Methods using particulates coated with treatment chemical partitioning agents

Information

  • Patent Grant
  • 7261156
  • Patent Number
    7,261,156
  • Date Filed
    Friday, March 4, 2005
    19 years ago
  • Date Issued
    Tuesday, August 28, 2007
    17 years ago
Abstract
Methods of treating a portion of a subterranean formation comprising: providing partitioned, coated particulates that comprise particulates, an adhesive substance, and a partitioning agent, and wherein the partitioning agent comprises a subterranean treatment chemical; substantially slurrying the partitioned, coated particulates in a treatment fluid to create a particulate slurry; and, placing the particulate slurry into the portion of the subterranean formation.
Description
BACKGROUND

The present invention involves methods of preparing coated particulates and using such coated particulates in subterranean applications such as production enhancement and sand control. More particularly, the present invention relates to methods of preparing particulates treated with an adhesive substance (such as a tackifying agent or curable resin) such that the particulates are able to resist sticking and clumping and need not be immediately used once they are prepared.


Subterranean operations often use particulates coated with an adhesive substance such as a tackifying agent or a curable resin. One example of a production stimulation operation using such coated particulates is hydraulic fracturing, wherein a formation is treated to increase its permeability by hydraulically fracturing the formation to create or enhance one or more cracks or “fractures.” In most cases, a hydraulic fracturing treatment involves pumping a proppant-free, viscous fluid (known as a pad fluid) into a subterranean formation faster than the fluid can escape into the formation so that the pressure in the formation rises and the formation breaks, creating an artificial fracture or enlarging a natural fracture. Then particulates known in the art as proppant are placed into the fracture to prevent the fracture form closing when the pumping pressure is released. A portion of the proppant may be coated with an adhesive substance to control the migration of the proppant particulates and/or to control the migration of formation sands and fines.


An example of a well completion operation using a treating fluid containing coated particulates is gravel packing. Gravel packing treatments are used, inter alia, to reduce the migration of unconsolidated formation particulates into the well bore. In gravel packing operations, particulates known in the art as gravel are carried to a well bore by a hydrocarbon or water treatment fluid. That is, the particulates are suspended in a treatment fluid, which may be viscosified, and the treatment fluid is pumped into a well bore in Which the gravel pack is to be placed. The treatment fluid leaks off into the subterranean zone and/or is returned to the surface while the particulates are left in the zone. The resultant gravel pack acts as a filter to separate formation sands from produced fluids while permitting the produced fluids to flow into the well bore. A portion of the gravel may be coated with resin or tackifying agent, inter alia, to further help control the migration of formation fines. Typically, gravel pack operations involve placing a gravel pack screen in the well bore and packing the surrounding annulus between the sand control screen and the formation (or casing) with gravel designed to prevent the passage of formation sands through the pack. The sand control screen is generally a type of filter assembly used to support and retain the gravel placed during the gravel pack operation. A wide range of sizes and screen configurations are available to suit the characteristics of a particular well bore, the production fluid, and the subterranean formation sands. Such gravel packs may be used to stabilize a portion of a formation while causing minimal impairment to well productivity. The gravel is generally designed to prevent formation sands from occluding the screen or migrating with the produced fluids, and the screen is generally designed prevent the gravel from entering the well bore.


In some situations the processes of hydraulic fracturing and gravel packing are combined into a single treatment to provide stimulated production and an annular gravel pack to reduce formation sand production. Such treatments are often referred to as “frac pack” operations. In some cases, the treatments are completed with a gravel pack screen assembly in place, and the hydraulic fracturing treatment being pumped through the annular space between the casing and screen. In such a situation, the hydraulic fracturing treatment usually ends in a screen out condition creating an annular gravel pack between the screen and casing. This allows both the hydraulic fracturing treatment and gravel pack to be placed in a single operation.


SUMMARY OF THE INVENTION

The present invention involves methods of preparing coated particulates and using such coated particulates in subterranean applications such as production enhancement and sand control. More particularly, the present invention relates to methods of preparing particulates treated with an adhesive substance (such as a tackifying agent or curable resin) such that the particulates are able to resist sticking and clumping and need not be immediately used once they are prepared.


One embodiment of the present invention provides methods of treating a portion of a subterranean formation comprising: providing partitioned, coated particulates that comprise particulates, an adhesive substance, and a partitioning agent, and wherein the partitioning agent comprises a subterranean treatment chemical; substantially slurrying the partitioned, coated particulates in a treatment fluid to create a particulate slurry; and, placing the particulate slurry into the portion of the subterranean formation.


Another embodiments of the present invention provides methods of creating a propped fracture in a portion of a subterranean formation comprising: providing at least one fracture in the portion of the subterranean formation; providing partitioned, coated particulates that comprise particulates, an adhesive substance, and a partitioning agent, and wherein the partitioning agent comprises a subterranean treatment chemical; substantially slurrying the partitioned, coated particulates in a treatment fluid to create a particulate slurry; and, placing the particulate slurry into the at least one fracture in the portion of the subterranean formation so as to deposit at least a portion of the partitioned, coated particulates into the at least one fracture.


Another embodiments of the present invention provides methods of gravel packing along a portion of a well bore comprising: providing a portion of a well bore; providing partitioned, coated particulates that comprise particulates, an adhesive substance, and a partitioning agent, and wherein the partitioning agent comprises a subterranean treatment chemical; substantially slurrying the partitioned, coated particulates in a treatment fluid to create a particulate slurry; and, placing the particulate slurry into the portion of the well bore so as to deposit at least a portion of the partitioned, coated particulates into that portion and to create a gravel pack therein.


The features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of preferred embodiments that follows.


DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention involves methods of preparing coated particulates and using such coated particulates in subterranean applications such as production enhancement and sand control. More particularly, the present invention relates to methods of preparing particulates treated with an adhesive substance (such as a tackifying agent or curable resin) such that the particulates are able to resist sticking and clumping and need not be immediately used once they are prepared. By coating a partitioning agent onto particulates that have been treated with an adhesive substance, the methods of the present invention are capable of at least temporarily diminishing the “tackiness” of the treated particulates, thus preventing or minimizing the agglomeration of the particulates and the spreading of the adhesive substance onto equipment surfaces. In some embodiments of the present invention the coating used to at least temporarily diminishing the “tackiness” of the treated particulates may also be a treatment chemical useful in the subterranean environment. Suitable partitioning agents dissolve, degrade, or otherwise are removed from the surface of the particulate at a desired time such that the tackiness and/or curing performance of the adhesive substance is substantially restored once the partitioning agent is substantially removed. By least temporarily diminishing the tackiness of particulates coated with an adhesive substance the methods of the present invention are able to minimize the interaction of the adhesive substance with a treatment fluid or an equipment surface. As used herein, the term “tacky,” in all of its forms, generally refers to a substance having a nature such that it is (or may be activated to become) somewhat sticky to the touch.


Particulates coated with adhesive substances have a tendency to agglomerate and form masses of joined particulates rather than retaining their individual character. In the methods of the present invention, particulates are treated with an adhesive substance such as a tackifying agent and/or a curable resin and then the particulates are substantially coated with a partitioning agent to help the particulates retain their individual tacky or curable character. Some embodiments of the present invention describe methods of forming coated particulates that may be created and then stored and or shipped before use without excessive agglomeration even under temperature and stress loads commonly encountered by particulates such as proppant and gravel during handling and storage before use in a subterranean formation. In some embodiments of the present invention, the coated particulates may be created a few hours or several months before they are used.


