All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Embodiments of the present disclosure relate to micro-scale and millimeter-scale tissue debridement devices that may, for example, be used to remove unwanted tissue or other material from selected locations within a body of a patient during a minimally invasive or other medical procedure, and in particular embodiments, multi-layer, multi-material electrochemical fabrication methods that are used to, in whole or in part, form such devices.
Debridement is the medical removal of necrotic, cancerous, damaged, infected or otherwise unwanted tissue. Some medical procedures include, or consist primarily of, the mechanical debridement of tissue from a subject. Rotary debrider devices have been used in such procedures for many years.
Some debrider devices with relatively large dimensions risk removing unintended tissue from the subject, or damaging the unintended tissue. There is a need for tissue removal devices which have small dimensions and improved functionality which allow them to more safely remove only the desired tissue from the patient. There is also a need for tissue removal devices which have small dimensions and improved functionality over existing products and procedures which allow them to more efficiently remove tissue from the patient.
Prior art tissue removal devices often remove tissue in large pieces, having dimensions well over 2 mm. The tissue pieces are removed through an aspiration lumen typically 3.5 to 5 mm in diameter. Since the tissue pieces being removed commonly have dimensions that are 1 to 2 lumen diameters in length, the tissue pieces can often clog the tissue removal lumen.
One portion of the body in which tissue can be removed to treat a variety of conditions is the spine area. Tissue removal devices for the spine are needed that can be produced with sufficiently small dimensions and/or that have increased performance over existing techniques. For example, a herniated disc or bulging disc can be treated by performing a discectomy, e.g. by removing all or part of the nucleus pulposus of the damaged disc. Such procedures may also involve a laminotomy or laminectomy wherein a portion or all of a lamina may be removed to allow access to the herniated disc. Artificial disc replacement (total or partial) is another example of a procedure which requires the removal of all or a portion of the disc, which is replaced with an artificial device or material.
Tissue removal devices are needed which can be produced with sufficient mechanical complexity and a small size so that they can both safely and more efficiently remove tissue from a subject, and/or remove tissue in a less invasive procedure and/or with less damage to adjacent tissue such that risks are lowered and recovery time is improved.
According to some aspects of the disclosure, a medical device for manipulating tissue of a subject is provided. One exemplary device includes a distal housing, an elongate member, a joint mechanism, proximal and distal crown gears and a spur gear. In this exemplary embodiment, the distal housing is configured with an end effector. The elongate member is coupled to the distal housing and is configured to introduce the distal housing to a target tissue site of the subject. The elongate member comprises a proximal portion having a first central axis and a distal portion having a second central axis. The proximal portion of the elongate member comprises a proximal outer tube and a proximal inner drive tube rotatably mounted within the proximal outer tube. The distal portion of the elongate member comprises a distal outer tube and a distal inner drive tube rotatably mounted within the distal outer tube. The distal inner drive tube engages with a portion of the end effector to drive the end effector. The joint mechanism is configured to pivotably connect a distal end of the proximal outer tube with a proximal end of the distal outer tube. The joint mechanism allows the distal portion of the elongate member to be pivoted relative to the proximal portion such that an angle formed between the first and the second central axes can be changed. The proximal crown gear is located at a distal end of the proximal inner drive tube. The distal crown gear is located at a proximal end of the distal inner drive tube. The spur gear spans between and inter-engages with the proximal crown gear and the distal crown gear, thereby allowing the end effector to be positioned by the proximal and the distal outer tubes, and to be driven by the proximal inner drive tube, the spur gear and the distal inner drive tube.
In some embodiments, the end effector comprises a rotary tissue cutter assembly. The rotary tissue cutter assembly may comprise at least one rotatable member that rotates about the second central axis, or that has an axis of rotation that is perpendicular to the second central axis. In some embodiments, the distal inner drive tube comprises a first lumen and the proximal inner drive tube comprises a second lumen. In these embodiments, the first lumen is in fluid communication with the tissue cutter assembly and the second lumen is in fluid communication with the first lumen through the joint mechanism. The tissue cutter assembly, the first lumen, the joint mechanism and the second lumen may be configured to cooperate to transport tissue debris cut by the tissue cutter assembly in a proximal direction through the first lumen, the joint mechanism and the second lumen.
