The present invention is related to the production of wafer-based electronic devices, and more particularly to the production of frontside metallization on H-pattern solar cells using micro-extrusion techniques.
Conventional methods for producing solar cell 40 include screen-printing and micro-extrusion. Screen-printing techniques were first used in the large scale production of solar cells, but has a drawback in that it requires physical contact with the semiconductor substrate, resulting in relatively low production yields. Micro-extrusion methods were developed more recently in order to meet the demand for low cost large-area semiconductors, and include extruding a dopant bearing material (dopant ink) onto the surface of a semiconductor substrate using a micro-extrusion printhead.
As indicated at the lower right portion of
As indicated in
What is needed is solar cell extrusion printing equipment and an associated method for forming gridlines on a solar cell that avoids the problems mentioned above in association with the conventional gridline printing process.
The present invention is directed to a solar cell extrusion printing system including a printhead assembly and a material feed system for pumping one or more extrusion materials (inks) into the printhead assembly during, for example, a gridline printing process associated with the production of solar cells. To address the problems associated with conventional systems, one or more valve structures are provided adjacent to the nozzle outlets of selected nozzle channels, and the printing system includes a control device for controlling the valve structures to facilitate controllable ink flow from selected nozzle channels of the printhead assembly onto the solar cell substrate during the gridline printing process. By controlling the flow of ink from selected nozzle channels onto the substrate, the present invention facilitates parallel or sequential control the flow of ink from selected individual nozzle channels (or groups of nozzle channels) onto the substrate. In one embodiment, this selective control of ink flow facilitates the printing of gridlines on non-rectangular substrates without violating edge spacing requirements. In another embodiment, this selective control is utilized to selectively block nozzle channels located adjacent to the side edges of the printhead assembly, providing an effective mechanism for automatically correcting misalignment of the solar panel substrate in the cross-process direction.
In accordance with an embodiment of the present invention, the valve structures are disposed inside the micro-extrusion printhead assembly (e.g., between inlet and outlet portions of each nozzle channel). In this way, the adjustable valve structures are disposed between a high pressure source (e.g., a reservoir inside the printhead) and the outlet orifices of selected nozzle channels, and is adjustable by way of a control device between positions that open/close selected nozzle channels. When biased into the open position relative to a selected nozzle channel, the valve structure allows the supplied ink to flow from the high pressure source through the selected nozzle channel and out of the printhead assembly to form a corresponding trace on a target substrate. When biased into the closed position, the extrusion material is blocked by the valve structure to prevent the printing process from the associated nozzle channel. By providing the valve structures inside the printhead and adjacent to the nozzle outlet orifices, the present invention shortens the distance between a high pressure material source and the solar panel substrate at the start and end of each gridline printing process, thereby facilitating a reduction in the occurrence of segmented gridlines associated with conventional printheads.
In accordance with an embodiment of the present invention, the printhead assembly defines an elongated opening (e.g., a slot or hole) that that intersects (i.e., passes through) each of the selected nozzle channels, and the elongated valve structure includes an elongated member that is movably disposed in the slot and is selectively movable to open/close selected nozzle channels. In one specific embodiment, a rectangular slot is defined in the printhead, and a tight fitting rectangular strip is slidably disposed in the slot. When slid between first and second positions in the slot, the rectangular strip alternately prevents and allows flow of extrusion material through at least some of the nozzle channels. In another specific embodiment, the rectangular strip is solid such that it blocks a large number of nozzles when fully inserted into the printhead assembly, and opens these nozzles only when the strip is removed from the printhead assembly. In yet another specific embodiment, the elongated member defines multiple openings that simultaneously open multiple nozzle channels when aligned with the nozzle channels within the printhead. In another specific embodiment, the elongated member is an elongated rod that fits into a cylindrical opening or bore extending through the nozzle channels, and flow is controlled by sliding or rotating the rod, for example, to align openings in the rod with the nozzle channels.
In accordance with yet another embodiment, the valve structures of the present invention are utilized in a co-extrusion printhead to selectively block the flow of a conductive ink. The valving is not used to control the flow of a non-conductive ink, which is allowed to pass through the printhead assembly and onto the solar panel substrate, because the non-conductive ink does not produce electrical shorts.
