Methyl .alpha.-(2-substituted)pyrid-3-yl-.beta.-methoxyacrylates, compositions containing them and their use as fungicides

Information

  • Patent Grant
  • 5198444
  • Patent Number
    5,198,444
  • Date Filed
    Monday, October 15, 1990
    34 years ago
  • Date Issued
    Tuesday, March 30, 1993
    31 years ago
Abstract
Fungicidal compounds of the formula (I): ##STR1## and stereoisomers thereof, wherein K is oxygen or sulphur; Z is optionally substituted aryl or optionally substituted heteroaryl; X is O, S(O).sub.n, NR.sup.4, CR.sup.1 R.sup.2, CHR.sup.5, CO, CR.sup.1 (OR.sup.2), C.dbd.CR.sup.1 R.sup.2, CHR.sup.1 CHR.sup.2, CR.sup.1 .dbd.CR.sup.2, CHR.sup.1 CR.sup.2 .dbd.CH, C.dbd.C, OCHR.sup.1, CHR.sup.1 O, OCHR.sup.1 O, S(O).sub.n CHR.sup.1, S(O).sub.n CHR.sup.1 O, CHR.sup.1 S(O).sub.n, CHR.sup.1 OSO.sub.2, NR.sup.4 CHR.sup.1, CHR.sup.1 NR.sup.4, CO.sub.2, O.sub.2 C, SO.sub.2 O, OSO.sub.2, CO.CO, COCHR.sup.1, COCHR.sup.1 O, CHR.sup.1 CO, CHOH.CHR.sup.1, CHR.sup.1.CHOH, ##STR2## CONR.sup.4, OCONR.sup.4, NR.sup.4 CO, CSNR.sup.4, OCS.NR.sup.4, SCO.NR.sup.4, NR.sup.4 CO.sub.2, NR.sup.4 CS, NR.sup.4 CSO, NR.sup.4 COS, NR.sup.4 CONR.sup.4, S(O).sub.n NR.sup.4, NR.sup.4 S(O).sub.n, CS.sub.2, S.sub.2 C, CO.S, SCO, N.dbd.N, N.dbd.CR.sup.1, CR.sup.1 .dbd.N, CHR.sup.1 CHR.sup.2 CH(OH), CHR.sup.1 OCO, CHR.sup.1 SCO, CHR.sup.1 NR.sup.4 CO, CHR.sup.1 NR.sup.4 COR.sup.4, CHR.sup.1 CHR.sup.2 CO, O.N.dbd.CR.sup.1, CHR.sup.1 O.N.dbd.CR.sup.2, CO.OCR.sup.1 R.sup.2, CHR.sup.1 CHR.sup.2 CHR.sup.3, OCHR.sup.1 CHR.sup.2, (CH.sub.2).sub.m O, CHR.sup.1 OCHR.sup.2, CHR.sup.1 CHR.sup.2 O, OCHR.sup.1 CHR.sup.2 O, S(O).sub.n CHR.sup.1 CHR.sup.2, CHR.sup.1 S(O).sub.n CHR.sup.2, CHR.sup.1 CHR.sup.2 S(O).sub.n, CR.sup.1 .dbd.NNR.sup.4, NR.sup.4 N.dbd.CR.sup.1, CHR.sup.1 CONR.sup.2, CHR.sup.1 OCO.NR.sup.2, CH.dbd.CHCH.sub.2 O, COCHR.sup.1 CHR.sup.2 O or (R.sup.5).sub.2 P.sup. + CHR.sup.2 Q.sup.- ; A, B and E, which may be the same or different, are H, hydroxy, halo, C.sub.1-4 alkyl, C.sub.1-4 alkoxy, C.sub.1-4 haloalkyl, C.sub.1-4 haloalkoxy, C.sub.1-4 alkylcarbonyl, C.sub.1-4 alkoxycarbonyl, phenoxy, nitro or cyano; R.sup.1, R.sup.2 and R.sup.3, which may be the same or different, are H, C.sub.1-4 alkyl or phenyl; R.sup.4 is H, C.sub.1-4 alkyl or COR.sup.1 ; R.sup.5 is optionally substituted phenyl; Q.sup.- is a halide anion; n is 0, 1, or 2 and m is a 3, 4 or 5.
Description
Claims
  • 1. A fungicidal compound of the formula (I): ##STR27## or a stereoisomer thereof, wherein A, B and E, which are the same or different, are H, halo, hydroxy, C.sub.1-4 alkyl, C.sub.1-4 alkoxy, C.sub.1-4 haloalkyl, C.sub.1-4 haloalkoxy, C.sub.1-4 alkylcarbonyl, C.sub.1-4 alkoxycarbonyl, phenoxy, nitro or cyano; K is oxygen or sulphur; X is O; and Z is aryl substituted with one or more of halo, hydroxy, mercapto, C.sub.1-4 alkyl, C.sub.2-4 alkenyl, C.sub.2-4 alkynyl, C.sub.1-4 alkoxy, C.sub.2-4 alkenyloxy, C.sub.2-4 alkynyloxy, halo(C.sub.1-4)alkyl, halo(C.sub.1-4)alkoxy, C.sub.1-4 alkylthio, hydroxy(C.sub.1-4)alkyl, C.sub.1-4 alkoxy(C.sub.1-4)alkyl, C.sub.3-6 cycloalkyl, C.sub.3-6 cycloalkyl(C.sub.1-4)alkyl, aryl, pyridinyl or pyrimidinyl, aryloxy, aryl(C.sub.1-4)alkyl, aryl(C.sub.1-4)alkyl in which the alkyl moiety is substituted with hydroxy, pyrimidinyl(C.sub.1-4)alkyl or pyridinyl(C.sub.1-4)alkyl, aryl(C.sub.2-4)alkenyl, pyrimidinyl(C.sub.2-4)alkenyl or pyridinyl(C.sub.2-4)alkenyl, aryl(C.sub.1-4)alkoxy, pyrimidinyl(C.sub.1-4)alkoxy or pyridinyl(C.sub.1-4)alkoxy, aryloxy(C.sub.1-4)alkyl, pyrimidinyloxy(C.sub.1-4)alkyl or pyridinyloxy(C.sub.2-4)alkyl, carbacyloxy, cyano, thiocyanato, nitro, --NR'R", --NHCOR', --NHCONR'R", --CONR'R", --COOR' , --OSO.sub.2 R', --SO.sub.2 R', --COR', --CR.dbd.NR" or --N.dbd.CR'R" in which R' and R" are independently hydrogen, C.sub.1-4 alkyl, C.sub.1-4 alkoxy, C.sub.1-4 alkylthio, C.sub.3-6 cycloalkyl, C.sub.3-6 cycloalkyl(C.sub.1-4)alkyl, phenyl or benzyl, or phenyl or benzyl substituted with halogen, C.sub.1-4 alkyl or C.sub.1-4 alkoxy; the aryl or pyrimidinyl or pyridinyl rings of any of the foregoing substituents being optionally substituted with one or more of halo, hydroxy, mercapto, C.sub.1-4 alkyl, C.sub.2-4 alkenyl, C.sub.2-4 alkynyl, C.sub.1-4 alkoxy, C.sub.2-4 alkenyloxy, C.sub.2-4 alkynyloxy, halo(C.sub.1-4)alkyl, halo(C.sub.1-4)alkoxy, C.sub.1-4 alkylthio, hydroxy(C.sub.1-4)alkyl, C.sub.1-4 alkoxy(C.sub.1-4)alkyl, C.sub.3-6 cycloalkyl, C.sub.3-6 cycloalkyl(C.sub.1-4)alkyl, alkanoyloxy, benzoyloxy, cyano, thiocyanato, nitro, --NR'R", --NHCOR', --NHCONR'R", --CONR'R", --COOR', --OSO.sub.2 R', --SO.sub.2 R', --COR', --CR'.dbd.NR" or --N.dbd.CR'R" in which R' and R" have the meanings given above provided that Z is not phenyl substituted only with C.sub.1-4 alkyl.
