The invention relates generally to micro-fluid ejection apparatus. More particularly, the invention relates to improved signal communication methods and apparatuses in micro-fluid ejection apparatuses.
Many micro-fluid ejection apparatuses are controlled by data signals, such as those which cause fluid, such as ink for example, to be applied to a medium such as paper. An ink jet printing apparatus, for instance, may include a micro-fluid ejection head, such as a printhead having actuators that are controlled by data signals. In particular, the printhead can reside on a micro-fluid ejection device, such as a printhead cartridge having an ink reservoir and an actuator chip. The chip can include nozzles with corresponding actuators, such as heaters. A main electronic controller within the printing apparatus can transmit voltage signals to the printhead. If standard CMOS voltage signals are utilized, typically a 3.3 V signal represents a digital 1 while 0V represents a digital 0. The voltage signals cause the heaters to heat the ink held in a chamber at the nozzles, which in turn causes the ink to be ejected from the nozzles onto the print medium at selected ink dot locations within an image area. In response to the signals, a carrier might move the printhead relative to the medium, while the ink dots are jetted onto selected pixel locations (although in other embodiments, a stationary printhead, such as a page-wide printhead, might be used).
Users of printing apparatuses, such as the above, continue to demand higher quality images and text which require higher resolution, or, in other words, that more dots be printed per unit area. Users also continue to demand higher print speeds, such that pages can be printed faster. In order to decrease the time required to print an image or increase the resolution of a printed image, larger and larger numbers of nozzles are being placed on modern ink jet printhead cartridges. Moreover, speed can be increased by increasing the power of the circuit driving the voltage signals being delivered from the main controller to the printhead.
However, increased number of nozzles and increased power can also increase the electromagnetic interference (EMI) generated by the ejection apparatus. Increased EMI can interfere with, for example, internal printing components and electronics, as well as external devices that may be located near the ejection apparatus. In fact, the Federal Communications Commission establishes standards on the limits of EMI that may be emitted from a device. Accordingly, in order to stay within the EMI standards, power levels are often limited, thereby limiting the speed at which data can be transmitted and therefore the speed at which the apparatus may print. While improved techniques have been developed for transmitting voltages in micro-fluid ejection apparatus, such as via lower voltage differential signaling, such techniques can still create high levels of EMI.
Thus, there is a need to increase the speed of data communication in a micro-fluid ejection apparatus, such as the communication between the printer electronics of a printing apparatus and a printhead cartridge, while controlling EMI within acceptable levels.
According to one embodiment, a micro-fluid ejection apparatus is provided comprising a controller configured to generate a data signal, and a transmitter configured to convert the data signal to a current signal. The apparatus further includes a conductor capable of carrying the current signal, and a receiver configured to receive the current signal from the conductor and to convert the current signal to a second data signal. The micro-fluid ejection apparatus is configured to operate on the second data signal.
In some embodiments, the current signal can comprise a pair of corresponding differential current signals that are offset from a base amperage level. In some embodiments, the transmitter and controller are provided with a main printing control board, while the receiver is provided with a printhead cartridge or carrier, the cartridge/carrier and control board being connected by a flexible cable carrying the conductor and the operation being the transfer of a printing substance to a print media.
According to another embodiment, a method for communicating in a micro-fluid ejection apparatus is provided. The method comprises producing a data signal, converting the data signal to a current signal, and transmitting the current signal over a conductor. The method further comprises receiving the current signal from the conductor, and converting the current signal to a second data signal. The micro-fluid apparatus is configured to operate on the second data signal.
In some embodiments, the current signal can comprise a current transfer logic signal or a pair of differential current signals.
According to one embodiment, a micro-fluid ejection apparatus is provided comprising a controller configured to generate a data signal, a current differential transmitter provided at the controller and configured to generate a pair of offset current signals representing the data signal, and a cable in communication with the transmitter and capable of transmitting the current signals. The apparatus further comprises a micro-fluid ejection head in communication with the cable and configured to cause ejection of a fluid, and a current differential receiver provided with the head or a carrier, and configured to receive the current signals from the cable and to convert the signals to a data signal, such as one that can be used to selectively cause ejection of a fluid.
According to another embodiment, a micro fluid ejection device is provided comprising a nozzle configured to allow the fluid to be ejected, and an actuator configured to cause the fluid to eject from the nozzle. The device further includes a differential current receiver configured to receive differential current signals from electronics remote from the device and to convert the differential current signals to a signal for use by the ejection device.
While the specification concludes with claims particularly pointing out and distinctly claiming the present invention, it is believed the same will be better understood from the following description of examples taken in conjunction with the accompanying drawings wherein like numerals indicate corresponding elements and wherein:
Generally, embodiments discussed herein relate to the communication of signals in a printing apparatus, such as an inkjet printer or multi-function apparatus, using current signals. In some embodiments, the current signals comprise a pair of differential current signals, such as current transfer logic signals for example, and communicate data between a main printer controller board and a printhead. In some embodiments, high data throughput is achieved while maintaining acceptable EMI levels.
