of patient anatomy on performance. The jet pump throat section 1901 can also be useful in dampening the sound that is generated by the high velocity gas exiting gas delivery nozzles 1903 and entraining ambient air. The jet pump throat section 1901 can alternatively include entrainment ports 1905 at the base of the jet pump throat section 1901 as shown in FIG. 20, or a manifold 1907 can include a through-hole 1909 that functions as an entrainment aperture as shown in FIG. 19, which extends through the thickness of the manifold 1907 from the bottom of the manifold 1907 to the top of the manifold 1907 and which is in communication with the gas delivery nozzle 1903. The throat section 1901 of the mask shown in FIG. 19 can also be used to reduce the sound generated by the Venturi and as such this embodiment may be useful in a sleep apnea application, in which minimal sound is a critical performance requirement. The entrainment port 1905 is shown at bottom of manifold 1907 in FIG. 19, but can be on the side of the jet pump throat section 1901, for example, near the nozzle 1903. Gas delivery lumens 1911 may be included from either proximal end of the manifold 1907.


The nozzle in FIG. 19 can be any type of nozzle. In FIG. 19, there may be a throat option that is part of the manifold and outside of the nose.


Other Mask Form Factors:



FIG. 21 describes an alternative embodiment of a nasal mask 2101 in which gas delivery nozzles 2103 are positioned in the correct location under the nose by use of a horizontal extension arm 2105 attached to a vertical extension arm 2107 that extends down from a nose piece 2109 that is configured to be placed on and secured to the front of the nose. The nose piece 2109 can be secured to the nose by a variety of means, such as by using gas delivery tube 2115 and pressure sensing tube 2111 connected to the nasal mask 2101 to secure the nose piece 2109 to the face. The nose piece 2109 can also be secured to the nose by other means, such as by straps, adhesives, a friction fit, or combinations thereof.


The vertical extension arm 2107 can be adjustable to position the gas delivery nozzles 2103 at the appropriate distance from the user, and the horizontal extension arm 2105 can be rotate-ably adjustable to angle the gas delivery nozzles 2103 correctly to be in alignment with the nostril airway. The spacing between the gas delivery nozzles 2103 can be adjustable, for example by a linear adjustment in the horizontal arm.


Breathing pressure sensing ports (not shown) may extend upward from the nose piece 2109 to be positively located at, near or inside the entrance to the nose. The nose piece 2109 may include a shelf 2113 at its bottom end which is used to position against the outside of the nostril rim. The breathing pressure sensing tube 2111 may be attached to one side of the nose piece 2109, the user's right side in FIG. 21, and the gas delivery tube 2115 may be attached to the opposite side.


The nasal mask 2101 may also include additional sensing functions such as a CO2 gas sampling port (not shown) and conduit extending to a capnometer (not shown), which can be included by integrating a secondary channel into the gas delivery tubing or pressure sensing tubing, and integrating the requsite channel into the mask nose piece and or extension arms. The nose piece 2109 may also prevent gas being delivered from the gas delivery nozzles 2103 from being directed toward the eyes when the nasal mask 2101 is not fitted properly to the user.


The nasal mask 2101 may also include additional sensing functions such as a CO2 gas sampling port (not shown) and conduit extending to a capnometer (not shown). The nose piece 2109 may also prevent gas being delivered from the gas delivery nozzles 2103 from being directed toward the eyes when the nasal mask 2101 is not fitted properly to the user.


This embodiment of the invention may use the angle of the medial aspect of the bridge of the nose to align the therapy to the patient. During testing, it was determined that the optimal performance was achieved when the gas delivery nozzles 2103 were aimed parallel to the bridge of the nose to align the jets of ventilation gas with the nares. The gas delivery nozzles 2103 of the nasal mask 2101 may be aimed parallel to the nose piece 2109, such that by placing the nose piece 2109 on the bridge of the nose, the gas delivery nozzles 2103 may be parallel to the bridge of the nose.


If there is some misalignment, performance may degrade. The gas delivery nozzles 2103 preferably are kept within 10 degrees of being properly aligned with a nasal opening and an axis of the nares. As such, when a patient moves their nose to the left or right (e.g. by moving your jaw in an exaggerated manner), the nasal mask 2101 may follow the nose, ensuring that the gas delivery nozzles 2103 remain aligned with the centerline of the nose, and therefore the nostrils. In FIG. 22, gas delivery patterns 2205 may include two intersecting circles to create an effective oval pattern, which are for example generated by dual nozzles, as explained previously for the purpose of developing a laminar cross section of flow and positive pressure in the nostril airway.



FIG. 22 shows a bottom view of a nose 2201 and how the nasal mask 2101 of FIG. 21 is aligned with the nose 2201. A breathing pressure sensing location 2203 and gas delivery patterns 2205 are superimposed on the bottom view image of a nose 2201 and the nostril airway 2207 as depicted by the two large oval shapes. Gas delivery pattern 2205 and nasal air pressure sensing locations 2203 are indicated by the large and small circles, respectively. The patterns 2205 are generated in this example by two gas delivery nozzles for the left and right nostril, which applies to other mask embodiments of the invention in addition to the mask of FIG. 22.


The nasal air pressure sensing ports may be protrusions to help achieve a positive location of the sensing ports in the breath path in the nares. The gas delivery ports may be positioned such that the gas delivery path has a clear path to the nostril airway. There may be two or more sizes of nasal mask 2201, and or adjustment features in the mask, so that the sensing ports and gas delivery zones are properly aligned with the nasal airway path. The previous figures describe that the sensing locations must be in proximity to the entrance of the nostril, either inside, coplanar to the entrance, or slightly outside but if outside no more than 5 mm away from the entrance, whereas the gas delivery nozzle tips are located a distance from the entrance to the nostrils, for example 10-25 mm away. This configuration may allow the nasal mask 2201 to take advantage of the jet pump geometry, while not sacrificing sensing accuracy, so that the ventilator is in proper synchrony with the patient. Also, the gas flow profile may become more organized before entering the patient's nostril, rather than a turbulent jet entering the nostril, which would be quite uncomfortable and intolerant to the patient.



FIG. 23 shows an isometric view of the patient circuit assembly 2301 of the nasal mask 2201 shown in FIG. 21. A Y connector 2303 joining a breathing pressure sensing tube 2111 and gas delivery tube 2115 is shown, and combined tubing 2305 and a ventilator connector 2307 at a proximal end of the patient circuit are shown.



FIGS. 24 and 25 describe aesthetically streamlined versions of the nasal mask shown in FIG. 21. Features of the nose pieces 2401, 2501 may be trimmed to optimize the comfort and to minimize the obtrusiveness to the user. In FIG. 24, the gas delivery nozzles 2403 may be positioned under the nose by an extension 2405 of the nose piece 2401 itself versus the vertical extension arm of the mask in FIG. 21. In FIG. 25, the nose piece 2501 may be a strip on the top of the bridge of the nose and the gas delivery nozzles 2503 may be positioned by use of a streamlined vertical arm 2505 and a streamlined horizontal arm 2507.



FIG. 26 shows a version of the mask shown in FIG. 21 in which gas delivery nozzles 2601 are positioned under the nose at the correct location using head gear 2603 with an extension arm 2605. The head gear 2603 and extension arm 2605 can be adjustable to position the gas delivery nozzles 2601 and breathing pressure sensing ports (not shown) in the correct location.


The following tables list exemplary values only and are not to be construed as limiting the disclosure.









TABLE 1







Nasal Mask Exemplary Key Dimensions and Values










Preferred/



Feature
ideal
Range














Nozzle diameter:
0.033
in
.010-.050
in


Flow rate delivered to nozzle:
30
lpm
6-40
lpm


Input pressure delivered to nozzle:
35
psi
5-60
psi


Throat length, if included:
.6-1.0
in
.3-1.5
in


Throat typical cross sectional area,
0.04
in2
0.02-0.06
in2


if included:


Nozzle distance to proximal edge of
0.5-1.2
in
0.3-1.3
in


nose:
















TABLE 2







Exemplary Ventilatory Support Parameters











Preferred


Parameter
Range
(Adult*)





Lung Volume Augmentation (%)
 10-150%
 15-65%


WOB reduction (%)
 5-80%
 10-50%


Lung Pressure increase (cmH2O)
1-30
3-20


Upper Airway pressure increase
3-34
7-25


(cmH2O)


Lung Pressure or Volume Waveform
(1)
R


Entrained ambient air (% of Ventilator
 10-300%
 50-100%


gas delivery)


Gas exit speed out of gas delivery
25-350
50-200


nozzle (m/sec)


Ventilator Output flow rate, average
5-40
10-20 


(lpm)


Gas Delivery Tubing outer diameter
3-7 
4-6 


(mm)


Ventilator Output Pressure (psi)
10-60 
20-40 


Ventilator Drive Pressure (psi)
10-80 
20-50 


Ventilator Operating Pressure (psi)
5-40
25-35 


Ventilator Output Volume (ml)
10-750
50-350


Ventilator Output Pulse Time (sec.)
0.100-1.25 
0.200-0.750 


Therapy's nominal source gas
0.5-6.0 
2-4 


consumption (lpm)


Ventilator Output Synchronization (ms)
variable
variable



depending on
depending on



comfort and
comfort and



need
need



(25-500 ms
(75-250 ms



delay)
delay)


Ventilator Output Waveform
(1)
Descending
















TABLE 3





Additional Exemplary Dimensions, Values and Materials



















Preferred


Feature
Range
Range





Dimensions


Gas delivery hose, ID (mm)
2.0-7.0
2.5-4.5


Gas delivery hose, Length (ft), ambulating with
2-6
2.5-4 


wearable system


Gas delivery hose, Length (ft), ambulating with
20-75
40-60


stationary system


Gas delivery hose, Length (ft), sleeping
 4-15
 6-10


Jet Nozzle, Length (mm)
0.5-15 
 2-10


Manifold Length (mm)
20-160 mm
30-80 mm


Manifold spontaneous breathing gas flow path
0 ml
0 ml


volume


Manifold pressure sensing line diameter (in)
.008-.055
.015-.040


Manifold breathing resistance
0
0.01-0.10


(cmH2O @ 60 lpm)


Breathing sensing port, distance to nose (mm)
−5 to 2
−10 to 5












Materials
Types
Preferred





Gas delivery hose
PP, PE, PS, PVC
PE


Cannula
PU, PVC, Silicone
PVC,




Silicone


Manifold
PVC, Silicone, PU, PE, Polysolfone
PVC,




Silicone


Jet Nozzle
Metal, Ultem, Nylon, LCP, PVC, PC,
PVC



ABS, PEEK





(1) Square, Rounded, Descending, Ascending, Sinusoidal, Oscillating.


* Dimensions listed are exemplary and for average sized adults; pediatric sizes 20% less, neonatal sizes 50% less.


Diameters listed are effective diameters (average cross sectional dimension).







FIG. 27 describes the mechanism of action of the invention, and how the patient's work of breathing may be beneficially affected by the invention, when the invention is used for lung disease or neuromuscular disease applications. The patient's lung volume may be graphed as a function of lung pressure, the area inside the curve representing work, typically expressed in Joules per Liter (J/L), and for a normal healthy adult can be 0.3-0.6 J/L. For a respiratory compromised patient, 4-10 times more work can be required to breathe during rest, and even more during exertion, to overcome the diseased state of the tissue, for example to overcome static and dynamic hyperinflation as in the case of COPD, or to overcome high airways resistance as in the case of fibrosis or ARDS.


In the graph shown, the area inside the curve below the pressure axis is the inspiratory WOB, and the area defined by the area inside the curve above the pressure axis is the expiratory WOB. The arrows show the progression of a single breath over time, starting from RV to VT then returning from VT to RV. RV1 and VT1 are the residual volume and tidal volume without the therapy. Line 3201 represents spontaneous breathing without non-invasive open nasal ventilation. Line 3203 represents spontaneous breathing with non-invasive open nasal ventilation, with inspiratory augmentation and positive end-expiratory pressure (PEEP) therapy. RV2 and VT2 are the residual volume and tidal volume with the therapy. As can be seen, RV increases with the therapy because in this example, expiratory flow is provided as part of the therapy, which may increase residual volume. Importantly, VT is increased with the therapy and is increased more that the RV is increased, indicating that more volume is entering and leaving the lung as a result of the therapy. The increase in tidal volume is considered clinically efficacious, however is technically challenging to achieve in an open ventilation, non-invasive and minimally obtrusive system. As is shown in the graph, the patient's inspiratory WOB with the invention ON may be about 25% less than the patient's inspiratory WOB with the invention OFF. Also, inspiratory lung pressure increases (is less negative) and tidal volume increases, and optionally exhaled pressure increases if the therapy is provided during exhalation. While residual volume increases in the example shown because the ventilator is providing gas in this example during the expiratory phase, the ventilation parameters can be titrated to not effect residual volume, and because of the ability of the patient to exercise their lung muscles when receiving the therapy, the patient's lung mechanics may remodel in the case of COPD, actually causing a reduction of residual volume to a more normal value. In the graph shown, the waveform with therapy assumes an early inspiratory trigger time for the ventilator inspiratory phase therapy output, and that the volume output is delivered within the patient's inspiratory time. Optionally, however, different delivery waveforms and delivery synchronizations can be performed, which may adjust the WOB curve. For example, the ventilator inspiratory phase therapy can be delivered late in the person's inspiratory cycle, with delivery completing at the end of inspiration, and delivered with a square or ascending waveform profile. In this case the WOB curve with therapy will be tilted upward to the right of the curve, such that inspiration ends and transitions to exhalation at a point above the lung pressure zero axis.