In some embodiments, the end effector may include a pair of scissor blades configured to cut tissue, a pair of tissue grasper jaws and/or a needle driver.
In some embodiments, the proximal portion of the elongate member further includes a proximal inner articulation tube rotatably mounted within the proximal outer tube. In these embodiments, the proximal inner articulation tube includes a crown gear on a distal end thereof configured to mesh with a gear segment of the joint mechanism to pivotably drive the distal portion of the elongate member relative to the proximal portion of the elongate member.
In some embodiments, the proximal portion of the elongate member includes a second proximal inner drive tube rotatably mounted within the proximal outer tube. In these embodiments the distal portion of the elongate member includes a second distal inner drive tube rotatably mounted within the distal outer tube. The second distal inner drive tube is configured to engage with a portion of the end effector to drive the end effector. The device further includes a second proximal crown gear located at a distal end of the second proximal inner drive tube, a second distal crown gear located at a proximal end of the second distal inner drive tube, and a second spur gear spanning between and inter-engaging with the second proximal crown gear and the second distal crown gear.
In some embodiments, the end effector includes a pair of tissue grasper jaws. One of the pair of tissue grasper jaws may be configured to be rotatably driven by a crown gear located on a distal end of the first distal inner drive tube. The other of the pair of tissue grasper jaws may be configured to be rotatably driven by a crown gear located on a distal end of the second distal inner drive tube. With this arrangement, each of the pair of tissue grasper jaws may be independently rotated relative to the second central axis and may be rotated between an open jaw position and a closed jaw position.
In some embodiments, the proximal portion of the elongate member includes a second proximal drive tube rotatably mounted coaxially with the proximal outer tube. In these embodiments, the distal portion of the elongate member includes a second distal drive tube rotatably mounted coaxially with the distal outer tube. The second distal drive tube engages with a portion of the end effector to support the end effector. The device may further include a second proximal crown gear located at a distal end of the second proximal drive tube, a second distal crown gear located at a proximal end of the second distal drive tube, and a second spur gear spanning between and inter-engaging with the second proximal crown gear and the second distal crown gear. This arrangement permits the rotational orientation of the end effector relative to the second central axis to be changed by rotating the second distal drive tube with the second proximal drive tube and second spur gear. The proximal and the distal portions of the elongate member may be configured to rotate together about the first central axis relative to a more proximal portion of the device.
In some embodiments, the device may include a second spur gear spanning between and inter-engaging with the proximal crown gear and the distal crown gear, thereby allowing the end effector to be driven by the proximal inner drive tube, the first and second spur gears and the distal inner drive tube. In these embodiments, the first and the second spur gears provide a dual load path between the proximal and the distal inner drive tubes.
According to aspects of the disclosure, methods of manipulating tissue of a subject are provided. In some embodiments, the method includes providing a device having a distal housing configured with an end effector and an elongate member coupled to the distal housing. The method may further include introducing the distal housing to a target tissue site of the subject with the elongate member. The end effector may be driven with a drive train comprising a proximal crown gear located at a distal end of a proximal drive tube, a distal crown gear located at a proximal end of a distal drive tube, and a first spur gear spanning between and inter-engaging with the proximal crown gear and the distal crown gear. The method may further include pivoting the location of the end effector, the distal housing and the distal drive tube relative to the proximal drive tube by rotating a second proximal tube. The second proximal tube is rotatably mounted coaxially with the proximal drive tube in these embodiments and has a crown gear located on a distal end. The crown gear engages with a gear segment coaxially mounted with the spur gear. The methods further include manipulating the tissue of the subject with the end effector.
In some of the above embodiments, the end effector includes a rotary tissue cutter assembly. The rotary tissue cutter assembly may include at least one rotatable member that rotates about a central axis of the distal drive tube, or has an axis of rotation that is perpendicular to a central axis of the distal drive tube. The end effector may include a pair of scissor blades configured to cut tissue, a pair of tissue grasper jaws and/or a needle driver. The pivoting step in the above embodiments may include a computer receiving movement inputs from a surgeon and providing electrical outputs to drive an electric motor coupled to the second proximal tube.
