The present application is directed to methods for forming a toner image within an image forming device and, more particularly, to methods for controlling transitions between color printing and black-only printing.
Color image forming devices contain two or more cartridges, each of which transfers a different color of toner to a media sheet as required to produce a full color copy of a toner image. One common image forming device includes four separate cartridges for each of yellow, magenta, cyan, and black colors. Image formation for each cartridge includes moving the toner from a reservoir to a developer member, from the developer member to a photoconductive member, and from the photoconductive member to either a media sheet or an intermediate member. The toner images from each cartridge are formed on the media sheet in an overlapping arrangement that ultimately forms the final composite toner image.
In many devices, each cartridge is driven during image formation, even when one or more colors are not being used for the specific print job. When the cartridge is driven, the developer member forces toner through multiple compressive nips, even when the developer member is not actually transferring toner. Repeatedly passing toner through the compressive nips inflicts some level of damage to the toner. Worn or damaged toner particles may result in poor transfer to the photoconductive member, then poor transfer to the media sheet or intermediate member. Thus, each time a given particle of toner passes through a nip, the likelihood of that particle responding to the image formation process decreases.
Methods to reduce or eliminate undue wear on the toner would result in better overall efficiency of the image forming device. This in turn would increase the amount of toner available for transfer to the media sheets, and would decrease the amount of wasted toner.
The present application is directed to methods for transitioning between color printing and black-only printing in an image forming device. A cartridge is moved between a first position in which color printing may occur and a second position in which black-only printing may occur. In the first position, a color developer unit may be in contact with a color photoconductor unit. The color developer unit may be spaced from the color photoconductor unit in the second position. During the transition, a voltage supplied to the cartridge and a speed of a drive motor driving the cartridge may be adjusted.
Media sheets are moved from the input and fed into a primary media path. One or more registration rollers disposed along the media path aligns the print media and precisely controls its further movement along the media path. A media transport belt 20 forms a section of the media path for moving the media sheets past a plurality of image forming units 100. Color printers typically include four image forming units 100 for printing with cyan, magenta, yellow, and black toner to produce a four-color image on the media sheet.
An imaging device 22 forms an electrical charge on a photoconductive member 51 within the image forming units 100 as part of the image formation process. The media sheet with loose toner is then moved through a fuser 24 that adheres the toner to the media sheet. Exit rollers 26 rotate in a forward or a reverse direction to move the media sheet to an output tray 28 or a duplex path 30. The duplex path 30 directs the inverted media sheet back through the image formation process for forming an image on a second side of the media sheet.
A controller 15 is included within the image forming device 10 to control creation and timing of the toner images, and movement of the media sheets. The controller 15 may include a microprocessor with associated memory. In one embodiment, the controller 15 includes a microprocessor, random access memory, read only memory, and an input/output interface. The controller 15 receives print requests and forms a print queue of each of the pages in the requests. The queue may include the pages from a single print request, or may include pages from two or more different print requests. The controller 15 further includes a raster image processor that turns vector digital information received in the print requests into a high-resolution raster image. The controller 15 is then able to determine whether each of the pages requires a multi-color mode due to two or more colors of toner being necessary to form the image, or a mono-color mode when a single color (e.g., black) of toner is necessary to form the image.
The image forming units 100 are constructed of a cartridge 40 (in this embodiment, a developer unit) and a photoconductor unit 50. The cartridge 40, including a developer member 45, is positioned within the main body 12. The photoconductor unit 50, including the photoconductive member 51, is mounted to the subunit 13. In a closed orientation as illustrated in
A drive motor 18 (see
The photoconductor unit 50 is illustrated in
In an open orientation as illustrated in
The image forming device 10 may include one or more power supplies, indicated generally by reference number 17 in
As illustrated in
When the subunit 13 is in the closed position, the photoconductive member 51 contacts the developer member 45 of the cartridge 40, thereby generating a nip force between the two members 45, 51. Because the guide rails 82 of the cartridge 40 are positioned on the rollers 83, the cartridge 40 may tend to roll away from the photoconductive member 51 due to the nip force. However, the biasing members 85 oppose movement of the cartridge 40 and maintain the nip force between the photoconductive member 51 and the developer roller 45.