FIG. 28 graphically illustrates the lung volumes achieved with NIOV on a lung simulator bench model in comparison to conventional ventilation. In all the waveforms the simulated patient is spontaneously breathing at the same inspiratory effort which results in a tidal volume of 245 ml, and the clinical goal is to increase the patient's tidal volume from 245 ml 3301 to 380 ml 3303. In the first waveform from left to right in the graph, the patient's breath 3305 is un-assisted and thus the patient receives a tidal volume of 245 ml. In the next waveform, the simulated patient with the same effort is assisted with a traditional closed system ventilator, such as with a sealed breathing mask or cuffed airway tube. The ventilator output 3309 is set to a level to achieve the desired “assisted” tidal volume of 380 ml. The ventilator is set to 420 ml to achieve this goal, as there is a discrepancy between the gas delivered to the lung by the ventilator versus the gas delivered by the ventilator but not reaching the lung and wasting to ambient 3307. In the third waveform, a small leak is introduced in the conventional ventilator system, such as would be done in the case of weaning the patient off of the ventilator. To achieve the desired “assisted” tidal volume of 380 ml, the ventilator must now be set at 705 ml. In the second and third waveforms, it can also be seen that all of the volume received by the patient's lung originates from the ventilator, which it must in these conventional systems. In the forth waveform, the patient is assisted with the NIOV, and as can be seen, the NIOV ventilator output only has to be set at 90 ml to achieve desired “assisted” level of 380 ml. In this case, only some of the 380 ml tidal volume comes from the ventilator, and a substantial portion of the 380 ml comes from entrainment and spontaneously inspired ambient air 3311, therefore making the NIOV system far more efficient, comfortable, and healthier, than the other systems.



FIG. 29 graphically shows NIOV in comparison to oxygen therapy, using the lung simulator bench model. In the first waveform on the left, the patient is unassisted and breathes at an effort of −0.8 cmH2O, generating 248 ml of inspired tidal volume 3401. In the second waveform and third waveform, the patient receives continuous flow 3403 and pulsed flow 3405 of oxygen respectively via nasal cannula, with no or negligible effect on lung pressure and tidal volume. In the forth waveform, NIOV 3407 is used which shows a marked increase in lung pressure and tidal volume, thus indicating that NIOV helps in the work-of-breathing as described earlier, despite the fact that NIOV is an open airway system.



FIGS. 30A-30L show exemplary ventilation gas delivery profiles of the invention and their respective effect on lung volume and lung pressure.



FIGS. 30A, 30D, 30G and 30J show exemplary pressure and/or flow waveforms delivered by the ventilator. FIG. 30A describes a square waveform 3501 delivered during the complete inspiratory cycle; FIG. 30D describes an ascending and descending waveform 3503; FIG. 30G describes a square waveform 3507 delivered for the first part of the patient's spontaneous inspiratory time; FIG. 30J shows a multilevel amplitude waveform 3509 with a first amplitude 3511 delivered during the inspiratory phase and a second amplitude 3513 during the expiratory phase, where the second amplitude 3513 for example is used to deliver positive end-expiratory pressure (PEEP), which in some clinical applications will be efficacious. Other waveforms are also included in the invention, such as a descending trapezoidal or ascending trapezoidal square wave. The pressure and flow rate output from the ventilator into the gas delivery tubing is typically in the 5-40 psi and 6-30 lpm range.



FIGS. 30B, 30E, 30H and 30K describe the lung volume being delivered by the therapy including a ventilator output 3515 and an entrained volume 3517.



FIGS. 30C, 30F, 30I and 30L show the lung pressure without therapy represented by the dashed line 3519, and the resultant lung pressures with the therapy represented by the solid line 3521, showing a positive inspiratory pressure in FIG. 30C for the entire inspiratory phase, a positive inspiratory pressure for part of the inspiratory phase in FIGS. 30F and 30I, with therapy extending into exhalation 3523, and an elevated negative inspiratory pressure in FIG. 30L.



FIGS. 36A-36L describe additional exemplary ventilation gas delivery profiles of the invention and their respective effect on lung volume and lung pressure.



FIG. 31A describes an ascending waveform 3601. FIG. 31D describes a descending waveform 3603. FIG. 31G describes a multi-level waveform 3605 with a lower amplitude in the first portion of the inspiratory phase, for example to deliver the necessary oxygen molecules to the lung early in the breath phase, and a higher amplitude in the second portion of the inspiratory phase, for example to deliver the mechanical support portion of the therapy to help the work of breathing. FIG. 31J describes an oscillatory waveform 3607, which may be use the gas supply more efficiently while producing nearly the same Venturi, entrainment and therapeutic effect.



FIGS. 31B, 31E, 31H and 31K describe the lung volume being delivered by the therapy including a ventilator output 3609 and an entrained volume 3611.



FIGS. 31C, 31F, 31I and 31L show the lung pressure without therapy represented by the dashed line 3613, and the resultant lung pressures with the therapy represented by the solid line 3615.


The lung pressure resulting from the therapy may be governed by a combination of factors: the gas delivery circuit pressure, the jet pump design and configuration, the patient's lung compliance and airway resistance, the patient's breathing effort, the timing of the ventilator output relative to the patient's inspiratory phase, and the ventilator output waveform. Typically, however, a gas delivery circuit pressure of 30 psi delivering 100 ml with a square waveform, and delivered for 500 msec starting at the beginning of the patient's inspiratory phase, may increase lung pressure by 5-15 cmH2O. And, typically a gas delivery circuit pressure of 30 psi delivering 250 ml with a trapezoidal waveform, and delivered for 700 msec during the majority of the patient's inspiratory phase, may increase lung pressure by 10-25 cmH2O. The gas delivered by the ventilator can be oxygen, air, oxygen-air mixtures, or therapeutic gases such as helium. In a main mechanism of action of the invention, the patient's lung pressure and lung volume is increased, which allows the patient to exert them self without being limited by fatigue and dyspnea. In another main mechanism of action of the invention, the patient reduces their breathing effort in response to the pressure and volume support provided by the therapy, thus resulting in no change in total lung volume from the therapy, but resulting in a reduced work of breathing. In another main embodiment of the invention, a combination of the above two mechanisms of action can occur.



FIG. 32 is a diagram of timing and gas flow delivery, according to one embodiment. Amplitude of gas flow delivery rate 3701 modulates with respiratory rate to affect airway pressure 3703. The faster the respiratory rate, the higher the amplitude. The volume delivery may be maintained at a constant rate, unless changed by the user, between the restful state and exertion state. However, the amount of power delivered by the system may be higher during the exertion state, because the faster flow rate entrains more gas, which produces more power and higher lung pressures during inspiratory phase. Further, the delivery time of the delivered flow can be adjusted by the user as a percentage of the breath period. For example, if the breath period is 3 seconds, a 25% delivery time setting would equal a delivered flow pulse width of 0.75 seconds. The delivered flow pulse width would change with the breath rate; however, it may continue to be 25% of the breath period (unless changed by the user). The setting can be set for example in the range of 15% to 70% of the breath period. The setting may be independent of the volume setting. For example, a setting of 25% versus 40% may still deliver the same set volume, and may merely deliver the set volume at different flow rates. The algorithm for adjusting the delivered flow pulse time may, for example, look at the preceding 3 to 5 breaths to determine what the current breath period is, and may have a correction factor to rule out outlier breaths.


Although the foregoing description is directed to the preferred embodiments of the invention, it is noted that other variations and modifications will be apparent to those skilled in the art, and may be made without departing from the spirit or scope of the invention. Moreover, features described in connection with one embodiment of the invention may be used in conjunction with other embodiments, even if not explicitly stated above.

Claims
  • 1. A system for supplying ventilatory support, comprising: a gas delivery source;a gas delivery circuit;a non-sealing nasal interface configured to be placed under a nose of a patient and to communicate with the patient's nostril airway while allowing the patient to breathe ambient air;a nozzle associated with the non-sealing nasal interface and configured to be positioned a distance from a nostril entrance of the patient's nostril airway when the non-sealing nasal interface is placed under the nose of the patient, the nozzle being connectable to the gas delivery circuit and the gas delivery source;wherein the nozzle is configured to deliver a gas flow cone defined by the gas exiting the nozzle, such that when the non-sealing nasal interface is placed under the nose of the patient, the gas flow cone intersects with an internal wall of the patient's nostril airway at an intersecting point, the area inside the gas flow cone and the area within the patient's nostril airway distal to the intersecting point defining a positive pressure area wherein a laminar positive pressure flow is developed, the area outside the gas flow cone defining a negative pressure area entraining ambient air into the patient's nostril airway; andwherein a combination of gas from the gas delivery source and air entrained into the patient's nostril airway provide ventilatory support.
  • 2. The system of claim 1, wherein the non-sealing nasal interface comprises a manifold, and wherein the manifold comprises the nozzle.
  • 3. The system of claim 2, wherein the manifold is configured to position the nozzle at the distance away from the nostril entrance, and configured to position the nozzle at an angle relative a centerline of the nostril airway.
  • 4. The system of claim 1, further comprising one or more sensors.
  • 5. The system of claim 4, wherein the one or more sensors comprise a sensing channel that extends away from the nozzle toward the nose terminating in the positive pressure area.
  • 6. The system of claim 4, wherein the one or more sensors comprise a sensing channel that extends distally away from the nozzle.
  • 7. The system of claim 6, wherein the sensing channel extends into the nose of the patient.
  • 8. The system of claim 6, wherein the sensing channel extends to within approximately +/−5 mm from the nostril entrance.
  • 9. The system of claim 1, further comprising two or more nozzles per nostril.
  • 10. The system of claim 1, wherein the nozzle is an oval-shaped gas delivery nozzle orifice.
  • 11. The system of claim 1, wherein the nozzle comprises an array of multiple gas delivery nozzles arranged in a circular or oval pattern.
  • 12. The system of claim 1, further comprising a jet pump throat comprising a flow path.
  • 13. The system of claim 12, wherein the jet pump throat is associated with a manifold, and the nozzle is associated with a jet pump throat flow path through the jet pump throat.
  • 14. The system of claim 13, wherein the manifold comprises an entrainment port in communication with the jet pump throat flow path.
  • 15. The system of claim 1, wherein the nozzle angles inward.
  • 16. The system of claim 15, wherein the nozzle angles inward at an angle of 1 degree to 20 degrees.
  • 17. The system of claim 1, wherein the nozzle creates an oval shaped gas flow cone within a nostril airway.
  • 18. The system of claim 17, wherein the nozzle is rotatably adjustable.
  • 19. The system of claim 1, wherein the nozzle comprises at least one left nozzle and at least one right nozzle, wherein the spacing between the at least one left nozzle and the at least one right nozzle is adjustable.
  • 20. The system of claim 19, wherein the at least one left nozzle and the at least one right nozzle are rotatably adjustable.
  • 21. The system of claim 1, wherein spacing between the nostril entrance and nozzle is adjustable.
  • 22. The system of claim 1, wherein the non-sealing nasal interface is available in different sizes, differing in nozzle spacing, nozzle rotational orientation and nozzle distance to nostril entrance.
  • 23. The system of claim 1, wherein a negative pressure of the negative pressure area is less than ambient.
  • 24. The system of claim 23, wherein the negative pressure of the negative pressure area is −5 cmH2O to −28 cmH2O.
  • 25. The system of claim 1, wherein the positive pressure of the positive pressure area is greater than ambient.
  • 26. The system of claim 25, wherein the positive pressure of the positive pressure area is approximately 0.01 psi to approximately 0.50 psi.
  • 27. The system of claim 1, wherein the nozzle is positioned at a distance of up to 1.5 inches from the nostril entrance of the patient's nostril airway when the non-sealing nasal interface is placed under the nose of the patient.
  • 28. The system of claim 1, wherein delivery of gas through the nozzle is synchronized with a breathing pattern of the patient.
  • 29. The system of claim 1, wherein the gas from the gas delivery source is controlled by a wearable ventilator.
  • 30. The system of claim 1, wherein ventilatory support comprises reducing the work of breathing to treat respiratory insufficiency.
  • 31. The system of claim 1, wherein ventilatory support comprises elevating airway pressure to treat sleep apnea.
  • 32. The system of claim 1, wherein the non-sealing nasal interface comprises a connector for coupling the system to a bridge of the nose and aligning the nozzle with the nostril entrance of the patient's nostril airway.
  • 33. The system of claim 32, wherein the aligning of the nozzle with the nostril entrance of the patient's nostril airway comprises adjusting the angle of the nozzle to be in alignment with the centerline of the nostril airway.
  • 34. A method for providing portable non-invasive open-airway ventilatory support, the method comprising: providing a non-sealing nasal interface configured to be placed under a nose of a patient and to communicate with the patient's nostril airway while allowing the patient to breathe ambient air; andproviding a nozzle associated with the non-sealing nasal interface and configured to be positioned a distance from a nostril entrance of the patient's nostril airway when the non-sealing nasal interface is placed under the nose of the patient, the nozzle being adapted to be in fluid communication with a gas delivery circuit and a gas delivery source;wherein the nozzle is of configured to deliver a gas flow cone defined by the gas exiting the nozzle, such that when the non-sealing nasal interface is placed under the nose of the patient, the gas flow cone intersects with an internal wall of the patient's nostril airway at an intersecting point, the area inside the gas flow cone and the area within the patient's nostril airway distal to the intersecting point defining a positive pressure area wherein a laminar positive pressure flow is developed, the area outside the gas flow cone defining a negative pressure area entraining ambient air into the patient's nostril airway;wherein a combination of gas from the gas delivery source and air entrained into the patient's nostril airway provides ventilatory support.
  • 35. The method of claim 34, wherein the non-sealing nasal interface comprises a manifold, and wherein the manifold comprises the nozzle.
  • 36. The method of claim 35, wherein the manifold is configured to position the nozzle at the distance away from the nostril entrance, and configured to position the nozzle at an angle relative a centerline of the nostril airway.
  • 37. The method of claim 34, further comprising one or more sensors.
  • 38. The method of claim 37, wherein the one or more sensors comprise a sensing channel that extends away from the nozzle toward the nose terminating in the positive pressure area.
  • 39. The method of claim 37, wherein the one or more sensors comprise a sensing channel that extends distally away from the nozzle.
  • 40. The method of claim 39, wherein the sensing channel extends into the nose of the patient.
  • 41. The method of claim 39, wherein the sensing channel extends to within +/−5 mm from the nostril entrance.
  • 42. The method of claim 34, further comprising two or more nozzles per nostril.
  • 43. The method of claim 34, wherein the nozzle is an oval-shaped gas delivery nozzle orifice.
  • 44. The method of claim 34, wherein the nozzle comprises an array of multiple gas delivery nozzles arranged in a circular or oval pattern.
  • 45. The method of claim 34, further comprising a jet pump throat comprising a flow path.
  • 46. The method of claim 45, wherein the jet pump throat is associated with a manifold, and the nozzle is associated with a jet pump throat flow path through the jet pump throat.
  • 47. The method of claim 46, wherein the manifold comprises an entrainment port in communication with the jet pump throat flow path.
  • 48. The method of claim 34, wherein the nozzle angles inward.
  • 49. The method of claim 48, wherein the nozzle angles inward at an angle of 1 degree to 20 degrees.
  • 50. The method of claim 34, wherein the nozzle creates an oval shaped gas flow cone within the nostril airway.
  • 51. The method of claim 50, wherein the nozzle is rotatably adjustable.
  • 52. The method of claim 34, wherein the nozzle comprises at least one left nozzle and at least one right nozzle, wherein the spacing between the at least one left nozzle and the at least one right nozzle is adjustable.
  • 53. The method of claim 52, wherein the at least one left nozzle and the at least one right nozzle are rotate-ably adjustable.
  • 54. The method of claim 34, wherein spacing between the nostril entrance and nozzle is adjustable.
  • 55. The method of claim 34, wherein the non-sealing nasal interface is available in different sizes, differing in nozzle spacing, nozzle rotational orientation and nozzle distance to nostril entrance.
  • 56. The method of claim 34, wherein the negative pressure of the negative pressure area is less than ambient.
  • 57. The method of claim 56, wherein the negative pressure of the negative pressure area is −5 cmH2O to −28 cmH2O.
  • 58. The method of claim 34, wherein the positive pressure of the positive pressure area is greater than ambient.
  • 59. The method of claim 58, wherein the positive pressure of the positive pressure area is 0.01 psi to 0.50 psi.
  • 60. The method of claim 34, wherein the nozzle is positioned at a distance of up to 1.5 inches from the nostril entrance of the patient's nostril airway when the non-sealing nasal interface is placed under the nose of the patient.
  • 61. The method of claim 34, wherein delivery of gas through the nozzle is synchronized with a breathing pattern of the patient.
  • 62. The method of claim 34, wherein the gas from the gas delivery source is controlled by a wearable ventilator.
  • 63. The method of claim 34, wherein ventilatory support comprises reducing the work of breathing to treat respiratory insufficiency.
  • 64. The method of claim 34, wherein ventilatory support comprises elevating airway pressure to treat sleep apnea.
  • 65. The method of claim 34, wherein the non-sealing nasal interface comprises a connector for coupling the system to a bridge of the nose and aligning the nozzle with the nostril entrance of the patient's nostril airway.
  • 66. The method of claim 65, wherein the aligning of the nozzle with the nostril entrance of the patient's nostril airway comprises adjusting the angle of the nozzle to be in alignment with a centerline of the nostril airway.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 61/239,728, filed Sep. 3, 2009, U.S. Provisional Patent Application No. 61/166,150, filed Apr. 2, 2009, U.S. Provisional Patent Application No. 61/255,760, filed Oct. 28, 2009, U.S. Provisional Patent Application No. 61/294,363, filed Jan. 12, 2010, and U.S. Provisional Patent Application No. 61/306,370, filed Feb. 19, 2010; the contents of which are incorporated by reference herein in their entireties. This application is also a continuation-in-part of each of U.S. Non-Provisional patent application Ser. No. 12/753,846, filed Apr. 2, 2010, PCT Patent Application No. PCT/US2010/029871, filed Apr. 2, 2010, U.S. Non-Provisional patent application Ser. No. 12/753,851, filed Apr. 2, 2010, PCT Patent Application No. PCT/US2010/029873, filed Apr. 2, 2010, U.S. Non-Provisional patent application Ser. No. 12/753,853, filed Apr. 2, 2010, U.S. Non-Provisional patent application Ser. No. 12/753,854, filed Apr. 2, 2010, PCT Patent Application No. PCT/US2010/029874, filed Apr. 2, 2010, U.S. Non-Provisional patent application Ser. No. 12/753,856, filed Apr. 2, 2010, and PCT Patent Application No. PCT/US2010/029875, filed Apr. 2, 2010; the contents of which are incorporated by reference herein in their entireties. This application incorporates by reference U.S. Non-Provisional patent application Ser. No. 12/876,098, filed Sep. 3, 2010, entitled “METHODS, SYSTEMS AND DEVICES FOR NON-INVASIVE VENTILATION INCLUDING A NON-SEALING VENTILATION INTERFACE WITH AN ENTRAINMENT PORT AND/OR PRESSURE FEATURE”, and PCT Patent Application No. PCT/US2010/047921, filed Sep. 3, 2010, entitled “METHODS, SYSTEMS AND DEVICES FOR NON-INVASIVE VENTILATION INCLUDING A NON-SEALING VENTILATION INTERFACE WITH AN ENTRAINMENT PORT AND/OR PRESSURE FEATURE”.

