The present invention disclosed herein relates to an antenna, and more particularly, to a micro base station antenna that includes two inverted F antennas.
A mobile communication technology has been switched from analog communication to digital communication and the technology has then evolved into 2 G, 3 G, and 4 G. In particular, 3.9 G service that is represented by LTE and WiMAX is being currently employed across the world. In addition to an evolving communication technology, as smart devices such as high-performance smart phones and tablets are widely distributed and a demand for a massive-data service such as a high-definition image service explosively increases, there is a trend toward remarkably growing mobile communication traffic.
As techniques for maximizing the transmission speed and capacity of data with limited frequency resources, there are an active antenna technique, an MIMO technique, and a beam-forming technique. However, it is true that the development speed of a technology does not keep up with the increase speed of mobile traffic. A solution to solve rapidly increasing mobile traffic with limited frequency resources includes increasing the number of base stations. Increasing the number of mobile communication base stations involves limitations in that spaces and costs for installation and costs for maintaining and repairing base stations increase. Also, there is also a drawback in that switching to a new service to be developed in the future is difficult.
The next-generation mobile communication base station system is based on the current system, satisfies a demand for exponentially increasing mobile traffic and may cope quickly with a new communication system to be developed in the future. A typical mobile communication base station system has a structure in which a radio frequency unit (RFU), a base band unit (BBU), and a transport layer are located at one cabinet and connected to a transmission and reception antenna by using a coaxial line However, the mobile communication base station has developed to a distributed base station which connects, a centralized station where a plurality of digital units are gathered, to a radio unit called a remote radio unit (RRU), by using an optical line. The next-generation mobile communication base station has a structure in which an RF unit is separated from a base band unit, they are connected by using an optical line and a decreased RF unit is integrated into an antenna mechanism.
In order to decrease the RF unit in such a next-generation mobile communication base station system, there is a need to decrease the antenna. Decreasing the antenna that is a unit occupying the largest volume among single RF units is very important. In the case of a currently developed antenna for a base station, since the size of the antenna is very large and the antenna is an array antenna that includes a number of antennas in one mechanism, the antenna is inappropriate for using as the next-generation mobile communication base station. In particular, since the 800 MHz band called a gold frequency is low, it is very difficult to decrease a size and to expand a bandwidth. Also, since the next-generation mobile communication base station system has a structure in which the RF unit and the antenna are mounted in one micro cube, there is a need to develop a micro antenna for a base station.
The present invention provides a micro base station antenna that has a wide bandwidth, a high gain, and an enhanced isolation characteristic.
Embodiments of the present invention provide a micro base station antennas including: a substrate etched with first and second micro strip lines, the substrate being provided in a cube; a first inverted F antenna including a first metallic short-circuit plate provided on the first micro strip line and a first radiation patch provided on the first metallic short-circuit plate; a second inverted F antenna including a second metallic short-circuit plate provided on the second micro strip line and a second radiation patch provided on the second metallic short-circuit plate, the second inverted F antenna facing the first inverted F antenna; and an isolator provided between the first inverted F antenna and the second inverted F antenna.
In some embodiments, the isolator may include a third metallic short-circuit plate provided on the substrate and a metallic isolating plate provided on the third metallic short-circuit plate.
In other embodiments, the first and second micro strip lines may include first and second power supply lines and first and second short-circuit lines, respectively.
In still other embodiments, the micro antennas may further include a ground plane provided between the cube and the substrate, wherein the ground plane may not be provided on a part where the first and second radiation patches overlap the ground plane.
In even other embodiments, the first and second power supply lines may be connected to first and second SMA connectors respectively through via holes, wherein the via holes may be formed by passing through the substrate, the ground plane, and the cube.
In yet other embodiments, the first and second short-circuit lines may be connected to the ground plane through the via holes formed by passing through the substrate.
In further embodiments, the third short-circuit plate may be connected to the ground plane through the via hole formed by passing through the substrate.
In still further embodiments, the first and second radiation patches may be quadrilateral or circular.
In even further embodiments, the metallic isolating plate may be quadrilateral or circular.
In yet further embodiments, the cube may be a metallic component formed of aluminum Al or copper Cu.
In much further embodiments, the cube may be a non-metallic component formed of polycarbonate, acetal, Teflon, or silicon.
