The present invention relates to the field of ventilation therapy for persons suffering from respiratory and breathing disorders, such as respiratory insufficiency and sleep apnea. More specifically, the present invention relates to providing open airway ventilation with methods and devices that use non-sealing non-invasive nasal ventilation patient interfaces.
There is a need for a minimally obtrusive nasal mask and ventilation system that delivers mechanical ventilatory support or positive airway pressure, and which unencumbers the patient. There are a range of clinical syndromes that require ventilation therapy that would benefit from such a mask and system, such as respiratory insufficiency, airway or sleeping disorders, congestive heart failure, neuromuscular disease, and a range of situations that would be benefited, such as chronic, acute, emergency, mass casualty and pandemic situations.
Oxygen therapy is available with devices that do not encumber the patient. However, oxygen therapy is used for far less severe forms of clinical syndromes compared to ventilation therapy. For example, some nasal mask oxygen therapy systems have been developed for the purpose of delivering mixtures of air and oxygen by entraining air into the mask, however these are not considered ventilation therapy or respiratory support, because they do not mechanically help in the work of breathing. Recently, a variant of oxygen therapy has been employed, known as high flow oxygen therapy (HFOT). In this case, the oxygen flow rate is increased beyond standard long term oxygen therapy (LTOT), for example, above 15 LPM. Because of the high flow rate, the oxygen must be humidified to prevent drying out the patient's airway. It has been reported that HFOT can slightly reduce the patient's absolute pleural pressure during spontaneous breathing, thus have a slight effect on work of breathing. These systems are inefficient in that they consume a significant quantity of oxygen, rendering them non-mobile systems and encumbering the patient.
Respiratory support and ventilation therapies exist that provide mechanical ventilation (MV) to the patient, and mechanically contribute to the work of breathing. MV therapies connect to the patient by intubating the patient with a cuffed or uncuffed tracheal tube, or a sealing face or nasal mask or sealing nasal cannula. While helpful in supporting the work of breathing, the patient interfaces used for MV are obtrusive and/or invasive to the user, and MV does not facilitate mobility or activities of daily living, therefore encumbers that patient and is a drawback to many potential users. Non-invasive ventilation (NIV) exists which ventilates a patient with a face or nasal mask rather than requiring intubation, which can be an advantage in many situations. However, the patient cannot use their upper airway because the interface makes an external seal against the nose and/or mouth, and in addition the system is not mobile, the combination of which does not enable activities of daily living.
For treating obstructive sleep apnea (OSA), the gold standard ventilation therapy is continuous positive airway pressure (CPAP) or bilevel positive airway pressure (BiPAP), which is a variant to NIV in that the patient partially exhales through exhaust ports in the mask and back into large gas delivery tubing, rather than through an exhalation circuit as in MV. Continuous positive pressure applied by the ventilator to the patient by a nasal or face mask that seals against the nose or face prevents upper airway obstruction. While effective, this therapy has poor patient compliance because the patient interface is obtrusive to the patient and the patient unnaturally breathes through both a mask and gas delivery circuit.
In summary, existing therapies and prior art have the following disadvantages: they do not offer respiratory support or airway support in a manner that unencumbers the patient and (1) is non-invasive, and un-obtrusive such that it allows for mobility and activities of daily living, (2) allows the sensation of breathing from the ambient surroundings normally, and (3) is provided in an easily portable system or a system that can be easily borne or worn by the patient.
The invention provides ventilation to a patient using non-invasive open-airway ventilation (NIOV), and a non-sealing nasal mask interface with nozzles in free space that does not completely cover or seal the opening of the patient's mouth or nose.
Embodiments of the present invention may include a system for supplying ventilatory support, the system including a gas delivery source; a gas delivery circuit; a nasal interface configured to communicate with a patient's nose while allowing the patient to breathe ambient air directly without flowing through the nasal interface; a nozzle associated with the nasal interface at a distance from a nose, wherein the nozzle is connectable to the gas delivery circuit and the gas delivery source; and wherein the nozzle is capable of delivering gas into the nasal passage by creating negative pressure area near the nozzle and a positive pressure area near the entrance to the nose, wherein a combination of gas from the gas delivery source and air entrained from the gas exiting the nozzle provide ventilatory support.
Embodiments of the present invention may include a method for providing ventilatory support, the method including: providing a nasal interface that allows the patient to breathe ambient air through the nasal interface; providing a nozzle in free space associated with a proximal end of the nasal interface at a distance from a nose; adapting the nozzle to be in fluid communication with a gas delivery circuit and a gas delivery source, wherein the nozzle is capable of delivering gas into the nasal interface to create a negative pressure area near the nozzle and a positive pressure area near the entrance to the nose, and wherein a combination of gas from the gas delivery source and air entrained by the nozzle provides ventilatory support.
Certain embodiments of the systems and methods may also include that the positive pressure area may be created at a point outside the nose and distal to that point. The positive pressure area may be created at an edge of a nostril rim and distal to the edge. The positive pressure area may be created at a point in a nostril airway and distal to that point. The nasal interface may include a manifold, and wherein the manifold comprises the nozzle. The manifold may be configured to position the nozzle at a distance away from a nostril entrance, and may be configured to position the nozzle at an angle relative a centerline of a nostril airway. Embodiments of the present invention may include one or more sensors, wherein the one or more sensors comprise a sensing channel that extends away from the nozzle toward the nose terminating in the positive pressure area, and/or wherein the one or more sensors comprise a sensing channel that extends toward distally away from the nozzle. The sensing channel may extend into a nose. The sensing channel may extend to within approximately +/−5 mm from a nostril entrance. Embodiments of the present invention may include two or more nozzles per nostril. The nozzle may be an oval-shaped gas delivery nozzle orifice. The nozzle may include an array of multiple gas delivery nozzles arranged in a circular or oval pattern. Embodiments of the present invention may include a jet pump throat including a flow path. The jet pump throat may be associated with a manifold, and the nozzle may be associated with a jet pump throat flow path through the jet pump throat. The manifold may include an entrainment port in communication with the jet pump throat flow path. The nozzle may angle inward. The nozzle may angle inward at an angle of approximately 1-20 degrees. The nozzle may create an oval shaped gas delivery flow profile within a nostril airway. The nozzle may be rotatably adjustable. The nozzle may include at least one left nozzle and at least one right nozzle, wherein the spacing between the at least one left nozzle and the at least one right nozzle is adjustable. The at least one left nozzle and the at least one right nozzle may be rotate-ably adjustable. Spacing between a nostril entrance and nozzle may be adjustable. The nasal interface may be available in different sizes, differing in nozzle spacing, nozzle rotational orientation and nozzle distance to nostril entrance. The negative pressure area may extend from the nozzle to a location proximal to an entrance to a nose. A negative pressure may be less than ambient. The negative pressure may be approximately −5 to −28 cmH2O. The positive pressure area may extend from a location distal to the nozzle to an entrance to a nose. The positive pressure may be greater than ambient. The positive pressure may be approximately 0.01-0.50 psi. The combination of gas from the gas delivery source and the air entrained through entrained from the gas exiting the nozzle may be laminar flow within a nose. The nozzle may be positioned approximately 0-1.5 inches outside the entrance to the nose. Delivery of gas through the nozzle may be synchronized with a breathing pattern of a patient. The gas from the gas delivery source may be controlled by a wear-able ventilator. Ventilatory support may include reducing the work of breathing to treat respiratory insufficiency. Ventilatory support may include elevating airway pressure to treat sleep apnea. The nasal interface may include a connector for coupling the system to a bridge of the nose and aligning the at least one gas delivery jet nozzle with the entrance of the nose. The connector may include a ledge to position the nasal interface relative to an edge of a nostril rim. The connector may adjust the angle of the nozzle to be in alignment with a centerline of a nostril airway.
Embodiments of the present invention may include a system for supplying ventilatory support, the system including: a gas delivery source; a gas delivery circuit; a nasal interface configured to communicate with a patient's nose while allowing the patient to breathe ambient air directly without flowing through the nasal interface; a nozzle associated with the nasal interface at a distance from a nose, wherein the nozzle is connectable to the gas delivery circuit and the gas delivery source; a jet pump throat comprising a flow path through the jet pump throat, wherein the jet pump throat is associated with a manifold, and the nozzle is associated with a jet pump throat flow path through the jet pump throat; and an entrainment port in communication with the jet pump throat flow path, wherein the nozzle is capable of delivering gas into the nasal passage by creating negative pressure area near the nozzle within the jet pump throat flow path and a positive pressure area within the jet pump throat flow path distal to the nozzle, wherein a combination of gas from the gas delivery source and air entrained through the entrainment port provide ventilatory support. Certain embodiments of the systems and methods may include that ventilatory support includes reducing the work of breathing to treat respiratory insufficiency. Ventilatory support may include elevating airway pressure to treat sleep apnea.
Additional features, advantages, and embodiments of the invention are set forth or apparent from consideration of the following detailed description, drawings and claims. Moreover, it is to be understood that both the foregoing summary of the invention and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate preferred embodiments of the invention and together with the detailed description serve to explain the principles of the invention.
A similar system to
Embodiments of the present invention will now be described with reference to the remaining figures. Respiratory support or airway support is provided in a manner and way that the patient is unencumbered. The non-invasive, non-sealing and unobtrusive systems and methods may allow for mobility and activities of daily life. The systems and methods allow for the sensation of breathing from ambient surroundings normally. The systems and methods provide an easily portable system that can be readily borne or worn by the patient, and gas delivery tubing that does not encumber the patient.
Systems and methods may include a gas delivery source, a gas delivery circuit, and a nasal interface that allow breathing ambient air through the nasal interface. A gas flow path through the nasal interface may have a distal gas flow path opening. A nozzle may be associated with a proximal end of the nasal interface a distance from the distal end gas flow path opening. In certain embodiments, at least a portion of an entrainment port may be between the nozzle and the distal end gas flow opening. The nozzle may deliver gas into the nasal interface to create a negative pressure area in the gas flow path at the entrainment port. The nasal interface and the nozzle may create a positive pressure area between the entrainment port and the distal end of the nasal interface. Gas from the gas delivery source and air entrained through the entrainment port may increase airway pressure.
The present invention may include a non-sealing nasal mask patient interface, connected to the ventilator with small bore gas delivery tubing. The nasal mask may be uniquely non-sealing, so that the patient can inhale and exhale ambient air directly through the mask while receiving ventilatory support, in which there is negligible dead space volume in the mask. The mask may include a unique Venturi system that makes it possible for the ventilator to deliver relatively small amounts of gas to achieve relatively high levels of ventilatory support or airway pressure. The Venturi mask is described in more detail in
Various embodiments of the nasal interface 303 are described in detail in the following disclosure. The nasal interface 303 may be minimally obtrusive compared to standard masks, so that the patient can feel and act normally while receiving the therapy. For example, the patient can talk, swallow, eat or drink, and feel like they are breathing normally, with the nasal interface and therapy. The gas delivery tubing required may be very small compared to standard ventilator tubing, which more readily allows the patient to move around with the system, and to conceal the equipment and tubing needed for the therapy. The efficiency of the Venturi system in achieving therapeutic levels of lung or airway pressure while using low levels of gas volume, allows the gas supply to be relatively small, further enabling mobility of the patient, and or miniaturization of the ventilation equipment. A nasal interface may be configured to communicate with a patient's nose while allowing the patient to breathe ambient air directly without flowing through the nasal interface.
While
A ventilator module 401 may include or is in communication with several other functional accessories. The ventilator and the patient's internal anatomy from
An oxygen source 407 and/or a compressed air source 409 can be included, typically external to the ventilator module 401. In certain embodiments, however, the oxygen source 407 and/or the compressed air source 409 can be internal to the ventilator module 401 if the therapy is being used for stationary use, for example, in the home. A blender 411 can be included to control the fractional delivered O2 in a gas delivery circuit 413. A pulse oximeter 415 can be used to titrate settings of the ventilator module 401 to meet the physiological needs of the patient, for example setting the correct oxygen blender setting or ventilator volume output. In addition to compressed supplies of oxygen and air gas, the ventilator module 401 can include internal or external air and oxygen generating systems 417, such as a compressor, pump or blower to create pressurized air, an oxygen generator and/or pump to create pressurized oxygen gas, and/or a compressed gas accumulator. The oxygen source can also be liquid oxygen, or a liquid oxygen generating system. An internal or external humidifier 405 can be included for extended uses of the therapy, or if using in dry climates.
As the therapy is frequently used to help ADL's, and to promote activity, a pedometer 419 and/or actigraphy sensor 421 can be included internal to or external to a ventilator module 401. Optional sensors may include a CO2 sensor 425, and/or an external breathing sensor unit 437. A CO2 sensing line 439 and/or an airway pressure sensing line 441 may be present. One or more other external sensors may be included. For example, other external sensors may include an external respiration sensor or respiration effort sensor 427, such as a respiratory muscle effort sensor, a chest impedance sensor 435, or other types of sensors, such as a tracheal or other microphone or vibration sensor 443 or acoustical or ultrasonic sensor. The one or more external sensors may be used either as a redundant sensor to a nasal airflow or nasal pressure sensor 429, or to complement the information obtained from the nasal airflow or nasal pressure sensor 429, or in place of the nasal airflow or nasal pressure sensor 429. An oral airflow breathing sensor may also be used, for example nasal airflow or nasal pressure sensor 429 may alternatively be an oral airflow sensor.
A drug delivery module 431 can be incorporated internally or externally to a ventilator module 401. Because of the challenges with current aerosolized drug delivery inhalers, the drug delivery module 431 can be used to propel and deposit medication particles deep in the respiratory system without a carrier propellant. Because the patient's using the therapy often may also require prescription medication, this may be a convenient and efficient way to administer the medication.
When the therapy is being used for respiratory support, the user may have two options: (1) wearing or toting the ventilator module 401 so that the user can be ambulatory or enjoy the activities of daily living, or (2) stationary use, in the event the patient plans on being stationary or does not have the ability to ambulate. For the later, the delivery circuit can optionally be provided in a 25-100 foot length, such that the gas source and ventilator module 401 can be stationary in the patient's home, while the patient can move around their home while wearing the interface and receiving the therapy. Or, the gas source can be stationary, and connected to the ventilator module 401 with a 25-100 foot hose, so that the patient can wear or tote the ventilator and be mobile within the range of the hose.
The ventilator module 401 may include one or more processors 445 and one or more memories 447 to analyze information and output therapies.
Ventilation gas 449 may exit at a speed that entrains ambient air 451, such that the combination of ventilation gas 449, entrained ambient air 451 and spontaneously inhaled air, if the patient is spontaneously breathing, is delivered 453 to the patient's airways, such as the nasal cavity 455, oropharyngeal airway 457, trachea 459, lung 461 and others, under power to create a clinically efficacious effect on the lung and airways. Patient may exhale 463 through the nose or mouth. Various airways are also included, such as nostril airway 473, nasal airway 475, oral airway 481, upper airway 477, and lower airway 479.
When using the invention, the patient breathes normally through their upper airway and through their nose, while receiving mechanical support through the interface. During exhalation, the exhaled gas preferably does not enter the gas delivery circuit but rather exits the nose or mouth directly to ambient air, or through, across or around the nasal interface 400 to ambient air. The patient can keep their mouth closed during use for example during inspiration, to help direct the mechanical support to the lower airways and past the oral cavity 465, base of the tongue 467, palate 469 and esophagus 471, or can use a mouth guard or chin band, if necessary. The patient may exhale through their mouth when using the therapy.