Particulates suitable for use in the present invention may be comprised of any material suitable for use in subterranean operations. Suitable particulate materials include, but are not limited to, sand; bauxite; ceramic materials; glass materials; polymer materials; TEFLON® (polytetrafluoroethylene) materials; nut shell pieces; seed shell pieces; cured resinous particulates comprising nut shell pieces; cured resinous particulates comprising seed shell pieces; fruit pit pieces; cured resinous particulates comprising fruit pit pieces; wood; composite particulates and combinations thereof. Composite particulates may also be suitable, suitable composite materials may comprise a binder and a filler material wherein suitable filler materials include silica, alumina, fumed carbon, carbon black, graphite, mica, titanium dioxide, meta-silicate, calcium silicate, kaolin, talc, zirconia, boron, fly ash, hollow glass microspheres, solid glass, and combinations thereof.


In some embodiments of the present invention the particulate used may be a low quality particulate. The use of low-quality particulates may be particularly well suited for embodiments in which the particulates are to be coated with a tackifying agent or a curable resin. This is due, at least in part, to the fact that a coating of tackifying agent or resin may act to improve the performance of the low quality particulates. As used herein, the term “low-quality particulates” refers to particulates that do not meet at least one of the standards for sphericity, roundness, size, turbidity, acid solubility, percentage of fines, or crush resistance as recited in American Petroleum Institute Recommended Practices (API RP) standard numbers 56 and 58 for proppant and gravel respectively.


The API RP's describe the minimum standard for sphericity as at least 0.6 and for roundness as at least 0.6. As used herein, the terms “sphericity” and “roundness” are defined as described in the API RP's and can be determined using the procedures set forth in the API RP's.


API RP 56 also sets forth some commonly recognized proppant sizes as 6/12, 8/16, 12/20, 20/40, 30/50, 40/70, and 70/140. Similarly, API RP 58 also sets forth some commonly recognized gravel sizes as 8/16, 12/20, 16/30, 20/40, 30/50, and 40/60. The API RP's further note that a minimum percentage of particulates that should fall between designated sand sizes, noting that not more than 0.1 weight % of the particulates should be larger than the larger sand size and not more than a maximum percentage (1 weight % in API RP 56 and 2 weight % in API RP 58) should be smaller than the small sand size. Thus, for 20/40 proppant, no more than 0.1 weight % should be larger than 20 U.S. Mesh and no more than 1 weight % smaller than 40 U.S. Mesh.


API RP's 56 and 58 describe the minimum standard for proppant and gravel turbidity as 250 FTU or less. API RP 56 describes the minimum standard for acid solubility of proppant as no more than 2 weight % loss when tested according to API RP 56 procedures for proppant sized between 6/12 Mesh and 30/50 Mesh, U.S. Sieve Series and as no more than 3 weight % loss when tested according to API RP 56 procedures for proppant sized between 40/70 Mesh and 70/140 Mesh, U.S. Sieve Series. API RP 58 describes the minimum standard for acid solubility of gravel as no more than 1 weight % loss when tested according to API RP 58 procedures. API RP 56 describes the minimum standard for crush resistance of proppant as producing not more than the suggested maximum fines as set forth in Table 1, below, for the size being tested:









TABLE 1







Suggested Maximum Fines for Proppant Subjected to Crushing Strength










Mesh Size
Crushing
Stress on Proppant
Maximum Fines


(U.S. Sieve Series)
Force (lbs)
(psi)
(% by weight)













 6/12
6,283
2,000
20


 8/16
6,283
2,000
18


12/20
9,425
3,000
16


16/30
9,425
3,000
14


20/40
12,566
4,000
14


30/50
12,566
4,000
10


40/70
15,708
5,000
8


 70/140
15,708
5,000
6









Similarly, API RP 58 describes the minimum standard for crush resistance of gravel as producing not more than the suggested maximum fines as set forth in Table 1, below, for the size being tested:









TABLE 2







Suggested Maximum Fines for Gravel Subjected to Crushing Strength










Mesh Size
Crushing
Stress on Proppant
Maximum Fines


(U.S. Sieve Series)
Force (lbs)
(psi)
(% by weight)





 8/16
6,283
2,000
8


12/20
6,283
2,000
4


16/30
6,283
2,000
2


20/40
6,283
2,000
2


30/50
6,283
2,000
2


40/60
6,283
2,000
2









Resins suitable for use as an adhesive substance of the present invention include all resins known in the art that are capable of forming a hardened, consolidated mass. Many such resins are commonly used in subterranean operations, and some suitable resins include two component epoxy based resins, novolak resins, polyepoxide resins, phenol-aldehyde resins, urea-aldehyde resins, urethane resins, phenolic resins, furan resins, furan/furfuryl alcohol resins, phenolic/latex resins, phenol formaldehyde resins, polyester resins and hybrids and copolymers thereof, polyurethane resins and hybrids and copolymers thereof, acrylate resins, and mixtures thereof. Some suitable resins, such as epoxy resins, may be cured with an internal catalyst or activator so that when pumped down hole, they may be cured using only time and temperature. Other suitable resins, such as furan resins generally require a time-delayed catalyst or an external catalyst to help activate the polymerization of the resins if the cure temperature is low (i.e., less than 250° F.), but will cure under the effect of time and temperature if the formation temperature is above about 250° F., preferably above about 300° F. By way of further example, selection of a suitable resin may be affected by the temperature of the subterranean formation to which the fluid will be introduced. For subterranean formations having a BHST ranging from about 300° F. to about 600° F., a furan-based resin may be preferred. For subterranean formations having a BHST ranging from about 200° F. to about 400° F., either a phenolic-based resin or a one-component HT epoxy-based resin may be suitable. For subterranean formations having a BHST of at least about 175° F., a phenol/phenol formaldehyde/furfuryl alcohol resin may also be suitable. It is within the ability of one skilled in the art, with the benefit of this disclosure, to select a suitable resin for use in embodiments of the present invention and to determine whether a catalyst is required to trigger curing.


One resin coating material suitable for use in the proppant compositions of the present invention is a two-component epoxy based resin comprising a hardenable resin component and a hardening agent component. The hardenable resin component is comprised of a hardenable resin and an optional solvent. The second component is the liquid hardening agent component, which is comprised of a hardening agent, a silane coupling agent, a surfactant, an optional hydrolyzable ester for, inter alia, breaking gelled fracturing fluid films on the proppant particles, and an optional liquid carrier fluid for, inter alia, reducing the viscosity of the liquid hardening agent component. It is within the ability of one skilled in the art with the benefit of this disclosure to determine if and how much liquid carrier fluid is needed to achieve a viscosity suitable to the subterranean conditions.


Where the resin coating material of the present invention is a furan-based resin, suitable furan-based resins include, but are not limited to, furfuryl alcohol, a mixture furfuryl alcohol with an aldehyde, and a mixture of furan resin and phenolic resin. Where the resin coating material of the present invention is a phenolic-based resin, suitable phenolic-based resins include, but are not limited to, terpolymers of phenol, phenolic formaldehyde resins, and a mixture of phenolic and furan resins. Of these, a mixture of phenolic and furan resins is preferred. Where the resin coating material of the present invention is a HT epoxy-based resin, suitable HT epoxy-based components included, but are not limited to, bisphenol A-epichlorohydrin resin, polyepoxide resin, novolac resin, polyester resin, glycidyl ethers and mixtures thereof.


Yet another resin suitable for use in the methods of the present invention is a phenol/phenol formaldehyde/furfuryl alcohol resin comprising from about 5% to about 30% phenol, from about 40% to about 70% phenol formaldehyde, from about 10 to about 40% furfuryl alcohol, from about 0.1% to about 3% of a silane coupling agent, and from about 1% to about 15% of a surfactant. In the phenol/phenol formaldehyde/furfuryl alcohol resins suitable for use in the methods of the present invention, suitable silane coupling agents include, but are not limited to, n-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane. Suitable surfactants include, but are not limited to, an ethoxylated nonyl phenol phosphate ester, mixtures of one or more cationic surfactants and one or more non-ionic surfactants, and an alkyl phosphonate surfactant.


