1. Field of the Invention
Embodiments of the invention disclosed herein relate to methods and compositions for inducing a MHC class I-restricted immune response and controlling the nature and magnitude of the response, promoting effective immunologic intervention in pathogenic processes. More particularly embodiments relate to immunogenic compositions, their nature and the order, timing, and route of administration by which they are effectively used.
2. Description of the Related Art
T lymphocytes (T cells) are antigen-specific immune cells that function in response to specific antigen signals. B lymphocytes and the antibodies they produce are also antigen-specific entities. However, unlike B lymphocytes, T cells do not respond to antigens in a free or soluble form. For a T cell to respond to an antigen, it requires the antigen to be bound to a presenting complex known as the major histocompatibility complex (MHC).
MHC proteins provide the means by which T cells differentiate native or “self” cells from foreign cells. MHC molecules are a category of immune receptors that present potential peptide epitopes to be monitored subsequently by the T cells. There are two types of MHC, class I MHC and class II MHC. CD4+ T cells interact with class II MHC proteins and predominately have a helper phenotype while CD8+ T cells interact with class I MHC proteins and predominately have a cytolytic phenotype, but each of them can also exhibit regulatory, particularly suppressive, function. Both MHC are transmembrane proteins with a majority of their structure on the external surface of the cell. Additionally, both classes of MHC have a peptide binding cleft on their external portions. It is in this cleft that small fragments of proteins, native or foreign, are bound and presented to the extracellular environment.
Cells called antigen presenting cells (APCs) display antigens to T cells using the MHC. T cells can recognize an antigen, if it is presented on the MHC. This requirement is called MHC restriction. If an antigen is not displayed by a recognizable MHC, the T cell will not recognize and act on the antigen signal. T cells specific for the peptide bound to a recognizable MHC bind to these MHC-peptide complexes and proceed to the next stages of the immune response.
Peptides corresponding to nominal MHC class I or class II restricted epitopes are among the simplest forms of antigen that can be delivered for the purpose of inducing, amplifying or otherwise manipulating the T cell response. Despite the fact that peptide epitopes have been shown to be effective in vitro at re-stimulating in vivo primed T cell lines, clones, or T cell hybridomas, their in vivo efficacy has been very limited. This is due to two main factors:
Embodiments of the present invention include methods and compositions for manipulating, and in particular for inducing, entraining, and/or amplifying, the immune response to MHC class I restricted epitopes.
Some embodiments relate to methods of immunization. The methods can include, for example, delivering to a mammal a first composition that includes an immunogen, the immunogen can include or encode at least a portion of a first antigen; and administering a second composition, which can include an amplifying peptide, directly to a lymphatic system of the mammal, wherein the peptide corresponds to an epitope of said first antigen, wherein the first composition and the second composition are not the same. The methods can further include the step of obtaining, assaying for or detecting and effector T cell response.
The first composition can include a nucleic acid encoding the antigen or an immunogenic fragment thereof. The first composition can include a nucleic acid capable of expressing the epitope in a pAPC. The nucleic acid can be delivered as a component of a protozoan, bacterium, virus, or viral vector. The first composition can include an immunogenic polypeptide and an immunopotentiator, for example. The immunopotentiator can be a cytokine, a toll-like receptor ligand, and the like. Adjuvants can include an immunostimulatory sequence, an RNA, and the like.
The immunogenic polypeptide can be an amplifying peptide. The immunogenic polypeptide can be a first antigen. The immunogenic polypeptide can be delivered as a component of a protozoan, bacterium, virus, viral vector, or virus-like particle, or the like. The adjuvant can be delivered as a component of a protozoan, bacterium, virus, viral vector, or virus-like particle, or the like. The second composition can be adjuvant-free and immunopotentiator-free. The delivering step can include direct administration to the lymphatic system of the mammal. The direct administration to the lymphatic system of the mammal can include direct administration to a lymph node or lymph vessel. The direct administration can be to two or more lymph nodes or lymph vessels. The lymph node can be for example, inguinal, axillary, cervical, and tonsilar lymph nodes. The effector T cell response can be a cytotoxic T cell response. The effector T cell response can include production of a pro-inflammatory cytokine, and the cytokine can be, for example, (gamma) γ-IFN or TNFα (alpha). The effector T cell response can include production of a T cell chemokine, for example, RANTES or MIP-1α, or the like.
The epitope can be a housekeeping epitope or an immune epitope, for example. The delivering step or the administering step can include a single bolus injection, repeated bolus injections, for example. The delivering step or the administering step can include a continuous infusion, which for example, can have duration of between about 8 to about 7 days. The method can include an interval between termination of the delivering step and beginning the administering step, wherein the interval can be at least about seven days. Also, the interval can be between about 7 and about 14 days, about 17 days, about 20 days, about 25 days, about 30 days, about 40 days, about 50 days, or about 60 days, for example. The interval can be over about 75 days, about 80 days, about 90 days, about 100 days or more.
The first antigen can be a disease-associated antigen, and the disease-associated antigen can be a tumor-associated antigen, a pathogen-associated antigen. Embodiments include methods of treating disease utilizing the described method of immunizing. The first antigen can be a target-associated antigen. The target can be a neoplastic cell, a pathogen-infected cell, and the like. For example, any neoplastic cell can be targeted. Pathogen-infected cells can include, for example, cells infected by a bacterium, a virus, a protozoan, a fungus, and the like, or affected by a prion, for example.
The effector T cell response can be detected by at least one indicator for example, a cytokine assay, an Elispot assay, a cytotoxicity assay, a tetramer assay, a DTH-response, a clinical response, tumor shrinkage, tumor clearance, inhibition of tumor progression, decrease pathogen titre, pathogen clearance, amelioration of a disease symptom, and the like. The methods can further include obtaining, detecting or assaying for an effector T cell response to the first antigen.
Further embodiments relate to methods of immunization that include delivering to a mammal a first composition including a nucleic acid encoding a first antigen or an immunogenic fragment thereof; administering a second composition, including a peptide, directly to the lymphatic system of the mammal, wherein the peptide corresponds to an epitope of the first antigen. The methods can further include obtaining, detecting or assaying for an effector T cell response to the antigen.
Also, embodiments relate to methods of augmenting an existing antigen-specific immune response. The methods can include administering a composition that includes a peptide, directly to the lymphatic system of a mammal, wherein the peptide corresponds to an epitope of the antigen, and wherein the composition was not used to induce the immune response. The methods can further include obtaining, detecting or assaying for augmentation of an antigen-specific immune response. The augmentation can include sustaining the response over time, reactivating quiescent T cells, expanding the population of antigen-specific T cells, and the like. In some aspects, the composition does not include an immunopotentiator.
Other embodiments relate to methods of immunization which can include delivering to a mammal a first composition comprising an immunogen, the immunogen can include or encode at least a portion of a first antigen and at least a portion of a second antigen; administering a second composition including a first peptide, and a third composition including a second peptide, directly to the lymphatic system of the mammal, wherein the first peptide corresponds to an epitope of the first antigen, and wherein the second peptide corresponds to an epitope of the second antigen, wherein the first composition can be not the same as the second or third compositions. The methods further can include obtaining, detecting or assaying for an effector T cell response to the first and second antigens. The second and third compositions each can include the first and the second peptides. The second and third compositions can be part of a single composition.
Still further embodiments relate to methods of generating an antigen-specific tolerogenic or regulatory immune response. The methods can include periodically administering a composition, including an adjuvant-free peptide, directly to the lymphatic system of a mammal, wherein the peptide corresponds to an epitope of the antigen, and wherein the mammal can be epitopically naive. The methods further can include obtaining, detecting and assaying for a tolerogenic or regulatory T cell immune response. The immune response can assist in treating an inflammatory disorder, for example. The inflammatory disorder can be, for example, from a class II MHC-restricted immune response. The immune response can include production of an immunosuppressive cytokine, for example, IL-5, IL-10, or TGB-β, and the like.
Embodiments relate to methods of immunization that include administering a series of immunogenic doses directly into the lymphatic system of a mammal wherein the series can include at least 1 entraining dose and at least 1 amplifying dose, and wherein the entraining dose can include a nucleic acid encoding an immunogen and wherein the amplifying dose can be free of any virus, viral vector, or replication-competent vector. The methods can further include obtaining an antigen-specific immune response. The methods can include, for example, 1 to 6 or more entraining doses. The method can include administering a plurality of entraining doses, wherein the doses are administered over a course of one to about seven days. The entraining doses,.amplifying doses, or entraining and amplifying doses can be delivered in multiple pairs of injections, wherein a first member of a pair can be administered within about 4 days of a second member of the pair, and wherein an interval between first members of different pairs can be at least about 14 days. An interval between a last entraining dose and a first amplifying dose can be between about 7 and about 100 days, for example.
Other embodiments relate to sets of immunogenic compositions for inducing an immune response in a mammal including 1 to 6 or more entraining doses and at least one amplifying dose, wherein the entraining doses can include a nucleic acid encoding an immunogen, and wherein the amplifying dose can include a peptide epitope, and wherein the epitope can be presented or is presentable by pAPC expressing the nucleic acid. The one dose further can include an adjuvant, for example, RNA. The entraining and amplifying doses can be in a carrier suitable for direct administration to the lymphatic system, a lymph node and the like. The nucleic acid can be a plasmid. The epitope can be a class I HLA epitope, for example, one listed in Tables 1-4. The HLA preferably can be HLA-A2. The immunogen can include an epitope array, which array can include a liberation sequence. The immunogen can consist essentially of a target-associated antigen. The target-associated antigen can be a tumor-associated antigen, a microbial antigen, any other antigen, and the like. The immunogen can include a fragment of a target-associated antigen that can include an epitope cluster.
Further embodiments can include sets of immunogenic compositions for inducing a class I MHC-restricted immune response in a mammal including 1-6 entraining doses and at least one amplifying dose, wherein the entraining doses can include an immunogen or a nucleic acid encoding an immunogen and an immunopotentiator, and wherein the amplifying dose can include a peptide epitope, and wherein the epitope can be presented by pAPC. The nucleic acid encoding the immunogen further can include an immunostimulatory sequence which can be capable of functioning as the immunopotentiating agent. The immunogen can be a virus or replication-competent vector that can include or can induce an immunopotentiating agent. The immunogen can be a bacterium, bacterial lysate, or purified cell wall component. Also, the bacterial cell wall component can be capable of functioning as the immunopotentiating agent. The immunopotentiating agent can be, for example, a TLR ligand, an immunostimulatory sequence, a CpG-containing DNA, a dsRNA, an endocytic-Pattern Recognition Receptor (PRR) ligand, an LPS, a quillaja saponin, tucaresol, a pro-inflammatory cytokine, and the like. In some preferred embodiments for promoting multivalent responses the sets can include multiple entraining doses and/or multiple amplification doses corresponding to various individual antigens, or combinations of antigens, for each administration. The multiple entrainment doses can be administered as part of a single composition or as part of more than one composition. The amplifying doses can be administered at disparate times and/or to more than one site, for example.
Other embodiments relate to methods of generating various cytokine profiles. In some embodiments of the instant invention, intranodal administration of peptide can be effective in amplifying a response initially induced with a plasmid DNA vaccine. Moreover, the cytokine profile can be distinct, with plasmid DNA induction/peptide amplification generally resulting in greater chemokine (chemoattractant cytokine) and lesser immunosuppressive cytokine production than either DNA/DNA or peptide/peptide protocols.
