The subject disclosure generally relates to matrix acidizing. More particularly, the subject disclosure relates to methods of enhancing matrix acidizing in low permeability reservoirs.
Matrix acidizing is a widely practiced treatment of oil/gas wells in carbonate reservoirs. Matrix acidizing operations involve injecting acid into an isolated treatment zone at pressures below the fracture pressure of the formation. The injected acid dissolves the formation rock to form channels or wormholes, which extends the wellbore drainage radius. The purpose of this stimulation technique is to increase the production rate by increasing the near borehole equivalent permeability. The acidizing treatment could be enhanced by increasing the depth of penetration into the formation of the wormholes.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
According to some embodiments, a method is described for acid treating a subterranean reservoir formation from a wellbore penetrating the formation. The method includes: isolating a treatment zone of the formation; using pumping equipment, pumping an acidic fluid into the treatment zone of the formation so as to form a plurality of conductive channels extending from the wellbore into the formation; and controlling the pumping equipment so as to intentionally repeatedly decrease and increase pressure of the pumped acidic fluid in order to extend depths of the conductive channels into the formation. According to some embodiments, the conductive channels are wormholes, and the decreasing and increasing pressure extends the depths of the channels by enhancing in-situ fluid mixing near distal tips of the channels. The pressure is also controlled so as to not cause fracturing of the formation. The pumping equipment can be controlled in various ways to decrease and increase the fluid pressure including: varying pumping speed; repeatedly ceasing pumping; and repeatedly drawing down pressure in the formation. According to some embodiments, the formation is a low-permeability carbonate formation and the acid used is hydrochloric acid.
According to some embodiments, a system is described for acid treating a subterranean reservoir formation surrounding a wellbore. The system includes: tubing configured to run from a surface wellsite through the wellbore to an isolated treatment zone in the subterranean formation; pumping equipment in fluid communication with the tubing and configured to pump an acidic fluid through the tubing and into the isolated treatment zone thereby forming a plurality of wormholes extending from the wellbore into the formation; and a processing system configured to control the pumping equipment in order to decrease and increase pressure of the pumped acidic fluid to extend depths of the wormholes into the formation while maintaining the pressure at levels so as to avoid fracturing the formation. According to some embodiments, the tubing is coiled tubing, and the system further comprises one or more packers to isolate the treatment zone.
Further features and advantages of the subject disclosure will become more readily apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The subject disclosure is further described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of embodiments of the subject disclosure, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:
The particulars shown herein are by way of example and for purposes of illustrative discussion of the embodiments of the subject disclosure only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the subject disclosure. In this regard, no attempt is made to show structural details in more detail than is necessary for the fundamental understanding of the subject disclosure, the description taken with the drawings making apparent to those skilled in the art how the several forms of the subject disclosure may be embodied in practice. Furthermore, like reference numbers and designations in the various drawings indicate like elements.
It has been found that the depth a wormhole can penetrate into the formation depends on the conditions at the wormhole tip where the reaction rate generally decreases continuously as the acid concentration becomes lower due to acid reaction. One of the reaction products, carbon dioxide, further changes the reaction rate. It has been found that in low-permeability formations, the reactive acidic fluids at wormhole tips may become stagnant due to lack of fluid loss at the wormhole tip. At reservoir conditions, dissolved CO2 may negatively impact the acidizing efficiency by preventing weak acid dissociation to completion.
The acid injection into zone 102 causes a number of wormholes to form in the formation as is shown by the solid lines (such as solid line 134) leading from the wellbore into the formation. According to some embodiments, downhole pressure is manipulated to promote in-situ mixing. More specifically, according to some embodiments, downhole pressure is manipulated to promote in-situ mixing by temporarily reducing the downhole pressure to allow churning of the dissolved CO2 to facilitate the mixing efficiency within the wormholes and matrix around the wormholes. Enhancing the in-situ mixing of fluids increases the local acid mass transfer and reduce dissolved CO2 locally, especially at the wormhole tips. The induced in-situ mixing causes the wormholes to lengthen, that is penetrate to greater depths into the formation 102 as is depicted by the dotted lines such as dotted line 136.
The acidizing system shown in
Numerical stimulation of wormhole development was used which confirms that acid is indeed depleted at the wormhole tip due to acid reaction.
Although only a few example embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the example embodiments without materially departing from this invention. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures. It is the express intention of the applicant not to invoke 35 U.S.C. §112, paragraph 6 for any limitations of any of the claims herein, except for those in which the claim expressly uses the words ‘means for’ together with an associated function.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/691,512 filed Aug. 21, 2012, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61691512 | Aug 2012 | US |