These and other features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings, where:
The present invention relates to an improvement in micro-extrusion systems, and more particularly to micro-extrusion systems used in the production of solar cells. The following description is presented to enable one of ordinary skill in the art to make and use the invention as provided in the context of a particular application and its requirements. As used herein, directional terms such as “upper”, “top”, “lower”, “bottom”, “front”, “rear”, and “lateral” are intended to provide relative positions for purposes of description, and are not intended to designate an absolute frame of reference. Various modifications to the preferred embodiment will be apparent to those with skill in the art, and the general principles defined herein may be applied to applications other than the production of solar cells. Therefore, the present invention is not intended to be limited to the particular embodiments shown and described, but is to be accorded the widest scope consistent with the principles and novel features herein disclosed.
Referring to the upper portion of
According to an aspect of the present invention, printhead assembly 100 includes valve structures 190-1 and 190-2 that are adjustably disposed in nozzle channels 162-1 to 162-5, and system 50 also includes a valve control device 192 for controlling valve structures 190-1 and 190-2 to facilitate individual control over ink flow through each of nozzle channels 162-1 to 162-5. In particular, valve control device 192 controls valve structures 190-1 and 190-2 in a way that facilitates various operating states, where the flow of ink through each nozzle channel 162-1 to 162-5 is determined by the selected operating state. For example, in a first operating state shown in
According to an aspect of the present invention, each valve structure 190-1 and 190-2 selectively controls the flow of material through two or more nozzle channels such that one or more nozzle channels controlled by a particular valve structure are selectively closed while, simultaneously, one or more other nozzle channels controlled by the particular valve structure are selectively opened. For example, according to the first operating state depicted in
According to another aspect of the present invention, valve structures 190-1 and 190-2 are independently controlled by valve control device 192 such that valve structure 190-1 selectively controls material flow from nozzle channels 162-1 and 162-2, and valve structure 190-2 selectively controls ink flow from nozzle channels 162-3, 162-4 and 162-5. As illustrated in
Referring to
As depicted in
As depicted in
In many cell configurations, the ends of traces typically carry much less current than the central portions. By gradually throttling the ink flow rate at the end of a trace (especially if the support material is not so limited), then the trace can be tapered (i.e., made narrower at its ends). In these low current regions, the slightly increase in the cell's efficiency through reducing the shadowing overcomes the slight efficiency reduction due to the corresponding increases in current losses. If such shaping was used, and the cell geometry was such that the tapering of the traces could usefully extend for a longer distance than the distance between shut-off of two adjacent nozzles, then a calibrated V-notch could be cut into the strip's end. This would allow active control of two or more nozzles after the nozzle currently being turned-on or shut-off. Other shaped notches (e.g. semi-circular or parabolic) may be appropriate in some instances.
Those skilled in the art will recognize that many variations on the concept shown in
As suggested above with reference to
Although the present invention has been described with respect to certain specific embodiments, it will be clear to those skilled in the art that the inventive features of the present invention are applicable to other embodiments as well, all of which are intended to fall within the scope of the present invention. For example, the valving control described herein may be separate from the printhead assembly (i.e., attached to or beneath the printhead). In addition, the valve structures described herein may be set higher in the printhead assembly such that the flow of ink to multiple nozzle channels at once is controlled by the position of the valve structure.
