Methods To Predict Clinical Outcome Of Cancer

Information

  • Patent Application
  • 20110123990
  • Publication Number
    20110123990
  • Date Filed
    November 19, 2010
    14 years ago
  • Date Published
    May 26, 2011
    13 years ago
Abstract
The present invention provides methods to determine the prognosis and appropriate treatment for patients diagnosed with cancer, based on the expression levels of one or more biomarkers. More particularly, the invention relates to the identification of genes, or sets of genes, able to distinguish breast cancer patients with a good clinical prognosis from those with a bad clinical prognosis. The invention further provides methods for providing a personalized genomics report for a cancer patient. The inventions also relates to computer systems and software for data analysis using the prognostic and statistical methods disclosed herein.
Description
INTRODUCTION

Oncologists have a number of treatment options available to them, including different combinations of therapeutic regimens that are characterized as “standard of care.” The absolute benefit from adjuvant treatment is larger for patients with poor prognostic features, and this has resulted in the policy to select only these so-called ‘high-risk’ patients for adjuvant chemotherapy. See, e.g., S. Paik, et al., J Clin Oncol. 24(23):3726-34 (2006). Therefore, the best likelihood of good treatment outcome requires that patients be assigned to optimal available cancer treatment, and that this assignment be made as quickly as possible following diagnosis.


Today our healthcare system is riddled with inefficiency and wasteful spending—one example of this is that the efficacy rate of many oncology therapeutics working only about 25% of the time. Many of those cancer patients are experiencing toxic side effects for costly therapies that may not be working. This imbalance between high treatment costs and low therapeutic efficacy is often a result of treating a specific diagnosis one way across a diverse patient population. But with the advent of gene profiling tools, genomic testing, and advanced diagnostics, this is beginning to change.


In particular, once a patient is diagnosed with breast cancer there is a strong need for methods that allow the physician to predict the expected course of disease, including the likelihood of cancer recurrence, long-term survival of the patient, and the like, and select the most appropriate treatment option accordingly. Accepted prognostic and predictive factors in breast cancer include age, tumor size, axillary lymph node status, histological tumor type, pathological grade and hormone receptor status. Molecular diagnostics, however, have been demonstrated to identify more patients with a low risk of breast cancer than was possible with standard prognostic indicators. S. Paik, The Oncologist 12(6):631-635 (2007).


Despite recent advances, the challenge of breast cancer treatment remains to target specific treatment regimens to pathogenically distinct tumor types, and ultimately personalize tumor treatment in order to maximize outcome. Accurate prediction of prognosis and clinical outcome would allow the oncologist to tailor the administration of adjuvant chemotherapy such that women with a higher risk of a recurrence or poor prognosis would receive more aggressive treatment. Furthermore, accurately stratifying patients based on risk would greatly advance the understanding of expected absolute benefit from treatment, thereby increasing success rates for clinical trials for new breast cancer therapies.


Currently, most diagnostic tests used in clinical practice are frequently not quantitative, relying on immunohistochemistry (IHC). This method often yields different results in different laboratories, in part because the reagents are not standardized, and in part because the interpretations are subjective and cannot be easily quantified. Other RNA-based molecular diagnostics require fresh-frozen tissues, which presents a myriad of challenges including incompatibilities with current clinical practices and sample transport regulations. Fixed paraffin-embedded tissue is more readily available and methods have been established to detect RNA in fixed tissue. However, these methods typically do not allow for the study of large numbers of genes (DNA or RNA) from small amounts of material. Thus, traditionally fixed tissue has been rarely used other than for IHC detection of proteins.


SUMMARY

The present invention provides a set of genes, the expression levels of which are associated with a particular clinical outcome in cancer. For example, the clinical outcome could be a good or bad prognosis assuming the patient receives the standard of care. The clinical outcome may be defined by clinical endpoints, such as disease or recurrence free survival, metastasis free survival, overall survival, etc.


The present invention accommodates the use of archived paraffin-embedded biopsy material for assay of all markers in the set, and therefore is compatible with the most widely available type of biopsy material. It is also compatible with several different methods of tumor tissue harvest, for example, via core biopsy or fine needle aspiration. The tissue sample may comprise cancer cells.


In one aspect, the present invention concerns a method of predicting a clinical outcome of a cancer patient, comprising (a) obtaining an expression level of an expression product (e.g., an RNA transcript) of at least one prognostic gene listed in Tables 1-12 from a tissue sample obtained from a tumor of the patient; (b) normalizing the expression level of the expression product of the at least one prognostic gene, to obtain a normalized expression level; and (c) calculating a risk score based on the normalized expression value, wherein increased expression of prognostic genes in Tables 1, 3, 5, and 7 are positively correlated with good prognosis, and wherein increased expression of prognostic genes in Tables 2, 4, 6, and 8 are negatively associated with good prognosis. In some embodiments, the tumor is estrogen receptor-positive. In other embodiments, the tumor is estrogen receptor negative.


In one aspect, the present disclosure provides a method of predicting a clinical outcome of a cancer patient, comprising (a) obtaining an expression level of an expression product (e.g., an RNA transcript) of at least one prognostic gene from a tissue sample obtained from a tumor of the patient, where the at least one prognostic gene is selected from GSTM2, IL6ST, GSTM3, C8orf4, TNFRSF11B, NAT1, RUNX1, CSF1, ACTR2, LMNB1, TFRC, LAPTM4B, ENO1, CDC20, and IDH2; (b) normalizing the expression level of the expression product of the at least one prognostic gene, to obtain a normalized expression level; and (c) calculating a risk score based on the normalized expression value, wherein increased expression of a prognostic gene selected from GSTM2, IL6ST, GSTM3, C8orf4, TNFRSF11B, NAT1, RUNX1, and CSF1 is positively correlated with good prognosis, and wherein increased expression of a prognostic gene selected from ACTR2, LMNB1, TFRC, LAPTM4B, ENO1, CDC20, and IDH2 is negatively associated with good prognosis. In some embodiments, the tumor is estrogen receptor-positive. In other embodiments, the tumor is estrogen receptor negative.


In various embodiments, the normalized expression level of at least 2, or at least 5, or at least 10, or at least 15, or at least 20, or a least 25 prognostic genes (as determined by assaying a level of an expression product of the gene) is determined. In alternative embodiments, the normalized expression levels of at least one of the genes that co-expresses with prognostic genes in Tables 16-18 is obtained.


In another embodiment, the risk score is determined using normalized expression levels of at least one a stromal or transferrin receptor group gene, or a gene that co-expresses with a stromal or transferrin receptor group gene.


In another embodiment, the cancer is breast cancer. In another embodiment, the patient is a human patient.


In yet another embodiment, the cancer is ER-positive breast cancer.


In yet another embodiment, the cancer is ER-negative breast cancer.


In a further embodiment, the expression product comprises RNA. For example, the RNA could be exonic RNA, intronic RNA, or short RNA (e.g., microRNA, siRNA, promoter-associated small RNA, shRNA, etc.). In various embodiments, the RNA is fragmented RNA.


In a different aspect, the invention concerns an array comprising polynucleotides hybridizing to an RNA transcription of at least one of the prognostic genes listed in Tables 1-12.


In a still further aspect, the invention concerns a method of preparing a personalized genomics profile for a patient, comprising (a) obtaining an expression level of an expression product (e.g., an RNA transcript) of at least one prognostic gene listed in Tables 1-12 from a tissue sample obtained from a tumor of the patient; (b) normalizing the expression level of the expression product of the at least one prognostic gene to obtain a normalized expression level; and (c) calculating a risk score based on the normalized expression value, wherein increased expression of prognostic genes in Tables 1, 3, 5, and 7 are positively correlated with good prognosis, and wherein increased expression of prognostic genes in Tables 2, 4, 6, and 8 are negatively associated with good prognosis. In some embodiments, the tumor is estrogen receptor-positive, and in other embodiments the tumor is estrogen receptor negative.


In various embodiments, a subject method can further include providing a report. The report may include prediction of the likelihood of risk that said patient will have a particular clinical outcome.


The invention further provides a computer-implemented method for classifying a cancer patient based on risk of cancer recurrence, comprising (a) classifying, on a computer, said patient as having a good prognosis or a poor prognosis based on an expression profile comprising measurements of expression levels of expression products of a plurality of prognostic genes in a tumor tissue sample taken from the patient, said plurality of genes comprising at least three different prognostic genes listed in any of Tables 1-12, wherein a good prognosis predicts no recurrence or metastasis within a predetermined period after initial diagnosis, and wherein a poor prognosis predicts recurrence or metastasis within said predetermined period after initial diagnosis; and (b) calculating a risk score based on said expression levels.







DETAILED DESCRIPTION
Definitions

Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994), and March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, N.Y. 1992), provide one skilled in the art with a general guide to many of the terms used in the present application.


One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice of the present invention. Indeed, the present invention is in no way limited to the methods and materials described. For purposes of the present invention, the following terms are defined below.


“Prognostic factors” are those variables related to the natural history of cancer, which influence the recurrence rates and outcome of patients once they have developed cancer. Clinical parameters that have been associated with a worse prognosis include, for example, lymph node involvement, and high grade tumors. Prognostic factors are frequently used to categorize patients into subgroups with different baseline relapse risks.


The term “prognosis” is used herein to refer to the prediction of the likelihood of cancer-attributable death or progression, including recurrence, metastatic spread, and drug resistance, of a neoplastic disease, such as breast cancer. The term “good prognosis” means a desired or “positive” clinical outcome. For example, in the context of breast cancer, a good prognosis may be an expectation of no recurrences or metastasis within two, three, four, five or more years of the initial diagnosis of breast cancer. The terms “bad prognosis” or “poor prognosis” are used herein interchangeably herein to mean an undesired clinical outcome. For example, in the context of breast cancer, a bad prognosis may be an expectation of a recurrence or metastasis within two, three, four, five or more years of the initial diagnosis of breast cancer.


The term “prognostic gene” is used herein to refer to a gene, the expression of which is correlated, positively or negatively, with a good prognosis for a cancer patient treated with the standard of care. A gene may be both a prognostic and predictive gene, depending on the correlation of the gene expression level with the corresponding endpoint. For example, using a Cox proportional hazards model, if a gene is only prognostic, its hazard ratio (HR) does not change when measured in patients treated with the standard of care or in patients treated with a new intervention.


The term “predictive gene” is used herein to refer to a gene, the expression of which is correlated, positively or negatively, with response to a beneficial response to treatment. For example, treatment could include chemotherapy.


The terms “risk score” or “risk classification” are used interchangeably herein to describe a level of risk (or likelihood) that a patient will experience a particular clinical outcome. A patient may be classified into a risk group or classified at a level of risk based on the methods of the present disclosure, e.g. high, medium, or low risk. A “risk group” is a group of subjects or individuals with a similar level of risk for a particular clinical outcome.


A clinical outcome can be defined using different endpoints. The term “long-term” survival is used herein to refer to survival for a particular time period, e.g., for at least 3 years, more preferably for at least 5 years. The term “Recurrence-Free Survival” (RFS) is used herein to refer to survival for a time period (usually in years) from randomization to first cancer recurrence or death due to recurrence of cancer. The term “Overall Survival” (OS) is used herein to refer to the time (in years) from randomization to death from any cause. The term “Disease-Free Survival” (DFS) is used herein to refer to survival for a time period (usually in years) from randomization to first cancer recurrence or death from any cause.


The calculation of the measures listed above in practice may vary from study to study depending on the definition of events to be either censored or not considered.


The term “biomarker” as used herein refers to a gene, the expression level of which, as measured using a gene product.


The term “microarray” refers to an ordered arrangement of hybridizable array elements, preferably polynucleotide probes, on a substrate.


As used herein, the term “normalized expression level” as applied to a gene refers to the normalized level of a gene product, e.g. the normalized value determined for the RNA expression level of a gene or for the polypeptide expression level of a gene.


The term “Ct” as used herein refers to threshold cycle, the cycle number in quantitative polymerase chain reaction (qPCR) at which the fluorescence generated within a reaction well exceeds the defined threshold, i.e. the point during the reaction at which a sufficient number of amplicons have accumulated to meet the defined threshold.


The term “gene product” or “expression product” are used herein to refer to the RNA transcription products (transcripts) of the gene, including mRNA, and the polypeptide translation products of such RNA transcripts. A gene product can be, for example, an unspliced RNA, an mRNA, a splice variant mRNA, a microRNA, a fragmented RNA, a polypeptide, a post-translationally modified polypeptide, a splice variant polypeptide, etc.


The term “RNA transcript” as used herein refers to the RNA transcription products of a gene, including, for example, mRNA, an unspliced RNA, a splice variant mRNA, a microRNA, and a fragmented RNA. “Fragmented RNA” as used herein refers to RNA a mixture of intact RNA and RNA that has been degraded as a result of the sample processing (e.g., fixation, slicing tissue blocks, etc.).


Unless indicated otherwise, each gene name used herein corresponds to the Official Symbol assigned to the gene and provided by Entrez Gene (URL: www.ncbi.nlm.nih.gov/sites/entrez) as of the filing date of this application.


The terms “correlated” and “associated” are used interchangeably herein to refer to a strength of association between two measurements (or measured entities). The disclosure provides genes and gene subsets, the expression levels of which are associated with a particular outcome measure. For example, the increased expression level of a gene may be positively correlated (positively associated) with an increased likelihood of good clinical outcome for the patient, such as an increased likelihood of long-term survival without recurrence of the cancer and/or metastasis-free survival. Such a positive correlation may be demonstrated statistically in various ways, e.g. by a low hazard ratio (e.g. HR<1.0). In another example, the increased expression level of a gene may be negatively correlated (negatively associated) with an increased likelihood of good clinical outcome for the patient. In that case, for example, the patient may have a decreased likelihood of long-term survival without recurrence of the cancer and/or cancer metastasis, and the like. Such a negative correlation indicates that the patient likely has a poor prognosis, e.g., a high hazard ratio (e.g., HR>1.0). “Correlated” is also used herein to refer to a strength of association between the expression levels of two different genes, such that expression level of a first gene can be substituted with an expression level of a second gene in a given algorithm in view of their correlation of expression. Such “correlated expression” of two genes that are substitutable in an algorithm usually gene expression levels that are positively correlated with one another, e.g., if increased expression of a first gene is positively correlated with an outcome (e.g., increased likelihood of good clinical outcome), then the second gene that is co-expressed and exhibits correlated expression with the first gene is also positively correlated with the same outcome


The term “recurrence,” as used herein, refers to local or distant (metastasis) recurrence of cancer. For example, breast cancer can come back as a local recurrence (in the treated breast or near the tumor surgical site) or as a distant recurrence in the body. The most common sites of breast cancer recurrence include the lymph nodes, bones, liver, or lungs.


The term “polynucleotide,” when used in singular or plural, generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for instance, polynucleotides as defined herein include, without limitation, single- and double-stranded DNA, DNA including single- and double-stranded regions, single- and double-stranded RNA, and RNA including single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or include single- and double-stranded regions. In addition, the term “polynucleotide” as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. The term “polynucleotide” specifically includes cDNAs. The term includes DNAs (including cDNAs) and RNAs that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are “polynucleotides” as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritiated bases, are included within the term “polynucleotides” as defined herein. In general, the term “polynucleotide” embraces all chemically, enzymatically and/or metabolically modified forms of unmodified polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells.


The term “oligonucleotide” refers to a relatively short polynucleotide, including, without limitation, single-stranded deoxyribonucleotides, single- or double-stranded ribonucleotides, RNA:DNA hybrids and double-stranded DNAs. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods, for example using automated oligonucleotide synthesizers that are commercially available. However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.


The phrase “amplification” refers to a process by which multiple copies of a gene or RNA transcript are formed in a particular sample or cell line. The duplicated region (a stretch of amplified polynucleotide) is often referred to as “amplicon.” Usually, the amount of the messenger RNA (mRNA) produced, i.e., the level of gene expression, also increases in the proportion of the number of copies made of the particular gene expressed.


The term “estrogen receptor (ER)” designates the estrogen receptor status of a cancer patient. A tumor is ER-positive if there is a significant number of estrogen receptors present in the cancer cells, while ER-negative indicates that the cells do not have a significant number of receptors present. The definition of “significant” varies amongst testing sites and methods (e.g., immunohistochemistry, PCR). The ER status of a cancer patient can be evaluated by various known means. For example, the ER level of breast cancer is determined by measuring an expression level of a gene encoding the estrogen receptor in a breast tumor sample obtained from a patient.


The term “tumor,” as used herein, refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.


The terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include, but are not limited to, breast cancer, ovarian cancer, colon cancer, lung cancer, prostate cancer, hepatocellular cancer, gastric cancer, pancreatic cancer, cervical cancer, liver cancer, bladder cancer, cancer of the urinary tract, thyroid cancer, renal cancer, carcinoma, melanoma, and brain cancer.


The gene subset identified herein as the “stromal group” includes genes that are synthesized predominantly by stromal cells and are involved in stromal response and genes that co-express with stromal group genes. “Stromal cells” are defined herein as connective tissue cells that make up the support structure of biological tissues. Stromal cells include fibroblasts, immune cells, pericytes, endothelial cells, and inflammatory cells. “Stromal response” refers to a desmoplastic response of the host tissues at the site of a primary tumor or invasion. See, e.g., E. Rubin, J. Farber, Pathology, 985-986 (2nd Ed. 1994). The stromal group includes, for example, CDH11, TAGLN, ITGA4, INHBA, COLIA1, COLIA2, FN1, CXCL14, TNFRSF1, CXCL12, C10ORF116, RUNX1, GSTM2, TGFB3, CAV1, DLC1, TNFRSF10, F3, and DICER1, and co-expressed genes identified in Tables 16-18.


The gene subset identified herein as the “metabolic group” includes genes that are associated with cellular metabolism, including genes associated with carrying proteins for transferring iron, the cellular iron homeostasis pathway, and homeostatic biochemical metabolic pathways, and genes that co-express with metabolic group genes. The metabolic group includes, for example, TFRC, ENO1, IDH2, ARF1, CLDN4, PRDX1, and GBP1, and co-expressed genes identified in Tables 16-18.


The gene subset identified herein as the “immune group” includes genes that are involved in cellular immunoregulatory functions, such as T and B cell trafficking, lymphocyte-associated or lymphocyte markers, and interferon regulation genes, and genes that co-express with immune group genes. The immune group includes, for example, CCL19 and IRF1, and co-expressed genes identified in Tables 16-18.


The gene subset identified herein as the “proliferation group” includes genes that are associated with cellular development and division, cell cycle and mitotic regulation, angiogenesis, cell replication, nuclear transport/stability, wnt signaling, apoptosis, and genes that co-express with proliferation group genes. The proliferation group includes, for example, PGF, SPC25, AURKA, BIRC5, BUB1, CCNB1, CENPA, KPNA, LMNB1, MCM2, MELK, NDC80, TPX2M, and WISP1, and co-expressed genes identified in Tables 16-18.


The term “co-expressed”, as used herein, refers to a statistical correlation between the expression level of one gene and the expression level of another gene. Pairwise co-expression may be calculated by various methods known in the art, e.g., by calculating Pearson correlation coefficients or Spearman correlation coefficients. Co-expressed gene cliques may also be identified using a graph theory.


As used herein, the terms “gene clique” and “clique” refer to a subgraph of a graph in which every vertex is connected by an edge to every other vertex of the subgraph.


As used herein, a “maximal clique” is a clique in which no other vertex can be added and still be a clique.


The “pathology” of cancer includes all phenomena that compromise the well-being of the patient. This includes, without limitation, abnormal or uncontrollable cell growth, metastasis, interference with the normal functioning of neighboring cells, release of cytokines or other secretory products at abnormal levels, suppression or aggravation of inflammatory or immunological response, neoplasia, premalignancy, malignancy, invasion of surrounding or distant tissues or organs, such as lymph nodes, etc.


A “computer-based system” refers to a system of hardware, software, and data storage medium used to analyze information. The minimum hardware of a patient computer-based system comprises a central processing unit (CPU), and hardware for data input, data output (e.g., display), and data storage. An ordinarily skilled artisan can readily appreciate that any currently available computer-based systems and/or components thereof are suitable for use in connection with the methods of the present disclosure. The data storage medium may comprise any manufacture comprising a recording of the present information as described above, or a memory access device that can access such a manufacture.


To “record” data, programming or other information on a computer readable medium refers to a process for storing information, using any such methods as known in the art. Any convenient data storage structure may be chosen, based on the means used to access the stored information. A variety of data processor programs and formats can be used for storage, e.g. word processing text file, database format, etc.


A “processor” or “computing means” references any hardware and/or software combination that will perform the functions required of it. For example, a suitable processor may be a programmable digital microprocessor such as available in the form of an electronic controller, mainframe, server or personal computer (desktop or portable). Where the processor is programmable, suitable programming can be communicated from a remote location to the processor, or previously saved in a computer program product (such as a portable or fixed computer readable storage medium, whether magnetic, optical or solid state device based). For example, a magnetic medium or optical disk may carry the programming, and can be read by a suitable reader communicating with each processor at its corresponding station.


As used herein, “graph theory” refers to a field of study in Computer Science and Mathematics in which situations are represented by a diagram containing a set of points and lines connecting some of those points. The diagram is referred to as a “graph”, and the points and lines referred to as “vertices” and “edges” of the graph. In terms of gene co-expression analysis, a gene (or its equivalent identifier, e.g. an array probe) may be represented as a node or vertex in the graph. If the measures of similarity (e.g., correlation coefficient, mutual information, and alternating conditional expectation) between two genes are higher than a significant threshold, the two genes are said to be co-expressed and an edge will be drawn in the graph. When co-expressed edges for all possible gene pairs for a given study have been drawn, all maximal cliques are computed. The resulting maximal clique is defined as a gene clique. A gene clique is a computed co-expressed gene group that meets predefined criteria.


“Stringency” of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).


“Stringent conditions” or “high stringency conditions”, as defined herein, typically: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50° C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42° C.; or (3) employ 50% formamide, 5×SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5×Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42° C., with washes at 42° C. in 0.2×SSC (sodium chloride/sodium citrate) and 50% formamide at 55° C., followed by a high-stringency wash consisting of 0.1×SSC containing EDTA at 55° C.


“Moderately stringent conditions” may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and % SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37° C. in a solution comprising: 20% formamide, 5×SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5×Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1×SSC at about 37-50° C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.


In the context of the present invention, reference to “at least one,” “at least two,” “at least five,” etc. of the genes listed in any particular gene set means any one or any and all combinations of the genes listed.


The term “node negative” cancer, such as “node negative” breast cancer, is used herein to refer to cancer that has not spread to the lymph nodes.


The terms “splicing” and “RNA splicing” are used interchangeably and refer to RNA processing that removes introns and joins exons to produce mature mRNA with continuous coding sequence that moves into the cytoplasm of a eukaryotic cell.


In theory, the term “exon” refers to any segment of an interrupted gene that is represented in the mature RNA product (B. Lewin. Genes IV Cell Press, Cambridge Mass. 1990). In theory the term “intron” refers to any segment of DNA that is transcribed but removed from within the transcript by splicing together the exons on either side of it. Operationally, exon sequences occur in the mRNA sequence of a gene as defined by Ref. SEQ ID numbers. Operationally, intron sequences are the intervening sequences within the genomic DNA of a gene, bracketed by exon sequences and having GT and AG splice consensus sequences at their 5′ and 3′ boundaries.


Gene Expression Assay

The present disclosure provides methods that employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, and biochemistry, which are within the skill of the art. Such techniques are explained fully in the literature, such as, “Molecular Cloning: A Laboratory Manual”, 2nd edition (Sambrook et al., 1989); “Oligonucleotide Synthesis” (M. J. Gait, ed., 1984); “Animal Cell Culture” (R. I. Freshney, ed., 1987); “Methods in Enzymology” (Academic Press, Inc.); “Handbook of Experimental Immunology”, 4th edition (D. M. Weir & C. C. Blackwell, eds., Blackwell Science Inc., 1987); “Gene Transfer Vectors for Mammalian Cells” (J. M. Miller & M. P. Calos, eds., 1987); “Current Protocols in Molecular Biology” (F. M. Ausubel et al., eds., 1987); and “PCR: The Polymerase Chain Reaction”, (Mullis et al., eds., 1994).


1. Gene Expression Profiling


Methods of gene expression profiling include methods based on hybridization analysis of polynucleotides, methods based on sequencing of polynucleotides, and proteomics-based methods. The most commonly used methods known in the art for the quantification of mRNA expression in a sample include northern blotting and in situ hybridization (Parker & Barnes, Methods in Molecular Biology 106:247-283 (1999)); RNAse protection assays (Hod, Biotechniques 13:852-854 (1992)); and PCR-based methods, such as reverse transcription polymerase chain reaction (RT-PCR) (Weis et al., Trends in Genetics 8:263-264 (1992)). Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes.


2. PCR-Based Gene Expression Profiling Methods


a. Reverse Transcriptase PCR (RT-PCR)


Of the techniques listed above, the most sensitive and most flexible quantitative method is RT-PCR, which can be used to compare mRNA levels in different sample populations, in normal and tumor tissues, with or without drug treatment, to characterize patterns of gene expression, to discriminate between closely related mRNAs, and to analyze RNA structure.


The first step is the isolation of mRNA from a target sample. The starting material is typically total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines, respectively. Thus RNA can be isolated from a variety of primary tumors, including breast, lung, colon, prostate, brain, liver, kidney, pancreas, spleen, thymus, testis, ovary, uterus, etc., tumor, or tumor cell lines, with pooled DNA from healthy donors. If the source of mRNA is a primary tumor, mRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples.


General methods for mRNA extraction are well known in the art and are disclosed in standard textbooks of molecular biology, including Ausubel et al., Current Protocols of Molecular Biology, John Wiley and Sons (1997). Methods for RNA extraction from paraffin embedded tissues are disclosed, for example, in Rupp and Locker, Lab Invest. 56:A67 (1987), and De Andrés et al., BioTechniques 18:42044 (1995). In particular, RNA isolation can be performed using purification kit, buffer set and protease from commercial manufacturers, such as Qiagen, according to the manufacturer's instructions. For example, total RNA from cells in culture can be isolated using Qiagen RNeasy mini-columns. Other commercially available RNA isolation kits include MasterPure™ Complete DNA and RNA Purification Kit (EPICENTRE®, Madison, Wis.), and Paraffin Block RNA Isolation Kit (Ambion, Inc.). Total RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test). RNA prepared from tumor can be isolated, for example, by cesium chloride density gradient centrifugation.


In some cases, it may be appropriate to amplify RNA prior to initiating expression profiling. It is often the case that only very limited amounts of valuable clinical specimens are available for molecular analysis. This may be due to the fact that the tissues have already be used for other laboratory analyses or may be due to the fact that the original specimen is very small as in the case of needle biopsy or very small primary tumors. When tissue is limiting in quantity it is generally also the case that only small amounts of total RNA can be recovered from the specimen and as a result only a limited number of genomic markers can be analyzed in the specimen. RNA amplification compensates for this limitation by faithfully reproducing the original RNA sample as a much larger amount of RNA of the same relative composition. Using this amplified copy of the original RNA specimen, unlimited genomic analysis can be done to discovery biomarkers associated with the clinical characteristics of the original biological sample. This effectively immortalizes clinical study specimens for the purposes of genomic analysis and biomarker discovery.


As RNA cannot serve as a template for PCR, the first step in gene expression profiling by real-time RT-PCR (RT-PCR) is the reverse transcription of the RNA template into cDNA, followed by its exponential amplification in a PCR reaction. The two most commonly used reverse transcriptases are avian myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MMLV-RT). The reverse transcription step is typically primed using specific primers, random hexamers, or oligo-dT primers, depending on the circumstances and the goal of expression profiling. For example, extracted RNA can be reverse-transcribed using a GeneAmp RNA PCR kit (Perkin Elmer, Calif., USA), following the manufacturer's instructions. The derived cDNA can then be used as a template in the subsequent PCR reaction. For further details see, e.g. Held et al., Genome Research 6:986-994 (1996).


Although the PCR step can use a variety of thermostable DNA-dependent DNA polymerases, it typically employs the Taq DNA polymerase, which has a 5′-3′ nuclease activity but lacks a 3′-5′ proofreading endonuclease activity. Thus, TaqMan® PCR typically utilizes the 5′-nuclease activity of Taq or Tth polymerase to hydrolyze a hybridization probe bound to its target amplicon, but any enzyme with equivalent 5′ nuclease activity can be used. Two oligonucleotide primers are used to generate an amplicon typical of a PCR reaction. A third oligonucleotide, or probe, is designed to detect nucleotide sequence located between the two PCR primers. The probe is non-extendible by Taq DNA polymerase enzyme, and is labeled with a reporter fluorescent dye and a quencher fluorescent dye. Any laser-induced emission from the reporter dye is quenched by the quenching dye when the two dyes are located close together as they are on the probe. During the amplification reaction, the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resultant probe fragments disassociate in solution, and signal from the released reporter dye is free from the quenching effect of the second fluorophore. One molecule of reporter dye is liberated for each new molecule synthesized, and detection of the unquenched reporter dye provides the basis for quantitative interpretation of the data.


TaqMan® RT-PCR can be performed using commercially available equipment, such as, for example, ABI PRISM 7900® Sequence Detection System™ (Perkin-Elmer-Applied Biosystems, Foster City, Calif., USA), or LightCycler® 480 Real-Time PCR System (Roche Diagnostics, GmbH, Penzberg, Germany). In a preferred embodiment, the 5′ nuclease procedure is run on a real-time quantitative PCR device such as the ABI PRISM 7900® Sequence Detection System™. The system consists of a thermocycler, laser, charge-coupled device (CCD), camera and computer. The system amplifies samples in a 384-well format on a thermocycler. During amplification, laser-induced fluorescent signal is collected in real-time through fiber optics cables for all 384 wells, and detected at the CCD. The system includes software for running the instrument and for analyzing the data.


5′-Nuclease assay data are initially expressed as Ct, or the threshold cycle. As discussed above, fluorescence values are recorded during every cycle and represent the amount of product amplified to that point in the amplification reaction. The point when the fluorescent signal is first recorded as statistically significant is the threshold cycle (Ct).


To minimize errors and the effect of sample-to-sample variation, RT-PCR is usually performed using an internal standard. The ideal internal standard is expressed at a constant level among different tissues, and is unaffected by the experimental treatment. RNAs most frequently used to normalize patterns of gene expression are mRNAs for the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and β-actin.


The steps of a representative protocol for profiling gene expression using fixed, paraffin-embedded tissues as the RNA source, including mRNA isolation, purification, primer extension and amplification are given in various published journal articles. M. Cronin, Am J Pathol 164(1):35-42 (2004). Briefly, a representative process starts with cutting about 10 μm thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair and/or amplification steps may be included, if necessary, and RNA is reverse transcribed using gene specific primers followed by RT-PCR.


b. Design of Intron-Based PCR Primers and Probes


PCR primers and probes can be designed based upon exon or intron sequences present in the mRNA transcript of the gene of interest. Prior to carrying out primer/probe design, it is necessary to map the target gene sequence to the human genome assembly in order to identify intron-exon boundaries and overall gene structure. This can be performed using publicly available software, such as Primer3 (Whitehead Inst.) and Primer Express® (Applied Biosystems).


Where necessary or desired, repetitive sequences of the target sequence can be masked to mitigate non-specific signals. Exemplary tools to accomplish this include the Repeat Masker program available on-line through the Baylor College of Medicine, which screens DNA sequences against a library of repetitive elements and returns a query sequence in which the repetitive elements are masked. The masked intron and exon sequences can then be used to design primer and probe sequences for the desired target sites using any commercially or otherwise publicly available primer/probe design packages, such as Primer Express (Applied Biosystems); MGB assay-by-design (Applied Biosystems); Primer3 (Steve Rozen and Helen J. Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers. In: Rrawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, N.J., pp 365-386).


Other factors that can influence PCR primer design include primer length, melting temperature (Tm), and G/C content, specificity, complementary primer sequences, and 3′-end sequence. In general, optimal PCR primers are generally 17-30 bases in length, and contain about 20-80%, such as, for example, about 50-60% G+C bases, and exhibit Tm's between 50 and 80° C., e.g. about 50 to 70° C.


For further guidelines for PCR primer and probe design see, e.g. Dieffenbach, C W. et al, “General Concepts for PCR Primer Design” in: PCR Primer, A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1995, pp. 133-155; Innis and Gelfand, “Optimization of PCRs” in: PCR Protocols, A Guide to Methods and Applications, CRC Press, London, 1994, pp. 5-11; and Plasterer, T. N. Primerselect: Primer and probe design. Methods MoI. Biol. 70:520-527 (1997), the entire disclosures of which are hereby expressly incorporated by reference.


Table A provides further information concerning the primer, probe, and amplicon sequences associated with the Examples disclosed herein.


c. MassARRAY System


In the MassARRAY-based gene expression profiling method, developed by Sequenom, Inc. (San Diego, Calif.) following the isolation of RNA and reverse transcription, the obtained cDNA is spiked with a synthetic DNA molecule (competitor), which matches the targeted cDNA region in all positions, except a single base, and serves as an internal standard. The cDNA/competitor mixture is PCR amplified and is subjected to a post-PCR shrimp alkaline phosphatase (SAP) enzyme treatment, which results in the dephosphorylation of the remaining nucleotides. After inactivation of the alkaline phosphatase, the PCR products from the competitor and cDNA are subjected to primer extension, which generates distinct mass signals for the competitor- and cDNA-derives PCR products. After purification, these products are dispensed on a chip array, which is pre-loaded with components needed for analysis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The cDNA present in the reaction is then quantified by analyzing the ratios of the peak areas in the mass spectrum generated. For further details see, e.g. Ding and Cantor, Proc. Natl. Acad. Sci. USA 100:3059-3064 (2003).


d. Other PCR-Based Methods


Further PCR-based techniques include, for example, differential display (Liang and Pardee, Science 257:967-971 (1992)); amplified fragment length polymorphism (iAFLP) (Kawamoto et al., Genome Res. 12:1305-1312 (1999)); BeadArray™ technology (Illumina, San Diego, Calif.; Oliphant et al., Discovery of Markers for Disease (Supplement to Biotechniques), June 2002; Ferguson et al., Analytical Chemistry 72:5618 (2000)); BeadsArray for Detection of Gene Expression (BADGE), using the commercially available Luminex100 LabMAP system and multiple color-coded microspheres (Luminex Corp., Austin, Tex.) in a rapid assay for gene expression (Yang et al., Genome Res. 11:1888-1898 (2001)); and high coverage expression profiling (HiCEP) analysis (Fukumura et al., Nucl. Acids. Res. 31(16) e94 (2003)).


3. Microarrays


Differential gene expression can also be identified, or confirmed using the microarray technique. Thus, the expression profile of breast cancer-associated genes can be measured in either fresh or paraffin-embedded tumor tissue, using microarray technology. In this method, polynucleotide sequences of interest (including cDNAs and oligonucleotides) are plated, or arrayed, on a microchip substrate. The arrayed sequences are then hybridized with specific DNA probes from cells or tissues of interest. Just as in the RT-PCR method, the source of mRNA typically is total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines. Thus RNA can be isolated from a variety of primary tumors or tumor cell lines. If the source of mRNA is a primary tumor, mRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples, which are routinely prepared and preserved in everyday clinical practice.


In a specific embodiment of the microarray technique, PCR amplified inserts of cDNA clones are applied to a substrate in a dense array. Preferably at least 10,000 nucleotide sequences are applied to the substrate. The microarrayed genes, immobilized on the microchip at 10,000 elements each, are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes may be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissues of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After stringent washing to remove non-specifically bound probes, the chip is scanned by confocal laser microscopy or by another detection method, such as a CCD camera. Quantitation of hybridization of each arrayed element allows for assessment of corresponding mRNA abundance. With dual color fluorescence, separately labeled cDNA probes generated from two sources of RNA are hybridized pairwise to the array. The relative abundance of the transcripts from the two sources corresponding to each specified gene is thus determined simultaneously. The miniaturized scale of the hybridization affords a convenient and rapid evaluation of the expression pattern for large numbers of genes. Such methods have been shown to have the sensitivity required to detect rare transcripts, which are expressed at a few copies per cell, and to reproducibly detect at least approximately two-fold differences in the expression levels (Schena et al., Proc. Natl. Acad. Sci. USA 93(2):106-149 (1996)). Microarray analysis can be performed by commercially available equipment, following manufacturer's protocols, such as by using the Affymetrix GenChip technology, or Agilent's microarray technology.


The development of microarray methods for large-scale analysis of gene expression makes it possible to search systematically for molecular markers of cancer classification and outcome prediction in a variety of tumor types.


4. Gene Expression Analysis by Nucleic Acid Sequencing


Nucleic acid sequencing technologies are suitable methods for analysis of gene expression. The principle underlying these methods is that the number of times a cDNA sequence is detected in a sample is directly related to the relative expression of the mRNA corresponding to that sequence. These methods are sometimes referred to by the term Digital Gene Expression (DGE) to reflect the discrete numeric property of the resulting data. Early methods applying this principle were Serial Analysis of Gene Expression (SAGE) and Massively Parallel Signature Sequencing (MPSS). See, e.g., S. Brenner, et al., Nature Biotechnology 18(6):630-634 (2000). More recently, the advent of “next-generation” sequencing technologies has made DGE simpler, higher throughput, and more affordable. As a result, more laboratories are able to utilize DGE to screen the expression of more genes in more individual patient samples than previously possible. See, e.g., J. Marioni, Genome Research 18(9):1509-1517 (2008); R. Morin, Genome Research 18(4):610-621 (2008); A. Mortazavi, Nature Methods 5(7):621-628 (2008); N. Cloonan, Nature Methods 5(7):613-619 (2008).


5. Isolating RNA from Body Fluids


Methods of isolating RNA for expression analysis from blood, plasma and serum (See for example, Tsui N B et al. (2002) 48, 1647-53 and references cited therein) and from urine (See for example, Boom R et al. (1990) J Clin Microbiol. 28, 495-503 and reference cited therein) have been described.


6. Immunohistochemistry


Immunohistochemistry methods are also suitable for detecting the expression levels of the prognostic markers of the present invention. Thus, antibodies or antisera, preferably polyclonal antisera, and most preferably monoclonal antibodies specific for each marker are used to detect expression. The antibodies can be detected by direct labeling of the antibodies themselves, for example, with radioactive labels, fluorescent labels, hapten labels such as, biotin, or an enzyme such as horse radish peroxidase or alkaline phosphatase. Alternatively, unlabeled primary antibody is used in conjunction with a labeled secondary antibody, comprising antisera, polyclonal antisera or a monoclonal antibody specific for the primary antibody. Immunohistochemistry protocols and kits are well known in the art and are commercially available.


7. Proteomics


The term “proteome” is defined as the totality of the proteins present in a sample (e.g. tissue, organism, or cell culture) at a certain point of time. Proteomics includes, among other things, study of the global changes of protein expression in a sample (also referred to as “expression proteomics”). Proteomics typically includes the following steps: (1) separation of individual proteins in a sample by 2-D gel electrophoresis (2-D PAGE); (2) identification of the individual proteins recovered from the gel, e.g. my mass spectrometry or N-terminal sequencing, and (3) analysis of the data using bioinformatics. Proteomics methods are valuable supplements to other methods of gene expression profiling, and can be used, alone or in combination with other methods, to detect the products of the prognostic markers of the present invention.


8. General Description of the mRNA Isolation, Purification, and Amplification


The steps of a representative protocol for profiling gene expression using fixed, paraffin-embedded tissues as the RNA source, including mRNA isolation, purification, primer extension and amplification are provided in various published journal articles (for example: T. E. Godfrey et al., J. Molec. Diagnostics 2: 84-91 [2000]; K. Specht et al., Am. J. Pathol. 158: 419-29 [2001]). Briefly, a representative process starts with cutting about 10 μm thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair and/or amplification steps may be included, if necessary, and RNA is reverse transcribed using gene specific primers followed by RT-PCR. Finally, the data are analyzed to identify the best treatment option(s) available to the patient on the basis of the characteristic gene expression pattern identified in the tumor sample examined, dependent on the predicted likelihood of cancer recurrence.


9. Normalization


The expression data used in the methods disclosed herein can be normalized. Normalization refers to a process to correct for (normalize away), for example, differences in the amount of RNA assayed and variability in the quality of the RNA used, to remove unwanted sources of systematic variation in Ct measurements, and the like. With respect to RT-PCR experiments involving archived fixed paraffin embedded tissue samples, sources of systematic variation are known to include the degree of RNA degradation relative to the age of the patient sample and the type of fixative used to preserve the sample. Other sources of systematic variation are attributable to laboratory processing conditions.


Assays can provide for normalization by incorporating the expression of certain normalizing genes, which genes do not significantly differ in expression levels under the relevant conditions. Exemplary normalization genes include housekeeping genes such as PGK1 and UBB. (See, e.g., E. Eisenberg, et al., Trends in Genetics 19(7):362-365 (2003).) Normalization can be based on the mean or median signal (CT) of all of the assayed genes or a large subset thereof (global normalization approach). In general, the normalizing genes, also referred to as reference genes should be genes that are known not to exhibit significantly different expression in colorectal cancer as compared to non-cancerous colorectal tissue, and are not significantly affected by various sample and process conditions, thus provide for normalizing away extraneous effects.


Unless noted otherwise, normalized expression levels for each mRNA/tested tumor/patient will be expressed as a percentage of the expression level measured in the reference set. A reference set of a sufficiently high number (e.g. 40) of tumors yields a distribution of normalized levels of each mRNA species. The level measured in a particular tumor sample to be analyzed falls at some percentile within this range, which can be determined by methods well known in the art.