  • 2. A fungicidal compound of the formula (Ia): ##STR28## wherein X is O; A is H, hydroxy, halo, C.sub.1-4 alkyl, C.sub.1-4 alkoxy, trifluoromethyl, nitro, cyano, acetyl or phenoxy; B and E are H or halo; D is hydroxy, halo, C.sub.1-4 alkoxy, nitro, cyano, halo(C.sub.1-4)alkyl, halo(C.sub.1-4)alkoxy, phenyl, phenoxy, NHCOR.sup.6, NHSO.sub.2 R.sup.6, NR.sup.7 R.sup.8, CO.sub.2 R.sup.7, wherein R.sup.6 is C.sub.1-4 alkyl or phenyl and R.sup.7 and R.sup.8 are independently H or C.sub.1-4 alkyl, or CH.sub.3 O.sub.2 C.C.dbd.CH.OCH.sub.3 ; and G is H, halo, C.sub.1-4 alkyl, C.sub.1-4 alkoxy or nitro; or D and G, when they are adjacent, join to form a benzene or pyridine ring.
  • 3. A compound according to claim 2 wherein X is O; D is halo, C.sub.1-4 alkoxy, nitro, cyano or amino; and A, B, E and G are all H.
  • 4. A fungicidal composition comprising a fungicidally effective amount of a compound according to claim 1 and a fungicidally acceptable carrier or diluent therefor.
  • 5. A method of combating fungi which comprises applying to plants, to the seeds of plants or to the locus of the plants or seeds, a compound according to claim 1 or a composition according to claim 1.
Priority Claims (1)
Number Date Country Kind
8724252 Oct 1987 GBX
TABLE V: SELECTED PROTON NMR DATA

This is a continuation of application Ser. No. 07/258,742, filed Oct. 17, 1988, now U.S. Pat. No. 5,008,276 which is a continuation-in-part of Ser. No. 039,401, filed Apr. 17, 1987, now U.S. Pat. No. 4,826,531. This invention relates to derivatives of propenoic acid useful as fungicides, to processes for preparing them, to fungicidal compositions containing them, and to methods of using them to combat fungi, especially fungal infections of plants. The present invention provides a compound having the formula (I); ##STR3## and stereoisomers thereof, wherein K is oxygen or sulphur; Z is optionally substituted aryl or optionally substituted heteroaryl; X is O, S(O).sub.n, NR.sup.4, CR.sup.1 R.sup.2, CHR.sup.5, CO, CR.sup.1 (OR.sup.2), C.dbd.CR.sup.1 R.sup.2, CHR.sup.1 CHR.sup.2, CR.sup.1 .dbd.CR.sup.2, CHR.sup.1 CR.sup.2 .dbd.CH, C.dbd.C, OCHR.sup.1, CHR.sup.1 O, OCHR.sup.1 O, S(O).sub.n CHR.sup.1, S(O).sub.n CHR.sup.1 O, CHR.sup.1 S(O).sub.n, CHR.sup.1 OSO.sub.2, NR.sup.4 CHR.sup.1, CHR.sup.1 NR.sup.4, CO.sub.2, O.sub.2 C, SO.sub.2 O, OSO.sub.2, CO.CO, COCHR.sup.1, COCHR.sup.1 O, CHR.sup.1 CO, CHOH.CHR.sup.1, CHR.sup.1.CHOH, ##STR4## CONR.sup.4, OCONR.sup.4, NR.sup.4 CO, CSNR.sup.4, OCS.NR.sup.4, SCO.NR.sup.4, NR.sup.4 CO.sub.2, NR.sup.4 CS, NR.sup.4 CSO, NR.sup.4 COS, NR.sup.4 CONR.sup.4, S(O).sub.n NR.sup.4, NR.sup.4 S(O).sub.n, CS.sub.2, S.sub.2 C, CO.S, SCO, N.dbd.N, N.dbd.CR.sup.1, CR.sup.1 .dbd.N, CHR.sup.1 CHR.sup.2 CH(OH), CHR.sup.1 OCO, CHR.sup.1 SCO, CHR.sup.1 NR.sup.4 CO, CHR.sup.1 NR.sup.4 CONR.sup.4, CHR.sup.1 CHR.sup.2 CO, O.N.dbd.CR.sup.1, CHR.sup.1 O.N.dbd.CR.sup.2, CO.OCR.sup.1 R.sup.2, CHR.sup.1 CHR.sup.2 CHR.sup.3, OCHR.sup.1 CHR.sup.2, (CH.sub.2).sub.m O, CHR.sup.1 OCHR.sup.2, CHR.sup.1 CHR.sup.2 O, OCHR.sup.1 CHR.sup.2 O, S(O).sub.n CHR.sup.1 CHR.sup.2, CHR.sup.1 S(O).sub.n CHR.sup.2, CHR.sup.1 CHR.sup.2 S(O).sub.n, CR.sup.1 .dbd.NNR.sup.4, NR.sup.4 N.dbd.CR.sup.1, CHR.sup.1 CONR.sup.2, CHR.sup.1 OCO.NR.sup.2, CH.dbd.CHCH.sub.2 O, COCHR.sup.1 CHR.sup.2 O, or (R.sup.5).sub.2 P.sup.' CHR.sup.2 Q.sup.- ; A, B and E, which may be the same or different are H, hydroxy, halo, C.sub.1-4 alkyl, C.sub.1-4 alkoxy, C.sub.1-4 haloalkyl, C.sub.1-4 haloalkoxy, C.sub.1-4 alkylcarbonyl, C.sub.1-4 alkoxycarbonyl, phenoxy, nitro or cyano; R.sup.1, R.sup.2 and R.sup.3 , which may be the same or different, are H, C.sub.1-4 alkyl or phenyl; R.sup.4 is H, C.sub.1-4 alkyl or COR.sup.1 ; R.sup.5 is optionally substituted phenyl; Q.sup.- is a halide anion; n is 0, 1 or 2 and m is 3, 4 or 5. Of particular interest are those compounds in which X is O, OCH.sub.2, CH.sub.2 O, and SO.sub.2 O. The compounds of the invention contain at least one carbon-carbon double bond, and are sometimes obtained in the form of mixtures of geometric isomers. However, these mixtures can be separated into individual isomers, and this invention embraces such isomers, and mixtures thereof in all proportions including those which consist substantially of the (Z)-isomer and those which consist substantially of the (E)-isomer. The individual isomers which result from the unsymmetrically substituted double bond of the propenoate group are identified by the commonly used terms "E" and "Z". These terms are defined according to the Cahn- Ingold-Prelog system which is fully described in the literature (see, for example, J March, "Advanced Organic Chemistry", 3rd edition, Wiley-Interscience, page 109 et seq). Usually one isomer is more active fungicidally than the other, the more active isomer usually being the one wherein the groups --CO.sub.2 CH.sub.3 and --OCH.sub.3 are on opposite sides of the olefinic bond of the propenoate group (the (E)-isomer). These (E)-isomers form a preferred embodiment of the invention. The substituent Z in compound (I) is optionally substituted aryl or optionally substituted heteroaryl. Where valency allows, each of the optionally substituted groups aryl or heteroaryl can carry up to 5 substitutents. The term "aryl" includes phenyl in particular, and naphthyl. The term "heteroaryl" includes 5- and 6-membered heterocyclic groups containing one or more of each of the heteroatoms O, S and N (preferably S or N), fused benzenoid and heteroaromatic ring systems, and, in each case, the corresponding N-oxides. Examples of heteroaryl groups which Z may be are pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, 1,2,3-, 1,2,4-, and 1,3,5-triazinyl, 1,2,4,5-tetrazinyl, 1,2,3- and 1,2,4-trizolyl, thienyl, furyl, pyrrolyl, thiazolyl, oxadiazolyl, quinolinyl, isoquinolinyl, quinoxalinyl, benzothienyl, benzoxazolyl and benzthiazolyl and, where appropriate, the corresponding N-oxides. Substituents which may be present in the optionally substituted aryl and heteroaryl moieties include one or more of the following; halo, hydroxy, mercapto, C.sub.1-4 alkyl (especially methyl and ethyl), C.sub.2-4 alkenyl (especially allyl), C.sub.2-4 alkynyl (especially propargyl), C.sub.1-4 alkoxy (especially methoxy), C.sub.2-4 alkenyloxy (especially allyloxy), C.sub.2-4 alkynyloxy (especially propargyloxy), halo(C.sub.2-4)alkyl (especially trifluoromethyl), halo(C.sub.1-4)alkoxy (especially trifluoromethoxy), C.sub.1-4 alkylthio (especially methylthio), hydroxy(C.sub.1-4)alkyl, C.sub.1-4 alkoxy(C.sub.1-4)alkyl, C.sub.3-6 cycloalkyl, C.sub.3-6 cycloalkyl(C.sub.1-4)alkyl, optionally substituted aryl (especially optionally substituted phenyl), optionally substituted heteroaryl (especially optionally substituted pyridinyl or pyrimidinyl), optionally substituted aryloxy (especially optionally substituted phenoxy), optionally substituted heteroaryloxy (especially optionally substituted pyridinyloxy or pyrimidinyloxy), optionally substituted aryl(C.sub.1-4)alkyl (especially optionally substituted benzyl, optionally substituted phenethyl and optionally substituted phenyl n-propyl) in which the alkyl moiety is optionally substituted with hydroxy, optionally substituted heteroaryl(C.sub.1-4)alkyl (especially optionally