An amplifying peptide used in the various embodiments corresponds to an epitope of the immunizing antigen. In some embodiments, correspondence can include faithfully iterating the native sequence of the epitope. In some embodiments, correspondence can include the corresponding sequence can be an analogue of the native sequence in which one or more of the amino acids have been modified or replaced, or the length of the epitope altered. Such analogues can retain the immunologic function of the epitope (i.e., they are functionally similar). In preferred embodiments the analogue has similar or improved binding with one or more class I MHC molecules compared to the native sequence. In other preferred embodiments the analogue has similar or improved immunogenicity compared to the native sequence. Strategies for making analogues are widely known in the art. Exemplary discussions of such strategies can be found in U.S. patent application Ser. Nos. 10/117,937 (Pub. No. 2003-0220239 A1), filed on Apr. 4, 2002; and 10/657,022 (Publication No. 20040180354), filed on Sep. 5, 2003, both entitled EPITOPE SEQUENCES; and U.S. Provisional Patent Application No. 60/581,001, filed on Jun. 17, 2004 and U.S. patent application Ser. No. 11/156,253 (Pub. No. No. ______), filed on Jun. 17, 2005, both entitled SSX-2 PEPTIDE ANALOGS; and U.S. Provisional Patent Application No. 60/580,962 and U.S. patent application Ser. No. 11/155,929 (Pub. No. ______), filed on Jun. 17, 2005, both entitled NY-ESO PEPTIDE ANALOGS; each of which is hereby incorporated by reference in its entirety.
Still further embodiments relate to uses of a peptide in the manufacture of an adjuvant-free medicament for use in an entrain-and-amplify immunization protocol. The compositions, kits, immunogens and compounds can be used in medicaments for the treatment of various diseases, to amplify immune responses, to generate particular cytokine profiles, and the like, as described herein. Embodiments relate to the use of adjuvant-free peptide in a method of amplifying an immune response.
Embodiments are directed to methods, uses, therapies and compositions related to epitopes with specificity for MHC, including, for example, those listed in Tables 1-4. Other embodiments include one or more of the MHCs listed in Tables 1-4, including combinations of the same, while other embodiments specifically exclude any one or more of the MHCs or combinations thereof. Tables 3-4 include frequencies for the listed HLA antigens.
Some embodiments relate to methods of generating an immune response. The methods can include delivering to a mammal a first composition (composition 1) which can include an immunogen that includes or encodes at least a portion of a first antigen (antigen A) and at least a portion of a second antigen (antigen B); and administering a second composition (composition 2) which can include a first peptide (peptide A), and a third composition (composition 3) that can include a second peptide (peptide B), directly to the lymphatic system of the mammal, wherein peptide A corresponds to an epitope of the antigen A, and wherein the peptide B corresponds to an epitope of antigen B, wherein composition 1 is not the same as composition 2 or composition 3. The methods can further include obtaining an effector T cell response to one or both of the antigens.
In some aspects composition 2 and composition 3 each can include peptide A and peptide B. Peptides A and B can be administered to separate sites, or to the same site including at different times, for example. Composition 1 can include a nucleic acid molecule encoding both antigen A and antigen B, or portions thereof. Also, composition 1 can include two nucleic acid molecules one encoding antigen A or portion thereof and one encoding antigen B or portion thereof, for example.
The first and second antigens can be any antigen. Preferably, the first and second antigens are melanoma antigens, CT antigens, carcinoma-associated antigens, a CT antigen and a stromal antigen, a CT antigen and a neovasculature antigen, a CT antigen and a differentiation antigen, a carcinoma-associated antigen and a stromal antigen, and the like. Various, antigen combinations are provided in U.S. application Ser. No. 10/871,708 (Pub. No. 20050118186), filed on Jun. 17, 2004, entitled COMBINATIONS OF TUMOR-ASSOCIATED ANTIGENS IN COMPOSITIONS FOR VARIOUS TYPES OF CANCERS; and U.S. Provisional Application No. 60/640,598, filed on Dec. 29, 2004, and in U.S. application No. ______ (Pub. No. ______) (Attorney Docket No. MANNK.049A) filed on the same date as the instant application, both also entitled COMBINATIONS OF TUMOR-ASSOCIATED ANTIGENS IN COMPOSITIONS FOR VARIOUS TYPES OF CANCERS, each of which is incorporated herein by reference in its entirety. Preferably the antigen, including antigen A or B can be SSX-2, Melan-A, Tyrosinase, PSMA, PRAME, NY-ESO-1, or the like. Many other antigens are known to those of ordinary skill in the art. It should be understood that in this and other embodiments, more than two compositions, immunogens, antigens, epitopes and/or peptides can be used. For example, three, four, five or more of any one or more of the above can be used.
Other embodiments relate to methods of generating an immune response, which can include, for example, delivering to a mammal a first composition (composition 1) that includes an immunogen (immunogen 1), which immunogen 1 can include or encode at least a portion of a first antigen (antigen A) and a second composition (composition 2) which can include a second immunogen (immunogen 2) that can include or encode at least a portion of a second antigen (antigen B); and administering a third composition (composition 3) that can include a first peptide (peptide A), and a fourth composition (composition 4) that can include a second peptide (peptide B), directly to the lymphatic system of the mammal, wherein peptide A corresponds to an epitope of antigen A, and wherein peptide B corresponds to an epitope of antigen B, wherein composition 1 is not the same as composition 2 or composition 3.
In some aspects composition 2 is not the same as composition 3, for example. Composition 1 and composition 3 can be delivered to a same site, for example, the site can be an inguinal lymph node. Also, compositions 2 and 4 can be delivered to a different site than compositions 1 and 3, for example, to another inguinal lymph node.
Still further embodiments relate to methods of generating an immune response that can include, for example, delivering a first composition that includes means for entraining an immune response to a first antigen and a second antigen; and administering a second composition that includes a first peptide, and a third composition that includes a second peptide, directly to the lymphatic system of the mammal, wherein the first peptide corresponds to an epitope of the first antigen, and wherein the second peptide corresponds to an epitope of the second antigen, wherein the first composition is not the same as the second or third compositions. The means for entraining an immune response can include, for example, means for expressing the antigens or portions thereof.
Also, some embodiments relate to methods of immunization, which can include, for example, delivering to a mammal a first composition that includes an immunogen, which immunogen can include or encode at least a portion of a first antigen and at least a portion of a second antigen; and a step for amplifying the response to the antigens. Preferably, the step for amplifying the response to the antigens can include administering a first peptide that corresponds to the at least a portion of a first antigen to a secondary lymphoid organ and administering a second peptide corresponding to the at least a portion of a second antigen to a different secondary lymphoid organ.
Embodiments of the present invention provide methods and compositions, for example, for generating immune cells specific to a target cell, for directing an effective immune response against a target cell, or for affecting/treating inflammatory disorders. The methods and compositions can include, for example, immunogenic compositions such as vaccines and therapeutics, and also prophylactic and therapeutic methods. Disclosed herein is the novel and unexpected discovery that by selecting the form of antigen, the sequence and timing with which it is administered, and delivering the antigen directly into secondary lymphoid organs, not only the magnitude, but the qualitative nature of the immune response can be managed.
Some preferred embodiments relate to compositions and methods for entraining and amplifying a T cell response. For example such methods can include an entrainment step where a composition comprising a nucleic acid encoded immunogen is delivered to an animal. The composition can be delivered to various locations on the animal, but preferably is delivered to the lymphatic system, for example, a lymph node. The entrainment step can include one or more deliveries of the composition for example spread out over a period of time or in a continuous fashion over a period of time. Preferably, the methods can further include an amplification step comprising administering a composition comprising a peptide immunogen. The amplification step can be performed one or more times, for example, at intervals over a period of time, in one bolus, or continuously over a period of time. Although not required in all embodiments, some embodiments can include the use of compositions that include an immunopotentiator or adjuvant.
Each of the disclosures of the following applications, including all methods, figures, and compositions, is incorporated herein by reference in its entirety: U.S. Provisional Application No. 60/479,393, filed on Jun. 17, 2003, entitled METHODS TO CONTROL MHC CLASS I-RESTRICTED IMMUNE RESPONSE; U.S. application Ser. No. 10/871,707 filed on Jun. 17, 2004 (Pub. No. 20050079152), U.S. Provisional Application No. 60/640,402, filed on Dec. 29, 2004, and U.S. application Ser. No. ______ (Pub. No. ______) (Attorney Docket No. MANNK.047A), filed on the same date as this application, all three of which are entitled “METHODS TO ELICIT, ENHANCE AND SUSTAIN IMMUNE RESPONSES AGAINST MHC CLASS I-RESTRICTED EPITOPES, FOR PROPHYLACTIC OR THERAPEUTIC PURPOSES”; U.S. application Ser. No. 10/871,708 (Pub. No. 20050118186), filed on Jun. 17, 2004, entitled “COMBINATIONS OF TUMOR-ASSOCIATED ANTIGENS IN COMPOSITIONS FOR VARIOUS TYPES OF CANCERS”; and Provisional Application No. 60/640,598, filed on Dec. 29, 2004, and U.S. patent application Ser. No. ______ (Pub. No. ______), (Attorney Docket No. MANNK.049A), filed on the same date as this application, both of which are entitled “COMBINATIONS OF TUMOR-ASSOCIATED ANTIGENS IN COMPOSITIONS FOR VARIOUS TYPES OF CANCERS,” and each of which are incorporated by reference in its entirety Also, the following applications include methods and compositions that can be used with the instant methods and compositions. Plasmid and principles of plasmid design are disclosed in U.S. patent application Ser. No. 10/292,413 (Pub. No. 20030228634 A1), entitled “EXPRESSION VECTORS ENCODING EPITOPES OF TARGET ASSOCIATED ANTIGENS AND METHODS FOR THEIR DESIGN,” which is hereby incorporated by reference in its entirety; additional methodology, compositions, peptides, and peptide analogues are disclosed in U.S. Provisional Application No 60/581,001, filed on Jun. 17, 2004, U.S. application Ser. No. 11/156,253 (Pub. No. ______), entitled “SSX-2 PEPTIDE ANALOGS”; each of which is incorporated herein by reference in its entirety; U.S. Provisional Application No. 60/580,962, filed on Jun. 17, 2004, U.S. application Ser. No. 11/155,929 (Pub. No. ______), filed on Jun. 17, 2005, entitled “NY-ESO PEPTIDE ANALOGS”; each of which is incorporated herein by reference in its entirety; and U.S. application Ser. Nos. 10/117,937 (Pub. No. 20030220239), filed on Apr. 4, 2002. and 10/657,022 (Pub. No. 20040180354), filed on Sep. 5, 2003, both of which are entitled EPITOPE SEQUENCES, and each of which is hereby incorporated by reference in its entirety.