Number | Name | Date | Kind |
---|---|---|---|
2031387 | Schwarz | Feb 1936 | A |
2326803 | Samiran | Aug 1943 | A |
2761791 | Russell | Sep 1956 | A |
2789731 | Marraffino | Apr 1957 | A |
3032008 | Land et al. | May 1962 | A |
3159313 | Guilford | Dec 1964 | A |
3602193 | Adams et al. | Aug 1971 | A |
3973994 | Redfield | Aug 1976 | A |
3988166 | Beam | Oct 1976 | A |
4018367 | Morine et al. | Apr 1977 | A |
4021267 | Dettling | May 1977 | A |
4045246 | Mlavsky et al. | Aug 1977 | A |
4053327 | Meulenberg, Jr. | Oct 1977 | A |
4084985 | Evans, Jr. | Apr 1978 | A |
4086485 | Kaplow et al. | Apr 1978 | A |
4095997 | Griffiths | Jun 1978 | A |
4119058 | Schmermund | Oct 1978 | A |
4131485 | Meinel et al. | Dec 1978 | A |
4141231 | Kudlich | Feb 1979 | A |
4148301 | Cluff | Apr 1979 | A |
4153476 | Shelpuk | May 1979 | A |
4177083 | Kennedy | Dec 1979 | A |
4221468 | Macken | Sep 1980 | A |
4224081 | Kawamura et al. | Sep 1980 | A |
4254894 | Fetters | Mar 1981 | A |
4301322 | Amick | Nov 1981 | A |
4331703 | Lindmayer | May 1982 | A |
4337758 | Meinel et al. | Jul 1982 | A |
4355196 | Chai | Oct 1982 | A |
4418640 | Dettelbach et al. | Dec 1983 | A |
4420510 | Kunkel et al. | Dec 1983 | A |
4461403 | Prahs | Jul 1984 | A |
4476165 | McIntyre | Oct 1984 | A |
4490418 | Yoshida | Dec 1984 | A |
4521457 | Russell et al. | Jun 1985 | A |
4540843 | Gochermann et al. | Sep 1985 | A |
4602120 | Wakefield et al. | Jul 1986 | A |
4683348 | Pidgeon et al. | Jul 1987 | A |
4746370 | Woolf | May 1988 | A |
4747517 | Hart | May 1988 | A |
4792685 | Yamakawa | Dec 1988 | A |
4796038 | Allen et al. | Jan 1989 | A |
4826777 | Ondris | May 1989 | A |
4841946 | Marks | Jun 1989 | A |
4847349 | Ohta et al. | Jul 1989 | A |
4849028 | Krause | Jul 1989 | A |
4855884 | Richardson | Aug 1989 | A |
4938994 | Choinski | Jul 1990 | A |
4947825 | Moriarty | Aug 1990 | A |
4952026 | Bellman et al. | Aug 1990 | A |
4985715 | Cyphert et al. | Jan 1991 | A |
5000988 | Inoue et al. | Mar 1991 | A |
5004319 | Smither | Apr 1991 | A |
5011565 | Dube et al. | Apr 1991 | A |
5062899 | Kruer | Nov 1991 | A |
5075281 | Testardi | Dec 1991 | A |
5089055 | Nakamura | Feb 1992 | A |
5120484 | Cloeren | Jun 1992 | A |
5151377 | Hanoka et al. | Sep 1992 | A |
5167724 | Chiang | Dec 1992 | A |
5180441 | Cornwall et al. | Jan 1993 | A |
5188789 | Nishiura | Feb 1993 | A |
5213628 | Noguchi et al. | May 1993 | A |
5216543 | Calhoun | Jun 1993 | A |
5254388 | Melby et al. | Oct 1993 | A |
5344496 | Stern et al. | Sep 1994 | A |
5353813 | Deevi et al. | Oct 1994 | A |
5356488 | Hezel | Oct 1994 | A |
5389159 | Kataoka et al. | Feb 1995 | A |
5449413 | Beauchamp et al. | Sep 1995 | A |
5501743 | Cherney | Mar 1996 | A |
5529054 | Shoen | Jun 1996 | A |
5536313 | Watanabe et al. | Jul 1996 | A |
5538563 | Finkl | Jul 1996 | A |
5540216 | Rasmusson | Jul 1996 | A |
5543333 | Holdermann | Aug 1996 | A |
5552820 | Genovese | Sep 1996 | A |
5559677 | Errichiello | Sep 1996 | A |
5560518 | Catterall et al. | Oct 1996 | A |
5569399 | Penney et al. | Oct 1996 | A |