substituted pyridinyl- or pyrimidinyl(C.sub.1-4)alkyl), optionally substituted aryl(C.sub.2-4)alkenyl (especially optionally substituted phenylethenyl), optionally substituted heteroaryl(C.sub.2-4)alkenyl (especially optionally substituted pyridinylethenyl or pyrimidinylethenyl), optionally substituted aryl(C.sub.1-4)alkoxy (especially optionally substituted benzyloxy), optionally substituted heteroaryl(C.sub.1-4)alkoxy (especially optionally substituted pyridinyl- or pyrimidinyl(C.sub.1-4)alkoxy), optionally substituted aryloxy(C.sub.1-4)alkyl (especially phenoxymethyl), optionally substituted heteroaryloxy(C.sub.1-4)alkyl (especially optionally substituted pyridinyloxy- or pyrimidinyloxy(C.sub.1-4)alkyl), acyloxy, including C.sub.1-4 alkanoyloxy (especially acetyloxy) and benzoyloxy, cyano, thiocyanato, nitro, --NR'R", --NHCOR", --NHCONR'R", --CONR'R", --COOR', --OSO.sub.2 R', --SO.sub.2 R' , --COR', --CR'.dbd.NR" or --N.dbd.CR'R" in which R' and R" are independently hydrogen, C.sub.1-4 alkyl, C.sub.1-4 alkoxy, C.sub.1-4 alkylthio, C.sub.3-6 cycloalkyl, C.sub.3-6 cycloalkyl(C.sub.1-4)alkyl, phenyl or benzyl, the phenyl and benzyl groups being optionally substituted with halogen, C.sub.1-4 alkyl or C.sub.1-4 alkoxy. Substituents which may be present in the aryl or heteroaryl rings of any of the foregoing substituents and in the phenyl ring of R.sup.5 include one or more of the following; halo, hydroxy, mercapto, C.sub.1-4 alkyl, C.sub.2-4 alkenyl, C.sub.2-4 alkynyl, C.sub.1-4 alkoxy, C.sub.2-4 alkenyloxy, C.sub.2-4 alkynyloxy, halo(C.sub.1-4)alkyl, halo(C.sub.1-4)alkoxy, C.sub.1-4 - alkylthio, hydroxy(C.sub.1-4)alkyl, C.sub.1-4 alkoxy(C.sub.1-4)alkyl, C.sub.3-6 cycloalkyl, C.sub.3-6 cycloalkyl(C.sub.1-4)alkyl, alkanoyloxy, benzyloxy, cyano, thiocyanato, nitro, --NR'R", --NHCOR', --NHCONR'R", --CONR'R", --COOR', --OSO.sub.2 R', --SO.sub.2 R', --COR', --CR'.dbd.NR" or --N.dbd.CR'R" in which R' and R" have the meanings given above. When any of the substituents A, B and E are C.sub.1-4 -alkyl or C.sub.1-4 alkoxy, the alkyl moiety can be in the form of straight or branched chains, that is, the moiety may be methyl, ethyl, n- or iso-propyl, or n-, sec-, iso- or t- butyl. Other references herein to C.sub.1-4 alkyl and C.sub.1-4 alkoxy carry the same meaning. C.sub.2-4 Alkenyl groups can be in the form of straight or branched chains and, where appropriate, may have either the (E)- or (Z)-configuration. Examples of such groups are vinyl, allyl, --C(CH.sub.3):CH.sub.2, and (E)- and (Z)-crotyl. The substituents A and B are preferably in the 4- and 5-positions of the phenyl ring, and the substituent E is preferably a small group or a single atom such as hydrogen or halogen. Usually, E and one or both of A and B will be hydrogen. In one aspect, the invention includes a compound having the formula (Ia): ##STR5## wherein X is O, S(O).sub.n in which n is 0, 1 or 2, NH, NCH.sub.3, NCH.sub.2 CH.sub.3, NCOCH.sub.3, NCH(CH.sub.3).sub.2, CH.sub.2, CH(CH.sub.3), C(CH.sub.3).sub.2, CO, C.dbd.CH.sub.2, C.dbd.(CH.sub.3).sub.2, CH.sub.2 CH.sub.2, CH(CH.sub.3)CH.sub.2, CH.sub.2 CH(CH.sub.3), (E)--CH.dbd.CH, (Z)--CH.dbd.CH, (E)--C(CH.sub.3).dbd.C(CH.sub.3), C.dbd.C, OCH.sub.2, OCH(CH.sub.3), (CH.sub.2).sub.p O in which p is an integer of 1 to 5, CH(CH.sub.3)O, SCH.sub.2, SCH(CH.sub.3), S(O)CH.sub.2, S(O)CH(CH.sub.3), S(O).sub.2 CH.sub.2, S(O).sub.2 CH(CH.sub.3), CH.sub.2 S, CH(CH.sub.3)S, CH.sub.2 S(O), CH(CH.sub.3)S(O), CH.sub.2 S(O).sub.2, CH(CH.sub.3)S(O).sub.2, NHCH.sub.2, N(CH.sub.3)CH.sub.2, N(COCH.sub.3)CH.sub.2, NHCH(CH.sub.3), N(CH.sub.3)CH(CH.sub.3), N(COCH.sub.3)CH(CH.sub.3), CH.sub.2 NH, CH.sub.2 N(CH.sub.3), CH.sub.2 N(COCH.sub.3 ), CH(CH.sub.3)NH, CH(CH.sub.3)N(CH.sub.3), CH(CH.sub.3)N(COCH.sub.3), CO.sub.2, O.sub.2 C, SO.sub.2 O, OSO.sub.2, CO.CO, COCH.sub.2, COCH(CH.sub.3), CH.sub.2 CO, CH(CH.sub.3)CO, CH(OH)CH.sub.2, CH(OH)CH(CH.sub.3), CH.sub.2 CH(OH), CH(CH.sub.3)CH(OH), CONH, CON(CH.sub.3), CON(CH.sub.2 CH.sub.2 CH.sub.3), CON(CHO), CON(COCH.sub.3), NHCO, N(CH.sub.3)CO, N(CH.sub.2 CH.sub.3)CO, N(CHO)CO, N(COCH.sub.3)CO, CSN(CH.sub.3), CSNH, NHCS, N(CH.sub.3)CS, SO.sub.2 NH, SO.sub.2 N(CH.sub.3), NHSO.sub.2, N(CH.sub.3)SO.sub.2, N(CH.sub.2 CH.sub.3)SO.sub.2, CS.sub.2, S.sub.2 C, COS, SCO, (E)--N.dbd.N, (E)--N.dbd.CH, (E)--N.dbd.C(CH.sub.3), (E)--CH.sub.2 .dbd.N, (E)--C(CH.sub.3).dbd.N, CH.sub.2 CH.sub.2 CH.sub.2, CH(CH.sub.3)CH.sub.2 CH.sub.2, CH.sub.2 CH(CH.sub.3)CH.sub.2, CH.sub.2 CH.sub.2 CH(CH.sub.3), OCH.sub.2 CH.sub.2, CH.sub.2 OCH.sub.2, SCH.sub.2 CH.sub.2, S(O)CH.sub.2 CH.sub.2, S(O).sub.2 CH.sub.2 CH.sub.2, CH.sub.2 SCH.sub.2, CH.sub. 2 S(O)CH.sub.2, CH.sub.2 S(O).sub.2 CH.sub.2, CH.sub.2 CH.sub.2 S, CH.sub.2 CH.sub.2 S(O), CH.sub.2 CH.sub.2 S(O).sub.2, (E)--CH.dbd.NNH, (E)--C(CH.sub.2).dbd.NNH, (E)--CH.dbd.NN(CH.sub.3), (E)--NHN.dbd.CH, (E)--NHN.dbd.C(CH.sub.3), (E)--N(CH.sub.3)N.dbd.CH, CH.sub.2 CONH, CH(CH.sub.3)CON(CH.sub.3), (E)--CH.dbd.CHCH.sub.2 O, COCH.sub.2 CH.sub.2 O, ##STR6## CH(C.sub.6 H.sub.5), COCH.sub.2 O, CH(OH), CO.sub.2 CH.sub.2, (C.sub.6 H.sub.5).sub.2 P.sup.+CH.sub.2 Br.sup.-, CH.sub.2 OCO, CH.sub.2 NHCO, CH.sub.2 SCO, OCH.sub.2 O, OCH.sub.2 CH.sub.2 O, S(O)CH.sub.2 O, COCH(CH.sub.3)O, (E)--CH.sub.2 ON.dbd.CH, (Z)--CH.sub.2 ON.dbd.CH, CH.sub.2 CH.sub.2 CH(OH), (E)--CH.sub.2 CH.dbd.CH, C(CH.sub.3)(OH), CH.sub.2 OSO.sub.2, CH.sub.2 NHCO.NH, OCO.NH, NHCO.NH or CH.sub.2 OCO.NH, A is H, hydroxy, halo, C.sub.1-4 alkyl, C.sub.1-4 alkoxy, trifluoromethyl, nitro, cyano, acetyl or phenoxy; B and E are H or halo; D is H, hydroxy, halo, C.sub.1-4 alkyl, C.sub.1-4 alkoxy, nitro, cyano, halo(C.sub.1-4)alkyl (especially trifluoromethyl), halo(C.sub.1-4)alkoxy (especially trifluoro-methoxy), phenyl, phenoxy, NHCOR.sup.6, NHSO.sub.2 R.sup.6, NR.sup.7 R.sup.8, CO.sub.2 R.sup.7, wherein R.sup.6 is C.sub.1-4 alkyl (especially methyl) or phenyl and R.sup.7 and R.sup.8 are independently H or C.sub.1-4 alkyl, or CH.sub. 3 O.sub.2 C.C.dbd.CH.OCH.sub.3 ; and G is H, halo, C.sub.1-4 alkyl, C.sub.1-4 alkoxy or nitro; or D and G, when they are adjacent, join to form a benzene or pyridine ring. More particularly, it includes a compound having the formula (Ia) wherein X is O, OCH.sub.2, CH.sub.2 O, CH(OH) or SO.sub.2 O; A is H, hydroxy, halo, C.sub.1-4 alkyl, C.sub.1-4 alkoxy, trifluoromethyl, nitro, cyano, acetyl or phenoxy; B and E are H or halo; D is H, hydroxy, halo, C.sub.1-4 alkyl, C.sub.1-4 alkoxy, nitro, cyano, halo(C.sub.1-4)alkyl (especially trifluoromethyl), halo(C.sub.1-4)alkoxy (especially trifluoromethoxy), phenyl, phenoxy, NHCOR.sup.6, NHSO.sub.2 R.sup.6, NR.sup.7 R.sup.8 or CO.sub.2 R.sup.7, wherein R.sup.6 is C.sub.1-4 alkyl (especially methyl) or phenyl and R.sup.7 and R.sup.8 are independently H or C.sub.1-4 alkyl; and G is H, halo, C.sub.1-4 alkyl, C.sub.1-4 alkoxy or nitro. Of special interest are compounds of the formula (Ia) wherein X is O, OCH.sub.2, CH.sub.2 O or SO.sub.2 O,; D is H, halo, C.sub.1-4 alkyl, C.sub.1-4 alkoxy, nitro, cyano or amino; and A, B, E and G are all H. In another aspect, the invention includes a compound having the formula (Ib): ##STR7## wherein Z is pyridinyl, pyrimidinyl, triazinyl, pyrazinyl, pyridazinyl, quinolinyl, benzoxazolyl, benzthiazolyl, thienyl, quinoxalinyl, thiazolyl, isoquinolinyl, quinazolinyl, purinyl, oxazolyl, thiadiazolyl, oxadiazolyl, furyl, pyrrolyl