The present invention relates to a disk drive unit and manufacturing method thereof, and more particularly to a micro-actuator and a head gimbal assembly and manufacturing method thereof.
Disk drives are information storage devices that use thin film magnetic media to store data. Referring to
However, Because of the inherent tolerance (dynamic play) resulting from VCM that exists in the placement of the slider 203, the slider 203 can not attain a position fine adjustment.
To solve the above-mentioned problem, piezoelectric (PZT) micro-actuators are now utilized to modify the placement of the slider. That is, the PZT micro-actuator corrects the placement of the slider on a much smaller scale to compensate for the tolerance of VCM and the drive arm 104. It not only enables a smaller recording track width, but also increases the ‘tracks per inch’ (TPI) value and the surface recording density of the disk drive.
Referring to
When power supply is applied through the suspension traces 210, the PZT micro-actuator 205 can expand or contract to cause the U-shaped frame 297 deform and then make the slider 203 rotate along a radial direction on the disk 101. Thus a position fine adjustment can be attained.
However, a head gimbal assembly (HGA) 277 (see
Additionally, the micro-actuator 105 has an additional mass which not only influence the static performance, but also influence the dynamic performance of the suspension 213, such as the resonance performance, so as to reduce resonance frequency and increase the gain of the suspension 213.
Also, because the U-shaped frame 297 of the micro-actuator 205 is very brittle, it has a poor shock performance. In addition, it is also a big problem that there is no effective method to identify potential micro cracks of the U-shaped frame 297. Furthermore, due to the variations of voltage applied to the PZT micro-actuator, the back and forth bending of the brittle micro-actuator 205 will generate particles and influence the work performance of the micro-actuator 205.
In the manufacturing process of HGA 277, since the HGA 277 has a complex configuration, the slider 203 must tilt during the bonding of the slider 203 to the U-shaped frame 297, and the U-shaped frame 297 must tilt during the bonding of the U-shaped frame 297 with the slider 203 to the suspension 213. Both will influence the static attitude of the HGA 277 and accordingly increase the difficulty of manufacturing the HGA 277.
It is well known that polishing is a more effective and widely used cleaning method for the micro contamination in the air bearing surface (ABS) of the slider. However, this cleaning method cannot be used in the above-mentioned HGA 277 because it is easy to damage the U-shaped frame 297 of the micro-actuator 205.
Finally, since the slider 203 is supported by the ceramic U-shaped frame 297, it is difficult to ground the slider 203 and suspension to get an electro static discharge (ESD) protection. Also, it is a waste of energy that a bigger drive voltage (40V, AC p-p) is required for operate the PZT micro-actuator 205.
Hence it is desired to provide a micro-actuator, head gimbal assembly and manufacturing method thereof which can overcome the foregoing drawbacks of the prior art.
A main feature of the present invention is to provide a micro-actuator, head gimbal assembly and manufacturing method thereof.
To achieve the above-mentioned feature, a head gimbal assembly of the present invention comprises a slider having a read\write sensor, a suspension to load the slider and a micro-actuator. The micro-actuator comprises a piezoelectric unit with two piezoelectric elements and a support base having a base to be coupled with the suspension physically, a moving plate to be coupled with the two piezoelectric elements, and a leading beam to connect with the base and the moving plate.
In the present invention, the base, the moving plate and the leading beam are made from one piece of seamless material, and the seamless material is preferably metal. In addition, the leading beam has a structure to assist a horizontal movement of the moving plate and the width of the leading beam is narrower than that of the moving plate. The two piezoelectric elements are two thin film piezoelectric pieces or ceramic piezoelectric pieces. A plurality of electrical pads is formed on each of the two piezoelectric elements. In an embodiment of the present invention, the two piezoelectric elements have three electrical pads consisting of two voltage-applied pads and a ground pad shared by the two piezoelectric elements. The suspension comprises a flexure having a suspension tongue, the suspension tongue has a plurality of electrical pads disposed on a predetermined position thereof corresponding to the electrical pads on the two piezoelectric elements. The base of the micro-actuator electrically couples with the electrical pads and physically couples with the flexure by anisotropic conductive film. The moving plate of the support base physically and electrically couple with the slider by anisotropic conductive film or adhesive bonding.
A micro-actuator of the present invention comprises a piezoelectric unit with two piezoelectric elements and a support base. The metal support base has a base, a moving plate to be coupled with the two piezoelectric elements, and a leading beam to connect with the base and the moving plate. In the present invention, the base, the moving plate and the leading beam are made from one piece of seamless material, and the seamless material is preferably metal. In addition, the leading beam has a structure to assist a horizontal movement of the moving plate and the width of the leading beam is narrower than that of the moving plate. The two piezoelectric elements are two thin film piezoelectric pieces or ceramic piezoelectric pieces. A plurality of electrical pads are formed on each of the two piezoelectric elements. In an embodiment of the present invention, the two piezoelectric elements have three electrical pads consisting of two voltage-applied pads and a ground pad shared by the two piezoelectric elements.