According to aspects of the disclosure, a powered scissors device is provided. In some embodiments the scissors device includes a distal housing, an elongate member, a rotatably blade, a crown gear and a spur gear. In these embodiments the distal housing has a fixed cutting arm located thereon. The elongate member is coupled to the distal housing and is configured to introduce the distal housing to a target tissue site of the subject. The elongate member includes an outer tube and an inner drive tube rotatably mounted within the outer tube. The rotatable blade is rotatably mounted to the distal housing and has at least one cutting element configured to cooperate with the fixed arm to shear tissue therebetween. The crown gear is located at a distal end of the inner drive tube. The first spur gear is configured to inter-engage with the crown gear and is coupled with the rotatable blade to allow the crown gear to drive the rotatable blade.
In some embodiments, the rotatable blade has an axis of rotation that is perpendicular to an axis of rotation of the inner drive tube. The rotatable blade may be partially located within a slot formed within the distal housing such that the at least one cutting element is covered by the distal housing during at least half of its rotation about an axis of rotation of the rotatable blade.
Other aspects of the disclosure will be understood by those of skill in the art upon review of the teachings herein. Other aspects of the disclosure may involve combinations of the above noted aspects of the disclosure. These other aspects of the disclosure may provide various combinations of the aspects presented above as well as provide other configurations, structures, functional relationships, and processes that have not been specifically set forth above.
In this embodiment both blade stacks are configured to rotate. The blades in blade stack 102 are configured to rotate in a direction opposite that of the blades in blade stack 104, as designated by the counterclockwise “CCW” and clockwise “CW” directions in
Housing 101 also includes a drive mechanism coupler 105, shown as a square hole or bore, which couples a drive train disposed in the housing to a drive mechanism disposed external to the housing. The drive mechanism, described in more detail below, drives the rotation of the drive train, which drives the rotation of the blades. The drive train disposed in the housing can also be considered part of the drive mechanism when viewed from the perspective of the blades. Drive mechanism coupler 105 translates a rotational force applied to the coupler by the drive mechanism (not shown) to the drive train disposed within housing 101.
In some embodiments in which the working end 100 includes a storage chamber, the chamber may remain open while in other embodiments it may be closed while in still other embodiments it may include a filter that only allows passage of items of a sufficiently small size to exit.
When manufacturing tissue removal devices of the various embodiments set forth herein using a multi-layer multi-material electrochemical fabrication process, it is generally beneficial if not necessary to maintain horizontal spacing of component features and widths of component dimensions remain above the minimum feature size. It is important that vertical gaps of appropriate size be formed between separately movable components that overlap in X-Y space (assuming the layers during formation are being stacked along the Z axis) so that they do not inadvertently bond together and to ensure that adequate pathways are provided to allow etching of sacrificial material to occur. For example, it is generally important that gaps exist between a gear element (e.g. a tooth) in a first gear tier and a second gear tier so that the overlapping teeth of adjacent gears do not bond together. It is also generally important to form gaps between components that move relative to one another (e.g., gears and gear covers, between blades and housing, etc.). In some embodiments the gaps formed between moving layers is between about 2 um and about 8 um.
In some embodiments, it is desired to define a shearing thickness as the gap between elements has they move past one another. Such gaps may be defined by layer thickness increments or multiples of such increments or by the intralayer spacing of elements as they move past one another. In some embodiments, shearing thickness of blades passing blades or blades moving past interdigitated fingers, or the like may be optimally set in the range of 2-100 microns or some other amount depending on the viscosity or other parameters of the materials being encountered and what the interaction is to be (e.g. tearing, shredding, transporting, or the like). For example for shredding or tearing tissue, the gap may be in the range of 2-10 microns, or in some embodiments in the range of 4-6 microns.