5590818 | Raba et al. | Jan 1997 | A |
5605720 | Allen et al. | Feb 1997 | A |
5665175 | Safir | Sep 1997 | A |
5679379 | Fabbricante et al. | Oct 1997 | A |
5700325 | Watanabe | Dec 1997 | A |
5733608 | Kessel et al. | Mar 1998 | A |
5873495 | Saint-Germain | Feb 1999 | A |
5918771 | van der Heijden | Jul 1999 | A |
5929530 | Stone | Jul 1999 | A |
5949123 | Le et al. | Sep 1999 | A |
5981902 | Arita et al. | Nov 1999 | A |
5990413 | Ortabasi | Nov 1999 | A |
6011307 | Jiang et al. | Jan 2000 | A |
6020554 | Kaminar et al. | Feb 2000 | A |
6032997 | Elliott et al. | Mar 2000 | A |
6047862 | Davies | Apr 2000 | A |
6091017 | Stern | Jul 2000 | A |
6118067 | Lashley et al. | Sep 2000 | A |
6130465 | Cole | Oct 2000 | A |
6140570 | Kariya | Oct 2000 | A |
6164633 | Mulligan et al. | Dec 2000 | A |
6203621 | Tran et al. | Mar 2001 | B1 |
6232217 | Ang et al. | May 2001 | B1 |
6257450 | Jackson et al. | Jul 2001 | B1 |
6274508 | Jacobsen et al. | Aug 2001 | B1 |
6278054 | Ho et al. | Aug 2001 | B1 |
6293498 | Stanko et al. | Sep 2001 | B1 |
6310281 | Wendt et al. | Oct 2001 | B1 |
6323415 | Uematsu et al. | Nov 2001 | B1 |
RE37512 | Szlufcik et al. | Jan 2002 | E |
6351098 | Kaneko | Feb 2002 | B1 |
6354791 | Wytman et al. | Mar 2002 | B1 |
6375311 | Kuramoto | Apr 2002 | B1 |
6379521 | Nishio | Apr 2002 | B1 |
6398370 | Chiu et al. | Jun 2002 | B1 |
6407329 | Iino et al. | Jun 2002 | B1 |
6410843 | Kishi et al. | Jun 2002 | B1 |
6418986 | Gabriele | Jul 2002 | B1 |
6420266 | Smith et al. | Jul 2002 | B1 |
6423140 | Liu et al. | Jul 2002 | B1 |
6429037 | Wenham et al. | Aug 2002 | B1 |
6479395 | Smith et al. | Nov 2002 | B1 |
6527964 | Smith et al. | Mar 2003 | B1 |
6529220 | Matsumoto | Mar 2003 | B1 |
6531653 | Glenn et al. | Mar 2003 | B1 |
6555739 | Kawam | Apr 2003 | B2 |
6558146 | Shah et al. | May 2003 | B1 |
6568863 | Murata | May 2003 | B2 |
6590235 | Carey et al. | Jul 2003 | B2 |
6597510 | Bunkenburg et al. | Jul 2003 | B2 |
6623579 | Smith et al. | Sep 2003 | B1 |
6663944 | Park et al. | Dec 2003 | B2 |
6666165 | Shiraishi et al. | Dec 2003 | B2 |
6667434 | Morizane et al. | Dec 2003 | B2 |
6743478 | Kiiha et al. | Jun 2004 | B1 |
6890167 | Kwok et al. | May 2005 | B1 |
6896381 | Benitez et al. | May 2005 | B2 |
6924493 | Leung | Aug 2005 | B1 |
6955348 | Koga | Oct 2005 | B2 |
7045794 | Spallas et al. | May 2006 | B1 |
7101592 | Gueggi et al. | Sep 2006 | B2 |
7152985 | Benitez et al. | Dec 2006 | B2 |
7160522 | Minano Dominguez et al. | Jan 2007 | B2 |
7160574 | Gillanders et al. | Jan 2007 | B1 |
7181378 | Benitez et al. | Feb 2007 | B2 |
7388147 | Mulligan et al. | Jun 2008 | B2 |
7394016 | Gronet | Jul 2008 | B2 |
7765949 | Fork et al. | Aug 2010 | B2 |
7780812 | Fork et al. | Aug 2010 | B2 |
20010008230 | Keicher et al. | Jul 2001 | A1 |
20010053420 | Donges et al. | Dec 2001 | A1 |
20020056473 | Chandra et al. | May 2002 | A1 |
20020060208 | Liu et al. | May 2002 | A1 |
20020083895 | Nakamura et al. | Jul 2002 | A1 |
20020148497 | Sasaoka et al. | Oct 2002 | A1 |
20020149107 | Chang et al. | Oct 2002 | A1 |
20020154396 | Overbeck | Oct 2002 | A1 |