In exemplary embodiments, one or more of the following genes are used as references by which the expression data is normalized: AAMP, ARF1, EEF1A1, ESD, GPS1, H3F3A, HNRPC, RPL13A, RPL41, RPS23, RPS27, SDHA, TCEA1, UBB, YWHAZ, B-actin, GUS, GAPDH, RPLPO, and TFRC. For example, the calibrated weighted average Ct measurements for each of the prognostic genes may be normalized relative to the mean of at least three reference genes, at least four reference genes, or at least five reference genes.


Those skilled in the art will recognize that normalization may be achieved in numerous ways, and the techniques described above are intended only to be exemplary, not exhaustive.


Reporting Results

The methods of the present disclosure are suited for the preparation of reports summarizing the expected or predicted clinical outcome resulting from the methods of the present disclosure. A “report,” as described herein, is an electronic or tangible document that includes report elements that provide information of interest relating to a likelihood assessment or a risk assessment and its results. A subject report includes at least a likelihood assessment or a risk assessment, e.g., an indication as to the risk of recurrence of breast cancer, including local recurrence and metastasis of breast cancer. A subject report can include an assessment or estimate of one or more of disease-free survival, recurrence-free survival, metastasis-free survival, and overall survival. A subject report can be completely or partially electronically generated, e.g., presented on an electronic display (e.g., computer monitor). A report can further include one or more of: 1) information regarding the testing facility; 2) service provider information; 3) patient data; 4) sample data; 5) an interpretive report, which can include various information including: a) indication; b) test data, where test data can include a normalized level of one or more genes of interest, and 6) other features.


The present disclosure thus provides for methods of creating reports and the reports resulting therefrom. The report may include a summary of the expression levels of the RNA transcripts, or the expression products of such RNA transcripts, for certain genes in the cells obtained from the patient's tumor. The report can include information relating to prognostic covariates of the patient. The report may include an estimate that the patient has an increased risk of recurrence. That estimate may be in the form of a score or patient stratifier scheme (e.g., low, intermediate, or high risk of recurrence). The report may include information relevant to assist with decisions about the appropriate surgery (e.g., partial or total mastectomy) or treatment for the patient.


Thus, in some embodiments, the methods of the present disclosure further include generating a report that includes information regarding the patient's likely clinical outcome, e.g. risk of recurrence. For example, the methods disclosed herein can further include a step of generating or outputting a report providing the results of a subject risk assessment, which report can be provided in the form of an electronic medium (e.g., an electronic display on a computer monitor), or in the form of a tangible medium (e.g., a report printed on paper or other tangible medium).


A report that includes information regarding the patient's likely prognosis (e.g., the likelihood that a patient having breast cancer will have a good prognosis or positive clinical outcome in response to surgery and/or treatment) is provided to a user. An assessment as to the likelihood is referred to below as a “risk report” or, simply, “risk score.” A person or entity that prepares a report (“report generator”) may also perform the likelihood assessment. The report generator may also perform one or more of sample gathering, sample processing, and data generation, e.g., the report generator may also perform one or more of: a) sample gathering; b) sample processing; c) measuring a level of a risk gene; d) measuring a level of a reference gene; and e) determining a normalized level of a risk gene. Alternatively, an entity other than the report generator can perform one or more sample gathering, sample processing, and data generation.


For clarity, it should be noted that the term “user,” which is used interchangeably with “client,” is meant to refer to a person or entity to whom a report is transmitted, and may be the same person or entity who does one or more of the following: a) collects a sample; b) processes a sample; c) provides a sample or a processed sample; and d) generates data (e.g., level of a risk gene; level of a reference gene product(s); normalized level of a risk gene (“prognosis gene”) for use in the likelihood assessment. In some cases, the person(s) or entity(ies) who provides sample collection and/or sample processing and/or data generation, and the person who receives the results and/or report may be different persons, but are both referred to as “users” or “clients” herein to avoid confusion. In certain embodiments, e.g., where the methods are completely executed on a single computer, the user or client provides for data input and review of data output. A “user” can be a health professional (e.g., a clinician, a laboratory technician, a physician (e.g., an oncologist, surgeon, pathologist), etc.).


In embodiments where the user only executes a portion of the method, the individual who, after computerized data processing according to the methods of the present disclosure, reviews data output (e.g., results prior to release to provide a complete report, a complete, or reviews an “incomplete” report and provides for manual intervention and completion of an interpretive report) is referred to herein as a “reviewer.” The reviewer may be located at a location remote to the user (e.g., at a service provided separate from a healthcare facility where a user may be located).


Where government regulations or other restrictions apply (e.g., requirements by health, malpractice, or liability insurance), all results, whether generated wholly or partially electronically, are subjected to a quality control routine prior to release to the user.


Clinical Utility

The gene expression assay and information provided by the practice of the methods disclosed herein facilitates physicians in making more well-informed treatment decisions, and to customize the treatment of cancer to the needs of individual patients, thereby maximizing the benefit of treatment and minimizing the exposure of patients to unnecessary treatments which may provide little or no significant benefits and often carry serious risks due to toxic side-effects.


Single or multi-analyte gene expression tests can be used measure the expression level of one or more genes involved in each of several relevant physiologic processes or component cellular characteristics. The expression level(s) may be used to calculate such a quantitative score, and such score may be arranged in subgroups (e.g., tertiles) wherein all patients in a given range are classified as belonging to a risk category (e.g., low, intermediate, or high). The grouping of genes may be performed at least in part based on knowledge of the contribution of the genes according to physiologic functions or component cellular characteristics, such as in the groups discussed above.


The utility of a gene marker in predicting cancer may not be unique to that marker. An alternative marker having an expression pattern that is parallel to that of a selected marker gene may be substituted for, or used in addition to, a test marker. Due to the co-expression of such genes, substitution of expression level values should have little impact on the overall prognostic utility of the test. The closely similar expression patterns of two genes may result from involvement of both genes in the same process and/or being under common regulatory control in colon tumor cells. The present disclosure thus contemplates the use of such co-expressed genes or gene sets as substitutes for, or in addition to, prognostic methods of the present disclosure.


The molecular assay and associated information provided by the methods disclosed herein for predicting the clinical outcome in cancer, e.g. breast cancer, have utility in many areas, including in the development and appropriate use of drugs to treat cancer, to stratify cancer patients for inclusion in (or exclusion from) clinical studies, to assist patients and physicians in making treatment decisions, provide economic benefits by targeting treatment based on personalized genomic profile, and the like. For example, the recurrence score may be used on samples collected from patients in a clinical trial and the results of the test used in conjunction with patient outcomes in order to determine whether subgroups of patients are more or less likely to demonstrate an absolute benefit from a new drug than the whole group or other subgroups. Further, such methods can be used to identify from clinical data subsets of patients who are expected to benefit from adjuvant therapy. Additionally, a patient is more likely to be included in a clinical trial if the results of the test indicate a higher likelihood that the patient will have a poor clinical outcome if treated with surgery alone and a patient is less likely to be included in a clinical trial if the results of the test indicate a lower likelihood that the patient will have a poor clinical outcome if treated with surgery alone.


Statistical Analysis of Gene Expression Levels

One skilled in the art will recognize that there are many statistical methods that may be used to determine whether there is a significant relationship between an outcome of interest (e.g., likelihood of survival, likelihood of response to chemotherapy) and expression levels of a marker gene as described here. This relationship can be presented as a continuous recurrence score (RS), or patients may stratified into risk groups (e.g., low, intermediate, high). For example, a Cox proportional hazards regression model may fit to a particular clinical endpoint (e.g., RFS, DFS, OS). One assumption of the Cox proportional hazards regression model is the proportional hazards assumption, i.e. the assumption that effect parameters multiply the underlying hazard.


Coexpression Analysis

The present disclosure provides genes that co-express with particular prognostic and/or predictive gene that has been identified as having a significant correlation to recurrence and/or treatment benefit. To perform particular biological processes, genes often work together in a concerted way, i.e. they are co-expressed. Co-expressed gene groups identified for a disease process like cancer can serve as biomarkers for disease progression and response to treatment. Such co-expressed genes can be assayed in lieu of, or in addition to, assaying of the prognostic and/or predictive gene with which they are co-expressed.


One skilled in the art will recognize that many co-expression analysis methods now known or later developed will fall within the scope and spirit of the present invention. These methods may incorporate, for example, correlation coefficients, co-expression network analysis, clique analysis, etc., and may be based on expression data from RT-PCR, microarrays, sequencing, and other similar technologies. For example, gene expression clusters can be identified using pair-wise analysis of correlation based on Pearson or Spearman correlation coefficients. (See, e.g., Pearson K. and Lee A., Biometrika 2, 357 (1902); C. Spearman, Amer. J. Psychol 15:72-101 (1904); J. Myers, A. Well, Research Design and Statistical Analysis, p. 508 (2nd Ed., 2003).) In general, a correlation coefficient of equal to or greater than 0.3 is considered to be statistically significant in a sample size of at least 20. (See, e.g., G. Norman, D. Streiner, Biostatistics: The Bare Essentials, 137-138 (3rd Ed. 2007).) In one embodiment disclosed herein, co-expressed genes were identified using a Spearman correlation value of at least 0.7.


Computer Program

The values from the assays described above, such as expression data, recurrence score, treatment score and/or benefit score, can be calculated and stored manually. Alternatively, the above-described steps can be completely or partially performed by a computer program product. The present invention thus provides a computer program product including a computer readable storage medium having a computer program stored on it. The program can, when read by a computer, execute relevant calculations based on values obtained from analysis of one or more biological sample from an individual (e.g., gene expression levels, normalization, thresholding, and conversion of values from assays to a score and/or graphical depiction of likelihood of recurrence/response to chemotherapy, gene co-expression or clique analysis, and the like). The computer program product has stored therein a computer program for performing the calculation.


The present disclosure provides systems for executing the program described above, which system generally includes: a) a central computing environment; b) an input device, operatively connected to the computing environment, to receive patient data, wherein the patient data can include, for example, expression level or other value obtained from an assay using a biological sample from the patient, or microarray data, as described in detail above; c) an output device, connected to the computing environment, to provide information to a user (e.g., medical personnel); and d) an algorithm executed by the central computing environment (e.g., a processor), where the algorithm is executed based on the data received by the input device, and wherein the algorithm calculates a, risk, risk score, or treatment group classification, gene co-expression analysis, thresholding, or other functions described herein. The methods provided by the present invention may also be automated in whole or in part.


Manual and Computer-Assisted Methods and Products

The methods and systems described herein can be implemented in numerous ways. In one embodiment of particular interest, the methods involve use of a communications infrastructure, for example the Internet. Several embodiments are discussed below. It is also to be understood that the present disclosure may be implemented in various forms of hardware, software, firmware, processors, or a combination thereof. The methods and systems described herein can be implemented as a combination of hardware and software. The software can be implemented as an application program tangibly embodied on a program storage device, or different portions of the software implemented in the user's computing environment (e.g., as an applet) and on the reviewer's computing environment, where the reviewer may be located at a remote site associated (e.g., at a service provider's facility).


For example, during or after data input by the user, portions of the data processing can be performed in the user-side computing environment. For example, the user-side computing environment can be programmed to provide for defined test codes to denote a likelihood “risk score,” where the score is transmitted as processed or partially processed responses to the reviewer's computing environment in the form of test code for subsequent execution of one or more algorithms to provide a results and/or generate a report in the reviewer's computing environment. The risk score can be a numerical score (representative of a numerical value, e.g. likelihood of recurrence based on validation study population) or a non-numerical score representative of a numerical value or range of numerical values (e.g., low, intermediate, or high).


The application program for executing the algorithms described herein may be uploaded to, and executed by, a machine comprising any suitable architecture. In general, the machine involves a computer platform having hardware such as one or more central processing units (CPU), a random access memory (RAM), and input/output (I/O) interface(s). The computer platform also includes an operating system and microinstruction code. The various processes and functions described herein may either be part of the microinstruction code or part of the application program (or a combination thereof) that is executed via the operating system. In addition, various other peripheral devices may be connected to the computer platform such as an additional data storage device and a printing device.


As a computer system, the system generally includes a processor unit. The processor unit operates to receive information, which can include test data (e.g., level of a risk gene, level of a reference gene product(s); normalized level of a gene; and may also include other data such as patient data. This information received can be stored at least temporarily in a database, and data analyzed to generate a report as described above.


Part or all of the input and output data can also be sent electronically; certain output data (e.g., reports) can be sent electronically or telephonically (e.g., by facsimile, e.g., using devices such as fax back). Exemplary output receiving devices can include a display element, a printer, a facsimile device and the like. Electronic forms of transmission and/or display can include email, interactive television, and the like. In an embodiment of particular interest, all or a portion of the input data and/or all or a portion of the output data (e.g., usually at least the final report) are maintained on a web server for access, preferably confidential access, with typical browsers. The data may be accessed or sent to health professionals as desired. The input and output data, including all or a portion of the final report, can be used to populate a patient's medical record which may exist in a confidential database at the healthcare facility.


A system for use in the methods described herein generally includes at least one computer processor (e.g., where the method is carried out in its entirety at a single site) or at least two networked computer processors (e.g., where data is to be input by a user (also referred to herein as a “client”) and transmitted to a remote site to a second computer processor for analysis, where the first and second computer processors are connected by a network, e.g., via an intranet or internet). The system can also include a user component(s) for input; and a reviewer component(s) for review of data, generated reports, and manual intervention. Additional components of the system can include a server component(s); and a database(s) for storing data (e.g., as in a database of report elements, e.g., interpretive report elements, or a relational database (RDB) which can include data input by the user and data output. The computer processors can be processors that are typically found in personal desktop computers (e.g., IBM, Dell, Macintosh), portable computers, mainframes, minicomputers, or other computing devices.


The networked client/server architecture can be selected as desired, and can be, for example, a classic two or three tier client server model. A relational database management system (RDMS), either as part of an application server component or as a separate component (RDB machine) provides the interface to the database.


In one example, the architecture is provided as a database-centric client/server architecture, in which the client application generally requests services from the application server which makes requests to the database (or the database server) to populate the report with the various report elements as required, particularly the interpretive report elements, especially the interpretation text and alerts. The server(s) (e.g., either as part of the application server machine or a separate RDB/relational database machine) responds to the client's requests.


The input client components can be complete, stand-alone personal computers offering a full range of power and features to run applications. The client component usually operates under any desired operating system and includes a communication element (e.g., a modem or other hardware for connecting to a network), one or more input devices (e.g., a keyboard, mouse, keypad, or other device used to transfer information or commands), a storage element (e.g., a hard drive or other computer-readable, computer-writable storage medium), and a display element (e.g., a monitor, television, LCD, LED, or other display device that conveys information to the user). The user enters input commands into the computer processor through an input device. Generally, the user interface is a graphical user interface (GUI) written for web browser applications.


The server component(s) can be a personal computer, a minicomputer, or a mainframe and offers data management, information sharing between clients, network administration and security. The application and any databases used can be on the same or different servers.


Other computing arrangements for the client and server(s), including processing on a single machine such as a mainframe, a collection of machines, or other suitable configuration are contemplated. In general, the client and server machines work together to accomplish the processing of the present disclosure.


Where used, the database(s) is usually connected to the database server component and can be any device that will hold data. For example, the database can be a any magnetic or optical storing device for a computer (e.g., CDROM, internal hard drive, tape drive). The database can be located remote to the server component (with access via a network, modem, etc.) or locally to the server component.


Where used in the system and methods, the database can be a relational database that is organized and accessed according to relationships between data items. The relational database is generally composed of a plurality of tables (entities). The rows of a table represent records (collections of information about separate items) and the columns represent fields (particular attributes of a record). In its simplest conception, the relational database is a collection of data entries that “relate” to each other through at least one common field.


Additional workstations equipped with computers and printers may be used at point of service to enter data and, in some embodiments, generate appropriate reports, if desired. The computer(s) can have a shortcut (e.g., on the desktop) to launch the application to facilitate initiation of data entry, transmission, analysis, report receipt, etc. as desired.


Computer-Readable Storage Media

The present disclosure also contemplates a computer-readable storage medium (e.g. CD-ROM, memory key, flash memory card, diskette, etc.) having stored thereon a program which, when executed in a computing environment, provides for implementation of algorithms to carry out all or a portion of the results of a response likelihood assessment as described herein. Where the computer-readable medium contains a complete program for carrying out the methods described herein, the program includes program instructions for collecting, analyzing and generating output, and generally includes computer readable code devices for interacting with a user as described herein, processing that data in conjunction with analytical information, and generating unique printed or electronic media for that user.


Where the storage medium provides a program that provides for implementation of a portion of the methods described herein (e.g., the user-side aspect of the methods (e.g., data input, report receipt capabilities, etc.)), the program provides for transmission of data input by the user (e.g., via the internet, via an intranet, etc.) to a computing environment at a remote site. Processing or completion of processing of the data is carried out at the remote site to generate a report. After review of the report, and completion of any needed manual intervention, to provide a complete report, the complete report is then transmitted back to the user as an electronic document or printed document (e.g., fax or mailed paper report). The storage medium containing a program according to the present disclosure can be packaged with instructions (e.g., for program installation, use, etc.) recorded on a suitable substrate or a web address where such instructions may be obtained. The computer-readable storage medium can also be provided in combination with one or more reagents for carrying out response likelihood assessment (e.g., primers, probes, arrays, or other such kit components).


All aspects of the present invention may also be practiced such that a limited number of additional genes that are co-expressed with the disclosed genes, for example as evidenced by statistically meaningful Pearson and/or Spearman correlation coefficients, are included in a prognostic or predictive test in addition to and/or in place of disclosed genes.


Having described the invention, the same will be more readily understood through reference to the following Examples, which are provided by way of illustration, and are not intended to limit the invention in any way.


Example 1

The study included breast cancer tumor samples obtained from 136 patients diagnosed with breast cancer (“Providence study”). Biostatistical modeling studies of prototypical data sets demonstrated that amplified RNA is a useful substrate for biomarker identification studies. This was verified in this study by including known breast cancer biomarkers along with candidate prognostic genesin the tissues samples. The known biomarkers were shown to be associated with clinical outcome in amplified RNA based on the criteria outlined in this protocol.


Study Design


Refer to the original Providence Phase II study protocol for biopsy specimen information. The study looked at the statistical association between clinical outcome and 384 candidate biomarkers tested in amplified samples derived from 25 ng of mRNA that was extracted from fixed, paraffin-embedded tissue samples obtained from 136 of the original Providence Phase II study samples. The expression level of the candidate genes was normalized using reference genes. Several reference genes were analyzed in this study: AAMP, ARF1, EEF1A1, ESD, GPS1, H3F3A, HNRPC, RPL13A, RPL41, RPS23, RPS27, SDHA, TCEA1, UBB, YWHAZ, B-actin, GUS, GAPDH, RPLPO, and TFRC.


The 136 samples were split into 3 automated RT plates each with 2× 48 samples and 40 samples and 3 RT positive and negative controls. Quantitative PCR assays were performed in 384 wells without replicate using the QuantiTect Probe PCR Master Mix® (Qiagen). Plates were analyzed on the Light Cycler® 480 and, after data quality control, all samples from the RT plate 3 were repeated and new RT-PCR data was generated. The data was normalized by subtracting the median crossing point (CP) (point at which detection rises above background signal) for five reference genes from the CP value for each individual candidate gene. This normalization is performed on each sample resulting in final data that has been adjusted for differences in overall sample CP. This data set was used for the final data analysis.


Data Analysis


For each gene, a standard z test was run. (S. Darby, J. Reissland, Journal of the Royal Statistical Society 144(3):298-331 (1981)). This returns a z score (measure of distance in standard deviations of a sample from the mean), p value, and residuals along with other statistics and parameters from the model. If the z score is negative, expression is positively correlated with a good prognosis; if positive, expression is negatively correlated to a good prognosis. Using the p values, a q value was created using a library q value. The poorly correlated and weakly expressed genes were excluded from the calculation of the distribution used for the q values. For each gene, Cox Proportional Hazard Model test was run checking survival time matched with the event vector against gene expression. This returned a hazard ratio (HR) estimating the effect of expression of each gene (individually) on the risk of a cancer-related event. The resulting data is provided in Tables 1-6. A HR<1 indicates that expression of that gene is positively associated with a good prognosis, while a HR>1 indicates that expression of that gene is negatively associated with a good prognosis.


Example 2
Study design

Amplified samples were derived from 25 ng of mRNA that was extracted from fixed, paraffin-embedded tissue samples obtained from 78 evaluable cases from a Phase II breast cancer study conducted at Rush University Medical Center. Three of the samples failed to provide sufficient amplified RNA at 25 ng, so amplification was repeated a second time with 50 ng of RNA. The study also analyzed several reference genes for use in normalization: AAMP, ARF1, EEF1A1, ESD, GPS1, H3F3A, HNRPC, RPL13A, RPL41, RPS23, RPS27, SDHA, TCEA1, UBB, YWHAZ, Beta-actin, RPLPO, TFRC, GUS, and GAPDH.


Assays were performed in 384 wells without replicate using the QuantiTect Probe PCR Master Mix. Plates were analyzed on the Light Cycler 480 instruments. This data set was used for the final data analysis. The data was normalized by subtracting the median CP for five reference genes from the CP value for each individual candidate gene. This normalization was performed on each sample resulting in final data that was adjusted for differences in overall sample CP.


Data Analysis


There were 34 samples with average CP values above 35. However, none of the samples were excluded from analysis because they were deemed to have sufficient valuable information to remain in the study. Principal Component Analysis (PCA) was used to determine whether there was a plate effect causing variation across the different RT plates. The first principal component correlated well with the median expression values, indicating that expression level accounted for most of the variation between samples. Also, there were no unexpected variations between plates.


Data for Other Variables


Group—The patients were divided into two groups (cancer/non-cancer). There was little difference between the two in overall gene expression as the difference between median CP value in each group was minimal (0.7).


Sample Age—The samples varied widely in their overall gene expression but there was a trend toward lower CP values as they decreased in age.


Instrument—The overall sample gene expression from instrument to instrument was consistent. One instrument showed a slightly higher median CP compared to the other three, but it was well within the acceptable variation.


RT Plate—The overall sample gene expression between RT plates was also very consistent. The median CP for each of the 3 RT plates (2 automated RT plates and 1 manual plate containing repeated samples) were all within 1 CP of each other.


Univariate Analyses for Genes Significantly Different Between Study Groups


The genes were analyzed using the z-test and Cox Proportional Hazard Model, as described in Example 1. The resulting data can be seen in Tables 7-12.


Example 3

The statistical correlations between clinical outcome and expression levels of the genes identified in Examples 1 and 2 were validated in breast cancer gene expression datasets maintained by the Swiss Institute of Bioinformatics (SIB). Further information concerning the SIB database, study datasets, and processing methods, is providing in P. Wirapati, et al., Breast Cancer Research 10(4):R65 (2008). Univariate Cox proportional hazards analyses were performed to confirm the relationship between clinical outcome (DFS, MFS, OS) of breast cancer patients and expression levels of the genes identified as significant in the amplified RNA studies described above. The meta-analysis included both fixed-effect and random-effect models, which are further described in L. Hedges and J. Vevea, Psychological Methods 3 (4): 486-504 (1998) and K. Sidik and J. Jonkman, Statistics in Medicine 26:1964-1981 (2006) (the contents of which are incorporated herein by reference). The results of the validation for all genes identified as having a statistically significant association with breast cancer clinical outcome are described in Table 13. In those tables, “Est” designates an estimated coefficient of a covariate (gene expression); “SE” is standard error; “t” is the t-score for this estimate (i.e., Est/SE); and “fe” is the fixed estimate of effect from the meta analysis. Several of gene families with significant statistical association with clinical outcome (including metabolic, proliferation, immune, and stromal group genes) in breast cancer were confirmed using the SIB dataset. For example, Table 14 contains analysis of genes included in the metabolic group and Table 15 the stromal group.


Example 4

A co-expression analysis was conducted using microarray data from six (6) breast cancer data sets. The “processed” expression values are taken from the GEO website, however, further processing was necessary. If the expression values are RMA, they are median normalized on the sample level. If the expression values are MAS5.0, they are: (1) changed to 10 if they are <10; (2) log base e transformed; and (3) median normalized on the sample level.


Generating Correlation Pairs: A rank matrix was generated by arranging the expression values for each sample in decreasing order. Then a correlation matrix was created by calculating the Spearman correlation values for every pair of probe IDs. Pairs of probes which had a Spearman value ≧0.7 were considered co-expressed. Redundant or overlapping correlation pairs in multiple datasets were identified. For each correlation matrix generated from an array dataset, pairs of significant probes that occur in >1 dataset were identified. This served to filter “non-significant” pairs from the analysis as well as provide extra evidence for “significant” pairs with their presence in multiple datasets. Depending on the number of datasets included in each tissue specific analysis, only pairs which occur in a minimum # or % of datasets were included.


Co-expression cliques were generated using the Bron-Kerbosch algorithm for maximal clique finding in an undirected graph. The algorithm generates three sets of nodes: compsub, candidates, and not. Compsub contains the set of nodes to be extended or shrunk by one depending on its traversal direction on the tree search. Candidates consists of all the nodes eligible to be added to compsub. Not contains the set of nodes that have been added to compsub and are now excluded from extension. The algorithm consists of five steps: selection of a candidate; adding the candidate node to compsub; creating new sets candidates and not from the old sets by removing all points not connected to the candidate node; recursively calling the extension operator on the new candidates and not sets; and upon return, remove the candidate node from compsub and place in the old not set.


There was a depth-first search with pruning, and the selection of candidate nodes had an effect on the run time of the algorithm. By selecting nodes in decreasing order of frequency in the pairs, the run time was optimized. Also, recursive algorithms generally cannot be implemented in a multi-threaded manner, but was multi-threaded the extension operator of the first recursive level. Since the data between the threads were independent because they were at the top-level of the recursive tree, they were run in parallel.


Clique Mapping and Normalization: Since the members of the co-expression pairs and cliques are at the probe level, one must map the probe IDs to genes (or Refseqs) before they can be analyzed. The Affymetrix gene map information was used to map every probe ID to a gene name. Probes may map to multiple genes, and genes may be represented by multiple probes. The data for each clique is validated by manually calculating the correlation values for each pair from a single clique.


The results of this co-expression analysis are set forth in Tables 16-18.




















TABLE A









SEQ

SEQ


Target






Official

ID

ID

SEQ
Seq

SEQ


Gene
Sequence ID
Symbol
F Primer Seq
NO:
R Primer Seq
NO:
Probe Seq
ID NO:
Length
Amplicon Sequence
ID NO:


























A-Catenin
NM_001903.1
CTNNA1
CGTTCCGATCCT
1
AGGTCCCTGTTG
385
ATGCCTACAGCACCCTG
769
78
CGTTCCGATCCTCTATACTGCATCCCAG
1153





CTATACTGCAT

GCCTTATAGG

ATGTCGCA


GCATGCCTACAGCACCCTGATGTCGCAG













CCTATAAGGCCAACAGGGACCT






AAMP
NM_001087.3
AAMP
GTGTGGCAGGTG
2
CTCCATCCACTC
386
CGCTTCAAAGGACCAGA
770
66
GTGTGGCAGGTGGACACTAAGGAGGAGG
1154





GACACTAA

CAGGTC

CCTCCTC


TCTGGTCCTTTGAAGCGGGAGACCTGGA













GTGGATGGAG






ABCB1
NM_000927.2
ABCB1
AAACACCACTGG
3
CAAGCCTGGAAC
387
CTCGCCAATGATGCTGC
771
77
AAACACCACTGGAGCATTGACTACCAGG
1155





AGCATTGA

CTATAGCC

TCAAGTT


CTCGCCAATGATGCTGCTCAAGTTAAAG













GGCTATAGGTTCCAGGCTTG






ABCC10
NM_033450.2
ABCC10
ACCAGTGCCACA
4
ATAGCGCTGACC
388
CCATGAGCTGTAGCCGA
772
68
ACCAGTGCCACAATGCAGTGGCTGGACA
1156





ATGCAG

ACTGCC

ATGTCCA


TTCGGCTACAGCTCATGGGGGCGGCAGT













GGTCAGCGCTAT






ABCC5
NM_005688.1
ABCC5
TGCAGACTGTAC
5
GGCCAGCACCAT
389
CTGCACACGGTTCTAGG
773
76
TGCAGACTGTACCATGCTGACCATTGCC
1157





CATGCTGA

AATCCTAT

CTCCG


CATCGCCTGCACACGGTTCTAGGCTCCG













ATAGGATTATGGTGCTGGCC






ABR
NM_001092.3
ABR
ACACGTCTGTCA
6
ACTAGGGTGCTC
390
TCTGCTCTACAAGCCCA
774
67
ACACGTCTGTCACCATGGAAGCTCTGCT
1158





CCATGGAA

CGAGTGAC

TTGACCG


CTACAAGCCCATTGACCGGGTCACTCGG













AGCACCCTAGT






ACTR2
NM_005722.2
ACTR2
ATCCGCATTGAA
7
ATCCGCTAGAAC
391
CCCGCAGAAAGCACATG
775
66
ATCCGCATTGAAGACCCACCCCGCAGAA
1159





GACCCA

TGCACCAC

GTATTCC


AGCACATGGTATTCCTGGGTGGTGCAGT













TCTAGCGGAT






ACVR2B
NM_001106.2
ACVR2B
GACTGTCTCGTT
8
TGGGCTTAGATG
392
CTCTGTCACCAATGTGG
776
74
GACTGTCTCGTTTCCCTGGTGACCTCTG
1160





TCCCTGGT

CTTGACTC

ACCTGCC


TCACCAATGTGGACCTGCCCCCTAAAGA













GTCAAGCATCTAAGCCCA






AD024
NM_20675.3
SPC25
TCAAAAGTACGG
9
TGCAAATGCTTT
393
TGTAGGTATCTCTTAGT
777
74
TCAAAAGTACGGACACCTCCTGTCAGAT
1161





ACACCTCCT

GATGGAAT

CCCGCCATCTGA


GGCGGGACTAAGAGATACCTACAAGGAT













TCCATCAAAGCATTTGCA






ADAM12
NM_021641.2
ADAM12
GAGCATGCGTCT
10
CTGGTCACGGTC
394
CTGACACTCATCTGAGC
778
66
GAGCATGCGTCTACTGCCTCACTGACAC
1162





ACTGCCT

TCCATGT

CCTCCCA


TCATCTGAGCCCTCCCATGACATGGAGA













CCGTGACCAG






ADAM17
NM_003183.3
ADAM17
GAAGTGCCAGGA
11
CGGGCACTCACT
395
TGCTACTTGCAAAGGCG
779
73
GAAGTGCCAGGAGGCGATTAATGCTACT
1163





GGCGATTA

GCTATTACC

TGTCCTACTGC


TGCAAAGGCGTGTCCTACTGCACAGGTA













ATAGCAGTGAGTGCCCG






ADAM23
NM_003812.1
ADAM23
CAAGGCCCCATC
12
ACCCAGAATCCA
396
CTGCGCTGGATGGACAC
780
62
CAAGGCCCCATCTGAATCAGCTGCGCTG
1164





TGAATCA

ACAGTGCAA

CGC


GATGGACACCGCCTTGCACTGTTGGATT













CTGGGT






ADAMTS8
NM_007037.2
ADAMTS8
GCGAGTTCAAAG
13
CACAGATGGCCA
397
CACACAGGGTGCCATCA
781
72
GCGAGTTCAAAGTGTTCGAGGCCAAGGT
1165





TGTTCGAG

GTGTTTCT

ATCACCT


GATTGATGGCACCCTGTGTGGGCCAGAA













ACACTGGCCATCTGTG






ADM
NM_001124.1
ADM
TAAGCCACAAGC
14
TGGGCGCCTAAA
398
CGAGTGGAAGTGCTCCC
782
75
TAAGCCACAAGCACACGGGGCTCCAGCC
1166





ACACGG

TCCTAA

CACTTTC


CCCCCGAGTGGAAGTGCTCCCCACTTTC













TTTAGGATTTAGGCGCCCA






AES
NM_001130.4
AES
ACGAGATGTCCT
15
GGGCACAAATCC
399
CGATCTCAGCCTGTTTG
783
78
ACGAGATGTCCTACGGCTTGAACATCGA
1167





ACGGCTTGA

CGTTCAG

TGCATCTCGAT


GATGCACAAACAGGCTGAGATCGTCAAA













AGGCTGAACGGGATTTGTGCCC






AGR2
NM_006408.2
AGR2
AGCCAACATGTG
16
TCTGATCTCCAT
400
CAACACGTCACCACCCT
784
70
AGCCAACATGTGACTAATTGGAAGAAGA
1168





ACTAATTGGA

CTGCCTCA

TTGCTCT


GCAAAGGGTGGTGACGTGTTGATGAGGC













AGATGGAGATCAGA






AK055699
NM_194317
LYPD6
CTGCATGTGATT
17
TGTGGACCTGAT
401
TGACCACACCAAAGCCT
785
78
CTGCATGTGATTGAATAAGAAACAAGAA
1169





GAATAAGAAACA

CCCTGTACAC

CCCTGG


AGTGACCACACCAAAGCCTCCCTGGCTG






AG






GTGTACAGGGATCAGGTCCACA






AKR7A3
NM_012067.2
AKR7A3
GTGGAAACGGAG
18
CCAGAGGGTTGA
402
ACCTCAGTCCAAAGTGC
786
67
GTGGAAACGGAGCTCTTCCCCTGCCTCA
1170





CTCTTCC

AGGCATAG

CTGAGGC


GGCACTTTGGACTGAGGTTCTATGCCTT













CAACCCTCTGG






AKT3
NM_005465.1
AKT3
TTGTCTCTGCCT
19
CCAGCATTAGAT
403
TCACGGTACACAATCTT
787
75
TTGTCTCTGCCTTGGACTATCTACATTC
1171





TGGACTATCTAC

TCTCCAACTTGA

TCCGGA


CGGAAAGATTGTGTACCGTGATCTCAAG






A






TTGGAGAATCTAATGCTGG






ALCAM
NM_001627.1
ALCAM
GAGGAATATGGA
20
GTGGCGGAGATC
404
CCAGTTCCTGCCGTCTG
788
66
GAGGAATATGGAATCCAAGGGGGCCAGT
1172





ATCCAAGGG

AAGAGG

CTCTTCT


TCCTGCCGTCTGCTCTTCTGCCTCTTGA













TCTCCGCCAC






ALDH4
NM_003748.2
ALDH4A1
GGACAGGGTAAG
21
AACCGGAAGAAG
405
CTGCAGCGTCAATCTCC
789
68
GGACAGGGTAAGACCGTGATCCAAGCGG
1173





ACCGTGAT

TCGATGAG

GCTTG


AGATTGACGCTGCAGCGGAACTCATCGA













CTTCTTCCGGTT






ANGPT2
NM_001147.1
ANGPT2
CCGTGAAAGCTG
22
TTGCAGTGGGAA
406
AAGCTGACACAGCCCTC
790
69
CCGTGAAAGCTGCTCTGTAAAAGCTGAC
1174





CTCTGTAA

GAACAGTC

CCAAGTG


ACAGCCCTCCCAAGTGAGCAGGACTGTT













CTTCCCACTGCAA






ANXA2
NM_004039.1
ANXA2
CAAGACACTAAG
23
CGTGTCGGGCTT
407
CCACCACACAGGTACAG
791
71
CAAGACACTAAGGGCGACTACCAGAAAG
1175





GGCGACTACCA

CAGTCAT

CAGCGCT


CGCTGCTGTACCTGTGTGGTGGAGATGA













CTGAAGCCCGACACG






AP-1 (JUN
NM_002228.2
JUN
GACTGCAAAGAT
24
TAGCCATAAGGT
408
CTATGACGATGCCCTCA
792
81
GACTGCAAAGATGGAAACGACCTTCTAT
1176


official)


GGAAACGA

CCGCTCTC

ACGCCTC


GACGATGCCCTCAACGCCTCGTTCCTCC













CGTCCGAGAGCGGACCTTATGGCTA






APEX-1
NM_001641.2
APEX1
GATGAAGCCTTT
25
AGGTCTCCACAC
409
CTTTCGGGAAGCCAGGC
793
68
GATGAAGCCTTTCGCAAGTTCCTGAAGG
1177





CGCAAGTT

AGCACAAG

CCTT


GCCTGGCTTCCCGAAAGCCCCTTGTGCT













GTGTGGAGACCT






APOD
NNM_001647.1
APOD
GTTTATGCCATC
26
GGAATACACGAG
410
ACTGGATCCTGGCCACC
794
67
GTTTATGCCATCGGCACCGTACTGGATC
1178





GGCACC

GGCATAGTTC

GACTATG


CTGGCCACCGACTATGAGAACTATGCCC













TCGTGTATTCC






ARF1
NM_001658.2
ARF1
CAGTAGAGATCC
27
ACAAGCACATGG
411
CTTGTCCTTGGGTCACC
795
64
CAGTAGAGATCCCCGCAACTCGCTTGTC
1179





CCGCAACT

CTATGGAA

CTGCA


CTTGGGTCACCCTGCATTCCATAGCCAT













GTGCTTGT






ARH1
NM_004675.1
DIRAS3
ATCAGAGATTAC
28
ACTTGTGCAGCA
412
ACACCAGCGGTGCCGAC
796
67
ATCAGAGATTACCGCGTCGTGGTAGTCG
1180





CGCGTCGT

GCGTACTT

TACC


GCACCGCTGGTGTGGGGAAAAGTACGCT













GCTGCACAAGT






ARNT2
NM_0014862.3
ARNT2
GACTGGGTCAGT
29
GGAGTGACGCAT
413
CTAGAGCCATCCTTGGC
797
68
GACTGGGTCAGTGATGGCAACAGGATGG
1181





GATGGCA

GGACAGA

CATCCTG


CCAAGGATGGCTCTAGAACACTCTGTCC













ATGCGTCACTCC






ARSD
NM_001669.1
ARSD
TCCCTGAGAACG
30
TGGTGCCATTTT
414
CAAGAATCTTGCAGCAG
798
79
TCCCTGAGAACGAAACCACTTTTGCAAG
1182





AAACCACT

CCTATGAG

CATGGCT


AATCTTGCAGCAGCATGGCTATGCAACC













GGCCTCATAGGAAAATGGCACCA






AURKB
NM_004217.1
AURKB
AGCTGCAGAAGA
31
GCATCTGCCAAC
415
TGACGAGCAGCGAACAG
799
67
AGCTGCAGAAGAGCTGCACATTTGACGA
1183





GCTGCACAT

TCCTCCAT

CCACG


GCAGCGAACAGCCACGATCATGGAGGAG













TTGGCAGATGC






B-actin
NM_001101.2
ACTB
CAGCAGATGTGG
32
GCATTTGCGGTG
416
AGGAGTATGACGAGTCC
800
66
CAGCAGATGTGGATCAGCAAGCAGGAGT
1184





ATCAGCAAG

GACGAT

GGCCCC


ATGACGAGTCCGGCCCCTCCATCGTCCA













CCGCAAATGC






B-Catenin
NM_001904.1
CTNNB1
GGCTCTTGTGCG
33
TCAGATGACGAA
417
AGGCTCAGTGATGTCTT
801
80
GGCTCTTGTGCGTACTGTCCTTCGGGCT
1185





TACTGTCCTT

GAGCACAGATG

CCCTGTCACCAG


GGTGACAGGGAAGACATCACTGAGCCTG













CCATCTGTGCTCTTCGTCATCTGA






BAD
NM_032989.1
BAD
GGGTCAGGTGCC
34
CTGCTCACTCGG
418
TGGGCCCAGAGCATGTT
802
73
GGGTCAGGTGCCTCGAGATCGGGCTTGG
1186





TCGAGAT

CTCAAACTC

CCAGATC


GCCCAGAGCATGTTCCAGATCCCAGAGT













TTGAGCCGAGTGAGCAG






BAG1
NM_004323.2
BAG1
CGTTGTCAGCAC
35
GTTCAACCTCTT
419
CCCAATTAACATGACCC
803
81
CGTTGTCAGCACTTGGAATACAAGATGG
1187





TTGGAATACAA

CCTGTGGACTGT

GGCAACCAT


TTGCCGGGTCATGTTAATTGGGAAAAAG













AACAGTCCACAGGAAGAGGTTGAAC






BAG4
NM_004874.2
BAG4
CCTACGGCCGCT
36
GGGCGAAGAGGA
420
AGATGTGCCGGTACACC
804
76
CCTACGGCCGCTACTACGGGCCTGGGGG
1188





ACTACG

TATAAGGG

CACCTC


TGGAGATGTGCCGGTACACCCACCTCCA













CCCTTATATCCTCTTCGCCC






BASE
NM_173859.1

GACTCCTCAGGG
37
CGAAGGCACTAC
421
CCAGCCTGCAGACAACT
805
72
GACTCCTCAGGGCAGACTTTCTTCCCAG
1189





CAGACTTTCTT

TCAATGGTTTC

GGCCTC


CCTGCAGACAACTGGCCTCCAGAAACCA













TTGAGTAGTGCCTTCG






Bax
NM_004324.1
BAX
CCGCCGTGGACA
38
TTGCCGTCAGAA
422
TGCCACTCGGAAAAAGA
806
70
CCGCCGTGGACACAGACTCCCCCCGAGA
1190





CAGACT

AACATGTCA

CCTCTCGG


GGTCTTTTTCCGAGTGGCAGCTGACATG













TTTTCTGACGGCAA






BBC3
NM_014417.1
BBC3
CCTGGAGGGTCC
39
CTAATTGGGCTC
423
CATCATGGGACTCCTGC
807
83
CCTGGAGGGTCCTGTACAATCTCATCAT
1191





TGTACAAT

CATCTCG

CCTTACC


GGGACTCCTGCCCTTACCCAGGGGCCAC













AGAGCCCCCGAGATGGAGCCCAATTAG






BCAR1
NM_014567.1
BCAR1
ACTGACAAGACC
40
TCCTGGGAGGTG
424
AGTCACGACCCCTGCCC
808
65
ACTGACAAGACCAGCAGCATCCAGTCAC
1192





AGCAGCAT

AACTTAGG

TCAC


GACCCCTGCCCTCACCCCCTAAGTTCAC













CTCCCAGGA






BCAR3
NM_003567.1
BCAR3
TGACTTCCTAGT
41
TGAGCGAGGTTC
425
CAGCCCTGGGAACTTTG
809
75
TGACTTCCTAGTTCGTGACTCTCTGTCC
1193





TCGTGACTCTCT

TTCCACTGA

TCCTGACC


AGCCCTGGGAACTTTGTCCTGACCTGTC






GT






AGTGGAAGAACCTCGCTCA






BCAS1
NM_003657.1
BCAS1
CCCCGAGACAAC
42
CTCGGGTTTGGC
426
CTTTCCGTTGGCATCCG
810
73
CCCCGAGACAACGGAGATAAGTGCTGTT
1194





GGAGATAA

CTCTTTC

CAACAG


GCGGATGCCAACGGAAAGAATCTTGGGA













AAGAGGCCAAACCCGAG






Bcl2
NM_000633.1
BCL2
CAGATGGACCTA
43
CCTATGATTTAA
427
TTCCACGCCGAAGGACA
811
73
CAGATGGACCTAGTACCCACTGAGATTT
1195





GTACCCACTGAG

GGGCATTTTTCC

GCGAT


CCACGCCGAAGGACAGCGATGGGAAAAA






A






TGCCCTTAAATCATAGG






BCL2L12
NM_138639.1
BCL2L12
AACCCACCCCTG
44
CTCAGCTGACGG
428
TCCGGGTAGCTCTCAAA
812
73
AACCCACCCCTGTCTTGGAGCTCCGGGT
1196





TCTTGG

GAAAGG

CTCGAGG


AGCTCTCAAACTCGAGGCTGCGCACCCC













CTTTCCCGTCAGCTGAG






BGN
NM_001711.3
BGN
GAGCTCCGCAAG
45
CTTGTTGTTCAC
429
CAAGGGTCTCCAGCACC
813
66
GAGCTCCGCAAGGATGACTTCAAGGGTC
1197





GATGAC

CAGGACGA

TCTACGC


TCCAGCACCTCTACGCCCTCGTCCTGGT













GAACAACAAG






BIK
NM_001197.3
BIK
ATTCCTATGGCT
46
GGCAGGAGTGAA
430
CCGGTTAACTGTGGCCT
814
70
ATTCCTATGGCTCTGCAATTGTCACCGG
1198





CTGCAATTGTC

TGGCTCTTC

GTGCCC


TTAACTGTGGCCTGTGCCCAGGAAGAGC













CATTCACTCCTGCC






BNIP3
NM_004052.2
BNIP3
CTGGACGGAGTA
47
GGTATCTTGTGG
431
CTCTCACTGTGACAGCC
815
68
CTGGACGGAGTAGCTCCAAGAGCTCTCA
1199





GCTCCAAG

TGTCTGCG

CACCTCG


CTGTGACAGCCCACCTCGCTCGCAGACA













CCACAAGATACC






BSG
nm_001728.2
BSG
AATTTTATGAGG
48
GTGGCCAAGAGG
432
CTGTGTTCGACTCAGCC
816
66
AATTTTATGAGGGCCACGGGTCTGTGTT
1200





GCCACGG

TCAGAGTC

TCAGGGA


CGACTCAGCCTCAGGGACGACTCTGACC













TCTTGGCCAC






BTRC
NM_033637.2
BTRC
GTTGGGACACAG
49
TGAAGCAGTCAG
433
CAGTCGGCCCAGGACGG
817
63
GTTGGGACACAGTTGGTCTGCAGTCGGC
1201





TTGGTCTG

TTGTGCTG

TCTACT


CCAGGACGGTCTACTCAGCACAACTGAC













TGCTTCA






BUB1
NM_004336.1
BUB1
CCGAGGTTAATC
50
AAGACATGGCGC
434
TGCTGGGAGCCTACACT
818
68
CCGAGGTTAATCCAGCACGTATGGGGCC
1202





CAGCACGTA

TCTCAGTTC

TGGCCC


AAGTGTAGGCTCCCAGCAGGAACTGAGA













GCGCCATGTCTT






BUB1B
NM_001211.3
BUB1B
TCAACAGAAGGC
51
CAACAGAGTTTG
435
TACAGTCCCAGCACCGA
819
82
TCAACAGAAGGCTGAACCACTAGAAAGA
1203





TGAACCACTAGA

CCGAGACACT

CAATTCC


CTACAGTCCCAGCACCGACAATTCCAAG













CTCGAGTGTCTCGGCAAACTCTGTTG






BUB3
NM_004725.1
BUB3
CTGAAGCAGATG
52
GCTGATTCCCAA
436
CCTCGCTTTGTTTAACA
820
73
CTGAAGCAGATGGTTCATCATTTCCTGG
1204





GTTCATCATT

GAGTCTAACC

GCCCAGG


GCTGTTAAACAAAGCGAGGTTAAGGTTA













GACTCTTGGGAATCAGC






c-kit
NM_000222.1
KIT
GAGGCAACTGCT
53
GGCACTCGGCTT
437
TTACAGCGACAGTCATG
821
75
GAGGCAACTGCTTATGGCTTAATTAAGT
1205





TATGGCTTAATT

GAGCAT

GCCGCAT


CAGATGCGGCCATGACTGTCGCTGTAAA






A






GATGCTCAAGCCGAGTGCC






C10orf116
NM_006829.2
C10orf116
CAAGAGCAGAGC
54
TGAGACCGTTGG
438
CCGGAGTCCTAGCCTCC
822
67
CAAGAGCAGAGCCACCGTAGCCGGAGTC
1206