In this exemplary embodiment, handheld device 5310 includes a stepper motor 5312 at its proximal end. In other embodiments, other types of electric, pneumatic or hydraulic motors, servos, or other prime movers may be used. The proximal end of motor 5312 may be provided with a manually turnable thumbwheel 5314, as shown. In this embodiment, the distal output end of motor 5312 is provided with a housing 5316, which is made up of a front cover 5318 and a rear cover 5320. Located distally from housing 5316 are an outer shaft housing 5322, an outer shaft lock seal 5324, and a support clamp 5326. A non-rotating, outer support tube 5328 extends from within the proximal end of device 5310 towards the distal end of the device. Within support tube 5328, a rotating drive tube 5330 (best seen in
As best seen in
The two rotors of cutter head assembly 5332 located at the distal end of device 5310 are driven by motor 5312 through drive tube 5330 and other drive components of device 5310, as will now be described in more detail. As best seen in
In some embodiments motor 5312 is provided with feedback control for rotational velocity and torque. These two parameters can be used for controlling and monitoring changes in rotational velocity and the torque load. For measuring rotational velocity, an encoder may be located at one or more of the cutter rotors, at the drive motor, or at another location along the drive train between the drive motor and cutter rotors. In some embodiments, the encoder is located at or close to the rotors to avoid backlash associated with the drive train, thereby making the velocity monitoring more responsive and accurate. Encoder technologies that may be used include optical, resistive, capacitive and/or inductive measurement. To sense torque load, one or more strain gages may be located at the cutter rotors, at the drive motor, or at another location along the drive train between the drive motor and cutter rotors. Torque load may also be sensed by monitoring the current being drawn by the motor. By sensing changes in velocity and/or torque, a controller associated with device 5310 can determine that the cutter rotors are passing from one tissue type to another and take appropriate action. For example, the controller can sense when the cutter elements are passing from soft to hard tissue, from hard to medium density tissue, or from a cutting state to non-cutting state. In response to these changes, the controller and/or device 5310 can provide audio, visual and/or tactile feedback to the surgeon. In some embodiments, the controller can change the velocity, direction or stop cutter rotors from rotating in response to velocity and/or torque feedback. In one embodiment of the invention, a typical cutting rotor speed is on the order of 100 to 20,000 rotations per minute, and a typical torque load is on the order of 0.25 to 150 mN-meter. Other sensors, such as a pressure sensor or strain sensor located at the distal tip of device 5310, may also be utilized to provide feedback that tissue cutting elements are moving from one tissue type to another. In some embodiments, an impendence sensor may be located at the distal tip of the device, to sense different tissue types or conditions, and provide corresponding feedback for tissue cutting control when the tissue being cut by the cutter head changes. Such a pressure sensor feedback control arrangement can be used with types of cutting devices other than those disclosed herein.
Referring now to
As shown in
In some embodiments, the irrigation fluid serves multiple functions. The irrigation fluid can serve to lubricate the cutting elements, drive gears, journal bearings and other components as the parts rotate. The irrigation fluid can also serve to cool the cutting elements and/or the tissue being cut, absorbing heat and carrying it away as the irrigation fluid is removed from the patient. The fluid can serve to flush tissue particles from the moving parts to prevent them from becoming clogged. The fluid can also serve to carry away the tissue portions being cut and remove them from the target tissue site. In some embodiments, the irrigation fluid is ple, tissue grasping device 1300 shown in
As previously described, irrigation fluid may be delivered to cutting elements and/or a target tissue site through device 5310. Exemplary device 5310 is also constructed to remove the irrigation fluid and tissue portions cut from the target tissue site through the shaft of device 5310. As can be appreciated by viewing
In some embodiments, the cut tissues portions emerging from hose barb 5352 may be collected for testing. The tissue portions may be separated from the irrigation fluid, such as by centrifugal force, settling and/or filtering. The tissue portions may be measured to precisely determine the mass and/or volume of tissue removed. The pathology of some or all of the tissue portions may also be determined. In some embodiments, the above testing may be performed during a surgical procedure so that results of the testing may be used to affect additional stages of the procedure.