Tackifying agents suitable for use as an adhesive substance in the present invention include non-aqueous tackifying agents, aqueous tackifying agents, and silyl-modified polyamides.


One type of tackifying agent suitable for use in the present invention is a non-aqueous tackifying agent. A particularly preferred group of non-aqueous tackifying agents comprise polyamides that are liquids or in solution at the temperature of the subterranean formation such that they are, by themselves, non-hardening when introduced into the subterranean formation. A particularly preferred product is a condensation reaction product comprised of a polyacid and a polyamine. Such condensation reaction products include compounds such as mixtures of C36 dibasic acids containing some trimer and higher oligomers and also small amounts of monomer acids that are reacted with polyamines. Other polyacids include trimer acids, synthetic acids produced from fatty acids, maleic anhydride, acrylic acid, and the like. Such acid compounds are commercially available from companies such as Witco Corporation, Union Camp, Chemtall, and Emery Industries. The reaction products are available from, for example, Champion Technologies, Inc. and Witco Corporation. Additional compounds which may be used as non-aqueous tackifying compounds include liquids and solutions of, for example, polyesters, polycarbonates and polycarbamates, natural resins such as shellac and the like. Other suitable non-aqueous tackifying agents are described in U.S. Pat. No. 5,853,048 issued to Weaver, et al. and U.S. Pat. No. 5,833,000 issued to Weaver, et al., the relevant disclosures of which are herein incorporated by reference.


Non-aqueous tackifying agents suitable for use in the present invention may be either used such that they form non-hardening coating or they may be combined with a multifunctional material capable of reacting with the non-aqueous tackifying agent to form a hardened coating. A “hardened coating” as used herein means that the reaction of the tackifying compound with the multifunctional material will result in a substantially non-flowable reaction product that exhibits a higher compressive strength in a consolidated agglomerate than the tackifying compound alone with the particulates. In this instance, the non-aqueous tackifying agent may function similarly to a hardenable resin. Multifunctional materials suitable for use in the present invention include, but are not limited to, aldehydes such as formaldehyde, dialdehydes such as glutaraldehyde, hemiacetals or aldehyde releasing compounds, diacid halides, dihalides such as dichlorides and dibromides, polyacid anhydrides such as citric acid, epoxides, furfuraldehyde, glutaraldehyde or aldehyde condensates and the like, and combinations thereof. In some embodiments of the present invention, the multifunctional material may be mixed with the tackifying compound in an amount of from about 0.01 to about 50 percent by weight of the tackifying compound to effect formation of the reaction product. In some preferable embodiments, the compound is present in an amount of from about 0.5 to about 1 percent by weight of the tackifying compound. Some other suitable multifunctional materials are described in U.S. Pat. No. 5,839,510 issued to Weaver, et al., the relevant disclosure of which is herein incorporated by reference.


Solvents suitable for use with the non-aqueous tackifying agents of the present invention include any solvent that is compatible with the non-aqueous tackifying agent and achieves the desired viscosity effect. Examples of solvents suitable for use in the present invention include, but are not limited to, butylglycidyl ether, dipropylene glycol methyl ether, butyl bottom alcohol, dipropylene glycol dimethyl ether, diethyleneglycol methyl ether, ethyleneglycol butyl ether, methanol, butyl alcohol, isopropyl alcohol, diethyleneglycol butyl ether, propylene carbonate, d'limonene, 2-butoxy ethanol, butyl acetate, furfuryl acetate, butyl lactate, fatty acid methyl esters, and combinations thereof. It is within the ability of one skilled in the art, with the benefit of this disclosure, to determine whether a solvent is needed to achieve a viscosity suitable to the subterranean conditions and, if so, how much.


Aqueous tackifyier agents suitable for use in the present invention are not significantly tacky when placed onto a particulate, but are capable of being “activated” (that is destabilized, coalesced and/or reacted) to transform the compound into a sticky, tackifying compound at a desirable time. Such activation may occur before, during, or after the aqueous tackifyier agent is placed in the subterranean formation. In some embodiments, a pretreatment may be first contacted with the surface of a particulate to prepare it to be coated with an aqueous tackifyier agent. Suitable aqueous tackifying agents are generally charged polymers that comprise compounds that, when in an aqueous solvent or solution, will form a non-hardening coating (by itself or with an activator) and, when placed on a particulate, will increase the continuous critical resuspension velocity of the particulate when contacted by a stream of water. The aqueous tackifyier agent may enhance the grain-to-grain contact between the individual particulates within the formation (be they proppant particulates, formation fines, or other particulates), helping bring about the consolidation of the particulates into a cohesive, flexible, and permeable mass.


Examples of aqueous tackifyier agents suitable for use in the present invention include, but are not limited to, acrylic acid polymers, acrylic acid ester polymers, acrylic acid derivative polymers, acrylic acid homopolymers, acrylic acid ester homopolymers (such as poly(methyl acrylate), poly (butyl acrylate), and poly(2-ethylhexyl acrylate)), acrylic acid ester co-polymers, methacrylic acid derivative polymers, methacrylic acid homopolymers, methacrylic acid ester homopolymers (such as poly(methyl methacrylate), poly(butyl methacrylate), and poly(2-ethylhexyl methacryate)), acrylamido-methyl-propane sulfonate polymers, acrylamido-methyl-propane sulfonate derivative polymers, acrylamido-methyl-propane sulfonate co-polymers, and acrylic acid/acrylamido-methyl-propane sulfonate co-polymers and combinations thereof. Methods of determining suitable aqueous tackifier agents and additional disclosure on aqueous tackifier agents can be found in U.S. patent application Ser. No. 10/864,061 and filed Jun. 9, 2004 and U.S. patent application Ser. No. 10/864,618 and filed Jun. 9, 2004 the relevant disclosures of which are hereby incorporated by reference.


Silyl-modified polyamide compounds suitable for use as an adhesive substance in the methods of the present invention may be described as substantially self-hardening compositions that are capable of at least partially adhering to particulates in the unhardened state, and that are further capable of self-hardening themselves to a substantially non-tacky state to which individual particulates such as formation fines will not adhere to, for example, in formation or proppant pack pore throats. Such silyl-modified polyamides may be based, for example, on the reaction product of a silating compound with a polyamide or a mixture of polyamides. The polyamide or mixture of polyamides may be one or more polyamide intermediate compounds obtained, for example, from the reaction of a polyacid (e.g., diacid or higher) with a polyamine (e.g., diamine or higher) to form a polyamide polymer with the elimination of water. Other suitable silyl-modified polyamides and methods of making such compounds are described in U.S. Pat. No. 6,439,309 issued to Matherly, et al., the relevant disclosure of which is herein incorporated by reference.


The coated particulates of the present invention may be suspended in any treatment fluid known in the art, including aqueous gels, viscoelastic surfactant gels, oleaginous gels, foamed gels and emulsions. Suitable aqueous gels are generally comprised of water and one or more gelling agents. The emulsions may be comprised of two or more immiscible liquids such as an aqueous gelled liquid and a liquefied, normally gaseous fluid, such as nitrogen. The preferred treatment fluids for use in accordance with this invention are aqueous gels comprised of water, a gelling agent for gelling the water and increasing its viscosity, and optionally, a cross-linking agent for cross-linking the gel and further increasing the viscosity of the fluid. The increased viscosity of the gelled or gelled and cross-linked treatment fluid, inter alia, reduces fluid loss and allows the fracturing fluid to transport significant quantities of suspended particulates. The treatment fluids also may include one or more of a variety of well-known additives such as breakers, stabilizers, fluid loss control additives, clay stabilizers, bactericides, and the like.