In some embodiments, depending on the nature of the immunogen and the context in which it is encountered, the immune response elicited can differ in its particular activity and makeup. In particular, while immunization with peptide can generate a cytotoxic/cytolytic T cell (CTL) response, attempts to further amplify this response with further injections can instead lead to the expansion of a regulatory T cell population, and a diminution of observable CTL activity. Thus compositions conferring high MHC/peptide concentrations on the cell surface within the lymph node, without additional immunopotentiating activity, can be used to purposefully promote a regulatory or tolerogenic response. In contrast immunogenic compositions providing ample immunopotentiation signals (e.g.,. toll-like receptor ligands [or the cytokine/autocrine factors they would induce]) even if providing only limiting antigen, not only induce a response, but entrain it as well, so that subsequent encounters with ample antigen (e.g., injected peptide) amplifies the response without changing the nature of the observed activity. Therefore, some embodiments relate to controlling the immune response profile, for example, the kind of response obtained and the kinds of cytokines produced. Some embodiments relate to methods and compositions for promoting the expansion or further expansion of CTL, and there are embodiment that relate to methods and compositions for promoting the expansion of regulatory cells in preference to the CTL, for example.
The disclosed methods are advantageous over many protocols that use only peptide or that do not follow the entrain-and-amplify methodology. As set forth above, many peptide-based immunization protocols and vector-based protocols have drawbacks. Nevertheless, if successful, a peptide based immunization or immune amplification strategy has advantages over other methods, particularly certain microbial vectors, for example. This is due to the fact that more complex vectors, such as live attenuated viral or bacterial vectors, may induce deleterious side-effects, for example, in vivo replication or recombination; or become ineffective upon repeated administration due to generation of neutralizing antibodies against the vector itself. Additionally, when harnessed in such a way to become strong immunogens, peptides can circumvent the need for proteasome-mediated processing (as with protein or more complex antigens, in context of “cross-processing” or subsequent to cellular infection). That is because cellular antigen processing for MHC-class I restricted presentation is a phenomenon that inherently selects dominant (favored) epitopes over subdominant epitopes, potentially interfering with the immunogenicity of epitopes corresponding to valid targets. Finally, effective peptide based immunization simplifies and shortens the process of development of immunotherapeutics.
Thus, effective peptide-based immune amplification methods, particularly including those described herein, can be of considerable benefit to immunotherapy (such as for cancer and chronic infections) or prophylactic vaccination (against certain infectious diseases). Additional benefits can be achieved by avoiding simultaneous use of cumbersome, unsafe, or complex adjuvant techniques, although such techniques can be utilized in various embodiments described herein.
Definitions:
Unless otherwise clear from the context of the use of a term herein, the following listed terms shall generally have the indicated meanings for purposes of this description.
PROFESSIONAL ANTIGEN-PRESENTING CELL (PAPC)—a cell that possesses T cell costimulatory molecules and is able to induce a T cell response. Well characterized pAPCs include dendritic cells, B cells, and macrophages.
PERIPHERAL CELL—a cell that is not a pAPC.
HOUSEKEEPING PROTEASOME—a proteasome normally active in peripheral cells, and generally not present or not strongly active in pAPCs.
IMMUNOPROTEASOME—a proteasome normally active in pAPCs; the immunoproteasome is also active in some peripheral cells in infected tissues or following exposure to interferon.
EPITOPE—a molecule or substance capable of stimulating an immune response. In preferred embodiments, epitopes according to this definition include but are not necessarily limited to a polypeptide and a nucleic acid encoding a polypeptide, wherein the polypeptide is capable of stimulating an immune response. In other preferred embodiments, epitopes according to this definition include but are not necessarily limited to peptides presented on the surface of cells, the peptides being non-covalently bound to the binding cleft of class I MHC, such that they can interact with T cell receptors (TCR). Epitopes presented by class I MHC may be in immature or mature form. “Mature” refers to an MHC epitope in distinction to any precursor (“immature”) that may include or consist essentially of a housekeeping epitope, but also includes other sequences in a primary translation product that are removed by processing, including without limitation, alone or in any combination, proteasomal digestion, N-terminal trimming, or the action of exogenous enzymatic activities. Thus, a mature epitope may be provided embedded in a somewhat longer polypeptide, the immunological potential of which is due, at least in part, to the embedded epitope; likewise, the mature epitope can be provided in its ultimate form that can bind in the MHC binding cleft to be recognized by TCR.
MHC EPITOPE—a polypeptide having a known or predicted binding affinity for a mammalian class I or class II major histocompatibility complex (MHC) molecule. Some particularly well characterized class I MHC molecules are presented in Tables 1-4.
HOUSEKEEPING EPITOPE—In a preferred embodiment, a housekeeping epitope is defined as a polypeptide fragment that is an MHC epitope, and that is displayed on a cell in which housekeeping proteasomes are predominantly active. In another preferred embodiment, a housekeeping epitope is defined as a polypeptide containing a housekeeping epitope according to the foregoing definition, that is flanked by one to several additional amino acids. In another preferred embodiment, a housekeeping epitope is defined as a nucleic acid that encodes a housekeeping epitope according to the foregoing definitions. Exemplary housekeeping epitopes are provided in U.S. patent application Ser. Nos. 10/117,937, filed on Apr. 4, 2002 (Pub. No. 20030220239 A1), 11/067,159 (Pub. No. 2005-0221440 A1), filed Feb. 25, 2005, 11/067,064 (Pub. No. 2005-0142144 Al), filed Feb. 25, 2005, and 10/657,022 (Pub. No. 2004-0180354 A1), filed Sep. 5, 2003, and in PCT Application No. PCT/US2003/027706 (Pub. No. WO 2004/022709 A2), filed Sept. 5, 2003; and U.S. Provisional Application Nos. 60/282,211, filed on Apr. 6, 2001; 60/337,017, filed on Nov. 7, 2001; 60/363,210 filed Mar. 7, 2002; and 60/409,123, filed on Sep. 6, 2002. Each of the listed applications is entitled EPITOPE SEQUENCES. Each of the applications mentioned in this paragraph is incorporated herein by reference in its entirety.
IMMUNE EPITOPE—In a preferred embodiment, an immune epitope is defined as a polypeptide fragment that is an MHC epitope, and that is displayed on a cell in which immunoproteasomes are predominantly active. In another preferred embodiment, an immune epitope is defined as a polypeptide containing an immune epitope according to the foregoing definition that is flanked by one to several additional amino acids. In another preferred embodiment, an immune epitope is defined as a polypeptide including an epitope cluster sequence, having at least two polypeptide sequences having a known or predicted affinity for a class I MHC. In yet another preferred embodiment, an immune epitope is defined as a nucleic acid that encodes an immune epitope according to any of the foregoing definitions.
TARGET CELL—In a preferred embodiment, a target cells is a cell associated with a pathogenic condition that can be acted upon by the components of the immune system, for example, a cell infected with a virus or other intracellular parasite, or a neoplastic cell. In another embodiment, a target cell is a cell to be targeted by the vaccines and methods of the invention. Examples of target cells according to this definition include but are not necessarily limited to: a neoplastic cell and a cell harboring an intracellular parasite, such as, for example, a virus, a bacterium, or a protozoan. Target cells can also include cells that are targeted by CTL as a part of an assay to determine or confirm proper epitope liberation and processing by a cell expressing immunoproteasome, to determine T cell specificity or immunogenicity for a desired epitope. Such cells can be transformed to express the liberation sequence, or the cells can simply be pulsed with peptide/epitope.
TARGET-ASSOCIATED ANTIGEN (TAA)—a protein or polypeptide present in a target cell.
TUMOR-ASSOCIATED ANTIGENS (TuAA)—a TAA, wherein the target cell is a neoplastic cell.
HLA EPITOPE—a polypeptide having a known or predicted binding affinity for a human class I or class II HLA complex molecule. Particularly well characterized class I HLAs are presented in Tables 1-4.
ANTIBODY—a natural immunoglobulin (Ig), poly- or monoclonal, or any molecule composed in whole or in part of an Ig binding domain, whether derived biochemically, or by use of recombinant DNA, or by any other means. Examples include inter alia, F(ab), single chain Fv, and Ig variable region-phage coat protein fusions.
SUBSTANTIAL SIMILARITY—this term is used to refer to sequences that differ from a reference sequence in an inconsequential way as judged by examination of the sequence. Nucleic acid sequences encoding the same amino acid sequence are substantially similar despite differences in degenerate positions or minor differences in length or composition of any non-coding regions. Amino acid sequences differing only by conservative substitution or minor length variations are substantially similar. Additionally, amino acid sequences comprising housekeeping epitopes that differ in the number of N-terminal flanking residues, or immune epitopes and epitope clusters that differ in the number of flanking residues at either terminus, are substantially similar. Nucleic acids that encode substantially similar amino acid sequences are themselves also substantially similar.
FUNCTIONAL SIMILARITY—this term is used to refer to sequences that differ from a reference sequence in an inconsequential way as judged by examination of a biological or biochemical property, although the sequences may not be substantially similar. For example, two nucleic acids can be useful as hybridization probes for the same sequence but encode differing amino acid sequences. Two peptides that induce cross-reactive CTL responses are functionally similar even if they differ by non-conservative amino acid substitutions (and thus may not be within the substantial similarity definition). Pairs of antibodies, or TCRs, that recognize the same epitope can be functionally similar to each other despite whatever structural differences exist. Testing for functional similarity of immunogenicity can be conducted by immunizing with the “altered” antigen and testing the ability of an elicited response, including but not limited to an antibody response, a CTL response, cytokine production, and the like, to recognize the target antigen. Accordingly, two sequences may be designed to differ in certain respects while retaining the same function. Such designed sequence variants of disclosed or claimed sequences are among the embodiments of the present invention.
EXPRESSION CASSETTE—a polynucleotide sequence encoding a polypeptide, operably linked to a promoter and other transcription and translation control elements, including but not limited to enhancers, termination codons, internal ribosome entry sites, and polyadenylation sites. The cassette can also include sequences that facilitate moving it from one host molecule to another.
EMBEDDED EPITOPE—in some embodiments, an embedded epitope is an epitope that is wholly contained within a longer polypeptide; in other embodiments, the term also can include an epitope in which only the N-terminus or the C-terminus is embedded such that the epitope is not wholly in an interior position with respect to the longer polypeptide.
MATURE EPITOPE—a peptide with no additional sequence beyond that present when the epitope is bound in the MHC peptide-binding cleft.
EPITOPE CLUSTER—a polypeptide, or a nucleic acid sequence encoding it, that is a segment of a protein sequence, including a native protein sequence, comprising two or more known or predicted epitopes with binding affinity for a shared MHC restriction element. In preferred embodiments, the density of epitopes within the cluster is greater than the density of all known or predicted epitopes with binding affinity for the shared MHC restriction element within the complete protein sequence. Epitope clusters are disclosed and more fully defined in U.S. patent application Ser. No. 09/561,571, filed Apr. 28, 2000, entitled EPITOPE CLUSTERS, which is incorporated herein by reference in its entirety.
LIBERATION SEQUENCE—a designed or engineered sequence comprising or encoding a housekeeping epitope embedded in a larger sequence that provides a context allowing the housekeeping epitope to be liberated by processing activities including, for example, immunoproteasome activity, N terminal trimming, and/or other processes or activities, alone or in any combination.
CTLp—CTL precursors are T cells that can be induced to exhibit cytolytic activity. Secondary in vitro lytic activity, by which CTLp are generally observed, can arise from any combination of naive, effector, and memory CTL in vivo.