According to aspects of the invention, the inside diameter of drive tube 5330 may be much larger than the maximum dimension of the tissue portions traveling through it. In some embodiments, the maximum tissue dimension is less than about 2 mm across. In one exemplary embodiment, the inside diameter of drive tube 5330 is about 3 mm, the outside diameter of the support tube 5328 is about 5.6 mm, and the maximum dimension of the tissue portions is about 150 microns. In another exemplary embodiment, the inside diameter of drive tube 5330 is about 1.5 mm, the outside diameter of the support tube 5328 is about 2.8 mm, and the maximum dimension of the tissue portions is about 75 microns. In other embodiments, the inside diameter of drive tube 5330 is between about 3 mm and about 6 mm. In some embodiments, the maximum dimension of the tissue portions is at least one order of magnitude less than a diameter of the tissue removal lumen. In other embodiments, the maximum dimension of the tissue portions is at least twenty times less than a diameter of the tissue removal lumen. In some embodiments, the maximum dimension of the tissue portions is less than about 100 microns. In other embodiments, the maximum dimension of the tissue portions is about 2 microns.
Referring now to
Referring to
It should be noted that while rotor housing assembly 5420′ is shown in an exploded format for clarity in
Referring to the top view shown in
A front or distal end view is shown in
Referring to the cross-sectional plan view of
Various rotor gaps can be seen in
In operation, the cutter elements of rotor housing assembly shown in
Components of cutter head assembly 5332, including rotor housing assemblies 5420 and 5420′, may be fabricated using processes such as laser cutting/machining, photo chemical machining (PCM), Swiss screw, electro-discharge machining (EDM), electroforming and/or other processes for fabricating small parts. Wafer manufacturing processes may be used to produce high precision micro parts, such as EFAB, X-ray LIGA (Lithography, Electroplating, and Molding), and/or UV LIGA. An electrochemical fabrication technique for forming three-dimensional structures from a plurality of adhered layers is being commercially pursued by applicant Microfabrica® Inc. (formerly MEMGen Corporation) of Van Nuys, Calif. under the name EFAB®. Such a technique may be advantageously used to fabricate components described herein, particularly rotors and associated components.
In some embodiments, the shredder's ability to selectively remove tissue is attributed to the protrusion of the rotating cutters from the housing and the design of a tooth pitch (space between the tips of adjacent teeth) of each rotor. In some embodiments, the protrusion sets the depth of the inward cut for the tips of the rotor. This inward depth controls the thickness of tissue being removed. The tooth pitch or number of teeth circumferentially about the rotor diameter provides an opening for individual tissue fibers and/or fiber bundles to be hooked, tensioned and drawn between the cutters.
From the point of view of the selected tissue, the tooth pitch and protrusion may be designed to grasp the smallest fibers or fiber bundles that are to be removed. From the point of view of the non-selected tissue, the tooth pitch may be many times smaller than the fiber or fiber bundle, and the protrusion may also be equally smaller than the fiber/bundle diameter.
As previously described,
Tooth pitch is the distance from one tooth tip to the next tooth tip along an imaginary circle circumscribing the outer circumference of the blade. The trough diameter or depth generally is the distance between the tooth tip and the low point between the tooth tips. In many embodiments, the trough is a critical geometry component that enables tissue selectivity. Additionally, the trough opening (i.e. the distance from tooth tip to the tooth back of an adjoining tooth) can determine the size of the “window” for capturing a fiber or fiber bundle diameter.
In some embodiments, the target tissue being cut is hydrated and generally has a nominal fiber diameter of about 6 to about 9 microns. In some embodiments, the target tissue being cut is dry and generally has a nominal fiber diameter of about 5 to about 6 microns. In some embodiments, the tissue fibers are connected together in bundles having a nominal diameter of about 250 microns.