Partitioning agents suitable for use in the present invention are those substances that will dissipate once the particulates are introduced to a treatment fluid, such as a fracturing or gravel packing fluid. Partitioning agents suitable for use in the present invention should not detrimentally interfere with the adhesive substance on the particulate, and should not detrimentally interfere with the treatment fluid or the subterranean operation being performed. This does not mean that the chosen partitioning agent must be inert. Rather, in some embodiments of the present invention the partitioning agent is also a treatment chemical that has a beneficial effect on the subterranean environment, or the operation, or both. In preferred embodiments, the partitioning agent is coated onto the adhesive substance-coated particulate in an amount of from about 1% to about 20% by weight of the coated particulate. In preferred embodiments, the substantially the entire surface of the adhesive substance coating is coated with partitioning agent.


Partitioning agents suitable for use in the present invention are those materials that are capable of coating onto the adhesive substance pre-coating on the particulate and reducing its tacky character. Suitable partitioning agents may be substances that will quickly dissipate in the presence of the treatment fluid. Examples of suitable partitioning agents that will dissolve quickly in an aqueous treatment fluid include solid salts (such as rock salt, fine salt, KCl, and other solid salts known in the art), barium sulfate, lime, benzoic acid, polyvinyl alcohol, sodium carbonate, sodium bicarbonate, molybdenum disulfide, sodium hydroxide graphite, zinc, lime, quebracho, lignin, lignite, causticized lignite, lignosulfonate, chrome lignosulfonate, napthalenesulfonate, uintahite (gilsonite), polyvinvyl alcohol, and mixtures thereof. One skilled in the art will recognize that where lime (calcium carbonate) is chosen for use as a partitioning agent in the present invention it may be used in any of its forms, including quicklime, hydrated lime, and hydraulic lime. The partitioning agent also may be a substance that dissipates more slowly in the presence of the treatment fluid. Partitioning agents that dissolve more slowly may allow the operator more time to place the coated particulates. Examples of suitable partitioning agents that will dissolve more slowly in an aqueous treatment fluid include calcium oxide, degradable polymers, such as polysaccharides; chitins; chitosans; proteins; aliphatic polyesters; poly(lactides); poly(glycolides); poly(ε-caprolactones); poly(hydroxybutyrates); poly(anhydrides); aliphatic polycarbonates; poly(orthoesters); poly(amino acids); poly(ethylene oxides); and poly(phosphazenes); and mixtures thereof.


Where the treatment fluid is an oleaginous treatment fluid, examples of suitable partitioning agents that will dissolve in an oleaginous treatment fluid include wax, gilsonite, sulfonated asphalt, naphthalenesulfonate, oil soluble resins, and combinations thereof. Some suitable oil soluble resins include, but are not limited to, styrene-isoprene copolymers, hydrogenated styrene-isoprene block copolymers, styrene ethylene/propylene block copolymers, styrene isobutylene copolymers, styrene-butadiene copolymers, polybutylene, polystyrene, polyethylene-propylene copolymers, and combinations thereof.


The chosen partitioning agent should be able to at least temporarily reduce the tacky nature of the adhesive substance coated onto the particulate, but it may also perform other functions. For example, some embodiments of the present invention coat a particulate with a resin and then use a partitioning agent that is a resin hardening agent. In other embodiments the partitioning agent may act as a scale inhibitor, corrosion inhibitor, parrafin remover, gel breaker, crosslink de-linker, gas hydrate inhibitor, or any other solid treatment chemical that can be coated on top of an adhesive substance to at least temporarily reduce its tacky nature.


Moreover, in some embodiments the adhesive substance and partitioning agent may be coated onto a particulate in layers. By way of example, a particulate may be coated with an adhesive substance and then coated with a partitioning agent and then coated again with an adhesive substance and then coated again with a partitioning agent. In such a case the first and second coatings of the adhesive substance need not be the same and the first and second coatings of the partitioning agent need not be the same. As will be understood by one skilled in the art, more than two layers of adhesive substances and partitioning agents may be used. This may be particularly useful in situations wherein it is desirable to delay the release of a partitioning agent that also acts as a treatment chemical. For example, a first (inner) layer of partitioning agent may be a treatment chemical that is a gel breaker and a second layer of partitioning agent may be an inert, slowly dissolving partitioning agent. Also for example, the first (inner) layer of partitioning agent may be a crosslinker, with a second layer of partitioning agent being a slowly dissolving partitioning agent. Also for example, the first (inner) layer of partitioning agent may be a hardenable resin component, with a second layer being an inert dissolving agent, and a third layer being a hardening agent component.


Some embodiments of the methods of the present invention provide methods for treating subterranean formations using partitioned, coated particulates wherein the coated particulates are made by substantially coating particulates with an adhesive substance to create adhesive-coated particulates and then substantially covering the adhesive-coated particulates with a partitioning agent to create partitioned, coated particulates.


Suitable partitioned, coated particulates may be used in a variety of subterranean treatments including fracturing, gravel packing, and frac-packing treatments wherein the partitioned, coated particulates are generally substantially slurried into a treatment fluid to create a partitioned, coated particulate slurry that may then be placed into a desired location within a portion of a subterranean formation.


To facilitate a better understanding of the present invention, the following examples of some of the preferred embodiments are given. In no way should such examples be read to limit the scope of the invention.







EXAMPLES
Example 1

A sample of bauxite particulates was pre-coated with a high temperature epoxy resin and another sample was pre-coated with a furan resin; each sample contained 7.8 cc of resin per 250 grams of particulate. Sodium bicarbonate powder (20 grams) was then covered onto each of the resin coated samples to form coated particulates. The samples of particulates were stored at room temperature for three days. After that time the samples, still substantially non-agglomerated, were mixed in an aqueous-based fracturing fluid and formed a slurry concentration of 7 pounds of particulates per gallon of fracturing fluid. The sodium bicarbonate covering dissolved as the particulates were mixed into the fracturing fluid. The coated particulates of the present invention proved capable of retaining their individual character even after being stored for a period of time.


The slurry was then crosslinked, stirred for an hour at 180° F., and then packed into a brass chamber and cured for at least 8 hours at 325° F. Core samples obtained from the cured particulates reflected consolidation strength of between 850 and 1,100 psi. Thus, the covering used to create the coated particulates did not act to impair consolidation.


Example 2

High-molecular weight polyamide tackifying compound in the amount of 3 cc was dry coated directly onto 300 grams of 20/40-mesh Brady sand by hand stirring with a spatula to form a thin film of the compound on the sand grains. Afterward, 20 grams of KCl powder with average particle size distribution of 40 microns was hand stirred into the coated sand until the coated sand became dry. A sample of this dry coated sand was then mixed with water. The tackiness immediately returned to the coated sand.


Example 3

Low-molecular weight polyamide tackifying compound in the amount of 3 cc was dry coated directly onto 300 grams of 20/40-mesh Brady sand by hand stirring with a spatula to form a thin film of the compound on the sand grains. Afterward, 20 grams of KCl powder with average particle size distribution of 40 microns was hand stirred into the coated sand until the coated sand became dry. A sample of this dry coated sand was then mixed with water. The coated sand immediately became tacky again.


Therefore, the present invention is well adapted to carry out the objects and attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit and scope of this invention as defined by the appended claims.