One or more electrical connectors 87 may also contact the cartridge 40. One embodiment includes two electrical connectors 87, one located in proximity to the non-gear side of the cartridge 40 as illustrated in
When the biasing members 85 and the electrical connectors 87 are in contact with the cartridge 40, the cartridge 40 is biased toward a printing (engaged) position in which the developer member 45 is in contact with the photoconductive member 51. As long as the cartridge 40 is in the printing position, the developer member 45 is rotated and the agitating members 42 churn the toner within the reservoir 41 through connection of at least one gear on the cartridge 40 with the drive motor 18. These actions occur regardless of whether the toner in the reservoir 41 will be used during image formation of the present toner image (for example, color toner may not be used when printing a black-only image). Thus, it would be advantageous to stop rotation of the developer member 45 and toner agitating members 42 when not required for the current image. This may prevent undesired consumption of color toner, as well as reduce the amount of toner churning. Before the developer member 45 and the agitating members 42 can be stopped, it may be advantageous to move the cartridge 40 away from the printing position to a retracted position such that the developer member 45 is spaced apart from (not in contact with) the photoconductive member 51.
Because the guide rails 82 of the cartridge 40 are supported by a plurality of rollers 83, the cartridge 40 may be free to slide along the rollers 83 in the absence of sufficient biasing force. Free movement of the cartridge 40 may be enhanced by sloping the guide rails 82 or the alignment of the rollers 83 such that gravitational forces cause the cartridge 40 to slide along the rollers 83 when the biasing forces are removed. Thus, by removing the biasing forces, the cartridge 40 may move to the retracted position, at which time the rotation of the developer member 45 and agitating members 42 may be stopped.
The translation of movement is affected by lower positioning surface 95B. As the bias control arm 91 moves downward as illustrated in
To lessen or remove the biasing force from the developer member 45, the bias control arm 91 may be moved upward to reverse the sequence illustrated in
In another embodiment as illustrated in
While
For purposes of clarity, only a single cartridge 40 is illustrated in
The bias control arm 91 includes a first set of positioning members 93 disposed toward the cartridge 40, and a second set of positioning members 94 disposed at about 90 degrees from the first set of positioning members 93. The first set of positioning members 93 are operative to change the position of the electrical connectors 87, and the second set of positioning members 94 are operative to change the position of the biasing members 85 as discussed in greater detail below. The positioning members 93, 94 include angled positioning surfaces 95A, 95B, 96A, 96B that contact and at least partially retract either the biasing members 85 and/or the electrical connectors 87. As the biasing members 85 and/or the electrical connectors 87 are retracted, the biasing force on the cartridge is reduced until finally the cartridge 40 moves away from the photoconductor unit 50, and the developer member 45 is spaced apart from the photoconductive member 51.
As stated previously, it may be advantageous to stop the developer member 45 and the agitating member 42 in the color cartridges 40 when printing black-only images. In one embodiment, this may be achieved by retracting the color cartridge 40 from the photoconductor unit 50. However, in addition to this mechanical movement, consideration may be given to whether any or all electrical connections to the cartridge 40 are to be maintained when the cartridge 40 is retracted, and whether the drive motor 18 should be stopped. Also, if the cartridge 40 is retracted for black-only printing, it should be engaged again for color printing. In order for a transition between a color printing mode and a black-only printing mode to take place, an amount of time may be required to complete the mechanical movements and adjust electrical connections. During this time, it may not be possible to continue printing media sheets. Therefore, it may be advantageous to minimize the time required for each transition. The methods described below provide a sequence of events that may reduce transition time and increase throughput.
Once the controller 15 has determined that the transition should be made, the controller 15 then determines a delay time between the last media sheet to receive a color image and the next media sheet to be fed which will receive the first black-only image (step 1210). The delay time may take into account the time needed to make the transition as discussed below, as well as the time to pick and feed the media sheet from the media tray 14. For example, the image forming device 10 may include a plurality of media trays 14 stacked upon one another. The distance from the bottom-most media tray 14 in the stack to the image forming units 100 may be greater than the distance from the top-most media tray 14. Thus, the media sheet fed from the bottom-most tray will require more time to reach the image forming units 100 than the media sheet fed from the top-most media tray 14. Therefore, the point at which the media sheet is picked from the media tray 14 may occur at any time during the transition, and is calculated so that the movement of the media sheet coincides with the transition given the path that the media sheet may take to reach the image forming units 100.
The delay time may be measured as an interpage gap and may include a fixed portion and a variable portion. The fixed portion may be determined by the physical spacing of the color image forming units 100, as well as the distance between the nip at the developer member 45 of the last color image forming unit 100 and a transfer nip of the last color image forming unit 100. In one embodiment, the distance between the first and third color image forming units 100 is 100 mm, and the distance between the developer and transfer nips of the last color imaging unit 100 is 20 mm. Accounting for the 20 mm spacing is necessary to allow the media sheet to pass through the last color transfer nip since this media sheet has a color image. Thus, the total fixed distance from the developer nip of the first color image forming unit 100 to the transfer nip of the last color image forming unit 100 is 120 mm. In one embodiment, the controller 15 uses 125 mm as the physical spacing to allow a small margin of error.