US Referenced Citations (1007)
Number Name Date Kind
50641 Stone Oct 1865 A
428592 Chapman May 1890 A
697181 Smith Apr 1902 A
718785 McNary Jan 1903 A
853439 Clark May 1907 A
859156 Warnken Jul 1907 A
909002 Lambert Jan 1909 A
1125542 Humphries Jan 1915 A
1129619 Zapf Feb 1915 A
1331297 Walker Feb 1920 A
2178800 Lombard Nov 1939 A
2245969 Francisco et al. Jun 1941 A
2259817 Hawkins Oct 1941 A
2499650 Kaslow Mar 1950 A
2552595 Seeler May 1951 A
2663297 Turnberg Dec 1953 A
2693800 Caldwell Nov 1954 A
2735432 Hudson Feb 1956 A
2792000 Richardson May 1957 A
2843122 Hudson Jul 1958 A
2859748 Hudson Nov 1958 A
2931358 Sheridan Apr 1960 A
2947938 Bennett Aug 1960 A
3172407 Von Pechmann Mar 1965 A
3267935 Andreasen et al. Aug 1966 A
3319627 Windsor May 1967 A
3357424 Schreiber Dec 1967 A
3357427 Wittke et al. Dec 1967 A
3357428 Carlson Dec 1967 A
3400714 Sheridan Sep 1968 A
3437274 Apri Apr 1969 A
3460533 Riú Plá Aug 1969 A
3493703 Finan Feb 1970 A
3513844 Smith May 1970 A
3610247 Jackson Oct 1971 A
3625206 Charnley Dec 1971 A
3625207 Agnew Dec 1971 A
3631438 Lewin Dec 1971 A
3643660 Hudson et al. Feb 1972 A
3657740 Cialone Apr 1972 A
3682171 Dali et al. Aug 1972 A
3721233 Montgomery et al. Mar 1973 A
3726275 Jackson et al. Apr 1973 A
3727606 Sielaff Apr 1973 A
3733008 Churchill et al. May 1973 A
3741208 Jonsson et al. Jun 1973 A
3754552 King Aug 1973 A
3794026 Jacobs Feb 1974 A
3794072 Diedrich et al. Feb 1974 A
3802431 Farr Apr 1974 A
3831596 Cavallo Aug 1974 A
3881480 Lafourcade May 1975 A
3896800 Cibulka Jul 1975 A
3903881 Weigl Sep 1975 A
3905362 Eyrick et al. Sep 1975 A
3949749 Stewart Apr 1976 A
3951143 Kitrilakis et al. Apr 1976 A
3961627 Ernst et al. Jun 1976 A
3972327 Ernst et al. Aug 1976 A
3985131 Buck et al. Oct 1976 A
3991790 Russell Nov 1976 A
4003377 Dahl Jan 1977 A
4036253 Fegan et al. Jul 1977 A
4054133 Myers Oct 1977 A
4067328 Manley Jan 1978 A
4106505 Salter et al. Aug 1978 A
4146885 Lawson, Jr. Mar 1979 A
4206754 Cox et al. Jun 1980 A
4211086 Leonard et al. Jul 1980 A
4216769 Grimes Aug 1980 A
4231363 Grimes Nov 1980 A
4231365 Scarberry Nov 1980 A
4256101 Ellestad Mar 1981 A
4261355 Glazener Apr 1981 A
4263908 Mizerak Apr 1981 A
4265237 Schwanbom et al. May 1981 A
4266540 Panzik et al. May 1981 A
4273124 Zimmerman Jun 1981 A
4274162 Joy et al. Jun 1981 A
4278082 Blackmer Jul 1981 A
4282869 Zidulka Aug 1981 A
4306567 Krasner Dec 1981 A
4323064 Hoenig et al. Apr 1982 A
4354488 Bartos Oct 1982 A
4365636 Barker Dec 1982 A
4367735 Dali Jan 1983 A
4377162 Stayer Mar 1983 A
4393869 Boyarsky et al. Jul 1983 A
4406283 Bir Sep 1983 A
4411267 Heyman Oct 1983 A
4413514 Bowman Nov 1983 A
4421113 Gedeon et al. Dec 1983 A
4422456 Tiep Dec 1983 A
4449523 Szachowicz et al. May 1984 A
4454880 Muto et al. Jun 1984 A
4462398 Durkan et al. Jul 1984 A
4469097 Kelman Sep 1984 A
4481944 Bunnell Nov 1984 A
4488548 Agdanowski Dec 1984 A
4495946 Lemer Jan 1985 A
4506666 Durkan Mar 1985 A
4506667 Ansite Mar 1985 A
4519387 Durkan et al. May 1985 A
4520812 Freitag et al. Jun 1985 A
4527557 DeVries et al. Jul 1985 A
4535766 Baum Aug 1985 A
4537188 Phuc Aug 1985 A
4539984 Kiszel et al. Sep 1985 A
4548590 Green Oct 1985 A
4559940 McGinnis Dec 1985 A
4570631 Durkan Feb 1986 A
4571741 Guillaumot Feb 1986 A
4584996 Blum Apr 1986 A
4590951 O'Connor May 1986 A
4592349 Bird Jun 1986 A
4621632 Bartels et al. Nov 1986 A
4630606 Weerda et al. Dec 1986 A
4630614 Atlas Dec 1986 A
4644947 Whitwam et al. Feb 1987 A
4648395 Sato et al. Mar 1987 A
4648398 Agdanowski et al. Mar 1987 A
4658832 Brugnoli Apr 1987 A
4660555 Payton Apr 1987 A
4682591 Jones Jul 1987 A
4684398 Dunbar et al. Aug 1987 A
4686974 Sato et al. Aug 1987 A
4686975 Naimon et al. Aug 1987 A
4688961 Shioda et al. Aug 1987 A
4705034 Perkins Nov 1987 A
4744356 Greenwood May 1988 A
4747403 Gluck et al. May 1988 A
4753233 Grimes Jun 1988 A
4773411 Downs Sep 1988 A
4776333 Miyamae Oct 1988 A
4782832 Trimble et al. Nov 1988 A
4784130 Kenyon et al. Nov 1988 A
4803981 Vickery Feb 1989 A
4807616 Adahan Feb 1989 A
4807617 Nesti Feb 1989 A
4808160 Timmons et al. Feb 1989 A
4813431 Brown Mar 1989 A
4817897 Kreusel Apr 1989 A
4818320 Weichselbaum Apr 1989 A
4823788 Smith et al. Apr 1989 A
4825859 Lambert May 1989 A
4827922 Champain et al. May 1989 A
4832014 Perkins May 1989 A
4838255 Lambert Jun 1989 A
4841953 Dodrill Jun 1989 A
4848333 Waite Jul 1989 A
4850350 Jackson Jul 1989 A
4865586 Hedberg Sep 1989 A
4869718 Brader Sep 1989 A
4899740 Napolitano Feb 1990 A
4905688 Vicenzi et al. Mar 1990 A
4915103 Visveshwara et al. Apr 1990 A
4915105 Lee Apr 1990 A
4919128 Kopala et al. Apr 1990 A
4919132 Miser Apr 1990 A
4938212 Snook et al. Jul 1990 A
4944310 Sullivan Jul 1990 A
4967743 Lambert Nov 1990 A
4971049 Rotariu et al. Nov 1990 A
4982735 Yagata et al. Jan 1991 A
4986269 Hakkinen Jan 1991 A
4989599 Carter Feb 1991 A
4990157 Roberts et al. Feb 1991 A
5000175 Pue Mar 1991 A
5002050 McGinnis Mar 1991 A
5005570 Perkins Apr 1991 A
5018519 Brown May 1991 A
5022394 Chmielinski Jun 1991 A
5024219 Dietz Jun 1991 A
5025805 Nutter Jun 1991 A
5038771 Dietz Aug 1991 A
5042478 Kopala et al. Aug 1991 A
5046491 Derrick Sep 1991 A
5046492 Stackhouse et al. Sep 1991 A
5048515 Sanso Sep 1991 A
5048516 Soderberg Sep 1991 A
5052400 Dietz Oct 1991 A
5054484 Hebeler, Jr. Oct 1991 A
5058580 Hazard Oct 1991 A
5074299 Dietz Dec 1991 A
5076267 Pasternack Dec 1991 A
5090408 Spofford et al. Feb 1992 A
5097827 Izumi Mar 1992 A
5099836 Rowland et al. Mar 1992 A
5099837 Russel, Sr. et al. Mar 1992 A
5101820 Christopher Apr 1992 A
5103815 Siegel et al. Apr 1992 A
5105807 Kahn et al. Apr 1992 A
5107830 Younes Apr 1992 A
5107831 Halpern et al. Apr 1992 A
5113857 Dickerman et al. May 1992 A
5117818 Palfy Jun 1992 A
5117819 Servidio et al. Jun 1992 A
5127400 DeVries et al. Jul 1992 A
5134995 Gruenke et al. Aug 1992 A
5134996 Bell Aug 1992 A
5140045 Askanazi et al. Aug 1992 A
5148802 Sanders et al. Sep 1992 A
5161525 Kimm et al. Nov 1992 A
5165397 Arp Nov 1992 A
5181509 Spofford et al. Jan 1993 A
5184610 Marten et al. Feb 1993 A
5186167 Kolobow Feb 1993 A
5193532 Moa et al. Mar 1993 A
5193533 Body et al. Mar 1993 A
5199424 Sullivan et al. Apr 1993 A
5211170 Press May 1993 A
5217008 Lindholm Jun 1993 A
5233978 Callaway Aug 1993 A
5233979 Strickland Aug 1993 A
5239994 Atkins Aug 1993 A
5239995 Estes et al. Aug 1993 A
5243972 Huang Sep 1993 A
5245995 Sullivan et al. Sep 1993 A
5255675 Kolobow Oct 1993 A
5258027 Berghaus Nov 1993 A
5269296 Landis Dec 1993 A
5271388 Whitwam et al. Dec 1993 A
5271391 Graves Dec 1993 A
5275159 Griebel Jan 1994 A
5279288 Christopher Jan 1994 A
5287852 Arkinstall Feb 1994 A
5303698 Tobia et al. Apr 1994 A
5303700 Weismann et al. Apr 1994 A
5318019 Celaya Jun 1994 A
5331995 Westfall et al. Jul 1994 A
5335656 Bowe et al. Aug 1994 A
5339809 Beck, Jr. et al. Aug 1994 A
5349946 McComb Sep 1994 A
5368017 Sorenson et al. Nov 1994 A
5370112 Perkins Dec 1994 A
5373842 Olsson et al. Dec 1994 A
5375593 Press Dec 1994 A
5388575 Taube Feb 1995 A
5394870 Johansson Mar 1995 A
5398676 Press et al. Mar 1995 A
5398682 Lynn Mar 1995 A
5400778 Jonson et al. Mar 1995 A
5419314 Christopher May 1995 A
5438979 Johnson, Jr. et al. Aug 1995 A
5438980 Phillips Aug 1995 A
5443075 Holscher Aug 1995 A
5460174 Chang Oct 1995 A
5460613 Ulrich et al. Oct 1995 A
5474062 DeVires et al. Dec 1995 A
5477852 Landis et al. Dec 1995 A
5485850 Dietz Jan 1996 A
5490502 Rapoport et al. Feb 1996 A
5503146 Froehlich et al. Apr 1996 A
5503497 Dudley et al. Apr 1996 A
5507282 Younes Apr 1996 A
5509409 Weatherholt Apr 1996 A
5513628 Coles et al. May 1996 A
5513631 McWilliams May 1996 A
5513635 Bedi May 1996 A
5522382 Sullivan et al. Jun 1996 A
5526806 Sansoni Jun 1996 A
5529060 Salmon et al. Jun 1996 A
5533506 Wood Jul 1996 A
5535738 Estes et al. Jul 1996 A
5537997 Mechlenburg et al. Jul 1996 A
5538002 Boussignac et al. Jul 1996 A
5542415 Brody Aug 1996 A
5546935 Champeau Aug 1996 A
5549106 Gruenke et al. Aug 1996 A
5551419 Froehlich et al. Sep 1996 A
5558086 Smith et al. Sep 1996 A
5564416 Jones Oct 1996 A
5575282 Knoch et al. Nov 1996 A
5582164 Sanders Dec 1996 A
5593143 Ferrarin Jan 1997 A
5595174 Gwaltney Jan 1997 A
5598837 Sirianne, Jr. et al. Feb 1997 A
5598840 Iund et al. Feb 1997 A
5603315 Sasso, Jr. Feb 1997 A
5605148 Jones Feb 1997 A
5626131 Chua et al. May 1997 A
5632269 Zdrojkowski May 1997 A
5636630 Miller et al. Jun 1997 A
5645053 Remmers et al. Jul 1997 A
5645054 Cotner et al. Jul 1997 A
5647351 Weismann et al. Jul 1997 A
5669377 Fenn Sep 1997 A
5669380 Garry et al. Sep 1997 A
5676132 Tillotson et al. Oct 1997 A
5676135 McClean Oct 1997 A
5682878 Ogden Nov 1997 A
5682881 Winthrop et al. Nov 1997 A
5687713 Bahr et al. Nov 1997 A
5687714 Kolobow et al. Nov 1997 A
5687715 Landis et al. Nov 1997 A
5690097 Howard et al. Nov 1997 A
5692497 Schnitzer et al. Dec 1997 A
5697364 Chua et al. Dec 1997 A
5704345 Berthon-Jones Jan 1998 A
5711296 Kolobow Jan 1998 A
5715812 Deighan et al. Feb 1998 A
5715815 Lorenzen et al. Feb 1998 A
5720278 Lachmann et al. Feb 1998 A
5735268 Chua et al. Apr 1998 A
5735272 Dillon et al. Apr 1998 A
5740796 Skog Apr 1998 A
5752511 Simmons et al. May 1998 A
5762638 Shikani et al. Jun 1998 A
5791337 Coles et al. Aug 1998 A
5819723 Joseph Oct 1998 A
5826579 Remmers et al. Oct 1998 A
5845636 Gruenke et al. Dec 1998 A
5865173 Froehlich Feb 1999 A
5865174 Kloeppel Feb 1999 A
5881723 Wallace et al. Mar 1999 A
5904648 Arndt et al. May 1999 A
5906204 Beran et al. May 1999 A
5911756 Debry Jun 1999 A
5915379 Wallace et al. Jun 1999 A
5915381 Nord Jun 1999 A
5918597 Jones et al. Jul 1999 A
5921238 Bourdon Jul 1999 A