CACCGT

ATTGGATT

CAAATTC


CTAGCCTCCCAAATTCGGAAATCCAATC













CAACGGTCTCA






C17orf37
NM_032339.3
C17orf37
GTGACTGCACAG
55
AGGACCAAAGGG
439
CCTGCTCTGTTCTGGGG
823
67
GTGACTGCACAGGACTCTGGGTTCCTGC
1207





GACTCTGG

AGACCA

TCCAAAC


TCTGTTCTGGGGTCCAAACCTTGGTCTC













CCTTTGGTCCT






C20orf1
NM_012112
TPX2
TCAGCTGTGAGC
56
ACGGTCCTAGGT
440
CAGGTCCCATTGCCGGG
824
65
TCAGCTGTGAGCTGCGGATACCGCCCGG
1208





TGCGGATA

TTGAGGTTAAGA

CG


CAATGGGACCTGCTCTTAACCTCAAACC













TAGGACCGT






C6orf66
NM_014165.1
NDUFAF4
GCGGTATCAGGA
57
GCGACAGAGGGC
441
TGATTTCCCGTTCCGCT
825
70
GCGGTATCAGGAATTTCAACCTAGAGAA
1209





ATTTCAACCT

TTCATCTT

CGGTTCT


CCGAGCGGAACGGGAAATCAGCAAGATG













AAGCCCTCTGTCGC






C8orf4
NM_020130.2
C8orf4
CTACGAGTCAGC
58
TGCCCACGGCTT
442
CATGGCTACCACTTCGA
826
67
CTACGAGTCAGCCCATCCATCCATGGCT
1210





CCATCCAT

TCTTAC

CACAGCC


ACCACTTCGACACAGCCTCTCGTAAGAA













AGCCGTGGGCA






CACNA2D2
NM_006030.1
CACNA2D
TGATGCTGCAGA
59
CACGATGTCTTC
443
AAAGCACACCGCTGGCA
827
67
TGATGCTGCAGAGAACTTCCAGAAAGCA
1211





GAACTTCC

CTCCTTGA

GGAC


CACCGCTGGCAGGACAACATCAAGGAGG













AAGACATCGTG






CAT
NM_001752.1
CAT
ATCCATTCGATC
60
TCCGGTTTAAGA
444
TGGCCTCACAAGGACTA
828
78
ATCCATTCGATCTCACCAAGGTTTGGCC
1212





TCACCAAGGT

CCAGTTTACCA

CCCTCTCATCC


TCACAAGGACTACCCTCTCATCCCAGTT













GGTAAACTGGTCTTAAACCGGA






CAV1
NM_001753.3
CAV1
GTGGCTCAACAT
61
CAATGGCCTCCA
445
ATTTCAGCTGATCAGTG
829
74
GTGGCTCAACATTGTGTTCCCATTTCAG
1213





TGTGTTCC

TTTTACAG

GGCCTCC


CTGATCAGTGGGCCTCCAAGGAGGGGCT













GTAAAATGGAGGCCATTG






CBX5
NM_012117.1
CBX5
AGGGGATGGTCT
62
AAAGGGGTGGGT
446
CATAATACATTCACCTC
830
78
AGGGGATGGTCTCTGTCATTTCTCTTTG
1214





CTGTCATT

AGAAAGGA

CCTGCCTCCTC


TACATAATACATTCACCTCCCTGCCTCC













TCTCCTTTCTACCCACCCCTTT






CCL19
NM_006274.2
CCL19
GAACGCATCATC
63
CCTCTGCACGGT
447
CGCTTCATCTTGGCTGA
831
78
GAACGCATCATCCAGAGACTGCAGAGGA
1215





CAGAGACTG

CATAGGTT

GGTCCTC


CCTCAGCCAAGATGAAGCGCCGCAGCAG













TTAACCTATGACCGTGCAGAGG






CCL3
NM_002983.1
CCL3
AGCAGACAGTGG
64
CTGCATGATTCT
448
CTCTGCTGACACTCGAG
832
77
AGCAGACAGTGGTCAGTCCTTTCTTGGC
1216





TCAGTCCTT

GAGCAGGT

CCCACAT


TCTGCTGACACTCGAGCCCACATTCCGT













CACCTGCTCAGAATCATGCAG






CCL5
NM_002985.2
CCL5
AGGTTCTGAGCT
65
ATGCTGACTTCC
449
ACAGAGCCCTGGCAAAG
833
65
AGGTTCTGAGCTCTGGCTTTGCCTTGGC
1217





CTGGCTTT

TTCCTGGT

CCAAG


TTTGCCAGGGCTCTGTGACCAGGAAGGA













AGTCAGCAT






CCNB1
NM_031966.1
CCNB1
TTCAGGTTGTTG
66
CATCTTCTTGGG
450
TGTCTCCATTATTGATC
834
84
TTCAGGTTGTTGCAGGAGACCATGTACA
1218





CAGGAGAC

CACACAAT

GGTTCATGCA


TGACTGTCTCCATTATTGATCGGTTCAT













GCAGAATAATTGTGTGCCCAAGAAGATG






CCND3
NM_001760.2
CCND3
CCTCTGTGCTAC
67
CACTGCAGCCCC
451
TACCCGCCATCCATGAT
835
76
CCTCTGTGCTACAGATTATACCTTTGCC
1219





AGATTATACCTT

AATGCT

CGCCA


ATGTACCCGCCATCCATGATCGCCACGG






TGC






GCAGCATTGGGGCTGCAGTG






CCNE2
NM_057749var1
CCNE2
GGTCACCAAGAA
68
TTCAATGATAAT
452
CCCAGATAATACAGGTG
836
85
GGTCACCAAGAAACATCAGTATGAAATT
1220


variant 1


ACATCAGTATGA

GCAAGGACTGAT

GCCAACAATTCCT


AGGAATTGTTGGCCACCTGTATTATCTG






A

C




GGGGGATCAGTCCTTGCATTATCATTGA













A






CCR5
NM_000579.1
CCR5
CAGACTGAATGG
69
CTGGTTTGTCTG
453
TGGAATAAGTACCTAAG
837
67
CAGACTGAATGGGGGTGGGGGGGGCGCC
1221





GGGTGG

GAGAAGGC

GCGCCCCC


TTAGGTACTTATTCCAGATGCCTTCTCC













AGACAAACCAG






CCR7
NM_001838.2
CCR7
GGATGACATGCA
70
CCTGACATTTCC
454
CTCCCATCCCAGTGGAG
838
64
GGATGACATGCACTCAGCTCTTGGCTCC
1222





CTCAGCTC

CTTGTCCT

CCAA


ACTGGGATGGGAGGAGAGGACAAGGGAA













ATGTCAGG






CD1A
NM_001763.1
CD1A
GGAGTGGAAGGA
71
TCATGGGCGTAT
455
CGCACCATTCGGTCATT
839
78
GGAGTGGAAGGAACTGGAAACATTATTC
1223





ACTGGAAA

CTACGAAT

TGAGG


CGTATACGCACCATTCGGTCATTTGAGG













GAATTCGTAGATACGCCCATGA






CD24
NM_013230.1
CD24
TCCAACTAATGC
72
GAGAGAGTGAGA
456
CTGTTGACTGCAGGGCA
840
77
TCCAACTAATGCCACCACCAAGGCGGCT
1224





CACCACCAA

CCACGAAGAGAC

CCACCA


GGTGGTGCCCTGCAGTCAACAGCCAGTC








T




TCTTCGTGGTCTCACTCTCTC






CD4
NM_000616.2
CD4
GTGCTGGAGTCG
73
TCCCTGCATTCA
457
CAGGTCCCTTGTCCCAA
841
67
GTGCTGGAGTCGGGACTAACCCAGGTCC
1225





GGACTAAC

AGAGGC

GTTCCAC


CTTGTCCCAAGTTCCACTGCTGCCTCTT













GAATGCAGGGA






CD44E
X55150

ATCACCGACAGC
74
ACCTGTGTTTGG
458
CCCTGCTACCAATATGG
842
90
ATCACCGACAGCACAGACAGAATCCCTG
1226





ACAGACA

ATTTGCAG

ACTCCAGTCA


CTACCAATATGGACTCCAGTCATAGTAC













AACGCTTCAGCCTACTGCAAATCCAAAC













ACAGGT






CD44s
M59040.1

GACGAAGACAGT
75
ACTGGGGTGGAA
459
CACCGACAGCACAGACA
843
78
GACGAAGACAGTCCCTGGATCACCGACA
1227





CCCTGGAT

TGTGTCTT

GAATCCC


GCACAGACAGAATCCCTGCTACCAGAGA













CCAAGACACATTCCACCCCAGT






CD44v6
AJ251595v6

CTCATACCAGCC
76
TTGGGTTGAAGA
460
CACCAAGCCCAGAGGAC
844
78
CTCATACCAGCCATCCAATGCAAGGAAG
1228





ATCCAATG

AATCAGTCC

AGTTCCT


GACAACACCAAGCCCAGAGGACAGTTCC













TGGACTGATTTCTTCAACCCAA






CD68
NM_001251.1
CD68
TGGTTCCCAGCC
77
CTCCTCCACCCT
461
CTCCAAGCCCAGATTCA
845
74
TGGTTCCCAGCCCTGTGTCCACCTCCAA
1229





CTGTGT

GGGTTGT

GATTCGAGTCA


GCCCAGATTCAGATTCGAGTCATGTACA













CAACCCAGGGTGGAGGAG






CD82
NM_002231.2
CD82
GTGCAGGCTCAG
78
GACCTCAGGGCG
462
TCAGCTTCTACAACTGG
846
84
GTGCAGGCTCAGGTGAAGTGCTGCGGCT
1230





GTGAAGTG

ATTCATGA

ACAGACAACGCTG


GGGTCAGCTTCTACAACTGGACAGACAA













CGCTGAGCTCATGAATCGCCCTGAGGTC






CDC20
NM_001255.1
CDC20
TGGATTGGAGTT
79
GCTTGCACTCCA
463
ACTGGCCGTGGCACTGG
847
68
TGGATTGGAGTTCTGGGAATGTACTGGC
1231





CTGGGAATG

CAGGTACACA

ACAACA


CGTGGCACTGGACAACAGTGTGTACCTG













TGGAGTGCAAGC






cdc25A
NM_001789.1
CDC25A
TCTTGCTGGCTA
80
CTGCATTGTGGC
464
TGTCCCTGTTAGACGTC
848
71
TCTTGCTGGCTACGCCTCTTCTGTCCCT
1232





CGCCTCTT

ACAGTTCTG

CTCCGTCCATA


GTTAGACGTCCTCCGTCCATATCAGAAC













TGTGCCACAATGCAG






CDC25C
NM_001790.2
CDC25C
GGTGAGCAGAAG
81
CTTCAGTCTTGG
465
CTCCCCGTCGATGCCAG
849
67
GGTGAGCAGAAGTGGCCTATATCGCTCC
1233





TGGCCTAT

CCTGTTCA

AGAACT


CCGTCGATGCCAGAGAACTTGAACAGGC













CAAGACTGAAG






CDC4
NM_018315.2
FBXW7
GCAGTCCGCTGT
82
GGATCCCACACC
466
TGCTCCACTAACAACCC
850
77
GCAGTCCGCTGTGTTCAATATGATGGCA
1234





GTTCAA

TTTACCATAA

TCCTGCC


GGAGGGTTGTTAGTGGAGCATATGATTT













TATGGTAAAGGTGTGGGATCC






CDC42BPA
NM_003607.2
CDC42BPA
GAGCTGAAAGAC
83
GCCGCTCATTGA
467
AATTCCTGCATGGCCAG
851
67
GAGCTGAAAGACGCACACTGTCAGAGGA
1235





GCACACTG

TCTCCA

TTTCCTC


AACTGGCCATGCAGGAATTCATGGAGAT













CAATGAGCGGC






CDC42EP4
NM_012121.4
CDC42EP4
CGGAGAAGGGCA
84
CCGTCATTGGCC
468
CTGCCCAAGAGCCTGTC
852
67
CGGAGAAGGGCACCAGTAAGCTGCCCAA
1236





CCAGTA

TTCTTC

ATCCAG


GAGCCTGTCATCCAGCCCCGTGAAGAAG













GCCAATGACGG






CDH11
NM_001797.2
CDH11
GTCGGCAGAAGC
85
CTACTCATGGGC
469
CCTTCTGCCCATAGTGA
853
70
GTCGGCAGAAGCAGGACTTGTACCTTCT
1237





AGGACT

GGGATG

TCAGCGA


GCCCATAGTGATCAGCGATGGCGGCATC













CCGCCCATGAGTAG






CDH3
NM_001793.3
CDH3
ACCCATGTACCG
86
CCGCCTTCAGGT
470
CCAACCCAGATGAAATC
854
71
ACCCATGTACCGTCCTCGGCCAGCCAAC
1238





TCCTCG

TCTCAAT

GGCAACT


CCAGATGAAATCGGCAACTTTATAATTG













AGAACCTGAAGGCGG






CDK4
NM_000075.2
CDK4
CCTTCCCATCAG
87
TTGGGATGCTCA
471
CCAGTCGCCTCAGTAAA
855
66
CCTTCCCATCAGCACAGTTCGTGAGGTG
1239





CACAGTTC

AAAGCC

GCCACCT


GCTTTACTGAGGCGACTGGAGGCTTTTG













AGCATCCCAA






CDK5
NM_004935.2
CDK5
AAGCCCTATCCG
88
CTGTGGCATTGA
472
CACAACATCCCTGGTGA
856
67
AAGCCCTATCCGATGTACCCGGCCACAA
1240





ATGTACCC

GTTTGGG

ACGTCGT


CATCCCTGGTGAACGTCGTGCCCAAACT













CAATGCCACAG






CDKN3
NM_005192.2
CDKN3
TGGATCTCTACC
89
ATGTCAGGAGTC
473
ATCACCCATCATCATCC
857
70
TGGATCTCTACCAGCAATGTGGAATTAT
1241





AGCAATGTG

CCTCCATC

AATCGCA


CACCCATCATCATCCAATCGCAGATGGA













GGGACTCCTGACAT






CEACAM1
NM_001712.2
CEACAM1
ACTTGCCTGTTC
90
TGGCAAATCCGA
474
TCCTTCCCACCCCCAGT
858
71
ACTTGCCTGTTCAGAGCACTCATTCCTT
1242





AGAGCACTCA

ATTAGAGTGA

CCTGTC


CCCACCCCCAGTCCTGTCCTATCACTCT













AATTCGGATTTGCCA






CEBPA
NM_004364.2
CEBPA
TTGGTTTTGCTC
91
GTCTCAGACCCT
475
AAAATGAGACTCTCCGT
859
66
TTGGTTTTGCTCGGATACTTGCCAAAAT
1243





GGATACTTG

TCCCCC

CGGCAGC


GAGACTCTCCGTCGGCAGCTGGGGGAAG













GGTCTGAGAC






CEGP1
NM_020974.1
SCUBE2
TGACAATCAGCA
92
TGTGACTACAGC
476
CAGGCCCTCTTCCGAGC
860
77
TGACAATCAGCACACCTGCATTCACCGC
1244





CACCTGCAT

CGTGATCCTTA

GGT


TCGGAAGAGGGCCTGAGCTGCATGAATA













AGGATCACGGCTGTAGTCACA






CENPA
NM_001809.2
CENPA
TAAATTCACTCG
93
GCCTCTTGTAGG
477
CTTCAATTGGCAAGCCC
861
63
TAAATTCACTCGTGGTGTGGACTTCAAT
1245





TGGTGTGGA

GCCAATAG

AGGC


TGGCAAGCCCAGGCCCTATTGGCCCTAC













AAGAGGC






CGA (CHGA
NM_001275.2
CHGA
CTGAAGGAGCTC
94
CAAAACCGCTGT
478
TGCTGATGTGCCCTCTC
862
76
CTGAAGGAGCTCCAAGACCTCGCTCTCC
1246


official)


CAAGACCT

GTTTCTTC

CTTGG


AAGGCGCCAAGGAGAGGGCACATCAGCA













GAAGAAACACAGCGGTTTTG






CGalpha
NM_000735.2
CGA
CCAGAATGCACG
95
GCCCATGCACTG
479
ACCCATTCTTCTCCCAG
863
69
CCAGAATGCACGCTACAGGAAAACCCAT
1247





CTACAGGAA

AAGTATTGG

CCGGG


TCTTCTCCCAGCCGGGTGCCCAATACTT













CAGTGCATGGGC






CGB
NM_000737.2
CGB
CCACCATAGGCA
96
AGTCGTCGAGTG
480
ACACCCTACTCCCTGTG
864
80
CCACCATAGGCAGAGGCAGGCCTTCCTA
1248





GAGGCA

CTAGGGAC

CCTCCAG


CACCCTACTCCCTGTGCCTCCAGCCTCG













ACTAGTCCCTAGCACTCGACGACT






CHAF1B
NM_005441.1
CHAF1B
GAGGCCAGTGGT
97
TCCGAGGCCACA
481
AGCTGATGAGTCTGCCC
865
72
GAGGCCAGTGGTGGAAACAGGTGTGGAG
1249





GGAAACAG

GCAAAC

TACCGCCTG


CTGATGAGTCTGCCCTACCGCCTGGTGT













TTGCTGTGGCCTCGGA






CHFR
NM_018223.1
CHFR
AAGGAAGTGGTC
98
GACGCAGTCTTT
482
TGAAGTCTCCAGCTTTG
866
76
AAGGAAGTGGTCCCTCTGTGGCAAGTGA
1250





CCTCTGTG

CTGTCTGG

CCTCAGC


TGAAGTCTCCAGCTTTGCCTCAGCTCTC













CCAGACAGAAAGACTGCGTC






CHI3L1
NM_001276.1
CHI3L1
AGAATGGGTGTG
99
TGCAGAGCAGCA
483
CACCAGGACCACAAAGC
867
66
AGAATGGGTGTGAAGGCGTCTCAAACAG
1251





AAGGCG

CTGGAG

CTGTTTG


GCTTTGTGGTCCTGGTGCTGCTCCAGTG













CTGCTCTGCA






CKS2
NM_001827.1
CKS2
GGCTGGACGTGG
100
CGCTGCAGAAAA
484
CTGCGCCCGCTCTTCGC
868
62
GGCTGGACGTGGTTTTGTCTGCTGCGCC
1252





TTTTGTCT

TGAAACGA

G


CGCTCTTCGCGCTCTCGTTTCATTTTCT













GCAGCG






Claudin 4
NM_001305.2
CLDN4
GGCTGCTTTGCT
101
CAGAGCGGGCAG
485
CGCACAGACAAGCCTTA
869
72
GGCTGCTTTGCTGCAACTGTCCACCCCG
1253





GCAACTG

CAGAATA

CTCCGCC


CACAGACAAGCCTTACTCCGCCAAGTAT













TCTGCTGCCCGCTCTG






CLIC1
NM_001288.3
CLIC1
CGGTACTTGAGC
102
TCGATCTCCTCA
486
CGGGAAGAATTCGCTTC
870
68
CGGTACTTGAGCAATGCCTACGCCCGGG
1254





AATGCCTA

TCATCTGG

CACCTG


AAGAATTCGCTTCCACCTGTCCAGATGA













TGAGGAGATCGA






CLU
NM_001831.1
CLU
CCCCAGGATACC
103
TGCGGGACTTGG
487
CCCTTCAGCCTGCCCCA
871
76
CCCCAGGATACCTACCACTACCTGCCCT
1255





TACCACTACCT

GAAAGA

CCG


TCAGCCTGCCCCACCGGAGGCCTCACTT













CTTCTTTCCCAAGTCCCGCA






CNOT2
NM_014515.3
CNOT2
AAATCGCAGCTT
104
TGTTGGTACCCC
488
ACTCAGTTACCGAGCCA
872
67
AAATCGCAGCTTATCACAAGGCACTCAG
1256





ATCACAAGG

TGTTGTTG

CGTCACG


TTACCGAGCCACGTCACGCCAACAACAG













GGGTACCAACA






COL1A1
NM_000088.2
COL1A1
GTGGCCATCCAG
105
CAGTGGTAGGTG
489
TCCTGCGCCTGATGTCC
873
68
GTGGCCATCCAGCTGACCTTCCTGCGCC
1257





CTGACC

ATGTTCTGGGA

ACCG


TGATGTCCACCGAGGCCTCCCAGAACAT













CACCTACCACTG






COL1A2
NM_000089.2
COL1A2
CAGCCAAGAACT
106
AAACTGGCTGCC
490
TCTCCTAGCCAGACGTG
874
80
CAGCCAAGAACTGGTATAGGAGCTCCAA
1258





GGTATAGGAGCT

AGCATTG

TTTCTTGTCCTTG


GGACAAGAAACACGTCTGGCTAGGAGAA













ACTATCAATGCTGGCAGCCAGTTT






COMT
NM_000754.2
COMT
CCTTATCGGCTG
107
CTCCTTGGTGTC
491
CCTGCAGCCCATCCACA
875
67
CCTTATCGGCTGGAACGAGTTCATCCTG
1259





GAACGAGTT

ACCCATGAG

ACCT


CAGCCCATCCACAACCTGCTCATGGGTG













ACACCAAGGAG






Contig
NM_198477
CXCL17
CGACAGTTGCGA
108
GGCTGCTAGAGA
492
CCTCCTCCTGTTGCTGC
876
81
CGACAGTTGCGATGAAAGTTCTAATCTC
1260


51037


TGAAAGTTCTAA

CCATGGACAT

CACTAATGCT


TTCCCTCCTCCTGTTGCTGCCACTAATG













CTGATGTCCATGGTCTCTAGCAGCC






COPS3
NM_003653.2
COPS3
ATGCCCAGTGTT
109
CTCCCCATTACA
493
CGAAACGCTATTCTCAC
877
72
ATGCCCAGTGTTTCCTGACTTCGAAACG
1261





CCTGACTT

AGTGCTGA

AGGTTCAGC


CTATTCTCACAGGTTCAGCTCTTCATCA













GCACTTGTAATGGGGAG






CRYAB
NM_001885.1
CRYAB
GATGTGATTGAG
110
GAACTCCCTGGA
494
TGTTCATCCTGGCGCTC
878
69
GATGTGATTGAGGTGCATGGAAAACATG
1262





GTGCATGG

GATGAAACC

TTCATGT


AAGAGCGCCAGGATGAACATGGTTTCAT













CTCCAGGGAGTTC






CRYZ
NM_001889.2
CRYZ
AAGTCCTGAAAT
111
CACATGCATGGA
495
CCGATTCCAAAAGACCA
879
78
AAGTCCTGAAATTGCGATCAGATATTGC
1263





TGCGATCA

CCTTGATT

TCAGGTTCT


AGTACCGATTCCAAAAGACCATCAGGTT













CTAATCAAGGTCCATGCATGTG






CSF1 isoC
NM_172211.1
CSF1
CAGCAAGAACTG
112
ATCCCTCGGACT
496
TTTGCTGAATGCTCCAG
880
68
CAGCAAGAACTGCAACAACAGCTTTGCT
1264





CAACAACA

GCCTCT

CCAAGG


GAATGCTCCAGCCAAGGCCATGAGAGGC













AGTCCGAGGGAT






CSF1
NM_000757.3
CSF1
TGCAGCGGCTGA
113
CAACTGTTCCTG
497
TCAGATGGAGACCTCGT
881
74
TGCAGCGGCTGATTGACAGTCAGATGGA
1265





TTGACA

GTCTACAAACTC

GCCAAATTACA


GACCTCGTGCCAAATTACATTTGAGTTT








A




GTAGACCAGGAACAGTTG






CSF1R
NM_005211.1
CSF1R
GAGCACAACCAA
114
CCTGCAGAGATG
498
AGCCACTCCCCACGCTG
882
80
GAGCACAACCAAACCTACGAGTGCAGGG
1266





ACCTACGA

GGTATGAA

TTGT


CCCACAACAGCGTGGGGAGTGGCTCCTG













GGCCTTCATACCCATCTCTGCAGG






CSF2RA
NM_006140.3
CSF2RA
TACCACACCCAG
115
CTAGAGGCTGGT
499
CGCAGATCCGATTTCTC
883
67
TACCACACCCAGCATTCCTCCTGATCCC
1267





CATTCCTC

GCCACTGT

TGGGATC


AGAGAAATCGGATCTGCGAACAGTGGCA













CCAGCCTCTAG






CSK (SRC)
NM_004383.1
CSK
CCTGAACATGAA
116
CATCACGTTCCG
500
TCCCGATGGTCTGCAGC
884
64
CCTGAACATGAAGGAGCTGAAGCTGCTG
1268





GGAGCTGA

AACTCC

AGCT


CAGACCATCGGGAAGGGGGAGTTCGGAG













ACGTGATG






CTGF
NM_001901.1
CTGF
GAGTTCAAGTGC
117
AGTTGTAATGGC
501
AACATCATGTTCTTCTT
885
76
GAGTTCAAGTGCCCTGACGGCGAGGTCA
1269





CCTGACG

AGGCACAG

CATGACCTCGC


TGAAGAAGAACATGATGTTCATCAAGAC













CTGTGCCTGCCATTACAACT






CTHRC1
NM_138455.2
CTHRC1
GCTCACTTCGGC
118
TCAGCTCCATTG
502
ACCAACGCTGACAGCAT
886
67
GCTCACTTCGGCTAAAATGCAGAAATGC
1270





TAAAATGC

AATGTGAAA

GCATTTC


ATGCTGTCAGCGTTGGTATTTCACATTC













AATGGAGCTGA






CTSD
NM_001909.1
CTSD
GTACATGATCCC
119
GGGACAGCTTGT
503
ACCCTGCCCGCGATCAC
887
80
GTACATGATCCCCTGTGAGAAGGTGTCC
1271





CTGTGAGAAGGT

AGCCTTTGC

ACTGA


ACCCTGCCCGCGATCACACTGAAGCTGG













GAGGCAAAGGCTACAAGCTGTCCC






CTSL2
NM_001333.2
CTSL2
TGTCTCACTGAG
120
ACCATTGCAGCC
504
CTTGAGGACGCGAACAG
888
67
TGTCTCACTGAGCGAGCAGAATCTGGTG
1272





CGAGCAGAA

CTGATTG

TCCACCA


GACTGTTCGCGTCCTCAAGGCAATCAGG













GCTGCAATGGT






CTSL2int2
NM_001333.2int2

ACCAGGCAATAA
121
CTGTTCTCCAAG
505
AGGTGCAATATGGGCAT
889
79
ACCAGGCAATAACCTAACAGCACCCATT
1273





CCTAACAGC

CCAAGACA

ATATCTCCATTG


ATAGGTGCAATATGGGCATATATCTCCA













TTGTGTCTTGGCTTGGAGAACAG






CXCL10
NM_001565.1
CXCL10
GGAGCAAAATCG
122
TAGGGAAGTGAT
506
TCTGTGTGGTCCATCCT
890
68
GGAGCAAAATCGATGCAGTGCTTCCAAG
1274





ATGCAGT

GGGAGAGG

TGGAAGC


GATGGACCACACAGAGGCTGCCTCTCCC













ATCACTTCCCTA






CXCL12
NM_000609.3
CXCL12
GAGCTACAGATG
123
TTTGAGATGCTT
507
TTCTTCGAAAGCCATGT
891
67
GAGCTACAGATGCCCATGCCGATTCTTC
1275





CCCATGC

GACGTTGG

TGCCAGA


GAAAGCCATGTTGCCAGAGCCAACGTCA













AGCATCTCAAA






CXCL14
NM_004887.3
CXCL14
TGCGCCCTTTCC
124
CAATGCGGCATA
508
TACCCTTAAGAACGCCC
892
74
TGCGCCCTTTCCTCTGTACATATACCCT
1276





TCTGTA

TACTGGG

CCTCCAC


TAAGAACGCCCCCTCCACACACTGCCCC













CCAGTATATGCCGCATTG






CXCR4
NM_003467.1
CXCR4
TGACCGCTTCTA
125
AGGATAAGGCCA
509
CTGAAACTGGAACACAA
893
72
TGACCGCTTCTACCCCAATGACTTGTGG
1277





CCCCAATG

ACCATGATGT

CCACCCACAAG


GTGGTTGTGTTCCAGTTTCAGCACATCA













TGGTTGGCCTTATCCT






CYP17A1
NM_000102.2
CYP17A1
CCGGAGTGACTC
126
GCCAGCATTGCC
510
TGGACACACTGATGCAA
894
76
CCGGAGTGACTCTATCACCAACATGCTG
1278





TATCACCA

ATTATCT

GCCAAGA


GACACACTGATGCAAGCCAAGATGAACT













CAGATAATGGCAATGCTGGC






CYP19A1
NM_000103.2
CYP19A1
TCCTTATAGGTA
127
CACCATGGCGAT
511
CACAGCCACGGGGCCCA
895
70
TCCTTATAGGTACTTTCAGCCATTTGGC
1279





CTTTCAGCCATT

GTACTTTCC

AA


TTTGGGCCCCGTGGCTGTGCAGGAAAGT






TG






ACATCGCCATGGTG






CYP1B1
NM_000104.2
CYP1B1
CCAGCTTTGTGC
128
GGGAATGTGGTA
512
CTCATGCCACCACTGCC
896
71
CCAGCTTTGTGCCTGTCACTATTCCTCA
1280





CTGTCACTAT

GCCCAAGA

AACACCTC


TGCCACCACTGCCAACACCTCTGTCTTG













GGCTACCACATTCCC






CYR61
NM_001554.3
CYR61
TGCTCATTCTTG
129
GTGGCTGCATTA
513
CAGCACCCTTGGCAGTT
897
76
TGCTCATTCTTGAGGAGCATTAAGGTAT
1281





AGGAGCAT

GTGTCCAT

TCGAAAT


TTCGAAACTGCCAAGGGTGCTGGTGCGG













ATGGACACTAATGCAGCCAC






DAB2
NM_001343.1
DAB2
TGGTGGGTCTAG
130
ACCAAAGATGCT
514
CTGTCACACTCCCTCAG
898
67
TGGTGGGTCTAGGTGGTGTAACTGTCAC
1282





GTGGTGTA

GTGTTCCA

GCAGGAC


ACTCCCTCAGGCAGGACCATGGAACACA













GCATCTTTGGT






DCC
NM_005215.1
DCC
AAATGTCCTCCT
131
TGAATGCCATCT
515
ATCACTGGAACTCCTCG
899
75
AAATGTCCTCCTCGACTGCTCCGCGGAG
1283





CGACTGCT

TTCTTCCA

GTCGGAC


TCCGACCGAGGAGTTCCAGTGATCAAGT













GGAAGAAAGATGGCATTCA






DCC_exons
X76132_18-23

GGTCACCGTTGG
132
GAGCGTCGGGTG
516
CAGCCACGATGACCACT
900
66
GGTCACCGTTGGTGTCATCACAGTGCTG
1284


18-23


TGTCATCA

CAAATC

ACCAGCACT


GTAGTGGTCATCGTGGCTGTGATTTGCA













CCCGACGCTC






DCC_exons
X76132_6-7

ATGGAGATGTGG
133
CACCACCCCAAG
517
TGCTTCCTCCCACTATC
901
74
ATGGAGATGTGGTCATTCCTAGTGATTA
1285


6-7


TCATTCCTAGTG

TATCCGTAAG

TGAAAATAA


TTTTCAGATAGTGGGAGGAAGCAACTTA













CGGATACTTGGGGTGGTG






DCK
NM_000788.1
DCK
GCCGCCACAAGA
134
CGATGTTCCCTT
518
AGCTGCCCGTCTTTCTC
902
110
GCCGCCACAAGACTAAGGAATGGCCACC
1286





CTAAGGAAT

CGATGGAG

AGCCAGC


CCGCCCAAGAGAAGCTGCCGTCTTTCTC













AGCCAGCTCTGAGGGGACCCGCATCAAG













AAAATCTCCATCGAAGGGAACATCG






DICER1
NM_177438.1
DICER1
TCCAATTCCAGC
135
GGCAGTGAAGGC
519
AGAAAAGCTGTTTGTCT
903
68
TCCAATTCCAGCATCACTGTGGAGAAAA
1287





ATCACTGT

GATAAAGT

CCCCAGCA


GCTGTTTGTCTCCCCAGCATACTTTATC













GCCTTCACTGCC






DLC1
NM_006094.3
DLC1
GATTCAGACGAG
136
CACCTCTTGCTG
520
AAAGTCCATTTGCCACT
904
68
GATTCAGACGAGGATGAGCCTTGTGCCA
1288





GATGAGCC

TCCCTTTG

GATGGCA


TCAGTGGCAAATGGACTTTCCAAAGGGA













CAGCAAGAGGTG






DLL4
NM_019074.2
DLL4
CACGGAGGTATA
137
AGAAGGAAGGTC
521
CTACCTGGACATCCCTG
905
67
CACGGAGGTATAAGGCAGGAGCCTACCT
1289





AGGCAGGAG

CAGCCG

CTCAGCC


GGACATCCCTGCTCAGCCCCGCGGCTGG













ACCTTCCTTCT






DR5
NM_003842.2
TNFRSF10B
CTCTGAGACAGT
138
CCATGAGGCCCA
522
CAGACTTGGTGCCCTTT
906
84
CTCTGAGACAGTGCTTCGATGACTTTGC
1290





GCTTCGATGACT

ACTTCCT

GACTCC


AGACTTGGTGCCCTTTGACTCCTGGGAG













CCGCTCATGAGGAAGTTGGGCCTCATGG






DSP
NM_004415.1
DSP
TGGCACTACTGC
139
CCTGCCGCATTG
523
CAGGGCCATGACAATCG
907
73
TGGCACTACTGCATGATTGACATAGAGA
1291





ATGATTGACA

TTTTCAG

CCAA


AGATCAGGGCCATGACAATCGCCAAGCT













GAAAACAATGCGGCAGG






DTYMK
NM_012145.1
DTYMK
AAATCGCTGGGA
140
AATGCGTATCTG
524
CGCCCTGGCTCAACTTT
908
78
AAATCGCTGGGAACAAGTGCCGTTAATT
1292





ACAAGTG

TCCACGAC

TCCTTAA


AAGGAAAAGTTGAGCCAGGGCGTGACCC













TCGTCGTGGACAGATACGCATT






DUSP1
NM_004417.2
DUSP1
AGACATCAGCTC
141
GACAAACACCCT
525
CGAGGCCATTGACTTCA
909
76
AGACATCAGCTCCTGGTTCAACGAGGCC
1293





CTGGTTCA

TTCCTCCAG

TAGACTCCA


ATTGACTTCATAGACTCCATCAAGAATG













CTGGAGGAAGGGTGTTTGTC






DUSP4
NM_001394.4
DUSP4
TGGTGACGATGG
142
CTCGTCCCGGTT
526
TTGAGCACACTGCAGTC
910
68
TGGTGACGATGGAGGAGCTGCGGGAGAT
1294





AGGAGC

CATCAG

CATCTCC


GGACTGCAGTGTGCTCAAAAGGCTGATG













AACCGGGACGAG






E2F1
NM_005225.1
E2F1
ACTCCCTCTACC
143
CAGGCCTCAGTT
527
CAGAAGAACAGCTCAGG
911
75
ACTCCCTCTACCCTTGAGCAAGGGCAGG
1295





CTTGAGCA

CCTTCAGT

GACCCCT


GGTCCCTGAGCTGTTCTTCTGCCCCATA













CTGAAGGAACTGAGGCCTG






EBRP
AF243433.1

CTGCTGGATGAC
144
CCAACAGTACAG
528
CTCACCAGAAGCCCCAA
912
76
CTGCTGGATGACCTTCCTCCCAGAGTGG
1296





CTTCCTC

CCAGTTGC

CCTCAAC


CTCACCAGAAGCCCCAACCTCAACACCA













GCAACTGGCTGTACTGTTGG






EDN1
NM_001955.1
EDN1
TGCCACCTGGAC
145
TGGACCTAGGGC
529
CACTCCCGAGCACGTTG
913
73
TGCCACCTGGACATCATTTGGGTCAACA
1297


endothelin


ATCATTTG

TTCCAAGTC

TTCCGT


CTCCCGAGCACGTTGTTCCGTATGGACT













TGGAAGCCCTAGGTCCA






EDN2
NM_001956.2
EDN2
CGACAAGGAGTG
146
CAGGCCGTAAGG
530
CCACTTGGACATCATCT
914
79
CGACAAGGAGTGCGTCTACTTCTGCCAC
1298





CGTCTACTTCT

AGCTGTCT

GGGTGAACACTC


TTGGACATCATCTGGGTGAACACTCCTG













AACAGACAGCTCCTTACGGCCTG






EDNRA
NM_001957.1
EDNRA
TTTCCTCAAATT
147
TTACACATCCAA
531
CCTTTGCCTCAGGGCAT
915
76
TTTCCTCAAATTTGCCTCAAGATGGAAA
1299





TGCCTCAAG

CCAGTGCC

CCTTTT


CCCTTTGCCTCAGGGCATCCTTTTGGCT













GGCACTGGTTGGATGTGTAA






EDNRB
NM_000115.1
EDNRB
ACTGTGAACTGC
148
ACCACAGCATGG
532
TGCTACCTGCCCCTTTG
916
72
ACTGTGAACTGCCTGGTGCAGTGTCCAC
1300





CTGGTGC

GTGAGAG

TCATGTG


ATGACAAAGGGGCAGGTAGCACCCTCTC













TCACCCATGCTGTGGT






EEF1A1
NM_001402.5
EEF1A1
CGAGTGGAGACT
149
CCGTTGTAACGT
533
CAAAGGTGACCACCATA
917
67
CGAGTGGAGACTGGTGTTCTCAAACCCG
1301





GGTGTTCTC

TGACTGGA

CCGGGTT


GTATGGTGGTCACCTTTGCTCCAGTCAA













CGTTACAACGG






EEF1A2
NM_001958.2
EEF1A2
ATGGACTCCACA
150
GGCGCTGACTTC
534
CTCGTCGTAGCGCTTCT
918
66
ATGGACTCCACAGAGCCGGCCTACAGCG
1302





GAGCCG

CTTGAC

CGCTGTA


AGAAGCGCTACGACGAGATCGTCAAGGA













AGTCAGCGCC






EFP
NM_005082.2
TRIM25
TTGAACAGAGCC
151
TGTTGAGATTCC
535
TGATGCTTTCTCCAGAA
919
74
TTGAACAGAGCCTGACCAAGAGGGATGA
1303





TGACCAAG

TCGCAGTT

ACTCGAACTCA


GTTCGAGTTTCTGGAGAAAGCATCAAAA













CTGCGAGGAATCTCAACA






EGR1
NM_001964.2
EGR1
GTCCCCGCTGCA
152
CTCCAGCTTAGG
536
CGGATCCTTTCCTCACT
920
76
GTCCCCGCTGCAGATCTCTGACCCGTTC
1304





GATCTCT

GTAGTTGTCCAT

CGCCCA


GGATCCTTTCCTCACTCGCCCACCATGG













ACAACTACCCTAAGCTGGAG






EGR3
NM_004430.2
EGR3
CCATGTGGATGA
153
TGCCTGAGAAGA
537
ACCCAGTCTCACCTTCT
921
78
CCATGTGGATGAATGAGGTGTCTCCTTT
1305





ATGAGGTG

GGTGAGGT

CCCCACC


CCATACCCAGTCTCACCTTCTCCCCACC













CTACCTCACCTCTTCTCAGGCA






EIF4EBP1
NM_004095.2
EIF4EBP1
GGCGGTGAAGAG
154
TTGGTAGTGCTC
538
TGAGATGGACATTTAAA
922
66
GGCGGTGAAGAGTCACAGTTTGAGATGG
1306