20030015820 | Yamazaki et al. | Jan 2003 | A1 |
20030095175 | Agorio | May 2003 | A1 |
20030129810 | Barth et al. | Jul 2003 | A1 |
20030201581 | Weber et al. | Oct 2003 | A1 |
20030232174 | Chang et al. | Dec 2003 | A1 |
20040012676 | Weiner | Jan 2004 | A1 |
20040031517 | Bareis | Feb 2004 | A1 |
20040048001 | Kiguchi et al. | Mar 2004 | A1 |
20040070855 | Benitez et al. | Apr 2004 | A1 |
20040084077 | Aylaian | May 2004 | A1 |
20040151014 | Speakman | Aug 2004 | A1 |
20040191422 | Kataoka | Sep 2004 | A1 |
20040200520 | Mulligan et al. | Oct 2004 | A1 |
20040211460 | Simburger et al. | Oct 2004 | A1 |
20040259382 | Nishimura et al. | Dec 2004 | A1 |
20040265407 | Prugh et al. | Dec 2004 | A1 |
20050000566 | Posthuma et al. | Jan 2005 | A1 |
20050029236 | Gambino et al. | Feb 2005 | A1 |
20050034751 | Gross et al. | Feb 2005 | A1 |
20050046977 | Shifman | Mar 2005 | A1 |
20050067729 | Laver et al. | Mar 2005 | A1 |
20050081908 | Stewart | Apr 2005 | A1 |
20050133084 | Joge et al. | Jun 2005 | A1 |
20050194037 | Asai | Sep 2005 | A1 |
20050221613 | Ozaki et al. | Oct 2005 | A1 |
20050253308 | Sherwood | Nov 2005 | A1 |
20060207650 | Winston et al. | Sep 2006 | A1 |
20060231133 | Fork et al. | Oct 2006 | A1 |
20060251796 | Fellingham | Nov 2006 | A1 |
20060266235 | Sandhu et al. | Nov 2006 | A1 |
20070108229 | Fork et al. | May 2007 | A1 |
20070110836 | Fork et al. | May 2007 | A1 |
20080029152 | Milshtein et al. | Feb 2008 | A1 |
20080047605 | Benitez et al. | Feb 2008 | A1 |
20080138456 | Fork et al. | Jun 2008 | A1 |
20090101190 | Salami et al. | Apr 2009 | A1 |
20100116199 | Fork et al. | May 2010 | A1 |
20100117254 | Fork et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
2606309 | Mar 2004 | CN |
1854637 | Nov 2006 | CN |
197 35 281 | Feb 1999 | DE |
102006011580 | Oct 2007 | DE |
0 257 157 | Mar 1988 | EP |
0 851 511 | Jul 1998 | EP |
1 145 797 | Oct 2001 | EP |
1 351 318 | Oct 2003 | EP |
1 715 260 | Oct 2006 | EP |
1 763 086 | Mar 2007 | EP |
1 787 786 | May 2007 | EP |
1 833 099 | Sep 2007 | EP |
60082680 | Oct 1985 | JP |
02 187291 | Jul 1990 | JP |
05-031786 | Feb 1993 | JP |
2002-111035 | Apr 2002 | JP |
2004-266023 | Sep 2004 | JP |
2005051216 | Feb 2005 | JP |
WO 9108503 | Jun 1991 | WO |
WO 9115355 | Oct 1991 | WO |
WO 9215845 | Sep 1992 | WO |
WO 9428361 | Dec 1994 | WO |
WO 9721253 | Jun 1997 | WO |
WO 9748519 | Dec 1997 | WO |
WO 0049421 | Aug 2000 | WO |
WO 0049658 | Aug 2000 | WO |
WO 0050215 | Aug 2000 | WO |
WO 02052250 | Jul 2002 | WO |
WO 02097724 | Dec 2002 | WO |
WO 03047005 | Jun 2003 | WO |
WO 03076701 | Sep 2003 | WO |
WO 2005070224 | Aug 2005 | WO |
WO 2005107957 | Nov 2005 | WO |
WO 2005107958 | Nov 2005 | WO |
WO 2006097303 | Sep 2006 | WO |
WO 2007104028 | Sep 2007 | WO |
Entry |
---|
Murphy, Jr. “Home photovoltaic systems for physicists,” Physics Today, Jul. 2008, pp. 42-47. |
Knight et al. “Hydrodynamic Focusing on a Silicon Chip: Mixing Nanoliters in Microseconds”, Physical Review Letters, vol. 80, No. 17, Apr. 27, 1998, pp. 3863-3866. |