The variable portion of the delay time is related to a process speed of the image forming device, which is the speed at which media sheets are moved through the image forming units 100. During the time needed to complete the movement of the bias control arm 91, the last media sheet to receive a color image continues to move through the image forming device. In one embodiment, the image forming device runs at a rate of 35 sheets/minute, which translates to a process speed of about 0.193 mm/ms. The bias control arm 91 requires about 600 ms to move between the first and second positions, and during this time the last color media sheet travels about 115 mm (600 ms×0.193 mm/ms).
Thus, the interpage gap may be 240 mm (125 mm+115 mm). At a process speed of 0.193 mm/ms, the delay time prior to feeding the first media sheet to receive the black-only image is about 1300 ms.
The controller 15 now tracks the trailing edge of a last sheet to receive a color image until the trailing edge reaches the transfer nip of the last color cartridge 40 (step 1215). As the trailing edge passes the last color cartridge 40, the voltage on all three of the color developer members 45 (i.e., magenta, cyan, and yellow) is set to an intermediate level with a magnitude less than the magnitude of the voltage used for printing images (step 1220). In one embodiment, the intermediate level is about −72 volts and the voltage used for printing images is about −600 volts. Other embodiments may include higher or lower levels depending on the particular architecture of the image forming device 10 and specific bias values used for the developer member 45, photoconductive member 51, and other charged components within the image forming device 10.
The intermediate voltage prevents a high bias level between the developer member 45 and the doctor blade 47. In one embodiment, an electrical connection to the doctor blade 47, as well as power to the doctor blade 47, is maintained throughout the transition, while an electrical connection to the developer member 45 may be disconnected during the transition. This avoids the possibility of generating an opposite bias at a nip between the doctor blade 47 and developer member 45, as the voltage on the doctor blade 47 is typically higher in magnitude than the voltage on the developer member 45. When the developer member 45 electrical connection is disconnected, the charge on the developer member 45 may vary between ground and the charge on the toner adder roller 44. If the charge on the developer member 45 goes to ground (zero volts), setting the developer member 45 voltage to the intermediate level avoids a large bias between the developer member 45 and the doctor blade 47, while avoiding the possibility of generating an opposite bias between the two. Otherwise, damage to the toner could result which could lead to print quality defects.
The controller 15 then starts the motor 35 operatively attached to the bias control arm 91, which moves the bias control arm 91. When the bias control arm 91 completes its movement, the color cartridges 40 have retracted from their respective photoconductor units 50 (step 1225). This retraction generates a gap between each of the color developer members 45 and the color photoconductive members 51. The controller 15 may run the motor for a period of time to assure complete travel of the bias control arm 91.
Once the bias control arm 91 movement is completed, the controller 15 stops the drive motor 18 driving the developer members 45 and agitating members 42 of the color cartridges 40 (step 1230). Thus, the developer members 45 are rotating at normal operating speed when retracted from the photoconductive members 51. This sequence minimizes an amount of toner developed onto the photoconductive members 51 during the transition. In one embodiment, the drive motor 18 includes a brake system to reduce the amount of time to stop the drive motor 18, which reduces an overall amount of time to complete the transition and may increase the throughput of the image forming device. Once the drive motor 18 is stopped, the voltage on the developer members 45 is set to zero (step 1235).
At this point, the three color cartridges 40 are in the retracted position, leaving only the black cartridge 40 engaged with the black photoconductor unit 50. The image forming device is now ready for black-only printing. The controller 15 then determines whether each subsequent image is black-only (step 1240) and if so, prints the subsequent image (step 1245). If a subsequent image is not black-only, the controller 15 may transition to color printing as described below.
The controller 15 now determines a delay time between the last sheet to receive a black-only image and the first sheet to receive a color image (step 1310) similar to the delay time describe above for the transition from color printing to black-only printing. The delay time may be measured as an interpage gap and may include a fixed portion and a variable portion. The fixed portion may be determined only by the physical spacing of the color image forming units 100, which is 100 mm. The color to black-only transition does not need to account for the distance between the developer and transfer nips of the last color image forming unit 100 because there is no color image to be transferred at the last color image forming unit 100. Thus, as stated above, the controller 15 tracks the trailing edge of the last media sheet with a black-only image until the trailing edge is even with the developer nip of the last color image forming unit 100 (in the color to black-only transition, the controller 15 tracks the trailing edge until it reaches the transfer nip of the last color image forming unit 100, which is 20 mm further downstream from the developer nip).