MEMORY T CELL—A T cell, regardless of its location in the body, that has been previously activated by antigen, but is in a quiescent physiologic state requiring re-exposure to antigen in order to gain effector function. Phenotypically they are generally CD62L− CD44hi CD107α− IGN-γ− LTβ− TNF-α− and is in G0 of the cell cycle.
EFFECTOR T CELL—A T cell that, upon encountering antigen antigen, readily exhibits effector function. Effector T cells are generally capable of exiting the lymphatic system and entering the immunological periphery. Phenotypically they are generally CD62L− CD44hi CD107α+ IGN-γ+ LTβ+TNF-α+ and actively cycling.
EFFECTOR FUNCTION—Generally, T cell activation generally, including acquisition of cytolytic activity and/or cytokine secretion.
INDUCING a T cell response—Includes in many embodiments the process of generating a T cell response from naive, or in some contexts, quiescent cells; activating T cells.
AMPLIFYING A T CELL RESPONSE—Includes in many embodiment a process for increasing the number of cells, the number of activated cells, the level of activity, rate of proliferation, or similar parameter of T cells involved in a specific response.
ENTRAINMENT—Includes in many embodiments an induction that confers particular stability on the immune profile of the induced lineage of T cells. In various embodiments, the term “entrain” can correspond to “induce,” and/or “initiate.”
TOLL-LIKE RECEPTOR (TLR)—Toll-like receptors (TLRs) are a family of pattern recognition receptors that are activated by specific components of microbes and certain host molecules. As part of the innate immune system, they contribute to the first line of defense against many pathogens, but also play a role in adaptive immunity.
TOLL-LIKE RECEPTOR (TLR) LIGAND- Any molecule capable of binding and activating a toll-like receptor. Examples include, without limitation: poly IC A synthetic, double-stranded RNA know for inducing interferon. The polymer is made of one strand each of polyinosinic acid and polycytidylic acid, double-stranded RNA, unmethylated CpG oligodeoxyribonucleotide or other immunostimulatory sequences (ISSs), lipopolysacharide (LPS), β-glucans, and imidazoquinolines, as well as derivatives and analogues thereof.
IMMUNOPOTENTIATING ADJUVANTS—Adjuvants that activate pAPC or T cells including, for example: TLR ligands, endocytic-Pattern Recognition Receptor (PRR) ligands, quillaja saponins, tucaresol, cytokines, and the like. Some preferred adjuvants are disclosed in Marciani, D. J. Drug Discovery Today 8:934-943, 2003, which is incorporated herein by reference in its entirety.
IMMUNOSTIMULATORY SEQUENCE (ISS)—Generally an oligodeoxyribonucleotide containing an unmethlylated CpG sequence. The CpG may also be embedded in bacterially produced DNA, particularly plasmids. Further embodiments include various analogues; among preferred embodiments are molecules with one or more phosphorothioate bonds or non-physiologic bases.
VACCINE—In preferred embodiments a vaccine can be an immunogenic composition providing or aiding in prevention of disease. In other embodiments, a vaccine is a composition that can provide or aid in a cure of a disease. In others, a vaccine composition can provide or aid in amelioration of a disease. Further embodiments of a vaccine immunogenic composition can be used as therapeutic and/or prophylactic agents.
IMMUNIZATION—a process to induce partial or complete protection against a disease. Alternatively, a process to induce or amplify an immune system response to an antigen. In the second definition it can connote a protective immune response, particularly proinflammatory or active immunity, but can also include a regulatory response. Thus in some embodiments immunization is distinguished from tolerization (a process by which the immune system avoids producing proinflammatory or active immunity) while in other embodiments this term includes tolerization.
aGene frequency.
bStandard error.
aGene frequency.
bStandard error.
cThe observed gene count was zero.
*See Scanlan et al., “The cancer/testis genes: Review, standardization, and commentary.” Cancer Immunity, Vol. 4, p. 1 (23 Jan. 2004), which is incorporated herein by reference in its entirety.
The following discussion sets forth the present understanding or belief of the operation of aspects of the invention. However, it is not intended that this discussion limit the patent to any particular theory of operation not set forth in the claims.
Effective immune-mediated control of tumoral processes or microbial infections generally involves induction and expansion of antigen-specific T cells endowed with multiple capabilities such as migration, effector functions, and differentiation into memory cells. Induction of immune responses can be attempted by various methods and involves administration of antigens in different forms, with variable effect on the magnitude and quality of the immune response. One limiting factor in achieving a control of the immune response is targeting pAPC able to process and effectively present the resulting epitopes to specific T cells.
A solution to this problem is direct antigen delivery to secondary lymphoid organs, a microenvironment abundant in pAPC and T cells. The antigen can be delivered, for example, either as polypeptide or as an expressed antigen by any of a variety of vectors. The outcome in terms of magnitude and quality of immunity can be controlled by factors including, for example, the dosage, the formulation, the nature of the vector, and the molecular environment. Embodiments of the present invention can enhance control of the immune response. Control of the immune response includes the capability to induce different types of immune responses as needed, for example, from regulatory to pro-inflammatory responses. Preferred embodiments provide enhanced control of the magnitude and quality of responses to MHC class I-restricted epitopes which are of major interest for active immunotherapy.
Previous immunization methods displayed certain important limitations: first, very often, conclusions regarding the potency of vaccines were extrapolated from immunogenicity data generated from one or from a very limited panel of ultra sensitive read-out assays. Frequently, despite the inferred potency of a vaccination regimen, the clinical response was not significant or was at best modest. Secondly, subsequent to immunization, T regulatory cells, along with more conventional T effector cells, can be generated and/or expanded, and such cells can interfere with the function of the desired immune response. The importance of such mechanisms in active immunotherapy has been recognized only recently.
Intranodal administration of immunogens provides a basis for the control of the magnitude and profile of immune responses. The effective in vivo loading of pAPC accomplished as a result of such administration, enables a substantial magnitude of immunity, even by using an antigen in its most simple form—a peptide epitope—otherwise generally associated with poor pharmocokinetics. The quality of response can be further controlled via the nature of immunogens, vectors, and protocols of immunization. Such protocols can be applied for enhancing/modifying the response in chronic infections or tumoral processes.
Immunization has traditionally relied on repeated administration of antigen to augment the magnitude of the immune response. The use of DNA vaccines has resulted in high quality responses, but it has been difficult to obtain high magnitude responses using such vaccines, even with repeated booster doses. Both characteristics of the response, high quality and low magnitude, are likely due to the relatively low levels of epitope loading onto MHC achieved with these vectors. Instead it has become more common to boost such vaccines using antigen encoded in a live virus vector in order to achieve the high magnitude of response needed for clinical usefulness. However, the use of live vectors can entail several drawbacks including potential safety issues, decreasing effectiveness of later boosts due to a humoral response to the vector induced by the prior administrations and the costs of creation and production. Thus, use of live vectors or DNA alone, although eliciting high quality responses, may result in a limited magnitude or sustainability of response.
Disclosed herein are embodiments that relate to protocols and to methods that, when applied to peptides, rendered them effective as immune therapeutic tools. Such methods circumvent the poor PK of peptides, and if applied in context of specific, and often more complex regimens, result in robust amplification and/or control of immune response. In preferred embodiments, direct administration of peptide into lymphoid organs results in unexpectedly strong amplification of immune responses, following a priming agent that induces a strong, moderate or even mild (at or below levels of detection by conventional techniques) immune response consisting of Tc1 cells. While preferred embodiments of the invention can employ intralymphatic administration of antigen at all stages of immunization, intralymphatic administration is the most preferred mode of administration for adjuvant-free peptide. Peptide amplification utilizing intralymphatic administration can be applied to existing immune responses that may have been previously induced. Previous induction can occur by means of natural exposure to the antigen or by means of commonly used routes of administration, including without limitation subcutaneous, intradermal, intraperitoneal, intramuscular, and mucosal.
Also as shown herein, optimal initiation, resulting in subsequent expansion of specific T cells, can be better achieved by exposing the naive T cells to limited amounts of antigen (as can result from the often limited expression of plasmid-encoded antigen) in a rich co-stimulatory context (such as in a lymph node). That can result in activation of T cells carrying T cell receptors that recognize with high affinity the MHC-peptide complexes on antigen presenting cells and can result in generation of memory cells that are more reactive to subsequent stimulation. The beneficial co-stimulatory environment can be augmented or ensured through the use of immunopotentiating agents and thus intralymphatic administration, while advantageous, is not in all embodiments required for initiation of the immune response. In embodiments involving the use of epitopic peptide for induction/entrainment it is preferred that a relatively low dosage of peptide (as compared to an amplifying dose or to a MHC-saturating concentration) be used so that presentation is limited, especially if using direct intralymphatic administration. Such embodiments will generally involve inclusion of an immunopotentiator to achieve entrainment.
While the poor pharmacokinetics of free peptides has prevented their use in most routes of administration, direct administration into secondary lymphoid organs, particularly lymph nodes, has proven effective when the level of antigen is maintained more or less continuously by continuous infusion or frequent (for example, daily) injection. Such intranodal administration for the generation of CTL is taught in U.S. patent application Ser. Nos. 09/380,534, 09/776,232 (Pub. No. 20020007173 A1), now U.S. Pat. No. 6,977,074, and ______ (Pub. No. ______) (Attorney Docket No. MANNK.001CP2C1), filed on Dec. 19, 2005), and in PCT Application No. PCTUS98/14289 (Pub. No. WO9902183A2), each entitled METHOD OF INDUCING A CTL RESPONSE, each of which is hereby incorporated by reference in its entirety. In some embodiments of the instant invention, intranodal administration of peptide was effective in amplifying a response initially induced with a plasmid DNA vaccine. Moreover, the cytokine profile was distinct, with plasmid DNA induction/peptide amplification generally resulting in greater chemokine (chemoattractant cytokine) and lesser immunosuppressive cytokine production than either DNA/DNA or peptide/peptide protocols.