Claims
  • 1. A method of treating a portion of a subterranean formation comprising: providing partitioned, coated particulates that comprise particulates, an adhesive substance, and a partitioning agent at least partially coated onto the adhesive substance, wherein the partitioning agent comprises a subterranean treatment chemical;substantially slurrying the partitioned, coated particulates in a treatment fluid to create a particulate slurry; and,placing the particulate slurry into the portion of the subterranean formation.
  • 2. The method of claim 1 wherein the method by which the partitioned, coated particulates are made comprises: substantially coating the particulates with an adhesive substance to create adhesive-coated particulates and then substantially covering the adhesive-coated particulates with a partitioning agent to create partitioned, coated particulates.
  • 3. The method of claim 2 wherein the partitioned, coated particulates comprise more than one alternating layers of adhesive substance and partitioning agent.
  • 4. The method of claim 1 wherein the particulates comprise particulates selected from the group consisting of: low quality particulates; sand; bauxite; ceramic materials; glass materials; polymer materials; polytetrafluoroethylene materials; nut shell pieces; seed shell pieces; cured resinous particulates comprising nut shell pieces; cured resinous particulates comprising seed shell pieces; fruit pit pieces; cured resinous particulates comprising fruit pit pieces; wood; and composite particulates.
  • 5. The method of claim 1 wherein the adhesive substance comprises at least one resin selected from the group consisting of two-component epoxy-based resins, furan-based resins, phenolic-based resins, high-temperature (HT) epoxy-based resins, phenol/phenol formaldehyde/furfuryl alcohol resins, and combinations thereof.
  • 6. The method of claim 1 wherein the adhesive substance comprises at least one substance selected from the group consisting of aqueous tackifying agents, non-aqueous tackifying agents, and silyl-modified polyamides.
  • 7. The method of claim 6 wherein the aqueous tackifying agent comprises at least one material selected from the group consisting of: acrylic acid polymers, acrylic acid ester polymers, acrylic acid derivative polymers, acrylic acid homopolymers, acrylic acid ester homopolymers, acrylic acid ester copolymers, methacrylic acid derivative polymers, methacrylic acid homopolymers, methacrylic acid ester homopolymers, acrylamido-methyl-propane sulfonate polymers, acrylamido-methyl-propane sulfonate derivative polymers, acrylamido-methyl-propane sulfonate copolymers, and acrylic acid/acrylamido-methyl-propane sulfonate copolymers.
  • 8. The method of claim 6 wherein the non-aqueous tackifying agent comprises at least one material selected from the group consisting of polyamides, polyesters, polycarbonates, polycarbamates, and natural resins.
  • 9. The method of claim 6 wherein the aqueous tackifying agent comprises at least one material selected from the group consisting of poly(methyl acrylates), poly(butyl acrylates), poly(2-ethylhexyl acrylates), poly(methyl methacrylates), poly(butyl methacrylates), and poly(2-ethylhexyl methacryates).
  • 10. The method of claim 6 wherein the silyl-modified polyamide comprises a reaction product of a silating compound with one or more polyamides.
  • 11. The method of claim 1 wherein the subterranean treatment chemical comprises at least one chemical selected from the group consisting of scale inhibitors, breakers, corrosion inhibitors, paraffin removers, gel breakers, crosslink de-linkers, and gas hydrate inhibitors.
  • 12. The method of claim 1 wherein the treatment fluid comprises at least one fluid selected from the group consisting of aqueous gels, viscoelastic surfactant gels, oleaginous gels, foamed gels, and emulsions.
  • 13. A method of creating a propped fracture in a portion of a subterranean formation comprising: providing at least one fracture in the portion of the subterranean formation;providing partitioned, coated particulates that comprise particulates, an adhesive substance, and a partitioning agent at least partially coated onto the adhesive substance, wherein the partitioning agent comprises a subterranean treatment chemical;substantially slurrying the partitioned, coated particulates in a treatment fluid to create a particulate slurry; and,placing the particulate slurry into the at least one fracture in the portion of the subterranean formation so as to deposit at least a portion of the partitioned, coated particulates into the at least one fracture.
  • 14. The method of claim 13 wherein the method by which the partitioned, coated particulates are made comprises: substantially coating the particulates with an adhesive substance to create adhesive-coated particulates and then substantially covering the adhesive-coated particulates with a partitioning agent to create partitioned, coated particulates.
  • 15. The method of claim 14 wherein the partitioned, coated particulates comprise more than one alternating layers of adhesive substance and partitioning agent.
  • 16. The method of claim 13 wherein the treatment chemical comprises at least one chemical selected from the group consisting of scale inhibitors, breakers, corrosion inhibitors, paraffin removers, gel breakers, crosslink de-linkers, and gas hydrate inhibitors.
  • 17. The method of claim 13 wherein the partitioning agent comprises at least one material selected from the group consisting of: calcium oxide, degradable polymers , poly(glycolides), poly(ε-caprolactones), poly(hydroxybutyrates), poly(anhydrides), aliphatic polycarbonates, poly(orthoesters), poly(amino acids), poly(ethylene oxides), poly(phosphazenes), solid salts, barium sulfate, lime, benzoic acid, polyvinyl alcohol, sodium carbonate, sodium bicarbonate, molybdenum disulfide, sodium hydroxide graphite, zinc, quebracho, lignin, lignite, causticized lignite, lignosulfonate, chrome lignosulfonate, napthalenesulfonate, uintahite, wax, gilsonite, sulfonated asphalt, oil-soluble resins, styrene-isoprene copolymer, hydrogenated styrene-isoprene block copolymers, styrene ethylene/propylene block copolymers, styrene isobutylene copolymers, styrene-butadiene copolymers, polybutylene, polystyrene, and polyethylene-propylene copolymers.
  • 18. A method of gravel packing along a portion of a well bore comprising: providing a portion of a well bore;providing partitioned, coated particulates that comprise particulates, an adhesive substance, and a partitioning agent, and wherein the partitioning agent comprises a subterranean treatment chemical at least partially coated onto the adhesive substance;substantially slurrying the partitioned, coated particulates in a treatment fluid to create a particulate slurry; and,placing the particulate slurry into the portion of the well bore so as to deposit at least a portion of the partitioned, coated particulates into that portion and to create a gravel pack therein.
  • 19. The method of claim 18 wherein the method by which the partitioned, coated particulates are made comprises: substantially coating the particulates with an adhesive substance to create adhesive-coated particulates and then substantially covering the adhesive-coated particulates with a partitioning agent to create partitioned, coated particulates.
  • 20. The method of claim 19 wherein the partitioned, coated particulates comprise more than one alternating layers of adhesive substance and partitioning agent.
  • 21. The method of claim 18 wherein the treatment chemical comprises at least one chemical selected from the group consisting of scale inhibitors, breakers, corrosion inhibitors, paraffin removers, gel breakers, crosslink de-linkers, and gas hydrate inhibitors.
  • 22. The method of claim 18 wherein the partitioning agent comprises at least one material selected from the group consisting of: calcium oxide, degradable polymers, poly(glycolides), poly(ε-caprolactones), poly(hydroxybutyrates), poly(anhydrides), aliphatic polycarbonates, poly(orthoesters), poly(amino acids), poly(ethylene oxides), poly(phosphazenes), solid salts, barium sulfate, lime, benzoic acid, polyvinyl alcohol, sodium carbonate, sodium bicarbonate, molybdenum disulfide, sodium hydroxide graphite, zinc, quebracho, lignin, lignite, causticized lignite, lignosulfonate, chrome lignosulfonate, napthalenesulfonate, uintahite, wax, gilsonite, sulfonated asphalt, oil-soluble resins, styrene-isoprene copolymer, hydrogenated styrene-isoprene block copolymers, styrene ethylene/propylene block copolymers, styrene isobutylene copolymers, styrene-butadiene copolymers, polybutylene, polystyrene, and polyethylene-propylene copolymers.
RELATED APPLICATIONS

The present invention is a continuation in part of U.S. patent application Ser. No. 10/794,076 filed on Mar. 5, 2004 now U.S. Pat. No. 7,063,151. Moreover, the present invention is related to U.S. application Ser. No. 11/072,669 entitled “Methods of Using Partitioned, Coated Particulates” filed on the same date herewith, which is assigned to the assignee of the present invention, the entire disclosure of which is incorporated herein by reference.