TCACAGT

CACACGAT

GCACCAGCC


ACATTTAAAGCACCAGCCATCGTGTGGA













GCACTACCAA






ELF3
NM_004433.2
ELF3
TCGAGGGCAAGA
155
GATGAGGATGTC
539
CGCCCAGAGGCACCCAC
923
71
TCGAGGGCAAGAAGAGCAAGCACGCGCC
1307





AGAGCAA

CCGGATGA

CTG


CAGAGGCACCCACCTGTGGGAGTTCATC













CGGGACATCCTCATC






EMP1
NM_001423.1
EMP1
GCTAGTACTTTG
156
GAACAGCTGGAG
540
CCAGAGAGCCTCCCTGC
924
75
GCTAGTACTTTGATGCTCCCTTGATGGG
1308





ATGCTCCCTTGA

GCCAAGTC

AGCCA


GTCCAGAGAGCCTCCCTGCAGCCACCAG






T






ACTTGGCCTCCAGCTGTTC






ENO1
NM_001428.2
ENO1
CAAGGCCGTGAA
157
CGGTCACGGAGC
541
CTGCAACTGCCTCCTGC
925
68
CAAGGCCGTGAACGAGAAGTCCTGCAAC
1309





CGAGAAGT

CAATCT

TCAAAGTCA


TGCCTCCTGCTCAAAGTCAACCAGATTG













GCTCCGTGACCG






EP300
NM_001429.1
EP300
AGCCCCAGCAAC
158
TGTTCAAAGGTT
542
CACTGACATCATGGCTG
926
75
AGCCCCAGCAACTACAGTCTGGGATGCC
1310





TACAGTCT

GACCATGC

GCCTTG


AAGGCCAGCCATGATGTCAGTGGCCCAG













CATGGTCAACCTTTGAACA






EpCAM
NM_002354.1
EPCAM
GGGCCCTCCAGA
159
TGCACTGCTTGG
543
CCGCTCTCATCGCAGTC
927
75
GGGCCCTCCAGAACAATGATGGGCTTTA
1311





ACAATGAT

CCTTAAAGA

AGGATCAT


TGATCCTGACTGCGATGAGAGCGGGCTC













TTTAAGGCCAAGCAGTGCA






EPHA2
NM_004431.2
EPHA2
CGCCTGTTCACC
160
GTGGCGTGCCTC
544
TGCGCCCGATGAGATCA
928
72
CGCCTGTTCACCAAGATTGACACCATTG
1312





AAGATTGAC

GAAGTC

CCG


CGCCCGATGAGATCACCGTCAGCAGCGA













CTTCGAGGCACGCCAC






EPHB2
NM_004442.4
EPHB2
CAACCAGGCAGC
161
GTAATGCTGTCC
545
CACCTGATGCATGATGG
929
66
CAACCAGGCAGCTCCATCGGCAGTGTCC
1313





TCCATC

ACGGTGC

ACACTGC


ATCATGCATCAGGTGAGCCGCACCGTGG













ACAGCATTAC






EPHB4
NM_004444.3
EPHB4
TGAACGGGGTAT
162
AGGTACCTCTCG
546
CGTCCCATTTGAGCCTG
930
77
TGAACGGGGTATCCTCCTTAGCCACGGG
1314





CCTCCTTA

GTCAGTGG

TCAATGT


GCCCGTCCCATTTGAGCCTGTCAATGTC













ACCACTGACCGAGAGGTACCT






ER2
NM_001437.1
ESR2
TGGTCCATCGCC
163
TGTTCTAGCGAT
547
ATCTGTATGCGGAACCT
931
76
TGGTCCATCGCCAGTTATCACATCTGTA
1315





AGTTATCA

CTTGCTTCACA

CAAAAGAGTCCCT


TGCGGAACCTCAAAAGAGTCCCTGGTGT













GAAGCAAGATCGCTAGAACA






ERBB4
NM_005235.1
ERBB4
TGGCTCTTAATC
164
CAAGGCATATCG
548
TGTCCCACGAATAATGC
932
86
TGGCTCTTAATCAGTTTCGTTACCTGCC
1316





AGTTTCGTTACC

ATCCTCATAAAG

GTAAATTCTCCAG


TCTGGAGAATTTACGCATTATTCGTGGG






T

T




ACAAAACTTTATGAGGATCGATATGCCT













TG






ERCC1
NM_001983.1
ERCC1
GTCCAGGTGGAT
165
CGGCCAGGATAC
549
CAGCAGGCCCTCAAGGA
933
67
GTCCAGGTGGATGTGAAAGATCCCCAGC
1317





GTGAAAGA

ACATCTTA

GCTG


AGGCCCTCAAGGAGCTGGCTAAGATGTG













TATCCTGGCCG






ERG
NM_004449.3
ERG
CCAACACTAGGC
166
CCTCCGCCAGGT
550
AGCCATATGCCTTCTCA
934
70
CCAACACTAGGCTCCCCACCAGCCATAT
1318





TCCCCA

CTTTAGT

TCTGGGC


GCCTTCTCATCTGGGCACTTACTACTAA













AGACCTGGCGGAGG






ERRa
NM_004451.3
ESRRA
GGCATTGAGCCT
167
TCTCCGAGGAAC
551
AGAGCCGGCCAGCCCTG
935
67
GGCATTGAGCCTCTCTACATCAAGGCAG
1319





CTCTACATCA

CCTTTGG

ACAG


AGCCGGCCAGCCCTGACAGTCCAAAGGG













TTCCTCGGAGA






ESD
NM_001984.1
ESD
GTCACTCCGCCA
168
CTGTCCAATTGC
552
TCGCCTACCATTTGGTG
936
66
GTCACTCCGCCACCGTAGAATCGCCTAC
1320





CCGTAG

TGATTGCTT

CAAGCAA


CATTTGGTGCAAGCAAAAAGCAATCAGC













AATTGGACAG






ESPL1
NM_012291.1
ESPL1
ACCCCCAGACCG
169
TGTAGGGCAGAC
553
CTGGCCCTCATGTCCCC
937
70
ACCCCCAGACCGGATCAGGCAAGCTGGC
1321





GATCAG

TTCCTCAAACA

TTCACG


CCTCATGTCCCCTTCACGGTGTTTGAGG













AAGTCTGCCCTACA






ESRRG
NM_001438.1
ESRRG
CCAGCACCATTG
170
AGTCTCTTGGGC
554
CCCCAGACCAAGTGTGA
938
67
CCAGCACCATTGTTGAAGATCCCCAGAC
1322





TTGAAGAT

ATCGAGTT

ATACATGCT


CAAGTGTGAATACATGCTCAACTCGATG













CCCAAGAGACT






EstR1
NM_000125.1
ESR1
CGTGGTGCCCCT
171
GGCTAGTGGGCG
555
CTGGAGATGCTGGACGC
939
68
CGTGGTGCCCCTCTATGACCTGCTGCTG
1323





CTATGAC

CATGTAG

CC


GAGATGCTGGACGCCCACCGCCTACATG













CGCCCACTAGCC






ETV5
NM_004454.1
ETV5
ACCATGTATCGA
172
TGACCAGGAACT
556
TTACCAGAGGCGAGGTT
940
67
ACCATGTATCGAGAGGGGCCCCCTTACC
1324





GAGGGGC

GCCACAG

CCCTTCA


AGAGGCGAGGTTCCCTTCAGCTGTGGCA













GTTCCTGGTCA






EZH2
NM_004456.3
EZH2
TGGAAACAGCGA
173
CACCGAACACTC
557
TCCTGACTTCTGTGAGC
941
78
TGGAAACAGCGAAGGATACAGCCTGTGC
1325





AGGATACA

CCTAGTCC

TCATTGCG


ACATCCTGACTTCTGTGAGCTCATTGCG













CGGGACTAGGGAGTGTTCGGTG






F3
NM_001993.2
F3
GTGAAGGATGTG
174
AACCGGTGCTCT
558
TGGCACGGGTCTTCTCC
942
73
GTGAAGGATGTGAAGCAGACGTACTTGG
1326





AAGCAGACGTA

CCACATTC

TACC


CACGGGTCTTCTCCTACCCGGCAGGGAA













TGTGGAGAGCACCGGTT






FAP
NM_004460.2
FAP
CTGACCAGAACC
175
GGAAGTGGGTCA
559
CGGCCTGTCCACGAACC
943
66
CTGACCAGAACCACGGCTTATCCGGCCT
1327





ACGGCT

TGTGGG

ACTTATA


GTCCACGAACCACTTATACACCCACATG













ACCCACTTCC






FASN
NM_004104.4
ESN
GCCTCTTCCTGT
176
GCTTTGCCCGGT
560
TCGCCCACCTACGTACT
944
66
GCCTCTTCCTGTTCGACGGCTCGCCCAC
1328





TCGACG

AGCTCT

GGCCTAC


CTACGTACTGGCCTACACCCAGAGCTAC













CGGGCAAAGC






FGFR2
NM_000141.2
FGFR2
GAGGGACTGTTG
177
GAGTGAGAATTC
561
TCCCAGAGACCAACGTT
945
80
GAGGGACTGTTGGCATGCAGTGCCCTCC
1329


isoform 1


GCATGCA

GATCCAAGTCTT

CAAGCAGTTG


CAGAGACCAACGTTCAAGCAGTTGGTAG








C




AAGACTTGGATCGAATTCTCACTC






FGFR4
NM_002011.3
FGFR4
CTGGCTTAAGGA
178
ACGAGACTCCAG
562
CCTTTCATGGGGAGAAC
946
81
CTGGCTTAAGGATGGACAGGCCTTTCAT
1330





TGGACAGG

TGCTGATG

CGCATT


GGGGAGAACCGCATTGGAGGCATTCGGC













TGCGCCATCAGCACTGGAGTCTCGT






FHIT
NM_002012.1
FHIT
CCAGTGGAGCGC
179
CTCTCTGGGTCG
563
TCGGCCACTTCATCAGG
947
67
CCAGTGGAGCGCTTCCATGACCTGCGTC
1331





TTCCAT

TCTGAAACAA

ACGCAG


CTGATGAAGTGGCCGATTTGTTTCAGAC













GACCCAGAGAG






FLOT2
NM 004475.1
FLOT2
GACATCTGCGCT
180
CAAACTGGTCCC
564
AATCTGCTCCACTGTCA
948
66
GACATCTGCGCTCCATCCTCGGGACCCT
1332





CTCCATCC

GGTCCT

GGGTCCC


GACAGTGGAGCAGATTTATCAGGACCGG













GACCAGTTTG






FN1
NM_002026.2
FN1
GGAAGTGACAGA
181
ACACGGTAGCCG
565
ACTCTCAGGCGGTGTCC
949
69
GGAAGTGACAGACGTGAAGGTCACCATC
1333





CGTGAAGGT

GTCACT

ACATGAT


ATGTGGACACCGCCTGAGAGTGCAGTGA













CCGGCTACCGTGT






FOS
NM_005252.2
FOS
CGAGCCCTTTGA
182
GGAGCGGGCTGT
566
TCCCAGCATCATCCAGG
950
67
CGAGCCCTTTGATGACTTCCTGTTCCCA
1334





TGACTTCCT

CTCAGA

CCCAG


GCATCATCCAGGCCCAGTGGCTCTGAGA













CAGCCCGCTCC






FOXC2
NM_005251.1
FOXC2
GAGAACAAGCAG
183
CTTGACGAAGCA
567
AGAACAGCATCCGCCAC
951
66
GAGAACAAGCAGGGCTGGCAGAACAGCA
1335





GGCTGG

CTCGTTGA

AACCTCT


TCCGCCACAACCTCTCGCTCAACGAGTG













CTTCGTCAAG






FOXO3A
NM_001455.1
FOXO3
TGAAGTCCAGGA
184
ACGGCTTGCTTA
568
CTCTACAGCAGCTCAGC
952
83
TGAAGTCCAGGACGATGATGCGCCTCTC
1336





CGATGATG

CTGAAGGT

CAGCCTG


TCGCCCATGCTCTACAGCAGCTCAGCCA













GCCTGTCACCTTCAGTAAGCAAGCCGT






FOXP1
NM_032682.3
FOXP1
CGACAGAGCTTG
185
GGTCGTCCATTG
569
CAGACCAAGCCTTTGCC
953
70
CGACAGAGCTTGTGCACCTAAGCTGCAG
1337





TGCACCT

GAATCCT

CAGAATT


ACCAAGCCTTTGCCCAGAATTTAAGGAT













TCCAATGGACGACC






FOXP3
NM_014009.2
FOXP3
CTGTTTGCTGTC
186
GTGGAGGAACTC
570
TGTTTCCATGGCTACCC
954
66
CTGTTTGCTGTCCGGAGGCACCTGTGGG
1338





CGGAGG

TGGGAATG

CACAGGT


GTAGCCATGGAAACAGCACATTCCCAGA













GTTCCTCCAC






FSCN1
NM_003088.1
FSCN1
CCAGCTGCTACT
187
GGTCACAAACTT
571
TGACCGGCGCATCACAC
955
74
CCAGCTGCTACTTTGACATCGAGTGGCG
1339





TTGACATCGA

GCCATTGGA

TGAGG


TGACCGGCGCATCACACTGAGGGCGTCC













AATGGCAAGTTTGTGACC






FUS
NM_004960.1
FUS
GGATAATTCAGA
188
TGAAGTAATCAG
572
TCAATTGTAACATTCTC
956
80
GGATAATTCAGACAACAACACCATCTTT
1340





CAACAACACCAT

CCACAGACTCAA

ACCCAGGCCTTG


GTGCAAGGCCTGGGTGAGAATGTTACAA






CT

T




TTGAGTCTGTGGCTGATTACTTCA






FYN
NM_002037.3
FYN
GAAGCGCAGATC
189
CTCCTCAGACAC
573
CTGAAGCACGACAAGCT
957
69
GAAGCGCAGATCATGAAGAAGCTGAAGC
1341





ATGAAGAA

CACTGCAT

GGTCCAG


ACGACAAGCTGGTCCAGCTCTATGCAGT













GGTGTCTGAGGAG






G-Catenin
NM_002230.1
JUP
TCAGCAGCAAGG
190
GGTGGTTTTCTT
574
CGCCCGCAGGCCTCATC
958
68
TCAGCAGCAAGGGCATCATGGAGGAGGA
1342





GCATCAT

GAGCGTGTACT

CT


TGAGGCCTGCGGGCGCCAGTACACGCTC













AAGAAAACCACC






GAB2
NM_012296.2
GAB2
TGTTTGGAGGGA
191
GAAGATAGCTGA
575
TGAGCCAGATTCCACAC
959
74
TGTTTGGAGGGAAGGGCTGGGGCTCTGA
1343





AGGGCT

GGGCTGTGAC

CTCACGT


GCCAGATTCCACACCTCACGTTCAGTCA













CAGCCCTCAGCTATCTTC






GADD45
NM_001924.2
GADD45A
GTGCTGGTGACG
192
CCCGGCAAAAAC
576
TTCATCTCAATGGAAGG
960
73
GTGCTGGTGACGAATCCACATTCATCTC
1344





AATCCA

CAAATAAGT

ATCCTGCC


AATGGAAGGATCCTGCCTTAAGTCAACT













TATTTGTTTTTGCCGGG






GADD45B
NM_015675.1
GADD45B
ACCCTCGACAAG
193
TGGGAGTTCATG
577
AACTTCAGCCCCAGCTC
961
70
ACCCTCGACAAGACCACACTTTGGGACT
1345





ACCACACT

GGTACAGA

CCAAGTC


TGGGAGCTGGGGCTGAAGTTGCTCTGTA













CCCATGAACTCCCA






GAPDH
NM_002046.2
GAPDH
ATTCCACCCATG
194
GATGGGATTTCC
578
CCGTTCTCAGCCTTGAC
962
74
ATTCCACCCATGGCAAATTCCATGGCAC
1346





GCAAATTC

ATTGATGACA

GGTGC


CGTCAAGGCTGAGAACGGGAAGCTTGTC













ATCAATGGAAATCCCATC






GATA3
NM 002051.1
GATA3
CAAAGGAGCTCA
195
GAGTCAGAATGG
579
TGTTCCAACCACTGAAT
963
75
CAAAGGAGCTCACTGTGGTGTCTGTGTT
1347





CTGTGGTGTCT

CTTATTCACAGA

CTGGACC


CCAACCACTGAATCTGGACCCCATCTGT








TG




GAATAAGCCATTCTGACTC






GBP1
NM_002053.1
GBP1
TTGGGAAATATT
196
AGAAGCTAGGGT
580
TTGGGACATTGTAGACT
964
73
TTGGGAAATATTTGGGCATTGGTCTGGC
1348





TGGGCATT

GGTTGTCC

TGGCCAGAC


CAAGTCTACAATGTCCCAATATCAAGGA













CAACCACCCTAGCTTCT






GBP2
NM_004120.2
GBP2
GCATGGGAACCA
197
TGAGGAGTTTGC
581
CCATGGACCAACTTCAC
965
83
GCATGGGAACCATCAACCAGCAGGCCAT
1349





TCAACCA

CTTGATTCG

TATGTGACAGAGC


GGACCAACTTCACTATGTGACAGAGCTG













ACAGATCGAATCAAGGCAAACTCCTCA






GCLM
NM_002061.1
GCLM
TGTAGAATCAAA
198
CACAGAATCCAG
582
TGCAGTTGACATGGCCT
966
85
TGTAGAATCAAACTCTTCATCATCAACT
1350





CTCTTCATCATC

CTGTGCAACT

GTTCAGTCC


AGAAGTGCAGTTGACATGGCCTGTTCAG






AACTAG






TCCTTGGAGTTGCACAGCTGGATTCTGT













G






GDF15
NM_004864.1
GDF15
CGCTCCAGACCT
199
ACAGTGGAAGGA
583
TGTTAGCCAAAGACTGC
967
72
CGCTCCAGACCTATGATGACTTGTTAGC
1351





ATGATGACT

CCAGGACT

CACTGCA


CAAAGACTGCCACTGCATATGAGCAGTC













CTGGTCCTTCCACTGT






GH1
NM_000515.3
GH1
GATCCCAAGGCC
200
AGCCATTGCAGC
584
TGTCCACAGGACCCTGA
968
66
GATCCCAAGGCCCAACTCCCCGAACCAC
1352





CAACTC

TAGGTGAG

GTGGTTC


TCAGGGTCCTGTGGACAGCTCACCTAGC













TGCAATGGCT






GJA1
NM_000165.2
GJA1
GTTCACTGGGGG
201
AAATACCAACAT
585
ATCCCCTCCCTCTCCAC
969
68
GTTCACTGGGGGTGTATGGGGTAGATGG
1353





TGTATGG

GCACCTCTCTT

CCATCTA


GTGGAGAGGGAGGGGATAAGAGAGGTGC













ATGTTGGTATTT






GJB2
NM_004004.3
GJB2
TGTCATGTACGA
202
AGTCCACAGTGT
586
AGGCGTTGCACTTCACC
970
74
TGTCATGTACGACGGCTTCTCCATGCAG
1354





CGGCTTCT

TGGGACAA

AGCC


CGGCTGGTGAAGTGCAACGCCTGGCCTT













GTCCCAACACTGTGGACT






GMNN
NM_015895.3
GMNN
GTTCGCTACGAG
203
TGCGTACCCACT
587
CCTCTTGCCCACTTACT
971
67
GTTCGCTACGAGGATTGAGCGTCTCCAC
1355





GATTGAGC

TCCTGC

GGGTGGA


CCAGTAAGTGGGCAAGAGGCGGCAGGAA













GTGGGTACGCA






GNAZ
NM_002073.2
GNAZ
TTCTGGACCTGG
204
AAAGAGCTGTGA
588
CCGGGTGACAGCACTAA
972
68
TTCTGGACCTGGGACCTTAGGAGCCGGG
1356





GACCTTAG

GAGTGGCTGG

CCAGACC


TGACAGCACTAACCAGACCTCCAGCCAC













TCACAGCTCTTT






GPR30
NM_001505.1
GPER
CGTGCCTCTACA
205
ATGTTCACCACC
589
CTCTTCCCCATCGGCTT
973
70
CGTGCCTCTACACCATCTTCCTCTTCCC
1357





CCATCTTC

AGGATCAG

TGTGG


CATCGGCTTTGTGGGCAACATCCTGATC













CTGGTGGTGAACAT






GPS1
NM_004127.4
GPS1
AGTACAAGCAGG
206
GCAGCTCAGGGA
590
CCTCCTGCTGGCTTCCT
974
66
AGTACAAGCAGGCTGCCAAGTGCCTCCT
1358





CTGCCAAG

AGTCACA

TTGATCA


GCTGGCTTCCTTTGATCACTGTGACTTC













CCTGAGCTGC






GPX1
NM_000581.2
GPX1
GCTTATGACCGA
207
AAAGTTCCAGGC
591
CTCATCACCTGGTCTCC
975
67
GCTTATGACCGACCCCAAGCTCATCACC
1359





CCCCAA

AACATCGT

GGTGTGT


TGGTCTCCGGTGTGTCGCAACGATGTTG













CCTGGAACTTT






GPX2
NM_002081.1
GPX2
CACACAGATCTC
208
GGTCCAGCAGTG
592
CATGCTGCATCCTAAGG
976
75
CACACAGATCTCCTACTCCATCCAGTCC
1360





CTACTCCATCCA

TCTCCTGAA

CTCCTCAGG


TGAGGAGCCTTAGGATGCAGCATGCCTT













CAGGAGACACTGCTGGACC






GPX4
NM 002085.1
GPX4
CTGAGTGTGGTT
209
TACTCCCTGGCT
593
CTGGCCTTCCCGTGTAA
977
66
CTGAGTGTGGTTTGCGGATCCTGGCCTT
1361





TGCGGAT

CCTGCTT

CCAGTTC


CCCGTGTAACCAGTTCGGGAAGCAGGAG













CCAGGGAGTA






GRB7
NM_005310.1
GRB7
CCATCTGCATCC
210
GGCCACCAGGGT
594
CTCCCCACCCTTGAGAA
978
67
CCATCTGCATCCATCTTGTTTGGGCTCC
1362





ATCTTGTT

ATTATCTG

GTGCCT


CCACCCTTGAGAAGTGCCTCAGATAATA













CCCTGGTGGCC






GREB1
NM_014668.2
GREB1
CAGATGACAATG
211
GAAGCCTTTCTT
595
CACAATTCCCAGAGAAA
979
71
CAGATGACAATGGCCACAATGCTCTTCT
1363


variant a


GCCACAAT

TCCACAGC

CCAAGAAGAGC


TGGTTTCTCTGGGAATTGTGTTGGCTGT













GGAAAGAAAGGCTTC






GREB1
NM_033090.1
GREB1
TGCTTAGGTGCG
212
CAAGAGCCTGAA
596
ACCACGCGAACGGTGCA
980
73
TGCTTAGGTGCGGTAAAACCAGCGCTTG
1364


variant b


GTAAAACCA

TGCGTCAGT

TCG


TCCGATGCACCGTTCGCGTGGTAAACTG













ACGCATTCAGGCTCTTG






GREB1
NM_148903.1
GREB1
CCCCAGGCACCA
213
ACTTCGGCTGTG
597
TCCCCGAGCCCAGCAGG
981
64
CCCCAGGCACCAGCTTTACTCCCCGAGC
1365


variant c


GCTTTA

TGTTATATGCA

ACA


CCAGCAGGACATCTGCATATAACACACA













GCCGAAGT






GRN
NM_002087.1
GRN
TGCCCCCAAGAC
214
GAGGTCCGTGGT
598
TGACCTGATCCAGAGTA
982
72
TGCCCCCAAGACACTGTGTGTGACCTGA
1366





ACTGTGT

AGCGTTCTC

AGTGCCTCTCCA


TCCAGAGTAAGTGCCTCTCCAAGGAGAA













CGCTACCACGGACCTC






GSTM1
NM_000561.1
GSTM1
AAGCTATGAGGA
215
GGCCCAGCTTGA
599
TCAGCCACTGGCTTCTG
983
86
AAGCTATGAGGAAAAGAAGTACACGATG
1367





AAAGAAGTACAC

ATTTTTCA

TCATAATCAGGAG


GGGGACGCTCCTGATTATGACAGAAGCC






GAT






AGTGGCTGAATGAAAAATTCAAGCTGGG













CC






GSTM2
NM_000848gene

CTGGGCTGTGAG
216
GCGAATCTGCTC
600
CCCGCCTACCCTCGTAA
984
71
CTGGGCTGTGAGGCTGAGAGTGAATCTG
1368


gene


GCTGAGA

CTTTTCTGA

AGCAGATTCA


CTTTACGAGGGTAGGCGGGGAATCAGAA













AAGGAGCAGATTCGC






GSTM2
NM_000848.2
GSTM2
CTGCAGGCACTC
217
CCAAGAAACCAT
601
CTGAAGCTCTACTCACA
985
68
CTGCAGGCACTCCCTGAAATGCTGAAGC
1369





CCTGAAAT

GGCTGCTT

GTTTCTGGG


TCTACTCACAGTTTCTGGGGAAGCAGCC













ATGGTTTCTTGG






GSTM3
NM_000849.3
GSTM3
CAATGCCATCTT
218
GTCCACTCGAAT
602
CTCGCAAGCACAACATG
986
76
CAATGCCATCTTGCGCTACATCGCTCGC
1370





GCGCTACAT

CTTTTCTTCTTC

TGTGGTGAGA


AAGCACAACATGTGTGGTGAGACTGAAG








A




AAGAAAAGATTCGAGTGGAC






GSTT1
NM_000853.1
GSTT1
CACCATCCCCAC
219
GGCCTCAGTGTG
603
CACAGCCGCCTGAAAGC
987
66
CACCATCCCCACCCTGTCTTCCACAGCC
1371





CCTGTCT

CATCATTCT

CACAAT


GCCTGAAAGCCACAATGAGAATGATGCA













CACTGAGGCC






GUS
NM_000181.1
GUSB
CCCACTCAGTAG
220
CACGCAGGTGGT
604
TCAAGTAAACGGGCTGT
988
73
CCCACTCAGTAGCCAAGTCACAATGTTT
1372





CCAAGTCA

ATCAGTCT

TTTCCAAACA


GGAAAACAGCCCGTTTACTTGAGCAAGA













CTGATACCACCTGCGT






H3F3A
NM_002107.3
H3F3A
CCAAACGTGTAA
221
TCTTAAGCACGT
605
AAAGACATCCAGCTAGC
989
70
CCAAACGTGTAACAATTATGCCAAAAGA
1373





CAATTATGCC

TCTCCACG

ACGCCG


CATCCAGCTAGCACGCCGCATACGTGGA













GAACGTGCTTAAGA






HDAC1
NM_004964.2
HDAC1
CAAGTACCACAG
222
GCTTGCTGTACT
606
TTCTTGCGCTCCATCCG
990
74
CAAGTACCACAGCGATGACTACATTAAA
1374





CGATGACTACAT

CCGACATGTT

TCCAGA


TTCTTGCGCTCCATCCGTCCAGATAACA






TAA






TGTCGGAGTACAGCAAGC






HDAC6
NM_006044.2
HDAC6
TCCTGTGCTCTG
223
CTCCACGGTCTC
607
CAAGAACCTCCCAGAAG
991
66
TCCTGTGCTCTGGAAGCCCTTGAGCCCT
1375





GAAGCC

AGTTGATCT

GGCTCAA


TCTGGGAGGTTCTTGTGAGATCAACTGA













GACCGTGGAG






HER2
NM_004448.1
ERBB2
CGGTGTGAGAAG
224
CCTCTCGCAAGT
608
CCAGACCATAGCACACT
992
70
CGGTGTGAGAAGTGCAGCAAGCCCTGTG
1376





TGCAGCAA

GCTCCA

CGGGCAC


CCCGAGTGTGCTATGGTCTGGGCATGGA













GCACTTGCGAGAGG






HES1
NM_005524.2
HES1
GAAAGATAGCTC
225
GGAGGTGCTTCA
609
CAGAATGTCCGCCTTCT
993
68
GAAAGATAGCTCGCGGCATTCCAAGCTG
1377





GCGGCA

CTGTCATTT

CCAGCTT


GAGAAGGCGGACATTCTGGAAATGACAG













TGAAGCACCTCC






HGFAC
NM_001528.2
HGFAC
CAGGACACAAGT
226
GCAGGGAGCTGG
610
CGCTCACGTTCTCATCC
994
72
CAGGACACAAGTGCCAGATTGCGGGCTG
1378





GCCAGATT

AGTAGC

AAGTGG


GGGCCACTTGGATGAGAACGTGAGCGGC













TACTCCAGCTCCCTGC






HLA-DPB1
NM_002121.4
HLA-DPB1
TCCATGATGGTT
227
TGAGCAGCACCA
611
CCCCGGACAGTGGCTCT
995
73
TCCATGATGGTTCTGCAGGTTTCTGCGG
1379





CTGCAGGTT

TCAGTAACG

GACG


CCCCCCGGACAGTGGCTCTGACGGCGTT













ACTGATGGTGCTGCTCA






HMGB1
NM_002128.3
HMGB1
TGGCCTGTCCAT
228
GCTTGTCATCTG
612
TTCCACATCTCTCCCAG
996
71
TGGCCTGTCCATTGGTGATGTTGCGAAG
1380





TGGTGAT

CAGCAGTGTT

TTTCTTCGCAA


AAACTGGGAGAGATGTGGAATAACACTG













CTGCAGATGACAAGC






HNF3A
NM_004496.1
FOXA1
TCCAGGATGTTA
229
GCGTGTCTGCGT
613
AGTCGCTGGTTTCATGC
997
73
TCCAGGATGTTAGGAACTGTGAAGATGG
1381





GGAACTGTGAAG

AGTAGCTGTT

CCTTCCA


AAGGGCATGAAACCAGCGACTGGAACAG













CTACTACGCAGACACGC






HNRPAB
NM_004499.3
HNRNPAB
AGCAGGAGCGAC
230
GTTTGCCAAGTT
614
CTCCATATCCAAACAAA
998
84
AGCAGGAGCGACCAACTGATCGCACACA
1382





CAACTGA

AAATTTGGTACA

GCATGTGTGCG


TGCTTTGTTTGGATATGGAGTGAACACA








TAAT




ATTATGTACCAAATTTAACTTGGCAAAC






HNRPC
NM_004500.3
HNRNPC
GCAGCAGTCGGC
231
GGGAGGGAGAAG
615
AGTCTCCTACTCCCGGG
999
68
GCAGCAGTCGGCTTCTCTACGCAGAACC
1383





TTCTCT

AGATTCGAT

TTCTGCG


CGGGAGTAGGAGACTCAGAATCGAATCT













CTTCTCCCTCCC






HoxA1
NM_005522.3
HOXA1
AGTGACAGATGG
232
CCGAGTCGCCAC
616
TGAACTCCTTCCTGGAA
1000
69
AGTGACAGATGGACAATGCAAGAATGAA
1384





ACAATGCAAGA

TGCTAAGT

TACCCCA


CTCCTTCCTGGAATACCCCATACTTAGC













AGTGGCGACTCGG






HoxA5
NM_019102.2
HOXA5
TCCCTTGTGTTC
233
GGCAATAAACAG
617
AGCCCTGTTCTCGTTGC
1001
78
TCCCTTGTGTTCCTTCTGTGAAGAAGCC
1385





CTTCTGTGAA

GCTCATGATTAA

CTAATTCATC


CTGTTCTCGTTGCCCTAATTCATCTTTT













AATCATGAGCCTGTTTATTGCC






HOXB13
NM_006361.2
HOXB13
CGTGCCTTATGG
234
CACAGGGTTTCA
618
ACACTCGGCAGGAGTAG
1002
71
CGTGCCTTATGGTTACTTTGGAGGCGGG
1386





TTACTTTGG

GCGAGC

TACCCGC


TACTACTCCTGCCGAGTGTCCCGGAGCT













CGCTGAAACCCTGTG






HOXB7
NM_004502.2
HOXB7
CAGCCTCAAGTT
235
GTTGGAAGCAAA
619
ACCGGAGCCTTCCCAGA
1003
68
CAGCCTCAAGTTCGGTTTTCGCTACCGG
1387





CGGTTTTC

CGCACA

ACAAACT


AGCCTTCCCAGAACAAACTTCTTGTGCG













TTTGCTTCCAAC






HSD17B1
NM_000413.1
HSD17B1
CTGGACCGCACG
236
CGCCTCGCGAAA
620
ACCGCTTCTACCAATAC
1004
78
CTGGACCGCACGGACATCCACACCTTCC
1388





GACATC

GACTTG

CTCGCCCA


ACCGCTTCTACCAATACCTCGCCCACAG













CAAGCAAGTCTTTCGCGAGGCG






HSD17B2
NM_002153.1
HSD17B2
GCTTTCCAAGTG
237
TGCCTGCGATAT
621
AGTTGCTTCCATCCAAC
1005
68
GCTTTCCAAGTGGGGAATTAAAGTTGCT
1389





