The present invention relates to micro bar codes and recognition systems and methods thereof, and more particularly, to a micro bar code for recognizing product information, and a recognition system and method of the same.
A conventional bar code system for recognition of products utilizes the principle of different optical reflection rates to input digital signals into a computer by optical scanning so as to recognize product information. For example, a product code is scanned and converted by computer software to a selling price being previously entered, such that the price of the product to be purchased is entered and recorded.
Referring to the bar code recognition system 40 shown in
However, the above conventional recognition technique is inherent with a significant problem that the recognition accuracy thereof is only 95%, which is not good enough in practice. Moreover, since the bar code 41 utilizes stripes of different widths to achieve the differentiation effect, the design of the bar code 41 is restricted in terms of a limitation on the possible number of stripes being provided within a unit area. Further, the size of bar code may be increased according to different widths of the stripes used for the bar code, and such bar code is not suitable for recognition of small products.
In recent years, there has been developed a radio frequency identification (RFID) recognition technique using radio waves to transmit product recognition information, in place of the conventional bar code technique. Referring to
The RFID recognition technique has advantages such as data updating, large data storage capacity, high recognition accuracy, high data security, and so on, which can solve some of the problems caused by the conventional bar code technique. However, the RFID recognition technique still leads to significant drawbacks. Liquids or metals would often interfere with transmission of the radio waves to cause failure, such that the variety of products to which the RFID recognition technique is applicable becomes limited. For example, with respect to refrigerated fresh food sold in general supermarkets, condensed vapors or water may appear on packages thereof and impede the recognition function of the RFID chip. Furthermore, the RFID recognition system requiring a special antenna and a reader is relatively complex, and it is rather difficult to achieve packaging accuracy between the chip, the tag, and the antenna. This makes the RFID recognition system not cost-effective to fabricate and not suitable for mass production.
Therefore, the problem to be solved here is to provide an improved bar code and a recognition system and method thereof, which can eliminate the foregoing prior-art drawbacks when recognizing products.
In light of the above prior-art drawbacks, a primary objective of the present invention is to provide a miniaturized micro bar code and a recognition system and method thereof.
Another objective of the present invention is to provide a micro bar code having high data storage capacity, and a recognition system and method thereof.
Still another objective of the present invention is to provide a micro bar code having high recognition accuracy, and a recognition system and method thereof.
A further objective of the present invention is to provide a micro bar code that is not interfered with by liquids, and a recognition system and method thereof.
A further objective of the present invention is to provide a low-cost micro bar code, and a recognition system and method thereof.
In accordance with the above and other objectives, the present invention proposes a micro bar code including: a body having a sensing area, and a plurality of nanounits disposed on the sensing area of the body in a predetermined arrangement, wherein each of the nanounits has a plurality of nanomolecules provided in a predetermined arrangement.
The present invention also proposes a micro bar code recognition system for recognizing the micro bar code. This system includes: a sensing module for sensing the arrangement of the nanounits and nanomolecules on the micro bar code; a transmitting module connected to the sensing module; an operating module for receiving the sensing result from the sensing module via the transmitting module; and a bar code database for storing information corresponding to arrangement of each set of nanounits and nanomolecules, such that the operating module can input the sensing result from the sensing module to the bar code database so as to recognize information on the micro bar code to be recognized, and the recognition result is transmitted back to the operating module for recording.
The present invention further proposes a micro bar code recognition method. This method includes the steps of: providing a micro bar code having a plurality of nanounits disposed thereon in a predetermined arrangement, wherein each of the nanounits has a plurality of nanomolecules provided in a predetermined arrangement; providing a sensing module to sense the arrangement of the nanounits and nanomolecules on the micro bar code; transmitting the sensing result from the sensing module to an operating module via a transmitting module; inputting via the operating module the sensing result from the sensing module to a bar code database that stores information corresponding to arrangement of each set of nanounits and nanomolecules, so as to recognize information on the micro bar code to be recognized; and finally, transmitting the recognition result back to the operating module for recording.
The foregoing plurality of nanounits are spaced evenly and arranged in a row according to a predetermined sequence. Different nanounits can be defined to represent different numbers, letters of a linguistic alphabet, or symbols. Additionally, the number, number of rows, density, and sizes of the nanomolecules being arranged can differentiate different nanounits for recognition.
Moreover, the micro bar code recognition system and method further include a display module connected to the operating module and for displaying the recognition result recorded in the operating module. The sensing module can include an electromagnetic sensor for receiving electromagnetic waves emitted by the nanomolecules. Alternatively, the sensing module can include an optical sensor and a photoelectric converter. The optical sensor may emit light of high frequencies and short wavelengths for use to detect the arrangement of the nanomolecules, and the detected light signals are converted to digital electrical signals by the photoelectric converter prior to being transmitted to the operating module.
Therefore, the micro bar code and the recognition system and method thereof proposed in the present invention have advantages such as small size and large data storage capacity of the micro bar code, high recognition accuracy, and low cost. And the recognition process would not be interfered with by liquids. Thus, the drawbacks in the prior art can be eliminated.