5921942 Remmers et al. Jul 1999 A
5921952 Desmond, III et al. Jul 1999 A
5927276 Rodriguez Jul 1999 A
5928189 Phillips et al. Jul 1999 A
5931160 Gilmore et al. Aug 1999 A
5931162 Christian Aug 1999 A
5937853 Strom Aug 1999 A
5937855 Zdrojkowski et al. Aug 1999 A
5938118 Cooper Aug 1999 A
5954050 Christopher Sep 1999 A
5957136 Magidson et al. Sep 1999 A
5964223 Baran Oct 1999 A
5975077 Hofstetter et al. Nov 1999 A
5975081 Hood et al. Nov 1999 A
5979440 Honkonen et al. Nov 1999 A
5989193 Sullivan Nov 1999 A
6000396 Melker et al. Dec 1999 A
6019101 Cotner et al. Feb 2000 A
6039696 Bell Mar 2000 A
6050260 Daniell et al. Apr 2000 A
6076519 Johnson Jun 2000 A
6085747 Axe et al. Jul 2000 A
6091973 Colla et al. Jul 2000 A
6093169 Cardoso Jul 2000 A
6105575 Estes et al. Aug 2000 A
6109264 Sauer Aug 2000 A
6112746 Kwok et al. Sep 2000 A
6119694 Correa et al. Sep 2000 A
6120460 Abreu Sep 2000 A
6123668 Abreu Sep 2000 A
6131571 Lampotang et al. Oct 2000 A
6135970 Kadhiresan et al. Oct 2000 A
6152132 Psaros Nov 2000 A
6152134 Webber et al. Nov 2000 A
6158432 Biondi et al. Dec 2000 A
6192883 Miller, Jr. Feb 2001 B1
6203502 Hilgendorf et al. Mar 2001 B1
6213119 Brydon et al. Apr 2001 B1
6213955 Karakasoglu et al. Apr 2001 B1
6220244 McLaughlin Apr 2001 B1
6224560 Gazula et al. May 2001 B1
6227200 Crump et al. May 2001 B1
6247470 Ketchedjian Jun 2001 B1
6269811 Duff et al. Aug 2001 B1
6269812 Wallace et al. Aug 2001 B1
6273859 Remmers et al. Aug 2001 B1
6286508 Remmers et al. Sep 2001 B1
D449376 McDonald et al. Oct 2001 S
D449883 McDonald et al. Oct 2001 S
6298850 Argraves Oct 2001 B1
6305374 Zdrojkowski et al. Oct 2001 B1
6314957 Boissin et al. Nov 2001 B1
6315739 Merilainen et al. Nov 2001 B1
D451598 McDonald et al. Dec 2001 S
6328038 Kessler et al. Dec 2001 B1
6328753 Zammit Dec 2001 B1
6332463 Farrugia et al. Dec 2001 B1
6345619 Finn Feb 2002 B1
6357438 Hansen Mar 2002 B1
6357440 Hansen et al. Mar 2002 B1
6360741 Truschel Mar 2002 B2
6360745 Wallace et al. Mar 2002 B1
6363933 Berthon-Jones Apr 2002 B1
6367474 Berthon-Jones et al. Apr 2002 B1
6369838 Wallace et al. Apr 2002 B1
6371114 Schmidt et al. Apr 2002 B1
6378520 Davenport Apr 2002 B1
6390091 Banner et al. May 2002 B1
6394088 Frye et al. May 2002 B1
6398739 Sullivan et al. Jun 2002 B1
6418928 Bordewick et al. Jul 2002 B1
6422240 Levitsky et al. Jul 2002 B1
6423001 Abreu Jul 2002 B1
6427690 McCombs et al. Aug 2002 B1
6431172 Bordewick Aug 2002 B1
6439228 Hete et al. Aug 2002 B1
6439229 Du et al. Aug 2002 B1
6439234 Curti et al. Aug 2002 B1
6439235 Larquet et al. Aug 2002 B1
6450164 Banner et al. Sep 2002 B1
6450166 McDonald et al. Sep 2002 B1
6457472 Schwartz et al. Oct 2002 B1
6467477 Frank et al. Oct 2002 B1
6478026 Wood Nov 2002 B1
6494202 Farmer Dec 2002 B2
6494206 Bergamaschi et al. Dec 2002 B1
6505623 Hansen Jan 2003 B1
6505624 Campbell, Sr. Jan 2003 B1
6516801 Boussignac Feb 2003 B2
6520176 Dubois et al. Feb 2003 B1
6520183 Amar Feb 2003 B2
6530373 Patron et al. Mar 2003 B1
6532958 Buan et al. Mar 2003 B1
6532960 Yurko Mar 2003 B1
6536432 Truschel Mar 2003 B2
6536436 McGlothen Mar 2003 B1
6550478 Remmers et al. Apr 2003 B2
6553992 Berthon-Jones et al. Apr 2003 B1
6561188 Ellis May 2003 B1
6561193 Noble May 2003 B1
6564797 Mechlenburg et al. May 2003 B1
6564800 Olivares May 2003 B1
6568391 Tatarek et al. May 2003 B1
6571794 Hansen Jun 2003 B1
6571796 Banner et al. Jun 2003 B2
6571798 Thornton Jun 2003 B1
6575159 Frye et al. Jun 2003 B1
6575944 McNary et al. Jun 2003 B1
6584973 Biondi et al. Jul 2003 B1
6588422 Berthon-Jones et al. Jul 2003 B1
6588423 Sinderby Jul 2003 B1
6591834 Colla et al. Jul 2003 B1
6591835 Blanch Jul 2003 B1
6595207 McDonald et al. Jul 2003 B1
6595215 Wood Jul 2003 B2
6609517 Estes et al. Aug 2003 B1
6622726 Du Sep 2003 B1
6626174 Genger et al. Sep 2003 B1
6626175 Jafari et al. Sep 2003 B2
6629525 Hill et al. Oct 2003 B2
6629527 Estes et al. Oct 2003 B1
6629529 Arnott Oct 2003 B2
6631919 West et al. Oct 2003 B1
6634356 O'Dea et al. Oct 2003 B1
6635021 Sullivan et al. Oct 2003 B1
6640806 Yurko Nov 2003 B2
6644305 MacRae et al. Nov 2003 B2
6644311 Truitt et al. Nov 2003 B1
6644315 Ziaee Nov 2003 B2
6651653 Honkonen et al. Nov 2003 B1
6651656 Demers et al. Nov 2003 B2
6651658 Hill et al. Nov 2003 B1
6655382 Kolobow Dec 2003 B1
6655385 Curti et al. Dec 2003 B1
6666208 Schumacher et al. Dec 2003 B1
6668828 Figley et al. Dec 2003 B1
6668829 Biondi et al. Dec 2003 B2
6669712 Cardoso Dec 2003 B1
6675796 McDonald Jan 2004 B2
6675801 Wallace et al. Jan 2004 B2
6679265 Strickland et al. Jan 2004 B2
6681764 Honkonen et al. Jan 2004 B1
6684883 Burns Feb 2004 B1
6691702 Appel et al. Feb 2004 B2
6691707 Gunaratnam et al. Feb 2004 B1
6694973 Dunhao et al. Feb 2004 B1
6694978 Bennarsten Feb 2004 B1
6698423 Honkonen et al. Mar 2004 B1
6705314 O'Dea Mar 2004 B1
6705315 Sullivan et al. Mar 2004 B2
6722360 Doshi Apr 2004 B2
6722362 Hete et al. Apr 2004 B2
6742517 Frye et al. Jun 2004 B1
6745768 Colla et al. Jun 2004 B2
6752150 Remmers et al. Jun 2004 B1
6752151 Hill Jun 2004 B2
6752152 Gale et al. Jun 2004 B2
6755193 Berthon-Jones et al. Jun 2004 B2
6758217 Younes Jul 2004 B1
6761172 Boussignac et al. Jul 2004 B2
6763832 Kirsch et al. Jul 2004 B1
6769432 Keifer Aug 2004 B1
6776162 Wood Aug 2004 B2
6776163 Dougill et al. Aug 2004 B2
6789539 Martinez Sep 2004 B2
6796305 Banner et al. Sep 2004 B1
6799575 Carter Oct 2004 B1
6805126 Dutkiewicz Oct 2004 B2
6807966 Wright Oct 2004 B2
6807967 Wood Oct 2004 B2
6810876 Berthon-Jones Nov 2004 B2
6814073 Wickham Nov 2004 B2
6814077 Eistert Nov 2004 B1
6823866 Jafari et al. Nov 2004 B2
6827340 Austin et al. Dec 2004 B2
6837238 McDonald Jan 2005 B2
6840240 Berthon-Jones et al. Jan 2005 B1
6843247 Frye et al. Jan 2005 B2
6848446 Noble Feb 2005 B2
6854462 Berthon-Jones et al. Feb 2005 B2
6863069 Wood Mar 2005 B2
6866041 Hardy, Jr. et al. Mar 2005 B2
6877511 Devries et al. Apr 2005 B2
6880556 Uchiyama et al. Apr 2005 B2
6910480 Berthon-Jones Jun 2005 B1
6910482 Bliss et al. Jun 2005 B2
6910510 Gale et al. Jun 2005 B2
6913601 St. Goar et al. Jul 2005 B2
6915803 Berthon-Jones et al. Jul 2005 B2
6920875 Hill et al. Jul 2005 B1
6920877 Remmers et al. Jul 2005 B2
6920878 Sinderby et al. Jul 2005 B2
6932084 Estes et al. Aug 2005 B2
6938619 Hickle Sep 2005 B1
6938620 Payne, Jr. Sep 2005 B2
6941950 Wilson et al. Sep 2005 B2
6948497 Zdrojkowski et al. Sep 2005 B2
6951217 Berthon-Jones Oct 2005 B2
6971382 Corso Dec 2005 B1
6986353 Wright Jan 2006 B2
6994089 Wood Feb 2006 B2
6997177 Wood Feb 2006 B2
6997881 Green et al. Feb 2006 B2
7000612 Jafari et al. Feb 2006 B2
7004170 Gillstrom Feb 2006 B1
7007692 Aylsworth et al. Mar 2006 B2
7011091 Hill et al. Mar 2006 B2
7013892 Estes et al. Mar 2006 B2
7013898 Rashad et al. Mar 2006 B2
7017574 Biondi et al. Mar 2006 B2
7017575 Yagi et al. Mar 2006 B2
7024945 Wallace Apr 2006 B2
7036504 Wallace et al. May 2006 B2
7044129 Truschel et al. May 2006 B1
7047969 Noble May 2006 B2
7047974 Strickland et al. May 2006 B2
7051735 Mechlenburg et al. May 2006 B2
7055522 Berthon-Jones Jun 2006 B2
7059328 Wood Jun 2006 B2
7066173 Banner et al. Jun 2006 B2
7066178 Gunaratnam et al. Jun 2006 B2
7077132 Berthon-Jones Jul 2006 B2
7077133 Yagi et al. Jul 2006 B2
7080645 Genger et al. Jul 2006 B2
7080646 Wiesmann et al. Jul 2006 B2
7100607 Zdrojkowski et al. Sep 2006 B2
7100609 Berthon-Jones et al. Sep 2006 B2
7117438 Wallace et al. Oct 2006 B2
7121277 Strom Oct 2006 B2
7128578 Lampotang et al. Oct 2006 B2
7152598 Morris et al. Dec 2006 B2
7152604 Hickle et al. Dec 2006 B2
7156090 Nomori Jan 2007 B2
7156097 Cardoso Jan 2007 B2
7162296 Leonhardt et al. Jan 2007 B2
7168429 Matthews et al. Jan 2007 B2
7188621 Devries et al. Mar 2007 B2
7188624 Wood Mar 2007 B2
7195016 Loyd et al. Mar 2007 B2
7195018 Goldstein Mar 2007 B1
7201169 Wilkie et al. Apr 2007 B2
7201269 Buscher et al. Apr 2007 B2
D542912 Gunaratnam et al. May 2007 S
7222623 DeVries et al. May 2007 B2
7225811 Ruiz et al. Jun 2007 B2
7234465 Wood Jun 2007 B2
7237205 Sarel Jun 2007 B2
7246620 Conroy, Jr. Jul 2007 B2
D549323 Kwok et al. Aug 2007 S
7255103 Bassin Aug 2007 B2
7255107 Gomez Aug 2007 B1
7267122 Hill Sep 2007 B2
7267123 Aylsworth et al. Sep 2007 B2
7270126 Wallace et al. Sep 2007 B2
7270128 Berthon-Jones et al. Sep 2007 B2
7296569 Frye et al. Nov 2007 B2
7296573 Estes et al. Nov 2007 B2
D557802 Miceli, Jr. et al. Dec 2007 S
7302950 Berthon-Jones et al. Dec 2007 B2
7305987 Scholler et al. Dec 2007 B2
7318437 Gunaratnam et al. Jan 2008 B2
7320321 Pranger et al. Jan 2008 B2
7328703 Tiep Feb 2008 B1
7353826 Sleeper et al. Apr 2008 B2
7367337 Berthon-Jones et al. May 2008 B2
7370652 Matula, Jr. et al. May 2008 B2
7373939 DuBois et al. May 2008 B1
7406966 Wondka Aug 2008 B2
7418965 Fukunaga et al. Sep 2008 B2
7422015 Delisle et al. Sep 2008 B2
7431035 Mizuta et al. Oct 2008 B2
7451762 Chua et al. Nov 2008 B2
7455717 Sprinkle Nov 2008 B2
7461656 Gunaratnam et al. Dec 2008 B2
7468040 Hartley et al. Dec 2008 B2
7469697 Lee et al. Dec 2008 B2
7472702 Beck et al. Jan 2009 B2
7478641 Rousselet Jan 2009 B2
7481219 Lewis et al. Jan 2009 B2
7481221 Kullik et al. Jan 2009 B2
7487774 Acker Feb 2009 B2
7487778 Freitag Feb 2009 B2
7490605 Frye et al. Feb 2009 B2
D588258 Judson et al. Mar 2009 S
D589139 Guney et al. Mar 2009 S
7500482 Biederman Mar 2009 B2
7509957 Duquette et al. Mar 2009 B2
D591419 Chandran et al. Apr 2009 S
7533670 Freitag May 2009 B1
7556038 Kirby et al. Jul 2009 B2
7559327 Hernandez Jul 2009 B2
7562657 Blanch et al. Jul 2009 B2
7562659 Matarasso Jul 2009 B2
7578294 Pierro et al. Aug 2009 B2
7588033 Wondka Sep 2009 B2
7591265 Lee et al. Sep 2009 B2