Gas delivery tubing 511 and pressure sensing tubing 515 from a ventilator, as shown in
In certain embodiments, a rotatable joint 517 between the gas delivery tubing 511 and manifold 503 and/or a rotatable joint 519 between the pressure sensing tube 515 and manifold 503, may include detent settings. These detent setting joints 517, 519 can be used to adjust the angle of the manifold 503 to adjust the angle of the gas delivery nozzles 507 to be in alignment with the patient's nostril airway. Alternatively, the gas delivery tubing 511 and pressure sensing tubing 515 can be connectable to the manifold 503 in different rotational orientations to likewise align the gas delivery nozzles 507 with the patient's nostril airway.
Distance from Nozzle to Nose:
The gas delivery nozzle 713 may be integrated into a manifold 709, and the manifold 709 may be shaped, dimensioned and configured to position the gas delivery nozzle 713 at an ideal position under a nostril entrance 707. A distance of the gas delivery nozzle 713 to the nostril entrance 707 may be chosen to optimize the function of the Venturi created by the gas delivery nozzle 713 and the nares. Optimal function may be described as generating maximal pressure in the nostril airway 703 while the gas delivery is still comfortable and tolerable to the user.
Typically, laminar positive pressure flow should be developed before the airflow reaches deep into the nostril. This positive pressure flow may be defined by the area inside and distal to the gas flow cone defined by the gas exiting the gas delivery nozzle 713. The area outside of this cone is negative pressure created by the Venturi, which entrains ambient air into the nose and nasal passage, thus generating the energy required for mechanical ventilatory support. When this cone intersects with the internal wall of the nostril, the distal side of that intersecting point is positive pressure.
Alternatively, based on position of the gas delivery nozzle 713 and other operational parameters and device dimensions, this cone can be wider than the entrance to the nostril when it reaches the nostril. In this event, positive pressure occurs outside of the nostril and extends distally. Also alternatively, this cone can intersect with the nostril walls at a distance inside the nostril, thereby allowing a negative pressure zone to occur at the entrance to and slightly inside the nostril, but then transitioning to positive pressure distal to the intersecting point. Because the cross sectional geometry is non-uniform, for example, not a perfectly circular, there is variability with the gas flow cone intersecting points with the nostril wall, around the circumference of the cone and nostril. As will be described subsequently, specific embodiments of the nasal mask may address this nuance such that more uniform and predictable performance can be achieved.
In the embodiment of
Position of Breathing Pressure Sensing Port:
For embodiments of the invention to be effective, it may be necessary to measure and monitor breathing of the patient to properly synchronize a ventilator gas delivery control system with spontaneous breathing patterns of the patient, as desired clinically. Therefore, while the gas delivery nozzles 713 may be positioned ideally at a distance away from the user's nostril entrance 707, breathing pressure sensing cannula 715, breathing pressure sensing ports or other sensors may need to be placed near, at or inside the nostril entrance 707. For example, the distal end of the pressure sensing cannula 715 can be placed slightly inside the nose in the area where positive pressure has been created by the Venturi system.
It may be beneficial to have multiple locations for measuring pressure. For example, one location may be used for detecting and measuring the spontaneous breathing pressure of the patient, and a different location for measuring the pressure generated by the ventilation system. For example, a breathing pressure sensing port may be placed slightly inside the nostril entrance 707, and a ventilation gas pressure sensor may be placed outside the nostril entrance 707, or alternatively deeper inside the nostril airway 703.
The location of pressure sensing ports, such as the breathing pressure sensing cannula 715, may be selected to optimize accuracy and fidelity. For example, a breathing pressure sensing port, such as the breathing pressure sensing cannula 715, may be arranged so that it is located near the medial aspect of the nostril airway 703, or at the posterior aspect of the nostril airway 703. Multiple breathing pressure sensing locations may also be used. For example, a sensing port at a medial posterior aspect of the nostril airway 703 may be used to measure inhalation pressures accurately, and a sensing port at the anterior aspect of the nostril airway 703 may be used to measure exhalation pressures accurately.
In addition to a nostril airway breathing pressure sensor, other sensor types or locations may be used. For example, a microphone or ultrasonic sensor can be used to detect phases of breathing when placed on the user's neck to detect movements of air in the trachea. Other sensors and sensor locations can be used.
In addition to the ventilation pressure being measured by a pressure sensing port outside of the nose, at the nostril entrance, or inside the nostril airway, the ventilation pressure can be derived by other apparatus and methods. For example, a gas delivery pressure in the gas delivery circuit can be correlated to a delivered ventilation pressure that is delivered to the patient by the ventilation system by measuring key relevant patient parameters, such as airway resistance and respiratory track compliance, and correlating those parameters with delivered pressure based on a gas delivery pressure.
Key dimensions and values of the ventilation nasal mask are indicated in Table 1. The parameters provided by the ventilation nasal mask and system are indicated in Table 2. Additional exemplary dimensions, values and materials of the ventilation nasal mask are indicated in Table 3.
Nozzle Patterns:
In certain situations, delivery of ventilation gas to the patient through one left and one right gas delivery nozzles may not develop the laminar flow desired due to the variability found in patient's nostril and nasal air passage geometries. Therefore, in certain embodiments of the invention, the mask's left and right gas delivery may each be performed by multiple nozzles.
For example, as shown in
In addition to the gas delivery nozzle pattern, the included angle between the gas flow path axis created by the left and right nozzles or nozzle patterns may be non-parallel. For example, as shown in
Nasal Mask with Jet Pump Throat:
In addition, as shown in
The jet pump throat section 1901 can be useful in creating consistent performance of the ventilation system from one person to another, by minimizing the effect of patient anatomy on performance. The jet pump throat section 1901 can also be useful in dampening the sound that is generated by the high velocity gas exiting gas delivery nozzles 1903 and entraining ambient air. The jet pump throat section 1901 can alternatively include entrainment ports 1905 at the base of the jet pump throat section 1901 as shown in
The nozzle in
Other Mask Form Factors:
The vertical extension arm 2107 can be adjustable to position the gas delivery nozzles 2103 at the appropriate distance from the user, and the horizontal extension arm 2105 can be rotate-ably adjustable to angle the gas delivery nozzles 2103 correctly to be in alignment with the nostril airway. The spacing between the gas delivery nozzles 2103 can be adjustable, for example by a linear adjustment in the horizontal arm.
Breathing pressure sensing ports (not shown) may extend upward from the nose piece 2109 to be positively located at, near or inside the entrance to the nose. The nose piece 2109 may include a shelf 2113 at its bottom end which is used to position against the outside of the nostril rim. The breathing pressure sensing tube 2111 may be attached to one side of the nose piece 2109, the user's right side in
The nasal mask 2101 may also include additional sensing functions such as a CO2 gas sampling port (not shown) and conduit extending to a capnometer (not shown), which can be included by integrating a secondary channel into the gas delivery tubing or pressure sensing tubing, and integrating the requsite channel into the mask nose piece and or extension arms. The nose piece 2109 may also prevent gas being delivered from the gas delivery nozzles 2103 from being directed toward the eyes when the nasal mask 2101 is not fitted properly to the user.
The nasal mask 2101 may also include additional sensing functions such as a CO2 gas sampling port (not shown) and conduit extending to a capnometer (not shown). The nose piece 2109 may also prevent gas being delivered from the gas delivery nozzles 2103 from being directed toward the eyes when the nasal mask 2101 is not fitted properly to the user.
This embodiment of the invention may use the angle of the medial aspect of the bridge of the nose to align the therapy to the patient. During testing, it was determined that the optimal performance was achieved when the gas delivery nozzles 2103 were aimed parallel to the bridge of the nose to align the jets of ventilation gas with the nares. The gas delivery nozzles 2103 of the nasal mask 2101 may be aimed parallel to the nose piece 2109, such that by placing the nose piece 2109 on the bridge of the nose, the gas delivery nozzles 2103 may be parallel to the bridge of the nose.
If there is some misalignment, performance may degrade. The gas delivery nozzles 2103 preferably are kept within 10 degrees of being properly aligned with a nasal opening and an axis of the nares. As such, when a patient moves their nose to the left or right (e.g. by moving your jaw in an exaggerated manner), the nasal mask 2101 may follow the nose, ensuring that the gas delivery nozzles 2103 remain aligned with the centerline of the nose, and therefore the nostrils. In
The nasal air pressure sensing ports may be protrusions to help achieve a positive location of the sensing ports in the breath path in the nares. The gas delivery ports may be positioned such that the gas delivery path has a clear path to the nostril airway. There may be two or more sizes of nasal mask 2201, and or adjustment features in the mask, so that the sensing ports and gas delivery zones are properly aligned with the nasal airway path. The previous figures describe that the sensing locations must be in proximity to the entrance of the nostril, either inside, coplanar to the entrance, or slightly outside but if outside no more than 5 mm away from the entrance, whereas the gas delivery nozzle tips are located a distance from the entrance to the nostrils, for example 10-25 mm away. This configuration may allow the nasal mask 2201 to take advantage of the jet pump geometry, while not sacrificing sensing accuracy, so that the ventilator is in proper synchrony with the patient. Also, the gas flow profile may become more organized before entering the patient's nostril, rather than a turbulent jet entering the nostril, which would be quite uncomfortable and intolerant to the patient.
The following tables list exemplary values only and are not to be construed as limiting the disclosure.
In the graph shown, the area inside the curve below the pressure axis is the inspiratory WOB, and the area defined by the area inside the curve above the pressure axis is the expiratory WOB. The arrows show the progression of a single breath over time, starting from RV to VT then returning from VT to RV. RV1 and VT1 are the residual volume and tidal volume without the therapy. Line 3201 represents spontaneous breathing without non-invasive open nasal ventilation. Line 3203 represents spontaneous breathing with non-invasive open nasal ventilation, with inspiratory augmentation and positive end-expiratory pressure (PEEP) therapy. RV2 and VT2 are the residual volume and tidal volume with the therapy. As can be seen, RV increases with the therapy because in this example, expiratory flow is provided as part of the therapy, which may increase residual volume. Importantly, VT is increased with the therapy and is increased more that the RV is increased, indicating that more volume is entering and leaving the lung as a result of the therapy. The increase in tidal volume is considered clinically efficacious, however is technically challenging to achieve in an open ventilation, non-invasive and minimally obtrusive system. As is shown in the graph, the patient's inspiratory WOB with the invention ON may be about 25% less than the patient's inspiratory WOB with the invention OFF. Also, inspiratory lung pressure increases (is less negative) and tidal volume increases, and optionally exhaled pressure increases if the therapy is provided during exhalation. While residual volume increases in the example shown because the ventilator is providing gas in this example during the expiratory phase, the ventilation parameters can be titrated to not effect residual volume, and because of the ability of the patient to exercise their lung muscles when receiving the therapy, the patient's lung mechanics may remodel in the case of COPD, actually causing a reduction of residual volume to a more normal value. In the graph shown, the waveform with therapy assumes an early inspiratory trigger time for the ventilator inspiratory phase therapy output, and that the volume output is delivered within the patient's inspiratory time. Optionally, however, different delivery waveforms and delivery synchronizations can be performed, which may adjust the WOB curve. For example, the ventilator inspiratory phase therapy can be delivered late in the person's inspiratory cycle, with delivery completing at the end of inspiration, and delivered with a square or ascending waveform profile. In this case the WOB curve with therapy will be tilted upward to the right of the curve, such that inspiration ends and transitions to exhalation at a point above the lung pressure zero axis.
The lung pressure resulting from the therapy may be governed by a combination of factors: the gas delivery circuit pressure, the jet pump design and configuration, the patient's lung compliance and airway resistance, the patient's breathing effort, the timing of the ventilator output relative to the patient's inspiratory phase, and the ventilator output waveform. Typically, however, a gas delivery circuit pressure of 30 psi delivering 100 ml with a square waveform, and delivered for 500 msec starting at the beginning of the patient's inspiratory phase, may increase lung pressure by 5-15 cmH2O. And, typically a gas delivery circuit pressure of 30 psi delivering 250 ml with a trapezoidal waveform, and delivered for 700 msec during the majority of the patient's inspiratory phase, may increase lung pressure by 10-25 cmH2O. The gas delivered by the ventilator can be oxygen, air, oxygen-air mixtures, or therapeutic gases such as helium. In a main mechanism of action of the invention, the patient's lung pressure and lung volume is increased, which allows the patient to exert them self without being limited by fatigue and dyspnea. In another main mechanism of action of the invention, the patient reduces their breathing effort in response to the pressure and volume support provided by the therapy, thus resulting in no change in total lung volume from the therapy, but resulting in a reduced work of breathing. In another main embodiment of the invention, a combination of the above two mechanisms of action can occur.
Although the foregoing description is directed to the preferred embodiments of the invention, it is noted that other variations and modifications will be apparent to those skilled in the art, and may be made without departing from the spirit or scope of the invention. Moreover, features described in connection with one embodiment of the invention may be used in conjunction with other embodiments, even if not explicitly stated above.
This application claims priority to U.S. Provisional Patent Application No. 61/239,728, filed Sep. 3, 2009, U.S. Provisional Patent Application No. 61/166,150, filed Apr. 2, 2009, U.S. Provisional Patent Application No. 61/255,760, filed Oct. 28, 2009, U.S. Provisional Patent Application No. 61/294,363, filed Jan. 12, 2010, and U.S. Provisional Patent Application No. 61/306,370, filed Feb. 19, 2010; the contents of which are incorporated by reference herein in their entireties. This application is also a continuation-in-part of each of U.S. Non-Provisional patent application Ser. No. 12/753,846, filed Apr. 2, 2010, PCT Patent Application No. PCT/US2010/029871, filed Apr. 2, 2010, U.S. Non-Provisional patent application Ser. No. 12/753,851, filed Apr. 2, 2010, PCT Patent Application No. PCT/US2010/029873, filed Apr. 2, 2010, U.S. Non-Provisional patent application Ser. No. 12/753,853, filed Apr. 2, 2010, U.S. Non-Provisional patent application Ser. No. 12/753,854, filed Apr. 2, 2010, PCT Patent Application No. PCT/US2010/029874, filed Apr. 2, 2010, U.S. Non-Provisional patent application Ser. No. 12/753,856, filed Apr. 2, 2010, and PCT Patent Application No. PCT/US2010/029875, filed Apr. 2, 2010; the contents of which are incorporated by reference herein in their entireties. This application incorporates by reference U.S. Non-Provisional patent application Ser. No. 12/876,098, filed Sep. 3, 2010, entitled “METHODS, SYSTEMS AND DEVICES FOR NON-INVASIVE VENTILATION INCLUDING A NON-SEALING VENTILATION INTERFACE WITH AN ENTRAINMENT PORT AND/OR PRESSURE FEATURE”, and PCT Patent Application No. PCT/US2010/047921, filed Sep. 3, 2010, entitled “METHODS, SYSTEMS AND DEVICES FOR NON-INVASIVE VENTILATION INCLUDING A NON-SEALING VENTILATION INTERFACE WITH AN ENTRAINMENT PORT AND/OR PRESSURE FEATURE”.