GGGAATTA

TTGTTAGG

CTGGAGG


TCCATCCAACCTGGAGGCTTCCTAACAA













ATATCGCAGGCA






HSH1N1
NM 017493.3
OTUD4
CAGTCTCGCCAT
238
ATAAACGCTTCA
622
CAGAATGGCCTGTATTC
1006
77
CAGTCTCGCCATGTTGAAGTCAGAATGG
1390





GTTGAAGT

AATTTCTCTCTG

ACTATCTTCGAGA


CCTGTATTCACTATCTTCGAGAGAACAG













AGAGAAATTTGAAGCGTTTAT






HSPA1A
NM_005345.4
HSPA1A
CTGCTGCGACAG
239
CAGGTTCGCTCT
623
AGAGTGACTCCCGTTGT
1007
70
CTGCTGCGACAGTCCACTACCTTTTTCG
1391





TCCACTA

GGGAAG

CCCAAGG


AGAGTGACTCCCGTTGTCCCAAGGCTTC













CCAGAGCGAACCTG






HSPA1B
NM_005346.3
HSPA1B
GGTCCGCTTCGT
240
GCACAGGTTCGC
624
TGACTCCCGCGGTCCCA
1008
63
GGTCCGCTTCGTCTTTCGAGAGTGACTC
1392





CTTTCGA

TCTGGAA

AGG


CCGCGGTCCCAAGGCTTTCCAGAGCGAA













CCTGTGC






HSPA4
NM_002154.3
HSPA4
TTCAGTGTGTCC
241
ATCTGTTTCATT
625
CATTTTCCTCAGACTTG
1009
72
TTCAGTGTGTCCAGTGCATCTTTAGTGG
1393





AGTGCATC

GGCTCCT

TGAACCTCCACT


AGGTTCACAAGTCTGAGGAAAATGAGGA













GCCAATGGAAACAGAT






HSPA5
NM_005347.2
HSPA5
GGCTAGTAGAAC
242
GGTCTGCCCAAA
626
TAATTAGACCTAGGCCT
1010
84
GGCTAGTAGAACTGGATCCCAACACCAA
1394





TGGATCCCAACA

TGCTTTTC

CAGCTGCACTGCC


ACTCTTAATTAGACCTAGGCCTCAGCTG













CACTGCCCGAAAAGCATTTGGGCAGACC






HSPA8
NM_006597.3
HSPA8
CCTCCCTCTGGT
243
GCTACATCTACA
627
CTCAGGGCCCACCATTG
1011
73
CCTCCCTCTGGTGGTGCTTCCTCAGGGC
1395





GGTGCTT

CTTGGTTGGCTT

AAGAGGTTG


CCACCATTGAAGAGGTTGATTAAGCCAA








AA




CCAAGTGTAGATGTAGC






HSPB1
NM_001540.2
HSPB1
CCGACTGGAGGA
244
ATGCTGGCTGAC
628
CGCACTTTTCTGAGCAG
1012
84
CCGACTGGAGGAGCATAAAAGCGCAGCC
1396





GCATAAA

TCTGCTC

ACGTCCA


GAGCCCAGCGCCCCGCACTTTTCTGAGC













AGACGTCCAGAGCAGAGTCAGCCAGCAT






IBSP
NM_004967.2
IBSP
GAATACCACACT
245
GGATTGCAGCTA
629
CCAGGCGTGGCGTCCTC
1013
83
GAATACCACACTTTCTGCTACAACACTG
1397





TTCTGCTACAAC

ACCCTGTATACC

TCCATA


GGCTATGGAGAGGACGCCACGCCTGGCA






ACT






CAGGGTATACAGGGTTAGCTGCAATCC






ICAM1
NM_000201.1
ICAM1
GCAGACAGTGAC
246
CTTCTGAGACCT
630
CCGGCGCCCAACGTGAT
1014
68
GCAGACAGTGACCATCTACAGCTTTCCG
1398





CATCTACAGCTT

CTGGCTTCGT

TCT


GCGCCCAACGTGATTCTGACGAAGCCAG













AGGTCTCAGAAG






ID1
NM_002165.1
ID1
AGAACCGCAAGG
247
TCCAACTGAAGG
631
TGGAGATTCTCCAGCAC
1015
70
AGAACCGCAAGGTGAGCAAGGTGGAGAT
1399





TGAGCAA

TCCCTGATG

GTCATCGAC


TCTCCAGCACGTCATCGACTACATCAGG













GACCTTCAGTTGGA






ID4
NM_001546.2
ID4
TGGCCTGGCTCT
248
TGCAATCATGCA
632
CTTTTGTTTTGCCCAGT
1016
83
TGGCCTGGCTCTTAATTTGCTTTTGTTT
1400





TAATTTG

AGACCAC

ATAGACTCGGAAG


TGCCCAGTATAGACTCGGAAGTAACAGT













TATAGCTAGTGGTCTTGCATGATTGCA






IDH2
NM_002168.2
IDH2
GGTGGAGAGTGG
249
GCTCGTTCAGCT
633
CCGTGAATGCAGCCCGC
1017
74
GGTGGAGAGTGGAGCCATGACCAAGGAC
1401





AGCCATGA

TCACATTGC

CAG


CTGGCGGGCTGCATTCACGGCCTCAGCA













ATGTGAAGCTGAACGAGC






IGF1R
NM_000875.2
IGF1R
GCATGGTAGCCG
250
TTTCCGGTAATA
634
CGCGTCATACCAAAATC
1018
83
GCATGGTAGCCGAAGATTTCACAGTCAA
1402





AAGATTTCA

GTCTGTCTCATA

TCCGATTTTGA


AATCGGAGATTTTGGTATGACGCGAGAT








GATATC




ATCTATGAGACAGACTATTACCGGAAA






IGF2
NM_000612.2
IGF2
CCGTGCTTCCGG
251
TGGACTGCTTCC
635
TACCCCGTGGGCAAGTT
1019
72
CCGTGCTTCCGGACAACTTCCCCAGATA
1403





ACAACTT

AGGTGTCA

CTTCCAA


CCCCGTGGGCAAGTTCTTCCAATATGAC













ACCTGGAAGCAGTCCA






IGFBP6
NM_002178.1
IGFBP6
TGAACCGCAGAG
252
GTCTTGGACACC
636
ATCCAGGCACCTCTACC
1020
77
TGAACCGCAGAGACCAACAGAGGAATCC
1404





ACCAACAG

CGCAGAAT

ACGCCCTC


AGGCACCTCTACCACGCCCTCCCAGCCC













AATTCTGCGGGTGTCCAAGAC






IGFBP7
NM_001553.1
IGFBP7
GGGTCACTATGG
253
GGGTCTGAATGG
637
CCCGGTCACCAGGCAGG
1021
68
GGGTCACTATGGAGTTCAAAGGACAGAA
1405





AGTTCAAAGGA

CCAGGTT

AGTTCT


CTCCTGCCTGGTGACCGGGACAACCTGG













CCATTCAGACCC






IKBKE
NM_014002.2
IKBKE
GCCTCCCATAGC
254
CAGAGCTCTTGC
638
CAGCCCTACACGAAAGG
1022
66
GCCTCCCATAGCTCCTTACCCCAGCCCT
1406





TCCTTACC

ATGTGGAG

ACCTGCT


ACACGAAAGGACCTGCTTCTCCACATGC













AAGAGCTCTG






IL-8
NM_000584.2
IL8
AAGGAACCATCT
255
ATCAGGAAGGCT
639
TGACTTCCAAGCTGGCC
1023
70
AAGGAACCATCTCACTGTGTGTAAACAT
1407





CACTGTGTGTAA

GCCAAGAG

GTGGC


GACTTCCAAGCTGGCCGTGGCTCTCTTG






AC






GCAGCCTTCCTGAT






IL10
NM_000572.1
IL10
GGCGCTGTCATC
256
TGGAGCTTATTA
640
CTGCTCCACGGCCTTGC
1024
79
GGCGCTGTCATCGATTTCTTCCCTGTGA
1408





GATTTCTT

AAGGCATTCTTC

TCTTG


AAACAAGAGCAAGGCCGTGGAGCAGGTG








A




AAGAATGCCTTTAATAAGCTCCA






IL11
NM_000641.2
IL11
TGGAAGGTTCCA
257
TCTTGACCTTGC
641
CCTGTGATCAACAGTAC
1025
66
TGGAAGGTTCCACAAGTCACCCTGTGAT
1409





CAAGTCAC

AGCTTTGT

CCGTATGGG


CAACAGTACCCGTATGGGACAAAGCTGC













AAGGTCAAGA






IL17RB
NM_018725.2
IL17RB
ACCCTCTGGTTC
258
GGCCCCAATGAA
642
TCGGCTTCCCTGTAGAG
1026
76
ACCCTCTGGTGGTAAATGGACATTTTCC
1410





CAGATCCT

ATAGACTG

CTGAACA


TACATCGGCTTCCCTGTAGAGCTGAACA













CAGTCTATTTCATTGGGGCC






IL6ST
NM_002184.2
IL6ST
GGCCTAATGTTC
259
AAAATTGTGCCT
643
CATATTGCCCAGTGGTC
1027
74
GGCCTAATGTTCCAGATCCTTCAAAGAG
1411





CAGATCCT

TGGAGGAG

ACCTCACA


TCATATTGCCCAGTGGTCACCTCACACT













CCTCCAAGGCACAATTTT






ING1
NM_005537.2
ING1
ACTTTCCTGCGA
260
AACTCCGAGTGG
644
ATTCAAAACAGAGCCCC
1028
66
ACTTTCCTGCGAGGTCAGTCAAGGCTTT
1412





GGTCAGTC

TGATCCA

CAAAGCC


GGGGGCTCTGTTTTGAATGTGGATCACC













ACTCGGAGTT






INHBA
NM_002192.1
INHBA
GTGCCCGAGCCA
261
CGGTAGTGGTTG
645
ACGTCCGGGTCCTCACT
1029
72
GTGCCCGAGCCATATAGCAGGCACGTCC
1413





TATAGCA

ATGACTGTTGA

GTCCTTCC


GGGTCCTCACTGTCCTTCCACTCAACAG













TCATCAACCACTACCG






IRF1
NM_002198.1
IRF1
AGTCCAGCCGAG
262
AGAAGGTATCAG
646
CCCACATGACTTCCTCT
1030
69
AGTCCAGCCGAGATGCTAAGAGCAAGGC
1414





ATGCTAAG

GGCTGGAA

TGGCCTT


CAAGAGGAAGTCATGTGGGGATTCCAGC













CCTGATACCTTCT






IRS1
NM_005544.1
IRS1
CCACAGCTCACC
263
CCTCAGTGCCAG
647
TCCATCCCAGCTCCAGC
1031
74
CCACAGCTCACCTTCTGTCAGGTGTCCA
1415





TTCTGTCA

TCTCTTCC

CAG


TCCCAGCTCCAGCCAGCTCCCAGAGAGG













AAGAGACTGGCACTGAGG






ITGA3
NM_002204.1
ITGA3
CCATGATCCTCA
264
GAAGCTTTGTAG
648
CACTCCAGACCTCGCTT
1032
77
CCATGATCCTCACTCTGCTGGTGGACTA
1416





CTCTGCTG

CCGGTGAT

AGCATGG


TACACTCCAGACCTCGCTTAGCATGGTA













AATCACCGGCTACAAAGCTTC






ITGA4
NM_000885.2
ITGA4
CAACGCTTCAGT
265
GTCTGGCCGGGA
649
CGATCCTGCATCTGTAA
1033
66
CAACGCTTCAGTGATCAATCCCGGGGCG
1417





GATCAATCC

ATTCTTT

ATCGCCC


ATTTACAGATGCAGGATCGGAAAGAATC













CCGGCCAGAC






ITGA5
NM_002205.1
ITGA5
AGGCCAGCCCTA
266
GTCTTCTCCACA
650
TCTGAGCCTTGTCCTCT
1034
75
AGGCCAGCCCTACATTATCAGAGCAAGA
1418





CATTATCA

GTCCAGCA

ATCCGGC


GCCGGATAGAGGACAAGGCTCAGATCTT













GCTGGACTGTGGAGAAGAC






ITGA6
NM 000210.1
ITGA6
CAGTGACAAACA
267
GTTTAGCCTCAT
651
TCGCCATCTTTTGTGGG
1035
69
CAGTGACAAACAGCCCTTCCAACCCAAG
1419





GCCCTTCC

GGGCGTC

ATTCCTT


GAATCCCACAAAAGATGGCGATGACGCC













CATGAGGCTAAAC






ITGAV
NM_002210.2
ITGAV
ACTCGGACTGCA
268
TGCCATCACCAT
652
CCGACAGCCACAGAATA
1036
79
ACTCGGACTGCACAAGCATATTTTTGAT
1420





CAAGCTATT

TGAAATCT

ACCCAAA


GACAGCTATTTGGGTTATTCTGTGGCTG













TCGGAGATTTCAATGGTGATGGCA






ITGB1
NM_002211.2
ITGB1
TCAGAATTGGAT
269
CCTGAGCTTAGC
653
TGCTAATGTAAGGCATC
1037
74
TCAGAATTGGATTTGGCTCATTTGTGGA
1421





TTGGCTCA

TGGTGTTG

ACAGTCTTTTCCA


AAAGACTGTGATGCCTTACATTAGCACA













ACACCAGCTAAGCTCAGG






ITGB3
NM_000212.2
ITGB3
ACCGGGGAGCCC
270
CCTTAAGCTCTT
654
AAATACCTGCAACCGTT
1038
78
ACCGGGGAGCCCTACATGACGAAAATAC
1422





TACATGA

TCACTGACTCAA

ACTGCCGTGAC


CTGCAACCGTTACTGCCGTGACGAGATT








TCT




GAGTCAGTGAAAGAGCTTAAGG






ITGB4
NM_000213.2
ITGB4
CAAGGTGCCCTC
271
GCGCACACCTTC
655
CACCAACCTGTACCCGT
1039
66
CAAGGTGCCCTCAGTGGAGCTCACCAAC
1423





AGTGGA

ATCTCAT

ATTGCGA


CTGTACCCGTATTGCGACTATGAGATGA













AGGTGTGCGC






ITGB5
NM_002213.3
ITGB5
TCGTGAAAGATG
272
GGTGAACATCAT
656
TGCTATGTTTCTACAAA
1040
71
TCGTGAAAGATGACCAGGAGGCTGTGCT
1424





ACCAGGAG

GACGCAGT

ACCGCCAAGG


ATGTTTCTACAAAACCGCCAAGGACTGC













GTCATGATGTTCACC






JAG1
NM_000214.1
JAG1
TGGCTTACACTG
273
GCATAGCTGTGA
657
ACTCGATTTCCCAGCCA
1041
69
TGGCTTACACTGGCAATGGTAGTTTCTG
1425





GCAATGG

GATGCGG

ACCACAG


TGGTTGGCTGGGAAATCGAGTGCCGCAT













CTCACAGCTATGC






JUNB
NM_002229.2
JUNB
CTGTCAGCTGCT
274
AGGGGGTGTCCG
658
CAAGGGACACGCCTTCT
1042
70
CTGTCAGCTGCTGCTTGGGGTCAAGGGA
1426





GCTTGG

TAAAGG

GAACGT


CACGCCTTCTGAACGTCCCCTGCCCCTT













TACGGACACCCCCT






Ki-67
NM_002417.1
MKI67
CGGACTTTGGGT
275
TTACAACTCTTC
659
CCACTTGTCGAACCACC
1043
80
CGGACTTTGGGTGCGACTTGACGAGCGG
1427





GCGACTT

CACTGGGACGAT

GCTCGT


TGGTTCGACAAGTGGCCTTGCGGGCCGG













ATCGTCCCAGTGGAAGAGTTGTAA






KIAA0555
NM_014790.3
JAKMIP2
AAGCCCGAGGCA
276
TGTCTGTGAGCT
660
CCCTTCAAGCTGCCAAT
1044
67
AAGCCCGAGGCACTCATTGTTGCCCTTC
1428





CTCATT

TGGTCCTG

GAAGACC


AAGCTGCCAATGAAGACCTCAGGACCAA













GCTCACAGACA






KIAA1199
NM_018689.1
KIAA1199
GCTGGGAGGCAG
277
GAAGCAGGTCAG
661
CTTCAAGGCCATGCTGA
1045
66
GCTGGGAGGCAGGACTTCCTCTTCAAGG
1429





GACTTC

AGTGAGCC

CCATCAG


CCATGCTGACCATCAGCTGGCTCACTCT













GACCTGCTTC






KIF14
NM_014875.1
KIF14
GAGCTCCATGGC
278
TCACACCCACTG
662
TGCATTCCTCTGAGCTC
1046
69
GAGCTCCATGGCTCATCCCCAGCAGTGA
1430





TCATCC

AATCCTACTG

ACTGCTG


GCTCAGAGGAATGCACACCCAGTAGGAT













TCAGTGGGTGTGA






KIF20A
NM_005733.1
KIF20A
TCTCTTGCAGGA
279
CCGTAGGGCCAA
663
AGTCAGTGGCCCATCAG
1047
67
TCTCTTGCAGGAAGCCAGACAACAGTCA
1431





AGCCAGA

TTCAGAC

CAATCAG


GTGGCCCATCAGCAATCAGGGTCTGAAT













TGGCCCTACGG






KIF2C
NM_006845.2
KIF2C
AATTCCTGCTCC
280
CGTGATGCGAAG
664
AAGCCGCTCCACTCGCA
1048
73
AATTCCTGCTCCAAAAGAAAGTCTTCGA
1432





AAAAGAAAGTCT

CTCTGAGA

TGTCC


AGCCGCTCCACTCGCATGTCCACTGTCT






T






CAGAGCTTCGCATCACG






KLK11
NM_006853.1
KLK11
CACCCCGGCTTC
281
CATCTTCACCAG
665
CCTCCCCAACAAAGACC
1049
66
CACCCCGGCTTCAACAACAGCCTCCCCA
1433





AACAAC

CATGATGTCA

ACCGCA


ACAAAGACCACCGCAATGACATCATGCT













GGTGAAGATG






KLK6
NM 002774.2
KLK6
GACGTGAGGGTC
282
TCCTCACTCATC
666
TTACCCCAGCTCCATCC
1050
78
GACGTGAGGGTCCTGATTCTCCCTGGTT
1434





CTGATTCT

ACGTCCTC

TTGCATC


TTACCCCAGCTCCATCCTTGCATCACTG













GGGAGGACGTGATGAGTGAGGA






KLRC1
NM_002259.3
KLRC1
CATCCTCATGGA
283
GCCAAACCATTC
667
TTCGTAACAGCAGTCAT
1051
67
CATCCTCATGGATTGGTGTGTTTCGTAA
1435





TTGGTGTG

ATTGTCAC

CATCCATGG


CAGCAGTCATCATCCATGGGTGACAATG













AATGGTTTGGC






KNSL2
BC000712.1

CCACCTCGCCAT
284
GCAATCTCTTCA
668
TTTGACCGGGTATTCCC
1052
77
CCACCTCGCCATGATTTTTCCTTTGACC
1436





GATTTTTC

AACACTTCATCC

ACCAGGAA


GGGTATTCCCACCAGGAAGTGGACAGGA








T




TGAAGTGTTTGAAGAGATTGC






KNTC2
NM_006101.1
NDC80
ATGTGCCAGTGA
285
TGAGCCCCTGGT
669
CCTTGGAGAAACACAAG
1053
71
ATGTGCCAGTGAGCTTGAGTCCTTGGAG
1437





GCTTGAGT

TAACAGTA

CACCTGC


AAACACAAGCACCTGCTAGAAAGTACTG













TTAACCAGGGGCTCA






KPNA2
NM_002266.1
KPNA2
TGATGGTCCAAA
286
AAGCTTCACAAG
670
ACTCCTGTTTTCACCAC
1054
67
TGATGGTCCAAATGAACGAATTGGCATG
1438





TGAACGAA

TTGGGGC

CATGCCA


GTGGTGAAAACAGGAGTTGTGCCCCAAC













TTGTGAAGCTT






L1CAM
NM_000425.2
L1CAM
CTTGCTGGCCAA
287
TGATTGTCCGCA
671
ATCTACGTTGTCCAGCT
1055
66
CTTGCTGGCCAATGCCTACATCTACGTT
1439





TGCCTA

GTCAGG

GCCAGCC


GTCCAGCTGCCAGCCAAGATCCTGACTG













CGGACAATCA






LAMA3
NM_000227.2
LAMA3
CAGATGAGGCAC
288
TTGAAATGGCAG
672
CTGATTCCTCAGGTCCT
1056
73
CAGATGAGGCACATGGAGACCCAGGCCA
1440





ATGGAGAC

AACGGTAG

TGGCCTG


AGGACCTGAGGAATCAGTTGCTCAACTA













CCGTTCTGCCATTTCAA






LAMA5
NM_005560.3
LAMA5
CTCCTGGCCAAC
289
ACACAAGGCCCA
673
CTGTTCCTGGAGCATGG
1057
67
CTCCTGGCCAACAGCACTGCACTAGAAG
1441





AGCACT

GCCTCT

CCTCTTC


AGGCCATGCTCCAGGAACAGCAGAGGCT













GGGCCTTGTGT






LAMB1
NM_002291.1
LAMB1
CAAGGAGACTGG
290
CGGCAGAACTGA
674
CAAGTGCCTGTACCACA
1058
66
CAAGGAGACTGGGAGGTGTCTCAAGTGC
1442





GAGGTGTC

CAGTGTTC

CGGAAGG


CTGTACCACACGGAAGGGGAACACTGTC













AGTTCTGCCG






LAMB3
NM_000228.1
LAMB3
ACTGACCAAGCC
291
GTCACACTTGCA
675
CCACTCGCCATACTGGG
1059
67
ACTGACCAAGCCTGAGACCTACTGCACC
1443





TGAGACCT

GCATTTCA

TGCAGT


CAGTATGGCGAGTGGCAGATGAAATGCT













GCAAGTGTGAC






LAMC2
NM_005562.1
LAMC2
ACTCAAGCGGAA
292
ACTCCCTGAAGC
676
AGGTCTTATCAGCACAG
1060
80
ACTCAAGCGGAAATTGAAGCAGATAGGT
1444





ATTGAAGCA

CGAGACACT

TCTCCGCCTCC


CTTATCAGCACAGTCTCCGCCTCCTGGA













TTCAGTGTCTCGGCTTCAGGGAGT






LAPTM4B
NM_018407.4
LAPTM4B
AGCGATGAAGAT
293
GACATGGCAGCA
677
CTGGACGCGGTTCTACT
1061
67
AGCGATGAAGATGGTCGCGCCCTGGACG
1445





GGTCGC

CAAGCA

CCAACAG


CGGTTCTACTCCAACAGCTGCTGCTTGT













GCTGCCATGTC






LGALS3
NM_002306.1
LGALS3
AGCGGAAAATGG
294
CTTGAGGGTTTG
678
ACCCAGATAACGCATCA
1062
69
AGCGGAAAATGGCAGACAATTTTTCGCT
1446





CAGACAAT

GGTTTCCA

TGGAGCGA


CCATGATGCGTTATCTGGGTCTGGAAAC













CCAAACCCTCAAG






LIMK1
NM_016735.1

GCTTCAGGTGTT
295
AAGAGCTGCCCA
679
TGCCTCCCTGTCGCACC
1063
67
GCTTCAGGTGTTGTGACTGCAGTGCCTC
1447





GTGACTGC

TCCTTCTC

AGTACTA


CCTGTCGCACCAGTACTATGAGAAGGAT













GGGCAGCTCTT






LIMS1
NM_004987.3
LIMS1
TGAACAGTAATG
296
TTCTGGGAACTG
680
ACTGAGCGCACACGAAA
1064
71
TGAACAGTAATGGGGAGCTGTACCATGA
1448





GGGAGCTG

CTGGAAG

CACTGCT


GCAGTGTTTCGTGTGCGCTCAGTGCTTC













CAGCAGTTCCCAGAA






LMNB1
NM 005573.1
LMNB1
TGCAAACGCTGG
297
CCCCACGAGTTC
681
CAGCCCCCCAACTGACC
1065
66
TGCAAACGCTGGTGTCACAGCCAGCCCC
1449





TGTCACA

TGGTTCTTC

TCATC


CCAACTGACCTCATCTGGAAGAACCAGA













ACTCGTGGGG






LOX
NM_002317.3
LOX
CCAATGGGAGAA
298
CGCTGAGGCTGG
682
CAGGCTCAGCAAGCTGA
1066
66
CCAATGGGAGAACAACGGGCAGGTGTTC
1450





CAACGG

TACTGTG

ACACCTG


AGCTTGCTGAGCCTGGGCTCACAGTACC













AGCCTCAGCG






LRIG1
NM_015541.1

CTGCAACACCGA
299
GTCTCTGGACAC
683
TTACTCCAGGGGACAAG
1067
67
CTGCAACACCGAAGTGGACTGTTACTCC
1451





AGTGGAC

AGGCTGG

CCTTCCA


AGGGGACAAGCCTTCCACCCCCAGCCTG













TGTCCAGAGAC






LSM1
NM_014462.1
LSM1
AGACCAAGCTGG
300
GAGGAATGGAAA
684
CCTTCAGGGCCTGCACT
1068
66
AGACCAAGCTGGAAGCAGAGAAGTTGAA
1452





AAGCAGAG

GACCTCGG

TTCAACT


AGTGCAGGCCCTGAAGGACCGAGGTCTT













TCCATTCCTC






LTBP1
NM_206943.1
LTBP1
ACATCCAGGGCT
301
GCAGACACAATG
685
CTGTGTTTAGGCACTCC
1069
67
ACATCCAGGGCTCTGTGGTCCGCAAGGG
1453





CTGTGG

GAAAGAACC

CCTTGCG


GAGTGCCTAAACACAGAGGGTTCTTTCC













ATTGTGTCTGC






LYRIC
NM_178812.2
MTDH
GACCTGGCCTTG
302
CGGACAGTTTCT
686
TTCTTCTTCTGTTCCTC
1070
67
GACCTGGCCTTGCTGAAGAATCTCCGGA
1454





CTGAAG

TCCGGTT

GCTCCGG


GCGAGGAACAGAAGAAGAAGAACCGGAA













GAAACTGTCCG






MAD1L1
NM_003550.1
MAD1L1
AGAAGCTGTCCC
303
AGCCGTACCAGC
687
CATGTTCTTCACAATCG
1071
67
AGAAGCTGTCCCTGCAAGAGCAGGATGC
1455





TGCAAGAG

TCAGACTT

CTGCATCC


AGCGATTGTGAAGAACATGAAGTCTGAG













CTGGTACGGCT






MCM2
NM_004526.1
MCM2
GACTTTTGCCCG
304
GCCACTAACTGC
688
ACAGCTCATTGTTGTCA
1072
75
GACTTTTGCCCGCTACCTTTCATTCCGG
1456





CTACCTTTC

TTCAGTATGAAG

CGCCGGA


CGTGACAACAATGAGCTGTTGCTCTTCA








AG




TACTGAAGCAGTTAGTGGC






MELK
NM_01479.1
MELK
AGGATCGCCTGT
305
TGCACATAAGCA
689
CCCGGGTTGTCTTCCGT
1073
70
AGGATCGCCTGTCAGAAGAGGAGACCCG
1457





CAGAAGAG

ACAGCAGA

CAGATAG


GGTTGTCTTCCGTCAGATAGTATCTGCT













GTTGCTTATGTGCA






MGMT
NM_002412.1
MGMT
GTGAAATGAAAC
306
GACCCTGCTCAC
690
CAGCCCTTTGGGGAAGC
1074
69
GTGAAATGAAACGCACCACACTGGACAG
1458





GCACCACA

AACCAGAC

TGG


CCCTTTGGGGAAGCTGGAGCTGTCTGGT













TGTGAGCAGGGTC






mGST1
NM_020300.2
MGST1
ACGGATCTACCA
307
TCCATATCCAAC
691
TTTGACACCCCTTCCCC
1075
79
ACGGATCTACCACACCATTGCATATTTG
1459





CACCATTGC

AAAAAAACTCAA

AGCCA


ACACCCCTTCCCCAGCCAAATAGAGCTT








AG




TGAGTTTTTTTGTTGGATATGGA






MMP1
NM_002421.2
MMP1
GGGAGATCATCG
308
GGGCCTGGTTGA
692
AGCAAGATTTCCTCCAG
1076
72
GGGAGATCATCGGGACAACTCTCCTTTT
1460





GGACAACTC

AAAGCAT

GTCCATCAAAAGG


GATGGACCTGGAGGAAATCTTGCTCATG













CTTTTCAACCAGGCCC






MMP12
NM_002426.1
MMP12
CCAACGCTTGCC
309
ACGGTAGTGACA
693
AACCAGCTCTCTGTGAC
1077
78
CCAACGCTTGCCAAATCCTGACAATTCA
1461





AAATCCT

GCATCAAAACTC

CCCAATT


GAACCAGCTCTCTGTGACCCCAATTTGA













GTTTTGATGCTGTCACTACCGT






MMP2
NM_004530.1
MMP2
CCATGATGGAGA
310
GGAGTCCGTCCT
694
CTGGGAGCATGGCGATG
1078
86
CCATGATGGAGAGGCAGACATCATGATC
1462





GGCAGACA

TACCGTCAA

GATACCC


AACTTTGGCCGCTGGGAGCATGGCGATG













GATACCCCTTTGACGGTAAGGACGGACT













CC






MMP7
NM_002423.2
MMP7
GGATGGTAGCAG
311
GGAATGTCCCAT
695
CCTGTATGCTGCAACTC
1079
79
GGATGGTAGCAGTCTAGGGATTAACTTC
1463





TCTAGGGATTAA

ACCCAAAGAA

ATGAACTTGGC


CTGTATGCTGCAACTCATGAACTTGGCC






CT






ATTCTTTGGGTATGGGACATTCC






MMP8
NM_002424.1
MMP8
TCACCTCTCATC
312
TGTCACCGTGAT
696
AAGCAATGTTGATATCT
1080
79
TCACCTCTCATCTTCACCAGGATCTCAC
1464





TTCACCAGGAT

CTCTTTGGTAA

GCCTCTCCCTGTG


AGGGAGAGGCAGATATCAACATTGCTTT













TTACCAAAGAGATCACGGTGACA






MMTV-like
AF346816.1

CCATACGTGCTG
313
CCTAAAGGTTTG
697
TCATCAAACCATGGTTC
1081
72
CCATACGTGCTGCTACCTGTAGATATTG
1465


env


CTACCTGT

AATGGCAGA

ATCACCAATATC


GTGATGAACCATGGTTTGATGATTCTGC













CATTCAAACCTTTAGG






MNAT1
NM_002431.1
MNAT1
CGAGAGTCTGTA
314
GGTTCCGATATT
698
CGAGGGCAACCCTGATC
1082
75
CGAGAGTCTGTAGGAGGGAAACCGCCAT
1466





GGAGGGAAACC

TGGTGGTCTTAC

GTCCA


GGACGATCAGGGTTGCCCTCGGTGTAAG













ACCACCAAATATCGGAACC






MRP1
NM_004996.2
ABCC1
TCATGGTGCCCG
315
CGATTGTCTTTG
699
ACCTGATACGTCTTGGT
1083
79
TCATGGTGCCCGTCAATGCTGTGATGGC
1467





TCAATG

CTCTTCATGTG

CTTCATCGCCAT


GATGAAGACCAAGACGTATCAGGTGGCC













CACATGAAGAGCAAAGACAATCG






MRP3
NM_003786.2
ABCC3
TCATCCTGGCGA
316
CCGTTGAGTGGA
700
TCTGTCCTGGCTGGAGT
1084
91
TCATCCTGGCGATCTACTTCCTCTGGCA
1468





TCTACTTCCT

ATCAGCAA

CGCTTTCAT


GAACCTAGGTCCCTCTGTCCTGGCTGGA













GTCGCTTTCATGGTCTTGCTGATTCCAC













TCAACGG






MS4A1
NM_021950.2
MS4A1
TGAGAAACAAAC
317
CAAGGCCTCAAA
701
TGAACTCCGCAGCTAGC
1085
70
TGAGAAACAAACTGCACCCACTGAACTC
1469





TGCACCCA

TCTCAAGG

ATCCAAA


CGCAGCTAGCATCCAAATCAGCCCTTGA













GATTTGAGGCCTTG






MSH2
NM_000251.1
MSH2
GATGCAGAATTG
318
TCTTGGCAAGTC
702
CAAGAAGATTTACTTCG
1086
73
GATGCAGAATTGAGGCAGACTTTACAAG
1470





AGGCAGAC

GGTTAAGA

TCGATTCCCAGA


AAGATTTACTTCGTCGATTCCCAGATCT













TAACCGACTTGCCAAGA






MTA3
XM_038567

GCTCGTGGTTCT
319
ACAAAGGGAGAG
703
TCAGTCAACATCACCCT
1087
69
GCTCGTGGTTCTGTAGTCCAGTCATCCT
1471





GTAGTCCA

CGTGAAGT

CCTAGGATGA


AGGAGGGTGATGTTGACTGAGACTTCAC













GCTCTCCCTTTGT






MX1
NM_002462.2
MX1
GAAGGAATGGGA
320
GTCTATTAGAGT
704
TCACCCTGGAGATCAGC
1088
78
GAAGGAATGGGAATCAGTCATGAGCTAA
1472





ATCAGTCATGA

CAGATCCGGGAC

TCCCGA


TCACCCTGGAGATCAGCTCCCGAGATGT








AT




CCCGGATCTGACTCTAATAGAC






MYBL2
NM_002466.1
MYBL2
GCCGAGATCGCC
321
CTTTTGATGGTA
705
CAGCATTGTCTGTCCTC
1089
74
GCCGAGATCGCCAAGATGTTGCCAGGGA
1473





AAGATG

GAGTTCCAGTGA

CCTGGCA


GGACAGACAATGCTGTGAAGAATCACTG








TTC




GAACTCTACCATCAAAAG






NAT1
NM_000662.4
NAT1
TGGTTTTGAGAC
322
TGAATCATGCCA
706
TGGAGTGCTGTAAACAT
1090
75
TGGTTTTGAGACCACGATGTTGGGAGGG
1474





CACGATGT

GTGCTGTA

ACCCTCCCA


TATGTTTACAGCACTCCAGCCAAAAAAT













ACAGCACTGGCATGATTCA






NAT2
NM_000015.1
NAT2
TAACTGACATTC
323
ATGGCTTGCCCA
707
CGGGCTGTTCCCTTTGA
1091
73
TAACTGACATTCTTGAGCACCAGATCCG
1475





TTGAGCACCAGA

CAATGC

GAACCTTAACA


GGCTGTTCCCTTTGAGAACCTTAACATG






T






CATTGTGGGCAAGCCAT






NRG1
NM_013957.1
NRG1
CGAGACTCTCCT
324
CTTGGCGTGTGG
708
ATGACCACCCCGGCTCG
1092
83
CGAGACTCTCCTCATAGTGAAAGGTATG
1476





CATAGTGAAAGG

AAATCTACAG

TATGTCA


TGTCAGCCATGACCACCCCGGCTCGTAT






TAT






GTCACCTGTAGATTTCCACACGCCAAG






OPN,
NM_000582.1
SPP1
CAACCGAAGTTT
325
CCTCAGTCCATA
709
TCCCCACAGTAGACACA
1093
80
CAACCGAAGTTTTCACTCCAGTTGTCCC
1477


osteo-


TCACTCCAGTT

AACCACACTATC

TATGATGGCCG


CACAGTAGACACATATGATGGCCGAGGT



pontin




A




GATAGTGTGGTTTATGGACTGAGG






p16-INK4
L27211.1

GCGGAAGGTCCC
326
TGATGATCTAAG
710
CTCAGAGCCTCTCTGGT
1094
76
GCGGAAGGTCCCTCAGACATCCCCGATT
1478





TCAGACA

TTTCCCGAGGTT

TCTTTCAATCGG


GAAAGAACCAGAGAGGCTCTGAGAAACC













TCGGGAAACTTAGATCATCA






PAI1
NM_000602.1
SERPINE1
CCGCAACGTGGT
327
TGCTGGGTTTCT
711
CTCGGTGTTGGCCATGC
1095
81
CCGCAACGTGGTTTTCTCACCCTATGGG
1479





TTTCTCA

CCTCCTGTT

TCCAG


GTGGCCTCGGTGTTGGCCATGCTCCAGC













TGACAACAGGAGGAGAAACCCAGCA






PGF
NM_002632.4
PGF
GTGGTTTTCCCT
328
AGCAAGGGAACA
712
ATCTTCTCAGACGTCCC
1096
71
GTGGTTTTCCCTCGGAGCCCCCTGGCTC
1480





CGGAGC

GCCTCAT

GAGCCAG


GGGACGTCTGAGAAGATGCCGGTCATGA













GGCTGTTCCCTTGCT






PR
NM_000926.2
PGR
GCATCAGGCTGT
329
AGTAGTTGTGCT
713
TGTCCTTACCTGTGGGA
1097
85
GCATCAGGCTGTCATTATGGTGTCCTTA
1481





CATTATGG

GCCCTTCC

GCTGTAAGGTC


CCTGTGGGAGCTGTAAGGTCTTCTTTAA













GAGGGCAATGGAAGGGCAGCACAACTAC













T






PRDX1
NM_002574.2
PRDX1
AGGACTGGGACC
330
CCCATAATCCTG
714
TCCTTTGGTATCAGACC
1098
67
AGGACTGGGACCCATGAACATTCCTTTG
1482





CATGAAC

AGCAATGG

CGAAGCG


GTATCAGACCCGAAGCGCACCATTGCTC













AGGATTATGGG






PTEN
NM_000314.1
PTEN
TGGCTAAGTGAA
331
TGCACATATCAT
715
CCTTTCCAGCTTTACAG
1099
81
TGGCTAAGTGAAGATGACAATCATGTTG
1483





GATGACAATCAT

TACACCAGTTCG

TGAATTGCTGCA


CAGCAATTCACTGTAAAGCTGGAAAGGG






G

T




ACGAACTGGTGTAATGATATGTGCA






PRP4A3
NM_007079.2
PTP4A3
AATATTTGTGCG
332
AACGAGATCCCT
716
CCAAGAGAAACGAGATT
1100
70
AATATTTGTGCGGGGTATGGGGGTGGGT
1484





GGGTATGG

GTGCTTGT

TAAAAACCCACC


TTTTAAATCTCGTTTCTCTTGGACAAGC













ACAGGGATCTCGTT






RhoB
NM_004040.2
RHOB
AAGCATGAACAG
333
CCTCCCCAAGTC
717
CTTTCCAACCCCTGGGG
1101
67
AAGCATGAACAGGACTTGACCATCTTTC
1485





GACTTGACC

AGTTGC

AAGACAT


CAACCCCTGGGGAAGACATTTGCAACTG













ACTTGGGGAGG






RLP13A
NM_012423.2
RLP13A
GCAAGGAAAGGG
334
ACACCTGCACAA
718
CCTCCCGAAGTTGCTTG
1102
68
GCAAGGAAAGGGTCTTAGTCACTGCCTC
1486





TCTTAGTCAC

TTCTCCG

AAAGCAC


CCGAAGTTGCTTGAAAGCACTCGGAGAA













TTGTGCAGGTGT






RLP41
NM_021104.1
RLP41
GAAACCTCTGCG
335
TTCTTTTGCGCT
719
CATTCGCTTCTTCCTCC
1103
66
GAAACCTCTGCGCCATGAGAGCCAAGTG
1387





CCATGA

TCAGCC

ACTTGGC


GAGGAAGAAGCGAATGCGCAGGCTGAAG













CGCAAAAGAA






RPLPO
NM_001002.2
RPLP0
CCATTCTATCAT
336
TCAGCAAGTGGG
720
TCTCCACAGACAAGGCC
1104
75
CCATTCTATCATCAACGGGTACAAACGA
1488





CAACGGGTACAA

AAGGTGTAATC

AGGACTCG


GTCCTGGCCTTGTCTGTGGAGACGGATT













ACACCTTCCCACTTGCTGA






RPS23
NM_001025.1
RPS23
GTTCTGGTTGCT
337
CCTTAAAGCGGA
721
ATCACCAACAGCATGAC
1105
67
GTTCTGGTTGCTGGATTTGGTCGCAAAG
1489





GGATTTGG

CTCCAGG

CTTTGCG


GTCATGCTGTTGGTGATATTCCTGGAGT













CCGCTTTAAGG






RPS27
NM_001030.3
RPS27
TCACCACGGTCT
338
TCCTCCTGTAGG
722
AGGACAGTGGAGCAGCC
1106
80
TCACCACGGTCTTTAGCCATGCACAAAC
1490





TTAGCCA

CTGGCA

AACACAC


GGTAGTTTTGTGTGTTGGCTGCTCCACT













GTCCTCTGCCAGCCTACAGGAGGA






RRM1
NM_001033.1
RRM1
GGGCTACTGGCA
339
CTCTCAGCATCG
723
CATTGGAATTGCCATTA
1107
66
GGGCTACTGGCAGCTACATTGCTGGGAC
1491





GCTACATT

GTACAAGG

GTCCCAGC


TAATGGCAATTCCAATGGCCTTGTACCG













ATGCTGAGAG






RRM2
NM 001034.1
RRM2
CAGCGGGATTAA
340
ATCTGCGTTGAA
724
CCAGCACAGCCAGTTAA
1108
71
CAGCGGGATTAAACAGTCCTTTAACCAG
1492





ACAGTCCT

GCAGTGAG

AAGATGCA


CACAGCCAGTTAAAAGATGCAGCCTCAC













TGCTTCAACGCAGAT






RUNX1
NM_001754.2
RUNX1
AACAGAGACATT
341
GTGATTTGCCCA
725
TTGGATCTGCTTGCTGT
1109
69
AACAGAGACATTGCCAACCATATTGATC
1493





GCCAACCA

GGAAAGTTT

CCAAACC


TGCTTGCTGTCCAAACCAGCAAACTTCC













TGGGCAAATCAC






S100A10
NM_002966.1
S100A10
ACACCAAAATGC
342
TTTATCCCCAGC
726
CACGCCATGGAAACCAT
1110
77
ACACCAAAATGCCATCTCAAATGGAACA
1494