US Referenced Citations (437)
Number Name Date Kind
2238671 Woodhouse Apr 1941 A
4493875 Beck et al. Jan 1955 A
2703316 Schneider Mar 1955 A
2869642 McKay et al. Jan 1959 A
3047067 Williams et al. Jul 1962 A
3123138 Robichaux Mar 1964 A
3176768 Brandt et al. Apr 1965 A
3199590 Young Aug 1965 A
3272650 MacVittie Sep 1966 A
3297086 Spain Jan 1967 A
3308885 Sandiford Mar 1967 A
3316965 Watanabe May 1967 A
3336980 Rike Aug 1967 A
3375872 McLaughlin et al. Apr 1968 A
3404735 Young et al. Oct 1968 A
3415320 Young Dec 1968 A
3492147 Young et al. Jan 1970 A
3659651 Graham May 1972 A
3681287 Brown et al. Aug 1972 A
3708013 Dismuke Jan 1973 A
3709298 Pramann Jan 1973 A
3754598 Holloway, Jr. Aug 1973 A
3765804 Brandon Oct 1973 A
3768564 Knox et al. Oct 1973 A
3784585 Schmitt et al. Jan 1974 A
3819525 Hattenbrun Jun 1974 A
3828854 Templeton et al. Aug 1974 A
3842911 Know et al. Oct 1974 A
3854533 Gurley et al. Dec 1974 A
3857444 Copeland Dec 1974 A
3863709 Fitch Feb 1975 A
3868998 Lybarger et al. Mar 1975 A
3888311 Cooke, Jr. Jun 1975 A
3912692 Casey et al. Oct 1975 A
3948672 Harnberger Apr 1976 A
3955993 Curtice May 1976 A
3960736 Free et al. Jun 1976 A
4008763 Lowe et al. Feb 1977 A
4015995 Hess Apr 1977 A
4029148 Emery Jun 1977 A
4031958 Sandiford et al. Jun 1977 A
4042032 Anderson et al. Aug 1977 A
4070865 McLaughlin Jan 1978 A
4074760 Copeland et al. Feb 1978 A
4085801 Sifferman Apr 1978 A
4127173 Watkins et al. Nov 1978 A
4169798 DeMartino Oct 1979 A
4172066 Zweigle et al. Oct 1979 A
4245702 Haafkens et al. Jan 1981 A
4273187 Satter et al. Jun 1981 A
4291766 Davies et al. Sep 1981 A
4305463 Zakiewicz Dec 1981 A
4336842 Graham et al. Jun 1982 A
4352674 Fery Oct 1982 A
4353806 Canter et al. Oct 1982 A
4387769 Erbstoesser et al. Jun 1983 A
4415805 Fertl et al. Nov 1983 A
4439489 Johnson et al. Mar 1984 A
4443347 Underdown et al. Apr 1984 A
4460052 Gockel Jul 1984 A
4470915 Conway Sep 1984 A
4494605 Wiechel et al. Jan 1985 A
4498995 Gockel Feb 1985 A
4501328 Nichols Feb 1985 A
4526695 Erbstosser et al. Jul 1985 A
4527627 Graham et al. Jul 1985 A
4541489 Wu Sep 1985 A
4546012 Brooks Oct 1985 A
4553596 Graham et al. Nov 1985 A
4564459 Underdown et al. Jan 1986 A
4572803 Yamazoe et al. Feb 1986 A
4649998 Friedman Mar 1987 A
4664819 Glaze et al. May 1987 A
4665988 Murphey et al. May 1987 A
4669543 Young Jun 1987 A
4675140 Sparks et al. Jun 1987 A
4683954 Walker et al. Aug 1987 A
4694905 Armbruster Sep 1987 A
4715967 Bellis Dec 1987 A
4716964 Erbstoesser et al. Jan 1988 A
4733729 Copeland Mar 1988 A
4739832 Jennings, Jr. et al. Apr 1988 A
4785884 Armbruster Nov 1988 A
4787453 Hewgill et al. Nov 1988 A
4789105 Hosokawa et al. Dec 1988 A
4796701 Hudson et al. Jan 1989 A
4797262 Dewitz Jan 1989 A
4800960 Friedman et al. Jan 1989 A
4809783 Hollenbeck et al. Mar 1989 A
4817721 Pober Apr 1989 A
4829100 Murphey et al. May 1989 A
4838352 Oberste-Padtberg et al. Jun 1989 A
4842072 Friedman et al. Jun 1989 A
4843118 Lai et al. Jun 1989 A
4848467 Cantu et al. Jul 1989 A
4848470 Korpics Jul 1989 A
4850430 Copeland et al. Jul 1989 A
4886354 Welch et al. Dec 1989 A
4888240 Graham et al. Dec 1989 A
4895207 Friedman et al. Jan 1990 A
4903770 Friedman et al. Feb 1990 A
4934456 Moradi-Araghi Jun 1990 A
4936385 Weaver et al. Jun 1990 A
4942186 Murphey et al. Jul 1990 A
4957165 Cantu et al. Sep 1990 A
4959432 Fan et al. Sep 1990 A
4961466 Himes et al. Oct 1990 A
4969522 Whitehurst et al. Nov 1990 A
4969523 Martin et al. Nov 1990 A
4986353 Clark et al. Jan 1991 A
4986354 Cantu et al. Jan 1991 A
4986355 Casad et al. Jan 1991 A
5030603 Rumpf et al. Jul 1991 A
5049743 Taylor, III et al. Sep 1991 A
5082056 Tackett, Jr. Jan 1992 A
5105886 Strubhar et al. Apr 1992 A
5107928 Hilterhaus Apr 1992 A
5128390 Murphey et al. Jul 1992 A
5135051 Fracteau et al. Aug 1992 A
5142023 Gruber et al. Aug 1992 A
5165438 Fracteau et al. Nov 1992 A
5173527 Calve Dec 1992 A
5178218 Dees Jan 1993 A
5182051 Bandy et al. Jan 1993 A
5199491 Kutts et al. Apr 1993 A
5199492 Surles et al. Apr 1993 A
5211234 Floyd May 1993 A
5216050 Sinclair Jun 1993 A
5218038 Johnson et al. Jun 1993 A
5232955 Caabai et al. Aug 1993 A
5232961 Murphey et al. Aug 1993 A
5238068 Fredrickson Aug 1993 A
5247059 Gruber et al. Sep 1993 A
5249628 Surjaatmadja Oct 1993 A
5256729 Kutts et al. Oct 1993 A
5273115 Spafford Dec 1993 A
5285849 Surles et al. Feb 1994 A
5293939 Surles et al. Mar 1994 A
5295542 Cole et al. Mar 1994 A
5320171 Laramay Jun 1994 A
5321062 Landrum et al. Jun 1994 A
5325923 Surjaatmadja et al. Jul 1994 A
5330005 Card et al. Jul 1994 A
5332037 Schmidt et al. Jul 1994 A
5335726 Rodrogues Aug 1994 A
5351754 Hardin et al. Oct 1994 A
5358051 Rodrigues Oct 1994 A
5359026 Gruber Oct 1994 A
5360068 Sprunt et al. Nov 1994 A
5361856 Surjaatmajda et al. Nov 1994 A
5363916 Himes et al. Nov 1994 A
5373901 Norman et al. Dec 1994 A
5377759 Surles Jan 1995 A
5381864 Nguyen et al. Jan 1995 A
5386874 Laramay et al. Feb 1995 A
5388648 Jordan, Jr. Feb 1995 A
5393810 Harris et al. Feb 1995 A
5396957 Surjaatmadja et al. Mar 1995 A
5402846 Jennings, Jr. et al. Apr 1995 A
5422183 Sinclair et al. Jun 1995 A
5423381 Surles et al. Jun 1995 A
5439055 Card et al. Aug 1995 A