Raabe et al. “High Aspect Ratio Screen Printed Fingers”, 20th European Solar Energy Conference and Exhibition, Barcelona, Spain, Jun. 6-10, 2005, 4 pgs. |
“Annual Review of Numerical Fluid Mechanics and Heat Transfer”, vol. 1, Ed. T. C. Chawla, “Chapter Five, Buckling Flows: A New Frontier in Fluid Mechanics”, A. Bejan, Hemisphere Publishing Corporation, 1987, pp. 262-304. |
Liang et al. “Co-Extrusion of Solid Oxide Fuel Cell Functional Elements”, Ceramic Engineering and Science Proceedings, vol. 20, No. 4, 1999, pp. 587-594. |
Shannon et al. “The Production of Alumina/Zirconia Laminated Composites by Co-Extrusion”, Ceramic Engineering and Science Proceedings, vol. 16, No. 5, 1955, pp. 1115-1120. |
Kenis et al. “Microfabrication Inside Capillaries Using Multiphase Laminar Flow Patterning”, Science, vol. 285, Jul. 2, 1999, pp. 83-85. |
Brogren et al. “Optical properties, durability, and system aspects of a new aluminum-polymer-laminated steel reflector for solar concentrators”, Jan. 2004, Solar Energy Materials and Solar Cells, 82, pp. 387-412. |
Mauk et al. “Buried Metal/Dielectric/Semiconductor Reflectors for Light Trapping in Epitaxial Thin-Film Solar Cells”, May 1996, IEEE, 25th PVSC, pp. 147-150. |
Munzer et al. “Thin Monocrystalline Silicon Solar Cells”, Oct. 1999, IEEE Transactions on Electron Devices, vol. 46, No. 10, pp. 2055-2061. |
Szlufcik et al. “Low-Cost Industrial Technologies of Crystalline Silicon Solar Cells”, Proc. of the IEEE, vol. 85, No. 5, May 1, 1997, pp. 711-730. |
Ruthe et al. “Etching of CuInSe2 Thin Films-Comparison of Femtosecond and Picosecond Laser Ablation”, Applied Surface Science, vol. 247, No. 1-4, Jul. 15, 2005, pp. 447-452. |
U.S. Appl. No. 11/282,882, filed Nov. 17, 2005, Fork et al. |
U.S. Appl. No. 11/282,829, filed Nov. 17, 2005, Fork et al. |
U.S. Appl. No. 11/336,714, filed Jan. 20, 2006, Fork et al. |
Alvarez et al. “RXI Concentrator for 1000X Photovoltaic Energy Conversion,” Proc. SPIE, vol. 3781, 30 (1999), 9 pages. |
Benitez et al. “High-Concentration Mirror-Based Kohler Integrating System for Tandem Solar Cells”, WCPEC2006, 4 pages. |
Bett et al. “FLATCON™ and FLASHCON™ Concepts for High Concentration PV”, Presented at the 19th European Photovoltaic Solar Energy Conf., Jun. 7-11, 2004, Paris, 4 pages. |
Cousins et al. “Manufacturing and Design Issues for Thin Silicon Solar Cells Manufactured on FZ(B), MCZ(B), CZ(Ga) and CZ(B) Wafers”, IEEE, pp. 987-990, 2005. |
Cuevas et al. “50 Per Cent More Output Power from an Albedo-Collecting Flat Panel Using Bifacial Solar Cells”, Solar Energy, vol. 29, No. 5, pp. 419-420, 1982. |
Finlayson et al. “Bi2O3—Wo3 compounds for photocatalytic applications by solid state and viscous processing”, Title from a conference scheduled for Oct. 6-7, 2004 in Munich, 8 pages. |
Gordon et al. “Optical performance at the thermodynamic limit with tailored imaging designs”, Applied Optics, in press, Dec. 2004, 16 pages. |
Kenis et al. “Fabrication inside Microchannels Using Fluid Flow”, Accounts of Chemical Research, vol. 33, No. 12, 2000, pp. 841-847. |