CATCTCAA

GAATTTGT

GATGTTT


CGCCATGGAAACCATGATGTTTACATTT













CACAAATTCGCTGGGGATAAA






S100A2
NM_005978.2
S100A2
TGGCTGTGCTGG
343
TCCCCCTTACTC
727
CACAAGTACTCCTGCCA
1111
73
TGGCTGTGCTGGTCACTACCTTCCACAA
1495





TCACTACCT

AGCTTGAACT

AGAGGGCGAC


GTACTCCTGCCAAGAGGGCGACAAGTTC













AAGCTGAGTAAGGGGGA






S100A4
NM_002961.2
S100A4
GACTGCTGTCAT
344
CGAGTACTTGTG
728
ATCACATCCAGGGCCTT
1112
70
GACTGCTGTCATGGCGTGCCCTCTGGAG
1496





GGCGTG

GAAGGTGGAC

CTCCAGA


AAGGCCCTGGATGTGATGGTGTCCACCT













TCCACAAGTACTCG






S100A7
NM_002963.2
S100A7
CCTGCTGACGAT
345
GCGAGGTAATTT
729
TTCCCCAACTTCCTTAG
1113
75
CCTGCTGACGATGATGAAGGAGAACTTC
1497





GATGAAGGA

GTGCCCTTT

TGCCTGTGACA


CCCAACTTCCTTAGTGCCTGTGACAAAA













AGGGCACAAATTACCTCGC






S100A8
NM_002964.3
S100A8
ACTCCCTGATAA
346
TGAGGACACTCG
730
CATGCCGTCTACAGGGA
1114
76
ACTCCCTGATAAAGGGGAATTTCCATGC
1498





AGGGGAATTT

GTCTCTAGC

TGACCTG


CGTCTACAGGGATGACCTGAAGAAATTG













CTAGAGACCGAGTGTCCTCA






S100A9
NM_002965.3
S100A9
CACCCTGCCTCT
347
CTAGCCCCACAG
731
CCCGGGGCCTGTTATGT
1115
67
CACCCTGCCTCTACCCAACCAGGGCCCC
1499





ACCCAAC

CCAAGA

CAAACT


GGGGCCTGTTATGTCAAACTGTCTTGGC













TGTGGGGCTAG






S100B
NM_006272.1
S100B
CATGGCCGTGTA
348
AGTTTTAAGGGT
732
CCGGAGGGAACCCTGAC
1116
70
CATGGCCGTGTAGACCCTAACCCGGAGG
1500





GACCCTAA

GCCCCG

TACAGAA


GAACCCTGACTACAGAAATTACCCCGGG













GCACCCTTAAAACT






S100G
NM_004057.2
S100G
ACCCTGAGCACT
349
GAGACTTTGGGG
733
AGGATAAGACCACAGCA
1117
67
ACCCTGAGCACTGGAGGAAGAGCGCCTG
1501





GGAGGAA

GATTCCA

CAGGCGC


TGCTGTGGTCTTATCCTATGTGGAATCC













CCCAAAGTCTC






S100P
NM_005980.2
S100P
AGACAAGGATGC
350
GAAGTCCACCTG
734
TTGCTCAAGGACCTGGA
1118
67
AGACAAGGATGCCGTGGATAAATTGCTC
1502





CGTGGATAA

GGCATCTC

CGCCAA


AAGGACCTGGACGCCAATGGAGATGCCC













AGGTGGACTTC






SDHA
NM_004168.1
SDHA
GCAGAACTGAAG
351
CCCTTTCCAAAC
735
CTGTCCACCAAATGCAC
1119
67
GCAGAACTGAAGATGGGAAGATTTATCA
1503





ATGGGAAGAT

TTGAGGC

GCTGATA


GCGTGCATTTGGTGGACAGAGCCTCAAG













TTTGGAAAGGG






SEMA3F
NM_004186.1
SEMA3F
CGCGAGCCCCTC
352
CACTCGCCGTTG
736
CTCCCCACAGCGCATCG
1120
86
CGCGAGCCCCTCATTATACACTGGGCAG
1504





ATTATACA

ACATCCT

AGGAA


CCTCCCCACAGCGCATCGAGGAATGCGT













GCTCTCAGGCAAGGATGTCAACGGCGAG













TG






SFRP2
NM_003013.2
SFRP2
CAAGCTGAACGG
353
TGCAAGCTGTCT
737
CAGCACCGATTTCTTCA
1121
66
CAAGCTGAACGGTGTGTCCGAAAGGGAC
1505





TGTGTCC

TTGAGCC

GGTCCCT


CTGAAGAAATCGGTGCTGTGGCTCAAAG













ACAGCTTGCA






SIR2
NM_012238.3
SIRT1
AGCTGGGGTGTC
354
ACAGCAAGGCGA
738
CCTGACTTCAGGTCAAG
1122
72
AGCTGGGGTGTCTGTTTCATGTGGAATA
1506





TGTTTCAT

GCATAAAT

GGATGG


CCTGACTTCAGGTCAAGGGATGGTATTT













ATGCTCGCCTTGCTGT






SKIL
NM 005414.2
SKIL
AGAGGCTGAATA
355
CTATCGGCCTCA
739
CCAATCTCTGCCTCAGT
1123
66
AGAGGCTGAATATGCAGGACAGTTGGCA
1507





TGCAGGACA

GCATGG

TCTGCCA


GAACTGAGGCAGAGATTGGACCATGCTG













AGGCCGATAG






SKP2
NM_005983.2
SKP2
AGTTGCAGAATC
356
TGAGTTTTTTGC
740
CCTGCGGCTTTCGGATC
1124
71
AGTTGCAGAATCTAAGCCTGGAAGGCCT
1508





TAAGCCTGGAA

GAGAGTATTGAC

CCA


GCGGCTTTCGGATCCCATTGTCAATACT








A




CTCGCAAAAAACTCA






SLPI
NM_003064.2
SLPI
ATGGCCAATGTT
357
ACACTTCAAGTC
741
TGGCCATCCATCTCACA
1125
74
ATGGCCAATGTTTGATGCTTAACCCCCC
1509





TGATGCT

ACGCTTGC

GAAATTGG


CAATTTCTGTGAGATGGATGGCCAGTGC













AAGCGTGACTTGAAGTGT






SNAI1
NM_005985.2
SNAI1
CCCAATCGGAAG
358
GTAGGGCTGCTG
742
TCTGGATTAGAGTCCTG
1126
69
CCCAATCGGAAGCCTAACTACAGCGAGC
1510





CCTAACTA

GAAGGTAA

CAGCTCGC


TGCAGGACTCTAATCCAGAGTTTACCTT













CCAGCAGCCCTAC






STK15
NM_003600.1
AURKA
CATCTTCCAGGA
359
TCCGACCTTCAA
743
CTCTGTGGCACCCTGGA
1127
69
CATCTTCCAGGAGGACCACTCTCTGTGG
1511





GGACCACT

TCATTTCA

CTACCTG


CACCCTGGACTACCTGCCCCCTGAAATG













ATTGAAGGTCGGA






STMN1
NM_005563.2
STMN1
AATACCCAACGC
360
GGAGACAATGCA
744
CACGTTCTCTGCCCCGT
1128
71
AATACCCAACGCACAAATGACCGCACGT
1512





ACAAATGA

AACCACAC

TTCTTG


TCTCTGCCCCGTTTCTTGCCCCAGTGTG













GTTTGCATTGTCTCC






STMY3
NM_005940.2
MMP11
CCTGGAGGCTGC
361
TACAATGGCTTT
745
ATCCTCCTGAAGCCCTT
1129
90
CCTGGAGGCTGCAACATACCTCAATCCT
1513





AACATACC

GGAGGATAGCA

TTCGCAGC


GTCCCAGGCCGGATCCTCCTGAAGCCCT













TTTCGCAGCACTGCTATCCTCCAAAGCC













ATTGTA






SURV
NM_001168.1
BIRC5
TGTTTTGATTCC
362
CAAAGCTGTCAG
746
TGCCTTCTTCCTCCCTC
1130
80
TGTTTTGATTCCCGGGCTTACCAGGTGA
1514





CGGGCTTA

CTCTAGCAAAAG

ACTTCTCACCT


GAAGTGAGGGAGGAAGAAGGCAGTGTCC













CTTTTGCTAGAGCTGACAGCTTTG






SYK
NM_003177.1
SYK
TCTCCAGCAAAA
363
TTCATCCCTCGA
747
CCATAGGAGAATGCTTC
1131
85
TCTCCAGCAAAAGCGATGTCTGGAGCTT
1515





GCGATGTCT

TATGGCTTCT

CCACATCAACACT


TGGAGTGTTGATGTGGGAAGCATTCTCC













TATGGGCAGAAGCCATATCGAGGGATGA













A






TAGLN
NM_003186.2
TAGLN
GATGGAGCAGGT
364
AGTCTGGAACAT
748
CCCATAGTCCTCAGCCG
1132
73
GATGGAGCAGGTGGCTCAGTTCCTGAAG
1516





GGCTCAGT

GTCAGTCTTGAT

CCTTCAG


GCGGCTGAGGACTCTGGGGTCATCAAGA








G




CTGACATGTTCCAGACT






TCEA1
NM_201437.1
TCEA1
CAGCCCTGAGGC
365
CGAGCATTTGTC
749
CTTCCAGCGGCAATGTA
1133
72
CAGCCCTGAGGCAAGAGAAGAAAGTACT
1517





AAGAGA

TCATCCTTT

AGCAACA


TCCAGCGGCAATGTAAGCAACAGAAAGG













ATGAGACAAATGCTCG






TFRC
NM_003234.1
TFRC
GCCAACTGCTTT
366
ACTCAGGCCCAT
750
AGGGATCTGAACCAATA
1134
68
GCCAACTGCTTTCATTTGTGAGGGATCT
1518





CATTTGTG

TTCCTTTA

CAGAGCAGACA


GAACCAATACAGAGCAGACATAAAGGAA













ATGGGCCTGAGT






TGFB2
NM_003238.1
TGFB2
ACCAGTCCCCCA
367
CCTGGTGCTGTT
751
TCCTGAGCCCGAGGAAG
1135
75
ACCAGTCCCCCAGAAGACTATCCTGAGC
1519





GAAGACTA

GTAGATGG

TCCC


CCGAGGAAGTCCCCCCGGAGGTGATTTC













CATCTACAACAGCACCAGG






TGFB3
NM_003239.1
TGFB3
GGATCGAGCTCT
368
GCCACCGATATA
752
CGGCCAGATGAGCACAT
1136
65
GGATCGAGCTCTTCCAGATCCTTCGGCC
1520





TCCAGATCCT

GCGCTGTT

TGCC


AGATGAGCACATTGCCAAACAGCGCTAT













ATCGGTGGC






TGFBR2
NM 003242.2
TGFBR2
AACACCAATGGG
369
CCTCTTCATCAG
753
TTCTGGGCTCCTGATTG
1137
66
AACACCAATGGGTTCCATCTTTCTGGGC
1521





TTCCATCT

GCCAAACT

CTCAAGC


TCCTGATTGCTCAAGCACAGTTTGGCCT













GATGAAGAGG






TIMP3
NM_000362.2
TIMP3
CTACCTGCCTTG
370
ACCGAAATTGGA
754
CCAAGAACGAGTGTCTC
1138
67
CTACCTGCCTTGCTTTGTGACTTCCAAG
1522





CTTTGTGA

GAGCATGT

TGGACCG


AACGAGTGTCTCTGGACCGACATGCTCT













CCAATTTCGGT






TNFRSF11A
NM_003839.2
TNFRSF11A
CCAGCCCACAGA
371
TTCAGAGAAAGG
755
TGTTCCTCACTGAGCCT
1139
67
CCAGCCCACAGACCAGTTACTGTTCCTC
1523





CCAGTTA

AGGTGTGGA

GGAAGCA


ACTGAGCCTGGAAGCAAATCCACACCTC













CTTTCTCTGAA






TNFRSF11B
NM_002546.2
TNFRSF11B
TGGCGACCAAGA
372
GGGAAAGTGGTA
756
AGGGCCTAATGCACGCA
1140
67
TGGCGACCAAGACACCTTGAAGGGCCTA
1524





CACCTT

CGTCTTTGAG

CTAAAGC


ATGCACGCACTAAAGCACTCAAAGACGT













ACCACTTTCCC






TNFSF11
NM_003701.2
TNFSF11
CATATCGTTGGA
373
TTGGCCAGATCT
757
TCCACCATCGCTTTCTC
1141
71
CATATCGTTGGATCACAGCACATCAGAG
1525





TCACAGCAC

AACCATGA

TGCTCTG


CAGAGAAAGCGATGGTGGATGGCTCATG













GTTAGATCTGGCCAA






TWIST1
NM_000474.2
TWIST1
GCGCTGCGGAAG
374
GCTTGAGGGTCT
758
CCACGCTGCCCTCGGAC
1142
64
GCGCTGCGGAAGATCATCCCCACGCTGC
1526





ATCATC

GAATCTTGCT

AAGC


CCTCGGACAAGCTGAGCAAGATTCAGAC













CCTCAAGC






UBB
NM_018955.1
UBB
GAGTCGACCCTG
375
GCGAATGCCATG
759
AATTAACAGCCACCCCT
1143
522
GAGTCGACCCTGCACCTGGTCCTGCGTC
1527





CACCTG

ACTGAA

CAGGCG


TGAGAGGTGGTATGCAGATCTTCGTGAA













GACCCTGACCGGCAAGACCATCACCCTG













GAAGTGGAGCCCAGTGACACCATCGAAA













ATGTGAAGGCCAAGATCCAGGATAAAGA













AGGCATCCCTCCCGACCAGCAGAGGCTC













ATCTTTGCAGGCAAGCAGCTGGAAGATG













GCCGCACTCTTTCTGACTACAACATCCA













GAAGGAGTCGACCCTGCACCTGGTCCTG













CGTCTGAGAGGTGGTATGCAGATCTTCG













TGAAGACCCTGACCGGCAAGACCATCAC













TCTGGAAGTGGAGCCCAGTGACACCATC













GAAAATGTGAAGGCCAAGATCCAAGATA













AAGAAGGCATCCCTCCCGACCAGCAGAG













GCTCATCTTTGCAGGCAAGCAGCTGGAA













GATGGCCGCACTCTTTCTGACTACAACA













TCCAGAAGGAGTCGACCCTGCACCTGGT













CCTGCGCCTGAGGGGTGGCTGTTAATTC













TTCAGTCATGGCATTCGC






VCAM1
NM_001078.2
VCAM1
TGGCTTCAGGAG
376
TGCTGTCGTGAT
760
CAGGCACACACAGGTGG
1144
89
TGGCTTCAGGAGCTGAATACCCTCCCAG
1528





CTGAATACC

GAGAAAATAGTG

GACACAAAT


GCACACACAGGTGGGACACAAATAAGGG













TTTTGGAACCACTATTTTCTCATCACGA













CAGCA






VIM
NM_003380.1
VIM
TGCCCTTAAAGG
377
GCTTCAACGGCA
761
ATTTCACGCATCTGGCG
1145
72
TGCCCTTAAAGGAACCAATGAGTCCCTG
1529





AACCAATGA

AAGTTCTCTT

TTCCA


GAACGCCAGATGCGTGAAATGGAAGAGA













ACTTTGCCGTTGAAGC






VTN
NM_000638.2
VTN
AGTCAATCTTCG
378
GTACTGAGCGAT
762
TGGACACTGTGGACCCT
1146
67
AGTCAATCTTCGCACACGGCGAGTGGAC
1530





CACACGG

GGAGCGT

CCCTACC


ACTGTGGACCCTCCCTACCCACGCTCCA













TCGCTCAGTAC






WAVE3
NM_006646.4
WASF3
CTCTCCAGTGTG
379
GCGGTGTAGCTC
763
CCAGAACAGATGCGAGC
1147
68
CTCTCCAGTGTGGGCACCAGCCGGCCAG
1531





GGCACC

CCAGAGT

AGTCCAT


AACAGATGCGAGCAGTCCATGACTCTGG













GAGCTACACCGC






WISP1
NM_003882.2
WISP1
AGAGGCATCCAT
380
CAAACTCCACAG
764
CGGGCTGCATCAGCACA
1148
75
AGAGGCATCCATGAACTTCACACTTGCG
1532





GAACTTCACA

TACTTGGGTTGA

CGC


GGCTGCATCAGCACACGCTCCTATCAAC













CCAAGTACTGTGGAGTTTG






Wnt-5a
NM_003392.2
WNT5A
GTATCAGGACCA
381
TGTCGGAATTGA
765
TTGATGCCTGTCTTCGC
1149
75
GTATCAGGACCACATGCAGTACATCGGA
1533





CATGCAGTACAT

TACTGGCATT

GCCTTCT


AGAAGGCGCGAAGACAGGCATCAAAGAA






C






TGCCAGTATCAATTCCGACA






Wnt-5b
NM_032642.2
WNT5B
TGTCTTCAGGGT
382
GTGCACGTGGAT
766
TTCCGTAAGAGGCCTGG
1150
79
TGTCTTCAGGGTCTTGTCCAGAATGTAG
1534





CTTGTCCA

GAAAGAGT

TGCTCT


ATGGGTTCCGTAAGAGGCCTGGTGCTCT













CTTACTCTTTCATCCACGTGCAC






WWOX
NM_016373.1
WWOX
ATCGCAGCTGGT
383
AGCTCCCTGTTG
767
CTGCGTTTACCTTGGCG
1151
74
ATCGCAGCTGGTGGGTGTACACACTGCT
1535





GGGTGTAC

CATGGACTT

AGGCCTTTC


GTTTACCTTGGCGAGGCCTTTCACCAAG













TCCATGCAACAGGGAGCT






YWHAZ
NM_003406.2
YWHAZ
GTGGACATCGGA
384
GCAGACAAAAGT
768
CCCCTCCTTCTCCTGCT
1152
81
GTGGACATCGGATACCCAAGGAGACGAA
1536





TACCCAAG

TGGAAGGC

TCAGCTT


GCTGAAGCAGGAGAAGGAGGGGAAAATT













AACCGGCCTTCCAACTTTTGTCTGC

















TABLE 1







Table 1: Cox proportional hazards for Prognostic Genes that


are positively associated with good prognosis for breast


cancer (Providence study)












Gene_all
z (Coef)
HR
p (Wald)
















GSTM2
−4.306
0.525
0.000



IL6ST
−3.730
0.522
0.000



CEGP1
−3.712
0.756
0.000



Bcl2
−3.664
0.555
0.000



GSTM1
−3.573
0.679
0.000



ERBB4
−3.504
0.767
0.000



GADD45
−3.495
0.601
0.000



PR
−3.474
0.759
0.001



GPR30
−3.348
0.660
0.001



CAV1
−3.344
0.649
0.001



C10orf116
−3.194
0.681
0.001



DR5
−3.102
0.543
0.002



DICER1
−3.097
0.296
0.002



EstR1
−2.983
0.825
0.003



BTRC
−2.976
0.639
0.003



GSTM3
−2.931
0.722
0.003



GATA3
−2.874
0.745
0.004



DLC1
−2.858
0.564
0.004



CXCL14
−2.804
0.693
0.005



IL17RB
−2.796
0.744
0.005



C8orf4
−2.786
0.699
0.005



FOXO3A
−2.786
0.617
0.005



TNFRSF11B
−2.690
0.739
0.007



BAG1
−2.675
0.451
0.008



SNAI1
−2.632
0.692
0.009



TGFB3
−2.617
0.623
0.009



NAT1
−2.576
0.820
0.010



FUS
−2.543
0.376
0.011



F3
−2.527
0.705
0.012



GSTM2 gene
−2.461
0.668
0.014



EPHB2
−2.451
0.708
0.014



LAMA3
−2.448
0.778
0.014



BAD
−2.425
0.506
0.015



IGF1R
−2.378
0.712
0.017



RUNX1
−2.356
0.511
0.018



ESRRG
−2.289
0.825
0.022



HSHIN1
−2.275
0.371
0.023



CXCL12
−2.151
0.623
0.031



IGFBP7
−2.137
0.489
0.033



SKIL
−2.121
0.593
0.034



PTEN
−2.110
0.449
0.035



AKT3
−2.104
0.665
0.035



MGMT
−2.060
0.571
0.039



LRIG1
−2.054
0.649
0.040



S100B
−2.024
0.798
0.043



GREB1 variant a
−1.996
0.833
0.046



CSF1
−1.976
0.624
0.048



ABR
−1.973
0.575
0.048



AK055699
−1.972
0.790
0.049

















TABLE 2







Table 2: Cox proportional hazards for Prognostic Genes


that are negatively associated with good prognosis for


breast cancer (Providence study)












Gene_all
z (Coef)
HR
p (Wald)
















S100A7
1.965
1.100
0.049



MCM2
1.999
1.424
0.046



Contig 51037
2.063
1.185
0.039



S100P
2.066
1.170
0.039



ACTR2
2.119
2.553
0.034



MYBL2
2.158
1.295
0.031



DUSP1
2.166
1.330
0.030



HOXB13
2.192
1.206
0.028



SURV
2.216
1.329
0.027



MELK
2.234
1.336
0.026



HSPA8
2.240
2.651
0.025



cdc25A
2.314
1.478
0.021



C20_orf1
2.336
1.497
0.019



LMNB1
2.387
1.682
0.017



S100A9
2.412
1.185
0.016



CENPA
2.419
1.366
0.016



CDC25C
2.437
1.384
0.015



GAPDH
2.498
1.936
0.012



KNTC2
2.512
1.450
0.012



PRDX1
2.540
2.131
0.011



RRM2
2.547
1.439
0.011



ADM
2.590
1.445
0.010



ARF1
2.634
2.973
0.008



E2F1
2.716
1.486
0.007



TFRC
2.720
1.915
0.007



STK15
2.870
1.860
0.004



LAPTM4B
2.880
1.538
0.004



EpCAM
2.909
1.919
0.004



ENO1
2.958
2.232
0.003



CCNB1
3.003
1.738
0.003



BUB1
3.018
1.590
0.003



Claudin 4
3.034
2.151
0.002



CDC20
3.056
1.555
0.002



Ki-67
3.329
1.717
0.001



KPNA2
3.523
1.722
0.000



IDH2
3.994
1.638
0.000

















TABLE 3







Cox proportional hazards for Prognostic Genes that are


positively associated with good prognosis for ER-negative


(ER0) breast cancer (Providence study)












Gene_ER0
HR
z (Coef)
p (Wald)
















SYK
0.185
−2.991
0.003



Wnt-5a
0.443
−2.842
0.005



WISP1
0.455
−2.659
0.008



CYR61
0.405
−2.484
0.013



GADD45
0.520
−2.474
0.013



TAGLN
0.364
−2.376
0.018



TGFB3
0.465
−2.356
0.018



INHBA
0.610
−2.255
0.024



CDH11
0.584
−2.253
0.024



CHAF1B
0.551
−2.113
0.035



ITGAV
0.192
−2.101
0.036



SNAI1
0.655
−2.077
0.038



IL11
0.624
−2.026
0.043



KIAA1199
0.692
−2.005
0.045



TNFRSF11B
0.659
−1.989
0.047

















TABLE 4







Cox proportional hazards for Prognostic Genes that are


negatively associated with good prognosis for ER-negative


(ER0) breast cancer (Providence study)












Gene_ER0
HR
z (Coef)
p (Wald)
















RPL41
3.547
2.062
0.039



Claudin 4
2.883
2.117
0.034



LYRIC
4.029
2.364
0.018



TFRC
3.223
2.596
0.009



VTN
2.484
3.205
0.001

















TABLE 5







Cox proportional hazards for Prognostic Genes that are


positively associated with good prognosis for ER-positive


(ER1) breast cancer (Providence study)












Gene_ER1
HR
z (Coef)
p (Wald)
















DR5
0.428
−3.478
0.001



GSTM2
0.526
−3.173
0.002



HSHIN1
0.175
−3.031
0.002



ESRRG
0.736
−3.028
0.003



VTN
0.622
−2.935
0.003



Bcl2
0.469
−2.833
0.005



ERBB4
0.705
−2.802
0.005



GPR30
0.625
−2.794
0.005



BAG1
0.339
−2.733
0.006



CAV1
0.635
−2.644
0.008



IL6ST
0.503
−2.551
0.011



C10orf116
0.679
−2.497
0.013



FOXO3A
0.607
−2.473
0.013



DICER1
0.311
−2.354
0.019



GADD45
0.645
−2.338
0.019



CSF1
0.500
−2.312
0.021



F3
0.677
−2.300
0.021



GBP2
0.604
−2.294
0.022



APEX-1
0.234
−2.253
0.024



FUS
0.322
−2.252
0.024



BBC3
0.581
−2.248
0.025



GSTM3
0.737
−2.203
0.028



ITGA4
0.620
−2.161
0.031



EPHB2
0.685
−2.128
0.033



IRF1
0.708
−2.105
0.035



CRYZ
0.593
−2.103
0.035



CCL19
0.773
−2.076
0.038



SKIL
0.540
−2.019
0.043



MRP1
0.515
−1.964
0.050

















TABLE 6







Cox proportional hazards for Prognostic Genes that are


negatively associated with good prognosis for ER-positive


(ER1) breast cancer (Providence study)












Gene_ER1
HR
z (Coef)
p (Wald)
















CTHRC1
2.083
1.958
0.050



RRM2
1.450
1.978
0.048



BUB1
1.467
1.988
0.047



LMNB1
1.764
2.009
0.045



SURV
1.380
2.013
0.044



EpCAM
1.966
2.076
0.038



CDC20
1.504
2.081
0.037



GAPDH
2.405
2.126
0.033



STK15
1.796
2.178
0.029



HSPA8
3.095
2.215
0.027



LAPTM4B
1.503
2.278
0.023



MCM2
1.872
2.370
0.018



CDC25C
1.485
2.423
0.015



ADM
1.695
2.486
0.013



MMP1
1.365
2.522
0.012



CCNB1
1.893
2.646
0.008



Ki-67
1.697
2.649
0.008



E2F1
1.662
2.689
0.007



KPNA2
1.683
2.701
0.007



DUSP1
1.573
2.824
0.005



GDF15
1.440
2.896
0.004

















TABLE 7







Cox proportional hazards for Prognostic Genes that are


positively associated with good prognosis for breast


cancer (Rush study)












Gene_all
z (Coef)
HR
p (Wald)
















GSTM2
−3.275
0.752
0.001



GSTM1
−2.946
0.772
0.003



C8orf4
−2.639
0.793
0.008



ELF3
−2.478
0.769
0.013



RUNX1
−2.388
0.609
0.017



IL6ST
−2.350
0.738
0.019



AAMP
−2.325
0.715
0.020



PR
−2.266
0.887
0.023



FHIT
−2.193
0.790
0.028



CD44v6
−2.191
0.754
0.028



GREB1 variant c
−2.120
0.874
0.034



ADAM17
−2.101
0.686
0.036



EstR1
−2.084
0.919
0.037



NAT1
−2.081
0.878
0.037



TNFRSF11B
−2.074
0.843
0.038



ITGB4
−2.006
0.740
0.045



CSF1
−1.963
0.750
0.050

















TABLE 8







Cox proportional hazards for Prognostic Genes that are negatively


associated with good prognosis for breast cancer (Rush study)












Gene_all
z (Coef)
HR
p (Wald)
















STK15
1.968
1.298
0.049



TFRC
2.049
1.399
0.040



ITGB1
2.071
1.812
0.038



ITGAV
2.081
1.922
0.037



MYBL2
2.089
1.205
0.037



MRP3
2.092
1.165
0.036



SKP2
2.143
1.379
0.032



LMNB1
2.155
1.357
0.031



ALCAM
2.234
1.282
0.025



COMT
2.271
1.412
0.023



CDC20
2.300
1.253
0.021



GAPDH
2.307
1.572
0.021



GRB7
2.340
1.205
0.019



S100A9
2.374
1.120
0.018



S100A7
2.374
1.092
0.018



HER2
2.425
1.210
0.015



ACTR2
2.499
1.788
0.012



S100A8
2.745
1.144
0.006



ENO1
2.752
1.687
0.006



MMP1
2.758
1.212
0.006



LAPTM4B
2.775
1.375
0.006



FGFR4
3.005
1.215
0.003



C17orf37
3.260
1.387
0.001

















TABLE 9







Cox proportional hazards for Prognostic Genes that are


positively associated with good prognosis for ER-negative


(ER0) breast cancer (Rush study)












Gene_ER0
z (Coef)
HR
p (Wald)
















SEMA3F
−2.465
0.503
0.014



LAMA3
−2.461
0.519
0.014



CD44E
−2.418
0.719
0.016



AD024
−2.256
0.617
0.024



LAMB3
−2.237
0.690
0.025



Ki-67
−2.209
0.650
0.027



MMP7
−2.208
0.768
0.027



GREB1 variant c
−2.019
0.693
0.044



ITGB4
−1.996
0.657
0.046



CRYZ
−1.976
0.662
0.048



CD44s
−1.967
0.650
0.049

















TABLE 10







Cox proportional hazards for Prognostic Genes that are


negatively associated with good prognosis for ER-negative


(ER0) breast cancer (Rush study)












Gene_ER0
z (Coef)
HR
p (Wald)
















S100A8
1.972
1.212
0.049



EEF1A2
2.031
1.195
0.042



TAGLN
2.072
2.027
0.038



GRB7
2.086
1.231
0.037



HER2
2.124
1.232
0.034



ITGAV
2.217
3.258
0.027



CDH11
2.237
2.728
0.025



COL1A1
2.279
2.141
0.023



C17orf37
2.319
1.329
0.020



COL1A2
2.336
2.577
0.020



ITGB5
2.375
3.236
0.018



ITGA5
2.422
2.680
0.015



RPL41
2.428
6.665
0.015



ALCAM
2.470
1.414
0.013



CTHRC1
2.687
3.454
0.007



PTEN
2.692
8.706
0.007



FN1
2.833
2.206
0.005

















TABLE 11







Cox proportional hazards for Prognostic Genes that are


positively associated with good prognosis for ER-positive


(ER1) breast cancer (Rush study)












Gene_ER1
z (Coef)
HR
p (Wald)
















GSTM1
−3.938
0.628
0.000



HNF3A
−3.220
0.500
0.001



EstR1
−3.165
0.643
0.002



Bcl2
−2.964
0.583
0.003



GATA3
−2.641
0.624
0.008



ELF3
−2.579
0.741
0.010



C8orf4
−2.451
0.730
0.014



GSTM2
−2.416
0.774
0.016



PR
−2.416
0.833
0.016



RUNX1
−2.355
0.537
0.019



CSF1
−2.261
0.662
0.024



IL6ST
−2.239
0.627
0.025



AAMP
−2.046
0.704
0.041



TNFRSF11B
−2.028
0.806
0.043



NAT1
−2.025
0.833
0.043



ADAM17
−1.981
0.642
0.048

















TABLE 12







Cox proportional hazards for Prognostic Genes that are


negatively associated with good prognosis for ER-positive


(ER1) breast cancer (Rush study)












Gene_ER1
z (Coef)
HR
p (Wald)
















HSPA1B
1.966
1.382
0.049



AD024
1.967
1.266
0.049



FGFR4
1.991
1.175
0.047



CDK4
2.014
1.576
0.044



ITGB1
2.021
2.163
0.043



EPHB2
2.121
1.342
0.034



LYRIC
2.139
1.583
0.032



MYBL2
2.174
1.273
0.030



PGF
2.176
1.439
0.030



EZH2
2.199
1.390
0.028



HSPA1A
2.209
1.452
0.027



RPLPO
2.273
2.824
0.023



LMNB1
2.322
1.529
0.020



IL-8
2.404
1.166
0.016



C6orf66
2.468
1.803
0.014



GAPDH
2.489
1.950
0.013



P16-INK4
2.490
1.541
0.013



CLIC1
2.557
2.745
0.011



ENO1
2.719
2.455
0.007



ACTR2
2.878
2.543
0.004



CDC20
2.931
1.452
0.003



SKP2
2.952
1.916
0.003



LAPTM4B
3.124
1.558
0.002

















TABLE 13





Table 13: Validation of Prognostic Genes in SIB data sets.

























Official












Symbol
EMC2~Est
EMC2~SE
EMC2~t
JRH1~Est
JRH1~SE
JRH1~t
JRH2~Est
JRH2~SE
JRH2~t
MGH~Est





