The present disclosure relates generally to data analysis. In an example embodiment, the disclosure relates to a structured language and applications for visualizing graphical data.
A graph is a well-known approach for the presentation of data, including big networks of data items and the relations between them. Graphs are well-established for the presentation of transportation routes, the presentation of knowledge in semantic networks or decision trees, and the like. With the growing number of data items to be visualized, graphs may be unmanageable and chaotic, and may confuse the user rather than support the understanding of the data. In a graph containing many elements, single elements and their relations may not be clearly represented.
To improve a user's perception of the underlying data, conventional graphs may include different types of visual support, such as the highlighting or filtering of the most relevant elements. For example, only elements having a specified attribute or color may be highlighted.
User interface controls, such as sliders and buttons, may also be provided to filter the presented elements. The user interface controls may be dedicated to single attributes of graph elements. The user may filter the elements by moving a slider, thereby, for example, setting a specific attribute value at a minimum, a maximum or a defined number. In some cases, only limited static actions like coloring or zooming may then be applied to these elements.
The present disclosure is illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
The description that follows includes illustrative systems, methods, techniques, instruction sequences, and computing program products that embody example embodiments of the present invention. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide an understanding of various embodiments of the inventive subject matter. It will be evident, however, to those skilled in the art, that embodiments of the inventive subject matter may be practiced without these specific details. In general, well-known instruction instances, protocols, structures and techniques have not been shown in detail.
Generally, methods, systems, apparatus, and computer program products for visualizing data are described. In one example embodiment, a structured language for defining a view of graphical data is described.
In one example embodiment, perceptual support may be provided for visualizing graphs to enable the analysis of situations and tasks. Some tasks may be complex and may change over time. For example, data related to excessive inventory in a factory may be visualized to assist in determining a cause of the overstocking.
A manual setting of the attributes or a simple filtering by a single attribute of the graph elements may entail excessive configuration effort each time an analysis task changes. Moreover, if only single actions based on value changes of attributes of an element are configured, then only basic analysis tasks may be realized. A realistic analysis task may depend on the configuration of multiple single actions as well as efficient switching between different views of the underlying data, especially in the case of more complex analysis tasks.
In one example embodiment, a method may provide for a formalized, extensible description of a graph representation. The formalized, extensible description of a graphical representation may be in the form of a view definition and may be tailored to an analysis of a task, problem, scenario, and the like. As used herein, a “view” may refer to a definition of a view or to an application of a view definition to data. A view may comprise a set of rules which may be based on an underlying graph model, described more fully below in conjunction with
The methods disclosed herein may be used to enhance the visibility of data items which may be related to a given analysis task, such as those of
In one example embodiment, a rule may comprise one or more dedicated actions for adjusting the presentation of the graph element(s). Actions may be executed on a subset of the data elements or all of the data elements. In one example embodiment, a change of the view of the data may correspond to a change in the visual presentation of the graph while the definition of the graph remains unchanged. For example, the appearance of the graph may be adjusted for a given analysis task according to a corresponding view, while the nodes and the structure of the graph remain unchanged.
The analysis tasks may be defined by one or more rules that may trigger one or more actions when a corresponding rule condition is satisfied. The rule condition may require, for example, that an attribute value of a node of the graph is within a defined range. One or more actions may be triggered when the value of the attribute is within the defined range. There is no requirement to directly set the properties or attributes of the graph elements. The rules may be stored under a corresponding view.
In one example embodiment, a user uses knowledge and/or experience to formulate rules for a view that addresses a particular analysis task, or set of tasks. The rules can be exchanged and reused to address the analysis of other tasks. In one example embodiment, the description of analysis tasks may be independent of the realization of various graph tools. In one example embodiment, the rules may add a layer of abstraction to the graphs, and the logical and visual representations of a graph may be separated. Rules and/or views may be reused for similar graphs and/or similar analysis tasks.