or thienopyrimidinyl, each optionally substituted with halo, C.sub.1-4 alkyl, C.sub.1-4 alkoxy, C.sub.1-4 alkylthio, halo(C.sub.1-4)alkyl (especially trifluoromethyl), cyano, nitro, SO.sub.2 R.sup.6, COOR.sup.7, phenyl, phenoxy, C.sub.1-4 alkanoyl and CONR.sup.7 R.sup.8 in which R.sup.6 is C.sub.1-4 alkyl and R.sup.7 and R.sup.8 are independently H or C.sub.1-4 alkyl, and N-oxides thereof; X is O, S, NH, N(CH.sub.3), SO.sub.2 O, CH.sub.2, CH.sub.2 CH.sub.2, OCH.sub.2, CH.sub.2 O, CH(OH), CONH or CO; A and B are independently H, halo, C.sub.1-4 alkyl, C.sub.1-4 alkoxy, cyano, nitro, halo(C.sub.1-4)alkyl (especially trifluoromethyl) or halo(C.sub.1-4)alkoxy (especially trifluoromethoxy); and E is H or halo. More particularly, it includes a compound having the formula (Ib) wherein X is O, OCH.sub.2, CH.sub.2 O, CH(OH) or SO.sub.2 O; Z is pyridinyl, pyrimidinyl or thiazolyl, each optionally substituted with halo, C.sub.1-4 alkyl, C.sub.1-4 alkoxy, C.sub.1-4 alkylthio, halo(C.sub.1-4)alkyl (especially trifluoromethyl), cyano, nitro, SO.sub.2 R.sup.6, COOR.sup.7, phenyl, phenoxy, C.sub.1-4 alkanoyl and CONR.sup.7 R.sup.8 in which R.sup.6 is C.sub.1-4 alkyl and R.sup.7 and R.sup.8 are independently H or C.sub.1-4 alkyl, and N-oxides thereof; A and B are independently H, halo, C.sub.1-4 alkyl, C.sub.1-4 alkoxy, cyano, nitro, halo(C.sub.1-4)alkyl (especially trifluoromethyl) or halo(C.sub.1-4)alkoxy (especially trifluoromethoxy); and E is H or halo. Of special interest are compounds of the formula (Ib) wherein X is O or OCH.sub.2 ; Z is pyridin-2-yl, pyrimidin-2-yl, pyrimidin-4-yl or thiazol-2-yl each optionally substituted with halogen, cyano, nitro or SO.sub.2 R.sup.6 in which R.sup.6 is C.sub.1-4 alkyl; and A, B and E are all H. In yet another aspect, the invention includes a compound having the formula (Ic): ##STR8## wherein X, A, B, D, E and G have the meanings given for the compound (Ia). In still yet another aspect, the invention includes a compound having the formula (Id): ##STR9## wherein Z, X, A, B and E have the meanings given for the compound (Ib). The invention is illustrated by the compounds listed in Tables I, II, III and IV which follow. Throughout Tables I, II, III and IV the methyl 3-methoxypropenoate group has the (E)-configuration. Table III comprises 447 compounds of the general structure above with all the values of D, G, X, A, B and E listed in Table I. That is, Compound Nos. 1 to 447 of Table III are the same as those of Table I except that the value of K is oxygen in Table I and sulphur in Table III. Table IV comprises 322 compounds of the general structure above with all the values of Z, X, A, B and E listed in Table II. That is, compounds Nos. 1 to 322 of Table IV are the same as those of Table II except that the value of K is oxygen in Table II and sulphur is Table IV. Table V shows selected proton n.m.r data for certain compounds described in Tables I, II, III and IV. Chemical shifts are measured in p.p.m from tetramethylsilane, and deuterochloroform was used as solvent throughout. The column headed `frequency` refers to the operating frequency of the n.m.r spectrometer. The following abbreviations are used: The compounds of the invention of formula (I) can be made by a variety of methods, and some of these are illustrated in Schemes I to VI. Throughout these Schemes, the terms K, Z, X, A, B, E, R.sup.1, R.sup.2, R.sup.3, R.sup.4 and R.sup.5 are as defined above, R.sup.6 is hydrogen or a metal (such as sodium or potassium), R is an alkyl group, and L is a leaving group such as a halide (chloride, bromide or iodide), a CH.sub.3 SO.sub.4 -anion, or a sulphonyloxyanion. Each of the transformations described in Schemes I to VI is performed at a suitable temperature and either in a suitable solvent or in the absence of a solvent. Scheme I illustrates ways in which the methyl beta-methoxypropenoate group can be constructed in the final stages of the preparation of the compounds of the invention from precursors with a preformed framework of 3 aromatic rings. Alternatively, the methyl beta-methoxy-propenoate group may be constructed at an earlier stage of the preparation, in which case the final step or steps comprise elaboration of other parts of the compounds of the invention to form the framework of 3 aromatic rings. Examples of procedures of this kind are shown in Schemes II to VI. In whichever order the steps are carried out to prepare the compounds of the invention, the ether linkage which is common to all the compounds of the invention can be prepared by one of the coupling reactions shown in Scheme II. For a review of the Ullman ether synthesis see A. A. Moroz and M. S. Shrartsberg, Russian Chem. Reviews, 1974, 43, 679. These couplings are often performed in the presence of a catalyst which consists of a transition metal or a salt or compound of a transition metal, such as copper or a copper salt or compound, or a mixture thereof. In Scheme II, the term W represents either the group Z--X--, wherein Z and X are as defined above, or a group which can be converted by standard procedures described in the chemical literature into the group Z--X--. For example, W can be OH, SH, or --NHR.sup.4. The term Y represents either the alpha-linked methyl beta-methoxypropenoate group of the compounds of the invention or a group which can be converted into such a group by standard methods described in the chemical literature and/or described in Scheme I and the following paragraphs. For example, Y can be --CH.sub.2 CO.sub.2 H, --CH.sub.2 CO.sub.2 Me or --CHO. In the context of Scheme II, the term L is preferably a halogen. Thus compounds of formula (XI) react with compounds of formula (XII) under the conditions of the Ullmann reaction already described to give the intermediates of formula (VIII). As an example of one of the coupling reactions shown in Scheme II, substituted 3-phenoxyphenols, as their salts, undergo coupling with 2-bromo- or 2-chloro-3-cyanopyridine to give, substituted 2-(3-phenoxyphenoxy)-3-cyanopyridines. In one particular aspect, the invention includes a process for the preparation of the compound of formula (I) which comprises reacting a compound of general formula (XIIa): ##STR22## wherein Y' is halogen or other good leaving group (e.g. C.sub.1-4 alkylsulphonyl, optionally substituted aryl(suitably phenyl)sulphonyl and nitro), with a phenol or thiophenol of general formula (XIa): ##STR23## in the presence of a base, or with a salt of the phenol or thiophenol (XIa), preferably in the presence of a catalyst which comprises a suitable transition metal, a transition metal salt or compound or a mixture thereof. The compounds of the invention of formula (I) can be prepared from the pyridylacetates of formula (III) or the ketoesters of formula (VI) by the steps shown in Scheme I. Thus compounds of formula (I) can be prepared by treatment of pyridylacetates of formula (III) with a base (such as sodium hydride or sodium methoxide) and methyl formate. If a species of formula CH.sub.3 L, wherein L is as defined above, is then added to the reaction mixture, compounds of formula (I) may be obtained. If a protic acid is added to the reaction mixture, compounds