AAMP
NA
NA
NA
−0.05212
0.50645
−0.10291
0.105615
1.01216
0.104346
−0.26943


ABCC1
NA
NA
NA
NA
NA
NA
2.36153
0.76485
3.087573
0.253516


ABCC3
NA
NA
NA
0.386945
0.504324
0.767255
0.305901
0.544322
0.561985
0.126882


ABR
NA
NA
NA
0.431151
0.817818
0.527197
0.758422
1.0123
0.749207
NA


ACTR2
NA
NA
NA
NA
NA
NA
−0.26297
0.4774
−0.55084
0.071853


ADAM17
NA
NA
NA
0.078212
0.564555
0.138538
−0.20948
1.06045
−0.19754
0.29698


ADM
NA
NA
NA
NA
NA
NA
0.320052
0.201407
1.589081
0.225324


LYPD6
NA
NA
NA
NA
NA
NA
NA
NA
NA
−0.38423


AKT3
NA
NA
NA
NA
NA
NA
−2.10931
1.58606
−1.32991
−1.43148


ALCAM
NA
NA
NA
−0.17112
0.224449
−0.7624
0.120168
0.212325
0.565963
−0.36428


APEX1
NA
NA
NA
0.068917
0.410873
0.167732
−0.02247
0.790107
−0.02843
−0.07674


ARF1
NA
NA
NA
0.839013
0.346692
2.420053
0.369609
0.40789
0.906149
2.03958


AURKA
NA
NA
NA
0.488329
0.248241
1.967157
0.285095
0.243026
1.173105
0.270093


BAD
NA
NA
NA
0.027049
0.547028
0.049446
0.121904
0.587599
0.207461
NA


BAG1
NA
NA
NA
0.505074
0.709869
0.711503
−0.13983
0.36181
−0.38648
−0.36295


BBC3
NA
NA
NA
NA
NA
NA
0.182425
0.78708
0.231774
NA


BCAR3
NA
NA
NA
NA
NA
NA
−0.29238
0.522706
−0.55935
−0.41595


BCL2
NA
NA
NA
−1.10678
0.544697
−2.03192
0.124104
0.228026
0.544254
−2.47368


BIRC5
NA
NA
NA
−0.40529
0.608667
−0.66586
0.319899
0.242736
1.317889
NA


BTRC
NA
NA
NA
NA
NA
NA
0.017988
0.648834
0.027723
NA


BUB1
NA
NA
NA
0.84036
0.319874
2.627159
0.565139
0.322406
1.75288
0.206656


C10orf116
NA
NA
NA
−0.1418
0.261554
−0.54216
0.036378
0.182183
0.19968
NA


C17orf37
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA


TPX2
NA
NA
NA
NA
NA
NA
0.311175
0.271756
1.145053
NA


C8orf4
NA
NA
NA
NA
NA
NA
−0.06402
0.197663
−0.32386
−0.07043


CAV1
NA
NA
NA
−0.20701
0.254401
−0.81372
−0.19588
0.289251
−0.67721
−0.06896


CCL19
NA
NA
NA
0.101779
0.483649
0.21044
−0.45509
0.26597
−1.71104
0.246585


CCNB1
NA
NA
NA
0.14169
0.276165
0.513063
0.587021
0.249935
2.348695
NA


CDC20
NA
NA
NA
−0.82502
0.360648
−2.2876
0.075789
0.208662
0.363213
0.095023


CDC25A
NA
NA
NA
−0.15046
0.724766
−0.2076
0.358589
0.638958
0.561209
0.257084


CDC25C
NA
NA
NA
0.047781
0.511454
0.093422
1.07486
0.456637
2.353861
0.340882


CDH11
NA
NA
NA
−0.55211
0.469473
−1.17601
0.072308
0.265898
0.27194
0.028252


CDK4
NA
NA
NA
NA
NA
NA
0.759572
0.757398
1.00287
0.18468


SCUBE2
NA
NA
NA
NA
NA
NA
−0.0454
0.120869
−0.37564
NA


CENPA
NA
NA
NA
NA
NA
NA
0.296857
0.253493
1.171066
NA


CHAF1B
NA
NA
NA
0.591417
0.58528
1.010486
0.284056
0.637446
0.445616
0.47534


CLDN4
NA
NA
NA
−0.54144
0.470758
−1.15014
0.33033
0.351865
0.938798
0.185116


CLIC1
NA
NA
NA
0.678131
0.359483
1.886406
0.764626
0.767633
0.996083
0.171995


COL1A1
NA
NA
NA
NA
NA
NA
0.273073
0.249247
1.095592
NA


COL1A2
NA
NA
NA
NA
NA
NA
0.216939
0.367138
0.590892
0.157848


COMT
NA
NA
NA
0.749278
0.356566
2.101373
−0.05068
0.448567
−0.11298
−2.45771


CRYZ
NA
NA
NA
NA
NA
NA
−0.31201
0.303615
−1.02766
−0.53751


CSF1
NA
NA
NA
NA
NA
NA
−1.40833
1.21432
−1.15977
NA


CTHRC1
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.574897


CXCL12
NA
NA
NA
−0.36476
0.372499
−0.97921
−0.4566
0.219587
−2.07935
NA


CXCL14
NA
NA
NA
−0.23692
0.333761
−0.70985
0.361375
0.159544
2.265049
NA


CYR61
NA
NA
NA
0.310818
0.515557
0.602878
−0.24435
0.252867
−0.9663
0.571476


DICER1
NA
NA
NA
NA
NA
NA
−0.33943
0.39364
−0.8623
0.038811


DLC1
NA
NA
NA
0.13581
0.37927
0.358083
−0.4102
0.387258
−1.05923
−0.09793


TNFRSF10B
NA
NA
NA
−0.09001
0.619057
−0.1454
0.80742
0.544479
1.482922
0.159018


DUSP1
NA
NA
NA
−0.20229
0.200782
−1.00753
−0.02736
0.224043
−0.12212
NA


E2F1
NA
NA
NA
NA
NA
NA
0.845576
0.685556
1.233416
−1.06849


EEF1A2
0.26278
0.091435
2.873951
NA
NA
NA
0.362569
0.17103
2.119915
NA


ELF3
NA
NA
NA
1.34589
0.628064
2.142919
0.569231
0.430739
1.321522
0.209853


ENO1
NA
NA
NA
NA
NA
NA
0.179739
0.312848
0.574525
NA


EPHB2
NA
NA
NA
0.155831
0.717587
0.21716
−0.19469
0.90381
−0.21541
1.38257


ERBB2
NA
NA
NA
−0.32795
0.215691
−1.52044
0.065275
0.189094
0.3452
0.314084


ERBB4
NA
NA
NA
NA
NA
NA
−0.12516
0.182846
−0.68451
−0.13567


ESRRG
NA
NA
NA
NA
NA
NA
0.122595
0.204322
0.600009
0.356845


ESR1
NA
NA
NA
−0.14448
0.127214
−1.13569
0.009283
0.107091
0.086687
−0.12127


EZH2
NA
NA
NA
NA
NA
NA
0.36213
0.244107
1.483489
NA


F3
NA
NA
NA
0.719395
0.524742
1.37095
−0.21237
0.363632
−0.58402
−0.00167


FGFR4
NA
NA
NA
0.864262
0.479596
1.802063
0.451249
0.296065
1.524155
0.230309


FHIT
NA
NA
NA
1.00058
0.938809
1.065797
−1.58314
0.766553
−2.06527
0.087228


FN1
NA
NA
NA
0.056943
0.154068
0.369595
0.282152
0.407361
0.692634
0.417442


FOXA1
NA
NA
NA
NA
NA
NA
0.054619
0.1941
0.281398
NA


FUS
NA
NA
NA
NA
NA
NA
2.73816
1.95693
1.399212
−0.18397


GADD45A
NA
NA
NA
NA
NA
NA
−0.09194
0.324263
−0.28352
−0.33447


GAPDH
−0.00386  
0.125637
−0.03075  
0.869317
0.274798
3.163476
0.728889
0.497848
1.464079
NA


GATA3
NA
NA
NA
−0.33431
0.127225
−2.62767
−0.00759
0.145072
−0.05233
0.190453


GBP2
NA
NA
NA
0.120416
0.247997
0.485554
−0.49134
0.289525
−1.69704
0.517501


GDF15
NA
NA
NA
0.219861
0.231613
0.94926
0.317951
0.183188
1.735654
NA


GRB7
NA
NA
NA
−0.46505
0.485227
−0.95842
0.143585
0.218034
0.658544
NA


GSTM1
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA


GSTM2
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA


GSTM3
NA
NA
NA
−1.19919
0.478486
−2.50622
−0.08173
0.176832
−0.46219
NA


HOXB13
NA
NA
NA
NA
NA
NA
0.780988
0.524959
1.487712
0.461343


OTUD4
NA
NA
NA
NA
NA
NA
−0.54088
1.59038
−0.34009
0.154269


HSPA1A
NA
NA
NA
0.199478
0.304533
0.655029
0.56215
0.592113
0.949396
NA


HSPA1B
NA
NA
NA
NA
NA
NA
0.60089
0.32867
1.828247
NA


HSPA8
NA
NA
NA
0.88406
0.420719
2.101308
1.13504
0.667937
1.699322
0.647034


IDH2
NA
NA
NA
−0.0525
0.232201
−0.22611
0.151299
0.327466
0.46203
NA


IGF1R
NA
NA
NA
−0.62963
0.509985
−1.23461
−0.05773
0.176259
−0.32753
−0.11077


IGFBP7
NA
NA
NA
NA
NA
NA
0.047112
0.479943
0.098162
NA


IL11
NA
NA
NA
NA
NA
NA
1.19114
1.41017
0.844678
NA


IL17RB
NA
NA
NA
NA
NA
NA
0.143131
0.294647
0.485771
−0.44343


IL6ST
NA
NA
NA
−0.08851
0.151324
−0.58488
−0.00958
0.287723
−0.03329
−0.76052


IL8
NA
NA
NA
0.222258
0.235694
0.942994
0.262285
0.346572
0.756798
−0.12567


INHBA
NA
NA
NA
0.095254
0.476446
0.199927
0.342597
0.27142
1.262239
NA


IRF1
NA
NA
NA
0.87337
0.941443
0.927693
−0.39282
0.392589
−1.00059
0.474132


ITGA4
NA
NA
NA
NA
NA
NA
−0.91318
0.542311
−1.68388
NA


ITGA5
NA
NA
NA
1.44044
0.636806
2.261976
0.97846
0.67341
1.452993
0.206218


ITGAV
NA
NA
NA
0.14845
0.345246
0.429983
0.383127
0.60722
0.630953
−0.23212


ITGB1
NA
NA
NA
1.22836
0.683544
1.797046
−0.0587
1.73799
−0.03378
−0.13651


ITGB4
NA
NA
NA
0.548277
0.334628
1.638467
0.252015
0.365768
0.689002
−0.12971


ITGB5
NA
NA
NA
−0.17231
0.250618
−0.68752
0.037961
0.401861
0.094464
0.682674


MKI67
NA
NA
NA
−0.43304
0.708832
−0.61092
0.482583
0.321739
1.499921
NA


KIAA1199
NA
NA
NA
NA
NA
NA
−0.02195
0.382802
−0.05735
0.081394


KPNA2
0.301662
0.171052
1.763569
−0.5507
0.55364
−0.99468
0.21269
0.256724
0.828477
−1.6447


LAMA3
NA
NA
NA
−0.74591
0.563373
−1.32401
−0.21092
0.29604
−0.71245
NA


LAMB3
NA
NA
NA
NA
NA
NA
0.345497
0.263827
1.309559
0.03108


LAPTM4B
NA
NA
NA
NA
NA
NA
−0.04029
0.234986
−0.17148
0.352765


LMNB1
NA
NA
NA
0.648703
0.285233
2.274292
0.621431
0.389912
1.593772
NA


LRIG1
NA
NA
NA
NA
NA
NA
−0.00217
0.260339
−0.00832
−0.61468


MTDH
NA
NA
NA
NA
NA
NA
−0.10827
0.493025
−0.21961
0.084824


MCM2
NA
NA
NA
0.875004
0.492588
1.77634
0.77667
0.376275
2.064102
0.118904


MELK
NA
NA
NA
0.850914
0.313784
2.711783
0.16347
0.256575
0.637124
NA


MGMT
NA
NA
NA
NA
NA
NA
0.151967
0.583459
0.260459
0.267185


MMP1
NA
NA
NA
0.43277
0.16023
2.70093
−0.02427
0.158939
−0.15272
0.180359


MMP7
NA
NA
NA
0.198055
0.143
1.385
0.106475
0.193338
0.550719
−1.06791


MYBL2
NA
NA
NA
0.731162
0.267911
2.729123
0.098974
0.600361
0.164857
0.612646


NAT1
NA
NA
NA
−0.57746
15.1186
−0.0382
−0.01397
0.117033
−0.11939
−0.05035


PGF
NA
NA
NA
0.901309
0.501058
1.798812
1.43389
1.27617
1.123589
NA


PGR
NA
NA
NA
NA
NA
NA
−0.33243
0.276025
−1.20435
−0.95852


PRDX1
NA
NA
NA
NA
NA
NA
−0.41082
0.47383
−0.86703
NA


PTEN
NA
NA
NA
−0.17429
0.629039
−0.27708
−0.15599
0.541475
−0.28808
−0.10814


RPL41
NA
NA
NA
NA
NA
NA
1.02038
1.83528
0.555981
0.213155


RPLP0
NA
NA
NA
0.398754
0.282913
1.409458
0.246775
1.2163
0.20289
0.488909


RRM2
NA
NA
NA
NA
NA
NA
0.196643
0.262745
0.748418
NA


RUNX1
NA
NA
NA
−0.22834
0.318666
−0.71656
0.302803
0.420043
0.720886
0.277566


S100A8
NA
NA
NA
NA
NA
NA
0.066629
0.11857
0.561939
NA


S100A9
NA
NA
NA
NA
NA
NA
0.111103
0.13176
0.843223
NA


S100B
NA
NA
NA
0.097319
0.589664
0.165041
−0.2365
0.349444
−0.67678
NA


S100P
NA
NA
NA
0.378047
0.120687
3.132458
0.302607
0.133752
2.262448
NA


SEMA3F
NA
NA
NA
−0.27556
0.615782
−0.4475
0.498631
0.616195
0.80921
0.107802


SKIL
NA
NA
NA
NA
NA
NA
0.026279
0.587743
0.044712
NA


SKP2
NA
NA
NA
NA
NA
NA
0.2502
0.469372
0.533053
0.470759


SNAI1
NA
NA
NA
NA
NA
NA
0.165897
1.09586
0.151385
0.163855


SYK
NA
NA
NA
−0.26425
0.588491
−0.44903
−0.22515
0.492582
−0.45707
NA


TAGLN
NA
NA
NA
NA
NA
NA
0.042223
0.251268
0.168039
0.010727


TFRC
NA
NA
NA
−0.91825
0.636275
−1.44317
0.162921
0.352486
0.462206
0.029015


TGFB3
NA
NA
NA
−1.0219
0.358953
−2.84689
−0.39774
0.470041
−0.84619
0.046498


TNFRSF11B
NA
NA
NA
NA
NA
NA
−0.10399
0.440721
−0.23595
−1.15976


VTN
NA
NA
NA
−0.18721
0.475541
−0.39367
−2.39601
1.83129
−1.30837
NA


WISP1
NA
NA
NA
NA
NA
NA
0.437936
0.592058
0.739684
−0.03674


WNT5A
NA
NA
NA
NA
NA
NA
0.180255
0.286462
0.629246
0.06984


C6orf66
NA
NA
NA
NA
NA
NA
0.35565
0.504627
0.704778
0.179742


FOXO3A
NA
NA
NA
NA
NA
NA
−0.04428
0.39855
−0.1111
0.176454


GPR30
NA
NA
NA
0.01829
0.925976
0.019752
−0.298
0.747388
−0.39872
−0.03208


KNTC2
NA
NA
NA
NA
NA
NA
−0.02315
0.289403
−0.07999
−0.14241


















Official










Symbol
MGH~SE
MGH~t
NCH~Est
NCH~SE
NCH~t
NKI~Est
NKI~SE
NKI~t





AAMP
0.620209
−0.43441
0.088826
0.283082
0.313782
0.312939
0.228446
1.36986


ABCC1
0.284341
0.891591
0.213191
0.154486
1.380002
0.094607
0.258279
0.366298


ABCC3
0.221759
0.572162
−0.00756
0.167393
−0.04517
0.06613
0.096544
0.684974


ABR
NA
NA
NA
NA
NA
−0.06114
0.095839
−0.63795


ACTR2
0.205648
0.349398
0.131215
0.267434
0.490644
0.539449
0.254409
2.120401


ADAM17
0.435924
0.681266
−0.18523
0.407965
−0.45402
0.068689
0.12741
0.539115


ADM
0.142364
1.582732
0.314064
0.201161
1.561257
0.264131
0.06376
4.142582


LYPD6
0.120883
−3.17855
−0.23802
0.209786
−1.1346
−0.4485
0.106865
−4.19691


AKT3
0.576851
−2.48154
0.181912
0.147743
1.231273
0.149731
0.140716
1.064065


ALCAM
0.239833
−1.51888
0.002712
0.084499
0.032094
−0.3019
0.094459
−3.19609


APEX1
0.181782
−0.42215
−0.00097
0.268651
−0.00361
−0.13398
0.232019
−0.57746


ARF1
0.804729
2.534493
−0.15337
0.204529
−0.74984
0.944168
0.204641
4.613777


AURKA
0.169472
1.593732
−0.07663
0.213247
−0.35934
0.643963
0.101097
6.369754


BAD
NA
NA
0.38364
0.389915
0.983907
0.149641
0.221188
0.676533


BAG1
0.282963
−1.28267
−0.11976
0.203911
−0.58733
−0.41603
0.138093
−3.01265


BBC3
NA
NA
0.056993
0.249671
0.228274
−0.5633
0.158825
−3.54669


BCAR3
0.216837
−1.91825
0.072246
0.304443
0.237306
−0.26067
0.114992
−2.26685


BCL2
1.23296
−2.00629
NA
NA
NA
−0.30738
0.079518
−3.86557


BIRC5
NA
NA
0.268836
0.122325
2.197719
0.390779
0.069127
5.6531


BTRC
NA
NA
−0.63958
0.485936
−1.31618
−0.52394
0.139699
−3.75051


BUB1
0.268687
0.769133
0.104644
0.142318
0.735283
0.426611
0.094852
4.49763


C10orf116
NA
NA
0.064337
0.14087
0.456713
−0.22589
0.082836
−2.72696


C17orf37
NA
NA
0.1532
0.294177
0.520775
NA
NA
NA


TPX2
NA
NA
−0.01014
0.317222
−0.03198
0.536914
0.116472
4.609812


C8orf4
0.106335
−0.66236
−0.03221
0.189009
−0.1704
−0.3396
0.083273
−4.07813


CAV1
0.2269
−0.30391
0.078825
0.340843
0.231265
−0.30885
0.133788
−2.30848


CCL19
0.153468
1.606752
0.024132
0.130045
0.185564
−0.08897
0.087102
−1.02143


CCNB1
NA
NA
−0.02016
0.230327
−0.08751
0.495483
0.10424
4.75329


CDC20
0.198727
0.478159
0.482934
0.216025
2.235547
0.35587
0.125008
2.846778


CDC25A
0.227966
1.12773
0.078265
0.111013
0.705008
0.48387
0.105238
4.597864


CDC25C
0.240266
1.418769
−0.22371
0.269481
−0.83013
0.287063
0.136568
2.101979


CDH11
0.199053
0.141931
−0.0883
0.124418
−0.70971
−0.13223
0.097541
−1.35564


CDK4
0.129757
1.423276
0.304045
0.17456
1.741779
0.267465
0.148641
1.799403


SCUBE2
NA
NA
−0.01783
0.063429
−0.28108
−0.24635
0.048622
−5.0667


CENPA
NA
NA
0.225878
0.249928
0.903772
0.467131
0.081581
5.726013


CHAF1B
0.323193
1.470762
0.233081
0.291389
0.799896
0.519868
0.125204
4.152168


CLDN4
0.314723
0.588187
−0.23129
0.426627
−0.54213
0.564756
0.210595
2.681716


CLIC1
0.821392
0.209395
−0.05548
0.414451
−0.13385
0.383134
0.165674
2.312578


COL1A1
NA
NA
0.004033
0.146511
0.027527
NA
NA
NA


COL1A2
0.123812
1.274901
0.057815
0.163831
0.352894
−0.00235
0.064353
−0.03653


COMT
1.02805
−2.39065
0.526063
0.226489
2.322687
−0.00764
0.129967
−0.05878


CRYZ
0.214408
−2.50696
−0.32472
0.253244
−1.28224
−0.25514
0.124909
−2.04264


CSF1
NA
NA
−0.14894
0.352724
−0.42226
−0.11194
0.240555
−0.46532


CTHRC1
0.535382
1.073807
−0.08389
0.137325
−0.6109
0.024002
0.097692
0.245691


CXCL12
NA
NA
−0.08863
0.138097
−0.64183
−0.36944
0.138735
−2.66293


CXCL14
NA
NA
−0.06592
0.093353
−0.70609
−0.16877
0.054117
−3.11866


CYR61
0.323144
1.768487
−0.11281
0.164296
−0.68663
0.087147
0.082372
1.057965


DICER1
0.409835
0.0947
0.086141
0.143687
0.599504
−0.46887
0.150367
−3.11814


DLC1
0.247069
−0.39638
−0.03473
0.238947
−0.14533
−0.35001
0.130472
−2.68262


TNFRSF10B
0.456205
0.348567
−0.19927
0.160381
−1.24248
0.053214
0.164091
0.324294


DUSP1
NA
NA
−0.03006
0.152909
−0.19657
−0.0472
0.09086
−0.51952


E2F1
0.824212
−1.29638
0.356102
0.38254
0.930888
0.617258
0.121385
5.085126


EEF1A2
NA
NA
−0.0028
0.233293
−0.01199
−0.01585
0.06608
−0.23987


ELF3
0.239225
0.87722
0.026264
0.109569
0.2397
0.165848
0.143091
1.159039


ENO1
NA
NA
−0.01727
0.097939
−0.17629
0.3682
0.094778
3.884888


EPHB2
0.444196
3.112522
−0.46953
0.395102
−1.18837
0.318437
0.123672
2.574851


ERBB2
0.126321
2.486396
0.23616
0.121533
1.943176
0.08469
0.056744
1.492504


ERBB4
0.114364
−1.18626
0.191218
0.114326
1.672568
−0.28508
0.066294
−4.30028


ESRRG
0.216506
1.648199
0.023341
0.078378
0.297795
−0.16542
0.093598
−1.76733


ESR1
0.111184
−1.09075
0.127143
0.109672
1.159302
−0.16933
0.044665
−3.79121


EZH2
NA
NA
0.008861
0.200897
0.044106
0.478266
0.107424
4.452134


F3
0.448211
−0.00372
−0.13187
0.134218
−0.98248
−0.29217
0.093753
−3.11637


FGFR4
0.229234
1.00469
−0.15142
0.109674
−1.3806
−0.04922
0.146198
−0.33666


FHIT
0.322399
0.270559
−0.08366
0.344886
−0.24256
−0.1378
0.121745
−1.13183


FN1
0.859619
0.485613
−0.05187
0.111777
−0.46402
0.112875
0.066759
1.690796


FOXA1
NA
NA
−0.04211
0.103534
−0.40677
−0.08953
0.043624
−2.05225


FUS
0.269637
−0.68227
0.119801
0.199389
0.600841
0.115971
0.188545
0.615084


GADD45A
0.236846
−1.41219
−0.43753
0.333292
−1.31276
−0.15889
0.115794
−1.37217


GAPDH
NA
NA
0.396067
0.169944
2.330574
0.286211
0.073946
3.870541


GATA3
0.170135
1.119423
0.058244
0.115942
0.502355
−0.13285
0.054984
−2.41625


GBP2
0.299148
1.729916
0.082647
0.173301
0.4769
−0.19825
0.1358
−1.45985


GDF15
NA
NA
0.200247
0.14325
1.397885
0.052347
0.063101
0.829563


GRB7
NA
NA
0.027699
0.459937
0.060224
0.126284
0.054856
2.302117


GSTM1
NA
NA
NA
NA
NA
−0.18141
0.14912
−1.21652


GSTM2
NA
NA
NA
NA
NA
−0.15655
0.118111
−1.32547


GSTM3
NA
NA
−0.09058
0.129247
−0.70086
−0.336
0.086817
−3.87028


HOXB13
0.122399
3.769173
0.453876
0.324863
1.39713
0.161713
0.053047
3.048485


OTUD4
0.633438
0.243542
0.150174
0.149267
1.006076
−0.08847
0.130112
−0.67992


HSPA1A
NA
NA
0.187486
0.231047
0.811463
0.174571
0.117296
1.488295


HSPA1B
NA
NA
NA
NA
NA
0.249602
0.129038
1.934329


HSPA8
0.346081
1.869603
0.208652
0.225656
0.924646
0.054243
0.178314
0.304198


IDH2
NA
NA
0.265828
0.105592
2.517501
0.284862
0.089145
3.195498


IGF1R
0.162941
−0.67982
−0.37931
0.371019
−1.02236
−0.13655
0.08362
−1.63299


IGFBP7
NA
NA
0.163138
0.200674
0.81295
0.06541
0.10077
0.649097


IL11
NA
NA
−0.17423
0.144228
−1.20804
−0.048
0.126254
−0.38015


IL17RB
0.132744
−3.3405
NA
NA
NA
−0.01632
0.122679
−0.13305


IL6ST
0.386504
−1.96769
−0.4336
0.319875
−1.35553
−0.41477
0.111102
−3.73322


IL8
0.154036
−0.81583
−1.28729
0.493461
−2.6087
0.171912
0.07248
2.371858


INHBA
NA
NA
−0.12767
0.132531
−0.96331
0.133895
0.111083
1.20536


IRF1
0.503423
0.941816
−0.2456
0.294202
−0.8348
−0.08017
0.171067
−0.46864


ITGA4
NA
NA
0.034844
0.074049
0.470549
−0.05101
0.133497
−0.38211


ITGA5
0.263291
0.783232
0.367111
0.333768
1.099899
0.500604
0.163986
3.052724


ITGAV
0.278464
−0.83358
−0.14166
0.222286
−0.6373
−0.21993
0.158945
−1.38371


ITGB1
0.121624
−1.12236
−0.52799
0.346298
−1.52468
0.150333
0.133426
1.126714


ITGB4
0.168517
−0.76973
0.189568
0.163609
1.158665
0.166748
0.175308
0.951172


ITGB5
0.74847
0.912093
−0.04952
0.16668
−0.29707
0.010302
0.104545
0.098544


MKI67
NA
NA
0.128582
0.129422
0.99351
0.397232
0.176102
2.255693


KIAA1199
0.121221
0.671448
NA
NA
NA
0.238809
0.113748
2.099457


KPNA2
1.00101
−1.64304
0.213725
0.196767
1.086183
0.422135
0.089135
4.735922


LAMA3
NA
NA
−0.03143
0.133752
−0.23497
−0.30023
0.122124
−2.45838


LAMB3
0.139904
0.222154
0.106874
0.139587
0.765644
−0.03167
0.069644
−0.45477


LAPTM4B
0.40304
0.875261
0.156358
0.140366
1.113931
0.334588
0.083358
4.013853


LMNB1
NA
NA
−0.1517
0.242463
−0.62567
0.461325
0.098382
4.689115


LRIG1
0.216033
−2.84532
−0.24368
0.172969
−1.40878
−0.50209
0.1119
−4.48694


MTDH
0.292285
0.290209
0.039288
0.233351
0.168365
0.430557
0.145357
2.962066


MCM2
0.288369
0.412333
0.586577
0.252123
2.326551
0.504911
0.154078
3.276983


MELK
NA
NA
0.216763
0.1352
1.603277
0.471343
0.103644
4.547711


MGMT
0.295678
0.903635
−0.37332
0.507157
−0.73611
−0.14716
0.165874
−0.88716


MMP1
0.078781
2.289386
0.559716
0.331212
1.689903
0.167053
0.064595
2.586172


MMP7
1.30502
−0.81831
0.012294
0.101346
0.121311
NA
NA
NA


MYBL2
0.509356
1.202785
0.396938
0.171503
2.314467
0.751827
0.151477
4.963308


NAT1
0.105736
−0.47614
−0.15619
0.139368
−1.12073
−0.20435
0.058054
−3.52


PGF
NA
NA
0.05255
0.14245
0.368898
0.055127
0.36118
0.152631


PGR
0.593621
−1.61469
−0.01033
0.08386
−0.12312
−0.30421
0.073055
−4.16405


PRDX1
NA
NA
0.253047
0.182621
1.38564
0.231612
0.161791
1.431551


PTEN
0.287261
−0.37645
0.113229
0.228164
0.496261
−0.3204
0.149745
−2.13962


RPL41
0.288282
0.739398
0.030854
0.188269
0.163881
−0.08602
0.122667
−0.70126


RPLP0
0.174981
2.794069
0.004595
0.198497
0.023148
0.008104
0.079365
0.102105


RRM2
NA
NA
0.229458
0.11665
1.967064
0.434693
0.152104
2.857867


RUNX1
0.267511
1.037587
0.124568
0.088457
1.408231
−0.18878
0.138365
−1.36435


S100A8
NA
NA
0.142073
0.080349
1.768194
0.094631
0.041656
2.271738


S100A9
NA
NA
0.090314
0.058415
1.546083
0.111093
0.045472
2.443086


S100B
NA
NA
0.239753
0.145105
1.652272
0.195383
0.295751
0.660633


S100P
NA
NA
0.202856
0.092114
2.202218
0.103276
0.04811
2.146677


SEMA3F
0.274191
0.393164
−0.17978
0.185166
−0.97092
NA
NA
NA


SKIL
NA
NA
0.143484
0.103564
1.385462
0.124124
0.120741
1.028019


SKP2
0.2802
1.680082
−0.71691
0.354699
−2.02117
0.056728
0.128585
0.441174


SNAI1
0.228308
0.717693
−0.04601
0.259767
−0.17711
0.057651
0.124454
0.463235


SYK
NA
NA
−1.30716
0.591071
−2.21151
0.178238
0.168423
1.058276


TAGLN
0.098919
0.108442
0.194543
0.115463
1.684895
0.077881
0.119491
0.651776


TFRC
0.193689
0.149803
0.056174
0.166875
0.336622
0.157216
0.10845
1.449663


TGFB3
0.2296
0.202518
−0.30473
0.247338
−1.23202
−0.36531
0.09592
−3.80851


TNFRSF11B
0.400921
−2.89274
−0.2492
0.289075
−0.86207
−0.22072
0.10171
−2.17005


VTN
NA
NA
0.048066
0.34143
0.140779
−0.05675
0.116352
−0.48774


WISP1
0.212861
−0.1726
NA
NA
NA
−0.36317
0.153002
−2.3736


WNT5A
0.223411
0.312605
−0.14987
0.146576
−1.02248
−0.29433
0.084559
−3.48081


C6orf66
0.364806
0.492706
−0.53606
0.448343
−1.19564
0.296686
0.199046
1.49054


FOXO3A
0.221502
0.796625
0.059822
0.171485
0.348846
−0.2855
0.194121
−1.47074


GPR30
0.1214
−0.26427
0.157898
0.174583
0.904429
0.080079
0.104254
0.768115


KNTC2
0.246904
−0.57677
0.274706
0.14532
1.890352
0.432186
0.120356
3.590897



















Official






TRANS
TRANS
TRANS


Symbol
STNO~Est
STNO~SE
STNO~t
STOCK~Est
STOCK~SE
STOCK~t
BIG~Est
BIG~SE
BIG~t





AAMP
0.189376
0.309087
0.612695
0.836415
0.549695
1.521598
0.051406
0.111586
0.460681


ABCC1
NA
NA
NA
0.640672
0.375725
1.705162
NA
NA
NA


ABCC3
0.311364
0.100031
3.112675
0.166453
0.159249
1.045237
NA
NA
NA


ABR
0.095087
0.266216
0.357181
0.08129
0.196104
0.414525
NA
NA
NA


ACTR2
NA
NA
NA
0.302753
0.39656
0.763448
NA
NA
NA


ADAM17
NA
NA
NA
0.437069
0.276977
1.577997
NA
NA
NA


ADM
NA
NA
NA
0.555634
0.242705
2.289339
0.025583
0.038218
0.669405


LYPD6
NA
NA
NA
−0.42358
0.145799
−2.90525
−0.06178
0.031054
−1.98944


AKT3
NA
NA
NA
0.12232
0.182253
0.671155
NA
NA
NA


ALCAM
−0.14634
0.126842
−1.15369
−0.41301
0.190485
−2.16822
NA
NA
NA


APEX1
0.005151
0.257871
0.019976
0.739037
0.539346
1.370247
NA
NA
NA


ARF1
0
0.107397
0
0.862387
0.279535
3.085077
NA
NA
NA


AURKA
0.38795
0.127032
3.053955
0.688845
0.210275
3.275924
0.020041
0.064473
0.310835


BAD
−0.30035
0.250277
−1.20006
0.228387
0.543493
0.420221
NA
NA
NA


BAG1
NA
NA
NA
−0.39593
0.380547
−1.04043
NA
NA
NA


BBC3
NA
NA
NA
−0.26155
0.219839
−1.18974
−0.04709
0.086372
−0.5452


BCAR3
NA
NA
NA
−0.49692
0.265837
−1.86927
NA
NA
NA


BCL2
−0.38181
0.112494
−3.39408
−0.73699
0.228055
−3.23162
NA
NA
NA


BIRC5
0.190534
0.126151
1.510365
0.582957
0.159354
3.658251
0.007906
0.045316
0.174454


BTRC
NA
NA
NA
−0.92763
0.307218
−3.01944
NA
NA
NA


BUB1
0.357653
0.101235
3.532899
1.09451
0.258044
4.241563
0.014276
0.040135
0.355694


C10orf116
−0.09621
0.085948
−1.11936
−0.34745
0.112777
−3.08087
NA
NA
NA


C17orf37
NA
NA
NA
0.382862
0.185356
2.06555
NA
NA
NA


TPX2
NA
NA
NA
0.800822
0.195737
4.091316
NA
NA
NA


C8orf4
NA
NA
NA
−0.36113
0.130038
−2.77713
NA
NA
NA


CAV1
0.135002
0.093948
1.436991
−0.65852
0.275751
−2.38811
NA
NA
NA


CCL19
−0.0546
2531.93
−2.16E−05
−0.15743
0.154207
−1.02087
NA
NA
NA


CCNB1
0.37726
0.156356
2.412827
0.828029
0.223403
3.706436
NA
NA
NA


CDC20
0.059565
1057.7
5.63E−05
0.642601
0.178622
3.597547
NA
NA
NA


CDC25A
0.288245
0.213701
1.348824
0.168571
0.225272
0.7483
NA
NA
NA


CDC25C
0.420797
0.155926
2.698697
1.02036
0.337803
3.020577
NA
NA
NA


CDH11
−0.05652
0.1231
−0.45913
−0.21142
0.211537
−0.99942
NA
NA
NA


CDK4
0.279447
0.142472
1.961417
1.40458
0.463254
3.031987
NA
NA
NA


SCUBE2
−0.21559
0.074112
−2.90896
−0.24679
0.122745
−2.01059
0.016505
0.023486
0.702739


CENPA
NA
NA
NA
0.724539
0.195614
3.703922
0.002888
0.04791
0.060269


CHAF1B
0.259119
0.162074
1.59877
0.281358
0.148493
1.894756
NA
NA
NA


CLDN4
0.40922
0.128817
3.176755
1.20235
0.33711
3.56664
0.03236
0.053171
0.608591


CLIC1
0.238723
0.209629
1.138788
2.00024
0.600443
3.331274
−0.26608
0.160756
−1.65519


COL1A1
0.127256
0.081743
1.556791
0.05098
0.156488
0.325773
0.087944
0.034256
2.567237


COL1A2
−0.01925
0.078156
−0.24625
−0.17504
0.228915
−0.76466
NA
NA
NA


COMT
NA
NA
NA
0.643165
0.360056
1.786292
NA
NA
NA


CRYZ
−0.38719
0.143353
−2.70092
0.122949
0.340718
0.360853
NA
NA
NA


CSF1
NA
NA
NA
−0.11449
0.197258
−0.58042
−0.09782
0.196881
−0.49684


CTHRC1
NA
NA
NA
0.263783
0.247606
1.065334
NA
NA
NA


CXCL12
0.066487
0.189775
0.350348
−0.65036
0.168426
−3.86137
NA
NA
NA


CXCL14
−0.20969
0.073458
−2.8546
−0.14079
0.096118
−1.46476
NA
NA
NA


CYR61
NA
NA
NA
−0.38308
0.231645
−1.65372
NA
NA
NA


DICER1
NA
NA
NA
−1.06544
0.322204
−3.30672
NA
NA
NA


DLC1
0.519601
0.221066
2.350434
−0.66099
0.298518
−2.21425
NA
NA
NA


TNFRSF10B
−0.03773
0.174479
−0.21623
−0.03558
0.198203
−0.1795
NA
NA
NA


DUSP1
0.095682
0.223995
0.42716
−0.14883
0.12682
−1.17351
NA
NA
NA


E2F1
0.171825
0.110793
1.550865
0.699408
0.207377
3.37264
NA
NA
NA


EEF1A2
NA
NA
NA
−0.01256
0.130353
−0.09633
NA
NA
NA


ELF3
0.406692
0.148275
2.742822
0.233332
0.357735
0.652248
NA
NA
NA


ENO1
NA
NA
NA
0.428884
0.194952
2.199947
NA
NA
NA


EPHB2
NA
NA
NA
0.192999
0.451341
0.427612
NA
NA
NA


ERBB2
0.268938
0.074504
3.609693
0.092164
0.188964
0.487734
NA
NA
NA


ERBB4
−0.10396
0.068988
−1.50697
−0.73759
0.209821
−3.51532
NA
NA
NA


ESRRG
NA
NA
NA
−0.32843
0.127583
−2.57425
NA
NA
NA


ESR1
−0.14983
0.057346
−2.61275
−0.2159
0.120078
−1.798
−0.0019
0.019747
−0.0963


EZH2
0.293772
0.156133
1.88155
0.79436
0.243012
3.26881
−0.03007
0.04916
−0.61166


F3
NA
NA
NA
−0.3284
0.132658
−2.47552
NA
NA
NA


FGFR4
0.201581
0.15216
1.324796
−0.06118
0.174787
−0.35001
NA
NA
NA


FHIT
−0.16819
0.17858
−0.94184
−0.27141
0.367689
−0.73815
NA
NA
NA


FN1
0.049279
0.11577
0.425659
0.185381
0.202933
0.913508
NA
NA
NA


FOXA1
NA
NA
NA
−0.18849
0.161048
−1.17039
NA
NA
NA


FUS
NA
NA
NA
0.368833
0.437273
0.843485
NA
NA
NA


GADD45A
0.390085
0.342821
1.137868
−0.24644
0.303688
−0.81148
NA
NA
NA


GAPDH
NA
NA
NA
0.907441
0.296513
3.060375
NA
NA
NA


GATA3
−0.20281
0.068842
−2.94607
−0.25592
0.122639
−2.08677
NA
NA
NA


GBP2
0.104968
0.124764
0.841332
−0.17667
0.338601
−0.52176
NA
NA
NA


GDF15
−0.02683
0.097032
−0.27646
0.251857
0.169158
1.488886
NA
NA
NA


GRB7
0.28938
0.08099
3.573025
0.464983
0.21274
2.185687
NA
NA
NA


GSTM1
NA
NA
NA
NA
NA
NA
NA
NA
NA


GSTM2
NA
NA
NA
NA
NA
NA
NA
NA
NA


GSTM3
−0.38478
0.15382
−2.50148
−0.43469
0.17404
−2.49766
0.035771
0.038412
0.931246


HOXB13
NA
NA
NA
0.193
0.369898
0.521765
NA
NA
NA


OTUD4
0.372577
0.253393
1.470352
−0.19372
0.251083
−0.77155
NA
NA
NA


HSPA1A
NA
NA
NA
0.765501
0.440826
1.736515
NA
NA
NA


HSPA1B
0.033372
0.19398
0.172039
0.069621
0.248436
0.280237
NA
NA
NA


HSPA8
0.22166
0.199205
1.112723
0.32649
0.265007
1.232005
NA
NA
NA


IDH2
0.127942
0.255302
0.50114
0.574289
0.193387
2.969636
NA
NA
NA


IGF1R
−0.16723
0.112062
−1.49233
−0.35887
0.141569
−2.53498
NA
NA
NA


IGFBP7
0.121056
0.164973
0.733793
−0.55896
0.34775
−1.60736
NA
NA
NA


IL11
NA
NA
NA
0.086327
0.225669
0.38254
NA
NA
NA


IL17RB
NA
NA
NA
−0.01403
0.212781
−0.06594
NA
NA
NA


IL6ST
NA
NA
NA
−0.65682
0.195937
−3.35217
NA
NA
NA


IL8
0.548269
0.238841
2.29554
0.382317
0.203112
1.882296
NA
NA
NA


INHBA
−0.12998
0.113709
−1.14313
0.249729
0.184419
1.354139
NA
NA
NA


IRF1
0.307333
0.166134
1.84991
0.248132
0.447433
0.554568
NA
NA
NA


ITGA4
0.02688
2341.09
1.15E−05
0.198854
0.302824
0.656665
NA
NA
NA


ITGA5
NA
NA
NA
0.025981
0.423908
0.061288
NA
NA
NA


ITGAV
0
0.216251
0
−0.403
0.45413
−0.88742
NA
NA
NA


ITGB1
0.131284
0.165432
0.793583
0.195878
0.3192
0.613653
NA
NA
NA


ITGB4
0.100533
0.106548
0.943547
0.035914
0.241068
0.14898
NA
NA
NA


ITGB5
−0.19722
0.165947
−1.18843
−0.29946
0.281956
−1.06207
NA
NA
NA


MKI67
−0.07823
0.088982
−0.87915
0.96424
0.257398
3.746105
NA
NA
NA


KIAA1199
NA
NA
NA
0.293164
0.194272
1.509039
NA
NA
NA


KPNA2
0.328818
0.112579
2.920776
0.857218
0.267225
3.207851
NA
NA
NA


LAMA3
−0.28334
0.120229
−2.3567
−0.42291
0.12869
−3.28625
NA
NA
NA


LAMB3
NA
NA
NA
−0.15767
0.230936
−0.68274
NA
NA
NA


LAPTM4B
0.405684
0.113287
3.581029
0.28652
0.19422
1.475234
NA
NA
NA


LMNB1
NA
NA
NA
0.755925
0.25541
2.959653
NA
NA
NA


LRIG1
−0.31422
0.128149
−2.45197
−0.95351
0.258142
−3.69375
NA
NA
NA


MTDH
0.242242
0.285145
0.84954
0.472647
0.340076
1.389828
0.052038
0.077589
0.670683


MCM2
0.008185
0.084857
0.096455
0.732134
0.216462
3.382275
NA
NA
NA


MELK
NA
NA
NA
0.749617
0.195032
3.843559
0.022669
0.036962
0.613293


MGMT
NA
NA
NA
0.377527
0.48364
0.780595
NA
NA
NA


MMP1
0.083945
0.055744
1.505895
0.28871
0.081435
3.545299
NA
NA
NA


MMP7
0.102783
0.072986
1.408258
−0.00343
0.153901
−0.0223
NA
NA
NA


MYBL2
0.399355
0.118084
3.381957
0.579872
0.192026
3.019758
NA
NA
NA


NAT1
−0.14333
0.060602
−2.36509
−0.26529
0.117131
−2.26487
NA
NA
NA


PGF
−0.17016
0.153912
−1.10557
−0.08334
0.183966
−0.45304
0.095422
0.145828
0.654349


PGR
NA
NA
NA
−0.18022
0.108941
−1.65427
NA
NA
NA


PRDX1
NA
NA
NA
1.52553
0.420489
3.62799
NA
NA
NA


PTEN
0
226.764
0
−0.26976
0.225651
−1.19546
NA
NA
NA


RPL41
NA
NA
NA
−0.40807
0.786496
−0.51884
NA
NA
NA


RPLP0
NA
NA
NA
0.018324
0.458438
0.039971
NA
NA
NA


RRM2
0.305217
0.104337
2.9253
0.926244
0.22125
4.186414
0.038487
0.042471
0.906208


RUNX1
−0.17832
0.165636
−1.07657
−0.39722
0.244634
−1.62372
NA
NA
NA


S100A8
0.093477
0.04547
2.055818
0.164366
0.096581
1.701846
NA
NA
NA


S100A9
NA
NA
NA
0.15514
0.10905
1.42265
NA
NA
NA


S100B
0.136825
0.163838
0.835124
−0.11862
0.158461
−0.74859
−0.01591
0.034049
−0.46712


S100P
0.19922
0.078236
2.546395
0.201435
0.097583
2.064251
NA
NA
NA


SEMA3F
0.023257
0.162267
0.143327
0.472655
0.292764
1.614457
NA
NA
NA


SKIL
NA
NA
NA
0.015831
0.262101
0.060402
NA
NA
NA


SKP2
NA
NA
NA
0.312141
0.339582
0.919192
NA
NA
NA


SNAI1
NA
NA
NA
0.152799
0.210056
0.72742
NA
NA
NA


SYK
0.21812
0.150626
1.44809
−0.06882
0.155403
−0.44285
NA
NA
NA


TAGLN
−0.00434
0.108525
−0.04003
−0.2578
0.197826
−1.30316
NA
NA
NA


TFRC
0.406546
0.131339
3.095394
0.178145
0.153331
1.161833
−0.03263
0.051129
−0.63826


TGFB3
−0.07166
0.134442
−0.53298
−1.08462
0.322799
−3.36005
0.013681
0.046103
0.296755


TNFRSF11B
0
0.08306
0
−0.10987
0.128194
−0.85708
NA
NA
NA


VTN
−0.01674
0.109545
−0.15278
0.100648
0.186529
0.539584
0.226938
0.091337
2.484623


WISP1
0.03435
0.194412
0.176685
0.236658
0.340736
0.694549
−0.00282
0.068308
−0.04121


WNT5A
0.121343
0.108022
1.123317
−0.01524
0.172902
−0.08815
NA
NA
NA


C6orf66
NA
NA
NA
0.530409
0.355488
1.492059
NA
NA
NA


FOXO3A
NA
NA
NA
0.087341
0.128833
0.67794
NA
NA
NA


GPR30
NA
NA
NA
−0.36866
0.173755
−2.12169
NA
NA
NA


KNTC2
NA
NA
NA
0.442783
0.170315
2.599789
−0.00276
0.041235
−0.06696




















Official











Symbol
UCSF~Est
UCSF~SE
UCSF~t
UPP~Est
UPP~SE
UPP~t
fe
sefe







AAMP
0.770516
0.762039
1.011124
1.25423
0.577991
2.169982
0.146929
0.085151



ABCC1
NA
NA
NA
0.274551
0.271361
1.011756
0.281451
0.104466



ABCC3
0.381707
0.250896
1.521375
0.178451
0.097237
1.835219
0.172778
0.048133



ABR
−0.17319
0.728313
−0.23779
−0.16409
0.120793
−1.35847
−0.06034
0.067134



ACTR2
NA
NA
NA
0.21463
0.353554
0.607064
0.199885
0.117995



ADAM17
0.35888
0.433785
0.827322
0.131246
0.194946
0.673243
0.129961
0.090699



ADM
NA
NA
NA
0.361033
0.203349
1.775435
0.119028
0.030564



LYPD6
NA
NA
NA
−0.1544
0.073668
−2.09587
−0.12675
0.026288



AKT3
NA
NA
NA
−0.06832
0.125172
−0.5458
0.05204
0.071861



ALCAM
−0.25661
0.251874
−1.01879
−0.1468
0.143998
−1.01942
−0.15502
0.046361



APEX1
−0.96465
0.704753
−1.36878
1.23743
0.466987
2.649817
0.019915
0.10244



ARF1
0.304097
0.58718
0.517894
0.751279
0.361093
2.080569
0.281544
0.07587



AURKA
−0.0146
0.28312
−0.05156
0.427382
0.126638
3.374832
0.262652
0.041246



BAD
−0.43933
0.659711
−0.66594
0.351434
0.360157
0.97578
0.059151
0.126378



BAG1
0.516764
0.524112
0.98598
0.380154
0.211079
1.801003
−0.16426
0.087173



BBC3
0.263477
0.606256
0.434597
−0.13039
0.141473
−0.92165
−0.14598
0.061462



BCAR3
NA
NA
NA
−0.29435
0.182614
−1.61186
−0.28755
0.080198



BCL2
−0.3453
0.410691
−0.84078
−0.11988
0.174734
−0.68605
−0.32009
0.056047



BIRC5
0.357332
0.286621
1.246706
0.43455
0.110681
3.926148
0.186649
0.031964



BTRC
NA
NA
NA
−0.0225
0.1807
−0.12451
−0.40405
0.100468



BUB1
0.376719
0.340175
1.107427
0.469009
0.162539
2.885517
0.154368
0.032048



C10orf116
0.013111
156.117
8.40E−05
−0.00923
0.100902
−0.09148
−0.13
0.042521



C17orf37
NA
NA
NA
0.385651
0.113625
3.394068
0.362223
0.092012



TPX2
0.213479
0.284008
0.751665
0.44053
0.139377
3.160708
0.480408
0.073094



C8orf4
NA
NA
NA
0.0037
0.109064
0.033921
−0.18346
0.048256



CAV1
−0.54391
0.428883
−1.2682
−0.31503
0.150431
−2.09415
−0.11726
0.058989



CCL19
0
0.434462
0
−0.1048
0.106112
−0.98765
−0.05608
0.050769



CCNB1
−0.35808
0.431863
−0.82915
0.611916
0.142007
4.309055
0.456916
0.062513



CDC20
−0.65381
0.404188
−1.61759
0.490188
0.130676
3.751171
0.319134
0.064899



CDC25A
−0.31967
0.397525
−0.80414
0.330359
0.191096
1.728759
0.267201
0.060819



CDC25C
−0.33774
0.477196
−0.70776
0.827213
0.232669
3.555321
0.382935
0.077595



CDH11
−0.20567
0.246195
−0.83541
−0.22621
0.164541