A method of forming a head gimbal assembly of the present invention comprises the steps of: (A) forming a slider, a suspension and a micro-actuator having two piezoelectric elements and a support base which has a base, a moving plate, and a leading beam to connect with the base and the moving plate; (B) coupling the micro-actuator physically and electrically with the slider by anisotropic conductive film or adhesive bonding; (C) electrically bonding the slider to the suspension by GBB or SBB.
In the present invention, forming a micro-actuator comprises: (1) forming a piezoelectric unit having two piezoelectric elements; (2) forming a support base having a base, a moving plate, and a leading beam to connect with the base and the moving plate, and (3) bonding the piezoelectric unit being to one side of the support base. In the present invention, step (2) comprises the following steps: (a) forming a set of the support bases; and (b) dividing the set of the support bases into a single support base. Step (a) can be performed by die punching a raw sheet to a set of the support bases; or performed by: forming a multi-layer sheet comprising raw sheet and spacer sheet alternately; and then cutting the multi-layer sheet to a set of the support bases; or performed by molding a bulk of support base bars consisted of a set of the support bases.
Compared with the traditional ceramic U-shaped frame, the micro-actuator of the present invention provides a new design of the support base made of metal. Using the metal support base will greatly improve the shock performance of the micro-actuator and solve the problem of generating dust particles.
Due to its complex manufacturing process, it is difficult to control the static attitude in the prior art, the present invention can provide a similar manufacturing process as the traditional HGA method but is much better for the HGA static attitude control or using the traditional method to control it.
The invention is also better for the particle contamination control in the manufacturing process. In addition, the traditional polishing cleaning method can be used for the cleaning process of the present invention. Furthermore, because the ACF bonding is used for slider mounting, it makes the grounding process much easier, and the ACF is easy to salvage and recycle. Finally, the present invention can also reduce the voltage of operating the thin film PZT micro-actuator and achieve the same displacement as the prior art micro-actuator.
For the purpose of making the invention easier to understand, several particular embodiments thereof will now be described with reference to the appended drawings in which:
a is a perspective view of a traditional disk drive.
b is an enlarged, partial view of
c is a perspective view of a HGA of prior art.
d is an enlarged, partial view of
a is a perspective view of a HGA according to the present invention.
b is an exploded, perspective view of the HGA of
c is a perspective view of a suspension of the HGA of
a is a perspective view of a PZT unit of a micro-actuator according to an embodiment of the present invention.
b shows a micro-actuator having the PZT unit of
c is an enlarged, partial view of
d is a cross-sectional view of the HGA of
Referring to
Referring to
With reference to
Referring to
Referring to
A method of forming the head gimbal assembly 3 according to the present invention comprises the steps of: (A) forming a slider 203′, a suspension 213′ and a micro-actuator 30 having two piezoelectric elements 303 and a metal support base 302 which has a base 301, a moving plate 305 to be coupled with the two piezoelectric elements 303, and a leading beam 307 to connect with the base 301 and the moving plate 305; (B) coupling the micro-actuator 30 physically and electrically with the slider 203′ by anisotropic conductive film or adhesive bonding; and (C) electrically bonding the slider 203′ to the suspension 213′ by GBB or SBB.
In accordance with the present invention, a method of forming the micro-actuator 30 comprises the steps of: (1) forming a piezoelectric unit 304 having two piezoelectric elements 303; (2) forming a support base 302 having a base 301, a moving plate 305 to be coupled with the two piezoelectric elements 303, and a leading beam 307 to connect with the base 301 and the moving plate 305; and (3) bonding the piezoelectric unit 304 to one side of the support base 302.
Now several embodiments of a manufacturing process of the support base 302 will be described in detail as follows:
Referring to
In the embodiment, a tooling die 601 with a multi-unit T-shaped support base cutter 602 is used to punch the stain steel sheet 603, after punching, the sheet 603 is made into a sheet frame with many single unit T-shaped support base 302, the sheet frame is then cut into a single bar 605 and then separated into single T-shaped support bases 302.
Referring to
Referring to
Referring to
In the present invention, because a process of assembling the micro-actuator and HGA is well known to persons ordinarily skilled in the art, a detailed description of such assembly is omitted herefrom. In addition, the thin film PZT pieces 303 can also be ceramic PZT pieces.
It is understood that the invention may be embodied in other forms without departing from the spirit thereof. Thus, the present examples and embodiments are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given herein. method can be used for cleaning process in the present invention. Furthermore, because the ACF bonding is used for the slider mounting, it is make the grounding process much easier and the ACF is easy to do the salvage and recycle. At last, the present invention also can reduce the voltage of operating the thin film PZT micro-actuator and achieve the same displacement as the prior micro-actuator.
For the purpose of making the invention easier to understand, several particular embodiments thereof will now be described with reference to the appended drawings in which:
a is a perspective view of a traditional disk drive;
b is an enlarged, partial view of
c is a perspective view of a HGA of prior art;
d is an enlarged, partial view of
a is a perspective view of a HGA according to the present invention;
b is an exploded, perspective view of the HGA of
c a perspective view of a suspension of the HGA of
a is a perspective view of a PZT unit of a micro-actuator according to an embodiment of the present invention;
b shows a micro-actuator having the PZT unit of
c is an enlarged, partial view of
d is a cross-sectional view of the HGA of