Thus, such DNA induction/peptide amplification protocols can improve the effectiveness of compositions, including therapeutic vaccines for cancer and chronic infections. Beneficial epitope selection principles for such immunotherapeutics are disclosed in U.S. patent application Ser. Nos. 09/560,465, 10/026,066 (Pub. No. 20030215425 A1), 10/005,905, filed Nov. 7, 2001, 10/895,523 (Pub. No. 2005-0130920 A1), filed Jul. 20, 2004, and 10/896,325 (Pub No. ______), filed Jul. 20, 2004, all entitled EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS; 09/561,074, now U.S. Pat. No. 6,861,234, and 10/956,401 (Pub. No. 2005-0069982 A1), filed on Oct. 1, 2004, both entitled METHOD OF EPITOPE DISCOVERY; 09/561,571, filed Apr. 28, 2000, entitled EPITOPE CLUSTERS; 10/094,699 (Pub. No. 20030046714 A1). filed Mar. 7. 2002. 11/073,347, (Pub. No. ______), filed Jun. 30, 2005, each entitled ANTI-NEOVASCULATURE PREPARATIONS FOR CANCER; and 10/117,937 (Pub. No. 20030220239 A1), filed Apr. 4, 2002, 11/067,159 (Pub. No. 2005-0221440A1), filed Feb. 25, 2005, 10/067,064 (Pub. No. 2005-0142114 A1), filed Feb. 25, 2005, and 10/657,022 (Publication No. 2004-0180354 A1), and PCT Application No. PCT/US2003/027706 (Pub. No. WO 04/022709 A2), each entitled EPITOPE SEQUENCES, and each of which is hereby incorporated by reference in its entirety. Aspects of the overall design of vaccine plasmids are disclosed in U.S. patent application Ser. Nos. 09/561,572, filed Apr. 28, 2000, and 10/225,568 (Pub. No. 2003-0138808 A1), filed Aug. 20, 2002, both entitled EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS and U.S. patent application Ser. Nos. 10/292,413 (Pub. No.20030228634 A1), 10/777,053 (Pub. No. 2004-0132088 A1), filed on Feb. 10, 2004, and 10/837,217 (Pub. No. ______), filed on Apr. 30, 2004, all entitled EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS AND METHODS FOR THEIR DESIGN; 10/225,568 (Pub No. 2003-0138808 A1), PCT Application No. PCT/US2003/026231 (Pub. No. WO 2004/018666) and U.S. Pat. No. 6,709,844 and U.S. patent application Ser. No. 10/437,830 (Pub. No. 2003-0180949 A1), filed on May 13, 2003, each entitled AVOIDANCE OF UNDESIRABLE REPLICATION INTERMEDIATES IN PLASMID PROPAGATION, each of which is hereby incorporated by reference in its entirety. Specific antigenic combinations of particular benefit in directing an immune response against particular cancers are disclosed in provisional U.S. Provisional Application No. 60/479,554, filed on Jun. 17, 2003, U.S. patent application Ser. No. 10/871.708 (Pub. No. 2005-0118186 A1), filed on Jun. 17, 2004, PCT Patent Application No. PCT/US2004/019571 (Pub. No. WO 2004/112825), U.S. Provisional Application No. 60/640,598, filed Dec. 29, 2005, and U.S. patent application Ser. No. ______ (Pub. No. ______), (Attorney Docket No. MANNK.049A), filed on the same date as this application, all entitled COMBINATIONS OF TUMOR-ASSOCIATED ANTIGENS IN VACCINES FOR VARIOUS TYPES OF CANCERS, each of which is also hereby incorporated by reference in its entirety. The use and advantages of intralymphatic administration of BRMs are disclosed in provisional U.S. patent application Ser. No. 60/640,727, filed Dec. 29, 2005 and U.S. patent application Ser. No. ______ (Pub. No. ______) (Attorney Docket No. MANNK.046A), filed on the same date as this application, both entitled Methods to trigger, maintain and manipulate immune responses by targeted administration of biological response modifiers into lymphoid organs, each of which is incorporated herein by reference in it entirety. Additional methodology, compositions, peptides, and peptide analogues are disclosed in U.S. patent application Ser. No. 09/999,186, filed Nov. 7, 2001, entitled METHODS OF COMMERCIALIZING AN ANTIGEN; and U.S. Provisional U.S. patent application Ser. No. 60/640,821, filed Dec. 29, 2005 and Application No. ______ (Pub. No. ______) (Attorney Docket No. MANNK.048A), filed on the same date as this application, both entitled METHODS TO BYPASS CD4+ CELLS IN THE INDUCTION OF AN IMMUNE RESPONSE, each of which is hereby incorporated by reference in its entirety.
Other relevant disclosures are present in U.S. patent application Ser. No. 11/156,369 (Pub. No. ______), and U.S. Provisional Patent Application No. 60/691,889, both filed on Jun. 17, 2005, both entitled EPITOPE ANALOGS and each of which is incorporated herein by reference in its entirety. Also relevant are, U.S. Provisional Patent App. Nos. 60/691,579, filed on Jun. 17, 2005, entitled METHODS AND COMPOSITIONS TO ELICIT MULTIVALENT IMMUNE RESPONSES AGAINST DOMINANT AND SUBDOMINANT EPITOPES, EXPRESSED ON CANCER CELLS AND TUMOR STROMA, and 60/691,581, filed on June 17, 2005, entitled MULTIVALENT ENTRAIN-AND-AMPLIFY IMMUNOTHERAPEUTICS FOR CARCINOMA, each of which is incorporated herein by reference in its entirety.
Surprisingly, repeated intranodal injection of peptide according to a traditional prime-boost schedule resulted in reducing the magnitude of the cytolytic response compared to response observed after initial dosing alone. Examination of the immune response profile shows this to be the result of the induction of immune regulation (suppression) rather than unresponsiveness. This is in contrast to induce-and-amplify protocols encompassing DNA-encoded immunogens, typically plasmids. Direct loading of pAPC by intranodal injection of antigen generally diminishes or obviates the need for adjuvants that are commonly used to correct the pharmacokinetics of antigens delivered via other parenteral routes. The absence of such adjuvants, which are generally proinflammatory, can thus facilitate the induction of a different (i.e., regulatory or tolerogenic) immune response profile than has previously been observed with peptide immunization. Since the response, as shown in the examples below, is measured in secondary lymphoid organs remote from the initial injection site, such results support the use methods and compositions according to of the embodiments of the invention for modifying (suppressing) ongoing inflammatory reactions. This approach can be useful even with inflammatory disorders that have a class II MHC-restricted etiology, either by targeting the same antigen, or any suitable antigen associated with the site of inflammation, and relying on bystander effects mediated by the immunosuppressive cytokines.
Despite the fact that repeated peptide administration results in gradually decreasing cytolytic immune response, induction with an agent such as non-replicating recombinant DNA (plasmid) had a substantial impact on the subsequent doses, enabling robust amplification of immunity to epitopes expressed by the recombinant DNA and peptide, and entraining its cytolytic nature. In fact, when single or multiple administrations of recombinant DNA vector or peptide separately achieved no or modest immune responses, inducing with DNA and amplifying with peptide achieved substantially higher responses, both as a rate of responders and as a magnitude of response. In the examples shown, the rate of response was at least doubled and the magnitude of response (mean and median) was at least tripled by using a recombinant DNA induction/peptide-amplification protocol. Thus, preferred protocols result in induction of immunity (Tc1 immunity) that is able to deal with antigenic cells in vivo, within lymphoid and non-lymphoid organs. One limiting factor in most cancer immunotherapy is the limited susceptibility of tumor cells to immune-mediated attack, possibly due to reduced MHC/peptide presentation. In preferred embodiments, robust expansion of immunity is achieved by DNA induction/peptide amplification, with a magnitude that generally equals or exceeds the immune response generally observed subsequent to infection with virulent microbes. This elevated magnitude can help to compensate for poor MHC/peptide presentation and does result in clearance of human tumor cells as shown in specialized pre-clinical models such as, for example, HLA transgenic mice.
Such induce-and-amplify protocols involving specific sequences of recombinant DNA entrainment doses, followed by peptide boosts administered to lymphoid organs, are thus useful for the purpose of induction, amplification and maintenance of strong T cell responses, for example for prophylaxis or therapy of infectious or neoplastic diseases. Such diseases can be carcinomas (e.g., renal, ovarian, breast, lung, colorectal, prostate, head-and-neck, bladder, uterine, skin), melanoma, tumors of various origin and in general tumors that express defined or definable tumor associated antigens, such as oncofetal (e.g., CEA, CA 19-9, CA 125, CRD-BP, Das-1, 5T4, TAG-72, and the like), tissue differentiation (e.g., Melan-A, tyrosinase, gp100, PSA, PSMA, and the like), or cancer-testis antigens (e.g., PRAME, MAGE, LAGE, SSX2, NY-ESO-1, and the like; see Table 5). Cancer-testis genes and their relevance for cancer treatment are reviewed in Scanlon et al., Cancer Immunity 4:1-15, 2004, which is hereby incorporated by reference in its entirety). Antigens associated with tumor neovasculature (e.g., PSMA, VEGFR2, Tie-2) are also useful in connection with cancerous diseases, as is disclosed in U.S. patent application Ser. Nos. 10/094,699 (Pub. No. 20030046714 A1) and 11/073,347 (Pub. No. ______), filed on Jun. 30, 2005, entitled ANTI-NEOVASCULATURE PREPARATIONS FOR CANCER, each of which is hereby incorporated by reference in its entirety. The methods and compositions can be used to target various organisms and disease conditions. For example, the target organisms can include bacteria, viruses, protozoa, fungi, and the like. Target diseases can include those caused by prions, for example. Exemplary diseases, organisms and antigens and epitopes associated with target organisms, cells and diseases are described in U.S. application Ser. No. 09/776,232 (Pub. No. 20020007173 A1), now U.S. Pat. No. 6,977,074, which is incorporated herein by reference in its entirety. Among the infectious diseases that can be addressed are those caused by agents that tend to establish chronic infections (HIV, herpes simplex virus, CMV, Hepatitis B and C viruses, papilloma virus and the like) and/or those that are connected with acute infections (for example, influenza virus, measles, RSV, Ebola virus). Of interest are viruses that have oncogenic potential—from the perspective of prophylaxis or therapy—such as papilloma virus, Epstein Barr virus and HTLV-1. All these infectious agents have defined or definable antigens that can be used as basis for designing compositions such as peptide epitopes.
Preferred applications of such methods (See, e.g.,
The invention has generally been described a single cycle of immunization comprising administration of one or initiating doses followed the administration of one or more amplifying doses. Further embodiments of the invention entail repeated cycles of immunization. Such repeated cycles can be used to further augment the magnitude of the response. Also, when a multivalent response is sought not all individuals will necessarily achieve a substantial response to each of the targeted antigens as the result of a single cycle of immunization. Cycles of immunization can be repeated until a particular individual achieves an adequate response to each targeted antigen. The individual cycles of immunization can also be modified to achieve a more balanced response by adjusting the order, timing, or number of doses of each individual component that are given. Multiple cycles of immunization can also be used to maintain the response over time, for example to sustain an active effector phase of the response to be substantially co-extensive in time with, and as mav be advantageous for, the treatment of a disease or other medical condition.
It should be noted that while this method successfully makes use of peptide, without conjugation to proteins, addition of adjuvant, etc., in the amplification step, the absence of such components is not required. Thus, conjugated peptide, adjuvants, immunopotentiators, etc. can be used in embodiments. More complex compositions of peptide administered to the lymph node, or with an ability to home to the lymphatic system, including peptide-pulsed dendritic cells, suspensions such as liposome formulations aggregates, emulsions, microparticles, nanocrystals, composed of or encompassing peptide epitopes or antigen in various forms, can be substituted for free peptide in the method. Conversely, peptide boost by intranodal administration can follow priming via any means/or route that achieves induction of T memory cells even at modest levels.