Typical dimensions in some embodiments include:
The tissue cutting devices disclosed herein may be configured for use in a variety of procedures. An example of a cardiac application is using the inventive devices to selectively remove endocardium, with the cutting device configured to leave the underlying myocardium uncut. An example of a tissue removing application involving the esophagus includes selectively removing mucosa, leaving the submucosa. Such a therapy would be useful for treating Barrett's disease. Examples in the spinal area include selectively removing flavum, with the cutting device configured to stop removing tissue when dura is reached, leaving the dura intact. Selective removal of flavum but not nerve root is another embodiment. A cutting device constructed according to aspects of the invention can also be configured to remove flavum without cutting bone. In this embodiment, the rotor velocity could be changed and/or the cutting elements could be changed after the flavum is removed such that some bone tissue could then be removed. Examples in the neurovascular area include selectively removing cancerous tissue while not cutting adjacent blood vessel tissue or nerve tissue. In the rheumatology field, tears in labral target tissue may be selectively removed while preserving adjacent non-target tissue, such as in the hips, shoulders, knees, ankles, and small joints. In some embodiments, small teeth on the rotors can interact with micron scale fibers of cartilage, removing tissue in a precise way, much like precision machining of materials that are harder than tissue. Other target tissues that may be selectively removed by the inventive devices and methods described herein include cartilage, which tends to be of a medium density, periosteum, stones, calcium deposits, calcified tissue, cancellous bone, cortical bone, plaque, thrombi, blood clots, and emboli.
It can be appreciated by those skilled in the art of tissue removal that soft tissue is much more difficult to remove in a small quantities and/or in a precise way than harder tissue such as bone that may be grinded or sculpted, since soft tissue tends to move or compress when being cut, rather than cut cleanly. Cutting tissue rather than removing it with a laser or other high energy device has the advantage of not overheating the tissue. This allows the tissue to be collected and its pathology tested, as previously described.
In some embodiments of the invention, the selective tissue cutting tool may be moved laterally along a tissue plane, removing thin swaths of tissue with each pass until the desired amount or type of tissue is removed. In some embodiments, the tool may be plunged into the target tissue in a distal direction, until a desired depth or type of tissue is reached. In any of these embodiments, the tool may cut a swath or bore that is as large as or larger than the width of the tool head. In some embodiments, the cutting elements are distally facing, laterally facing, or both.
According to further aspects of the present disclosure, the rotational axis or axes of a single or dual rotor cutter can be located and angled in three-dimensional space in a variety of configurations relative to a longitudinal axis of the debrider device to allow access to target tissue sites not accessible by conventional debriders. These unique configurations enable medical procedures that otherwise could not be performed, or permit the procedures to be performed more easily.
Referring to
Referring first to
The distal portion 810 of the elongate member 806 includes a distal outer tube 814 and a distal inner drive tube 816 rotatably mounted within the distal outer tube. The distal inner drive tube 816 includes a crown gear at its distal end (not shown) to drive the tissue cutter assembly 804 in a manner similar to previously described embodiments. The distal inner drive tube 816 also includes a crown gear 818 at its proximal end. The crown gear 818 is configured to mesh with a first spur gear 820 of the joint mechanism 812. The first spur gear 820 is rotatably mounted on a spindle 822.
The proximal portion 808 of the elongate member 806 includes a proximal outer tube 824, a proximal inner articulation tube 826 rotatably mounted within the proximal outer tube 824, and a proximal inner drive tube 828 rotatably mounted within the proximal inner articulation tube 826. The proximal inner drive tube 828 includes a crown gear 830 at its distal end. The crown gear 830 is configured to mesh with the first spur gear 820 of the joint mechanism 812. With this arrangement, the proximal inner drive tube 828 may be driven by a motor (not shown) located at the proximal end of device 800, as with previously described embodiments. The proximal inner drive tube 828 then drives the first spur gear 820, which in turn drives the distal inner drive tube 816 in an opposite direction from that of the proximal inner drive tube 828. The distal inner drive tube 816 then rotatably drives the tissue cutter assembly 804 as previously described.
The spindle 822 pivotably interconnects the proximal end of the distal outer tube 814 with the distal end of the proximal outer tube 824, allowing the two outer tubes 814 and 824 to pivot with respect to one another. The proximal and distal inner drive tubes 828 and 816 and the first spur gear 820 are arranged such that they are able to continually drive the tissue cutter assembly 804 regardless of the orientation the distal outer tube 814 relative to the proximal outer tube 824. A gear segment 832 is provided at the proximal end of the distal outer tube 814. The proximal inner articulation tube 826 includes a crown gear 834 at its distal end that is configured to mesh with the gear segment 832 of the distal outer tube 814. Rotating the proximal end (not shown) of the proximal inner articulation tube 826, such as with a knob or other control, causes the crown gear 834 at the distal end of the proximal inner articulation tube 826 to pivot the distal portion 810 of the elongate member 806 relative to the proximal portion 808.