In still much further embodiments, one surface of the cube being in contact with the ground plane may be a square, wherein one side of the square has a length smaller than or equal to half an operation frequency.
The accompanying drawings are included to provide a further understanding of the present invention, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the present invention and, together with the description, serve to explain principles of the present invention. In the drawings:
It should be understood that both the foregoing general description and the following detailed description are exemplary, and it should be appreciated that the additional description of the claimed invention is provided. Reference numerals are indicated in the exemplary embodiments of the present invention and their examples are indicated in the accompanying drawings. The same reference numerals are used in the description and drawings in order to refer to the same or similar parts wherever possible.
In the following, a dual polarization dipole antenna is uses as an example for explaining the characteristics and functions of the present invention. However, a person skilled in the art will be able to easily understand other advantages and performance of the present invention based on the details described herein. The present invention will be able to be implemented or applied through other embodiments. In addition, the detailed description may be modified or changed according to a viewpoint and an application without departing significantly from the scope, technical spirit and other purposes of the present invention.
Even though the terms a “first” and a “second” may be used for explaining various components, these components are not limited by these terms. The terms may only be used to distinguish one component from others. The term “include,” “comprise,” “including,” or “comprising,” used in the detailed description of the present invention specifies a characteristic, a step, an operation, an ingredient, and/or a component but does not exclude another or more characteristics, steps, operations, ingredients, components, and/or their groups. In the description of embodiments, it will be understood that when a layer is referred to as being “on/under” another layer or substrate, it can be directly on the other layer or substrate, or intervening layers may also be present. It will be understood that when an element or a layer is referred to as being “connected to”, “coupled to”, or “adjoining” another element or layer, it can be connected to, coupled to or adjoin the other layer directly, or intervening elements or layers may also be present.
Embodiments of the present invention are described below with reference to the accompanying drawings so that a person skilled in the art may easily practice the technical spirits of the present invention.
The cube 110 is provided. The cube 110 may be provided in a cavity form to be able to surround a first inverted F antenna including the first metallic short-circuit plate 140a and the first radiation patch 150a and a second inverted F antenna including the second metallic short-circuit plate 140b and the second radiation patch 150b as a whole. In addition, each of the inverted F antennas may not be in contact with the internal side of the cube 110 although
The length of one side of the cube 110 may be designed depending on an operation frequency. For example, when the cube 110 has a square form, the length of one side may be manufactured to have half a wavelength corresponding to the operation frequency. However, it may be manufactured to have quarter a wavelength in some embodiments but is not limited thereto. Also, the cube 110 may be manufactured in a circle. In this case, the diameter of the cube may be manufactured to have half or quarter a wavelength corresponding to the operation frequency. In addition, the cube 110 may be formed of a metallic material such as copper Cu or aluminum Al or a non-metallic material such as polycarbonate, acetal, plastic, silicon, or Teflon.
A ground plane 115 (see
The substrate 120 is provided in the cube 110. For example, the substrate 120 may be formed of a dielectric substance having any permittivity and provided on the ground plane 115 (see
The first and second micro strip lines 130a and 130b are provided on the substrate 120. For example, the first and second micro strip lines 130a and 130b may be etched on the substrate 120. The first micro strip line 130a may be provided to be in contact with one side of the cube 110 and the second micro strip line 130b may be provided to be in contact with the opposite side. However, when the cube 110 is formed of a metallic material, the first and second micro strip lines 130a and 130b may be etched not to be in contact with the cube 110. In addition, each of the micro strip lines may include power supply lines 134a and 134b and short-circuit lines 138a and 138b. SMA connectors 132a and 132b may be connected to ends of each of the power supply lines. In addition, each of the short-circuit lines 138a and 138b may be connected to the ground plane 115 (see
The first and second metallic short-circuit plates 140a and 140b are provided on the first and second micro strip lines 130a and 130b. Each of the metallic short-circuit plates may be provided to be in contact with the internal side of the cube 110 perpendicularly to the substrate 120. Likewise, when the cube 110 is formed of a metallic material, the first and second metallic short-circuit plates 140a and 140b are arranged not to be in contact with internal side of the cube 110. The first and second metallic short-circuit plates 140a and 140b may be formed of a metallic material such as copper Cu, aluminum Al or the like.