The variable portion of the delay time is related to a process speed of the image forming device, which is the speed at which media sheets are moved through the image forming units 100. During the time needed for the bias control arm 91 to complete its movement and the time needed to accelerate the drive motor 18, the last media sheet to receive a black-only image continues to move through the image forming device. In one embodiment, the image forming device runs at a rate of 35 sheets/minute, which translates to a process speed of about 0.193 mm/ms. The bias control arm 91 requires about 600 ms to complete its movement, and the drive motor 18 requires about 800 ms to reach operating speed for a total of 1400 ms. During this time, the last black-only media sheet travels about 270 mm (1400 ms×0.193 mm/ms).
Thus, the interpage gap may be 370 mm (100 mm+270 mm). In one embodiment, an additional 80 mm is added to the interpage gap to allow the image forming units 100 an additional amount of time to correct for any print quality defects arising as a result of the transition. The total interpage gap is then 450 mm. At a process speed of 0.193 mm/ms, the delay time prior to feeding the first media sheet to receive the color image is about 2400 ms.
The controller 15 now tracks the trailing edge of a last sheet to receive a black-only image until the trailing edge is even with the developer member 45 location of the last color cartridge 40 (step 1315). As the trailing edge passes the last color cartridge 40, the voltages on all three of the color developer members 45 is set to an intermediate level with a magnitude less than the magnitude of the voltage used for printing images (step 1320). As described above for the color to black-only transition, the intermediate level may be −72 volts in one embodiment, or another value in other embodiments. An intermediate level is necessary when engaging the developer members 45 and photoconductive members 51 for at least the reasons stated above for disengaging the members 45, 51.
The controller 15 now starts the drive motor 18 for the three color cartridges (step 1325) and accelerates the color developer members 45 up to normal printing speed. In one embodiment, the developer members 45 are not synchronized with the photoconductive members 51 during acceleration, which reduces the time needed to bring the developer members 45 up to normal printing speed.
Once the developer members 45 reach normal operating speed, the controller 15 starts the motor 35 to move the bias control arm 91 to the position where the color cartridges 40 are engaged with the photoconductor units 50 (step 1330). Just prior to completing this movement, the controller 15 increases the magnitude of the voltage of the color developer members 45 to the normal voltage used for printing images (step 1335). In one embodiment, the movement of the bias control arm 91 takes about 600 ms, and the magnitude of the voltage is increased on the developer members 45 after about 500 ms. This sequence reduces the bias differential between the developer members 45 and the photoconductive members 51 as the two make contact with one another.
The controller 15 then determines whether each subsequent image is color (step 1340) and if so, prints the subsequent image (step 1345). If a subsequent image is not color, the controller 15 may transition to black-only printing as described above.
Referring back to
The embodiments described above relate to a two-piece cartridge in which the developer unit 40 is contained in one piece, and the photoconductor unit 50 is contained in the other piece. In another embodiment, the cartridge is a single piece and contains both the developer unit 40 and the photoconductor unit 50 in that one piece. In this latter embodiment, the bias control arm 91 may, for example, bias the cartridge toward the transfer belt 20 to form a nip between the photoconductive member 51 and a transfer roller. The methods described above may be used to move the single piece cartridge away from the transfer belt 20, at which point the cartridge may be shut off, reducing toner churn as described above.
The term “image forming device” and the like is used generally herein as a device that produces images on a media sheet. Examples include but are not limited to a laser printer, ink-jet printer, fax machine, copier, and a multi-functional machine. One example of an image forming device is Model No. C530 from Lexmark International of Lexington, Ky.
The term “imaging device” refers to a device that arranges an electrical charge on the photoconductive element 51. Various imaging devices may be used such as a laser printhead and a LED printhead.
The transport belt 20 is illustrated in the embodiments for moving the media sheets past the image forming units 100, and as part of the subunit 13. In another embodiment, roller pairs are mounted to the subunit 13 and spaced along the media path. The roller pairs move the media sheets past the image forming units 100. In one embodiment, each of the roller pairs is mounted on the subunit 13. In another embodiment, one of the rollers is mounted on the subunit 13, and the corresponding roller of the pair is mounted on the main body 12. In yet another embodiment, rollers may be positioned within the photoconductor unit 50.
Spatially relative terms such as “under”, “below”, “lower”, “over”, “upper”, and the like, are used for ease of description to explain the positioning of one element relative to a second element. These terms are intended to encompass different orientations of the device in addition to different orientations than those depicted in the figures. Further, terms such as “first”, “second”, and the like, are also used to describe various elements, regions, sections, etc. and are also not intended to be limiting. Like terms refer to like elements throughout the description.
As used herein, the terms “having”, “containing”, “including”, “comprising”, and the like are open ended terms that indicate the presence of stated elements or features, but do not preclude additional elements or features. The articles “a”, “an” and “the” are intended to include the plural as well as the singular, unless the context clearly indicates otherwise.
The present invention may be carried out in other specific ways than those herein set forth without departing from the scope and essential characteristics of the invention. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.