Furthermore, a single defined view may allow directing the user's focus on the graph element(s) and the associated data which may be most relevant to the analysis task(s). By defining a plurality of different views, an analysis of a variety of tasks may be performed, and a user may easily switch from one view and associated task to another view of the same task, or to a view of another task.
Many scenarios may benefit from the disclosed perceptual tools in comparison to simple visual support like highlighting, filtering, zooming, and the like. These scenarios may benefit from the utilization and combination of different graphical elements and their attributes. The graphical elements and their attributes may be applicable in a range of analysis tasks. The tasks may address different problems or situations. An example of such a task is a quick detection of problem(s) in a production plant and the identification of possible causes of the problem(s). The results of such an analysis may be needed within a certain period of time. For example, an analysis may need to be performed to determine a cause of excess inventory in a factory or warehouse.
The “business logic” component of the application 208 may represent the core program code of the application 208, i.e., the rules governing the underlying business process (or other functionality) provided by the application 208. The “presentation logic” may describe the specific manner in which the results of the business logic are formatted for display on the user interface. The “database” 216 may include data access logic used by the business logic to store and retrieve data.
In response to limitations associated with the two-tiered client-server architecture, a multi-tiered architecture has been developed, as illustrated in
This separation of logical components and the user interface 254 may provide a more flexible and scalable architecture compared to that provided by the two-tiered model. For example, the separation may ensure that all clients 204 share a single implementation of business layer 266. If business rules change, changing the current implementation of business layer 266 to a new version may not call for updating any client-side program code. In addition, the presentation layer 258 may be provided, which generates code for a variety of different user interfaces 254, which may be standard browsers.
The user 304 may interact with a presentation layer 328 that may display a view definition and may display a rendered view of the graphical data based on the data set 332. For example, the presentation layer 328 may utilize the user interface of
The apparatus 400 is shown to include a processing system 402 that may be implemented on a server, client, or other processing device that includes an operating system 404 for executing software instructions. In accordance with an example embodiment, the apparatus 400 includes a user interface module 406, a view definition module 410, a view execution module 414, and a view database management module 422. In accordance with an example embodiment, the apparatus 400 may include a data interface module 426.
The user interface module 406 may generate a user interface for defining rules; for defining, storing, managing, and retrieving views; and for applying, rendering, and displaying views of graphical data. For example, the user interface module 406 may generate a user interface 800 and/or 850, as described more fully below in conjunction with of
The view definition module 410 may obtain rules associated with a view and may store the view and associated rules for future use, as described more fully in conjunction with
The view execution module 414 may apply one or more rules associated with a view to render a visual representation of a graph defined for a particular analysis task, as described more fully in conjunction with
The view database management module 422 may manage the storage of defined views and rules. For example, the view database management module 422 may provide a list of available views for a user and may retrieve a defined view from a storage unit for application to a graph, as described more fully below in conjunction with
The data interface module 426 may provide access to graphical data to be rendered in a view generated by the view execution module 414. For example, the data interface module 426 may access database 216.
A name of a view and one or more rules associated with the view may be obtained (operation 504). For example, a user may name a view in a view entry field 804 and may define one or more rules in a rule definition area 820, as described more fully below in conjunction with
In one example embodiment, the visibility of data elements, such as nodes, edges, and the like, that may correspond to items important to the analysis of the situation, may be enhanced. The items may be associated with the problem(s) related to the situation. In one example embodiment, factors influencing the items may be defined by the user and may include the causes of the problem(s) associated with the situation.
In one example embodiment, less relevant elements may be hidden or de-emphasized. The hiding or de-emphasis of less relevant items may enable a user to focus on the more relevant elements. A new view, or extract, based on the same underlying graph for a particular analysis task may be created.
A view may be defined by one or more rules; the view may correspond to a specific analysis task utilizing the graph, as described more fully above. A variety of conditions and actions may be clustered in one or more rules.
