This disclosure relates to enhanced micro bubble generation, and in particular to devices and methods for generating microbubbles in water or other fluid. Devices and methods according to this disclosure may also introduce nutrients or sanitizing agents into the water or other fluid.
Prior art devices for generating microbubbles have drawbacks which hamper their efficiency and impair their practical uses. One known method for producing microbubbles is to electrolyze a liquid between two electrodes, in which the microbubbles are formed at the surface of one of the electrodes by a gas released in the electrolysis reaction. Such electrolysis processes are too costly to produce microbubbles on a large scale and cannot practically be utilized in conjunction with liquid dispensing fittings because of the physical size and configuration of the necessary components. Furthermore, such systems are typically large and require electrical enclosures to house the necessary components.
U.S. Pat. No. 4,556,523 to Lecoffre et al. (“Lecoffre”) discloses a microbubble injector comprising a deflector wall, which radially deflects a flow of water exiting under pressure from an injector hole and saturated with dissolved air, thus producing cavitation at the edges of the injector hole and generating microbubbles of air downstream of the injector hole. Similarly, U.S. Pat. No. 6,293,529 to Chang et al. (“Chang”) discloses a bubble generating apparatus including a hollow shell having a plurality of bottom inlets and a side outlet, a screw rod longitudinally mounted in the shell, and a baffle threaded onto one end of the screw rod and suspended inside the shell above the bottom inlets, the baffle having a plurality of smoothly arched bottom notches for baffling intake flows of high-pressure liquid to produce bubbles. The inventions of Lecoffre and Chang suffer from several disadvantages, however, and could not be used practically or efficiently with typical liquid dispensing fittings, such as hydrotherapy jets, shower heads, and liquid nozzles.
U.S. Patent Application Publication No. 2007/0108640 to Takahashi et al. (“Takahashi”) discloses a microbubble-generating device which incorporates small orifices or screens through which the pressurized liquid and gas must travel. Such features are undesirable because debris and contaminants present in the liquid may clog the orifices/screens, so that at least one of (1) expensive pre-filtering of the liquid prior to reaching the small orifices/screens and (2) repeated and continual cleaning of the orifices/screens would be required to maintain the device in an operational state. Extensive maintenance of this type would place an unnecessary burden on the end user and thus is not practical. The clogging of the small orifices/screens may also be detrimental to a system employing the microbubble-generating device, because the blockage could cause excessive back pressure, resulting in premature wear on system components.
There is thus a long-felt need for a microbubble-generating device that does not utilize orifices or screens which may become clogged, which can produce large quantities of microbubbles while occupying a small physical space and utilize smaller components that are practical to use with liquid dispensing fittings such as hydrotherapy jets, shower heads, liquid nozzles, and bathtub faucets. It is further advantageous for the device to be capable of operating in conjunction with a plumbing fixture having aesthetic or ornamental appeal, e.g. a bathtub, without detracting from the fixture's aesthetic or ornamental appeal.
The invention provides an enhanced microbubble pump system without orifices or screens that can produce large quantities of microbubbles in a manner that makes the system practical for use with typical liquid dispensing fittings, such as hydrotherapy jets, shower heads, liquid nozzles, and bathtub faucets. A microbubble pump described herein occupies a physical volume 30-40% smaller, is 10-15% quieter in operation, and uses about 35% less electricity than has heretofore been achieved by the solutions of the prior art. The microbubble pump described herein has an improved shaft seal compared to the devices of the prior art, limiting the possibility of water damage to internal components, and retains little or no water. The microbubble pump described herein also produces a superior quantity and quality of microbubbles as compared to prior art solutions and can be produced with materials that are ozone-compatible. Microbubble pump systems, as disclosed herein, require only two interconnections to a bathtub or plumbing, as compared to the four interconnections typical of prior art systems. Significantly, the microbubble pump disclosed herein can be mounted 3-5 inches lower on a bathtub than prior art devices, greatly diminishing the pump's impact on the overall aesthetic appeal of the bathtub.
The present disclosure provides a microbubble system, comprising a gas inlet comprising a first Venturi injector; a pressure vessel, with a microbubble device therein, interconnected to the gas inlet, the pressure vessel configured to receive liquid via a liquid source and mix the liquid with gas received via the gas inlet, the microbubble device configured to generate microbubbles of the gas in the liquid to form a microbubble-entrained liquid; and an outlet interconnected to the pressure vessel, configured to receive the microbubble-entrained liquid from the pressure vessel and dispense the microbubble-entrained liquid.
In example embodiments, the outlet comprises at least one of a microbubble nozzle and a second Venturi injector.
In example embodiments, the microbubble system further comprises a pump interconnected to the pressure vessel and configured to pump the liquid from the liquid source into the pressure vessel. The gas inlet may be located on at least one of an outlet of the pump and an inlet of the pump.
In example embodiments, the gas inlet is located on at least one of an inlet of the pressure vessel and an inlet line feeding the pressure vessel.