Number | Name | Date | Kind |
---|---|---|---|
50641 | Stone | Oct 1865 | A |
428592 | Chapman | May 1890 | A |
697181 | Smith | Apr 1902 | A |
718785 | McNary | Jan 1903 | A |
853439 | Clark | May 1907 | A |
859156 | Warnken | Jul 1907 | A |
909002 | Lambert | Jan 1909 | A |
1125542 | Humphries | Jan 1915 | A |
1129619 | Zapf | Feb 1915 | A |
1331297 | Walker | Feb 1920 | A |
2178800 | Lombard | Nov 1939 | A |
2245969 | Francisco et al. | Jun 1941 | A |
2259817 | Hawkins | Oct 1941 | A |
2499650 | Kaslow | Mar 1950 | A |
2552595 | Seeler | May 1951 | A |
2663297 | Turnberg | Dec 1953 | A |
2693800 | Caldwell | Nov 1954 | A |
2735432 | Hudson | Feb 1956 | A |
2792000 | Richardson | May 1957 | A |
2843122 | Hudson | Jul 1958 | A |
2859748 | Hudson | Nov 1958 | A |
2931358 | Sheridan | Apr 1960 | A |
2947938 | Bennett | Aug 1960 | A |
3172407 | Von Pechmann | Mar 1965 | A |
3267935 | Andreasen et al. | Aug 1966 | A |
3319627 | Windsor | May 1967 | A |
3357424 | Schreiber | Dec 1967 | A |
3357427 | Wittke et al. | Dec 1967 | A |
3357428 | Carlson | Dec 1967 | A |
3400714 | Sheridan | Sep 1968 | A |
3437274 | Apri | Apr 1969 | A |
3460533 | Riú Plá | Aug 1969 | A |
3493703 | Finan | Feb 1970 | A |
3513844 | Smith | May 1970 | A |
3610247 | Jackson | Oct 1971 | A |
3625206 | Charnley | Dec 1971 | A |
3625207 | Agnew | Dec 1971 | A |
3631438 | Lewin | Dec 1971 | A |
3643660 | Hudson et al. | Feb 1972 | A |
3657740 | Cialone | Apr 1972 | A |
3682171 | Dali et al. | Aug 1972 | A |
3721233 | Montgomery et al. | Mar 1973 | A |
3726275 | Jackson et al. | Apr 1973 | A |
3727606 | Sielaff | Apr 1973 | A |
3733008 | Churchill et al. | May 1973 | A |
3741208 | Jonsson et al. | Jun 1973 | A |
3754552 | King | Aug 1973 | A |
3794026 | Jacobs | Feb 1974 | A |
3794072 | Diedrich et al. | Feb 1974 | A |
3802431 | Farr | Apr 1974 | A |
3831596 | Cavallo | Aug 1974 | A |
3881480 | Lafourcade | May 1975 | A |
3896800 | Cibulka | Jul 1975 | A |
3903881 | Weigl | Sep 1975 | A |
3905362 | Eyrick et al. | Sep 1975 | A |
3949749 | Stewart | Apr 1976 | A |
3951143 | Kitrilakis et al. | Apr 1976 | A |
3961627 | Ernst et al. | Jun 1976 | A |
3972327 | Ernst et al. | Aug 1976 | A |
3985131 | Buck et al. | Oct 1976 | A |
3991790 | Russell | Nov 1976 | A |
4003377 | Dahl | Jan 1977 | A |
4036253 | Fegan et al. | Jul 1977 | A |
4054133 | Myers | Oct 1977 | A |
4067328 | Manley | Jan 1978 | A |
4106505 | Salter et al. | Aug 1978 | A |
4146885 | Lawson, Jr. | Mar 1979 | A |
4206754 | Cox et al. | Jun 1980 | A |
4211086 | Leonard et al. | Jul 1980 | A |
4216769 | Grimes | Aug 1980 | A |
4231363 | Grimes | Nov 1980 | A |
4231365 | Scarberry | Nov 1980 | A |
4256101 | Ellestad | Mar 1981 | A |
4261355 | Glazener | Apr 1981 | A |
4263908 | Mizerak | Apr 1981 | A |
4265237 | Schwanbom et al. | May 1981 | A |
4266540 | Panzik et al. | May 1981 | A |
4273124 | Zimmerman | Jun 1981 | A |
4274162 | Joy et al. | Jun 1981 | A |
4278082 | Blackmer | Jul 1981 | A |
4282869 | Zidulka | Aug 1981 | A |
4306567 | Krasner | Dec 1981 | A |
4323064 | Hoenig et al. | Apr 1982 | A |
4354488 | Bartos | Oct 1982 | A |
4365636 | Barker | Dec 1982 | A |
4367735 | Dali | Jan 1983 | A |
4377162 | Stayer | Mar 1983 | A |
4393869 | Boyarsky et al. | Jul 1983 | A |
4406283 | Bir | Sep 1983 | A |
4411267 | Heyman | Oct 1983 | A |
4413514 | Bowman | Nov 1983 | A |
4421113 | Gedeon et al. | Dec 1983 | A |
4422456 | Tiep | Dec 1983 | A |
4449523 | Szachowicz et al. | May 1984 | A |
4454880 | Muto et al. | Jun 1984 | A |
4462398 | Durkan et al. | Jul 1984 | A |
4469097 | Kelman | Sep 1984 | A |
4481944 | Bunnell | Nov 1984 | A |
4488548 | Agdanowski | Dec 1984 | A |
4495946 | Lemer | Jan 1985 | A |
4506666 | Durkan | Mar 1985 | A |
4506667 | Ansite | Mar 1985 | A |
4519387 | Durkan et al. | May 1985 | A |
4520812 | Freitag et al. | Jun 1985 | A |
4527557 | DeVries et al. | Jul 1985 | A |
4535766 | Baum | Aug 1985 | A |
4537188 | Phuc | Aug 1985 | A |
4539984 | Kiszel et al. | Sep 1985 | A |
4548590 | Green | Oct 1985 | A |
4559940 | McGinnis | Dec 1985 | A |
4570631 | Durkan | Feb 1986 | A |
4571741 | Guillaumot | Feb 1986 | A |
4584996 | Blum | Apr 1986 | A |
4590951 | O'Connor | May 1986 | A |
4592349 | Bird | Jun 1986 | A |
4621632 | Bartels et al. | Nov 1986 | A |
4630606 | Weerda et al. | Dec 1986 | A |
4630614 | Atlas | Dec 1986 | A |
4644947 | Whitwam et al. | Feb 1987 | A |
4648395 | Sato et al. | Mar 1987 | A |
4648398 | Agdanowski et al. | Mar 1987 | A |
4658832 | Brugnoli | Apr 1987 | A |
4660555 | Payton | Apr 1987 | A |
4682591 | Jones | Jul 1987 | A |
4684398 | Dunbar et al. | Aug 1987 | A |
4686974 | Sato et al. | Aug 1987 | A |
4686975 | Naimon et al. | Aug 1987 | A |
4688961 | Shioda et al. | Aug 1987 | A |
4705034 | Perkins | Nov 1987 | A |
4744356 | Greenwood | May 1988 | A |
4747403 | Gluck et al. | May 1988 | A |
4753233 | Grimes | Jun 1988 | A |
4773411 | Downs | Sep 1988 | A |
4776333 | Miyamae | Oct 1988 | A |
4782832 | Trimble et al. | Nov 1988 | A |
4784130 | Kenyon et al. | Nov 1988 | A |
4803981 | Vickery | Feb 1989 | A |
4807616 | Adahan | Feb 1989 | A |
4807617 | Nesti | Feb 1989 | A |
4808160 | Timmons et al. | Feb 1989 | A |
4813431 | Brown | Mar 1989 | A |
4817897 | Kreusel | Apr 1989 | A |
4818320 | Weichselbaum | Apr 1989 | A |
4823788 | Smith et al. | Apr 1989 | A |
4825859 | Lambert | May 1989 | A |
4827922 | Champain et al. | May 1989 | A |
4832014 | Perkins | May 1989 | A |
4838255 | Lambert | Jun 1989 | A |
4841953 | Dodrill | Jun 1989 | A |
4848333 | Waite | Jul 1989 | A |
4850350 | Jackson | Jul 1989 | A |
4865586 | Hedberg | Sep 1989 | A |
4869718 | Brader | Sep 1989 | A |
4899740 | Napolitano | Feb 1990 | A |
4905688 | Vicenzi et al. | Mar 1990 | A |
4915103 | Visveshwara et al. | Apr 1990 | A |
4915105 | Lee | Apr 1990 | A |
4919128 | Kopala et al. | Apr 1990 | A |
4919132 | Miser | Apr 1990 | A |
4938212 | Snook et al. | Jul 1990 | A |
4944310 | Sullivan | Jul 1990 | A |
4967743 | Lambert | Nov 1990 | A |
4971049 | Rotariu et al. | Nov 1990 | A |
4982735 | Yagata et al. | Jan 1991 | A |
4986269 | Hakkinen | Jan 1991 | A |
4989599 | Carter | Feb 1991 | A |
4990157 | Roberts et al. | Feb 1991 | A |
5000175 | Pue | Mar 1991 | A |
5002050 | McGinnis | Mar 1991 | A |
5005570 | Perkins | Apr 1991 | A |
5018519 | Brown | May 1991 | A |
5022394 | Chmielinski | Jun 1991 | A |
5024219 | Dietz | Jun 1991 | A |
5025805 | Nutter | Jun 1991 | A |
5038771 | Dietz | Aug 1991 | A |
5042478 | Kopala et al. | Aug 1991 | A |
5046491 | Derrick | Sep 1991 | A |
5046492 | Stackhouse et al. | Sep 1991 | A |
5048515 | Sanso | Sep 1991 | A |
5048516 | Soderberg | Sep 1991 | A |
5052400 | Dietz | Oct 1991 | A |
5054484 | Hebeler, Jr. | Oct 1991 | A |
5058580 | Hazard | Oct 1991 | A |
5074299 | Dietz | Dec 1991 | A |
5076267 | Pasternack | Dec 1991 | A |
5090408 | Spofford et al. | Feb 1992 | A |
5097827 | Izumi | Mar 1992 | A |
5099836 | Rowland et al. | Mar 1992 | A |
5099837 | Russel, Sr. et al. | Mar 1992 | A |
5101820 | Christopher | Apr 1992 | A |
5103815 | Siegel et al. | Apr 1992 | A |
5105807 | Kahn et al. | Apr 1992 | A |
5107830 | Younes | Apr 1992 | A |
5107831 | Halpern et al. | Apr 1992 | A |
5113857 | Dickerman et al. | May 1992 | A |
5117818 | Palfy | Jun 1992 | A |
5117819 | Servidio et al. | Jun 1992 | A |
5127400 | DeVries et al. | Jul 1992 | A |
5134995 | Gruenke et al. | Aug 1992 | A |
5134996 | Bell | Aug 1992 | A |
5140045 | Askanazi et al. | Aug 1992 | A |
5148802 | Sanders et al. | Sep 1992 | A |
5161525 | Kimm et al. | Nov 1992 | A |
5165397 | Arp | Nov 1992 | A |
5181509 | Spofford et al. | Jan 1993 | A |
5184610 | Marten et al. | Feb 1993 | A |
5186167 | Kolobow | Feb 1993 | A |
5193532 | Moa et al. | Mar 1993 | A |
5193533 | Body et al. | Mar 1993 | A |
5199424 | Sullivan et al. | Apr 1993 | A |
5211170 | Press | May 1993 | A |
5217008 | Lindholm | Jun 1993 | A |
5233978 | Callaway | Aug 1993 | A |
5233979 | Strickland | Aug 1993 | A |
5239994 | Atkins | Aug 1993 | A |
5239995 | Estes et al. | Aug 1993 | A |
5243972 | Huang | Sep 1993 | A |
5245995 | Sullivan et al. | Sep 1993 | A |
5255675 | Kolobow | Oct 1993 | A |
5258027 | Berghaus | Nov 1993 | A |
5269296 | Landis | Dec 1993 | A |
5271388 | Whitwam et al. | Dec 1993 | A |
5271391 | Graves | Dec 1993 | A |
5275159 | Griebel | Jan 1994 | A |
5279288 | Christopher | Jan 1994 | A |
5287852 | Arkinstall | Feb 1994 | A |
5303698 | Tobia et al. | Apr 1994 | A |
5303700 | Weismann et al. | Apr 1994 | A |
5318019 | Celaya | Jun 1994 | A |
5331995 | Westfall et al. | Jul 1994 | A |
5335656 | Bowe et al. | Aug 1994 | A |
5339809 | Beck, Jr. et al. | Aug 1994 | A |
5349946 | McComb | Sep 1994 | A |
5368017 | Sorenson et al. | Nov 1994 | A |
5370112 | Perkins | Dec 1994 | A |
5373842 | Olsson et al. | Dec 1994 | A |
5375593 | Press | Dec 1994 | A |
5388575 | Taube | Feb 1995 | A |
5394870 | Johansson | Mar 1995 | A |
5398676 | Press et al. | Mar 1995 | A |
5398682 | Lynn | Mar 1995 | A |
5400778 | Jonson et al. | Mar 1995 | A |
5419314 | Christopher | May 1995 | A |
5438979 | Johnson, Jr. et al. | Aug 1995 | A |
5438980 | Phillips | Aug 1995 | A |
5443075 | Holscher | Aug 1995 | A |
5460174 | Chang | Oct 1995 | A |
5460613 | Ulrich et al. | Oct 1995 | A |
5474062 | DeVires et al. | Dec 1995 | A |
5477852 | Landis et al. | Dec 1995 | A |
5485850 | Dietz | Jan 1996 | A |
5490502 | Rapoport et al. | Feb 1996 | A |
5503146 | Froehlich et al. | Apr 1996 | A |
5503497 | Dudley et al. | Apr 1996 | A |
5507282 | Younes | Apr 1996 | A |
5509409 | Weatherholt | Apr 1996 | A |
5513628 | Coles et al. | May 1996 | A |
5513631 | McWilliams | May 1996 | A |
5513635 | Bedi | May 1996 | A |
5522382 | Sullivan et al. | Jun 1996 | A |
5526806 | Sansoni | Jun 1996 | A |
5529060 | Salmon et al. | Jun 1996 | A |
5533506 | Wood | Jul 1996 | A |
5535738 | Estes et al. | Jul 1996 | A |
5537997 | Mechlenburg et al. | Jul 1996 | A |
5538002 | Boussignac et al. | Jul 1996 | A |
5542415 | Brody | Aug 1996 | A |
5546935 | Champeau | Aug 1996 | A |
5549106 | Gruenke et al. | Aug 1996 | A |
5551419 | Froehlich et al. | Sep 1996 | A |
5558086 | Smith et al. | Sep 1996 | A |
5564416 | Jones | Oct 1996 | A |
5575282 | Knoch et al. | Nov 1996 | A |
5582164 | Sanders | Dec 1996 | A |
5593143 | Ferrarin | Jan 1997 | A |
5595174 | Gwaltney | Jan 1997 | A |
5598837 | Sirianne, Jr. et al. | Feb 1997 | A |
5598840 | Iund et al. | Feb 1997 | A |
5603315 | Sasso, Jr. | Feb 1997 | A |
5605148 | Jones | Feb 1997 | A |
5626131 | Chua et al. | May 1997 | A |
5632269 | Zdrojkowski | May 1997 | A |
5636630 | Miller et al. | Jun 1997 | A |
5645053 | Remmers et al. | Jul 1997 | A |
5645054 | Cotner et al. | Jul 1997 | A |
5647351 | Weismann et al. | Jul 1997 | A |
5669377 | Fenn | Sep 1997 | A |
5669380 | Garry et al. | Sep 1997 | A |
5676132 | Tillotson et al. | Oct 1997 | A |
5676135 | McClean | Oct 1997 | A |
5682878 | Ogden | Nov 1997 | A |
5682881 | Winthrop et al. | Nov 1997 | A |
5687713 | Bahr et al. | Nov 1997 | A |
5687714 | Kolobow et al. | Nov 1997 | A |
5687715 | Landis et al. | Nov 1997 | A |
5690097 | Howard et al. | Nov 1997 | A |