7631642 Freitag et al. Dec 2009 B2
7640934 Zollinger et al. Jan 2010 B2
7658189 Davidson et al. Feb 2010 B2
D614288 Judson et al. Apr 2010 S
7721733 Hughes et al. May 2010 B2
7721736 Urias et al. May 2010 B2
7740013 Ishizaki et al. Jun 2010 B2
7743770 Curti et al. Jun 2010 B2
7762253 Acker et al. Jul 2010 B2
7766009 Frye et al. Aug 2010 B2
7787946 Stahmann et al. Aug 2010 B2
7814906 Moretti Oct 2010 B2
7819120 Taylor et al. Oct 2010 B2
D626646 Lubke et al. Nov 2010 S
D627059 Wood et al. Nov 2010 S
7832400 Curti et al. Nov 2010 B2
7837761 Bliss et al. Nov 2010 B2
7841343 Deane et al. Nov 2010 B2
7845350 Kayyali et al. Dec 2010 B1
7849854 DeVries et al. Dec 2010 B2
7856982 Matula, Jr. et al. Dec 2010 B2
7866318 Bassin Jan 2011 B2
7874290 Chalvignac Jan 2011 B2
7874291 Ging et al. Jan 2011 B2
7874293 Gunaratnam et al. Jan 2011 B2
7878980 Ricciardelli Feb 2011 B2
7882834 Gradon et al. Feb 2011 B2
7886740 Thomas et al. Feb 2011 B2
7891353 Chalvignac Feb 2011 B2
7891357 Carron et al. Feb 2011 B2
7896958 Sermet et al. Mar 2011 B2
7900627 Aylsworth et al. Mar 2011 B2
7900628 Matula, Jr. et al. Mar 2011 B2
7900635 Gunaratnam et al. Mar 2011 B2
7901361 Rapoport et al. Mar 2011 B2
7905231 Chalvignac Mar 2011 B2
7913691 Farrugia Mar 2011 B2
7914459 Green et al. Mar 2011 B2
7918226 Acker et al. Apr 2011 B2
7926486 Childers Apr 2011 B2
7926487 Drew et al. Apr 2011 B2
7931023 Berthon-Jones et al. Apr 2011 B2
7934499 Berthon-Jones May 2011 B2
7938114 Matthews et al. May 2011 B2
7942150 Guney et al. May 2011 B2
7942380 Bertinetti et al. May 2011 B2
7958892 Kwok et al. Jun 2011 B2
7975694 Ho Jul 2011 B2
7980245 Rice et al. Jul 2011 B2
7987847 Wickham et al. Aug 2011 B2
7987850 Zollinger et al. Aug 2011 B2
7987851 Blom et al. Aug 2011 B2
7992557 Nadjafizadeh et al. Aug 2011 B2
7997270 Meier Aug 2011 B2
7997271 Hickle et al. Aug 2011 B2
7997272 Isaza Aug 2011 B2
8001967 Wallace et al. Aug 2011 B2
D645557 Scheiner et al. Sep 2011 S
8011365 Douglas et al. Sep 2011 B2
8011366 Knepper Sep 2011 B2
8015971 Kwok Sep 2011 B2
8015974 Christopher et al. Sep 2011 B2
8020558 Christopher et al. Sep 2011 B2
8025052 Matthews et al. Sep 2011 B2
RE42843 Strickland et al. Oct 2011 E
8042535 Kenyon et al. Oct 2011 B2
8042537 Mechlenburg et al. Oct 2011 B2
8042539 Chandran et al. Oct 2011 B2
8042546 Gunaratnam et al. Oct 2011 B2
8061354 Schneider et al. Nov 2011 B2
8066004 Morris et al. Nov 2011 B2
8240309 Doshi et al. Aug 2012 B2
9132250 Allum Sep 2015 B2
20010035185 Christopher Nov 2001 A1
20010035186 Hill Nov 2001 A1
20010042548 Boussignac Nov 2001 A1
20020014241 Gradon et al. Feb 2002 A1
20020017300 Hickle Feb 2002 A1
20020020930 Austin et al. Feb 2002 A1
20020026941 Biondi et al. Mar 2002 A1
20020043264 Wickham Apr 2002 A1
20020046751 MacRae et al. Apr 2002 A1
20020046755 De Voss Apr 2002 A1
20020046756 Laizzo et al. Apr 2002 A1
20020053346 Curti et al. May 2002 A1
20020055685 Levitsky et al. May 2002 A1
20020059935 Wood May 2002 A1
20020066452 Kessler et al. Jun 2002 A1
20020078957 Remmers et al. Jun 2002 A1
20020092527 Wood Jul 2002 A1
20020112730 Dutkiewicz Aug 2002 A1
20020153010 Rozenberg et al. Oct 2002 A1
20020157673 Kessler et al. Oct 2002 A1
20020159323 Makabe et al. Oct 2002 A1
20020179090 Boussignac Dec 2002 A1
20030000522 Lynn et al. Jan 2003 A1
20030047185 Olsen et al. Mar 2003 A1
20030069489 Abreu Apr 2003 A1
20030079749 Strickland et al. May 2003 A1
20030094178 McAuley et al. May 2003 A1
20030111081 Gupta Jun 2003 A1
20030116163 Wood Jun 2003 A1
20030121519 Estes et al. Jul 2003 A1
20030145852 Schmidt et al. Aug 2003 A1
20030145853 Muellner Aug 2003 A1
20030145856 Zdrojkowski et al. Aug 2003 A1
20030150455 Bliss et al. Aug 2003 A1
20030159696 Boussignac et al. Aug 2003 A1
20030159697 Wallace Aug 2003 A1
20030168067 Dougill et al. Sep 2003 A1
20030213488 Remmers et al. Nov 2003 A1
20030221687 Kaigler Dec 2003 A1
20030230308 Linden Dec 2003 A1
20040016432 Genger Jan 2004 A1
20040020493 Wood Feb 2004 A1
20040025881 Gunaratnam et al. Feb 2004 A1
20040035431 Wright Feb 2004 A1
20040040560 Euliano et al. Mar 2004 A1
20040050387 Younes Mar 2004 A1
20040074494 Frater Apr 2004 A1
20040159323 Schmidt et al. Aug 2004 A1
20040206352 Conroy Oct 2004 A1
20040221848 Hill Nov 2004 A1
20040221854 Hete et al. Nov 2004 A1
20040226566 Gunaratnam Nov 2004 A1
20040231674 Tanaka Nov 2004 A1
20040237963 Berthon-Jones Dec 2004 A1
20040254501 Mault Dec 2004 A1
20040255943 Morris et al. Dec 2004 A1
20050005936 Wondka Jan 2005 A1
20050005938 Berthon-Jones et al. Jan 2005 A1
20050010125 Joy et al. Jan 2005 A1
20050011524 Thomlinson et al. Jan 2005 A1
20050016534 Ost Jan 2005 A1
20050033247 Thompson Feb 2005 A1
20050034724 O'Dea Feb 2005 A1
20050061322 Freitag Mar 2005 A1
20050061326 Payne Mar 2005 A1
20050072430 Djupesland Apr 2005 A1
20050081849 Warren Apr 2005 A1
20050087190 Jafari et al. Apr 2005 A1
20050098179 Burton et al. May 2005 A1
20050103343 Gosweiler May 2005 A1
20050121033 Starr et al. Jun 2005 A1
20050121037 Wood Jun 2005 A1
20050121038 Christopher Jun 2005 A1
20050150498 McDonald Jul 2005 A1
20050161049 Wright Jul 2005 A1
20050166924 Thomas et al. Aug 2005 A1
20050199242 Matula et al. Sep 2005 A1
20050205096 Matula et al. Sep 2005 A1
20050205098 Lampotang et al. Sep 2005 A1
20050247308 Frye et al. Nov 2005 A1
20050257793 Tatsumoto Nov 2005 A1
20050274381 Deane et al. Dec 2005 A1
20060005834 Aylsworth et al. Jan 2006 A1
20060005842 Rashad et al. Jan 2006 A1
20060011199 Rashad et al. Jan 2006 A1
20060027234 Gradon et al. Feb 2006 A1
20060048781 Nawata Mar 2006 A1
20060054169 Han et al. Mar 2006 A1
20060070625 Ayappa et al. Apr 2006 A1
20060079799 Green et al. Apr 2006 A1
20060096596 Occhialini et al. May 2006 A1
20060107958 Sleeper May 2006 A1
20060112959 Mechlenburg et al. Jun 2006 A1
20060124131 Chandran et al. Jun 2006 A1
20060124134 Wood Jun 2006 A1
20060137690 Gunaratnam et al. Jun 2006 A1
20060144396 DeVries et al. Jul 2006 A1
20060149144 Lynn et al. Jul 2006 A1
20060150972 Mizuta et al. Jul 2006 A1
20060150973 Chalvignac Jul 2006 A1
20060150982 Wood Jul 2006 A1
20060174877 Jagger et al. Aug 2006 A1
20060180149 Matarasso Aug 2006 A1
20060185669 Bassovitch Aug 2006 A1
20060201504 Singhal et al. Sep 2006 A1
20060213518 DeVries et al. Sep 2006 A1
20060213519 Schmidt et al. Sep 2006 A1
20060225737 Iobbi Oct 2006 A1
20060237013 Kwok Oct 2006 A1
20060243278 Hamilton et al. Nov 2006 A1
20060249155 Gambone Nov 2006 A1
20060266361 Hernandez Nov 2006 A1
20070000490 DeVries et al. Jan 2007 A1
20070000495 Matula et al. Jan 2007 A1
20070017515 Wallace et al. Jan 2007 A1
20070056590 Wolfson Mar 2007 A1
20070062529 Choncholas et al. Mar 2007 A1
20070068528 Bohm et al. Mar 2007 A1
20070074724 Duquette et al. Apr 2007 A1
20070089743 Hoffman Apr 2007 A1
20070089745 Gabriel et al. Apr 2007 A1
20070095347 Lampotang et al. May 2007 A1
20070107727 Brichetto May 2007 A1
20070107728 Ricciardelli et al. May 2007 A1
20070107732 Dennis et al. May 2007 A1
20070107737 Landis May 2007 A1
20070113850 Acker et al. May 2007 A1
20070113856 Acker et al. May 2007 A1
20070125379 Pierro et al. Jun 2007 A1
20070137653 Wood Jun 2007 A1
20070163600 Hoffman Jul 2007 A1
20070173705 Teller et al. Jul 2007 A1
20070181125 Mulier Aug 2007 A1
20070193705 Hsu Aug 2007 A1
20070199568 Diekens et al. Aug 2007 A1
20070209662 Bowen et al. Sep 2007 A1
20070215156 Kwok Sep 2007 A1
20070232950 West Oct 2007 A1
20070240716 Marx Oct 2007 A1
20070251528 Seitz et al. Nov 2007 A1
20070272247 Porat Nov 2007 A1
20070272249 Chandran et al. Nov 2007 A1
20080000475 Hill Jan 2008 A1
20080006271 Aylsworth et al. Jan 2008 A1
20080011298 Mazar et al. Jan 2008 A1
20080011301 Qian Jan 2008 A1
20080041371 Freitag Feb 2008 A1
20080041386 Dodier et al. Feb 2008 A1
20080045815 Derchak et al. Feb 2008 A1
20080047559 Fiori Feb 2008 A1
20080051674 Davenport et al. Feb 2008 A1
20080053438 DeVries et al. Mar 2008 A1
20080053447 Ratajczak et al. Mar 2008 A1
20080060646 Isaza Mar 2008 A1
20080060657 McAuley et al. Mar 2008 A1
20080066753 Martin et al. Mar 2008 A1
20080072902 Setzer et al. Mar 2008 A1
20080078392 Pelletier et al. Apr 2008 A1
20080078407 Sherman Apr 2008 A1
20080092904 Gunarathnam et al. Apr 2008 A1
20080092905 Gunarathnam et al. Apr 2008 A1
20080092906 Gunarathnam et al. Apr 2008 A1
20080099024 Gunarathnam et al. May 2008 A1
20080099027 Gunaratnam et al. May 2008 A1
20080105264 Gunarathnam et al. May 2008 A1
20080110462 Chekal et al. May 2008 A1
20080121230 Cortez et al. May 2008 A1
20080135044 Freitag et al. Jun 2008 A1
20080142019 Lewis et al. Jun 2008 A1
20080161653 Lin et al. Jul 2008 A1
20080173304 Zaiser et al. Jul 2008 A1
20080173311 Miller et al. Jul 2008 A1
20080178880 Christopher et al. Jul 2008 A1
20080178881 Whitcher et al. Jul 2008 A1
20080178882 Christopher et al. Jul 2008 A1
20080185002 Berthon-Jones et al. Aug 2008 A1
20080185007 Sleeper et al. Aug 2008 A1
20080190429 Tatarek Aug 2008 A1
20080190436 Jaffe et al. Aug 2008 A1
20080196715 Yamamori Aug 2008 A1
20080196723 Tilley Aug 2008 A1
20080196728 Ho Aug 2008 A1
20080202528 Carter et al. Aug 2008 A1
20080216834 Easley et al. Sep 2008 A1
20080216838 Wondka Sep 2008 A1
20080216841 Grimes et al. Sep 2008 A1
20080223369 Warren Sep 2008 A1
20080245369 Matula et al. Oct 2008 A1
20080251079 Richey Oct 2008 A1
20080264417 Manigel et al. Oct 2008 A1
20080283060 Bassin Nov 2008 A1
20080295846 Han et al. Dec 2008 A1
20080302364 Garde et al. Dec 2008 A1
20080308104 Blomberg et al. Dec 2008 A1
20090007911 Cleary et al. Jan 2009 A1
20090020121 Bassin Jan 2009 A1
20090044808 Guney et al. Feb 2009 A1
20090056708 Stenzler et al. Mar 2009 A1
20090078255 Bowman et al. Mar 2009 A1