−1.37482
−0.11417
0.053045



CDK4
−0.37577
0.674081
−0.55746
0.814832
0.297251
2.741225
0.305255
0.069562



SCUBE2
NA
NA
NA
−0.14287
0.077009
−1.8552
−0.05439
0.018349



CENPA
0.679912
0.275146
2.471095
0.536476
0.157029
3.416414
0.185486
0.037867



CHAF1B
−0.03447
0.352745
−0.09773
0.209129
0.093425
2.238469
0.300765
0.05807



CLDN4
0
1.8541
0
0.08503
0.258939
0.328378
0.125868
0.045235



CLIC1
0.377361
0.552842
0.682584
0.999191
0.414232
2.412153
0.222753
0.088912



COL1A1
NA
NA
NA
−0.05544
0.13355
−0.41509
0.083989
0.029343



COL1A2
−0.1405
0.184661
−0.76085
−0.15924
0.220113
−0.72346
−0.00069
0.041375



COMT
0.356582
0.628139
0.56768
0.404183
0.257299
1.570869
0.212925
0.092124



CRYZ
−0.52792
0.412283
−1.28048
−0.37265
0.225119
−1.65534
−0.33167
0.071579



CSF1
NA
NA
NA
0.120517
0.148659
0.810694
−0.0334
0.090261



CTHRC1
NA
NA
NA
−0.14789
0.176843
−0.83626
−0.00169
0.069075



CXCL12
−0.05795
0.270065
−0.21456
−0.35344
0.150278
−2.35189
−0.28998
0.062826



CXCL14
NA
NA
NA
−0.1861
0.08384
−2.21976
−0.14219
0.032611



CYR61
−0.22327
0.263371
−0.84773
−0.41188
0.174362
−2.36221
−0.04446
0.059831



DICER1
0
0.311799
0
0.208326
0.307144
0.678268
−0.19602
0.085879



DLC1
−0.31503
0.345828
−0.91094
−0.404
0.200673
−2.01324
−0.19876
0.076441



TNFRSF10B
0.932141
0.524911
1.775808
0.127348
0.157658
0.807748
0.02034
0.072745



DUSP1
0.008053
0.779738
0.010327
−0.41475
0.153012
−2.71055
−0.11225
0.054628



E2F1
NA
NA
NA
0.570954
0.172882
3.302565
0.433836
0.067966



EEF1A2
0.433528
0.267338
1.621648
−0.04242
0.091692
−0.46259
0.068177
0.041066



ELF3
0.841389
0.55748
1.509272
0.096421
0.256911
0.375307
0.196003
0.066053



ENO1
0.899319
0.369574
2.433394
0.288434
0.179833
1.603899
0.233559
0.058687



EPHB2
0.355634
0.604801
0.588018
0.211632
0.199057
1.063173
0.284709
0.094113



ERBB2
0.301674
0.170749
1.766769
0.349689
0.107646
3.248509
0.181046
0.034939



ERBB4
NA
NA
NA
−0.1859
0.117619
−1.58055
−0.16266
0.037384



ESRRG
NA
NA
NA
−0.04663
0.091723
−0.50839
−0.0602
0.044609



ESR1
−0.30054
0.138369
−2.17201
−0.05086
0.082082
−0.6196
−0.04576
0.015905



EZH2
0.123884
0.404373
0.306361
0.615257
0.155425
3.958546
0.134411
0.0393



F3
−0.08026
0.491948
−0.16315
−0.20405
0.109227
−1.86809
−0.22911
0.055029



FGFR4
0.149034
0.333338
0.447096
0.204299
0.102078
2.001401
0.075374
0.053791



FHIT
0.225378
0.678656
0.332095
0.053025
0.245338
0.216132
−0.11401
0.082797



FN1
0.13258
0.244458
0.542343
−0.15952
0.26761
−0.59607
0.070337
0.045477



FOXA1
NA
NA
NA
0.139273
0.160139
0.869701
−0.07105
0.037194



FUS
NA
NA
NA
−0.15247
0.345172
−0.44173
0.063142
0.111165



GADD45A
0.153778
0.296649
0.518384
−0.4297
0.20668
−2.07904
−0.18353
0.077839



GAPDH
NA
NA
NA
0.493907
0.232859
2.121056
0.303991
0.05522



GATA3
−0.2038
0.135112
−1.50836
0.052882
0.108852
0.485817
−0.12484
0.03218



GBP2
0.161775
0.235299
0.687529
0.215873
0.198252
1.088882
0.030811
0.064103



GDF15
0.462744
0.465751
0.993544
0.139286
0.128201
1.086466
0.095577
0.04245



GRB7
0.492397
0.361768
1.361085
0.39613
0.142688
2.776197
0.203411
0.041043



GSTM1
NA
NA
NA
NA
NA
NA
−0.18141
0.14912



GSTM2
−0.12675
0.336406
−0.37676
NA
NA
NA
−0.15328
0.111442



GSTM3
0.11963
0.323329
0.369995
−0.05308
0.123135
−0.43107
−0.06296
0.030752



HOXB13
0.540678
0.49567
1.090802
0.342881
0.212428
1.614105
0.227421
0.046188



OTUD4
−0.97971
0.713147
−1.37378
0.231981
0.294286
0.788284
0.034041
0.081167



HSPA1A
NA
NA
NA
0.722677
0.40563
1.781616
0.243271
0.092738



HSPA1B
NA
NA
NA
0.187302
0.176407
1.061761
0.198207
0.083268



HSPA8
−0.30224
0.477926
−0.63239
0.126525
0.166299
0.760828
0.218804
0.082393



IDH2
−0.009
0.554612
−0.01623
0.659908
0.186426
3.539785
0.303626
0.056121



IGF1R
0.277384
0.391147
0.709155
−0.04996
0.122321
−0.40843
−0.14872
0.0484



IGFBP7
−0.50275
0.332753
−1.51087
−0.16594
0.185086
−0.89655
0.005398
0.068861



IL11
NA
NA
NA
0.000507
0.151608
0.003346
−0.05199
0.075711



IL17RB
NA
NA
NA
−0.1861
0.139748
−1.33168
−0.16557
0.069337



IL6ST
−0.11749
0.19789
−0.5937
−0.26213
0.150485
−1.74192
−0.31568
0.063376



IL8
−0.3673
0.460322
−0.79791
0.076262
0.135635
0.562257
0.136391
0.05243



INHBA
0.094476
0.303634
0.311152
0.036575
0.162207
0.225485
0.026824
0.056655



IRF1
0.380822
0.370842
1.026912
−0.01044
0.283877
−0.03676
0.082446
0.091982



ITGA4
−0.54938
0.583992
−0.94073
−0.01192
0.18086
−0.0659
0.002027
0.059101



ITGA5
NA
NA
NA
0.406364
0.36399
1.116415
0.431369
0.112958



ITGAV
−0.59197
0.499066
−1.18615
−0.24399
0.30418
−0.80213
−0.15415
0.089488



ITGB1
0.430257
0.540622
0.795856
−0.18009
0.530248
−0.33962
0.026471
0.072949



ITGB4
0.754519
0.285307
2.644586
0.075057
0.181963
0.412483
0.132678
0.060938



ITGB5
−0.19391
0.378906
−0.51177
−0.21379
0.157719
−1.35549
−0.09296
0.063571



MKI67
−0.19193
0.462712
−0.4148
0.597931
0.152281
3.926498
0.183915
0.058442



KIAA1199
NA
NA
NA
0.070065
0.141965
0.493538
0.153718
0.066186



KPNA2
0.32028
0.315031
1.016662
0.615022
0.206117
2.983849
0.374909
0.054897



LAMA3
−0.14266
0.366741
−0.38899
−0.27285
0.091038
−2.99711
−0.26764
0.050305



LAMB3
NA
NA
NA
−0.1353
0.168256
−0.8041
−0.00591
0.051501



LAPTM4B
NA
NA
NA
0.095487
0.136338
0.700367
0.270104
0.051492



LMNB1
0.121429
0.384263
0.316005
0.805734
0.199208
4.044687
0.481816
0.073226



LRIG1
NA
NA
NA
−0.05954
0.178366
−0.33383
−0.37679
0.062403



MTDH
NA
NA
NA
0.45556
0.239663
1.900836
0.158361
0.059133



MCM2
0.138969
0.340074
0.408643
0.602555
0.182898
3.294487
0.275153
0.05978



MELK
NA
NA
NA
0.46629
0.128065
3.641042
0.132605
0.031744



MGMT
0.368174
0.453282
0.812241
0.725329
0.346508
2.093253
0.085317
0.117786



MMP1
0.150509
0.33411
0.450477
0.11015
0.051829
2.12525
0.151235
0.027295



MMP7
0.166646
0.143301
1.162909
0.059637
0.10332
0.57721
0.08418
0.042799



MYBL2
0.030169
0.282699
0.106717
0.445705
0.102011
4.369186
0.479924
0.057205



NAT1
−0.1696
0.138069
−1.22836
−0.05668
0.076583
−0.7401
−0.14009
0.030446



PGF
−1.00442
0.630097
−1.59407
0.038005
0.124883
0.304328
0.009034
0.063633



PGR
0.451216
0.527475
0.855426
−0.01652
0.065638
−0.25164
−0.12464
0.038764



PRDX1
0.358079
0.32938
1.08713
0.706059
0.303105
2.32942
0.347764
0.10081



PTEN
NA
NA
NA
0.110294
0.254356
0.433621
−0.15381
0.092467



RPL41
NA
NA
NA
0.24408
0.604521
0.403758
−0.01769
0.094765



RPLP0
NA
NA
NA
0.964584
0.554848
1.738465
0.108162
0.064823



RRM2
−0.03281
0.279791
−0.11727
0.674794
0.149386
4.517117
0.159696
0.03419



RUNX1
−0.58909
0.385997
−1.52616
−0.2142
0.105479
−2.03071
−0.07498
0.052758



S100A8
0.123771
0.178963
0.691601
0.125784
0.065874
1.909478
0.106936
0.024582



S100A9
NA
NA
NA
0.135096
0.074987
1.801592
0.112811
0.030203



S100B
−0.05362
0.218098
−0.24584
−0.13315
0.115177
−1.15608
−0.01134
0.030069



S100P
0.416003
0.200351
2.076371
0.174292
0.063687
2.736705
0.179884
0.028697



SEMA3F
NA
NA
NA
0.545294
0.227357
2.398404
0.117569
0.092557



SKIL
0.141704
0.348326
0.406814
0.179419
0.152532
1.176271
0.134826
0.065866



SKP2
NA
NA
NA
0.482145
0.194873
2.47415
0.167902
0.091018



SNAI1
NA
NA
NA
0.329059
0.159704
2.060431
0.140674
0.078745



SYK
0.159029
0.431388
0.368645
0.066162
0.136668
0.484107
0.063381
0.072639



TAGLN
NA
NA
NA
−0.06802
0.191196
−0.35574
0.032416
0.049944



TFRC
−0.22576
0.249301
−0.90558
0.545839
0.208978
2.611945
0.062825
0.038345



TGFB3
−0.25719
0.253264
−1.01551
−0.49773
0.225603
−2.20621
−0.10353
0.03709



TNFRSF11B
NA
NA
NA
−0.03866
0.087545
−0.44163
−0.09599
0.046815



VTN
−0.22804
0.193542
−1.17822
0.167418
0.152274
1.099452
0.063022
0.050706



WISP1
NA
NA
NA
−0.29716
0.212939
−1.39552
−0.05687
0.054306



WNT5A
−0.96994
0.719267
−1.34851
−0.23507
0.152819
−1.5382
−0.12181
0.051129



C6orf66
NA
NA
NA
−0.04983
0.251179
−0.19837
0.167784
0.123636



FOXO3A
−0.03591
0.49687
−0.07227
−0.00291
0.074227
−0.03914
0.007101
0.054798



GPR30
NA
NA
NA
−0.07779
0.125956
−0.61763
−0.02487
0.058543



KNTC2
−0.02041
0.366566
−0.05568
0.347484
0.117596
2.954896
0.093083
0.034359

















TABLE 14







Validation of Transferrin Receptor Group genes in SIB data sets.









Genes














Study data set
TFRC
ENO1
IDH2
ARF1
CLDN4
PRDX1
GBP1





EMC2~Est
NA
NA
NA
NA
NA
NA
NA


EMC2~SE
NA
NA
NA
NA
NA
NA
NA


EMC2~t
NA
NA
NA
NA
NA
NA
NA


JRH1~Est
−0.91825
NA
−0.0525
0.839013
−0.54144
NA
0.137268


JRH1~SE
0.636275
NA
0.232201
0.346692
0.470758
NA
0.159849


JRH1~t
−1.44317
NA
−0.22611
2.420053
−1.15014
NA
0.858735


JRH2~Est
0.162921
0.179739
0.151299
0.369609
0.33033
−0.41082
−0.07418


JRH2~SE
0.352486
0.312848
0.327466
0.40789
0.351865
0.47383
0.198642


JRH2~t
0.462206
0.574525
0.46203
0.906149
0.938798
−0.86703
−0.37345


MGH~Est
0.029015
NA
NA
2.03958
0.185116
NA
0.15434


MGH~SE
0.193689
NA
NA
0.804729
0.314723
NA
0.188083


MGH~t
0.149803
NA
NA
2.534493
0.588187
NA
0.820595


NCH~Est
0.056174
−0.01727
0.265828
−0.15337
−0.23129
0.253047
0.095457


NCH~SE
0.166875
0.097939
0.105592
0.204529
0.426627
0.182621
0.1323


NCH~t
0.336622
−0.17629
2.517501
−0.74984
−0.54213
1.38564
0.721522


NKI~Est
0.157216
0.3682
0.284862
0.944168
0.564756
0.231612
0.13712


NKI~SE
0.10845
0.094778
0.089145
0.204641
0.210595
0.161791
0.075391


NKI~t
1.449663
3.884888
3.195498
4.613777
2.681716
1.431551
1.818777


STNO~Est
0.406546
NA
0.127942
0
0.40922
NA
0.298139


STNO~SE
0.131339
NA
0.255302
0.107397
0.128817
NA
0.113901


STNO~t
3.095394
NA
0.50114
0
3.176755
NA
2.617528


STOCK~Est
0.178145
0.428884
0.574289
0.862387
1.20235
1.52553
0.068821


STOCK~SE
0.153331
0.194952
0.193387
0.279535
0.33711
0.420489
0.183692


STOCK~t
1.161833
2.199947
2.969636
3.085077
3.56664
3.62799
0.374652


TRANSBIG~Est
−0.03263
NA
NA
NA
0.03236
NA
NA


TRANSBIG~SE
0.051129
NA
NA
NA
0.053171
NA
NA


TRANSBIG~t
−0.63826
NA
NA
NA
0.608591
NA
NA


UCSF~Est
−0.22576
0.899319
−0.009
0.304097
0
0.358079
−0.43879


UCSF~SE
0.249301
0.369574
0.554612
0.58718
1.8541
0.32938
0.874728


UCSF~t
−0.90558
2.433394
−0.01623
0.517894
0
1.08713
−0.50163


UPP~Est
0.545839
0.288434
0.659908
0.751279
0.08503
0.706059
0.119778


UPP~SE
0.208978
0.179833
0.186426
0.361093
0.258939
0.303105
0.117879


UPP~t
2.611945
1.603899
3.539785
2.080569
0.328378
2.32942
1.01611


Fe
0.062825
0.233559
0.303626
0.281544
0.125868
0.347764
0.139381


Sefe
0.038345
0.058687
0.056121
0.07587
0.045235
0.10081
0.044464
















TABLE 15





Validation of Stromal Group genes in SIB data sets.






















Gene
CXCL14
TNFRSF11B
CXCL12
C10orf116
RUNX1
GSTM2
TGFB3





EMC2~Est
NA
NA
NA
NA
NA
NA
NA


EMC2~SE
NA
NA
NA
NA
NA
NA
NA


EMC2~t
NA
NA
NA
NA
NA
NA
NA


JRH1~Est
−0.23692
NA
−0.36476
−0.1418
−0.22834
NA
−1.0219


JRH1~SE
0.333761
NA
0.372499
0.261554
0.318666
NA
0.358953


JRH1~t
−0.70985
NA
−0.97921
−0.54216
−0.71656
NA
−2.84689


JRH2~Est
0.361375
−0.10399
−0.4566
0.036378
0.302803
NA
−0.39774


JRH2~SE
0.159544
0.440721
0.219587
0.182183
0.420043
NA
0.470041


JRH2~t
2.265049
−0.23595
−2.07935
0.19968
0.720886
NA
−0.84619


MGH~Est
NA
−1.15976
NA
NA
0.277566
NA
0.046498


MGH~SE
NA
0.400921
NA
NA
0.267511
NA
0.2296


MGH~t
NA
−2.89274
NA
NA
1.037587
NA
0.202518


NCH~Est
−0.06592
−0.2492
−0.08863
0.064337
0.124568
NA
−0.30473


NCH~SE
0.093353
0.289075
0.138097
0.14087
0.088457
NA
0.247338


NCH~t
−0.70609
−0.86207
−0.64183
0.456713
1.408231
NA
−1.23202


NKI~Est
−0.16877
−0.22072
−0.36944
−0.22589
−0.18878
−0.15655
−0.36531


NKI~SE
0.054117
0.10171
0.138735
0.082836
0.138365
0.118111
0.09592


NKI~t
−3.11866
−2.17005
−2.66293
−2.72696
−1.36435
−1.32547
−3.80851


STNO~Est
−0.20969
0
0.066487
−0.09621
−0.17832
NA
−0.07166


STNO~SE
0.073458
0.08306
0.189775
0.085948
0.165636
NA
0.134442


STNO~t
−2.8546
0
0.350348
−1.11936
−1.07657
NA
−0.53298


STOCK~Est
−0.14079
−0.10987
−0.65036
−0.34745
−0.39722
NA
−1.08462


STOCK~SE
0.096118
0.128194
0.168426
0.112777
0.244634
NA
0.322799


STOCK~t
−1.46476
−0.85708
−3.86137
−3.08087
−1.62372
NA
−3.36005


TRANSBIG~Est
NA
NA
NA
NA
NA
NA
0.013681


TRANSBIG~SE
NA
NA
NA
NA
NA
NA
0.046103


TRANSBIG~t
NA
NA
NA
NA
NA
NA
0.296755


UCSF~Est
NA
NA
−0.05795
0.013111
−0.58909
−0.12675
−0.25719


UCSF~SE
NA
NA
0.270065
156.117
0.385997
0.336406
0.253264


UCSF~t
NA
NA
−0.21456
8.40E−05
−1.52616
−0.37676
−1.01551


UPP~Est
−0.1861
−0.03866
−0.35344
−0.00923
−0.2142
NA
−0.49773


UPP~SE
0.08384
0.087545
0.150278
0.100902
0.105479
NA
0.225603


UPP~t
−2.21976
−0.44163
−2.35189
−0.09148
−2.03071
NA
−2.20621


Fe
−0.14219
−0.09599
−0.28998
−0.13
−0.07498
−0.15328
−0.10353


Sefe
0.032611
0.046815
0.062826
0.042521
0.052758
0.111442
0.03709


















Gene
BCAR3
CAV1
DLC1
TNFRSF10B
F3
DICER1







EMC2~Est
NA
NA
NA
NA
NA
NA



EMC2~SE
NA
NA
NA
NA
NA
NA



EMC2~t
NA
NA
NA
NA
NA
NA



JRH1~Est
NA
−0.20701
0.13581
−0.09001
0.719395
NA



JRH1~SE
NA
0.254401
0.37927
0.619057
0.524742
NA



JRH1~t
NA
−0.81372
0.358083
−0.1454
1.37095
NA



JRH2~Est
−0.29238
−0.19588
−0.4102
0.80742
−0.21237
−0.33943



JRH2~SE
0.522706
0.289251
0.387258
0.544479
0.363632
0.39364



JRH2~t
−0.55935
−0.67721
−1.05923
1.482922
−0.58402
−0.8623



MGH~Est
−0.41595
−0.06896
−0.09793
0.159018
−0.00167
0.038811



MGH~SE
0.216837
0.2269
0.247069
0.456205
0.448211
0.409835



MGH~t
−1.91825
−0.30391
−0.39638
0.348567
−0.00372
0.0947



NCH~Est
0.072246
0.078825
−0.03473
−0.19927
−0.13187
0.086141



NCH~SE
0.304443
0.340843
0.238947
0.160381
0.134218
0.143687



NCH~t
0.237306
0.231265
−0.14533
−1.24248
−0.98248
0.599504



NKI~Est
−0.26067
−0.30885
−0.35001
0.053214
−0.29217
−0.46887



NKI~SE
0.114992
0.133788
0.130472
0.164091
0.093753
0.150367



NKI~t
−2.26685
−2.30848
−2.68262
0.324294
−3.11637
−3.11814



STNO~Est
NA
0.135002
0.519601
−0.03773
NA
NA



STNO~SE
NA
0.093948
0.221066
0.174479
NA
NA



STNO~t
NA
1.436991
2.350434
−0.21623
NA
NA



STOCK~Est
−0.49692
−0.65852
−0.66099
−0.03558
−0.3284
−1.06544



STOCK~SE
0.265837
0.275751
0.298518
0.198203
0.132658
0.322204



STOCK~t
−1.86927
−2.38811
−2.21425
−0.1795
−2.47552
−3.30672



TRANSBIG~Est
NA
NA
NA
NA
NA
N/A



TRANSBIG~SE
NA
NA
NA
NA
NA
N/A



TRANSBIG~t
NA
NA
NA
NA
NA
N/A



UCSF~Est
NA
−0.54391
−0.31503
0.932141
−0.08026
0



UCSF~SE
NA
0.428883
0.345828
0.524911
0.491948
0.311799



UCSF~t
NA
−1.2682
−0.91094
1.775808
−0.16315
0



UPP~Est
−0.29435
−0.31503
−0.404
0.127348
−0.20405
0.208326



UPP~SE
0.182614
0.150431
0.200673
0.157658
0.109227
0.307144



UPP~t
−1.61186
−2.09415
−2.01324
0.807748
−1.86809
0.678268



Fe
−0.28755
−0.11726
−0.19876
0.02034
−0.22911
−0.19602



Sefe
0.080198
0.058989
0.076441
0.072745
0.055029
0.085879

















TABLE 16







Table 16: Genes that co-express with Prognostic genes in ER+


breast cancer tumors (Spearman corr. coef. ≧0.7)








Prognostic



Gene
Co-expressed Genes















INHBA
AEBP1
CDH11
COL10A1
COL11A1
COL1A2



COL5A1
COL5A2
COL8A2
ENTPD4
LOXL2



LRRC15
MMP11
NOX4
PLAU
THBS2



THY1
VCAN


CAV1
ANK2
ANXA1
AQP1
C10orf56
CAV2



CFH
COL14A1
CRYAB
CXCL12
DAB2



DCN
ECM2
FHL1
FLRT2
GNG11



GSN
IGF1
JAM2
LDB2
NDN



NRN1
PCSK5
PLSCR4
PROS1
TGFBR2


NAT1
PSD3


GSTM1
GSTM2


GSTM2
GSTM1


ITGA4
ARHGAP15
ARHGAP25
CCL5
CD3D
CD48



CD53
CORO1A
EVI2B
FGL2
GIMAP4



IRF8
LCK
PTPRC
TFEC
TRAC



TRAF3IP3
TRBC1
EVI2A
FLI1
GPR65



IL2RB
LCP2
LOC100133233
MNDA
PLAC8



PLEK
TNFAIP8


CCL19
ARHGAP15
ARHGAP25
CCL5
CCR2
CCR7



CD2
CD247
CD3D
CD3E
CD48



CD53
FLJ78302
GPR171
IL10RA
IL7R



IRF8
LAMP3
LCK
LTB
PLAC8



PRKCB1
PTPRC
PTPRCAP
SASH3
SPOCK2



TRA@
TRBC1
TRD@
PPP1R16B
TRAC


CDH11
TAGLN
ADAM12
AEBP1
ANGPTL2
ASPN



BGN
BICC1
C10orf56
C1R
C1S



C20orf39
CALD1
COL10A1
COL11A1
COL1A1



COL1A2
COL3A1
COL5A1
COL5A2
COL6A1



COL6A2
COL6A3
COL8A2
COMP
COPZ2



CRISPLD2
CTSK
DACT1
DCN
DPYSL3



ECM2
EFEMP2
ENTPD4
FAP
FBLN1



FBLN2
FBN1
FERMT2
FLRT2
FN1



FSTL1
GAS1
GLT8D2
HEPH
HTRA1



ISLR
ITGBL1
JAM3
KDELC1
LAMA4



LAMB1
LOC100133502
LOX
LOXL2
LRRC15



LRRC17
LUM
MFAP2
MFAP5
MMP2



MRC2
MXRA5
MXRA8
MYL9
NDN



NID1
NID2
NINJ2
NOX4
OLFML2B



OMD
PALLD
PCOLCE
PDGFRA
PDGFRB



PDGFRL
POSTN
PRKCDBP
PRKD1
PTRF



RARRES2
RCN3
SERPINF1
SERPINH1
SFRP4



SNAI2
SPARC
SPOCK1
SPON1
SRPX2



SSPN
TCF4
THBS2
THY1
TNFAIP6



VCAN
WWTR1
ZEB1
ZFPM2
INHBA



PLS3
SEC23A
WISP1


TAGLN
CDH11
ADAM12
AEBP1
ANGPTL2
ASPN



BGN
BICC1
C10orf56
C1R
C1S



C20orf39
CALD1
COL10A1
COL11A1
COL1A1



COL1A2
COL3A1
COL5A1
COL5A2
COL6A1



COL6A2
COL6A3
COL8A2
COMP
COPZ2



CRISPLD2
CTSK
DACT1
DCN
DPYSL3



ECM2
EFEMP2
ENTPD4
FAP
FBLN1



FBLN2
FBN1
FERMT2
FLRT2
FN1



FSTL1
GAS1
GLT8D2
HEPH
HTRA1



ISLR
ITGBL1
JAM3
KDELC1
LAMA4



LAMB1
LOC100133502
LOX
LOXL2
LRRC15



LRRC17
LUM
MFAP2
MFAP5
MMP2



MRC2
MXRA5
MXRA8
MYL9
NDN



NID1
NID2
NINJ2
NOX4
OLFML2B



OMD
PALLD
PCOLCE
PDGFRA
PDGFRB



PDGFRL
POSTN
PRKCDBP
PRKD1
PTRF



RARRES2
RCN3
SERPINF1
SERPINH1
SFRP4



SNAI2
SPARC
SPOCK1
SPON1
SRPX2



SSPN
TCF4
THBS2
THY1
TNFAIP6



VCAN
WWTR1
ZEB1
ZFPM2
ACTA2



CNN1
DZIP1
EMILIN1


ENO1
ATP5J2
C10orf10
CLDN15
CNGB1
DET1



EIF3CL
HS2ST1
IGHG4
KIAA0195
KIR2DS5



PARP6
PRH1
RAD1
RIN3
RPL10



SGCG
SLC16A2
SLC9A3R1
SYNPO2L
THBS1



ZNF230


IDH2
AEBP1
HIST1H2BN
PCDHAC1


ARF1
CRIM1


DICER1
ADM
LOC100133583


AKT3
AKAP12
ECM2
FERMT2
FLRT2
JAM3



LOC100133502
PROS1
TCF4
WWTR1
ZEB1


CXCL12
ANXA1
C1R
C1S
CAV1
DCN



FLRT2
SRPX


CYR61
CTGF


IGFBP7
VIM


KIAA1199
COL11A1
PLAU


SPC25
ASPM
BUB1
BUB1B
CCNA2
CCNE2



CDC2
CDC25C
CENPA
CEP55
FANCI



GINS1
HJURP
KIAA0101
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF4A
MAD2L1



MELK
NCAPG
NEK2
NUSAP1
PRC1



STIL
ZWINT


WISP1
CDH11
COL5A2
















TABLE 17







Table 17: Genes that co-express with Prognostic Genes in ER-breast


cancer tumors (Spearman corr. coef. ≧0.7)








Prognostic



Gene
Co-expressed Genes















IRF1
APOL6
CXCL10
GABBR1
GBP1
HCP5



HLA-E
HLA-F
HLA-G
HLA-J
INDO



PSMB8
PSMB9
STAT1
TAP1
UBD



UBE2L6
WARS
APOBEC3F
APOBEC3G
APOL1



APOL3
ARHGAP25
BTN3A1
BTN3A2
BTN3A3



C1QB
CCL5
CD2
CD38
CD40



CD53
CD74
CD86
CSF2RB
CTSS



CYBB
FGL2
GIMAP5
GZMA
hCG_1998957



HCLS1
HLA-C
HLA-DMA
HLA-DMB
HLA-DPA1



HLA-DQB1
HLA-DQB2
HLA-DRA
HLA-DRB1
HLA-DRB2



HLA-DRB3
HLA-DRB4
HLA-DRB5
HLA-DRB6
IL10RA



IL2RB
LAP3
LAPTM5
LOC100133484
LOC100133583



LOC100133661
LOC100133811
LOC730415
NKG7
PLEK



PSMB10
PTPRC
RNASE2
SLAMF8
TFEC



TNFRSF1B
TRA@
TRAC
TRAJ17
TRAV20



ZNF749


CDH11
ADAM12
AEBP1
ANGPTL2
ASPN
CFH



CFHR1
COL10A1
COL11A1
COL1A1
COL1A2



COL3A1
COL5A1
COL5A2
COL6A3
CRISPLD2



CTSK
DACT1
DCN
FAP
FBN1



FN1
HTRA1
LOX
LRRC15
LUM



NID2
PCOLCE
PDGFRB
POSTN
SERPINF1



SPARC
THBS2
THY1
VCAN
DAB2



GLT8D2
ITGB5
JAM3
LOC100133502
MMP2



PRSS23
TIMP3
ZEB1


CCL19
ITGA4
ADAM28
AIF1
APOBEC3F
APOBEC3G



APOL3
ARHGAP15
ARHGAP25
CASP1
CCDC69



CCR2
CCR7
CD2
CD247
CD27



CD37
CD3D
CD3G
CD48
CD52



CD53
CD74
CD86
CD8A
CLEC4A



CORO1A
CTSS
CXCL13
DOCK10
EVI2A



EVI2B
FGL2
FLJ78302
FYB
GIMAP4





(CCR2)



GIMAP5
GIMAP6
GMFG
GPR171
GPR18



GPR65
GZMA
GZMB
GZMK
hCG_1998957



HCLS1
HLA-DMA
HLA-DMB
HLA-DPA1
HLA-DQA1



HLA-DQA2
HLA-DQB1
HLA-DQB2
HLA-DRB1
HLA-DRB2



HLA-DRB3
HLA-DRB4
HLA-DRB5
HLA-E
IGHM



IGSF6
IL10RA
IL2RG
IL7R
IRF8



KLRB1
KLRK1
LAPTM5
LAT2
LCK



LCP2
LOC100133484
LOC100133583
LOC100133661
LOC100133811



LOC730415
LPXN
LRMP
LST1
LTB



LY96
LYZ
MFNG
MNDA
MS4A4A



NCKAP1L
PLAC8
PLEK
PRKCB1
PSCDBP



PTPRC
PTPRCAP
RAC2
RNASE2
RNASE6



SAMHD1
SAMSN1
SASH3
SELL
SELPLG



SLA
SLAMF1
SLC7A7
SP140
SRGN



TCL1A
TFEC
TNFAIP8
TNFRSF1B
TRA@



TRAC
TRAJ17
TRAT1
TRAV20
TRBC1



TYROBP
ZNF749
ITM2A
LTB
P2RY13



PRKCB1
PTPRCAP
SELL
TRBC1


ITGA4
CCL19
ADAM28
AIF1
APOBEC3F
APOBEC3G



APOL3
ARHGAP15
ARHGAP25
CASP1
CCDC69



CCR2
CCR7
CD2
CD247
CD27



CD37
CD3D
CD3G
CD48
CD52



CD53
CD74
CD86
CD8A
CLEC4A



CORO1A
CTSS
CXCL13
DOCK10
EVI2A



EVI2B
FGL2
FLJ78302
FYB
GIMAP4





(CCR2)



GIMAP5
GIMAP6
GMFG
GPR171
GPR18



GPR65
GZMA
GZMB
GZMK
hCG_1998957



HCLS1
HLA-DMA
HLA-DMB
HLA-DPA1
HLA-DQA1



HLA-DQA2
HLA-DQB1
HLA-DQB2
HLA-DRB1
HLA-DRB2



HLA-DRB3
HLA-DRB4
HLA-DRB5
HLA-E
IGHM



IGSF6
IL10RA
IL2RG
IL7R
IRF8



KLRB1
KLRK1
LAPTM5
LAT2
LCK



LCP2
LOC100133484
LOC100133583
LOC100133661
LOC100133811



LOC730415
LPXN
LRMP
LST1
LTB



LY96
LYZ
MFNG
MNDA
MS4A4A



NCKAP1L
PLAC8
PLEK
PRKCB1
PSCDBP



PTPRC
PTPRCAP
RAC2
RNASE2
RNASE6



SAMHD1
SAMSN1
SASH3
SELL
SELPLG



SLA
SLAMF1
SLC7A7
SP140
SRGN



TCL1A
TFEC
TNFAIP8
TNFRSF1B
TRA@



TRAC
TRAJ17
TRAT1
TRAV20
TRBC1



TYROBP
ZNF749
MARCH1
C17orf60
CSF1R



FLI1
FLJ78302
FYN
IKZF1
INPP5D



NCF4
NR3C1
P2RY13
PLXNC1
PSCD4



PTPN22
SERPINB9
SLCO2B1
VAMP3
WIPF1


IDH2
AEBP1
DSG3
HIST1H2BN
PCDHAC1


ARF1
FABP5L2
FLNB
IL1RN
PAX6


DICER1
ARS2
IGHA1
VDAC3


TFRC
RGS20


ADAM17
TFDP3
GPR107


CAV1
CAV2
CXCL12
IGF1


CYR61
CTGF


ESR1
CBLN1
SLC45A2


GSTM1
GSTM2


GSTM2
GSTM1


IL11
FAM135A


IL6ST
P2RY5


IGFBP7
SPARCL1
TMEM204


INHBA
COL10A1
FN1
SULF1


SPC25
KIF4A
KIF20A
NCAPG


TAGLN
ACTA2
MYL9
NNMT
PTRF


TGFB3
GALNT10
HTRA1
LIMA1


TNFRSF10B
BIN3


FOXA1
CLCA2
TFAP2B
AGR2
MLPH
SPDEF


CXCL12
DCN
CAV1
IGF1
CFH


GBP2
APOL1
APOL3
CD2
CTSS
CXCL9



CXCR6
GBP1
GZMA
HLA-DMA
HLA-DMB



IL2RB
PTPRC
TRBC1
















TABLE 18







Table 18: Genes that co-express with Prognostic Genes in all breast cancer tumors


(Spearman corr. coef. ≧0.7)








Prognostic



Gene
Co-expressed Genes















S100A8
S100A9






S100A9
S100A8


MKI67
BIRC5
KIF20A
MCM10


MTDH
ARMC1
AZIN1
ENY2
MTERFD1
POLR2K



PTDSS1
RAD54B
SLC25A32
TMEM70
UBE2V2


GSTM1
GSTM2


GSTM2
GSTM1


CXCL12
AKAP12
DCN
F13A1


TGFB3
C10orf56
JAM3


TAGLN
ACTA2
CALD1
COPZ2
FERMT2
HEPH



MYL9
NNMT
PTRF
TPM2


PGF
ALMS1
ATP8B1
CEP27
DBT
FAM128B



FBXW12
FGFR1
FLJ12151
FLJ42627
GTF2H3



HCG2P7
KIAA0894
KLHL24
LOC152719
PDE4C



PODNL1
POLR1B
PRDX2
PRR11
RIOK3



RP5-886K2.1
SLC35E1
SPN
USP34
ZC3H7B



ZNF160
ZNF611


CCL19
ARHGAP15
ARHGAP25
CCL5
CCR2
CCR7



CD2
CD37
CD3D
CD48
CD52



CSF2RB
FLJ78302
GIMAP5
GIMAP6
GPR171



GZMK
IGHM
IRF8
LCK
LTB



PLAC8
PRKCB1
PTGDS
PTPRC
PTPRCAP



SASH3
TNFRSF1B
TRA@
TRAC
TRAJ17



TRAV20
TRBC1


IRF1
ITGA4
MARCH1
AIF1
APOBEC3F
APOBEC3G



APOL1
APOL3
ARHGAP15
ARHGAP25
BTN3A2



BTN3A3
CASP1
CCL4
CCL5
CD2



CD37
CD3D
CD48
CD53
CD69



CD8A
CORO1A
CSF2RB
CST7
CYBB



EVI2A
EVI2B
FGL2
FLI1
GBP1



GIMAP4
GIMAP5
GIMAP6
GMFG
GPR65



GZMA
GZMK
hCG_1998957
HCLS1
HLA-DMA



HLA-DMB
HLA-DPA1
HLA-DQB1
HLA-DQB2
HLA-DRA



HLA-DRB1
HLA-DRB2
HLA-DRB3
HLA-DRB4
HLA-DRB5



HLA-E
HLA-F
IGSF6
IL10RA
IL2RB



IRF8
KLRK1
LCK
LCP2
LOC100133583



LOC100133661
LOC100133811
LST1
LTB
LY86



MFNG
MNDA
NKG7
PLEK
PRKCB1



PSCDBP
PSMB10
PSMB8
PSMB9
PTPRC



PTPRCAP
RAC2
RNASE2
RNASE6
SAMSN1



SLA
SRGN
TAP1
TFEC
TNFAIP3



TNFRSF1B
TRA@
TRAC
TRAJ17
TRAV20



TRBC1
TRIM22
ZNF749


ITGA4
IRF1
MARCH1
AIF1
APOBEC3F
APOBEC3G



APOL1
APOL3
ARHGAP15
ARHGAP25
BTN3A2



BTN3A3
CASP1
CCL4
CCL5
CD2



CD37
CD3D
CD48
CD53
CD69



CD8A
CORO1A
CSF2RB
CST7
CYBB



EVI2A
EVI2B
FGL2
FLI1
GBP1



GIMAP4
GIMAP5
GIMAP6
GMFG
GPR65



GZMA
GZMK
hCG_1998957
HCLS1
HLA-DMA



HLA-DMB
HLA-DPA1
HLA-DQB1
HLA-DQB2
HLA-DRA



HLA-DRB1
HLA-DRB2
HLA-DRB3
HLA-DRB4
HLA-DRB5



HLA-E
HLA-F
IGSF6
IL10RA
IL2RB



IRF8
KLRK1
LCK
LCP2
LOC100133583



LOC100133661
LOC100133811
LST1
LTB
LY86



MFNG
MNDA
NKG7
PLEK
PRKCB1



PSCDBP
PSMB10
PSMB8
PSMB9
PTPRC



PTPRCAP
RAC2
RNASE2
RNASE6
SAMSN1



SLA
SRGN
TAP1
TFEC
TNFAIP3



TNFRSF1B
TRA@
TRAC
TRAJ17
TRAV20



TRBC1
TRIM22
ZNF749
CTSS


SPC25
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2


AURKA
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
SPC25
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2
PSMA7
CSE1L


BIRC5
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
SPC25
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2
MKI67


BUB1
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TR1P13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
SPC25
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2


CCNB1
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
SPC25



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2


CENPA
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



SPC25
KPNA2
LMNB1
MCM2
MELK



NDC80
TPX2


KPNA2
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
SPC25
LMNB1
MCM2
MELK



NDC80
TPX2
NOL11
PSMD12


LMNB1
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
SPC25
MCM2
MELK



NDC80
TPX2


MCM2
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
SPC25
MELK



NDC80
TPX2


MELK
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
SPC25



NDC80
TPX2


NDC80
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



SPC25
TPX2


TPX2
ASPM
ATAD2
AURKB
BUB1B
C12orf48



CCNA2
CCNE1
CCNE2
CDC2
CDC45L



CDC6
CDCA3
CDCA8
CDKN3
CENPE



CENPF
CENPN
CEP55
CHEK1
CKS1B



CKS2
DBF4
DEPDC1
DLG7
DNAJC9



DONSON
E2F8
ECT2
ERCC6L
FAM64A



FBXO5
FEN1
FOXM1
GINS1
GTSE1



H2AFZ
HJURP
HMMR
KIF11
KIF14



KIF15
KIF18A
KIF20A
KIF23
KIF2C



KIF4A
KIFC1
MAD2L1
MCM10
MCM6



NCAPG
NEK2
NUSAP1
OIP5
PBK



PLK4
PRC1
PTTG1
RACGAP1
RAD51AP1



RFC4
SMC2
STIL
STMN1
TACC3



TOP2A
TRIP13
TTK
TYMS
UBE2C



UBE2S
AURKA
BIRC5
BUB1
CCNB1



CENPA
KPNA2
LMNB1
MCM2
MELK



NDC80
SPC25


CDH11
INHBA
WISP1
COL1A1
COL1A2
FN1



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPON1
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1


INHBA
CDH11
WISP1
COL1A1
COL1A2
FN1



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPON1
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1


WISP1
INHBA
CDH11
COL1A1
COL1A2
FN1



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPON1
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1


COL1A1
INHBA
WISP1
CDH11
COL1A2
FN1



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPON1
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1


COL1A2
INHBA
WISP1
COL1A1
CDH11
FN1



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPON1
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1


FN1
INHBA
WISP1
COL1A1
COL1A2
CDH11



ADAM12
AEBP1
ANGPTL2
ASPN
BGN



BNC2
C1QTNF3
COL10A1
COL11A1
COL3A1



COL5A1
COL5A2
COL5A3
COL6A3
COMP



CRISPLD2
CTSK
DACT1
DCN
DKK3



DPYSL3
EFEMP2
EMILIN1
FAP
FBN1



FSTL1
GLT8D2
HEG1
HTRA1
ITGBL1



JAM3
KIAA1462
LAMA4
LOX
LOXL1



LRP1
LRRC15
LRRC17
LRRC32
LUM



MFAP5
MICAL2
MMP11
MMP2
MXRA5



MXRA8
NID2
NOX4
OLFML2B
PCOLCE



PDGFRB
PLAU
POSTN
SERPINF1
SPARC



SPOCK1
SPON1
SRPX2
SULF1
TCF4



THBS2
THY1
VCAN
ZEB1








Claims
  • 1. A method for predicting the clinical outcome of a patient diagnosed with cancer comprising: (a) obtaining an expression level of an expression product of at least one prognostic gene from a tissue sample obtained from a tumor of the patient, wherein the at least one prognostic gene is selected from GSTM2, IL6ST, GSTM3, C8orf4, TNFRSF11B, NAT1, RUNX1, CSF1, ACTR2, LMNB1, TFRC, LAPTM4B, ENO1, CDC20, and IDH2, or a gene listed in Tables 1, 2, 7, or 8;(b) normalizing the expression level of the expression product of the at least one prognostics gene to obtain a normalized expression level; and(c) calculating a risk score based on the normalized expression value, wherein increased expression of a prognostic gene selected from GSTM2, IL6ST, GSTM3, C8orf4, TNFRSF11B, NAT1, RUNX1, and CSF1, or a prognostic gene listed in Tables 1 and 7, is positively correlated with good prognosis, and wherein increased expression of a prognostic gene selected from ACTR2, LMNB1, TFRC, LAPTM4B, ENO1, CDC20, and IDH2, or a prognostic gene in Tables 2 and 8, is negatively associated with good prognosis.
  • 2. The method of claim 1, further comprising: generating a report based on the risk score.
  • 3. The method of claim 1, wherein the patient is a human patient.
  • 4. The method of claim 1, wherein the tumor is a breast cancer tumor.
  • 5. The method of claim 1, wherein the tissue sample is a fixed paraffin-embedded tissue.
  • 6. The method of claim 1, wherein the expression level is obtained using a PCR-based method.
  • 7. The method of claim 1, wherein an expression level is obtained from at least two of the genes in any of the stromal, metabolic, immune, proliferation, or metabolic groups, or their gene products.
  • 8. The method of claim 1, wherein an expression level is obtained from at least four genes in any two of the stromal, metabolic, immune, proliferation, or metabolic groups, or their gene products.
  • 9. The method of claim 1, further comprising obtaining an expression level of at least one co-expressed gene from those listed in Table 18.
  • 10. A method for predicting the clinical outcome of a patient diagnosed with estrogen receptor-negative (ER-) breast cancer comprising: (a) obtaining an expression level of an expression product of at least one prognostic gene listed in Tables 3, 4, 9 or 10 from a tissue sample obtained from a tumor of the patient, wherein the tumor is estrogen receptor negative;(b) normalizing the expression level of the expression product of the at least one prognostic gene to obtain a normalized expression level; and(c) calculating a risk score based on the normalized expression value, wherein increased expression of prognostic genes in Table 3 and Table 9 are positively correlated with good prognosis, and wherein increased expression of prognostic genes in Table 4 and Table 10 are negatively associated with good prognosis.
  • 11. The method of claim 10, further comprising: generating a report based on the risk score.
  • 12. The method of claim 10, wherein the patient is a human patient.
  • 13. The method of claim 10, wherein the tumor is a breast cancer tumor is fixed paraffin-embedded tissue.
  • 14. The method of claim 10, wherein the expression level is obtained using a PCR-based method.
  • 15. The method of claim 10, wherein an expression level is obtained from at least two of the genes in any of the stromal, metabolic, immune, proliferation, or metabolic groups, or their gene products.
  • 16. The method of claim 10, wherein an expression level is obtained from at least four genes in any two of the stromal, metabolic, immune, proliferation, or metabolic groups, or their gene products.
  • 17. The method of claim 10, further comprising obtaining an expression level of at least one co-expressed gene from those listed in Table 17.
  • 18. A computer program product for classifying a cancer patient according to prognosis, the computer program product for use in conjunction with a computer having a memory and a processor, the computer program product comprising a computer readable storage medium having a computer program encoded thereon, wherein said computer program product can be loaded into the one or more memory units of a computer and causes the one or more processor units of the computer to execute the steps of: (a) receiving a first data structure comprising the respective levels of an expression product of each of at least three different prognostic genes listed in any of Tables 1-12 in a tissue samples obtained from tumor in said patient;(b) normalizing said at least three expression values to obtain normalized expression values;(c) determining the similarity of the normalized expression values of each of said at least three prognostic genes to respective control levels of expression of the at least three prognostic genes obtained from a second data structure to obtain a patient similarity value, wherein the second data structure is based on levels of expression from a plurality of cancer tumors;(d) comparing said patient similarity value to a selected threshold value of similarity of said respective normalized expression values of each of said at least three prognostic genes to said respective control levels of expression of said at least three prognostic genes; and(e) classifying said patient as having a first prognosis if said patient similarity value exceeds said threshold similarity value, and a second prognosis if said patient similarity value does not exceed said threshold similarity value.
CROSS REFERENCE

This application claims the benefit of U.S. Provisional Patent Application No. 61/263,763, filed Nov. 23, 2009, which application is incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
61263763 Nov 2009 US