The present invention can be more fully understood by reading the following detailed description of the preferred embodiments, with reference made to the accompanying drawings, wherein:
A micro bar code proposed in the present invention utilizes various arrangements of nanomolecules to achieve differences in recognition. Referring to the embodiment shown in
Besides numbers, the nanounits 17 may also represent other characters according to different arrangements of the nanomolecules 15 therein so as to increase the storage capacity of information recorded in the micro bar code 10. Referring to
The micro bar code 10 has primary advantages of small size and large data storage capacity. Practically, the diameter of a nanomolecule 15 is only around 10−9 m, and the width of a nanounit 17 is only at the level of 10−9 m. For a general product bar code having a width of approximately from 2 to 3 cm, at least around 107 nanounits 17 can be arranged in a single row of such bar code. Thus, the information to be recognized (the data capacity) would be far greater than that of a conventional bar code comprising stripes of different widths, such that the drawback of the conventional bar code not having enough data capacity is eliminated through the use of the micro bar code 10.
Therefore, the micro bar code 10 proposed in the present invention is greatly reduced in size and thus can be applied to a miniaturized product as well as provides much more combinations of product codes than the conventional bar code does. Since the relatively more combinations are provided by this micro bar code 10, and the data capacity of the micro bar code 10 is far greater than that of the conventional bar code, product information such as a selling price and condition of stock supply can be directly recorded in the micro bar code 10 without the need to convert and retrieve the product information from a computer by software as for the conventional bar code. In other words, all product information can be included in the micro bar code 10 and can be obtained and inputted to a computer or cash register once it has been sensed, without the need to be looked up, read or converted. A user only has to update the product information using computer software when it is necessary (such as on a sale). This thus provides convenience in using the micro bar code 10 unlike the conventional bar code.
Furthermore, compared to the conventional radio frequency identification (RFID) recognition technique, the micro bar code 10 in the present invention needs not to integrate elements such as a chip, tag, and antenna, and thus can effectively reduce the cost thereof. Additionally, the information reading for the micro bar code 10 is performed by the theory of magnetics or optics, and unlike the RFID recognition technique, is not liable to failure due to interference of liquids. Thus, the micro bar code 10 is suitably applicable to the recognition of refrigerated fresh food packages having condensed vapors or water thereon, and the prior-art drawback is eliminated.
Referring to
The foregoing sensing module 21 can be an electromagnetic sensor for sensing electromagnetic waves emitted by the magnetic nanomolecules 15 on the micro bar code 10. Thus, the location and arrangement of the nanomolecules 15 can be recognized according to the electromagnetic waves, and can be transmitted to the central processor 230 of the operating module 23 via the transmitting module 22 after being converted to digital electrical signals, without having to perform extra scanning of the micro bar code 10. This provides convenience in recognizing the information of the bar code 10.
Alternatively, the foregoing sensing module 21 can be an optical sensor having a high frequency light-emitting unit for emitting light of high frequencies and short wavelengths. The light is used for scanning the micro bar code 10 to recognize the arrangement of the nanounits 17 and nanomolecules 15 on the sensing area 12 according to the reflected light. Subsequently, the reflected light signals are received and converted to digital electrical signals by a photoelectric converter of the sensing module 21 and transmitted to the central processor 230 of the operating module 23 by the transmitting module 22.
The data stored in the bar code database 24 can be pre-input purchase information of products or updated information inputted by sellers. After the sensed arrangement of the nanounits 17 and nanomolecules 15 is transmitted to the central processor 230, a comparison is performed by the central processor 230 using the data stored in the bar code database 24 so as to allow the arrangement or arranged pattern of the nanounits 17 and nanomolecules 15 to be converted to corresponding information stored in the bar code database 24. Then, the converted information is recorded by the central processor 230 and displayed on the display module 25. For example, a large amount of information such as product names, selling prices, suppliers, conditions of stock supply, discount conditions, inventory and sales, etc. can be recorded and displayed. Moreover, as the data storage capacity of the micro bar code 10 in the present invention is far larger than that of the conventional bar code, the product information of the micro bar code 10 converted through the bar code database 24 is also much more than that of the conventional bar code, such that the information recording and recognition are significantly improved by the present invention.
In addition, as described above, the micro bar code 10 proposed in the present invention has an advantage of large data storage capacity. Thus, initial information such as product names, selling prices and suppliers can be directly recorded in the bar code 10 without the need to be converted to any associated information stored in the bar code database 24. This can reduce occupation of the storage of the bar code database 24 and the operating load of the central processor 230. Such improvement is silent in and cannot be achieved by the prior art.
Referring to
Therefore, the micro bar code and the recognition system and method thereof proposed in the present invention have advantages such as small size and large data storage capacity of the micro bar code, high recognition accuracy, and low cost. And the recognition process would not be interfered with by liquids. Thus, the drawbacks in the prior art can be eliminated.
The invention has been described using exemplary preferred embodiments. However, it is to be understood that the scope of the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements. The scope of the claims, therefore, should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.