The joint mechanism 812 may be provided with a flexible sheath, bellows or other covering (not shown) over the joint to prevent the mechanism from damaging adjacent tissue and to seal irrigation fluid that may be flowing distally and/or proximally through the joint 812. In some embodiments, irrigation fluid is provided externally adjacent to the tissue cutter assembly 804. Suction is provided at the proximal end of the proximal inner drive tube 828 to draw the irrigation fluid through the tissue cutter assembly 804 and up through the distal and proximal inner drive tubes 816 and 828, thereby transporting cut tissue debris proximally through the elongate member 806. In other embodiments, irrigation fluid may be provided distally through channels and/or tubing through the elongate member 806. In still other embodiments, irrigation fluid may be provided distally through the center of the proximal and distal inner drive tubes 828 and 816.
Referring to
The actuation of the above tissue cutting device or scissors 1100 may be performed with high speed oscillation, such as by using a servo. By alternately driving the motor clockwise and counter-clockwise for short durations of less 500 milliseconds, a high speed oscillating scissors actuator can be achieved.
Referring to
Referring to
Referring to
As shown by Arrow 3 in
The proximal portion 1410 of the elongate member, and the distal portion 1408 along with it, may also be driven axially inward and outward, as shown by Arrow 4. Additionally, the proximal portion 1410 of the elongate member, and the distal portion 1408 along with it, may also be rotated about its central axis, as shown by Arrow 5. Thus, device 1400 may be articulated and/or translated about five axes, as shown in
Referring to
Miniature robotic manipulators may be constructed using the above technology. In some embodiments, the manipulators may be configured to be set up by a surgeon and actuated to run autonomously or semi-autonomously. For example, the robotic manipulator can be configured to take a first pass at tissue removal using closed loop feedback such as torque and force sensing. A second, more delicate pass of tissue removal can then be performed by the surgeon to finish the procedure. With the first pass not taking much effort from the surgeon, surgeon fatigue can be kept to a minimum. In some embodiments, the instrument movements provided by the surgeon can be enhanced by robotic control. For example, instead of manipulating the surgical instrument directly, the surgeon can operate controls that have be configured to simulate the proximal end of the instrument. These controls in turn provide input to a computer control system that then provides outputs to prime movers such as stepper motors for driving the surgical instrument. The surgeon's movements can be modified by the computer control, such as by smoothing out the movements and/or limiting a depth of tissue cutting. Haptic feedback from the instrument can be fed back to the surgeon to more closely simulate direct control.
Referring to
Referring to
In many of the above-described surgical instruments, actuation is controlled via a crown gear driving one or more right angle gears, such as for steering a portion of the instrument off at an angle from the central axis. In combination with or separately from the steering, a crown gear arrangement can also be used to actuate tools such as graspers, scissors, debriders, and other end defectors. In some embodiments, the articulating joints of these tools have a diameter of 20 mm or less. In some embodiments, the articulating joints have a diameter of about 10 mm or about 5 mm. In other embodiments, the instruments can enable micro-invasive tools of down to 1 mm. Exemplary tools that may be constructed with this inventive technology include probes, sensors (e.g. temperature, pressure, torque, tissue impedance, infrared, radiofrequency coils, heart rate, ultrasound), staplers, tissue approximation devices, suture devices, cameras, optics, neuro-stimulation devices, ablation devices, drug delivery devices, and/or biopsy devices.