In order to reduce occurrence of resistance due to mosaicism of antigen expression, or to mutation or loss of the antigen, it is advantageous to immunize to multiple, preferably about 2-4, antigens concomitantly. Any combination of antigens can be used. A profile of the antigen expression of a particular tumor can be used to determine which antigen or combination of antigens to use. Exemplary methodology is found in U.S. Provisional Application No. 60/580,969, filed on Jun. 17, 2004, U.S. patent application Ser. No. 11/155,288 filed Jun. 17, 2005, and U.S. patent application Ser. No. ______ (Pub. No. ______) (Attorney Docket No. MANNK.050CP1) filed on even date with the instant application, all entitled COMBINATIONS OF TUMOR-ASSOCIATED ANTIGENS IN DIAGNOTISTICS FOR VARIOUS TYPES OF CANCERS; and each of which is hereby incorporated by reference in its entirety. Specific combinations of antigens particularly suitable to treatment of selected cancers are disclosed in U.S. Provisional Patent Applications No. 60/479,554 and U.S. patent applications Ser. No. 10/871,708 (Pub. No. 2005-0118186 A1) and PCT Application No. PCT/US2004/019571, cited and incorporated by reference above. To trigger immune responses to a plurality of antigens or to epitopes from a single antigen, these methods can be used to deliver multiple immunogenic entities, either individually or as mixtures. When immunogens are delivered individually, it is preferred that the different entities be administered to different lymph nodes or to the same lymph node(s) at different times, or to the same lymph node(s) at the same time. This can be particularly relevant to the delivery of peptides for which a single formulation providing solubility and stability to all component peptides can be difficult to devise. A single nucleic acid molecule can encode multiple immunogens. Alternatively, multiple nucleic acid molecules encoding one or a subset of all the component immunogens for the plurality of antigens can be mixed together so long as the desired dose can be provided without necessitating such a high concentration of nucleic acid that viscosity becomes problematic.
In preferred embodiments the method calls for direct administration to the lymphatic system. In preferred embodiments this is to a lymph node. Afferent lymph vessels are similarly preferred. Choice of lymph node is not critical. Inguinal lymph nodes are preferred for their size and accessibility, but axillary and cervical nodes and tonsils can be similarly advantageous. Administration to a single lymph node can be sufficient to induce or amplify an immune response. Administration to multiple nodes can increase the reliability and magnitude of the response. For embodiments promoting a multivalent response and in which multiple amplifying peptides are therefor used, it can be preferable that only a single peptide be administered to any particular lymph node on any particular occasion. Thus one peptide can be administered to the right inguinal lymph node and a second peptide to the left inguinal lymph node at the same time, for example. Additional peptides can be administered to other lymph nodes even if they were not sites of induction, as it is not essential that initiating and amplifying doses be administered to the same site, due to migration of T lymphocytes. Alternatively any additional peptides can be administered a few days later, for example, to the same lymph nodes used for the previously administered amplifying peptides since the time interval between induction and amplification generally is not a crucial parameter, although in preferred embodiments the time interval can be greater than about a week. Segregation of administration of amplifying peptides is generally of less importance if their MHC-binding affinities are similar, but can grow in importance as the affinities become more disparate. Incompatible formulations of various peptides can also make segregated administration preferable.
Patients that can benefit from such methods of immunization can be recruited using methods to define their MHC protein expression profile and general level of immune responsiveness. In addition, their level of immunity can be monitored using standard techniques in conjunction with access to peripheral blood. Finally, treatment protocols can be adjusted based on the responsiveness to induction or amplification phases and variation in antigen expression. For example, repeated entrainment doses preferably can be administered until a detectable response is obtained, and then administering the amplifying peptide dose(s), rather than amplifying after some set number of entrainment doses. Similarly, scheduled amplifying or maintenance doses of peptide can be discontinued if their effectiveness wanes, antigen-specific regulatory T cell numbers rise, or some other evidence of tolerization is observed, and further entrainment can be administered before resuming amplification with the peptide. The integration of diagnostic techniques to assess and monitor immune responsiveness with methods of immunization is discussed more fully in Provisional U.S. patent application Ser. No. 60/580,964, which was filed on Jun. 17, 2004 and U.S. patent application Ser. No. 11/155,928 (Pub. No. ______), filed Jun. 17, 2005, both entitled IMPROVED EFFICACY OF ACTIVE IMMUNOTHERAPY BY INTEGRATING DIAGNOSTIC WITH THERAPEUTIC METHODS, each of which is hereby incorporated by reference in its entirety.
Practice of many of the methodological embodiments of the invention involves use of at least two different compositions and, especially when there is more than a single target antigen, can involve several compositions to be administered together and/or at different times. Thus embodiments of the invention include sets and subsets of immunogenic compositions and individual doses thereof. Multivalency can be achieved using compositions comprising multivalent immunogens, combinations of monovalent immunogens, coordinated use of compositions comprising one or more monovalent immunogens or various combinations thereof. Multiple compositions, manufactured for use in a particular treatment regimen or protocol according to such methods, define an immunotherapeutic product. In some embodiments all or a subset of the compositions of the product are packaged together in a kit. In some instances the inducing and amplifying compositions targeting a single epitope, or set of epitopes, can be packaged together. In other instances multiple inducing compositions can be assembled in one kit and the corresponding amplifying compositions assembled in another kit. Alternatively compositions may be packaged and sold individually along with instructions, in printed form or on machine-readable media, describing how they can be used in conjunction with each other to achieve the beneficial results of the methods of the invention. Further variations will be apparent to one of skill in the art. The use of various packaging schemes comprising less than all of the compositions that might be employed in a particular protocol or regimen facilitates the personalization of the treatment, for example based on tumor antigen expression, or observed response to the immunotherapeutic or its various components, as described in_ U.S. Provisional Application No. 60/580,969, filed on Jun. 17, 2004, U.S. patent application Ser. No. 11/155,288 (Pub. No. ______). filed Jun. 17, 2005, and U.S. patent application Ser. No. ______ (Attorney Docket No. MANNK.050CP1) filed Dec. 12, 2005, all. entitled COMBINATIONS OF TUMOR-ASSOCIATED ANTIGENS IN DIAGNOTISTICS FOR VARIOUS TYPES OF CANCERS; and Provisional U.S. patent application Ser. No. 60/580,964, and U.S. patent application Ser. No. 11/155,928 (Pub. No. ______), both entitled IMPROVED EFFICACY OF ACTIVE IMMUNOTHERAPY BY INTEGRATING DIAGNOSTIC WITH THERAPEUTIC METHODS, each of which is incorporated by reference in its entirety above.
In some embodiments, the numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used to describe and claim certain embodiments of the invention are to be understood as being modified in some instances by the term “about.” Accordingly, in some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable. The numerical values presented in some embodiments of the invention may contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
In some embodiments, the terms “a” and “an” and “the” and similar referents used in the context of describing a particular embodiment of the invention (especially in the context of certain of the following claims) may be construed to cover both the singular and the plural. The recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g. “such as”) provided with respect to certain embodiments herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.
Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is herein deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations on those preferred embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. It is contemplated that skilled artisans may employ such variations as appropriate, and the invention may be practiced otherwise than specifically described herein. Accordingly, many embodiments of this invention include all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
Furthermore, numerous references have been made to patents and printed publications throughout this specification. Each of the above cited references and printed publications are herein individually incorporated by reference in their entirety.
In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed may be within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.
The following examples are for illustrative purposes only and are not intended to limit the scope of the invention or its various embodiments in any way.
Mice carrying a transgene expressing a chimeric single-chain version of a human MHC class I (A*0201, designated “HHD”; see Pascolo et al. J. Exp. Med. 185(12):2043-51, 1997, which is hereby incorporated herein by reference in its entirety) were immunized by intranodal administration as follows. Five groups of mice (n=3) were immunized with plasmid expressing Melan-A 26-35 A27L analogue (pSEM) for induction and amplified one week later, by employing different injection routes: subcutaneous (sc), intramuscular (im) and intralymphatic (in, using direct inoculation into the inguinal lymph nodes). The schedule of immunization and dosage is shown in
HHD mice were immunized by intranodal administration of plasmid (pSEM) or peptide (Mel A; ELAGIGILTV; SEQ ID NO:1) in various sequences. The immunogenic polypeptide encoded by pSEM is disclosed in U.S. patent application Ser. No. 10/292,413 (Pub. No. 20030228634 A1) entitled Expression Vectors Encoding Epitopes of Target-Associated Antigens and Methods for their Design incorporated herein by reference in its entirety above.
The protocol of immunization (
The immune response was measured by standard techniques, after the isolation of splenocytes and in vitro stimulation with cognate peptide in the presence of pAPC. It is preferable that the profile of immune response be delineated by taking into account results stemming from multiple assays, facilitating assessment of various effector and regulatory functions and providing a more global view of the response. Consideration can be given to the type of assay used and not merely their number; for example, two assays for different proinflammatory cytokines is not as informative as one plus an assay for a chemokine or an immunosuppresive cytokine.
ELISPOT analysis measures the frequency of cytokine-producing, peptide-specific, T cells.
Pooled splenocytes were prepared (spleens harvested, minced, red blood cells lysed) from each group and incubated with LPS-stimulated, Melan-A peptide-coated syngeneic pAPC for 7 days, in the presence of rIL-2. The cells were washed and incubated at different ratios with 51Cr-tagged T2 target cells pulsed with Melan-A peptide (ELA), for 4 hours. The radioactivity released in the supernatant was measured using a γ (gamma)-counter. The response was quantified as % lysis=(sample signal—background)/(maximal signal—background)×100, where background represents radioactivity released by target cells alone when incubated in assay medium, and the maximal signal is the radioactivity released by target cells lysed with detergent.
Splenocytes were prepared and used as above in Example 4 against target cells coated with three different peptides: the Melan-A analogue immunogen and those representing the human and murine epitopes corresponding to it. As shown in
The cytokine profile of specific T cells generated by the immunization procedures described above (and in
The data in
Cells were retrieved from the lung interstitial tissue and spleen by standard methods and stained with antibodies against CD8, CD62L and CD45RB, along with tetramer agent identifying Melan-A-specific T cells. The data in
Three groups of HHD mice, transgenic for the human MHC class I HLA.A2 gene, were immunized by intralymphatic administration against the Melan-A tumor associated antigen. Animals were primed (induced) by direct inoculation into the inguinal lymph nodes with either pSEM plasmid (25 μg/lymph node) or ELA peptide (ELAGIGILTV (SEQ ID NO:1), Melan A 26-35 A27L analogue) (25 μg/lymph node) followed by a second injection three days later. After ten days, the mice were boosted with pSEM or ELA in the same fashion followed by a final boost three days later to amplify the response (see
Melan-A tetramer levels were measured in mice (5 mice per group) following immunization, as described in
As described in FIGS. 9A-C, mice that were subjected to an entraining immunization with a series of two clusters of plasmid injections followed by amplification with peptide yielded a potent immune response. Further evidence for this is shown in FIGS. 10A-C which illustrate the tetramer levels prior to (
Multiple further experiments have been carried out to characterize the phenotype of CTL generated by this protocol. The immune profile initiated in such conditions was imprinted, since peptide boost resulted in substantial, expansion of a CD43+, CD44+, CD69+, CD62L−, CD45RBdim, peptide-MHC class I-specific T cell population. These specific T cells colonized non-lymphoid organs and, upon additional specific stimulation, rapidly acquired the expression of CD107α and IFN-γ, in a fashion dependent on the density of stimulating peptide complexes.