5692497 | Schnitzer et al. | Dec 1997 | A |
5697364 | Chua et al. | Dec 1997 | A |
5704345 | Berthon-Jones | Jan 1998 | A |
5711296 | Kolobow | Jan 1998 | A |
5715812 | Deighan et al. | Feb 1998 | A |
5715815 | Lorenzen et al. | Feb 1998 | A |
5720278 | Lachmann et al. | Feb 1998 | A |
5735268 | Chua et al. | Apr 1998 | A |
5735272 | Dillon et al. | Apr 1998 | A |
5740796 | Skog | Apr 1998 | A |
5752511 | Simmons et al. | May 1998 | A |
5762638 | Shikani et al. | Jun 1998 | A |
5791337 | Coles et al. | Aug 1998 | A |
5819723 | Joseph | Oct 1998 | A |
5826579 | Remmers et al. | Oct 1998 | A |
5845636 | Gruenke et al. | Dec 1998 | A |
5865173 | Froehlich | Feb 1999 | A |
5865174 | Kloeppel | Feb 1999 | A |
5881723 | Wallace et al. | Mar 1999 | A |
5904648 | Arndt et al. | May 1999 | A |
5906204 | Beran et al. | May 1999 | A |
5911756 | Debry | Jun 1999 | A |
5915379 | Wallace et al. | Jun 1999 | A |
5915381 | Nord | Jun 1999 | A |
5918597 | Jones et al. | Jul 1999 | A |
5921238 | Bourdon | Jul 1999 | A |
5921942 | Remmers et al. | Jul 1999 | A |
5921952 | Desmond, III et al. | Jul 1999 | A |
5927276 | Rodriguez | Jul 1999 | A |
5928189 | Phillips et al. | Jul 1999 | A |
5931160 | Gilmore et al. | Aug 1999 | A |
5931162 | Christian | Aug 1999 | A |
5937853 | Strom | Aug 1999 | A |
5937855 | Zdrojkowski et al. | Aug 1999 | A |
5938118 | Cooper | Aug 1999 | A |
5954050 | Christopher | Sep 1999 | A |
5957136 | Magidson et al. | Sep 1999 | A |
5964223 | Baran | Oct 1999 | A |
5975077 | Hofstetter et al. | Nov 1999 | A |
5975081 | Hood et al. | Nov 1999 | A |
5979440 | Honkonen et al. | Nov 1999 | A |
5989193 | Sullivan | Nov 1999 | A |
6000396 | Melker et al. | Dec 1999 | A |
6019101 | Cotner et al. | Feb 2000 | A |
6039696 | Bell | Mar 2000 | A |
6050260 | Daniell et al. | Apr 2000 | A |
6076519 | Johnson | Jun 2000 | A |
6085747 | Axe et al. | Jul 2000 | A |
6091973 | Colla et al. | Jul 2000 | A |
6093169 | Cardoso | Jul 2000 | A |
6105575 | Estes et al. | Aug 2000 | A |
6109264 | Sauer | Aug 2000 | A |
6112746 | Kwok et al. | Sep 2000 | A |
6119694 | Correa et al. | Sep 2000 | A |
6120460 | Abreu | Sep 2000 | A |
6123668 | Abreu | Sep 2000 | A |
6131571 | Lampotang et al. | Oct 2000 | A |
6135970 | Kadhiresan et al. | Oct 2000 | A |
6152132 | Psaros | Nov 2000 | A |
6152134 | Webber et al. | Nov 2000 | A |
6158432 | Biondi et al. | Dec 2000 | A |
6192883 | Miller, Jr. | Feb 2001 | B1 |
6203502 | Hilgendorf et al. | Mar 2001 | B1 |
6213119 | Brydon et al. | Apr 2001 | B1 |
6213955 | Karakasoglu et al. | Apr 2001 | B1 |
6220244 | McLaughlin | Apr 2001 | B1 |
6224560 | Gazula et al. | May 2001 | B1 |
6227200 | Crump et al. | May 2001 | B1 |
6247470 | Ketchedjian | Jun 2001 | B1 |
6269811 | Duff et al. | Aug 2001 | B1 |
6269812 | Wallace et al. | Aug 2001 | B1 |
6273859 | Remmers et al. | Aug 2001 | B1 |
6286508 | Remmers et al. | Sep 2001 | B1 |
D449376 | McDonald et al. | Oct 2001 | S |
D449883 | McDonald et al. | Oct 2001 | S |
6298850 | Argraves | Oct 2001 | B1 |
6305374 | Zdrojkowski et al. | Oct 2001 | B1 |
6314957 | Boissin et al. | Nov 2001 | B1 |
6315739 | Merilainen et al. | Nov 2001 | B1 |
D451598 | McDonald et al. | Dec 2001 | S |
6328038 | Kessler et al. | Dec 2001 | B1 |
6328753 | Zammit | Dec 2001 | B1 |
6332463 | Farrugia et al. | Dec 2001 | B1 |
6345619 | Finn | Feb 2002 | B1 |
6357438 | Hansen | Mar 2002 | B1 |
6357440 | Hansen et al. | Mar 2002 | B1 |
6360741 | Truschel | Mar 2002 | B2 |
6360745 | Wallace et al. | Mar 2002 | B1 |
6363933 | Berthon-Jones | Apr 2002 | B1 |
6367474 | Berthon-Jones et al. | Apr 2002 | B1 |
6369838 | Wallace et al. | Apr 2002 | B1 |
6371114 | Schmidt et al. | Apr 2002 | B1 |
6378520 | Davenport | Apr 2002 | B1 |
6390091 | Banner et al. | May 2002 | B1 |
6394088 | Frye et al. | May 2002 | B1 |
6398739 | Sullivan et al. | Jun 2002 | B1 |
6418928 | Bordewick et al. | Jul 2002 | B1 |
6422240 | Levitsky et al. | Jul 2002 | B1 |
6423001 | Abreu | Jul 2002 | B1 |
6427690 | McCombs et al. | Aug 2002 | B1 |
6431172 | Bordewick | Aug 2002 | B1 |
6439228 | Hete et al. | Aug 2002 | B1 |
6439229 | Du et al. | Aug 2002 | B1 |
6439234 | Curti et al. | Aug 2002 | B1 |
6439235 | Larquet et al. | Aug 2002 | B1 |
6450164 | Banner et al. | Sep 2002 | B1 |
6450166 | McDonald et al. | Sep 2002 | B1 |
6457472 | Schwartz et al. | Oct 2002 | B1 |
6467477 | Frank et al. | Oct 2002 | B1 |
6478026 | Wood | Nov 2002 | B1 |
6494202 | Farmer | Dec 2002 | B2 |
6494206 | Bergamaschi et al. | Dec 2002 | B1 |
6505623 | Hansen | Jan 2003 | B1 |
6505624 | Campbell, Sr. | Jan 2003 | B1 |
6516801 | Boussignac | Feb 2003 | B2 |
6520176 | Dubois et al. | Feb 2003 | B1 |
6520183 | Amar | Feb 2003 | B2 |
6530373 | Patron et al. | Mar 2003 | B1 |
6532958 | Buan et al. | Mar 2003 | B1 |
6532960 | Yurko | Mar 2003 | B1 |
6536432 | Truschel | Mar 2003 | B2 |
6536436 | McGlothen | Mar 2003 | B1 |
6550478 | Remmers et al. | Apr 2003 | B2 |
6553992 | Berthon-Jones et al. | Apr 2003 | B1 |
6561188 | Ellis | May 2003 | B1 |
6561193 | Noble | May 2003 | B1 |
6564797 | Mechlenburg et al. | May 2003 | B1 |
6564800 | Olivares | May 2003 | B1 |
6568391 | Tatarek et al. | May 2003 | B1 |
6571794 | Hansen | Jun 2003 | B1 |
6571796 | Banner et al. | Jun 2003 | B2 |
6571798 | Thornton | Jun 2003 | B1 |
6575159 | Frye et al. | Jun 2003 | B1 |
6575944 | McNary et al. | Jun 2003 | B1 |
6584973 | Biondi et al. | Jul 2003 | B1 |
6588422 | Berthon-Jones et al. | Jul 2003 | B1 |
6588423 | Sinderby | Jul 2003 | B1 |
6591834 | Colla et al. | Jul 2003 | B1 |
6591835 | Blanch | Jul 2003 | B1 |
6595207 | McDonald et al. | Jul 2003 | B1 |
6595215 | Wood | Jul 2003 | B2 |
6609517 | Estes et al. | Aug 2003 | B1 |
6622726 | Du | Sep 2003 | B1 |
6626174 | Genger et al. | Sep 2003 | B1 |
6626175 | Jafari et al. | Sep 2003 | B2 |
6629525 | Hill et al. | Oct 2003 | B2 |
6629527 | Estes et al. | Oct 2003 | B1 |
6629529 | Arnott | Oct 2003 | B2 |
6631919 | West et al. | Oct 2003 | B1 |
6634356 | O'Dea et al. | Oct 2003 | B1 |
6635021 | Sullivan et al. | Oct 2003 | B1 |
6640806 | Yurko | Nov 2003 | B2 |
6644305 | MacRae et al. | Nov 2003 | B2 |
6644311 | Truitt et al. | Nov 2003 | B1 |
6644315 | Ziaee | Nov 2003 | B2 |
6651653 | Honkonen et al. | Nov 2003 | B1 |
6651656 | Demers et al. | Nov 2003 | B2 |
6651658 | Hill et al. | Nov 2003 | B1 |
6655382 | Kolobow | Dec 2003 | B1 |
6655385 | Curti et al. | Dec 2003 | B1 |
6666208 | Schumacher et al. | Dec 2003 | B1 |
6668828 | Figley et al. | Dec 2003 | B1 |
6668829 | Biondi et al. | Dec 2003 | B2 |
6669712 | Cardoso | Dec 2003 | B1 |
6675796 | McDonald | Jan 2004 | B2 |
6675801 | Wallace et al. | Jan 2004 | B2 |
6679265 | Strickland et al. | Jan 2004 | B2 |
6681764 | Honkonen et al. | Jan 2004 | B1 |
6684883 | Burns | Feb 2004 | B1 |
6691702 | Appel et al. | Feb 2004 | B2 |
6691707 | Gunaratnam et al. | Feb 2004 | B1 |
6694973 | Dunhao et al. | Feb 2004 | B1 |
6694978 | Bennarsten | Feb 2004 | B1 |
6698423 | Honkonen et al. | Mar 2004 | B1 |
6705314 | O'Dea | Mar 2004 | B1 |
6705315 | Sullivan et al. | Mar 2004 | B2 |
6722360 | Doshi | Apr 2004 | B2 |
6722362 | Hete et al. | Apr 2004 | B2 |
6742517 | Frye et al. | Jun 2004 | B1 |
6745768 | Colla et al. | Jun 2004 | B2 |
6752150 | Remmers et al. | Jun 2004 | B1 |
6752151 | Hill | Jun 2004 | B2 |
6752152 | Gale et al. | Jun 2004 | B2 |
6755193 | Berthon-Jones et al. | Jun 2004 | B2 |
6758217 | Younes | Jul 2004 | B1 |
6761172 | Boussignac et al. | Jul 2004 | B2 |
6763832 | Kirsch et al. | Jul 2004 | B1 |
6769432 | Keifer | Aug 2004 | B1 |
6776162 | Wood | Aug 2004 | B2 |
6776163 | Dougill et al. | Aug 2004 | B2 |
6789539 | Martinez | Sep 2004 | B2 |
6796305 | Banner et al. | Sep 2004 | B1 |
6799575 | Carter | Oct 2004 | B1 |
6805126 | Dutkiewicz | Oct 2004 | B2 |
6807966 | Wright | Oct 2004 | B2 |
6807967 | Wood | Oct 2004 | B2 |
6810876 | Berthon-Jones | Nov 2004 | B2 |
6814073 | Wickham | Nov 2004 | B2 |
6814077 | Eistert | Nov 2004 | B1 |
6823866 | Jafari et al. | Nov 2004 | B2 |
6827340 | Austin et al. | Dec 2004 | B2 |
6837238 | McDonald | Jan 2005 | B2 |
6840240 | Berthon-Jones et al. | Jan 2005 | B1 |
6843247 | Frye et al. | Jan 2005 | B2 |
6848446 | Noble | Feb 2005 | B2 |
6854462 | Berthon-Jones et al. | Feb 2005 | B2 |
6863069 | Wood | Mar 2005 | B2 |
6866041 | Hardy, Jr. et al. | Mar 2005 | B2 |
6877511 | Devries et al. | Apr 2005 | B2 |
6880556 | Uchiyama et al. | Apr 2005 | B2 |
6910480 | Berthon-Jones | Jun 2005 | B1 |
6910482 | Bliss et al. | Jun 2005 | B2 |
6910510 | Gale et al. | Jun 2005 | B2 |
6913601 | St. Goar et al. | Jul 2005 | B2 |
6915803 | Berthon-Jones et al. | Jul 2005 | B2 |
6920875 | Hill et al. | Jul 2005 | B1 |
6920877 | Remmers et al. | Jul 2005 | B2 |
6920878 | Sinderby et al. | Jul 2005 | B2 |
6932084 | Estes et al. | Aug 2005 | B2 |
6938619 | Hickle | Sep 2005 | B1 |
6938620 | Payne, Jr. | Sep 2005 | B2 |
6941950 | Wilson et al. | Sep 2005 | B2 |
6948497 | Zdrojkowski et al. | Sep 2005 | B2 |
6951217 | Berthon-Jones | Oct 2005 | B2 |
6971382 | Corso | Dec 2005 | B1 |
6986353 | Wright | Jan 2006 | B2 |
6994089 | Wood | Feb 2006 | B2 |
6997177 | Wood | Feb 2006 | B2 |
6997881 | Green et al. | Feb 2006 | B2 |
7000612 | Jafari et al. | Feb 2006 | B2 |
7004170 | Gillstrom | Feb 2006 | B1 |
7007692 | Aylsworth et al. | Mar 2006 | B2 |
7011091 | Hill et al. | Mar 2006 | B2 |
7013892 | Estes et al. | Mar 2006 | B2 |
7013898 | Rashad et al. | Mar 2006 | B2 |
7017574 | Biondi et al. | Mar 2006 | B2 |
7017575 | Yagi et al. | Mar 2006 | B2 |
7024945 | Wallace | Apr 2006 | B2 |
7036504 | Wallace et al. | May 2006 | B2 |
7044129 | Truschel et al. | May 2006 | B1 |
7047969 | Noble | May 2006 | B2 |
7047974 | Strickland et al. | May 2006 | B2 |
7051735 | Mechlenburg et al. | May 2006 | B2 |
7055522 | Berthon-Jones | Jun 2006 | B2 |
7059328 | Wood | Jun 2006 | B2 |
7066173 | Banner et al. | Jun 2006 | B2 |
7066178 | Gunaratnam et al. | Jun 2006 | B2 |
7077132 | Berthon-Jones | Jul 2006 | B2 |
7077133 | Yagi et al. | Jul 2006 | B2 |
7080645 | Genger et al. | Jul 2006 | B2 |
7080646 | Wiesmann et al. | Jul 2006 | B2 |
7100607 | Zdrojkowski et al. | Sep 2006 | B2 |
7100609 | Berthon-Jones et al. | Sep 2006 | B2 |
7117438 | Wallace et al. | Oct 2006 | B2 |
7121277 | Strom | Oct 2006 | B2 |
7128578 | Lampotang et al. | Oct 2006 | B2 |
7152598 | Morris et al. | Dec 2006 | B2 |
7152604 | Hickle et al. | Dec 2006 | B2 |
7156090 | Nomori | Jan 2007 | B2 |
7156097 | Cardoso | Jan 2007 | B2 |
7162296 | Leonhardt et al. | Jan 2007 | B2 |
7168429 | Matthews et al. | Jan 2007 | B2 |
7188621 | Devries et al. | Mar 2007 | B2 |
7188624 | Wood | Mar 2007 | B2 |
7195016 | Loyd et al. | Mar 2007 | B2 |
7195018 | Goldstein | Mar 2007 | B1 |
7201169 | Wilkie et al. | Apr 2007 | B2 |
7201269 | Buscher et al. | Apr 2007 | B2 |
D542912 | Gunaratnam et al. | May 2007 | S |
7222623 | DeVries et al. | May 2007 | B2 |
7225811 | Ruiz et al. | Jun 2007 | B2 |
7234465 | Wood | Jun 2007 | B2 |
7237205 | Sarel | Jun 2007 | B2 |
7246620 | Conroy, Jr. | Jul 2007 | B2 |
D549323 | Kwok et al. | Aug 2007 | S |
7255103 | Bassin | Aug 2007 | B2 |
7255107 | Gomez | Aug 2007 | B1 |
7267122 | Hill | Sep 2007 | B2 |