of formula (II) wherein R.sup.5 is hydrogen are obtained. Alternatively, the species of formula (II) wherein R.sup.5 is a metal (such as sodium) may themselves be isolated from the reaction mixture. Compounds of formula (II) wherein R.sup.5 is a metal can be converted into compounds of formula (I) by treatment with a species of formula CH.sub.3 L, wherein L is as defined above. Compounds of formula (II) wherein R.sup.5 is hydrogen can be converted into compounds of formula (I) by successive treatments with a base (such as potassium carbonate) and a species of general formula CH.sub.3 L. Alternatively, compounds of formula (I) can be prepared from acetals of formula (IV) by elimination of methanol under either acidic or basic conditions. Examples of reagents or reagent mixtures which can be used for this transformation are lithium di-isopropylamide; potassium hydrogen sulphate (see, for example T Yamada, H Hagiwara and H Uda, J. Chem. Soc., Chemical Communications, 1980, 838, and references therein); and triethylamine, often in the presence of a Lewis acid such as titanium tetrachloride (see, for example, K Nsunda and L Heresi, J. Chem. Soc., Chemical Communications, 1985, 1000). Acetals of formula (IV) can be prepared by treatment of methyl silyl ketene acetals of formula (V) wherein R is an alkyl group, with trimethyl orthoformate in the presence of a Lewis acid such as titanium tetrachloride (see, for example, K Saigo, M Osaki and T Mukaiyama, Chemistry Letters, 1976, 769). Methyl silyl ketene acetals of formula (V) can be prepared from pyridylacetates of formula (III) by treatment with a base and a trialkylsilyl halide of formula R.sub.3 SiCl or R.sub.3 SiBr, such as trimethylsilyl chloride, or a base (such as triethylamine) and a trialkylsilyl triflate of formula R.sub.3 Si--OSO.sub.2 CF.sub.3 (see, for example, C Ainsworth, F Chen and Y Kuo, J. Organometallic Chemistry, 1972, 46, 59). It is not always necessary to isolate the intermediates (IV) and (V); under appropriate conditions, compounds of formula (I) may be prepared from pyridylacetates of formula (III) in "one pot" by the successive addition of suitable reagents listed above. Alternatively, compounds of formula (I) can be prepared by treatment of ketoesters of formula (VI) with, for example, methoxymethylenetriphenylphosphorane (see, for example, W Steglich, G Schramm, T Anke and F Oberwinkler, EP 0044448, 4.7.1980). Ketoesters of formula (VI) may be prepared by methods described in the literature. Particularly useful methods include (i) the reaction of appropriate pyridylmagnesium halides or pyridyl-lithium species with dimethyl oxalate using the method described by L M Weinstock R B Currie and A V Lovell, Synth. Commun., 1981, 11, 943 and references therein; (ii) oxidation of pyridylacetates of formula (III) using selenium dioxide, generally in the absence of a solvent, and generally at a temperature above 100.degree. C.; and (iii) oxidation of (3-pyridyl)glycolic acid esters using, for example, manganese oxide in a suitable solvent. Pyridylacetates of formula (III) and the corresponding pyridylacetic acids of formula (VII) may also be prepared by numerous other methods described int he chemical literature. For example, several useful methods are described by D C Atkinson, K E Godfrey, B Meek, J F Saville and M R Stillings, J. Med. Chem., 1983, 26, 1353 and D C Atkinson, K E Godfrey, P L Meters, N C Phillips, M R Stillings and A P Welbourn, J. Med. Chem., 1983, 26, 1361. Furthermore, many of the methods described for the preparation of 2-arylpropionic esters and acids by J-P Rieu, A Boucherle, H Cousse and G Mouzin, Tetrahedron, 1986, 42, 4095, are also applicable to the preparation of pyridylacetates of formula (III) and pyridylacetic acids of formula (VII) using appropriate precursors wherein the ortho-substituted phenoxy substituent and the substituent E are already present. ##STR24## Schemes III, IV, V, VI and VII illustrate examples of intermediates containing the methyl beta-methoxypropenoate group and show how they may be converted into certain specific types of compound of the invention (I). Thus, in Scheme III, in the presence of a base, and sometimes in the presence of a transition metal or transition metal salt catalyst, such as a copper to copper salt catalyst, compounds of formula (XIII) react with aromatic or heteroaromatic compounds of formula ZL, wherein Z and L are as defined above, or with iodonium salts of formula Z.sub.2 I.sup.+ T.sup.-, wherein Z is as defined as above and T is a counter ion, such as a halide ion, or with aryl or heteroarylbismuth species, to give compounds of formula (XIV). In addition, in the presence of a base, compounds of formula (XIII) react with aryl- or heteroarylsulphonyl halides of formula ZSO.sub.2 Q, wherein Z is as defined above and Q is a halogen, to give compounds of formula (XV). Furthermore, and also in the presence of a base, compounds of formula (XIII) react with arylalkyl or heteroarylalkyl species of formula ZCHR.sup.1 L, wherein Z, R.sup.1 and L are as defined above, to give compounds of formula (XVI). In Scheme IV the thiols of formula (XVII), generally in the presence of a base, react with aromatic or heteroaromatic compounds of formula ZL, or with iodonium salts of formula Z.sub.2 I.sup.+ T.sup.-, or with aryl- or heteroarylbismuth species, to give compounds of formula (XVIII) in ways which are analogous to the reactions of the corresponding phenols of formula (XIII). Similarly, and again in the presence of a base, the thiols of formula (XVII) react with arylalkyl or heteroarylalkyl species of formula ZCHR.sup.1 L to give compounds of formula (XIX). The sulphides of formula (XVIII) and (XIX) can be oxidised to the corresponding sulphoxides and sulphones by standard methods described in the chemical literature. In Scheme V, compounds of formula (XX) react with hydroxy-derivatives of aromatic or heteroaromatic compounds of formula ZOH, wherein Z is as defined above, often in the presence of a base, to form compounds of formula (XXI). Further more, compounds of formula (XX) react with trialkylphosphites of formula P(OR).sub.3 or with species of formula M.sup.+ P.sup.- (O)(OR).sub.2, wherein R is as defined above in each case and M is a metal such as sodium or lithium, to give phosphonates of formula (XXII). Phosphonates of formula (XXII), in the presence of a base, react with aldehydes or ketones of formula ZR.sup.1 C:O, wherein Z and R.sup.1 are as defined above, to give olefins of formula (XXIV). In addition, aldehydes or ketones of formula (XXIII), on treatment with phosphonate anions of formula ZR.sup.1 C.sup.- P(O)(OR).sub.2 M.sup.