5460226 Lawton et al. Oct 1995 A
5464060 Hale et al. Nov 1995 A
5475080 Gruber et al. Dec 1995 A
5484881 Gruber et al. Jan 1996 A
5494103 Surjaatmadja et al. Feb 1996 A
5494178 Nguyen et al. Feb 1996 A
5497830 Boles et al. Mar 1996 A
5498280 Fistner et al. Mar 1996 A
5499678 Surjaatmadja et al. Mar 1996 A
5501275 Card et al. Mar 1996 A
5505787 Yamaguchi Apr 1996 A
5512071 Yam et al. Apr 1996 A
5520250 Harry et al. May 1996 A
5522460 Shu Jun 1996 A
5529123 Carpenter et al. Jun 1996 A
5531274 Bienvenu, Jr. Jul 1996 A
5536807 Gruber et al. Jul 1996 A
5545824 Stengel et al. Aug 1996 A
5547023 McDaniel et al. Aug 1996 A
5551513 Suries et al. Sep 1996 A
5551514 Nelson et al. Sep 1996 A
5582249 Caveny et al. Dec 1996 A
5582250 Constein Dec 1996 A
5588488 Vijn et al. Dec 1996 A
5591700 Harris et al. Jan 1997 A
5594095 Gruber et al. Jan 1997 A
5595245 Scott, III Jan 1997 A
5597784 Sinclair et al. Jan 1997 A
5604184 Ellis et al. Feb 1997 A
5604186 Hunt et al. Feb 1997 A
5609207 Dewprashad et al. Mar 1997 A
5620049 Gipson et al. Apr 1997 A
5639806 Johnson et al. Jun 1997 A
5670473 Scepanski Sep 1997 A
5692566 Surles Dec 1997 A
5697440 Weaver et al. Dec 1997 A
5698322 Tsai et al. Dec 1997 A
5712314 Surles et al. Jan 1998 A
5732364 Kalb et al. Mar 1998 A
5765642 Surjaatmadja Jun 1998 A
5775425 Weaver et al. Jul 1998 A
5782300 James et al. Jul 1998 A
5783822 Buchanan et al. Jul 1998 A
5787986 Weaver et al. Aug 1998 A
5791415 Nguyen et al. Aug 1998 A
5799734 Norman et al. Sep 1998 A
5806593 Suries Sep 1998 A
5830987 Smith Nov 1998 A
5833000 Weaver et al. Nov 1998 A
5833361 Funk Nov 1998 A
5836391 Jonasson et al. Nov 1998 A
5836392 Urlwin-Smith Nov 1998 A
5837656 Sinclair et al. Nov 1998 A
5837785 Kinsho et al. Nov 1998 A
5839510 Weaver et al. Nov 1998 A
5840784 Funkhouser et al. Nov 1998 A
5849401 El-Afandi et al. Dec 1998 A
5849590 Anderson, II et al. Dec 1998 A
5853048 Weaver et al. Dec 1998 A
5864003 Qureshi et al. Jan 1999 A
5865936 Edelman et al. Feb 1999 A
5871049 Weaver et al. Feb 1999 A
5873413 Chatterji et al. Feb 1999 A
5875844 Chatterji et al. Mar 1999 A
5875845 Chatterji et al. Mar 1999 A
5875846 Chatterji et al. Mar 1999 A
5893383 Fracteau Apr 1999 A
5893416 Read Apr 1999 A
5908073 Nguyen et al. Jun 1999 A
5911282 Onan et al. Jun 1999 A
5916933 Johnson et al. Jun 1999 A
5921317 Dewprashad et al. Jul 1999 A
5924488 Nguyen et al. Jul 1999 A
5929437 Elliott et al. Jul 1999 A
5944105 Nguyen Aug 1999 A
5945387 Chatterji et al. Aug 1999 A
5948734 Sinclair et al. Sep 1999 A
5957204 Chatterji et al. Sep 1999 A
5960877 Funkhouser et al. Oct 1999 A
5960880 Nguyen et al. Oct 1999 A
5964291 Bourne et al. Oct 1999 A
5969006 Onan et al. Oct 1999 A
5969823 Wurz et al. Oct 1999 A
5977283 Rossitto Nov 1999 A
5994785 Higuchi et al. Nov 1999 A
RE36466 Nelson et al. Dec 1999 E
6003600 Nguyen et al. Dec 1999 A
6004400 Bishop et al. Dec 1999 A
6006835 Onan et al. Dec 1999 A
6006836 Chatterji et al. Dec 1999 A
6012524 Chatterji et al. Jan 2000 A
6016870 Dewprashad et al. Jan 2000 A
6024170 McCabe et al. Feb 2000 A
6028113 Scepanski Feb 2000 A
6028534 Ciglenec et al. Feb 2000 A
6040398 Kinsho et al. Mar 2000 A
6047772 Weaver et al. Apr 2000 A
6059034 Rickards et al. May 2000 A
6059035 Chatterji et al. May 2000 A
6059036 Chatterji et al. May 2000 A
6068055 Chatterji et al. May 2000 A
6069117 Onan et al. May 2000 A
6074739 Katagiri Jun 2000 A
6079492 Hoogteijling et al. Jun 2000 A
6098711 Chatterji et al. Aug 2000 A
6114410 Betzold Sep 2000 A
6123871 Carroll Sep 2000 A
6123965 Jacob et al. Sep 2000 A
6124246 Heathman et al. Sep 2000 A
6130286 Thomas et al. Oct 2000 A
6135987 Tsai et al. Oct 2000 A
6140446 Fujiki et al. Oct 2000 A
6148911 Gipson et al. Nov 2000 A
6152234 Newhouse et al. Nov 2000 A
6162766 Muir et al. Dec 2000 A
6169058 Le et al. Jan 2001 B1
6172011 Card et al. Jan 2001 B1
6172077 Curtis et al. Jan 2001 B1
6176315 Reddy et al. Jan 2001 B1
6177484 Surles Jan 2001 B1
6184311 O'Keefe et al. Feb 2001 B1
6187834 Thayer et al. Feb 2001 B1
6187839 Eoff et al. Feb 2001 B1
6189615 Sydansk Feb 2001 B1
6192985 Hinkel et al. Feb 2001 B1
6192986 Urlwin-Smith Feb 2001 B1
6196317 Hardy Mar 2001 B1
6202751 Chatterji et al. Mar 2001 B1
6209643 Nguyen et al. Apr 2001 B1
6209644 Brunet Apr 2001 B1
6209646 Reddy et al. Apr 2001 B1
6210471 Craig Apr 2001 B1
6214773 Harris et al. Apr 2001 B1
6231664 Chatterji et al. May 2001 B1
6234251 Chatterji et al. May 2001 B1
6238597 Yim et al. May 2001 B1
6241019 Davidson et al. Jun 2001 B1
6242390 Mitchell et al. Jun 2001 B1
6244344 Chatterji et al. Jun 2001 B1
6257335 Nguyen et al. Jul 2001 B1
6260622 Blok et al. Jul 2001 B1
6271181 Chatterji et al. Aug 2001 B1
6274650 Cui Aug 2001 B1
6279652 Chatterji et al. Aug 2001 B1
6279656 Sinclair et al. Aug 2001 B1
6283214 Guinot et al. Sep 2001 B1
6302207 Nguyen et al. Oct 2001 B1
6306998 Kimura et al. Oct 2001 B1
6311773 Todd et al. Nov 2001 B1
6321841 Eoff et al. Nov 2001 B1
6323307 Bigg et al. Nov 2001 B1
6326458 Gruber et al. Dec 2001 B1
6328105 Betzold Dec 2001 B1
6328106 Griffith et al. Dec 2001 B1
6330916 Rickards et al. Dec 2001 B1
6330917 Chatterji et al. Dec 2001 B2
6350309 Chatterji et al. Feb 2002 B2