7267123 | Aylsworth et al. | Sep 2007 | B2 |
7270126 | Wallace et al. | Sep 2007 | B2 |
7270128 | Berthon-Jones et al. | Sep 2007 | B2 |
7296569 | Frye et al. | Nov 2007 | B2 |
7296573 | Estes et al. | Nov 2007 | B2 |
D557802 | Miceli, Jr. et al. | Dec 2007 | S |
7302950 | Berthon-Jones et al. | Dec 2007 | B2 |
7305987 | Scholler et al. | Dec 2007 | B2 |
7318437 | Gunaratnam et al. | Jan 2008 | B2 |
7320321 | Pranger et al. | Jan 2008 | B2 |
7328703 | Tiep | Feb 2008 | B1 |
7353826 | Sleeper et al. | Apr 2008 | B2 |
7367337 | Berthon-Jones et al. | May 2008 | B2 |
7370652 | Matula, Jr. et al. | May 2008 | B2 |
7373939 | DuBois et al. | May 2008 | B1 |
7406966 | Wondka | Aug 2008 | B2 |
7418965 | Fukunaga et al. | Sep 2008 | B2 |
7422015 | Delisle et al. | Sep 2008 | B2 |
7431035 | Mizuta et al. | Oct 2008 | B2 |
7451762 | Chua et al. | Nov 2008 | B2 |
7455717 | Sprinkle | Nov 2008 | B2 |
7461656 | Gunaratnam et al. | Dec 2008 | B2 |
7468040 | Hartley et al. | Dec 2008 | B2 |
7469697 | Lee et al. | Dec 2008 | B2 |
7472702 | Beck et al. | Jan 2009 | B2 |
7478641 | Rousselet | Jan 2009 | B2 |
7481219 | Lewis et al. | Jan 2009 | B2 |
7481221 | Kullik et al. | Jan 2009 | B2 |
7487774 | Acker | Feb 2009 | B2 |
7487778 | Freitag | Feb 2009 | B2 |
7490605 | Frye et al. | Feb 2009 | B2 |
D588258 | Judson et al. | Mar 2009 | S |
D589139 | Guney et al. | Mar 2009 | S |
7500482 | Biederman | Mar 2009 | B2 |
7509957 | Duquette et al. | Mar 2009 | B2 |
D591419 | Chandran et al. | Apr 2009 | S |
7533670 | Freitag | May 2009 | B1 |
7556038 | Kirby et al. | Jul 2009 | B2 |
7559327 | Hernandez | Jul 2009 | B2 |
7562657 | Blanch et al. | Jul 2009 | B2 |
7562659 | Matarasso | Jul 2009 | B2 |
7578294 | Pierro et al. | Aug 2009 | B2 |
7588033 | Wondka | Sep 2009 | B2 |
7591265 | Lee et al. | Sep 2009 | B2 |
7631642 | Freitag et al. | Dec 2009 | B2 |
7640934 | Zollinger et al. | Jan 2010 | B2 |
7658189 | Davidson et al. | Feb 2010 | B2 |
D614288 | Judson et al. | Apr 2010 | S |
7721733 | Hughes et al. | May 2010 | B2 |
7721736 | Urias et al. | May 2010 | B2 |
7740013 | Ishizaki et al. | Jun 2010 | B2 |
7743770 | Curti et al. | Jun 2010 | B2 |
7762253 | Acker et al. | Jul 2010 | B2 |
7766009 | Frye et al. | Aug 2010 | B2 |
7787946 | Stahmann et al. | Aug 2010 | B2 |
7814906 | Moretti | Oct 2010 | B2 |
7819120 | Taylor et al. | Oct 2010 | B2 |
D626646 | Lubke et al. | Nov 2010 | S |
D627059 | Wood et al. | Nov 2010 | S |
7832400 | Curti et al. | Nov 2010 | B2 |
7837761 | Bliss et al. | Nov 2010 | B2 |
7841343 | Deane et al. | Nov 2010 | B2 |
7845350 | Kayyali et al. | Dec 2010 | B1 |
7849854 | DeVries et al. | Dec 2010 | B2 |
7856982 | Matula, Jr. et al. | Dec 2010 | B2 |
7866318 | Bassin | Jan 2011 | B2 |
7874290 | Chalvignac | Jan 2011 | B2 |
7874291 | Ging et al. | Jan 2011 | B2 |
7874293 | Gunaratnam et al. | Jan 2011 | B2 |
7878980 | Ricciardelli | Feb 2011 | B2 |
7882834 | Gradon et al. | Feb 2011 | B2 |
7886740 | Thomas et al. | Feb 2011 | B2 |
7891353 | Chalvignac | Feb 2011 | B2 |
7891357 | Carron et al. | Feb 2011 | B2 |
7896958 | Sermet et al. | Mar 2011 | B2 |
7900627 | Aylsworth et al. | Mar 2011 | B2 |
7900628 | Matula, Jr. et al. | Mar 2011 | B2 |
7900635 | Gunaratnam et al. | Mar 2011 | B2 |
7901361 | Rapoport et al. | Mar 2011 | B2 |
7905231 | Chalvignac | Mar 2011 | B2 |
7913691 | Farrugia | Mar 2011 | B2 |
7914459 | Green et al. | Mar 2011 | B2 |
7918226 | Acker et al. | Apr 2011 | B2 |
7926486 | Childers | Apr 2011 | B2 |
7926487 | Drew et al. | Apr 2011 | B2 |
7931023 | Berthon-Jones et al. | Apr 2011 | B2 |
7934499 | Berthon-Jones | May 2011 | B2 |
7938114 | Matthews et al. | May 2011 | B2 |
7942150 | Guney et al. | May 2011 | B2 |
7942380 | Bertinetti et al. | May 2011 | B2 |
7958892 | Kwok et al. | Jun 2011 | B2 |
7975694 | Ho | Jul 2011 | B2 |
7980245 | Rice et al. | Jul 2011 | B2 |
7987847 | Wickham et al. | Aug 2011 | B2 |
7987850 | Zollinger et al. | Aug 2011 | B2 |
7987851 | Blom et al. | Aug 2011 | B2 |
7992557 | Nadjafizadeh et al. | Aug 2011 | B2 |
7997270 | Meier | Aug 2011 | B2 |
7997271 | Hickle et al. | Aug 2011 | B2 |
7997272 | Isaza | Aug 2011 | B2 |
8001967 | Wallace et al. | Aug 2011 | B2 |
D645557 | Scheiner et al. | Sep 2011 | S |
8011365 | Douglas et al. | Sep 2011 | B2 |
8011366 | Knepper | Sep 2011 | B2 |
8015971 | Kwok | Sep 2011 | B2 |
8015974 | Christopher et al. | Sep 2011 | B2 |
8020558 | Christopher et al. | Sep 2011 | B2 |
8025052 | Matthews et al. | Sep 2011 | B2 |
RE42843 | Strickland et al. | Oct 2011 | E |
8042535 | Kenyon et al. | Oct 2011 | B2 |
8042537 | Mechlenburg et al. | Oct 2011 | B2 |
8042539 | Chandran et al. | Oct 2011 | B2 |
8042546 | Gunaratnam et al. | Oct 2011 | B2 |
8061354 | Schneider et al. | Nov 2011 | B2 |
8066004 | Morris et al. | Nov 2011 | B2 |
8240309 | Doshi et al. | Aug 2012 | B2 |
9132250 | Allum | Sep 2015 | B2 |
20010035185 | Christopher | Nov 2001 | A1 |
20010035186 | Hill | Nov 2001 | A1 |
20010042548 | Boussignac | Nov 2001 | A1 |
20020014241 | Gradon et al. | Feb 2002 | A1 |
20020017300 | Hickle | Feb 2002 | A1 |
20020020930 | Austin et al. | Feb 2002 | A1 |
20020026941 | Biondi et al. | Mar 2002 | A1 |
20020043264 | Wickham | Apr 2002 | A1 |
20020046751 | MacRae et al. | Apr 2002 | A1 |
20020046755 | De Voss | Apr 2002 | A1 |
20020046756 | Laizzo et al. | Apr 2002 | A1 |
20020053346 | Curti et al. | May 2002 | A1 |
20020055685 | Levitsky et al. | May 2002 | A1 |
20020059935 | Wood | May 2002 | A1 |
20020066452 | Kessler et al. | Jun 2002 | A1 |
20020078957 | Remmers et al. | Jun 2002 | A1 |
20020092527 | Wood | Jul 2002 | A1 |
20020112730 | Dutkiewicz | Aug 2002 | A1 |
20020153010 | Rozenberg et al. | Oct 2002 | A1 |
20020157673 | Kessler et al. | Oct 2002 | A1 |
20020159323 | Makabe et al. | Oct 2002 | A1 |
20020179090 | Boussignac | Dec 2002 | A1 |
20030000522 | Lynn et al. | Jan 2003 | A1 |
20030047185 | Olsen et al. | Mar 2003 | A1 |
20030069489 | Abreu | Apr 2003 | A1 |
20030079749 | Strickland et al. | May 2003 | A1 |
20030094178 | McAuley et al. | May 2003 | A1 |
20030111081 | Gupta | Jun 2003 | A1 |
20030116163 | Wood | Jun 2003 | A1 |
20030121519 | Estes et al. | Jul 2003 | A1 |
20030145852 | Schmidt et al. | Aug 2003 | A1 |
20030145853 | Muellner | Aug 2003 | A1 |
20030145856 | Zdrojkowski et al. | Aug 2003 | A1 |
20030150455 | Bliss et al. | Aug 2003 | A1 |
20030159696 | Boussignac et al. | Aug 2003 | A1 |
20030159697 | Wallace | Aug 2003 | A1 |
20030168067 | Dougill et al. | Sep 2003 | A1 |
20030213488 | Remmers et al. | Nov 2003 | A1 |
20030221687 | Kaigler | Dec 2003 | A1 |
20030230308 | Linden | Dec 2003 | A1 |
20040016432 | Genger | Jan 2004 | A1 |
20040020493 | Wood | Feb 2004 | A1 |
20040025881 | Gunaratnam et al. | Feb 2004 | A1 |
20040035431 | Wright | Feb 2004 | A1 |
20040040560 | Euliano et al. | Mar 2004 | A1 |
20040050387 | Younes | Mar 2004 | A1 |
20040074494 | Frater | Apr 2004 | A1 |
20040159323 | Schmidt et al. | Aug 2004 | A1 |
20040206352 | Conroy | Oct 2004 | A1 |
20040221848 | Hill | Nov 2004 | A1 |
20040221854 | Hete et al. | Nov 2004 | A1 |
20040226566 | Gunaratnam | Nov 2004 | A1 |
20040231674 | Tanaka | Nov 2004 | A1 |
20040237963 | Berthon-Jones | Dec 2004 | A1 |
20040254501 | Mault | Dec 2004 | A1 |
20040255943 | Morris et al. | Dec 2004 | A1 |
20050005936 | Wondka | Jan 2005 | A1 |
20050005938 | Berthon-Jones et al. | Jan 2005 | A1 |
20050010125 | Joy et al. | Jan 2005 | A1 |
20050011524 | Thomlinson et al. | Jan 2005 | A1 |
20050016534 | Ost | Jan 2005 | A1 |
20050033247 | Thompson | Feb 2005 | A1 |
20050034724 | O'Dea | Feb 2005 | A1 |
20050061322 | Freitag | Mar 2005 | A1 |
20050061326 | Payne | Mar 2005 | A1 |
20050072430 | Djupesland | Apr 2005 | A1 |
20050081849 | Warren | Apr 2005 | A1 |
20050087190 | Jafari et al. | Apr 2005 | A1 |
20050098179 | Burton et al. | May 2005 | A1 |
20050103343 | Gosweiler | May 2005 | A1 |
20050121033 | Starr et al. | Jun 2005 | A1 |
20050121037 | Wood | Jun 2005 | A1 |
20050121038 | Christopher | Jun 2005 | A1 |
20050150498 | McDonald | Jul 2005 | A1 |
20050161049 | Wright | Jul 2005 | A1 |
20050166924 | Thomas et al. | Aug 2005 | A1 |
20050199242 | Matula et al. | Sep 2005 | A1 |
20050205096 | Matula et al. | Sep 2005 | A1 |
20050205098 | Lampotang et al. | Sep 2005 | A1 |
20050247308 | Frye et al. | Nov 2005 | A1 |
20050257793 | Tatsumoto | Nov 2005 | A1 |
20050274381 | Deane et al. | Dec 2005 | A1 |
20060005834 | Aylsworth et al. | Jan 2006 | A1 |
20060005842 | Rashad et al. | Jan 2006 | A1 |
20060011199 | Rashad et al. | Jan 2006 | A1 |
20060027234 | Gradon et al. | Feb 2006 | A1 |
20060048781 | Nawata | Mar 2006 | A1 |
20060054169 | Han et al. | Mar 2006 | A1 |
20060070625 | Ayappa et al. | Apr 2006 | A1 |
20060079799 | Green et al. | Apr 2006 | A1 |
20060096596 | Occhialini et al. | May 2006 | A1 |
20060107958 | Sleeper | May 2006 | A1 |
20060112959 | Mechlenburg et al. | Jun 2006 | A1 |
20060124131 | Chandran et al. | Jun 2006 | A1 |
20060124134 | Wood | Jun 2006 | A1 |
20060137690 | Gunaratnam et al. | Jun 2006 | A1 |
20060144396 | DeVries et al. | Jul 2006 | A1 |
20060149144 | Lynn et al. | Jul 2006 | A1 |
20060150972 | Mizuta et al. | Jul 2006 | A1 |
20060150973 | Chalvignac | Jul 2006 | A1 |
20060150982 | Wood | Jul 2006 | A1 |
20060174877 | Jagger et al. | Aug 2006 | A1 |
20060180149 | Matarasso | Aug 2006 | A1 |
20060185669 | Bassovitch | Aug 2006 | A1 |
20060201504 | Singhal et al. | Sep 2006 | A1 |
20060213518 | DeVries et al. | Sep 2006 | A1 |
20060213519 | Schmidt et al. | Sep 2006 | A1 |
20060225737 | Iobbi | Oct 2006 | A1 |
20060237013 | Kwok | Oct 2006 | A1 |
20060243278 | Hamilton et al. | Nov 2006 | A1 |
20060249155 | Gambone | Nov 2006 | A1 |
20060266361 | Hernandez | Nov 2006 | A1 |
20070000490 | DeVries et al. | Jan 2007 | A1 |
20070000495 | Matula et al. | Jan 2007 | A1 |
20070017515 | Wallace et al. | Jan 2007 | A1 |
20070056590 | Wolfson | Mar 2007 | A1 |
20070062529 | Choncholas et al. | Mar 2007 | A1 |
20070068528 | Bohm et al. | Mar 2007 | A1 |
20070074724 | Duquette et al. | Apr 2007 | A1 |
20070089743 | Hoffman | Apr 2007 | A1 |
20070089745 | Gabriel et al. | Apr 2007 | A1 |
20070095347 | Lampotang et al. | May 2007 | A1 |
20070107727 | Brichetto | May 2007 | A1 |
20070107728 | Ricciardelli et al. | May 2007 | A1 |
20070107732 | Dennis et al. | May 2007 | A1 |
20070107737 | Landis | May 2007 | A1 |
20070113850 | Acker et al. | May 2007 | A1 |
20070113856 | Acker et al. | May 2007 | A1 |
20070125379 | Pierro et al. | Jun 2007 | A1 |
20070137653 | Wood | Jun 2007 | A1 |
20070163600 | Hoffman | Jul 2007 | A1 |
20070173705 | Teller et al. | Jul 2007 | A1 |
20070181125 | Mulier | Aug 2007 | A1 |
20070193705 | Hsu | Aug 2007 | A1 |
20070199568 | Diekens et al. | Aug 2007 | A1 |
20070209662 | Bowen et al. | Sep 2007 | A1 |
20070215156 | Kwok | Sep 2007 | A1 |
20070232950 | West | Oct 2007 | A1 |
20070240716 | Marx | Oct 2007 | A1 |
20070251528 | Seitz et al. | Nov 2007 | A1 |
20070272247 | Porat | Nov 2007 | A1 |
20070272249 | Chandran et al. | Nov 2007 | A1 |
20080000475 | Hill | Jan 2008 | A1 |
20080006271 | Aylsworth et al. | Jan 2008 | A1 |