In one example embodiment, the grammar for a rule definition may be in Backus-Naur form. For example, a rule may be structured as follows:
<View>::=[<Rule>]1 . . . n<Rule>::=<Condition>[<Relation><Condition>]*==>[<Action>]1 . . . n where:
<View> is defined by a set of one or more rules;
<Rule> is a tuple consisting of one or more conditions and one or more actions;
<Condition> is the definition of a condition of the elements in the form of a triple: <Attribute><Relation><Value>;
<Relation> is a logical relation; and
<Action> describes the action that should be applied on the elements that match the rule.
In one example embodiment, <Value> may be, for example, value >0,9. A logical relation may be, for example, AND, OR, and the like.
In one example embodiment, an action is defined as <Action>([<Parameter>]*). Multiple actions may be defined to execute in parallel or sequentially. Each action may be applied to a single element or may be applied to a plurality of elements.
Actions may include, for example:
1) COLOR (‘red’|‘green’ . . . )—setting the color of the element;
2) HIDE—the element is made hidden;
3) SHOW—the element is shown;
4) HIGHLIGHT (‘Problem’|‘Cause’ . . . )—highlight the element according to the settings;
5) SET <Attribute>=Value—set the view-related attribute(s);
6) FOCUS—set the focus to a selected element; and
7) LAYOUT(<LayoutName>)—apply a certain layout.
The “highlight” action may utilize a visual effect(s) to highlight an element. Different types of highlighting actions, or a combination of highlighting actions, may be used. For example, an element may be displayed in a particular color, may be displayed with a shadow effect, may be displayed with a bold font (applicable to text associated with the element), and the like.
In one example embodiment, a “problem-cause” highlighting of one or more nodes may be applied. For example, a simple sub-tree of a graph may contain one root node and three leaf nodes; the three leaf nodes may influence the root node. The root cause (i.e., the cause of the problem that is the subject of the analysis task) may be highlighted with the color red.
Another highlighting rule may calculate a correlation coefficient associated with each of the leaf nodes using the historical data of the values of the three leaf nodes. The leaf node having the highest correlation coefficient may be highlighted as the most probable cause of the problem, e.g. highlighted with the color orange. The leaf node with the second-highest correlation coefficient may be highlighted as the second-probable cause, e.g. highlighted with the color yellow.
The “focus” action may enable an element, such as a node or edge, to be made the focus of a user's attention. The element to be focused on may be selected according to a rule. For example, a rule may define the most critical element (e.g., the key performance indicator (KPI) with the most critical status) as an element to be focused on. The element which is selected may be displayed in a particular color, displayed with a shadow effect, displayed in the center of the screen, and the like.
The “layout” action may apply, for example, a special layout algorithm on the elements and may set the layout in accordance with a rule. Depending on the application of the graph, a particular layout may be more convenient for the user to view. For example, for hierarchical KPI's, a tree-based representation may be used with higher-level and lower-level KPI's. For transportation networks, the graphs may be mapped to the layout of the transportation routes. The layout action may be applied on the whole graph or only on a subset(s) of the graph, and rules defining the layout may be applied on the whole graph or only on a subset(s) of the graph. In one example embodiment, a graph may combine different layouts (e.g., tree-based and circle-based) to optimally represent the graph to the user.
The following is an example of a rule, in accordance with an example embodiment:
rule1::=value>0,9 AND area==‘stock’==>HIGHLIGHT(‘problem’)
In one example embodiment, a rule may be defined for one specific element and may contain an identification of the specified element. In one example embodiment, a syntax similar to SQL may be utilized to enhance a reading of the rule by a user. For example, rule 1 may be formulated as follows:
SELECT value>0.9 AND area==‘stock’ DO HIGHLIGHT(‘problem’) OTHERWISE HIDE.
In one example embodiment, a pre-assumption for the definition of rules may be that the model of a graph includes the following elements:
1) nodes comprising an array of attributes such as key-value pairs; and
2) edges comprising an array of attributes such as key-value pairs.
An example of an attribute of a node is ID (identification), name, value, value unit, description, state, area, logic, and the like. An example of an edge is ID (identification), name, description, source, target, type, and the like.