The first and second radiation patches 150a and 150b are provided on the first and second metallic short-circuit plates 140a and 140b. Likewise, when the cube 110 is formed of a metallic material, the first and second radiation patterns 150a and 150b are arranged not to be in contact with internal side of the cube 110. The radiation patches 150a and 150b are mediums for receiving or transmitting electric waves and may be formed of a metallic material such as copper Cu, aluminum Al or the like.
Isolators 160 and 170 are provided. The isolators 160 and 170 may be provided between the first inverted F antenna and the second inverted F antenna in order to ensure the isolation between the two inverted F antennas. The isolators 160a and 170 may be arranged to be in contact with the internal side of the cube 110 but when the cube 110 is formed of a metallic material, they are arranged not to be in contact therewith. The isolators 160 and 170 may include the metallic isolating plate 170 and the third metallic short-circuit plate 160. The third metallic short-circuit plate 160 may be connected to the ground plane 115 (see
A radome 180 (see
According to an embodiment, in order to generate dual polarization, each of the first and second inverted F antennas may include the radiation patches 150a and 150b and the metallic short-circuit plates 140a and 140b that connect the radiation patches to the micro strip lines 130a and 130b. In addition, each of the micro strip lines includes the power supply lines 134a and 134b to which signals are applied by SMA connectors, and the short-circuit lines 136a and 136b connected to the ground plane 115 (see
As shown in
The first and second micro strip lines 130a and 130b are provided on the substrate 120. The micro strip lines may be etched to be symmetric to each other on the substrate 120 having any permittivity. However, the micro strip lines may not be symmetric to each other in some embodiments. In addition, each of the micro strip lines may be provided on the edge of the substrate 120 to be able to be in contact with one internal side of the cube 110 (see
The micro strip lines 130a and 130b include the power supply lines 134a and 134b to which signals are applied, and the short-circuit lines 136a and 136b connected to the ground plane 115 (see
Referring to
The isolators 160 and 170 are provided. The isolators 160 and 170 may be provided between the first inverted F antenna and the second inverted F antenna in order to ensure the isolation between the two inverted F antennas. The isolators may include the metallic isolating plate 170 and the third metallic short-circuit plate 160. The third metallic short-circuit plate 160 may be connected to the ground plane 115 (see
Referring to
Referring to
The ground plane 115 is provided on the cube 110.
The first SMA connector 125a may be connected to the first metallic short-circuit plate 140a through the via hole 124a formed to pass through the substrate 120, the ground plane 115, and the cube 110. In addition, the second via hole (not shown) and the second SMA connector (not shown) would be provided on the opposite surface although not shown.
The via holes 126a and 128 may be formed to pass through the substrate 120. In addition, the first metallic short-circuit plate 140a and the third metallic short-circuit plate 160 may be connected to the ground plane 115 that is provided between the substrate 120 and the cube 110, through the via holes 126a and 128, respectively. Although not shown, a via hole (not shown) for connecting the second metallic short-circuit plate 140b (see
Referring to
The first and second SMA connectors 125a and 125b may be connected to the first metallic short-circuit plate 140a through the via holes 124a and 124b formed to pass through the substrate 120, the ground plane 115, and the cube 110.
In addition, the via holes 126a, 126b and 128 may be formed to pass through the substrate 120. The first metallic short-circuit plate 140a to the third metallic short-circuit plate, 140a, 140b, and 160 may be connected to the ground plane 115 that is provided between the substrate 120 and the cube 110, through the via holes 126a, 126b, and 128, respectively.
According to an embodiment of the present invention, the ground plane 115 (see
As a result, by adjusting the width and length W and L (see
The micro base station antenna according to an embodiment of the present invention includes the first and second inverted F antennas. In addition, it is possible to enhance the isolation by providing the isolators 160 and 170 between the two inverted F antennas. Also, the ground plane 115 (see
It is obvious to a person skilled in the art that the structure of the present invention may be variously modified or changed without departing from the scope or technical spirit of the present invention. When considering the descriptions above, it is considered that the present invention includes changes and modifications of the present invention if they are within the scopes of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0010207 | Jan 2014 | KR | national |
This U.S. non-provisional patent application claims priority under 35 U.S.C. §119 of Korean Patent Application No. 10-2014-0010207, filed on Jan. 28, 2014, the entire contents of which are hereby incorporated by reference.