20080011298 | Mazar et al. | Jan 2008 | A1 |
20080011301 | Qian | Jan 2008 | A1 |
20080041371 | Freitag | Feb 2008 | A1 |
20080041386 | Dodier et al. | Feb 2008 | A1 |
20080045815 | Derchak et al. | Feb 2008 | A1 |
20080047559 | Fiori | Feb 2008 | A1 |
20080051674 | Davenport et al. | Feb 2008 | A1 |
20080053438 | DeVries et al. | Mar 2008 | A1 |
20080053447 | Ratajczak et al. | Mar 2008 | A1 |
20080060646 | Isaza | Mar 2008 | A1 |
20080060657 | McAuley et al. | Mar 2008 | A1 |
20080066753 | Martin et al. | Mar 2008 | A1 |
20080072902 | Setzer et al. | Mar 2008 | A1 |
20080078392 | Pelletier et al. | Apr 2008 | A1 |
20080078407 | Sherman | Apr 2008 | A1 |
20080092904 | Gunarathnam et al. | Apr 2008 | A1 |
20080092905 | Gunarathnam et al. | Apr 2008 | A1 |
20080092906 | Gunarathnam et al. | Apr 2008 | A1 |
20080099024 | Gunarathnam et al. | May 2008 | A1 |
20080099027 | Gunaratnam et al. | May 2008 | A1 |
20080105264 | Gunarathnam et al. | May 2008 | A1 |
20080110462 | Chekal et al. | May 2008 | A1 |
20080121230 | Cortez et al. | May 2008 | A1 |
20080135044 | Freitag et al. | Jun 2008 | A1 |
20080142019 | Lewis et al. | Jun 2008 | A1 |
20080161653 | Lin et al. | Jul 2008 | A1 |
20080173304 | Zaiser et al. | Jul 2008 | A1 |
20080173311 | Miller et al. | Jul 2008 | A1 |
20080178880 | Christopher et al. | Jul 2008 | A1 |
20080178881 | Whitcher et al. | Jul 2008 | A1 |
20080178882 | Christopher et al. | Jul 2008 | A1 |
20080185002 | Berthon-Jones et al. | Aug 2008 | A1 |
20080185007 | Sleeper et al. | Aug 2008 | A1 |
20080190429 | Tatarek | Aug 2008 | A1 |
20080190436 | Jaffe et al. | Aug 2008 | A1 |
20080196715 | Yamamori | Aug 2008 | A1 |
20080196723 | Tilley | Aug 2008 | A1 |
20080196728 | Ho | Aug 2008 | A1 |
20080202528 | Carter et al. | Aug 2008 | A1 |
20080216834 | Easley et al. | Sep 2008 | A1 |
20080216838 | Wondka | Sep 2008 | A1 |
20080216841 | Grimes et al. | Sep 2008 | A1 |
20080223369 | Warren | Sep 2008 | A1 |
20080245369 | Matula et al. | Oct 2008 | A1 |
20080251079 | Richey | Oct 2008 | A1 |
20080264417 | Manigel et al. | Oct 2008 | A1 |
20080283060 | Bassin | Nov 2008 | A1 |
20080295846 | Han et al. | Dec 2008 | A1 |
20080302364 | Garde et al. | Dec 2008 | A1 |
20080308104 | Blomberg et al. | Dec 2008 | A1 |
20090007911 | Cleary et al. | Jan 2009 | A1 |
20090020121 | Bassin | Jan 2009 | A1 |
20090044808 | Guney et al. | Feb 2009 | A1 |
20090056708 | Stenzler et al. | Mar 2009 | A1 |
20090078255 | Bowman et al. | Mar 2009 | A1 |
20090078258 | Bowman et al. | Mar 2009 | A1 |
20090095298 | Gunaratnam et al. | Apr 2009 | A1 |
20090095300 | McMorrow | Apr 2009 | A1 |
20090095303 | Sher et al. | Apr 2009 | A1 |
20090099471 | Broadley et al. | Apr 2009 | A1 |
20090101147 | Landis et al. | Apr 2009 | A1 |
20090101154 | Mutti et al. | Apr 2009 | A1 |
20090107502 | Younes | Apr 2009 | A1 |
20090118632 | Goepp | May 2009 | A1 |
20090120437 | Oates et al. | May 2009 | A1 |
20090126739 | Ng et al. | May 2009 | A1 |
20090133699 | Nalagatla et al. | May 2009 | A1 |
20090139527 | Ng et al. | Jun 2009 | A1 |
20090145435 | White et al. | Jun 2009 | A1 |
20090151719 | Wondka et al. | Jun 2009 | A1 |
20090151724 | Wondka et al. | Jun 2009 | A1 |
20090151726 | Freitag | Jun 2009 | A1 |
20090151729 | Judson et al. | Jun 2009 | A1 |
20090156953 | Wondka et al. | Jun 2009 | A1 |
20090165799 | Duquette et al. | Jul 2009 | A1 |
20090173347 | Berthon-Jones | Jul 2009 | A1 |
20090173349 | Hernandez et al. | Jul 2009 | A1 |
20090183739 | Wondka | Jul 2009 | A1 |
20090199855 | Davenport | Aug 2009 | A1 |
20090205662 | Kwok et al. | Aug 2009 | A1 |
20090241947 | Bedini et al. | Oct 2009 | A1 |
20090241951 | Jafari et al. | Oct 2009 | A1 |
20090250066 | Daly | Oct 2009 | A1 |
20090255533 | Freitag et al. | Oct 2009 | A1 |
20090260625 | Wondka | Oct 2009 | A1 |
20090277452 | Lubke et al. | Nov 2009 | A1 |
20090293877 | Blanch et al. | Dec 2009 | A1 |
20090301495 | Pierro et al. | Dec 2009 | A1 |
20090308395 | Lee et al. | Dec 2009 | A1 |
20090320851 | Selvarajan et al. | Dec 2009 | A1 |
20100043786 | Freitag et al. | Feb 2010 | A1 |
20100043801 | Hailing | Feb 2010 | A1 |
20100071693 | Allum et al. | Mar 2010 | A1 |
20100071697 | Jafari et al. | Mar 2010 | A1 |
20100083968 | Wondka et al. | Apr 2010 | A1 |
20100108073 | Zollinger et al. | May 2010 | A1 |
20100132716 | Selvarajan et al. | Jun 2010 | A1 |
20100132717 | Davidson et al. | Jun 2010 | A1 |
20100163043 | Hart et al. | Jul 2010 | A1 |
20100170512 | Kuypers et al. | Jul 2010 | A1 |
20100170513 | Bowditch et al. | Jul 2010 | A1 |
20100192957 | Hobson et al. | Aug 2010 | A1 |
20100218766 | Milne | Sep 2010 | A1 |
20100224196 | Jablons | Sep 2010 | A1 |
20100252037 | Wondka et al. | Oct 2010 | A1 |
20100252039 | Cipollone et al. | Oct 2010 | A1 |
20100252040 | Kapust et al. | Oct 2010 | A1 |
20100252041 | Kapust et al. | Oct 2010 | A1 |
20100252042 | Kapust et al. | Oct 2010 | A1 |
20100252043 | Freitag | Oct 2010 | A1 |
20100252044 | Duquette et al. | Oct 2010 | A1 |
20100269834 | Freitag et al. | Oct 2010 | A1 |
20100275920 | Tham et al. | Nov 2010 | A1 |
20100275921 | Schindhelm et al. | Nov 2010 | A1 |
20100282251 | Calluaud et al. | Nov 2010 | A1 |
20100282810 | Hawes | Nov 2010 | A1 |
20100288279 | Seiver et al. | Nov 2010 | A1 |
20100288289 | Nasir | Nov 2010 | A1 |
20100300445 | Chatburn et al. | Dec 2010 | A1 |
20100300446 | Nicolazzi et al. | Dec 2010 | A1 |
20100307487 | Dunsmore et al. | Dec 2010 | A1 |
20100307495 | Kepler et al. | Dec 2010 | A1 |
20100307499 | Eger et al. | Dec 2010 | A1 |
20100307500 | Armitstead | Dec 2010 | A1 |
20100307502 | Rummery et al. | Dec 2010 | A1 |
20100313891 | Veliss et al. | Dec 2010 | A1 |
20100313898 | Richard et al. | Dec 2010 | A1 |
20100319703 | Hayman et al. | Dec 2010 | A1 |
20100326441 | Zucker et al. | Dec 2010 | A1 |
20100326446 | Behlmaier | Dec 2010 | A1 |
20110000489 | Laksov et al. | Jan 2011 | A1 |
20110009763 | Levitsky et al. | Jan 2011 | A1 |
20110011402 | Berthon-Jones | Jan 2011 | A1 |
20110023878 | Thiessen | Feb 2011 | A1 |
20110023881 | Thiessen | Feb 2011 | A1 |
20110034819 | Desforges et al. | Feb 2011 | A1 |
20110036352 | Estes et al. | Feb 2011 | A1 |
20110041850 | Vandine et al. | Feb 2011 | A1 |
20110041855 | Gunaratnam et al. | Feb 2011 | A1 |
20110061647 | Stahmann et al. | Mar 2011 | A1 |
20110067704 | Kooij et al. | Mar 2011 | A1 |
20110067709 | Doshi et al. | Mar 2011 | A1 |
20110071444 | Kassatly et al. | Mar 2011 | A1 |
20110073107 | Rodman et al. | Mar 2011 | A1 |
20110073116 | Genger et al. | Mar 2011 | A1 |
20110087123 | Choncholas et al. | Apr 2011 | A9 |
20110088690 | Djupesland et al. | Apr 2011 | A1 |
20110100365 | Wedler et al. | May 2011 | A1 |
20110114098 | McAuley et al. | May 2011 | A1 |
20110125052 | Davenport et al. | May 2011 | A1 |
20110126841 | Matula, Jr. et al. | Jun 2011 | A1 |
20110132363 | Chalvignac | Jun 2011 | A1 |
20110139153 | Chalvignac | Jun 2011 | A1 |
20110146687 | Fukushima | Jun 2011 | A1 |
20110155140 | Ho et al. | Jun 2011 | A1 |
20110162650 | Miller et al. | Jul 2011 | A1 |
20110162655 | Gunaratnam et al. | Jul 2011 | A1 |
20110178419 | Wood et al. | Jul 2011 | A1 |
20110180068 | Kenyon et al. | Jul 2011 | A1 |
20110197885 | Wondka et al. | Aug 2011 | A1 |
20110209705 | Freitag | Sep 2011 | A1 |
20110214676 | Allum et al. | Sep 2011 | A1 |
20110220105 | Meier | Sep 2011 | A1 |
20110232642 | Bliss et al. | Sep 2011 | A1 |
20110247625 | Boussignac | Oct 2011 | A1 |
20110253147 | Gusky et al. | Oct 2011 | A1 |
20110259327 | Wondka et al. | Oct 2011 | A1 |
20110265796 | Amarasinghe et al. | Nov 2011 | A1 |
20110277765 | Christopher et al. | Nov 2011 | A1 |
20110284003 | Douglas et al. | Nov 2011 | A1 |
20130092165 | Wondka | Apr 2013 | A1 |
20160213281 | Eckerbom | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
1455690 | Nov 2003 | CN |
1455690 | Nov 2003 | CN |
1905917 | Jan 2007 | CN |
101365508 | Feb 2009 | CN |
101365508 | Feb 2009 | CN |
19626924 | Jan 1998 | DE |
29902267 | Jul 1999 | DE |
19841070 | May 2000 | DE |
19849571 | May 2000 | DE |
10337138.9 | Mar 2005 | DE |
10 2006 023 637.8 | Nov 2007 | DE |
0125424 | Nov 1984 | EP |
0692273 | Jan 1996 | EP |
0778035 | Jun 1997 | EP |
1359961 | Nov 2003 | EP |
2377462 | Nov 2010 | EP |
2827778 | Jan 2003 | FR |
2174609 | Nov 1986 | GB |
2201098 | Aug 1988 | GB |
1055148 | Jun 1989 | GB |
2338420 | Dec 1999 | GB |
S63-57060 | Mar 1998 | JP |
2002-204830 | Jul 2002 | JP |
2007518451 | Jul 2007 | JP |
2009160403 | Jul 2009 | JP |
WO-199211054 | Jul 1992 | WO |
WO-199801176 | Jan 1998 | WO |
WO-199904841 | Feb 1999 | WO |
WO-2000064521 | Nov 2000 | WO |
WO-2001076655 | Oct 2001 | WO |
WO 2002062413 | Aug 2002 | WO |
WO03068301 | Aug 2003 | WO |
WO-2004009169 | Jan 2004 | WO |
2004105846 | Dec 2004 | WO |
WO2005007056 | Jan 2005 | WO |
WO-2005014091 | Feb 2005 | WO |
WO 2005014091 | Feb 2005 | WO |
WO2005011556 | Feb 2005 | WO |
WO 2005018524 | Mar 2005 | WO |
WO-2005018524 | Mar 2005 | WO |
2006088007 | Aug 2006 | WO |
WO-2006138580 | Dec 2006 | WO |
WO-2007035804 | Mar 2007 | WO |
WO 2007035804 | Mar 2007 | WO |
WO-2007139531 | Dec 2007 | WO |
WO 2007142812 | Dec 2007 | WO |
WO-2007142812 | Dec 2007 | WO |
WO-2008014543 | Feb 2008 | WO |
WO 2008019102 | Feb 2008 | WO |
WO-2008019102 | Feb 2008 | WO |
WO-2008052534 | May 2008 | WO |
WO-2008112474 | Sep 2008 | WO |
WO-2008138040 | Nov 2008 | WO |
WO 2008144589 | Nov 2008 | WO |
WO-2008144589 | Nov 2008 | WO |
WO 2008144669 | Nov 2008 | WO |
WO-2008144669 | Nov 2008 | WO |
WO-2009042973 | Apr 2009 | WO |
WO 2009042973 | Apr 2009 | WO |
WO 2009042974 | Apr 2009 | WO |
WO-2009042974 | Apr 2009 | WO |
WO-2009059353 | May 2009 | WO |
WO-2009064202 | May 2009 | WO |
WO-2009074160 | Jun 2009 | WO |
WO-2009082295 | Jul 2009 | WO |
WO-2009087607 | Jul 2009 | WO |
WO-2009092057 | Jul 2009 | WO |
WO 2009092057 | Jul 2009 | WO |
WO-2009103288 | Aug 2009 | WO |
WO-2009109005 | Sep 2009 | WO |
WO-2009115944 | Sep 2009 | WO |
WO-2009115948 | Sep 2009 | WO |
WO-2009115949 | Sep 2009 | WO |
WO 2009129506 | Oct 2009 | WO |
WO-2009129506 | Oct 2009 | WO |
WO-2009136101 | Nov 2009 | WO |
WO-2009139647 | Nov 2009 | WO |
WO-2009149351 | Dec 2009 | WO |
WO-2009149353 | Dec 2009 | WO |
WO-2009149355 | Dec 2009 | WO |
WO-2009149357 | Dec 2009 | WO |
WO-2009151344 | Dec 2009 | WO |
WO-2009151791 | Dec 2009 | WO |
WO 2009151791 | Dec 2009 | WO |
WO-2010000135 | Jan 2010 | WO |
WO-2010021556 | Feb 2010 | WO |
WO-2010022363 | Feb 2010 | WO |
WO 2010022363 | Feb 2010 | WO |
WO 2010039989 | Apr 2010 | WO |
WO-2010039989 | Apr 2010 | WO |
WO-2010041966 | Apr 2010 | WO |
WO-2010044034 | Apr 2010 | WO |
WO-2010057268 | May 2010 | WO |
WO-2010059049 | May 2010 | WO |
WO-2010060422 | Jun 2010 | WO |
WO-2010068356 | Jun 2010 | WO |
WO-2010070493 | Jun 2010 | WO |
WO-2010070497 | Jun 2010 | WO |
WO-2010070498 | Jun 2010 | WO |
WO-2010076711 | Jul 2010 | WO |
WO-2010081223 | Jul 2010 | WO |
WO-2010091157 | Aug 2010 | WO |
WO 2010099375 | Sep 2010 | WO |
WO-2010102094 | Sep 2010 | WO |
WO 2011029073 | Sep 2010 | WO |
WO 2010115166 | Oct 2010 | WO |
WO 2010115168 | Oct 2010 | WO |
WO 2010115169 | Oct 2010 | WO |
WO 2010115170 | Oct 2010 | WO |