6357527 Norman et al. Mar 2002 B1
6364018 Brannon et al. Apr 2002 B1
6364945 Chatterji et al. Apr 2002 B1
6367165 Huttlin Apr 2002 B1
6367549 Chatterji et al. Apr 2002 B1
6372678 Youngsman et al. Apr 2002 B1
6376571 Chawla et al. Apr 2002 B1
6387986 Moradi-Araghi et al. May 2002 B1
6390195 Nguyen et al. May 2002 B1
6401817 Griffith et al. Jun 2002 B1
6405797 Davidson et al. Jun 2002 B2
6406789 McDaniel et al. Jun 2002 B1
6408943 Schultz et al. Jun 2002 B1
6422314 Todd et al. Jul 2002 B1
6439309 Matherly et al. Aug 2002 B1
6439310 Scott, III et al. Aug 2002 B1
6440255 Kohlhammer et al. Aug 2002 B1
6446727 Zemlak et al. Sep 2002 B1
6448206 Griffith et al. Sep 2002 B1
6450260 James et al. Sep 2002 B1
6454003 Chang et al. Sep 2002 B1
6458885 Stengel et al. Oct 2002 B1
6485947 Rajgarhia et al. Nov 2002 B1
6488091 Weaver et al. Dec 2002 B1
6488763 Brothers et al. Dec 2002 B2
6494263 Todd Dec 2002 B2
6503870 Griffith et al. Jan 2003 B2
6508305 Brannon et al. Jan 2003 B1
6527051 Reddy et al. Mar 2003 B1
6528157 Hussain et al. Mar 2003 B1
6531427 Shuchart et al. Mar 2003 B1
6538576 Schultz et al. Mar 2003 B1
6543545 Chatterji et al. Apr 2003 B1
6552333 Storm et al. Apr 2003 B1
6554071 Reddy et al. Apr 2003 B1
6555507 Chatterji et al. Apr 2003 B2
6569814 Brady et al. May 2003 B1
6582819 McDaniel et al. Jun 2003 B2
6593402 Chatterji et al. Jul 2003 B2
6599863 Palmer et al. Jul 2003 B1
6608162 Chiu et al. Aug 2003 B1
6616320 Huber et al. Sep 2003 B2
6620857 Valet Sep 2003 B2
6626241 Nguyen Sep 2003 B2
6632527 McDaniel et al. Oct 2003 B1
6632892 Rubinsztajn et al. Oct 2003 B2
6642309 Komitsu et al. Nov 2003 B2
6648501 Huber et al. Nov 2003 B2
6659179 Nguyen Dec 2003 B2
6664343 Narisawa et al. Dec 2003 B2
6667279 Hessert et al. Dec 2003 B1
6668926 Nguyen et al. Dec 2003 B2
6669771 Tokiwa et al. Dec 2003 B2
6681856 Chatterji et al. Jan 2004 B1
6686328 Binder Feb 2004 B1
6705400 Nguyen et al. Mar 2004 B1
6710019 Sawdon et al. Mar 2004 B1
6713170 Kaneka et al. Mar 2004 B1
6725926 Nguyen et al. Apr 2004 B2
6725931 Nguyen et al. Apr 2004 B2
6729404 Nguyen et al. May 2004 B2
6732800 Acock et al. May 2004 B2
6745159 Todd et al. Jun 2004 B1
6749025 Brannon et al. Jun 2004 B1
6763888 Harris et al. Jul 2004 B1
6766858 Nguyen et al. Jul 2004 B2
6776236 Nguyen Aug 2004 B1
6832650 Nguyen et al. Dec 2004 B2
6851474 Nguyen Feb 2005 B2
6887834 Nguyen et al. May 2005 B2
6978836 Nguyen et al. Dec 2005 B2
7063151 Nguyen et al. Jun 2006 B2
20010016562 Muir et al. Aug 2001 A1
20020043370 Poe Apr 2002 A1
20020048676 McDaniel et al. Apr 2002 A1
20020070020 Nguyen Jun 2002 A1
20030006036 Malone et al. Jan 2003 A1
20030060374 Cooke, Jr. Mar 2003 A1
20030114314 Ballard et al. Jun 2003 A1
20030130133 Vollmer Jul 2003 A1
20030131999 Nguyen et al. Jul 2003 A1
20030148893 Lungofer et al. Aug 2003 A1
20030186820 Thesing Oct 2003 A1
20030188766 Banerjee et al. Oct 2003 A1
20030188872 Nguyen et al. Oct 2003 A1
20030196805 Boney et al. Oct 2003 A1
20030205376 Ayoub et al. Nov 2003 A1
20030230408 Acock et al. Dec 2003 A1
20030234103 Lee et al. Dec 2003 A1
20040000402 Nguyen et al. Jan 2004 A1
20040014607 Sinclair et al. Jan 2004 A1
20040014608 Nguyen et al. Jan 2004 A1
20040040706 Hossaini et al. Mar 2004 A1
20040040708 Stephenson et al. Mar 2004 A1
20040040713 Nguyen et al. Mar 2004 A1
20040048752 Nguyen et al. Mar 2004 A1
20040055747 Lee Mar 2004 A1
20040106525 Willbert et al. Jun 2004 A1
20040138068 Rimmer et al. Jul 2004 A1
20040149441 Nguyen et al. Aug 2004 A1
20040152601 Still et al. Aug 2004 A1
20040177961 Nguyen et al. Sep 2004 A1
20040194961 Nguyen et al. Oct 2004 A1
20040206499 Nguyen et al. Oct 2004 A1
20040211559 Nguyen et al. Oct 2004 A1
20040211561 Nguyen et al. Oct 2004 A1
20040221992 Nguyen et al. Nov 2004 A1
20040231845 Cooke, Jr. Nov 2004 A1
20040231847 Nguyen et al. Nov 2004 A1
20040256099 Nguyen et al. Dec 2004 A1
20040261995 Nguyen et al. Dec 2004 A1
20040261997 Nguyen et al. Dec 2004 A1
20050000731 Nguyen et al. Jan 2005 A1
20050006093 Nguyen et al. Jan 2005 A1
20050006095 Justus et al. Jan 2005 A1
20050006096 Nguyen et al. Jan 2005 A1
20050034862 Nguyen et al. Feb 2005 A1
20050045326 Nguyen Mar 2005 A1
Foreign Referenced Citations (37)
Number Date Country
2063877 May 2003 CA
0313243 Oct 1988 EP
0528595 Aug 1992 EP
0510762 Nov 1992 EP
0643196 Jun 1994 EP
0834644 Apr 1998 EP
0853186 Jul 1998 EP
0864726 Sep 1998 EP
0879935 Nov 1998 EP
0933498 Aug 1999 EP
1001133 May 2000 EP
1132569 Sep 2001 EP
1326003 Jul 2003 EP
1362978 Nov 2003 EP
1394355 Mar 2004 EP
1396606 Mar 2004 EP
1398640 Mar 2004 EP
1403466 Mar 2004 EP
1464789 Oct 2004 EP
1107584 Mar 1968 GB
1264180 Dec 1969 GB
1292718 Oct 1972 GB
2382143 Apr 2001 GB
WO9315127 Aug 1993 WO
WO9407949 Apr 1994 WO
WO9408078 Apr 1994 WO
WO9408090 Apr 1994 WO
WO9509879 Apr 1995 WO
WO9711845 Apr 1997 WO
WO9927229 Jun 1999 WO
WO 0181914 Nov 2001 WO
WO 0187797 Nov 2001 WO
WO 0212674 Feb 2002 WO
WO 03027431 Apr 2003 WO
WO 2004037946 May 2004 WO
WO 2004038176 May 2004 WO
WO 05021928 Mar 2005 WO
Related Publications (1)
Number Date Country
20050194135 A1 Sep 2005 US
Continuation in Parts (1)
Number Date Country
Parent 10794076 Mar 2004 US
Child 11072355 US