20090078258 Bowman et al. Mar 2009 A1
20090095298 Gunaratnam et al. Apr 2009 A1
20090095300 McMorrow Apr 2009 A1
20090095303 Sher et al. Apr 2009 A1
20090099471 Broadley et al. Apr 2009 A1
20090101147 Landis et al. Apr 2009 A1
20090101154 Mutti et al. Apr 2009 A1
20090107502 Younes Apr 2009 A1
20090118632 Goepp May 2009 A1
20090120437 Oates et al. May 2009 A1
20090126739 Ng et al. May 2009 A1
20090133699 Nalagatla et al. May 2009 A1
20090139527 Ng et al. Jun 2009 A1
20090145435 White et al. Jun 2009 A1
20090151719 Wondka et al. Jun 2009 A1
20090151724 Wondka et al. Jun 2009 A1
20090151726 Freitag Jun 2009 A1
20090151729 Judson et al. Jun 2009 A1
20090156953 Wondka et al. Jun 2009 A1
20090165799 Duquette et al. Jul 2009 A1
20090173347 Berthon-Jones Jul 2009 A1
20090173349 Hernandez et al. Jul 2009 A1
20090183739 Wondka Jul 2009 A1
20090199855 Davenport Aug 2009 A1
20090205662 Kwok et al. Aug 2009 A1
20090241947 Bedini et al. Oct 2009 A1
20090241951 Jafari et al. Oct 2009 A1
20090250066 Daly Oct 2009 A1
20090255533 Freitag et al. Oct 2009 A1
20090260625 Wondka Oct 2009 A1
20090277452 Lubke et al. Nov 2009 A1
20090293877 Blanch et al. Dec 2009 A1
20090301495 Pierro et al. Dec 2009 A1
20090308395 Lee et al. Dec 2009 A1
20090320851 Selvarajan et al. Dec 2009 A1
20100043786 Freitag et al. Feb 2010 A1
20100043801 Hailing Feb 2010 A1
20100071693 Allum et al. Mar 2010 A1
20100071697 Jafari et al. Mar 2010 A1
20100083968 Wondka et al. Apr 2010 A1
20100108073 Zollinger et al. May 2010 A1
20100132716 Selvarajan et al. Jun 2010 A1
20100132717 Davidson et al. Jun 2010 A1
20100163043 Hart et al. Jul 2010 A1
20100170512 Kuypers et al. Jul 2010 A1
20100170513 Bowditch et al. Jul 2010 A1
20100192957 Hobson et al. Aug 2010 A1
20100218766 Milne Sep 2010 A1
20100224196 Jablons Sep 2010 A1
20100252037 Wondka et al. Oct 2010 A1
20100252039 Cipollone et al. Oct 2010 A1
20100252040 Kapust et al. Oct 2010 A1
20100252041 Kapust et al. Oct 2010 A1
20100252042 Kapust et al. Oct 2010 A1
20100252043 Freitag Oct 2010 A1
20100252044 Duquette et al. Oct 2010 A1
20100269834 Freitag et al. Oct 2010 A1
20100275920 Tham et al. Nov 2010 A1
20100275921 Schindhelm et al. Nov 2010 A1
20100282251 Calluaud et al. Nov 2010 A1
20100282810 Hawes Nov 2010 A1
20100288279 Seiver et al. Nov 2010 A1
20100288289 Nasir Nov 2010 A1
20100300445 Chatburn et al. Dec 2010 A1
20100300446 Nicolazzi et al. Dec 2010 A1
20100307487 Dunsmore et al. Dec 2010 A1
20100307495 Kepler et al. Dec 2010 A1
20100307499 Eger et al. Dec 2010 A1
20100307500 Armitstead Dec 2010 A1
20100307502 Rummery et al. Dec 2010 A1
20100313891 Veliss et al. Dec 2010 A1
20100313898 Richard et al. Dec 2010 A1
20100319703 Hayman et al. Dec 2010 A1
20100326441 Zucker et al. Dec 2010 A1
20100326446 Behlmaier Dec 2010 A1
20110000489 Laksov et al. Jan 2011 A1
20110009763 Levitsky et al. Jan 2011 A1
20110011402 Berthon-Jones Jan 2011 A1
20110023878 Thiessen Feb 2011 A1
20110023881 Thiessen Feb 2011 A1
20110034819 Desforges et al. Feb 2011 A1
20110036352 Estes et al. Feb 2011 A1
20110041850 Vandine et al. Feb 2011 A1
20110041855 Gunaratnam et al. Feb 2011 A1
20110061647 Stahmann et al. Mar 2011 A1
20110067704 Kooij et al. Mar 2011 A1
20110067709 Doshi et al. Mar 2011 A1
20110071444 Kassatly et al. Mar 2011 A1
20110073107 Rodman et al. Mar 2011 A1
20110073116 Genger et al. Mar 2011 A1
20110087123 Choncholas et al. Apr 2011 A9
20110088690 Djupesland et al. Apr 2011 A1
20110100365 Wedler et al. May 2011 A1
20110114098 McAuley et al. May 2011 A1
20110125052 Davenport et al. May 2011 A1
20110126841 Matula, Jr. et al. Jun 2011 A1
20110132363 Chalvignac Jun 2011 A1
20110139153 Chalvignac Jun 2011 A1
20110146687 Fukushima Jun 2011 A1
20110155140 Ho et al. Jun 2011 A1
20110162650 Miller et al. Jul 2011 A1
20110162655 Gunaratnam et al. Jul 2011 A1
20110178419 Wood et al. Jul 2011 A1
20110180068 Kenyon et al. Jul 2011 A1
20110197885 Wondka et al. Aug 2011 A1
20110209705 Freitag Sep 2011 A1
20110214676 Allum et al. Sep 2011 A1
20110220105 Meier Sep 2011 A1
20110232642 Bliss et al. Sep 2011 A1
20110247625 Boussignac Oct 2011 A1
20110253147 Gusky et al. Oct 2011 A1
20110259327 Wondka et al. Oct 2011 A1
20110265796 Amarasinghe et al. Nov 2011 A1
20110277765 Christopher et al. Nov 2011 A1
20110284003 Douglas et al. Nov 2011 A1
20130092165 Wondka Apr 2013 A1
20160213281 Eckerbom Jul 2016 A1
Foreign Referenced Citations (139)
Number Date Country
1455690 Nov 2003 CN
1455690 Nov 2003 CN
1905917 Jan 2007 CN
101365508 Feb 2009 CN
101365508 Feb 2009 CN
19626924 Jan 1998 DE
29902267 Jul 1999 DE
19841070 May 2000 DE
19849571 May 2000 DE
10337138.9 Mar 2005 DE
10 2006 023 637.8 Nov 2007 DE
0125424 Nov 1984 EP
0692273 Jan 1996 EP
0778035 Jun 1997 EP
1359961 Nov 2003 EP
2377462 Nov 2010 EP
2827778 Jan 2003 FR
2174609 Nov 1986 GB
2201098 Aug 1988 GB
1055148 Jun 1989 GB
2338420 Dec 1999 GB
S63-57060 Mar 1998 JP
2002-204830 Jul 2002 JP
2007518451 Jul 2007 JP
2009160403 Jul 2009 JP
WO-199211054 Jul 1992 WO
WO-199801176 Jan 1998 WO
WO-199904841 Feb 1999 WO
WO-2000064521 Nov 2000 WO
WO-2001076655 Oct 2001 WO
WO 2002062413 Aug 2002 WO
WO03068301 Aug 2003 WO
WO-2004009169 Jan 2004 WO
2004105846 Dec 2004 WO
WO2005007056 Jan 2005 WO
WO-2005014091 Feb 2005 WO
WO 2005014091 Feb 2005 WO
WO2005011556 Feb 2005 WO
WO 2005018524 Mar 2005 WO
WO-2005018524 Mar 2005 WO
2006088007 Aug 2006 WO
WO-2006138580 Dec 2006 WO
WO-2007035804 Mar 2007 WO
WO 2007035804 Mar 2007 WO
WO-2007139531 Dec 2007 WO
WO 2007142812 Dec 2007 WO
WO-2007142812 Dec 2007 WO
WO-2008014543 Feb 2008 WO
WO 2008019102 Feb 2008 WO
WO-2008019102 Feb 2008 WO
WO-2008052534 May 2008 WO
WO-2008112474 Sep 2008 WO
WO-2008138040 Nov 2008 WO
WO 2008144589 Nov 2008 WO
WO-2008144589 Nov 2008 WO
WO 2008144669 Nov 2008 WO
WO-2008144669 Nov 2008 WO
WO-2009042973 Apr 2009 WO
WO 2009042973 Apr 2009 WO
WO 2009042974 Apr 2009 WO
WO-2009042974 Apr 2009 WO
WO-2009059353 May 2009 WO
WO-2009064202 May 2009 WO
WO-2009074160 Jun 2009 WO
WO-2009082295 Jul 2009 WO
WO-2009087607 Jul 2009 WO
WO-2009092057 Jul 2009 WO
WO 2009092057 Jul 2009 WO
WO-2009103288 Aug 2009 WO
WO-2009109005 Sep 2009 WO
WO-2009115944 Sep 2009 WO
WO-2009115948 Sep 2009 WO
WO-2009115949 Sep 2009 WO
WO 2009129506 Oct 2009 WO
WO-2009129506 Oct 2009 WO
WO-2009136101 Nov 2009 WO
WO-2009139647 Nov 2009 WO
WO-2009149351 Dec 2009 WO
WO-2009149353 Dec 2009 WO
WO-2009149355 Dec 2009 WO
WO-2009149357 Dec 2009 WO
WO-2009151344 Dec 2009 WO
WO-2009151791 Dec 2009 WO
WO 2009151791 Dec 2009 WO
WO-2010000135 Jan 2010 WO
WO-2010021556 Feb 2010 WO
WO-2010022363 Feb 2010 WO
WO 2010022363 Feb 2010 WO
WO 2010039989 Apr 2010 WO
WO-2010039989 Apr 2010 WO
WO-2010041966 Apr 2010 WO
WO-2010044034 Apr 2010 WO
WO-2010057268 May 2010 WO
WO-2010059049 May 2010 WO
WO-2010060422 Jun 2010 WO
WO-2010068356 Jun 2010 WO
WO-2010070493 Jun 2010 WO
WO-2010070497 Jun 2010 WO
WO-2010070498 Jun 2010 WO
WO-2010076711 Jul 2010 WO
WO-2010081223 Jul 2010 WO
WO-2010091157 Aug 2010 WO
WO 2010099375 Sep 2010 WO
WO-2010102094 Sep 2010 WO
WO 2011029073 Sep 2010 WO
WO 2010115166 Oct 2010 WO
WO 2010115168 Oct 2010 WO
WO 2010115169 Oct 2010 WO
WO 2010115170 Oct 2010 WO
WO-2010116275 Oct 2010 WO
WO-2010132853 Nov 2010 WO
WO-2010136923 Dec 2010 WO
WO-2010139014 Dec 2010 WO
WO-2010150187 Dec 2010 WO
WO 2011002608 Jan 2011 WO
WO-2011004274 Jan 2011 WO
WO-2011006184 Jan 2011 WO
WO-2011006199 Jan 2011 WO
WO-2011014931 Feb 2011 WO
WO-2011017033 Feb 2011 WO
WO-2011017738 Feb 2011 WO
WO-2011021978 Feb 2011 WO
WO-2011022779 Mar 2011 WO
WO-2011024383 Mar 2011 WO
WO 2011029073 Mar 2011 WO
WO 2011029074 Mar 2011 WO
WO-2011035373 Mar 2011 WO
WO-2011038950 Apr 2011 WO
WO-2011038951 Apr 2011 WO
WO-2011044627 Apr 2011 WO
WO-2011057362 May 2011 WO
WO 2011059346 May 2011 WO
WO-2011061648 May 2011 WO
WO-2011062510 May 2011 WO
WO-2011086437 Jul 2011 WO
WO-2011086438 Jul 2011 WO
PCTUS1147994 Aug 2011 WO
PCTUS1154446 Sep 2011 WO
WO-2011112807 Sep 2011 WO
Non-Patent Literature Citations (175)
Entry
Saslow et al. Work of breathing using high-flow nasal cannula in preterm infants, Journal of Perinatology (2006) 26, 476-480.
U.S. Appl. No. 11/523,518, filed Sep. 20, 2006, Freitag et al, Abandoned.
U.S. Appl. No. 13/211,248, filed Aug. 16, 2011, Wondka et al., Pending.
U.S. Appl. No. 13/251,070, filed Sep. 30, 2011, Wondka et al., Pending.
U.S. Appl. No. 29/388,700, filed Mar. 31, 2011, Eghbal et al., Pending.
U.S. Appl. No. 60/479,213, filed Jun. 18, 2003, Wondka, Expired.
U.S. Appl. No. 60/495,812, filed Aug. 18, 2003, Wondka, Expired.
U.S. Appl. No. 60/511,820, filed Oct. 14, 2003, Wondka, Expired.
U.S. Appl. No. 60/586,453, filed Jul. 9, 2004, Wondka, Expired.
U.S. Appl. No. 60/718,318, filed Sep. 20, 2005, Freitag et al., Expired.
U.S. Appl. No. 60/801,104, filed May 18, 2006, Freitag, Expired.
U.S. Appl. No. 60/835,066, filed Aug. 3, 2006, Freitag et al., Expired.
U.S. Appl. No. 60/924,514, filed May 18, 2007, Wondka et al., Expired.
U.S. Appl. No. 60/960,362, filed Sep. 26, 2007, Wondka et al., Expired.
U.S. Appl. No. 60/960,370, filed Sep. 26, 2007, Wondka et al., Expired.
U.S. Appl. No. 61/006,548, filed Jan. 18, 2008, Wondka et al., Expired.
U.S. Appl. No. 61/071,251, filed Apr. 18, 2008, Wondka et al., Expired.
U.S. Appl. No. 61/071,252, filed Apr. 18, 2008, Wondka et al., Expired.
U.S. Appl. No. 61/091,198, filed Aug. 22, 2008, Allum et al., Expired.
U.S. Appl. No. 61/101,826, filed Oct. 1, 2008, Wondka et al., Expired.
U.S. Appl. No. 61/106,414, filed Oct. 17, 2008, Wondka, Expired.
U.S. Appl. No. 61/136,269, filed Aug. 22, 2008, Allum et al., Expired.
U.S. Appl. No. 61/166,150, filed Apr. 2, 2009, Allum et al., Expired.