+, wherein Z, R, R.sup.1 and M are as defined above, or with the corresponding phosphoranes, also give olefins of formula (XXIV). The olefins of formula (XXIV) can be reduced to the compounds of formula (XXV) by, for example, hydrogenation over an appropriate catalyst. In Scheme VI, compounds of formula (XXVI), in the presence of a base, react with acid halides of formula ZCOQ, wherein Z and Q are as defined above, or, in the presence of an appropriate dehydrating agent, react with acids of formula ZCO.sub.2 H, wherein Z is as defined above, to give compounds of formula (XXVII). Intermediates of formula (XXVI) can also be converted into other types of compound of the invention of formula (I) by methods described in the chemical literature. For example, compounds of formula (XXVI) wherein R.sup.4 is hydrogen can be converted, via diazotisation, into the corresponding sulphonyl chlorides (compare Organic Syntheses, 1981, 60, 121) and then, by treatment with alcohols or phenols in the presence of a base into sulphonic esters. Compounds of the invention of formula (I) wherein at least one of A and B are hydrogen may be converted into compounds of the invention of formula (I) wherein at least one of A and B are certain substituents (such as a halogen or a nitro or acyl group) by electrophilic substitution processes of the kind described in the chemical literature. The intermediates of formulae (XIII), (XVII), (XX), (XXIII) and (XXVI) can be prepared by processes described in the chemical literature and by processes of the kinds described in Schemes I and II. For example, compounds of formula (XX) where L is bromine can be made from compounds of formula (XX) where L is H, by reaction with N-bromosuccinimide or N,N-dibromodimethylhydantoin, in the presence or absence of irradiation by light. The intermediates of formulae (IX), (X), (XI), (XII), ZL, Z.sub.2 I.sup.+ T.sup.-, ZCHR.sup.1 L, ZSO.sub.2 Q, ZOH, ZR.sup.1 C:O, ZR.sup.1 C.sup.- P(O)(OR).sub.2 M.sup.+, ZCOQ and ZCO.sub.2 H can be made by methods described in the chemical literature. ##STR25## In Scheme VII compounds of formula (XXVIII) can be oxidised, for example using pyridinium dichromate in a suitable solvent (such as methylene chloride) or oxalyl chloride in dimethyl sulphoxide in the presence of a base (the Swern oxidation), to give aldehydes (where R.sup.2 is H) or ketones (where R.sup.2 is alkyl) of formula (XXIII). The aldehydes or ketones of formula (XXIII) can react with oxyamines of formula ZONH.sub.2 or ZCHR.sup.1 ONH.sub.2, or with hydrazines of formula ZNR.sup.1 NH.sub.2, wherein Z and R.sup.1 are as defined above, to give compounds of the invention of formula (I) where X is the group ON.dbd.CR.sup.2, CHR.sup.1 ON.dbd.CR.sup.2, or NR.sup.1 N.dbd.CR.sup.2 respectively. Also, compounds of formula (XXIII) can react with Grignard reagents of formula ZMgHal or ZCR.sup.1 R.sup.2 MgHal, where Hal is chlorine, bromine or iodine and Z, R.sup.1 and R.sup.2 are as defined above, to give compounds of the invention of formula (I) where X is CR.sup.2 (OH) or CR.sup.1 R.sup.2 CR.sup.2 (OH) respectively. Also, compounds of formula (XXIII) can react with amines of formula ZNHR.sup.1 or ZCR.sup.1 R.sup.2 NHR.sup.1, wherein Z, R.sup.1 and R.sup.2 are as defined above, in the presence of a reducing agent (such as sodium cyanoborohydride or hydrogen gas in the presence of a suitable metal catalyst) to give compounds of the invention of formula (I) where X is NR.sup.1 CHR.sup.2 or CR.sup.1 R.sup.2 NR.sup.1 CHR.sup.2. When the reducing agent is left out and when R.sup.1 is H, then the immediately preceding procedure will give compounds of the invention of formula (I) where X is N.dbd.CR.sup.2 or CR.sup.1 R.sup.2 N.dbd.CR.sup.2. Compounds of formula (XXVIII) where R.sup.2 is H, can also be oxidised to carboxylic acids of formula (XXIX), using for example Jones' reagent (chromium trioxide in sulphuric acid). The carboxylic acids (XXIX) can be converted directly into compounds of the invention of formula (I) where, for example, X is O.sub.2 C, CHR.sup.1 OCO, SCO, CHR.sup.1 SCO, NR.sup.4 CO or CHR.sup.1 NR.sup.4 CO, using one of the standard coupling reagents well known in the literature, such as dicyclohexylcarbodiimide or carbonyldiimidazole, in a suitable solvent. Alternatively, the carboxylic acids of formula (XXIX) can be converted into the acid chlorides of formula (XXX) by treatment with, for example, thionyl chloride or oxalyl chloride. The acid chlorides of formula (XXX) can then react, for example, with compounds of formula ZOH, ZCHR.sup.1 OH, ZSH, ZCHR.sup.1 SH, ZNR.sup.4 H or ZCHR.sup.1 NR.sup.4 H in a suitable solvent, in the presence of a base, to give compounds of the invention of formula (I) where X is O.sub.2 C, CHR.sup.1 OCO, SCO, CHR.sup.1 SCO, NR.sup.4 CO, or CHR.sup.1 NR.sup.4 CO respectively. Compounds of formula (XXVIII) can also react directly with compounds of formula ZL, optionally in the presence of a base, where Z is a reactive aromatic group (for example nitrophenyl) or heteroaromatic group (for example 2-pyridyl or 2-pyrimidinyl) to give compounds of the invention of formula (XXI). It may be necessary first to generate the oxygen anion of compounds of formula (XXVIII) with a strong base such as sodium hydride. Additionally, compounds of formula (XXVIII) can be converted into compounds of formula (XX) by treatment, for example, with a halogenation agent such as thionyl chloride or phosphorus tribromide, where L is chlorine or bromine, or by treatment with a sulphonyl halide (such as p-toluenesulphonyl chloride) in the presence of an acid acceptor, where L is a sulphonyloxy group. Compounds of formula (XX) can then be used as shown in Scheme V. Additionally, where L is halogen, they can be converted by reaction with a phosphine of formula Z(R.sup.5).sub.2 P, wherein R.sup.5 is as defined above, into compounds of the invention of formula (I), where X is the group (R.sup.5).sub.2 P.sup.+ CHR.sup.2 Z.sup.-. These compounds can then react successively with a base and a carbonyl compound of formula ZCOR.sup.1, wherein Z and R.sup.1 are as defined above, to give olefins of formula (XXIV). Scheme VIII illustrates examples of intermediates of formula (VIII), shown in Scheme II, where W is any group that can be converted to ZX-, and Y is any group that can be converted to the methyl beta-methoxypropenoate group. Compounds of formula (XXXI) can react with compounds of formula (XXXII) to give compounds of formula (XXXIII), using the general Ullmann coupling conditions described in detail for the reaction of compounds of formula (XI) and (XII) in Scheme II. The acids of formula (XXXIII) can be converted into methyl esters of formula (XXXIV) by reaction with methanol in the presence of acid (for example hydrochloric acid). Compounds of formula (XXXIV) can then be converted into methyl beta-methoxypropenoates of formula (XXVIII) by the methods described in detail in Scheme I. Alternatively, the intermediates of formula (XXXIV) can be converted into intermediates of formulae (XXXVIII), (XXXV), (XXXVI), (XXXVII) and (III) using the methods described in Scheme VII for the conversion of the propenoates of formula (XXVIII) into compounds of formula (XXIII), (XX), (XXIX), (XXX) and (I). Compounds of formula (III) can be converted into compounds of formula (I) as shown in Scheme I. ##STR26## In a further aspect the invention provides processes as hereindescribed for preparing the compounds of formula (I). It also provides intermediate chemicals for formulae (II)-(VII) and (XIII)-(XXX), and (XXXIII)-(XXXVIII). The compounds are active fungicides and may be used to control one or more of the following pathogens: Pyricularia oryzae on rice. Puccinia recondita, Puccinia striiformis and other rust on wheat, Puccinia hordei, Puccinia striiformis and other rusts on barley, and rusts