Kerschaver et al. “Back-contact Solar Cells: A Review,” Progress in Photovoltaics: Research and Applications, 2006, vol. 14, pp. 107-123. |
Kränzl et al. “Bifacial Solar Cells on Multi-Crystalline Silicon”, 15th International Photovoltaic Science & Engineering Conference, Shanghai, China, 2 pages, 2005. |
Mueller et al. “Breathable Polymer Films Produced by the Microlayer Coextrusion Process”, Journal of Applied Polymer Science, vol. 78, pp. 816-828, 2000. |
Mulligan et al. “A Flat-Plate Concentrator: Micro-Concentrator Design Overview”, 2000 IEEE, pp. 1495-1497. |
Mulligan et al. “Development of Chip-Size Silicon Solar Cells,” IEEE Photovoltaic Specialists Conference, 2000, pp. 158-163. |
Neuhaus et al. “Industrial Silicon Wafer Solar Cells,” Advances in OptoElectronics, vol. 2007, 2007, 15 pages. |
Nguyen, Luu “Wafer Level Packaging for Analog/Mixed Signal Applications”, MEPTEC Int. Wafer Level Packaging Conference, Aug. 22, 2002, 41 pages. |
Rao et al. “Microfabricated Deposition Nozzles for Direct-Write Assembly of Three-Dimensional Periodic Structures”, Advanced Materials, vol. 17, No. 3, Feb. 10, 2005, 5 pages. |
Recart et al. “Large Area Thin BSF Solar Cells With Simultaneously Diffused Boron and Phosphorus Screen Printed Emitters”, IEEE, pp. 1213-1216, 2005. |
Sun et al. “Modeling and Experimental Evaluation of Passive Heat Sinks for Miniature High-Flux Photovoltaic Concentrators”, Transactions of the ASME, vol. 127, pp. 138-145 (2005). |
Sundararajan et al. “Three-Dimensional Hydrodynamic Focusing in Polydimethylsiloxane (PDMS) Microchannels”, Journal of Microelectromechanical Systems, vol. 13, No. 4, Aug. 2004, pp. 559-567. |
Swanson, Richard M. “The Promise of Concentrators”, Prog. Photovolt. Res. Appl. 8, pp. 93-111 (2000). |
Taguchi et al. An Approach for the Higher Efficiency in the HIT Cells, IEEE, pp. 866-871, 2005. |
Terao et al. “A Mirror-Less Design for Micro-Concentrator Modules”, Conference Record of the 28th IEEE Photovoltaic Specialists Conference (2000) pp. 1416-1419. |
Terao, Akira “MicroDish: A Novel Reflective Optic for Flat-Plate Micro-Concentrator”, SPIE's 49th Annual Meeting, Aug. 2-6, 2004, Denver, Colorado, USA, 9 pages. |
Van Hoy et al. “Microfabrication of Ceramics by Co-extrusion”, J. Am. Ceram. Soc., vol. 81, No. 1, pp. 152-158, 1998. |
Weber et al. “Modelling of Sliver® Modules Incorporating a Lambertian Rear Reflector”, The Australian National University, Canberra ACT 0200, Australia, 4 pages, 2005. |
Gimac Compact Triplex TR12 Micro-Coextrusion Plant, NPE 2000, Jun. 19-23, 2000, McCormick Place, Chicago, IL, Booth 13154, http://www.citsco.com/NPE2000/npepagel.html, 2 pages. |
Extrusion/Coextrusion Dies, Extrusion Dies Industries, LLC, http://www.extrusiondies.com/PRODUCTS/ExtrusionDies/multimanifoldDies.html, 1 page. |
Hitachi: Offering Total Environmental Solutions, Environmental Activities, http://greenweb.hitachi.co.jp/en/sustainable/total-solution.html, 5 pages, 2003. |
Sanyo Solar Panels, Sanyo HIT Solar Panel Discount—Solar Electric Supply, Sanyo Solar Modules, http://www.solarelectricsupply.com/Solar—Panels/Sanyo/sanyo.html, 4 pages, 2005. |
