The instant application is a national phase of PCT International Application No. PCT/ES2012/000302, filed Nov. 29, 2012, and claims priority to Spanish Patent Application Serial No. P201101334, filed Dec. 7, 2011, the entire specification of both of which are expressly incorporated herein by reference.
The invention belongs to the sector of regular passengers transport.
Currently, the most efficient systems of passenger's public transport in the big cities are the underground systems and mixed systems (underground and exterior), for the reason that they get circulation ways reserved to the traffic, without traffic jam or hold-up. They are trains with high capacity for users with a high frequency. This reliability, together with the great quality of the stations and of the modern trains has as a consequence that this is the most used transport method in the cities where they are established.
The main disadvantage of the system is the enormous investment required to generate the necessary infrastructures to get the system into operation, as well as the high costs of maintenance. It is necessary to drill dozens of kilometers of subterranean tunnels, excavate and construct dozens of underground stations. Besides, the acquisition of expensive train wagons, with complicated machinery, security systems, ventilation, kilometers of railways, kilometers of catenaries and dozens of electrical supply sub-stations. These systems can require the investment of more than 1.000 millions Euros for each 20 km of the line.
The system of tube by railway is sufficiently developed and standardized, so that any important city risks making this enormous investment in projects of high complexity with a high security of success.
A solution which would give the same service, using already existent fluvial lanes in many of the big cities in the world would be an improvement that would save 90% of the necessary investment.
The present invention targets on developing an industrial transport system for passengers using the fluvial lanes of big cities with the reliability, quality and efficiency of the transport of the underground tube. The system would be used in cities like London, Paris, Seville, New York, etc. The majority of the big cities have grown beside rivers or the sea.
Currently, there exist innumerable fluvial transport systems for persons but none of them propose an efficient, reliable and high quality system similar to the underground tubes. There are used ferries and standard boats, with conventional docking systems, that need more than one worker to tie ropes, to dock the boat to the quay and to open the gangway for the exchange of passengers. They use piers at open air which do no guarantee a docking time, exchange of passengers and departures similar to the stop system of the current tubes.
Almost all cities exploit their fluvial lanes, but in the way of conventional ferries. For example, the ferries' lines City Cat in Brisbane, Australia; Water Taxis, East River Ferries, Hudson River Ferries or Beldford River Ferry in New York; Macao TurboJet Lines. Most of them are long distance lines and with little frequency or they are mainly used by tourists because of their slow operations.
The present invention refers to a system of urban and interurban tube that uses the fluvial lanes available in many of the big cities of the world to reduce the necessary investment to 90% without disminishing the quality, efficiency and reliability of the transport's system. The new transport's system, that we will call from now on RiverTube, requires a number of inventions and modifications of the current tube model, that altogether represent a novel invention and repeatable, like a perfectly modeled industrial exploitation of the fluvial and sea lanes of the big cities and non-existent at present.
The system RiverTube proposes the following changes and modifications to the current concept of tube and of the passenger's transport by boat:
As follows we will describe an example of use of the system with a study carried out for the city of Seville. The Guadalquivir river, flowing through Seville has two arms: the alive canal that flows from the north to the south at the west side of Seville, bordering the lands of Expo'92, Triana, Los Remedios and the commercial harbor; the inner basin (it is a lake of controlled level), closed to the north by the buffer of El Alamillo and to the south by the new lock. Both canals represent a navigation lane free of jams to cross Seville from north to south passing through the historical center and the most important neighborhoods, unifying all the towns at the river and El Aljarafe with the capital. The exterior canal can have strong tides and can be subject of the effect of the tides. Its level can fluctuate until 3,5 meters high, while the basin is more stable and has no stream flows. In the attached documentation we render a presentation with the designed implementation for this city. In this case, there will be used catamarans with an useful surface of 20×8 square meters with a charge of 250 passengers in two floors. There are available 112 seats and a platform for 30 bicycles. There will be created 4 lines with 22 stops that will connect almost 40 kilometers. There will be required 25 boats to maintain a frequency of 6 minutes per stop in rush hour and 12 minutes in normal times (the rush hours will be from 7:30 to 9:30 and from 13:30 to 15:30). The ticket's price will be exactly the same as in the current urban tube and will be integrated in the charging system of the Consortium of Transports of Seville. The quays will have an useful surface of the main float of 25×6 square meters, a docking canal of 8,30 meters and a float of 25×2 square meters for the automatic docking system. The quay will operate with until 4 meters differences in the water level. It is planned the construction of a separated canal of 3 kms. at the inner basin to allow the private use of the river and not to interfere in the rowing centre of high performance. This canal will be built between the Alamillo bridge and the walkway of La Barqueta. It will be built like a concrete wall of 3 meters depth on piles, with two meters under water and one meter above the surface in its middle level. There are planned two modal transport exchangers at each end of the inner basin (south lock, north buffer of Alamillo). There will be 12 stops in the centre of Seville and another 10 stops in the towns at the river. All exterior stops and the two exchangers will have extensive dissuasive parking to attract the users of the towns not near to the river and so avoid the pressure in the interior of the capital. The boats will not have to cross the lock (this will represent an inacceptable delay), not either the north buffer, simply the users will have to change the line, changing boats. These lines will be in a distance of only some meters. The change will take place under cover, inside the two exchangers in less than one minute. The system VTS, AIS, and the communications TETRA have been designed to be shared with the commercial harbor of Seville with the aim of facilitating and coordinating the operations of both entities.
Number | Date | Country | Kind |
---|---|---|---|
20110334 | Dec 2011 | ES | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/ES2012/000302 | 11/29/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/083862 | 6/13/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2879735 | Pointer | Mar 1959 | A |
8419315 | Grimont | Apr 2013 | B2 |
8434968 | Birkeland | May 2013 | B2 |
20030056708 | Vollmerhausen | Mar 2003 | A1 |
20070044702 | Waldock | Mar 2007 | A1 |
20090114769 | Campbell | May 2009 | A1 |
Number | Date | Country |
---|---|---|
19616864 | Nov 1997 | DE |
2025753 | Apr 1992 | ES |
2080228 | Feb 1982 | GB |
0168442 | Sep 2001 | WO |
2007093775 | Aug 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20140348592 A1 | Nov 2014 | US |