on other hosts, e.g. coffee, pears, apples, peanuts, vegetables and ornamental plants. Erysiphe graminis (powdery mildew) on barley and wheat and other powdery mildews on various hosts such as Sphaerotheca macularis on hops, Sphaerotheca fuliginea on cucurbits (e.g. cucumber), Podosphaera leucotricha on apple and Uncinula necator on vines. Helminthosporium spp., Rhynchosporium spp., Septoria spp., Pseudocercosporella herpotrichoides and Gaeumannomyces graminis on cereals. Cercospora arachidicola and Cercosporidium personata on peanuts and other Cercospora species on other hosts, for example, sugar beet, bananas, soya beans and rice. Botrytis cinerea (grey mould) on tomatoes, strawberries, vegetables, vines and other hosts. Alternaria species on vegetables (e.g. cucumber), oil seed rape, apples, tomatoes and other hosts. Venturia inaequalis (scab) on applies. Plasmopara viticola on vines. Other downy mildews such as Bremia lactucae on lettuce, Peronospora spp. on soya beans, tobacco, onions and other hosts and Pseudoperonospora humuli on hops and Pseudoperonospora cubensis on cucurbits Phytophthora infestans on potatoes and tomatoes and other Phytophthora spp. on vegetables, strawberries, avocado, pepper, ornamentals, tobacco, coca and other hosts. Thanatephorus cucumeris on rice and other Rhizoctonia species on various host such as wheat and barley, vegetables, cotton and turf. Some of the compounds show a broad range of activities against fungi in vitro. They may also have activity against various post-harvest diseases of fruit (e.g. Penicillium digitatum and italicum and Trichoderma viride on oranges, Gloesporium musarum and bananas and Botrytis cinerea on grapes). Further some of the compounds may be active as seed dressings against Fusarium spp., Septoria spp., Tilletia spp., (bunt, a seed borne disease of wheat), Ustilago spp. Helminthosporium spp. on cereals, Rhizoctonia solani on cotton and Pyricularia oryzae on rice. The compounds may have systemic movement in plants. Moreover, the compounds may be volatile enough to be active in the vapour phase against fungi on the plant. The invention therefore provides a method of combating fungi, which comprises applying to a plant, to seed of a plant, or tot he locus of the plant or seed, an effective amount of compound as hereinbefore defined, or a composition containing the same. The compounds may also be useful as industrial (as opposed to agricultural) fungicides, e.g. in the prevention of fungal attack on wood, hides, leather and especially paint films. The compounds may be used directly for fungicidal purposes but are more conveniently formulated into compositions using a carrier or diluent. The invention thus provides a fungicidal composition comprising a compound of general formula (I) as hereinbefore defined, and a fungicidally acceptable carrier or diluent. Used as fungicides, the compounds can be applied in a number of ways. For example they can be applied, formulated or unformulated, directly tot he foliage of a plant, to seeds or to other medium in which plants are growing or are to be planted, or they can be sprayed on, dusted on or applied as a cream or paste formulation, or they can be applied as a vapour or as slow release granules. Application can be to any part of the plant including the foliage, stems, branches or roots, or to soil surrounding the roots, or to the seed before it is planted; or to the soil generally, to paddy water or to hydroponic culture systems. The invention compounds may also be injected into plants or sprayed onto vegetation using electrodynamic spraying techniques or other low volume methods. The term "plant" as used herein includes seedlings, bushes and trees. Furthermore, the fungicidal method of the invention includes preventative, protectant, prophylactic and eradicant treatment. The compounds are preferably used for agricultural and horticultural purposes in the form of a composition. The type of composition used in any instance will depend upon the particular purpose envisaged. The compositions may be in the form of dustable powders or granules comprising the active ingredient (invention compound) and a solid diluent or carrier, for example fillers such as kaolin, bentonite, kiesselguhr, dolomite, calcium carbonate, talc, powdered magnesia, Fuller's earth, gypsum, diatomaceous earth and China clay. Such granules can be performed granules suitable for application to the soil without further treatment. These granules can be made either by impregnating pellets of filler with the active ingredient or by pelleting a mixture of the active ingredient and powdered filler. Compositions for dressing seed may include an agent (for example a mineral oil) for assisting the adhesion of the composition to the seed; alternatively the active ingredient can be formulated for seed dressing purposes using an organic solvent (for example N-methylpyrrolidone, propylene glycol or dimethylformamide). The compositions may also be int he form of wettable powders of water dispersible granules comprising wetting or dispersing agents to facilitate the dispersion in liquids. The powders and granules may also contain fillers and suspending agents. Emulsifiable concentrates or emulsions may be prepared by dissolving the active ingredient in an organic solvent optionally controlling a wetting or emulsifying agent and then adding the mixture to water which may also contain a wetting or emulsifying agent. Suitable organic solvents are aromatic solvents such as alkylbenzenes and alkylnaphthalenes, ketones such as isophorone, cyclohexanone, and methylcyclohexanone, chlorinated hydrocarbons such as chlorobenzene and trichlorethane, and alcohols such as benzyl alcohol, furfuryl alcohol, butanol and glycol ethers. Suspension concentrates of largely insoluble solids may be prepared by ball or bead milling with a dispersing agent and including a suspending agent to stop the solid settling. Compositions to be used as sprays may be in the form of aerosols wherein the formulation is held in a container under pressure int he presence of a propellant, e.g. fluorotrichloromethane or dichlorodifluoromethane. The invention compounds can be mixed in the dry state with a pyrotechnic mixture to form a composition suitable for generating in enclosed spaces a smoke containing the compounds. Alternatively, the compounds may be used in micro-encapsulated form. They may also be formulated in biodegradable polymeric formulations to obtain a slow, controlled release of the active substance. By including suitable additives, for example additives for improving the distribution, adhesive power and resistance to rain on treated surfaces, the different compositions can be better adapted for various utilities. The invention compounds can be used as mixtures with fertilisers (e.g. nitrogen-, potassium-, or phosphorus-containing fertilisers). Compositions comprising only granules of fertiliser incorporating, for example coated with, the compound are preferred. Such granules suitable contain up to 25% by weight of the compound. The invention therefore also provides a fertiliser composition comprising a fertiliser and the compound of general formula (I) or a salt or metal complex thereof. Wettable powders, emulsifiable