U.S. Appl. No. 61/239,728, filed Sep. 3, 2009, Cipollone, Expired.
U.S. Appl. No. 61/255,760, filed Oct. 28, 2009, Cipollone et al., Expired.
U.S. Appl. No. 61/294,363, filed Jan. 12, 2010, Allum et al., Expired.
U.S. Appl. No. 61/306,370, filed Feb. 19, 2010, Wondka et al., Expired.
U.S. Appl. No. 61/374,126, filed Aug. 16, 2010, Wondka et al., Expired.
U.S. Appl. No. 61/388,528, filed Sep. 30, 2010, Wondka et al., Expired.
U.S. Appl. No. 61/438,112, filed Jan. 31, 2011, Allum et al., Pending.
In the U.S. Patent and Trademark Office, Supplemental Notice of Allowance dated in re: U.S. Appl. No. 10/771,803, dated Dec. 2, 2008, 2 pages.
In the U.S. Patent and Trademark Office, Supplemental Notice of Allowance dated in re: U.S. Appl. No. 10/771,803, dated Nov. 7, 2008, 2 pages.
In the U.S. Patent and Trademark Office, Examiners Interview Summary in re: U.S. Appl. No. 10/771,803, dated Oct. 31, 2008, 4 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance dated in re: U.S. Appl. No. 10/771,803, dated Oct. 20, 2008, 8 pages.
In the U.S. Patent and Trademark Office, Examiners Interview Summary in re: U.S. Appl. No. 10/771,803, dated Nov. 2, 2007, 2 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 10/771,803, dated Jun. 14, 2007, 12 pages.
In the U.S. Patent and Trademark Office, Restriction Requirement in re: U.S. Appl. No. 12/271,484, dated Feb. 9, 2011, 5 pages.
In the U.S. Patent and Trademark Office, Restriction Requirement in re: U.S. Appl. No. 12/754,437, dated Aug. 16, 2011, 5 pages.
In the U.S. Patent and Trademark Office, Non-Final Office Action dated in re: U.S. Appl. No. 10/567,746, dated Oct. 5, 2009, 9 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance and Examiners Interview Summary in re: U.S. Appl. No. 11/523,519, dated Jan. 16, 2009, 10 pages.
In the U.S. Patent and Trademark Office, Examiners Interview Summary in re: U.S. Appl. No. 11/523,519, dated Jan. 13, 2009, 4 pages.
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 11/523,519, dated Jul. 11, 2008, 13 pages.
In the U.S. Patent and Trademark Office, Examiners Interview Summary in re: U.S. Appl. No. 11/523,519, dated Apr. 10, 2008, 3 pages.
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 11/523,519, dated Nov. 26, 2007, 14 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 11/523,519, dated Mar. 7, 2007, 11 pages.
In the U.S. Patent and Trademark Office, Restriction Requirement in re: U.S. Appl. No. 11/523,518, dated Dec. 30, 2009, 4 pages.
In the U.S. Patent and Trademark Office, Supplemental Notice of Allowance in re: U.S. Appl. No. 11/798,965, dated Aug. 21, 2009, 4 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 11/798,965, dated Jul. 17, 2009, 5 pages.
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 11/798,965, dated Apr. 9, 2009, 6 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 11/798,965, dated Jul. 29, 2008, 12 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 12/578,283, dated Oct. 19, 2011, 5 pages.
In the U.S. Patent and Trademark Office, Restriction/Election Requirement in re: U.S. Appl. No. 11/882,530, dated Apr. 27, 2011, 5 pages.
In the U.S. Patent and Trademark Office, Supplemental Notice of Allowance in re: U.S. Appl. No. 10/870,849, dated Jun. 16, 2009, 2 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 10/870,849, dated Jun. 3, 2009, 4 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 10/870,849, dated May 14, 2009, 8 pages.
In the U.S. Patent and Trademark Office, Restriction in re: U.S. Appl. No. 10/870,849, dated Nov. 16, 2007, 5 pages.
In the U.S. Patent and Trademark Office, Examiners Interview Summary in re: U.S. Appl. No. 10/870,849, dated Jul. 27, 2007, 2 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 10/870,849, dated Feb. 22, 2007, 13 pages.
In the U.S. Patent and Trademark Office, Restriction/Election Requirement in re: U.S. Appl. No. 12/493,677, dated Aug. 5, 2011, 5 pages.
In the U.S. Patent and Trademark Office, Restriction/Election Requirement in re: U.S. Appl. No. 12/153,423, dated Oct. 6, 2011, 8 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 10/922,054, dated Feb. 12, 2008, 6 pages.
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 10/922,054, dated Nov. 27, 2007, 9 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 10/922,054, dated Mar. 14, 2007, 14 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 10/922,054, dated Sep. 7, 2006, 21 pages.
In the U.S. Patent and Trademark Office, Restriction Requirement in re: U.S. Appl. No. 10/922,054, dated May 17, 2006, 5 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance and Examiners Interview Summary in re: U.S. Appl. No. 12/076,062, dated Nov. 2, 2011, 8 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 12/076,062, dated Jan. 13, 2011, 14 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 12/355,753, dated Sep. 28, 2011, 32 pages.
In the U.S. Patent and Trademark Office, Ex Parte Quayle Office Action in re: U.S. Appl. No. 29/388,700, dated Oct. 7, 2011, 5 pages.
“AARC Clinical Practice Guideline: Oxygen Therapy in the Home or Extended Care Facility,” Resp. Care, 1992: 37(8), pp. 918-922.
“ATS Statement: Guidelines for the Six-Minute Walk Test,” Am. J. Respir. Crit. Care Med., 2002: 166, pp. 111-117.
“Passy-Muir Speaking Valves,” Respiratory, Nov. 13, 1998, 7 pages.
Ambrosino, “Exercise and noninvasive ventilatory support,” Monaldi Arch Chest Dis., 2000: 55(3): 242-246.
Ambrosino, “Weaning and Respiratory Muscle Dysfunction: The Egg Chicken Dilemma,” Chest, 2005: 128(2), pp. 481-483.
Bach et al., “Intermittent Positive Pressure Ventilation via Nasal Access in the Management of Respiratory Insufficiency,” Chest, 1987: 92(1), pp. 168-170.
Banner et al., “Extubating at a Pressure Support Ventilation Level Corresponding to Zero Imposed Work of Breathing,” Anesthesiology, Sep. 1994: 81(3A), p. A271.
Banner et al., “Imposed Work of Breathing and Methods of Triggering a Demand-Flow, Continuous Positive Airway Pressure System,” Critical Care Medicine, 1993: 21(2), pp. 183-190.
Banner et al., “Site of Pressure Measurement During Spontaneous Breathing with Continuous Positive Airway Pressure: Effect on Calculating Imposed Work of Breathing,” Critical Care Medicine, 1992: 20(4), pp. 528-533.
Barakat et al., “Effect of noninvasive ventilatory support during exercise of a program in pulmonary rehabilitation in patients with COPD,” Int. J. Chron. Obstruct. Pulmon. Dis., 2007: 2(4), pp. 585-591.
Barreiro et al., “Noninvasive ventilation,” Crit Care Clin., 2007; 23(2): 201-22.
Bauer et al., “Adam Nasal CPAP Circuit Adaptation: A Case Report,” Sleep, 1991: 14(3), pp. 272-273.
Blanch, “Clinical Studies of Tracheal Gas Insufflation,” Resp. Care, 2001: 45(2), pp. 158-166.
Borghi-Silva et al., “Non-invasive ventilation improves peripheral oxygen saturation and reduces fatigability of quadriceps in patients with COPD,” Respirology, 2009, 14:537-546.
Bossi et al., “Continuous Positive Airway Pressure in the Spontaneously Breathing Newborn by Means of Bilateral Nasal Cannulation,” Monatsschr Kinderheilkd, 1975: 123(4), pp. 141-146.
Boussarsar et al., “Relationship between ventilatory settings and barotrauma in the acute respiratory distress syndrome,” Intensive Care Med., 2002: 28(4): 406-13.
Chang et al., “Reduced Inspiratory Muscle Endurance Following Successful Weaning From Prolonged Mechanical Ventilation,” Chest, 2005: 128(2), pp. 553-559.
Charlotte Regional Medical Center, “Application of the Passy-Muir Tracheostomy and Ventilator,” Speech-Language Pathology Department, Jan. 1995, 8 pages.
Christopher et al., “Preliminary Observations of Transtracheal Augmented Ventilation for Chronic Severe Respiratory Disease,” Resp. Care, 2001: 46(1), pp. 15-25.
Christopher, et al., “Transtracheal Oxygen Therapy for Refractory Hypoxemia,” JAMA, 1986: 256(4), pp. 494-497.
Ciccolella et al.; “Administration of High-Flow, Vapor-phased, Humidified Nasal Cannula Air (HF-HNC) Decreases Work of Breathing (WOB) in Healthy Subjects During Exercise,” AmJRCCM, Apr. 2001: 163(5), Part 2, pp. A622. (Abstract Only).
Clini et al., “The Italian multicentre study on noninvasive ventilation in chronic obstructive pulmonary disease patients,” Eur. Respir. J., 2002, 20(3): 529-538.
Costa et al., “Influence of noninvasive ventilation by BiPAP® on exercise tolerance and respiratory muscle strength in chronic obstructive pulmonary disease patients (COPD),” Rev. Lat. Am. Enfermagem., 2006: 14(3), pp. 378-382.
Díaz et al., “Breathing Pattern and Gas Exchange at Peak Exercise in COPD Patients With and Without Tidal Flow Limitation at Rest,” European Respiratory Journal, 2001: 17, pp. 1120-1127.
Enright, “The six-minute walk test,” Resp. Care, 2003: 8, pp. 783-785.
Ferreira et al., “Trigger Performance of Mid-level ICU Mechanical Ventilators During Assisted Ventilation: A Bench Study,” Intensive Care Medicine, 2008,34:1669-1675.
Fink, “Helium-Oxygen: An Old Therapy Creates New Interest,” J. Resp. Care. Pract. now RT for Decision Makers in Respiratory Care, 1999, pp. 71-76.
Gaughan et al., “A Comparison in a Lung Model of Low- and High-Flow Regulators for Transtracheal Jet Ventilation,” Anesthesiology, 1992: 77(1), pp. 189-199.
Gregoretti, et al., “Transtracheal Open Ventilation in Acute Respiratory Failure Secondary to Severe Chronic Obstructive Pulmonary Disease Exacerbation,” Am. J. Resp. Crit. Care. Med., 2006: 173(8), pp. 877-881.
Haenel et al., “Efficacy of Selective Intrabronchial Air Insufflation in Acute Lobar Colapse,” Am. J. Surg., 1992: 164(5), pp. 501-505.