Six groups of mice (n=4) were immunized with plasmid expressing Melan-A 26-35 A27L analogue (pSEM) or Melan-A peptide using priming and amplification by direct inoculation into the inguinal lymph nodes. The schedule of immunization is shown in
To evaluate the immune response obtained by the entrain-and-amplify protocol, 4 groups of animals (n=7) were challenged with Melan-A coated target cells in vivo. Splenocytes were isolated from littermate control HHD mice and incubated with 20 μg/mL ELA peptide for 2 hours. These cells were then stained with CFSEhi fluorescence (4.0 μM for 15 minutes) and intravenously co-injected into immunized mice with an equal ratio of control splenocytes stained with CFSElo fluorescence (0.4 μM). Eighteen hours later the specific elimination of target cells was measured by removing spleen, lymph node, PBMC, and lung from challenged animals and measuring CFSE fluorescence by flow cytometry.
Immunity to the Melan-A antigen was further tested by challenging mice with human melanoma tumor cells following immunization with the refined protocol.
Animals immunized against the SSX2 tumor associated antigen using the immunization schedule defined in
Four groups of HHD mice (n=6) were immunized via intra lymph node injection with either pSEM alone; pCBP alone; pSEM and pCBP as a mixture; or with pSEM in the left LN and pCBP in the right LN. These injections were followed 10 days later with either an ELA or SSX2 peptide boost in the same fashion. All immunized mice were compared to unimmunized controls. The mice were challenged with HHD littermate splenocytes coated with ELA or SSX2 peptide, employing a triple peak CFSE in vivo cytotoxicity assay that allows the assessment of the specific lysis of two antigen targets simultaneously. Equal numbers of control-CFSElo, SSX2-CFSEmed, and ELA-CFSEhi cells were intravenously infused into immunized mice, and 18 hours later the mice were sacrificed and target cell elimination was measured in the spleen (
Variations on inducing multivalent responses, including responses to subdominant epitopes, are further exemplified in examples 24-34.
Three groups of animals (n=12) received two cycles of the following immunization protocols: DNA/DNA/DNA; DNA/peptide/peptide; or DNA/DNA/peptide. Melan-A tetramer levels were measured in the mice following each cycle of immunization and are presented in
Four HHD transgenic animals (3563, 3553, 3561 and 3577) received two cycles of the following entrain-and-amplify protocol: DNA/DNA/peptide. The first cycle involved immunization on days −31, −28, −17, −14, −3, 0; the second cycle involved immunizations on day 14, 17, 28, 31, 42 and 45. Mice were boosted with peptide on day 120. Melan-A tetramer levels were measured in the mice at 7-10 days following each cycle of immunization and periodically until 90 days after the second immunization cycle. The arrows in the diagram correspond to the completion of the cycles. (
Five HHD transgenic animals (3555, 3558, 3566, 3598 and 3570) received two cycles of the following entrain-and-amplify protocol: DNA/peptide/peptide. As before, the first cycle consisted in immunization on days −31, −28, −17, −14, −3, 0; the second cycle consisted in immunizations on day 14, 17, 28, 31, 42 and 45. Mice were boosted with peptide on day 120. Melan-A tetramer levels were measured in the mice at 7-10 days following each cycle of immunization and periodically until 90 days after the second immunization cycle (
Seven HHD transgenic animals received two cycles of the following immunization protocol: DNA/DNA/DNA. The first cycle involved immunization on days −31, −28, −17, −14, −3, 0; the second cycle involved immunizations on day 14, 17, 28, 31, 42 and 45. Mice were boosted with peptide on day 120. Melan-A tetramer levels were measured in the mice at 7-10 days following each cycle of immunization and periodically until 90 days after the second immunization cycle. (
Intranodal administration of peptide is a very potent means to amplify immune responses triggered by intralymphatic administration of agents (replicative or non-replicative) comprising or in association with adjuvants such as TLRs.
Subjects (such as mice, humans, or other mammals) are entrained by intranodal infusion or injection with vectors such as plasmids, viruses, peptide plus adjuvant (CpG, dsRNA, TLR ligands), recombinant protein plus adjuvant (CpG, dsRNA, TLR ligands), killed microbes or purified antigens (e.g., cell wall components that have immunopotentiating activity) and amplified by intranodal injection of peptide without adjuvant. The immune response measured before and after boost by tetramer staining and other methods shows substantial increase in magnitude. In contrast, a boost utilizing peptide without adjuvant by other routes does not achieve the same increase of the immune response.
Subjects (such as mice, humans, or other mammals) are immunized by parenteral or mucosal administration of vectors such as plasmids, viruses, peptide plus adjuvant (CpG, dsRNA, TLR ligands), recombinant protein plus adjuvant (CpG, dsRNA, TLR ligands), killed microbes or purified antigens (e.g., cell wall components that have immunopotentiating activity) and amplified by intranodal injection of peptide without adjuvant. The immune response measured before and after boost by tetramer staining and other methods shows substantial increase in magnitude. In contrast, a boost utilizing peptide without adjuvant by other routes than intranodal does not achieve the same increase of the immune response.
In order to break tolerance or restore immune responsiveness against self-antigens (such as tumor-associated antigens) subjects (such as mice, humans, or other mammals) are immunized with vectors such as plasmids, viruses, peptide plus adjuvant (CpG, dsRNA, TLR mimics), recombinant protein plus adjuvant (CpG, dsRNA, TLR mimics), killed microbes or purified antigens and boosted by intranodal injection with peptide (corresponding to a self epitope) without adjuvant. The immune response measured before and after boost by tetramer staining and other methods shows substantial increase in the magnitude of immune response (“tolerance break”).
Patients are diagnosed as needing treatment for a neoplastic or infectious disease using clinical and laboratory criteria; treated or not using first line therapy; and referred to evaluation for active immunotherapy. Enrollment is made based on additional criteria (antigen profiling, MHC haplotyping, immune responsiveness) depending on the nature of disease and characteristics of the therapeutic product. The treatment (
Patients with autoimmune or inflammatory disorders are diagnosed using clinical and laboratory criteria, treated or not using first line therapy, and referred to evaluation for active immunotherapy. Enrollment is made based on additional criteria (antigen profiling, MHC haplotyping, immune responsiveness) depending on the nature of disease and characteristics of the therapeutic product. The treatment is carried out by intralymphatic injection or infusion (bolus, programmable pump or other means) of peptide devoid of T1-promoting adjuvants and/or together with immune modulators that amplify immune deviation. However, periodic bolus injections are the preferred mode for generating immune deviation by this method. Treatments with peptide can be carried weekly, biweekly or less frequently (e.g., monthly), until a desired effect on the immunity or clinical status is obtained. Such treatments can involve a single administration, or multiple closely spaced administrations as in
Six groups (n=6) of HLA-A2 transgenic mice are injected with 25 ug of plasmid vector bilaterally in the inguinal lymph nodes, according to the following schedule: day 0, 3, 14 and 17. The vector encodes three A2 restricted epitopes from HIV gag (SLYNTVATL (SEQ ID NO:3), VLAEAMSQV (SEQ ID NO:4), MTNNPPIPV (SEQ ID NO:5)), two from pol (KLVGKLNWA (SEQ ID NO:6), ILKEPVHGV (SEQ ID NO:7)) and one from env (KLTPLCVTL (SEQ ID NO:8)). Two weeks after the last cycle of entrainment, mice are injected with mixtures encompassing all these five peptides (5 ug/peptide/node bilaterally three days apart). In parallel, five groups of mice are injected with individual peptides (5 ug/peptide/node bilaterally three days apart). Seven days later the mice are bled and response is assessed by tetramer staining against each peptide. Afterwards, half of the mice are challenged with recombinant Vaccinia viruses expressing env, gag or pol (103 TCID50/mouse) and at 7 days, the viral titer is measured in the ovaries by using a conventional plaque assay. The other half are sacrificed, the splenocytes are stimulated with peptides for 5 days and the cytotoxic activity is measured against target cells coated with peptides. As controls, mice are injected with plasmid or peptides alone. Mice entrained with plasmid and amplified with peptides show stronger immunity against all five peptides, by tetramer staining and cytotoxicity.
More generally, in order to break tolerance, restore immune responsiveness or induce immunity against non-self antigens such as viral, bacterial, parasitic or microbial, subjects (such as mice, humans, or other mammals) are immunized with vectors such as plasmids, viruses, peptide plus adjuvant (CpG, dsRNA, TLR mimics), recombinant protein plus adjuvant (CpG, dsRNA, TLR mimics), killed microbes or purified antigens (such as cell wall components) and boosted by intranodal injection with peptide (corresponding to a target epitope) without adjuvant. The immune response measured before and after boost by tetramer staining and other methods shows substantial increase in the magnitude of immune response. Such a strategy can be used to protect against infection or treat chronic infections caused by agents such as HBV, HCV, HPV, CMV, influenza virus, HIV, HTLV, RSV, etc.
Two groups of HHD mice (n=4) were immunized via intralymph node injection with either pSEM and pCBP as a mixture; or with pSEM in the left inguinal lymph node and pCBP in the right inguinal lymph node, twice, at day 0 and 4 as shown in
Animals immunized as described in Example 24, were sacrificed and the splenocytes pooled by group and stimulated with one of the two peptides, Melan-A 26-35 (A27L) or SSX2 41-49, in parallel. The cytotoxicity was measured by incubation with 51Cr-loaded, peptide-pulsed T2 target cells. Data in
The results show that use of the plasmid mixture interfered with the response elicited by pCBP plasmid; however, segregating the two plasmids relative to site of administration rescued the activity of pCBP. Co-administration of different vectors carrying distinct antigens results in establishment of a hierarchy in regard to immunogenicity. Vector segregation rescues the immunogenicity of the less dominant component, resulting in a multivalent response.
Four groups of HHD mice (n=6) were immunized via intralymph node injection with either pSEM and pCBP as a mixture; or with pSEM in the left inguinal lymph node and pCBP in the right inguinal lymph node, twice, at day 0 and 4 as shown in
Animals were immunized as described in Example 26 and challenged with HHD littermate splenocytes coated with ELA or SSX2 peptide, employing a triple peak CFSE in vivo cytotoxicity assay that allows the assessment of the specific lysis of two antigen targets simultaneously. Equal numbers of control-CFSElo, SSX2-CFSEmed, and ELA-CFSEhi cells were intravenously infused into immunized mice and 18 hours later the mice were sacrificed and target cell elimination was measured in the spleen (
Interestingly, immunizing the animals with a mixture of two vaccines comprising plasmids first and peptides afterwards, generated immunity to both antigens and resulted in the highest immune response, representing an average SSX2 percent specific lysis in spleen of 30±11 and 97±1 for Melan-A. Thus, as illustrated in
Two scenarios are shown in
The plasmid pSEM, described in
The cDNA sequence for the polypeptide in the plasmid is under the control of promoter/enhancer sequence from cytomegalovirus (CMVP) which allows efficient transcription of messenger for the polypeptide upon uptake by antigen presenting cells. The bovine growth hormone polyadenylation signal (BGH polyA) at the 3′ end of the encoding sequence provides signal for polyadenylation of the messenger to increase its stability as well as translocation out of nucleus into the cytoplasm. To facilitate plasmid transport into the nucleus, a nuclear import sequence (NIS) from Simian virus 40 has been inserted in the plasmid backbone. One copy of a CpG immunostimulatory motif is engineered into the plasmid to further boost immune responses. Lastly, two prokaryotic genetic elements in the plasmid are responsible for amplification in E. coli, kanamycin resistance gene (Kan R) and the pMB bacterial origin of replication. Further description of pSEM can be found in U.S. patent application Ser. No. 10/292,413, where it is named variously pMA2M and pVAXM3, incorporated by reference above.