WO-2010116275 | Oct 2010 | WO |
WO-2010132853 | Nov 2010 | WO |
WO-2010136923 | Dec 2010 | WO |
WO-2010139014 | Dec 2010 | WO |
WO-2010150187 | Dec 2010 | WO |
WO 2011002608 | Jan 2011 | WO |
WO-2011004274 | Jan 2011 | WO |
WO-2011006184 | Jan 2011 | WO |
WO-2011006199 | Jan 2011 | WO |
WO-2011014931 | Feb 2011 | WO |
WO-2011017033 | Feb 2011 | WO |
WO-2011017738 | Feb 2011 | WO |
WO-2011021978 | Feb 2011 | WO |
WO-2011022779 | Mar 2011 | WO |
WO-2011024383 | Mar 2011 | WO |
WO 2011029073 | Mar 2011 | WO |
WO 2011029074 | Mar 2011 | WO |
WO-2011035373 | Mar 2011 | WO |
WO-2011038950 | Apr 2011 | WO |
WO-2011038951 | Apr 2011 | WO |
WO-2011044627 | Apr 2011 | WO |
WO-2011057362 | May 2011 | WO |
WO 2011059346 | May 2011 | WO |
WO-2011061648 | May 2011 | WO |
WO-2011062510 | May 2011 | WO |
WO-2011086437 | Jul 2011 | WO |
WO-2011086438 | Jul 2011 | WO |
PCTUS1147994 | Aug 2011 | WO |
PCTUS1154446 | Sep 2011 | WO |
WO-2011112807 | Sep 2011 | WO |
Entry |
---|
Saslow et al. Work of breathing using high-flow nasal cannula in preterm infants, Journal of Perinatology (2006) 26, 476-480. |
U.S. Appl. No. 11/523,518, filed Sep. 20, 2006, Freitag et al, Abandoned. |
U.S. Appl. No. 13/211,248, filed Aug. 16, 2011, Wondka et al., Pending. |
U.S. Appl. No. 13/251,070, filed Sep. 30, 2011, Wondka et al., Pending. |
U.S. Appl. No. 29/388,700, filed Mar. 31, 2011, Eghbal et al., Pending. |
U.S. Appl. No. 60/479,213, filed Jun. 18, 2003, Wondka, Expired. |
U.S. Appl. No. 60/495,812, filed Aug. 18, 2003, Wondka, Expired. |
U.S. Appl. No. 60/511,820, filed Oct. 14, 2003, Wondka, Expired. |
U.S. Appl. No. 60/586,453, filed Jul. 9, 2004, Wondka, Expired. |
U.S. Appl. No. 60/718,318, filed Sep. 20, 2005, Freitag et al., Expired. |
U.S. Appl. No. 60/801,104, filed May 18, 2006, Freitag, Expired. |
U.S. Appl. No. 60/835,066, filed Aug. 3, 2006, Freitag et al., Expired. |
U.S. Appl. No. 60/924,514, filed May 18, 2007, Wondka et al., Expired. |
U.S. Appl. No. 60/960,362, filed Sep. 26, 2007, Wondka et al., Expired. |
U.S. Appl. No. 60/960,370, filed Sep. 26, 2007, Wondka et al., Expired. |
U.S. Appl. No. 61/006,548, filed Jan. 18, 2008, Wondka et al., Expired. |
U.S. Appl. No. 61/071,251, filed Apr. 18, 2008, Wondka et al., Expired. |
U.S. Appl. No. 61/071,252, filed Apr. 18, 2008, Wondka et al., Expired. |
U.S. Appl. No. 61/091,198, filed Aug. 22, 2008, Allum et al., Expired. |
U.S. Appl. No. 61/101,826, filed Oct. 1, 2008, Wondka et al., Expired. |
U.S. Appl. No. 61/106,414, filed Oct. 17, 2008, Wondka, Expired. |
U.S. Appl. No. 61/136,269, filed Aug. 22, 2008, Allum et al., Expired. |
U.S. Appl. No. 61/166,150, filed Apr. 2, 2009, Allum et al., Expired. |
U.S. Appl. No. 61/239,728, filed Sep. 3, 2009, Cipollone, Expired. |
U.S. Appl. No. 61/255,760, filed Oct. 28, 2009, Cipollone et al., Expired. |
U.S. Appl. No. 61/294,363, filed Jan. 12, 2010, Allum et al., Expired. |
U.S. Appl. No. 61/306,370, filed Feb. 19, 2010, Wondka et al., Expired. |
U.S. Appl. No. 61/374,126, filed Aug. 16, 2010, Wondka et al., Expired. |
U.S. Appl. No. 61/388,528, filed Sep. 30, 2010, Wondka et al., Expired. |
U.S. Appl. No. 61/438,112, filed Jan. 31, 2011, Allum et al., Pending. |
In the U.S. Patent and Trademark Office, Supplemental Notice of Allowance dated in re: U.S. Appl. No. 10/771,803, dated Dec. 2, 2008, 2 pages. |
In the U.S. Patent and Trademark Office, Supplemental Notice of Allowance dated in re: U.S. Appl. No. 10/771,803, dated Nov. 7, 2008, 2 pages. |
In the U.S. Patent and Trademark Office, Examiners Interview Summary in re: U.S. Appl. No. 10/771,803, dated Oct. 31, 2008, 4 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance dated in re: U.S. Appl. No. 10/771,803, dated Oct. 20, 2008, 8 pages. |
In the U.S. Patent and Trademark Office, Examiners Interview Summary in re: U.S. Appl. No. 10/771,803, dated Nov. 2, 2007, 2 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 10/771,803, dated Jun. 14, 2007, 12 pages. |
In the U.S. Patent and Trademark Office, Restriction Requirement in re: U.S. Appl. No. 12/271,484, dated Feb. 9, 2011, 5 pages. |
In the U.S. Patent and Trademark Office, Restriction Requirement in re: U.S. Appl. No. 12/754,437, dated Aug. 16, 2011, 5 pages. |
In the U.S. Patent and Trademark Office, Non-Final Office Action dated in re: U.S. Appl. No. 10/567,746, dated Oct. 5, 2009, 9 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance and Examiners Interview Summary in re: U.S. Appl. No. 11/523,519, dated Jan. 16, 2009, 10 pages. |
In the U.S. Patent and Trademark Office, Examiners Interview Summary in re: U.S. Appl. No. 11/523,519, dated Jan. 13, 2009, 4 pages. |
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 11/523,519, dated Jul. 11, 2008, 13 pages. |
In the U.S. Patent and Trademark Office, Examiners Interview Summary in re: U.S. Appl. No. 11/523,519, dated Apr. 10, 2008, 3 pages. |
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 11/523,519, dated Nov. 26, 2007, 14 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 11/523,519, dated Mar. 7, 2007, 11 pages. |
In the U.S. Patent and Trademark Office, Restriction Requirement in re: U.S. Appl. No. 11/523,518, dated Dec. 30, 2009, 4 pages. |
In the U.S. Patent and Trademark Office, Supplemental Notice of Allowance in re: U.S. Appl. No. 11/798,965, dated Aug. 21, 2009, 4 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 11/798,965, dated Jul. 17, 2009, 5 pages. |
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 11/798,965, dated Apr. 9, 2009, 6 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 11/798,965, dated Jul. 29, 2008, 12 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 12/578,283, dated Oct. 19, 2011, 5 pages. |
In the U.S. Patent and Trademark Office, Restriction/Election Requirement in re: U.S. Appl. No. 11/882,530, dated Apr. 27, 2011, 5 pages. |
In the U.S. Patent and Trademark Office, Supplemental Notice of Allowance in re: U.S. Appl. No. 10/870,849, dated Jun. 16, 2009, 2 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 10/870,849, dated Jun. 3, 2009, 4 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 10/870,849, dated May 14, 2009, 8 pages. |
In the U.S. Patent and Trademark Office, Restriction in re: U.S. Appl. No. 10/870,849, dated Nov. 16, 2007, 5 pages. |
In the U.S. Patent and Trademark Office, Examiners Interview Summary in re: U.S. Appl. No. 10/870,849, dated Jul. 27, 2007, 2 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 10/870,849, dated Feb. 22, 2007, 13 pages. |
In the U.S. Patent and Trademark Office, Restriction/Election Requirement in re: U.S. Appl. No. 12/493,677, dated Aug. 5, 2011, 5 pages. |
In the U.S. Patent and Trademark Office, Restriction/Election Requirement in re: U.S. Appl. No. 12/153,423, dated Oct. 6, 2011, 8 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 10/922,054, dated Feb. 12, 2008, 6 pages. |
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 10/922,054, dated Nov. 27, 2007, 9 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 10/922,054, dated Mar. 14, 2007, 14 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 10/922,054, dated Sep. 7, 2006, 21 pages. |
In the U.S. Patent and Trademark Office, Restriction Requirement in re: U.S. Appl. No. 10/922,054, dated May 17, 2006, 5 pages. |
In the U.S. Patent and Trademark Office, Notice of Allowance and Examiners Interview Summary in re: U.S. Appl. No. 12/076,062, dated Nov. 2, 2011, 8 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 12/076,062, dated Jan. 13, 2011, 14 pages. |
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 12/355,753, dated Sep. 28, 2011, 32 pages. |
In the U.S. Patent and Trademark Office, Ex Parte Quayle Office Action in re: U.S. Appl. No. 29/388,700, dated Oct. 7, 2011, 5 pages. |
“AARC Clinical Practice Guideline: Oxygen Therapy in the Home or Extended Care Facility,” Resp. Care, 1992: 37(8), pp. 918-922. |
“ATS Statement: Guidelines for the Six-Minute Walk Test,” Am. J. Respir. Crit. Care Med., 2002: 166, pp. 111-117. |
“Passy-Muir Speaking Valves,” Respiratory, Nov. 13, 1998, 7 pages. |
Ambrosino, “Exercise and noninvasive ventilatory support,” Monaldi Arch Chest Dis., 2000: 55(3): 242-246. |
Ambrosino, “Weaning and Respiratory Muscle Dysfunction: The Egg Chicken Dilemma,” Chest, 2005: 128(2), pp. 481-483. |
Bach et al., “Intermittent Positive Pressure Ventilation via Nasal Access in the Management of Respiratory Insufficiency,” Chest, 1987: 92(1), pp. 168-170. |
Banner et al., “Extubating at a Pressure Support Ventilation Level Corresponding to Zero Imposed Work of Breathing,” Anesthesiology, Sep. 1994: 81(3A), p. A271. |
Banner et al., “Imposed Work of Breathing and Methods of Triggering a Demand-Flow, Continuous Positive Airway Pressure System,” Critical Care Medicine, 1993: 21(2), pp. 183-190. |
Banner et al., “Site of Pressure Measurement During Spontaneous Breathing with Continuous Positive Airway Pressure: Effect on Calculating Imposed Work of Breathing,” Critical Care Medicine, 1992: 20(4), pp. 528-533. |
Barakat et al., “Effect of noninvasive ventilatory support during exercise of a program in pulmonary rehabilitation in patients with COPD,” Int. J. Chron. Obstruct. Pulmon. Dis., 2007: 2(4), pp. 585-591. |
Barreiro et al., “Noninvasive ventilation,” Crit Care Clin., 2007; 23(2): 201-22. |
Bauer et al., “Adam Nasal CPAP Circuit Adaptation: A Case Report,” Sleep, 1991: 14(3), pp. 272-273. |
Blanch, “Clinical Studies of Tracheal Gas Insufflation,” Resp. Care, 2001: 45(2), pp. 158-166. |
Borghi-Silva et al., “Non-invasive ventilation improves peripheral oxygen saturation and reduces fatigability of quadriceps in patients with COPD,” Respirology, 2009, 14:537-546. |
Bossi et al., “Continuous Positive Airway Pressure in the Spontaneously Breathing Newborn by Means of Bilateral Nasal Cannulation,” Monatsschr Kinderheilkd, 1975: 123(4), pp. 141-146. |
Boussarsar et al., “Relationship between ventilatory settings and barotrauma in the acute respiratory distress syndrome,” Intensive Care Med., 2002: 28(4): 406-13. |
Chang et al., “Reduced Inspiratory Muscle Endurance Following Successful Weaning From Prolonged Mechanical Ventilation,” Chest, 2005: 128(2), pp. 553-559. |
Charlotte Regional Medical Center, “Application of the Passy-Muir Tracheostomy and Ventilator,” Speech-Language Pathology Department, Jan. 1995, 8 pages. |
Christopher et al., “Preliminary Observations of Transtracheal Augmented Ventilation for Chronic Severe Respiratory Disease,” Resp. Care, 2001: 46(1), pp. 15-25. |
Christopher, et al., “Transtracheal Oxygen Therapy for Refractory Hypoxemia,” JAMA, 1986: 256(4), pp. 494-497. |
Ciccolella et al.; “Administration of High-Flow, Vapor-phased, Humidified Nasal Cannula Air (HF-HNC) Decreases Work of Breathing (WOB) in Healthy Subjects During Exercise,” AmJRCCM, Apr. 2001: 163(5), Part 2, pp. A622. (Abstract Only). |
Clini et al., “The Italian multicentre study on noninvasive ventilation in chronic obstructive pulmonary disease patients,” Eur. Respir. J., 2002, 20(3): 529-538. |