Referring to
Referring to
Second spur gear 430 is provided with a square aperture therethrough for receiving drive pin 432. Similarly, blade 406 is provided with a square aperture therethrough. Drive pin 432 passes through second spur gear 430 and blade 406, and its distal end is received within aligner bushing 434. Aligner bushing 434 is received within a circular recess (not shown) in the bottom of lug 402. Drive pin 432 and aligner bushing 434 cooperate to rotatably mount blade 406 in a proper alignment so that it may be driven by second spur gear 430. Lower retainer cap 436 may be provided to captivate aligner bushing 434 within lug 402. Retainer cap 436 may be welded in place on the bottom of lug 402, as shown in
Referring to
In some embodiments, the distal end of device 400 is configured to fit through a 10 mm trocar, endoscope or catheter, as partially depicted by dotted line 454 in
As shown and described, rotatable blade 406 of exemplary device 400 rotates about an axis that is perpendicular to an axis of rotation of inner drive tube 5330. In other embodiments (not shown), lug 402, crown gear 420 and first spur gear 426 may be configured such that the axis of rotation of rotatable blade 406 is oriented at a different angle with respect to inner drive tube 5330. In some embodiments, the angle between the two axes is 45 degrees. In other embodiments, the two axes are parallel, with the spur gear(s) located outside of the distal tip of the inner drive tube. In some embodiments, the first spur gear may be tilted downward/inward, such that its axis of rotation falls inside the inner drive tube.
As with previously described embodiments, the exemplary device 400 shown in
In any of the embodiments disclosed herein, the tissue manipulating device may include one or more radio frequency (RF) electrodes on the end effector. For example, tissue grasping device 1300 shown in
In one exemplary embodiment, first pivoting jaw member 1302 forms a first RF electrode and second pivoting jaw member 1304 forms a second RF electrode of opposite polarity. In this embodiment, jaw members 1302 and 1304 are electrically insulated from each other and may also be insulated from the rest of grasping device 1300. RF energy may be provided to jaw members 1302 and 1304 by inner drive tubes 1310 and 1306, respectively, which may also be insulated from each other, and through gear segments 1308. Alternately or in combination, other electrical conductors such as insulated wires may run the length of the elongated member/instrument shaft and connect to jaw members 1302 and 1304, or electrodes located thereon. An electrical connector or cable located at the proximal end of the instrument may then be connected to an RF generator. In use, when a surgeon activates the RF energy supplied to jaws 1302 and 1304, tissue grasped between the jaws is sealed, for example, by the RF energy passing between the jaws.
In another exemplary embodiment, the scissors device 1100 shown in
In another exemplary embodiment, the cutting edge of fixed arm 404 of scissors device 400 shown in
In other embodiments (not shown), a CMOS or CCD camera, one or more scanning fibers, other optical imaging components or suitable devices may be attached to one or more pivoting members of an instrument end effector. These components may be independently aimed or steered by pivoting the end effector member with a drive tube crown gear, as previously described.
In view of the teachings herein, many further embodiments, alternatives in design and uses of the embodiments of the instant invention will be apparent to those of skill in the art. For example, it is envisioned that the locations of the inner and outer tubes may be reversed and/or the nesting order of tubes may be varied from the embodiments disclosed herein. As such, it is not intended that the invention be limited to the particular illustrative embodiments, alternatives, and uses described above but instead that it be defined by the claims presented hereafter.
This application claims the benefit of Provisional Application No. 61/710,608 filed on Oct. 5, 2012. This application is related to the following U.S. applications: application Ser. No. 13/843,462 filed Mar. 15, 2013; application Ser. No. 13/535,197 filed Jun. 27, 2012; application Ser. No. 13/388,653 filed Apr. 16, 2012; application Ser. No. 13/289,994 filed Nov. 4, 2011; application Ser. No. 13/007,578 filed Jan. 14, 2011; application Ser. No. 12/491,220 filed Jun. 24, 2009; application Ser. No. 12/490,301 filed Jun. 23, 2009; application Ser. No. 12/490,295 filed Jun. 23, 2009; Provisional Application No. 61/408,558 filed Oct. 29, 2010; Provisional Application No. 61/234,989 filed Aug. 18, 2009; Provisional Application No. 61/075,007 filed Jun. 24, 2008; Provisional Application No. 61/075,006 filed Jun. 23, 2008; Provisional Application No. 61/164,864 filed Mar. 30, 2009; and Provisional Application No. 61/164,883 filed Mar. 30, 2009.
Number | Date | Country | |
---|---|---|---|
61710608 | Oct 2012 | US |