In example embodiments, the microbubble system further comprises a third Venturi injector configured to inject a fluid additive either into the liquid before the liquid enters the pressure vessel or into the microbubble-entrained liquid dispensed from the outlet. The fluid additive may comprise at least one of a nutrient and a sanitizing agent.
In example embodiments, the microbubble system is configured to be interconnected to a vessel. The vessel may be selected from the group consisting of a bathtub, a shower, a hot tub, a swimming pool, a plunge pool, a foot bath, a sink, a trough, a wash basin, a washing machine, a dishwasher, an irrigation ditch, a well, and a spray gun.
In example embodiments, the microbubble system further comprises an attachment interconnected to the outlet and configured to receive the microbubble-entrained liquid. The attachment may be selected from the group consisting of a hair brush, an ear/nose/mouth outlet, a faucet outlet, a handheld wand, a basin, a massager, a handheld scrubber, a soaking vessel, a facial cleansing brush, a multi-outlet jet port, a vessel wall-mounting outlet, and a facial outlet device.
The present disclosure also provides a microbubble system, comprising a gas inlet comprising a first Venturi injector; a pressure vessel interconnected to the gas inlet and configured to receive liquid via a liquid source and mix the liquid with gas received via the gas inlet; a microbubble device configured to generate microbubbles of the gas in the liquid to form a microbubble-entrained liquid; and a microbubble nozzle outlet, interconnected to the pressure vessel and configured to receive the microbubble-entrained liquid from the pressure vessel and dispense the microbubble-entrained liquid.
In example embodiments, the microbubble device is housed within the pressure vessel.
In example embodiments, the microbubble system is configured to interconnect to a vessel containing the liquid, wherein the microbubble device is submerged in the liquid within the vessel. The vessel may be selected from the group consisting of a bathtub, a shower, a hot tub, a swimming pool, a plunge pool, a foot bath, a sink, a trough, a wash basin, a washing machine, a dishwasher, an irrigation ditch, a well, and a spray gun
In example embodiments, the microbubble system further comprises a second Venturi injector configured to inject a fluid additive either into the liquid before the liquid enters the pressure vessel or into the microbubble-entrained liquid dispensed from the microbubble nozzle outlet. The fluid additive may comprise at least one of a nutrient and a sanitizing agent.
In example embodiments, the microbubble system further comprises an attachment interconnected to the microbubble nozzle outlet and configured to receive the microbubble-entrained liquid, the attachment selected from the group consisting of a hair brush, an ear/nose/mouth outlet, a faucet outlet, a handheld wand, a basin, a massager, a handheld scrubber, a soaking vessel, a facial cleansing brush, a multi-outlet jet port, a vessel wall-mounting outlet, and a facial outlet device.
The present disclosure further provides a method for forming an enhanced microbubble-entrained liquid, comprising receiving a starting liquid and a gas; mixing the starting liquid with the gas; generating microbubbles of the gas in the starting liquid to form a microbubble-entrained liquid; and injecting a fluid additive into at least one of the starting liquid and the microbubble-entrained liquid.
In example embodiments, the fluid additive comprises at least one of a nutrient and a sanitizing agent.
These and other advantages will be apparent from the disclosure contained herein.
As used herein, “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B, and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C,” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B, and C together.
It is to be noted that the term “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more,” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising,” “including,” and “having” can be used interchangeably.
The embodiments and configurations described herein are neither complete nor exhaustive. As will be appreciated, other embodiments of the invention are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art. All patents, applications, published applications, and other publications to which reference is made herein are incorporated by reference in their entirety. In the event that there is a plurality of definitions for a term herein, the definition provided in the Brief Summary of the Invention prevails unless otherwise stated.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
The invention illustratively disclosed herein suitably may be practiced in the absence of any element which is not specifically disclosed herein. It is apparent to those skilled in the art, however, that many changes, variations, modifications, other uses, and applications of the invention are possible, and also changes, variations, modifications, other uses, and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention.
The foregoing discussion of the invention has been presented for purposes of illustration and description. The foregoing is not intended to limit the invention to the form or forms disclosed herein. In the foregoing Detailed Description of the Invention, for example, various features of the invention are grouped together in one or more embodiments for the purpose of streamlining the disclosure. The features of the embodiments of the invention may be combined in alternate embodiments other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the invention requires more features than are expressly recited. Rather, inventive aspects lie in less than all features of a single foregoing disclosed embodiment.
Moreover, though the description of the invention has included description of one or more embodiments and certain variations and modifications, other variations, combinations, and modifications are within the scope of the invention, e.g. as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative embodiments to the extent permitted, including alternate, interchangeable, and/or equivalent structures, functions, ranges, or steps to those described, whether or not such alternate, interchangeable, and/or equivalent structures, functions, ranges, or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
This application is a continuation of U.S. patent application Ser. No. 15/146,689, filed on 4 May 2016, which in turn claims the benefit of U.S. Provisional Patent Application 62/156,642, filed 4 May 2015, the entireties of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62156642 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15146689 | May 2016 | US |
Child | 16565314 | US |