In one example embodiment, a selection of a view may be obtained from, for example, a user via the user interface module 406 (operation 704). For example, a user may select a view from view display field 832, as described more fully below in conjunction with
A user may define one or more rules in a rule definition area 820. The rules may be identified by a rule number 824. Each rule 828 may comprise a tuple comprising one or more conditions 836 and one or more actions 840, as described more fully above. The view may be named in view entry field 804 and may be stored with its corresponding rules in, for example, database 216 by selecting the view save radio button 812. A saved view may be retrieved by entering the view name in the view entry field 804 and selecting a user interface control element, such as the view load radio button 808.
A loaded view may be applied by selecting a user interface control element, such as the view apply radio button 816. In one example embodiment, the view may automatically be applied once a loading of the view is complete. In one example embodiment, a list of available views 844 may be displayed in view display field 832. A user may switch from one view to another view by simply selecting the name of the desired view.
View1(‘Diagnosis of stock problems’):=rule1 AND rule2
rule1::=value>0,9 AND area==‘stock’==>HIGHLIGHT(‘problem’)
rule2::=state‘high’ OR state==‘medium’ AND area==‘stock’==>HIGHLIGHT(‘cause’) OTHERWISE HIDE
Embodiments may also, for example, be deployed by Software-as-a-Service (SaaS), Application Service Provider (ASP), or utility computing providers, in addition to being sold or licensed via traditional channels. The computer may be a server computer, a personal computer (PC), a tablet PC, a set-top box (STB), a personal digital assistant (PDA), cellular telephone, or any processing device capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that device. Further, while only a single computer is illustrated, the term “computer” shall also be taken to include any collection of computers that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
The example computer processing system 1100 includes processor 1102 (e.g., a central processing unit (CPU), a graphics processing unit (GPU) or both), main memory 1104 and static memory 1106, which communicate with each other via bus 1108. The processing system 1100 may further include video display unit 1110 (e.g., a plasma display, a liquid crystal display (LCD) or a cathode ray tube (CRT)). The processing system 1100 also includes alphanumeric input device 1112 (e.g., a keyboard), a cursor control device 1111 (e.g., a mouse, touch screen, or the like), a disk drive unit 1116, a signal generation device 1118 (e.g., a speaker), and a network interface device 1120.
The disk drive unit 1116 includes computer-readable medium 1122 on which is stored one or more sets of instructions 1124 and data structures (e.g., software) embodying or utilized by any one or more of the methodologies or functions described herein. The instructions 1124 may also reside, completely or at least partially, within the main memory 1104, static memory 1106, and/or within the processor 1102 during execution thereof by the processing system 1100, the main memory 1104, static memory 1106, and the processor 1102 also constituting computer-readable, tangible media.
The instructions 1124 may further be transmitted or received over network 1126 via a network interface device 1120 utilizing any one of a number of well-known transfer protocols (e.g., Hypertext Transfer Protocol).
While the computer-readable medium 1122 is shown in an example embodiment to be a single medium, the term “computer-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions 1124. The term “computer-readable medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions 1124 for execution by the computer and that cause the computer to perform any one or more of the methodologies of the present application, or that is capable of storing, encoding or carrying data structures utilized by or associated with such a set of instructions 1124. The term “computer-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media.
While the invention(s) is (are) described with reference to various implementations and exploitations, it will be understood that these embodiments are illustrative and that the scope of the invention(s) is not limited to them. In general, techniques for maintaining consistency between data structures may be implemented with facilities consistent with any hardware system or hardware systems defined herein. Many variations, modifications, additions, and improvements are possible.
Plural instances may be provided for components, operations or structures described herein as a single instance. Finally, boundaries between various components, operations, and data stores are somewhat arbitrary, and particular operations are illustrated in the context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within the scope of the invention(s). In general, structures and functionality presented as separate components in the exemplary configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the invention(s).