SunPower Corp. News Release, May 12, 2008, Available URL: http://investors.sunpowercorp.com/releasedetail.cfm?ReleaseID=309613. |
Schweizer, Peter M. “Curtain Coating Technology Can Mean Big Benefits,” Paper, Film & Foil Converter website, Mar. 1, 2000, 5 pages, http://pffc-online.com/mag/paper—curtain—coating—technology/. |
Nijs et al. “Overview of solar cell technologies and results on high efficiency multicrystalline silicon substrates,” Solar Energy Materials and Solar Cells, vol. 48, No. 1-4, Nov. 1, 1997, pp. 199-217. |
Sparber et al. “Comparison of texturing methods for monocrystalline silicon solar cells using KOH and Na2CO3,” 3rd World Conf. Photovoltaic Energy Conversion, Osaka, 2003, pp. 1372-1375. |
MacDonald et al. “Texturing industrial multicrystalline silicon solar cells,” Solar Energy, vol. 76, 2004, pp. 277-283. |
Tool et al. “Straightforward in-line processing for 16.8% efficient mc-Si solar cells,” 31st IEEE Photovoltaic Specialists Conf., Florida, 2005, pp. 1324-1327. |
Fukui et al. “17.7% efficiency large area multicrystalline silicon solar cell using screen-printed metallization technique,” 31st IEEE Photovoltaic Specialists Conf., Florida, 2005, pp. 979-982. |
Mitsubishi Electric Corp., Mitsubishi Electric Develops Practical-Use Multi-Crystalline Silicon Solar Cell with World's Highest Conversion Efficiency Rate of 18.6%, News Release #2432, Tokyo, Mar. 19, 2008, Available URL: http://global.mitsubishielectric.com/news/news—releases/2008/mel0705.pdf. |
Zhao et al. “19.8% efficient ‘honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Applied Physics Letters, vol. 73, pp. 1991-1993, 1998. |
Abbott et al. “Optical and Electrical Properties of Laser Texturing for High-efficiency Solar Cells,” Progress in Photovoltaics: Research and Applications, Published online Jan. 5, 2006, vol. 14, pp. 225-235, 2006. |
Sobhan, C. B. et al. “A review and comparative study of the investigations on micro heat pipes”, Int. J. Energy Res., 2007, vol. 31, pp. 664-688. |
Duncan, A. B. et al. “Charge Optimization for a Triangular-Shaped Etched Micro Heat Pipe”, J. Thermophysics, 1994, vol. 9, No. 2, Technical Notes, pp. 365-368. |
Le Berre et al. “Fabrication and experimental investigation of silicon micro heat pipes for cooling electronics”, J. Micromech. Microeng. 13 (2003) 436-441. |
Wang, Y. X. et al. “Investigation of the Temperature Distribution on Radiator Fins with Micro Heat Pipes”, J. Thermophysics and Heat Transfer, vol. 15, No. 1, Jan.-Mar. 2001, pp. 42-49. |
Joshi et al. “Micro and Meso Scale Compact Heat Exchangers in Electronics Thermal Management—A Review”, Proc. of 5th Int. Conf. on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, Eds. R. K. Shah et al., Engineering Conferences International, Hoboken, NJ, USA, Sep. 2005, pp. 162-179. |
Sobhan, C. B. et al. “Modeling of the Flow and Heat Transfer in Micro Heat Pipes”, ASME 2nd International Conference on Microchannels and Minichannels, 2004, pp. 883-890. |
Number | Date | Country | |
---|---|---|---|
20100143581 A1 | Jun 2010 | US |