Keilty et al., “Effect of inspiratory pressure support on exercise tolerance and breathlessness in patients with severe stable chronic obstructive pulmonary disease,” Thorax, 1994, 49(10): 990-994.
Köhnlein et al., “Noninvasive ventilation in pulmonary rehabilitation of COPD patients,” Respir. Med., 2009, 103: 1329-1336.
Koska et al., “Evaluation of a Fiberoptic System for Airway Pressure Monitoring,” J. Clin. Monit., 1993: 10(4), pp. 247-250.
Lewis, “Breathless No More, Defeating Adult Sleep Apnea,” FDA Consumer Magazine, Jun. 1992, pp. 33-37.
Limberg et al., “Changes in Supplemental Oxygen Prescription in Pulmonary Rehabilitation,” Resp. Care, 2006:51(11), p. 1302.
MacInryre, “Long-Term Oxygen Therapy: Conference Summary,” Resp. Care, 2000: 45(2), pp. 237-245.
MacIntyre et al., “Acute exacerbations and repiratory failure in chronic obstructive pulmonary disease,” Proc. Am. Thorac. Soc., 2008: 5(4), pp. 530-535.
Massie et al., “Clinical Outcomes Related to Interface Type in Patients With Obstructive Sleep Apnea/Hypopnea Syndrome Who Are Using Continuous Positive Airway Pressure,” Chest, 2003: 123(4), pp. 1112-1118.
McCoy, “Oxygen Conservation Techniques and Devices,” Resp. Care, 2000: 45(1), pp. 95-104.
McGinley, “A nasal cannula can be used to treat obstructive sleep apnea”; Am. J. Resp. Crit. Care Med., 2007: 176(2), pp. 194-200.
Menadue et al., “Non-invasive ventilation during arm exercise and ground walking in patients with chronic hypercapnic respiratory failure,” Respirology, 2009, 14(2): 251-259.
Menon et al., “Tracheal Perforation. A Complication Associated with Transtracheal Oxygen Therapy,” Chest, 1993: 104(2), pp. 636-637.
Messinger et al., “Tracheal Pressure Triggering a Demand-Flow CPAP System Decreases Work of Breathing,” Anesthesiology, 1994: 81(3A), p. A272.
Messinger et al., “Using Tracheal Pressure to Trigger the Ventilator and Control Airway Pressure During Continuous Positive Airway Pressure Decreases Work of Breathing,” Chest, 1995: vol. 108(2), pp. 509-514.
Mettey, “Use of CPAP Nasal Cannula for Aids of the Newborns in Tropical Countries,” Medecine Tropicale, 1985: 45(1), pp. 87-90.
Nahmias et al., “Treatment of the Obstructive Sleep Apnea Syndrome Using a Nasopharyngeal Tube”, Chest, 1988:94(6), pp. 1142-1147.
Nava et al., “Non-invasive ventilation,” Minerva Anestesiol., 2009: 75(1-2), pp. 31-36.
Passy-Muir Inc., “Clinical Inservice Outline”, Apr. 2004, 19 pages.
Peters et al., “Combined Physiological Effects of Bronchodilators and Hyperoxia on Exertional Dyspnea in Normoxic COPD,” Thorax, 2006: 61, pp. 559-567.
Polokey et al., “Inspiratory pressure support reduces slowing of inspiratory muscle relations rate during exhaustive treadmill walking in sever COPD,” Am. J. Resp. Crit. Care Med., 1996: 154(4, 10), pp. 1146-1150.
Porta et al., “Mask proportional assist vs pressure support ventilation in patients in clinically stable condition with chronic venilatory failure,” Chest, 2002: 122(2), pp. 479-488.
Prigent et al., “Comparative Effects of Two Ventilatory Modes on Speech in Tracheostomized Patients with Neuromuscular Disease,” Am. J. Resp. Crit. Care Med., 2003: 167(8), pp. 114-119.
Puente-Maestu et al., “Dyspnea, Ventilatory Pattern, and Changes in Dynamic Hyperinflation Related to the Intensity of Constant Work Rate Exercise in COPD,” Chest, 2005: 128(2), pp. 651-656.
Ram et al., “Non-invasive positive pressure ventilation for treatment of respiratory failure due to exacerbations of chroic obstructive pulmonary disease,” Cochrane Database Syst Rev., 2004(3):1-72.
Rothe et al., “Near Fatal Complication of Transtracheal Oxygen Therapy with the SCOOP(R) System,” Pneumologie, 1996: 50(10), pp. 700-702. (English Abstract provided.).
Rothfleisch et al., “Facilitation of fiberoptic nasotracheal intubation in a morbidly obese patient by simultaneous use of nasal CPAP,” Chest, 1994, 106(1): 287-288.
Sanders et al., “CPAP Via Nasal Mask: A Treatment for Occlusive Sleep Apnea,” Chest, 1983: 83(1), pp. 144-145.
Sinderby et al., “Neural control of mechanical ventilation in respiratory failure,” Nat. Med., 1999: 5(12), pp. 1433-1436.
Somfay et al., “Dose-Response Effect of Oxygen on Hyperinflation and Exercise Endurance in Nonhypoxaemic COPD Patients,” Eur. Resp. J., 2001: 18, pp. 77-84.
Sullivan et al., “Reversal of Obstructive Sleep Apnoea by Continuous Positive Airway Pressure Applied Through the Nares,” The Lancet, 1981: 1(8225), pp. 862-865.
Sullivan, “Home treatment of obstructive sleep apnoea with continuous positive airway pressure applied through a nose-mask,” Bull Eur Physiopathol Respir., 1984: 20(1), pp. 49-54.
Tiep et al., “Pulsed nasal and transtracheal oxygen delivery,” Chest, 1990: 97, pp. 364-368.
Tsuboi et al., “Ventilatory Support During Exercise in Patients With Pulmonary Tuberculosis Sequelae,” Chest, 1997: 112(4), pp. 1000-1007.
VHA/DOD Clinical Practice Guideline, “Management of Chronic Obstructive Pulmonary Disease,” Aug. 1999, Ver. 1.1a, Updated Nov. 1999.
Wijkstra et al., “Nocturnal non-invasive positive pressure ventilation for stable chronic obstructive pulmonary disease,” Cochrane Database Syst. Rev., 2002, 3: 1-22.
Yaeger et al., “Oxygen Therapy Using Pulse and Continuous Flow With a Transtracheal Catheter and a Nasal Cannula,” Chest, 1994: 106, pp. 854-860.
Walsh, “McGraw Hill Pocket reference Machinists' and Metalworker' Pocket Reference,” New York McGraw-Hill, 2000, pp. 3-67, submitting 3 pages.
International Preliminary Report and Written Opinion on Patentability for PCT/DE2004/001646, dated Jul. 3, 2006.
European patent Office Search Report dated Oct. 19, 2007 in co-pending EP 04762494.
International Search Report and Written Opinion for PCT/US04/26800 dated Jun. 22, 2006.
International Search Report and Written Opinion for PCT/US07/12108, dated Aug. 8, 2008.
International Search Report and Written Opinion for PCT/US07/17400, dated Apr. 28, 2008.
International Search Report and Written Opinion for PCT/US08/64015, dated Sep. 26, 2008.
International Search Report and Written Opinion for PCT/US08/64164, dated Sep. 29, 2008.
International Search Report and Written Opinion for PCT/US08/78031, dated Nov. 24, 2008.
International Search Report and Written Opinion for PCT/US08/78033, dated Dec. 3, 2008.
International Search Report and Written Opinion for PCT/US09/054673, dated Oct. 8, 2009.
International Search Report and Written Opinion for PCT/US09/41027, dated Dec. 14, 2009.
International Search Report and Written Opinion for PCT/US09/59272, dated Dec. 2, 2009.
International Search Report and Written Opinion for PCT/US2006/036600, dated Apr. 3, 2007.
International Search Report and Written Opinion for PCT/US2009/031355 dated Mar. 11, 2009.
International Search Report and Written Opinion for PCT/US2009/041034, dated Jun. 10, 2009.
International Search Report and Written Opinion for PCT/US2010/029871, dated Jul. 12, 2010.
International Search Report and Written Opinion for PCT/US2010/029873, dated Jun. 28, 2010.
International Search Report and Written Opinion for PCT/US2010/029874, dated Jul. 12, 2010.
International Search Report and Written Opinion for PCT/US2010/029875, dated Jul. 12, 2010.
International Search Report and Written Opinion for PCT/US2010/047920, dated Nov. 1, 2010.
International Search Report and Written Opinion for PCT/US2010/047921, dated Jan. 27, 2011.
International Search Report for PCT/DE2004/001646, dated Jan. 17, 2005.
Supplementary European Search Report, Application No. EP 10 81 4608, dated Aug. 25, 2014, 1 Page.
International Search Report and Written Opinion for Application No. EP 10 81 4608, dated Aug. 25, 2014, 6 Pages.
Masayuki Kanemaru, Notice of the Reason for Refusal, dated Jul. 31, 2014, 3 pages.
Espacenet, English Abstract JP2009160403, 2 Pages.
Espacenet, English Abstract JP2007518451, 2 Pages.
Chinese Office Action, No. 100140, dated Apr. 14, 2014, 14 Pages.
English Traslation Chinese Office Action, Application No. 201080049144, 27 Pages, dated Apr. 14, 2014.
Abstract CN1455690, Randall S. Hickle, Nov. 12, 2003, 2 Pages.
Abstract CN101365508, Steve Han, Feb. 11, 2009, 2 Pages.
Abstract CN1905917, Anthony Wondka, Jan. 31, 2007, 2 Pages.
English Translation of the First Office Action, Application No. 201080049144.6, pp. 1-13, Chinese Office Action, pp. 14-27, dated Apr. 4, 2014.
Office Action issued by SIPO in relation to Chinese Patent Application No. 2010800491446.
Chinese Office Action for Chinese Patent Application No. CN201080049144.6; dated Nov. 30, 2015.
Extended European Search Report, dated Aug. 31, 2015.
“Decision of Rejection” issued for Chinese Patent Application Serial No. 2010800491446 dated Jul. 29, 2016.
Notification of Reexamination for Chinese Patent Application No. 2010/80049144.6; dated Sep. 21, 2017.
Notification of Reexamination for Chinese Patent Application No. 2010/80049144.6; dated May 17, 2017.
Related Publications (1)
Number Date Country
20110094518 A1 Apr 2011 US
Provisional Applications (5)
Number Date Country
61239728 Sep 2009 US
61255760 Oct 2009 US
61294363 Jan 2010 US
61306370 Feb 2010 US
61166150 Apr 2009 US
Continuation in Parts (9)
Number Date Country
Parent 12753846 Apr 2010 US
Child 12876099 US
Parent 12753851 Apr 2010 US
Child 12753846 US
Parent 12753854 Apr 2010 US
Child 12753851 US
Parent 12753856 Apr 2010 US
Child 12753854 US
Parent PCT/US2010/029871 Apr 2010 US
Child 12753856 US
Parent 12753853 Apr 2010 US
Child PCT/US2010/029871 US
Parent PCT/US2010/029873 Apr 2010 US
Child 12753853 US
Parent PCT/US2010/029874 Apr 2010 US
Child PCT/US2010/029873 US
Parent PCT/US2010/029875 Apr 2010 US
Child PCT/US2010/029874 US