Costa et al., “Influence of noninvasive ventilation by BiPAP® on exercise tolerance and respiratory muscle strength in chronic obstructive pulmonary disease patients (COPD),” Rev. Lat. Am. Enfermagem., 2006: 14(3), pp. 378-382. |
Díaz et al., “Breathing Pattern and Gas Exchange at Peak Exercise in COPD Patients With and Without Tidal Flow Limitation at Rest,” European Respiratory Journal, 2001: 17, pp. 1120-1127. |
Enright, “The six-minute walk test,” Resp. Care, 2003: 8, pp. 783-785. |
Ferreira et al., “Trigger Performance of Mid-level ICU Mechanical Ventilators During Assisted Ventilation: A Bench Study,” Intensive Care Medicine, 2008,34:1669-1675. |
Fink, “Helium-Oxygen: An Old Therapy Creates New Interest,” J. Resp. Care. Pract. now RT for Decision Makers in Respiratory Care, 1999, pp. 71-76. |
Gaughan et al., “A Comparison in a Lung Model of Low- and High-Flow Regulators for Transtracheal Jet Ventilation,” Anesthesiology, 1992: 77(1), pp. 189-199. |
Gregoretti, et al., “Transtracheal Open Ventilation in Acute Respiratory Failure Secondary to Severe Chronic Obstructive Pulmonary Disease Exacerbation,” Am. J. Resp. Crit. Care. Med., 2006: 173(8), pp. 877-881. |
Haenel et al., “Efficacy of Selective Intrabronchial Air Insufflation in Acute Lobar Colapse,” Am. J. Surg., 1992: 164(5), pp. 501-505. |
Keilty et al., “Effect of inspiratory pressure support on exercise tolerance and breathlessness in patients with severe stable chronic obstructive pulmonary disease,” Thorax, 1994, 49(10): 990-994. |
Köhnlein et al., “Noninvasive ventilation in pulmonary rehabilitation of COPD patients,” Respir. Med., 2009, 103: 1329-1336. |
Koska et al., “Evaluation of a Fiberoptic System for Airway Pressure Monitoring,” J. Clin. Monit., 1993: 10(4), pp. 247-250. |
Lewis, “Breathless No More, Defeating Adult Sleep Apnea,” FDA Consumer Magazine, Jun. 1992, pp. 33-37. |
Limberg et al., “Changes in Supplemental Oxygen Prescription in Pulmonary Rehabilitation,” Resp. Care, 2006:51(11), p. 1302. |
MacInryre, “Long-Term Oxygen Therapy: Conference Summary,” Resp. Care, 2000: 45(2), pp. 237-245. |
MacIntyre et al., “Acute exacerbations and repiratory failure in chronic obstructive pulmonary disease,” Proc. Am. Thorac. Soc., 2008: 5(4), pp. 530-535. |
Massie et al., “Clinical Outcomes Related to Interface Type in Patients With Obstructive Sleep Apnea/Hypopnea Syndrome Who Are Using Continuous Positive Airway Pressure,” Chest, 2003: 123(4), pp. 1112-1118. |
McCoy, “Oxygen Conservation Techniques and Devices,” Resp. Care, 2000: 45(1), pp. 95-104. |
McGinley, “A nasal cannula can be used to treat obstructive sleep apnea”; Am. J. Resp. Crit. Care Med., 2007: 176(2), pp. 194-200. |
Menadue et al., “Non-invasive ventilation during arm exercise and ground walking in patients with chronic hypercapnic respiratory failure,” Respirology, 2009, 14(2): 251-259. |
Menon et al., “Tracheal Perforation. A Complication Associated with Transtracheal Oxygen Therapy,” Chest, 1993: 104(2), pp. 636-637. |
Messinger et al., “Tracheal Pressure Triggering a Demand-Flow CPAP System Decreases Work of Breathing,” Anesthesiology, 1994: 81(3A), p. A272. |
Messinger et al., “Using Tracheal Pressure to Trigger the Ventilator and Control Airway Pressure During Continuous Positive Airway Pressure Decreases Work of Breathing,” Chest, 1995: vol. 108(2), pp. 509-514. |
Mettey, “Use of CPAP Nasal Cannula for Aids of the Newborns in Tropical Countries,” Medecine Tropicale, 1985: 45(1), pp. 87-90. |
Nahmias et al., “Treatment of the Obstructive Sleep Apnea Syndrome Using a Nasopharyngeal Tube”, Chest, 1988:94(6), pp. 1142-1147. |
Nava et al., “Non-invasive ventilation,” Minerva Anestesiol., 2009: 75(1-2), pp. 31-36. |
Passy-Muir Inc., “Clinical Inservice Outline”, Apr. 2004, 19 pages. |
Peters et al., “Combined Physiological Effects of Bronchodilators and Hyperoxia on Exertional Dyspnea in Normoxic COPD,” Thorax, 2006: 61, pp. 559-567. |
Polokey et al., “Inspiratory pressure support reduces slowing of inspiratory muscle relations rate during exhaustive treadmill walking in sever COPD,” Am. J. Resp. Crit. Care Med., 1996: 154(4, 10), pp. 1146-1150. |
Porta et al., “Mask proportional assist vs pressure support ventilation in patients in clinically stable condition with chronic venilatory failure,” Chest, 2002: 122(2), pp. 479-488. |
Prigent et al., “Comparative Effects of Two Ventilatory Modes on Speech in Tracheostomized Patients with Neuromuscular Disease,” Am. J. Resp. Crit. Care Med., 2003: 167(8), pp. 114-119. |
Puente-Maestu et al., “Dyspnea, Ventilatory Pattern, and Changes in Dynamic Hyperinflation Related to the Intensity of Constant Work Rate Exercise in COPD,” Chest, 2005: 128(2), pp. 651-656. |
Ram et al., “Non-invasive positive pressure ventilation for treatment of respiratory failure due to exacerbations of chroic obstructive pulmonary disease,” Cochrane Database Syst Rev., 2004(3):1-72. |
Rothe et al., “Near Fatal Complication of Transtracheal Oxygen Therapy with the SCOOP(R) System,” Pneumologie, 1996: 50(10), pp. 700-702. (English Abstract provided.). |
Rothfleisch et al., “Facilitation of fiberoptic nasotracheal intubation in a morbidly obese patient by simultaneous use of nasal CPAP,” Chest, 1994, 106(1): 287-288. |
Sanders et al., “CPAP Via Nasal Mask: A Treatment for Occlusive Sleep Apnea,” Chest, 1983: 83(1), pp. 144-145. |
Sinderby et al., “Neural control of mechanical ventilation in respiratory failure,” Nat. Med., 1999: 5(12), pp. 1433-1436. |
Somfay et al., “Dose-Response Effect of Oxygen on Hyperinflation and Exercise Endurance in Nonhypoxaemic COPD Patients,” Eur. Resp. J., 2001: 18, pp. 77-84. |
Sullivan et al., “Reversal of Obstructive Sleep Apnoea by Continuous Positive Airway Pressure Applied Through the Nares,” The Lancet, 1981: 1(8225), pp. 862-865. |
Sullivan, “Home treatment of obstructive sleep apnoea with continuous positive airway pressure applied through a nose-mask,” Bull Eur Physiopathol Respir., 1984: 20(1), pp. 49-54. |
Tiep et al., “Pulsed nasal and transtracheal oxygen delivery,” Chest, 1990: 97, pp. 364-368. |
Tsuboi et al., “Ventilatory Support During Exercise in Patients With Pulmonary Tuberculosis Sequelae,” Chest, 1997: 112(4), pp. 1000-1007. |
VHA/DOD Clinical Practice Guideline, “Management of Chronic Obstructive Pulmonary Disease,” Aug. 1999, Ver. 1.1a, Updated Nov. 1999. |
Wijkstra et al., “Nocturnal non-invasive positive pressure ventilation for stable chronic obstructive pulmonary disease,” Cochrane Database Syst. Rev., 2002, 3: 1-22. |
Yaeger et al., “Oxygen Therapy Using Pulse and Continuous Flow With a Transtracheal Catheter and a Nasal Cannula,” Chest, 1994: 106, pp. 854-860. |
Walsh, “McGraw Hill Pocket reference Machinists' and Metalworker' Pocket Reference,” New York McGraw-Hill, 2000, pp. 3-67, submitting 3 pages. |
International Preliminary Report and Written Opinion on Patentability for PCT/DE2004/001646, dated Jul. 3, 2006. |
European patent Office Search Report dated Oct. 19, 2007 in co-pending EP 04762494. |
International Search Report and Written Opinion for PCT/US04/26800 dated Jun. 22, 2006. |
International Search Report and Written Opinion for PCT/US07/12108, dated Aug. 8, 2008. |
International Search Report and Written Opinion for PCT/US07/17400, dated Apr. 28, 2008. |
International Search Report and Written Opinion for PCT/US08/64015, dated Sep. 26, 2008. |
International Search Report and Written Opinion for PCT/US08/64164, dated Sep. 29, 2008. |
International Search Report and Written Opinion for PCT/US08/78031, dated Nov. 24, 2008. |
International Search Report and Written Opinion for PCT/US08/78033, dated Dec. 3, 2008. |
International Search Report and Written Opinion for PCT/US09/054673, dated Oct. 8, 2009. |
International Search Report and Written Opinion for PCT/US09/41027, dated Dec. 14, 2009. |
International Search Report and Written Opinion for PCT/US09/59272, dated Dec. 2, 2009. |
International Search Report and Written Opinion for PCT/US2006/036600, dated Apr. 3, 2007. |
International Search Report and Written Opinion for PCT/US2009/031355 dated Mar. 11, 2009. |
International Search Report and Written Opinion for PCT/US2009/041034, dated Jun. 10, 2009. |
International Search Report and Written Opinion for PCT/US2010/029871, dated Jul. 12, 2010. |
International Search Report and Written Opinion for PCT/US2010/029873, dated Jun. 28, 2010. |
International Search Report and Written Opinion for PCT/US2010/029874, dated Jul. 12, 2010. |
International Search Report and Written Opinion for PCT/US2010/029875, dated Jul. 12, 2010. |
International Search Report and Written Opinion for PCT/US2010/047920, dated Nov. 1, 2010. |
International Search Report and Written Opinion for PCT/US2010/047921, dated Jan. 27, 2011. |
International Search Report for PCT/DE2004/001646, dated Jan. 17, 2005. |
Supplementary European Search Report, Application No. EP 10 81 4608, dated Aug. 25, 2014, 1 Page. |
International Search Report and Written Opinion for Application No. EP 10 81 4608, dated Aug. 25, 2014, 6 Pages. |
Masayuki Kanemaru, Notice of the Reason for Refusal, dated Jul. 31, 2014, 3 pages. |
Espacenet, English Abstract JP2009160403, 2 Pages. |
Espacenet, English Abstract JP2007518451, 2 Pages. |
Chinese Office Action, No. 100140, dated Apr. 14, 2014, 14 Pages. |
English Traslation Chinese Office Action, Application No. 201080049144, 27 Pages, dated Apr. 14, 2014. |
Abstract CN1455690, Randall S. Hickle, Nov. 12, 2003, 2 Pages. |
Abstract CN101365508, Steve Han, Feb. 11, 2009, 2 Pages. |
Abstract CN1905917, Anthony Wondka, Jan. 31, 2007, 2 Pages. |
English Translation of the First Office Action, Application No. 201080049144.6, pp. 1-13, Chinese Office Action, pp. 14-27, dated Apr. 4, 2014. |
Office Action issued by SIPO in relation to Chinese Patent Application No. 2010800491446. |
Chinese Office Action for Chinese Patent Application No. CN201080049144.6; dated Nov. 30, 2015. |
Extended European Search Report, dated Aug. 31, 2015. |
“Decision of Rejection” issued for Chinese Patent Application Serial No. 2010800491446 dated Jul. 29, 2016. |
Notification of Reexamination for Chinese Patent Application No. 2010/80049144.6; dated Sep. 21, 2017. |
Notification of Reexamination for Chinese Patent Application No. 2010/80049144.6; dated May 17, 2017. |
Number | Date | Country | |
---|---|---|---|
20110094518 A1 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
61239728 | Sep 2009 | US | |
61255760 | Oct 2009 | US | |
61294363 | Jan 2010 | US | |
61306370 | Feb 2010 | US | |
61166150 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12753846 | Apr 2010 | US |
Child | 12876099 | US | |
Parent | 12753851 | Apr 2010 | US |
Child | 12753846 | US | |
Parent | 12753854 | Apr 2010 | US |
Child | 12753851 | US | |
Parent | 12753856 | Apr 2010 | US |
Child | 12753854 | US | |
Parent | PCT/US2010/029871 | Apr 2010 | US |
Child | 12753856 | US | |
Parent | 12753853 | Apr 2010 | US |
Child | PCT/US2010/029871 | US | |
Parent | PCT/US2010/029873 | Apr 2010 | US |
Child | 12753853 | US | |
Parent | PCT/US2010/029874 | Apr 2010 | US |
Child | PCT/US2010/029873 | US | |
Parent | PCT/US2010/029875 | Apr 2010 | US |
Child | PCT/US2010/029874 | US |