A notorious limitation of vectors co-expressing epitopes of therapeutic relevance is that within the newly engineered context, one epitope will assume a dominant role in regard to induction of immunity, whereas the others will be subdominant (particularly when such epitopes bind to the same MHC restriction elements).
In
The results in
In summary, intralymphatic administration of tyrosinase peptide rescued the immune response initiated by pSEM against this epitope, overcoming its subdominance relative to the Melan-A epitope in context of the vector (pSEM) used for initiating the response.
The immunization was carried out as described in Example 30: eight groups of HHD mice (n=4) were immunized via intralymph node injection with pSEM, on days 0, 3, 14 and 17. The amount of the plasmid was 25 μg/dose. On days 28 and 31, the mice were immunized with peptides corresponding to either Melan-A 26-35 (
As in the Example 30, the results in
In the previous two examples rescue of the response to the subdominant epitope was demonstrated in the absence of amplification of the response to the dominant epitope. Next, simultaneous amplification of both responses was attempted.
In
The results in
To further explore simplified product formulations, an alternate method was tested, integrating use of a bivalent plasmid expressing a dominant and a subdominant epitope, followed by amplification of response to each epitope by administration of a mixture of dominant and subdominant peptides, rather than separate administration of peptides—as described in the previous example.
Six groups of HHD mice (n=6) were immunized as described in the previous examples with pSEM plasmid (or not immunized respectively), and boosted with peptides (as a mixture between Melan-A+various tyrosinase peptides), in the lymph nodes, at a dose of 12.5 μg/peptide/dose, using the following schedule: plasmid on days 0, 3; peptide days 14 and 17 with a repeat of this cycle two weeks later. The tyrosinase peptides used were: Tyr 369-377, as above; Tyr 1-9, which is encoded by the plasmid but not presented by transformed cells; and Tyr 207-215, which is not encoded by the plasmid.
The immune response was measured two weeks after the completion of immunization regimen, by CFSE assay, as described above. Briefly: splenocytes were isolated from littermate control HHD mice and incubated with 20 μg/mL ELA or 20 μg/ml of tyrosinase peptide for 2 hours. These cells were then stained with CFSEhi and CFSEmed fluorescence and co-injected intravenously into immunized mice with an equal ratio of control splenocytes stained with CFSElo fluorescence. Eighteen hours later spleens were removed and specific elimination of target cells was measured using flow cytometry and calculating % in vivo specific lysis by the following formula:
{[1−(%CFSEhi or med/%CFSElo)]−[1−(%CFSEhi or medControl/%CFSEloControl)]}×100
wherein each % term in the equation represents the proportion of the total sample represented by each peak.
Overall, the results displayed in
In this study immunity was induced with two bivalent plasmids and amplified with four peptide epitope analogues. The plasmid pSEM was used to induce immunity to Melan-A and tyrosinase epitopes and the response amplified using the analogues Melan-A (A27Nva) and Tyrosinase (V377Nva) as before. Immunity was also induced to the epitopes SSX2 41-49, NY-ESO-1 157-165 using the plasmid pBPL. The immunogenic polypeptide encoded by pBPL is disclosed in U.S. patent application Ser. No. 10/292,413 (Pub. No. 20030228634 A1) entitled EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS AND METHODS FOR THEIR DESIGN incorporated herein by reference in its entirety above. Amplification used the peptide epitope analogues SSX2 41-49 (A42V) and NY-ESO-1 157-165 (L158Nva, C165V). Further discussion of epitope analogues is provided in the epitope analogues applications cited and incorporated by reference above. These analogues generally have superior affinity and stability of binding to MHC as compared to the natural sequence, but are cross-reactive with TCR recognizing the natural sequence.
Three groups of female HHD-A2 mice were immunized with a mixture of pSEM/pBPL (100 μg each plasmid/day; 25 μl/injected node) administered bilaterally to the inguinal lymph nodes. Group 1 (n=10) received plasmid only, throughout the protocol, with injections on Days 1, 4, 15, 18, 28, 32, 49, and 53. Group 2 and Group 3 (n=25 each group) received plasmid injections on Days 1, 4, 15, and 18 and peptides on subsequent days. On day 25, blood was collected from the immunized animals, and CD8+ T cell were analyzed by flow cytometry using an MHC-tetramer assay. Responses were compared to naive littermate control mice (n=5).
The mice in Group 2 were boosted by administering the peptides Tyrosinase V377Nva (25 μg/day) to the right lymph node and with SSX2 A42V (25 μg/day) to the left lymph node on days 28, 32, 49, and 53. Group 3 animals were boosted by administering the peptides Tyrosinase V377Nva (25 μg/day) to right lymph node and SSX2 A42V (25 μg/day) to the left lymph node on days 28 and 32 followed by NY-ESO-1 L158Nva, C165V (12.5 μg/day) to the right lymph node and Melan-A A27Nva (25 μg/day) to the left lymph node on days 49 and 53. All injections were 25 μl/injected node. On days 39 and 60, blood was collected from each group, and CD8+ T cell analysis was performed using a tetramer assay. Responses were compared to naive littermate control mice (n=5).
On days 41 and 63, selected animals from each group were sacrificed and spleens were removed for IFNγ ELISPOT analysis on splenocyte cell suspensions.
On day 62, selected animals from each group received, via intravenous injection, CFSE-labeled 624.38 human melanoma cells expressing all four tumor associated antigens and used as targets for SSX2, NY-ESO-1, Tyrosinase, and Melan A specific CTLs in immunized mice.
Plasmids were formulated in clinical buffer (127mM NaCl, 2.5 mM Na2HPO4, 0.88 mM KH2PO4, 0.25 mM Na2EDTA, 0.5% ETOH, in H2O; 2 mg/ml each plasmid, 4 mg/ml total). The Melan-A 26-35 (A27Nva), Tyrosinase 369-377 (V377Nva), and SSX2 41-49 (A42V) analogues were formulated in PBS at 1.0 mg/ml. The NY-ESO 157-165 (LI58Nva, C165V) peptide analogue was prepared for immunization in PBS containing 5% DMSO at a concentration of 0.5 mg/ml. Cytometry data were collected using a BD FACS Calibur flow cytometer and analyzed using CellQuest software by gating on the lymphocyte population. PBMCs were co-stained with FITC conjugated rat anti-mouse CD8a (Ly-2) monoclonal antibody (BD Biosciences, 553031) and an MHC tetramer: HLA-A*0201 SSX2 (KASEKIFY (SEQ ID NO:11))-PE MHC tetramer (Beckman Coulter, T02001), HLA-A*0201 NY-ESO (SLLMWITQC) (SEQ ID NO:12)-APC MHC tetramer (Beckman Coulter, T02001), HLA-A*0201 Melan-A (ELAGIGILTV (SEQ ID NO:1))-PE MHC tetramer (Beckman Coulter, T02001), or HLA-A*0201 Tyrosinase (YMDGTMSQV (SEQ ID NO:13))-APC MHC tetramer (Beckman Coulter, T02001).
An IFN-γ ELISpot assay was carried out as follows. Spleens were removed on Days 27 and 62 from euthanized animals, and the mononuclear cells isolated by density centrifugation (Lympholyte Mammal, Cedarlane Labs), and resuspended in HL-1 medium. Splenocytes (5 or 3×105 cells per well) were incubated with 10 μg of Melan-A 26-35 A27L, Tyrosinase 369-377, SSX2 41-49, orNY-ESO-1 157-165 peptide in triplicate wells of a 96 well filter membrane plates (Multiscreen IP membrane 96-well plate, Millipore). Samples were incubated for 42 hours at 37° C. with 5% CO2 and 100% humidity prior to development. Mouse IFN-γ coating antibody was used to coat the filters prior to incubation with splenocytes and biotinylated detection antibody was added to develop signal after lysing and washing the cells off of the filter with water (IFN-γ antibody pair, Ucytech). GABA conjugate and proprietary substrates from Ucytech were used for IFN-γ spot development. The CTL response in immunized animals was measured 24 hours after development on the AID International plate reader using ELISpot Reader software version 3.2.3 calibrated for IFN-γ spot analysis.
An in vivo cytotoxicity assay was carried out on Day 61 as follows. Human 624.38 (HLA A*0201pos) cultured melanoma tumor cells were stained with CFSEhi (Vybrant CFDA SE cell tracer kit, Molecular Probes) fluorescence (1.0 μM for 15 minutes) and 624.28 HLA-A2 (HLA A*0201neg) stained with CFSElo fluorescence (0.1 μM for 15 minutes). Two mice from each group (Group 1, 2, and 3) selected on the basis of high tetramer levels and 2 näive control mice received 20×106 CFSEhi-labeled 624.38 (HLA A*0201pos) human melanoma cells mixed with an equal number of CFSElo-labeled 624.28 (HLA A*020neg) via intravenous injection split in two aliquots delivered 2 hours apart. The specific elimination of HLA A*0201pos human target cells was measured after approximately 14 hours by sacrificing the mice, removing lung tissue, making a single cell suspension, and measuring CFSE fluorescence by flow cytometry. Percent specific lysis was calculated as shown above.
The immune response obtained was assessed at various points in the protocol.
The method can comprise the following steps (depicted in
Identification of epitopes from different antigens or the same antigen. Such epitopes can have a relationship of dominance/subdominance (e.g., due to expression or presentation to widely different extents, TCR repertoire bias, etc.) relative to each other, or can be co-dominant in their native context.
Retrieving the sequence associated with such epitopes and engineering expression vectors that encompass within the same reading frame or within the same vector, such epitopes. The new context, can create or alter the relationship of immune dominance/subdominance relative to each other as compared to their natural context.
Immunization with the vector, resulting in initiating a response that can be dominated by one specificity (dominant epitope) relative to others.
Amplifying the response to subdominant epitopes by administering a corresponding peptide. The peptide can be the native sequence or be an analogue of it. The peptide can be administered alone or concurrently with other peptides corresponding to dominant and/or subdominant epitopes, at the same site, or more preferred at separate sites.
Any of the methods described in the examples and elsewhere herein can be and are modified to include different compositions, antigens, epitopes, analogues, etc. For example, any other cancer antigen can be used. Also, many epitopes can be interchanged, and the epitope analogues, including those disclosed, described, or incorporated herein can be used. The methods can be used to generate immune responses, including multivalent immune responses against various diseases and illnesses.
Many variations and alternative elements of the invention have been disclosed. Still further variations and alternate elements will be apparent to one of skill in the art. Various embodiments of the invention can specifically include or exclude any of these variation or elements.
Each reference cited herein is hereby incorporated herein by reference in its entirety.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/640,402, filed on Dec. 29, 2004, entitled METHODS TO ELICIT, ENHANCE AND SUSTAIN IMMUNE RESPONSES AGAINST MHC CLASS I-RESTRICTED EPITOPES, FOR PROPHYLACTIC OR THERAPEUTIC PURPOSES; the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60640402 | Dec 2004 | US |