concentrates and suspension concentrates will normally contain surfactants e.g. wetting agent, dispersing agent, emulsifying agent or suspending agent. These agents can be cationic, anionic or non-ionic agents. Suitable cationic agents are quaternary ammonium compounds, for example, cetyltrimethylammonium bromide. Suitable anionic agents are soaps, salts of aliphatic monoesters of sulphuric acid (for example sodium lauryl sulphate), and salts of sulphonated aromatic compounds (for example sodium dodecylbenzenesulphonate, sodium, calcium or ammonium lignosulphonate, butylnaphthalene sulphonate, and a mixture of sodium diisopropyl- and triisopropyl-naphthalene sulphonates). Suitable non-ionic agents are the condensation products of ethylene oxide with fatty alcohols such as oleyl or cetyl alcohol, or with alkyl phenols such as octyl- or nonyl-phenol and octylcresol. Other non-ionic agents are the partial esters derived from long chain fatty acids and hexitol anhydrides, the condensation products of the said partial esters with ethylene oxide, and the lecithins. Suitable suspending agents are hydrophilic colloids (for example polyvinylpyrrolidone and sodium carboxymethylcellulose), and swelling clays such as bentonite or attapulgite. Compositions for use as aqueous dispersions or emulsions are generally supplied in the form of a concentrate containing a high proportion of the active ingredient, the concentrate being diluted with water before use. These concentrates should preferably be able to withstand storage for prolonged periods and after such storage be capable of dilution with water in order to form aqueous preparations which remain homogeneous for a sufficient time to enable them to be applied by conventional spray equipment. The concentrates may conveniently contain up to 95% suitable 10-85%, for example 25-60%, by weight of the active ingredient. After dilution to form aqueous preparations, suitable preparations may contain varying amounts of the active ingredient depending upon the intended purpose, but an aqueous preparation containing 0.00055 or 0.01% to 10% by weight of active ingredient may be used. The compositions of this invention may contain other compounds having biological activity, e.g. compounds having similar or complementary fungicidal activity or which plant posses plant growth regulating, herbicidal or insecticidal activity. A fungicidal compound which may be present in the composition of the invention may be one which is capable of combating ear disease of cereals (e.g. wheat) such as Septoria, Gibberella and Helminthosporium spp., seed and soil-borne diseases and downy and powdery mildews on grapes and powdery mildew and scab on apple, etc. By including another fungicide, the composition can have a broader spectrum of activity than the compound of general formula (I) alone. Further the other fungicide can have a synergistic effect on the fungicidal activity of the compound of general formula (I). Examples of fungicidal compounds which may be included int he composition of the invention are carbendazim, benomyl, thiophanate-methyl, thiabendazole, fuberidazole, etridazole, dichlofluanid, cymoxanil, oxadixyl, ofurace, metalaxyl, furalaxyl, benalaxyl, fosetyl-aluminium, fenarimol, iprodione, prothiocarb, procymidone, vinclozolin, penconazole, myclobutanil, propamocarb, diniconazole, pyrazophos, ethirimol, ditalimfos, tridemorph, triforine, nuarimol, triazbutyl, guazatine, triacetate salt of 1,1'-iminodi(octamethylene)diguanidine, buthiobate, propiconazole, prochloraz, flutriafol, hexaconazole, (2RS, 5RS)-5-(2,4-dichlorophenyl)tetrahydro-5-(1H-1,2,4-triazol-1-ylmethyl)-2-furyl-2,2,2-trifluoroethyl ether, cyproconazole, terbuconazole, pyrrolnitrin, 1-[(2RS,4RS; 2RS, 4RS)-4-bromo-2-(2,4-dichlorophenyl)tetrahydrofur-furyl[-1H-1,2,4-triazole, 5-ethyl-5,8-dihydro-8-oxo(1,3)-dioxolo (4,5-g)quinoline-7-carboxylic acid, (RS)-1-aminopropylphosphonic acid, 3-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)quinazolin-4(3H)-one, fluzilazole, triadimefon, triadimenol, diclobutrazol, fenpropimorph, pyrifenox, fenpropidin, chlorozolinate, imazalil, fenfuram, carboxin, oxycarboxin, methfuroxam, dodemorph, BAS 454, blasticidin S, kasugamycin, edifenphos, Kitazin P, cycloheximide, phthalide, probenazole, isoprothiolane, tricyclazole, 4-chloro-N-(cyano(ethoxy)methyl)benzamide, pyroquilon, chlorbenzthiazone, neoasozin, polyoxin D, validamycin A, mepronil, flutolanil, pencycuron, diclomezine, phenazin oxide, nickel dimethyldithio-carbamate, techlofthalam, bitertanol, bupirimate, etaconazole, hydroxyisoxazole, streptomycin, cyprofuram, biloxazol, quinomethionate, dimethirimol, 1-(2-cyano-2-methoxyiminoacetyl)-3-ethyl urea, fenapanil, tolclofos-methyl, pyroxyfur, polyram, maneb, mancozeb, captafol, chlorothalonil, anilazine, thiram, captan, folpet, zineb, propineb, sulphur, dinocap, dichlone, chloroneb, binapacyl, nitrothalisopropyl, dodine, dithianon, fentin hydroxide, fentin acetate, tecnazene, quintozene, dicloran, copper containing compounds such as copper oxychloride, copper sulphate and Bordeaux mixture, and organomercury compounds. The compounds of general formula (I) can be mixed with soil, peat or other rooting media for the protection of plants against seed-borne, soil-borne or foliar fungal diseases. Suitable insecticides which may be incorporated in the composition of the invention include pirimicarb, dimethoate, demeton-s-methyl, formothion, carbaryl, isoprocarb, XMC, BPMC, carbofuran, carbosulfan, diazinon, fenthion, fenitrothion, phenthoate, chlorpyrifo, isoxathion, propaphos, monocrotophas, buprofezin, ethroproxyfen and cycloprothrin. Plant growth regulating compounds are compounds which control weeds or seedhead formation, or selectively control the growth of less desirable plants (e.g. grasses). Examples of suitable plant growth regulating compounds for use with the invention compounds are the gibberellins (e.g. GA.sub.3, GA.sub.4 or GA.sub.7), the auxins (e.g. indoleacetic acid, indolebutyric acid, naphthoxyacetic acid or naphthylacetic acid), the cytokinins (e.g. kinetin, diphenylurea, benzimidazole, benzyladenine or benzylaminopurine), phenoxyacetic acids (e.g. 2,4-D or MCPA), substituted benzoic acid (e.g. triiodobenzoic acid), morphactins (e.g. chlorfluoroecol), maleic hydrazide, glyphosate, glyphosine, long chain fatty alcohols and acids, dikegulac, paclobutrazol, fluoridamid, mefluidide, substituted quaternary ammonium and phosphonium compounds (e.g. chloromequat chlorphonium or mepiquatchloride), ethephon, carbetamide, methyl-3,6-dichloroanisate, daminozide, asulam, abscisic acid, isopyrimol, 1-(4-chlorophenyl)-4,6-dimethyl-2 -oxo-1,2-dihydropyridine-3-carboxylic acid, hydroxybenzonitriles (e.g. bromoxynil), difenzoquat, benzoylprop-ethyl 3,6-dichloropicolinic acid, fenpentezol, inabenfide, triapenthenol and tecnazene.

US Referenced Citations (3)
Number Name Date Kind
4518602 Terao et al. May 1985
4772633 Matsuo et al. Sep 1988
4826531 Anthony et al. May 1989
Foreign Referenced Citations (3)
Number Date Country
312221 Apr 1989 EPX
2247399 Apr 1973 DEX
60-193940 Oct 1985 JPX
Continuations (1)
Number Date Country
Parent 258742 Oct 1988
Continuation in Parts (1)
Number Date Country
Parent 39401 Apr 1987