Aspects of the invention, however, can also be applicable to various other micro-fluid ejection apparatus, such as medical devices and apparatus for printing electronic components, for example. Nevertheless, the embodiments presented herein will primarily be discussed in the context of an ink jet printing apparatus, such as an ink jet printer. Accordingly, as shown in
In some embodiments, a printhead memory 30 can be used to store operating information and historical data for the printhead cartridge 16. This memory 30 can allow information to be associated with the printhead cartridge 16 such that if the printhead cartridge 16 is removed from the ink jet printer 10, the operating information and historical data remains associated with the printhead cartridge 16. The information and data associated with a printhead cartridge 16 can allow the printhead cartridge 16 to adapt its operating parameters to a wide variety of printing formats. The memory 30 and processing circuitry 24 can reside on one or more integrated circuit chips on the print cartridge 16, and, in some cases, on the printhead 20.
The printhead cartridge 16 can be coupled to the ink jet printer 10 through an electrical connection cable 32. This connection cable 32 allows a printer microprocessor 34 to communicate with the printhead processing circuit 24. The printer microprocessor 34 can communicate printing instructions and activation signals to the printhead microprocessing circuit 24 through electrical connections contained in the electrical connection cable 32. The cable 32 can comprise a ribbon cable or other flexible connector.
Actuators, such as heaters, piezoelectric elements, or micro-electromechanical (MEMs) devices, for example, may be provided on a substrate attached to the cartridge body 16 at the printhead 20 (e.g., the substrate of the printhead 20). The substrate may be etched to contain an ink via therethrough for flow of ink from within a reservoir or chamber in the cartridge 16 to the actuators. Although disclosed in this embodiment as being integral with the cartridge 16, in other embodiments, a reservoir or chamber 18 may be selectively removable with respect to the cartridge 16, and/or in fluid communication with the printhead 20 from a remote location (e.g., through the use of tubes and the like).
Remote from the cartridge 16 are main control electronics for the printer. These main control electronics can be included on a main printed circuit board 13 having an application specific integrated circuit including a printer microprocessor 34 and/or position controller located in the housing 11 of the printer 10. The printer microprocessor 34 controls the operation of the ink jet printer 10. In embodiments utilizing a movable carrier 12, a carrier position controller 39 moves the printhead carrier 12 in response to control signals received from the printer microprocessor 34. The printer microprocessor 34 also controls the expelling of ink drops from the actuators in the printhead 20 by sending data signals to the printhead 20 and the printhead microprocessing circuit 24 via the connection cable. The data signals can include electrical power signals as well as electrical signals representing nozzle addresses, nozzle banks, clock counts, memory reads, memory writes and/or firing signals. By controlling the position of the printhead carrier 12 and selectively expelling ink from the printhead 20, the printer microprocessor 34 can create, for example, a desired image on a printing medium 22 in response to signals received from an input device, such as a computer or memory, through an input port 40 coupled to the computer.
The printer microprocessor 34 can use a memory to store configuration information and operating parameter information that enables the microprocessor 34 to operate the printer 10 with a variety of different media formats that are compatible with different types of printhead cartridges 16. For example, printing may be desired on plain paper, photographic paper, coated paper, glossy photographic paper, polymeric films, and the like. The microprocessor 34 can coordinate information from the printhead memory 30 in order to select optimal operational parameters for printing on a selected print media in a desired print quality mode. Such operational parameters might include, but are not limited to, printhead scan speed, volume of ink ejected, printhead temperature, ink ejection velocity, print quality mode, and the like.
As shown in the example of
As shown in
The current signals are then provided over the cable 32 to the printhead cartridge 16. At the printhead cartridge 16, the signals are converted back to voltage levels for use by the processor 24 in carrying out the firing of the heater elements on the printhead 20, for example. In this embodiment, the receiver comprises a low impedance current receive circuit that includes a current sensing circuit 36 which senses the current levels and provides a current to a current amplification circuit 37. The amplification circuit 37 amplifies the current levels and provides them to a current-to-voltage converter circuit 38. The converter circuit 38 then provides voltage signals for use by the processing circuitry 24 or other similar logic circuitry in carrying out control of the depositing of ink from the printhead 20. In this embodiment, a resistor need not be utilized at the printhead receiver side. The data transmission in this embodiment can occur at 100 MHz or greater speeds while still maintaining acceptable EMI levels. Generated EMI may be 20 dB less than generated using standard TTL technology.
Accordingly, in
Referring now to
In this example, the heater chip 60 is bonded to the tab circuit 54 on a side section 62 of the printhead cartridge 16′ that faces the printing medium 22 when the cartridge 16′ is installed on the carrier. The heater chip 60 can be constructed of thin-film resistors positioned on, for example, a silicon or ceramic substrate. For example, the printhead 20 can be constructed of two or more separate substrates or a single large substrate containing multiple ink feed slots therein. A nozzle plate 64 can be positioned over the substrate 60 such that the individual nozzles 52 on the nozzle plate 64 align with actuators 66, such as heater resistors or piezoelectric actuators or other actuators, on the chip 60. An ink passage can provide ink from inside the cartridge body 44 to the actuators 66 on the chip 60.
With reference again to
As mentioned above, according to some aspects, one or more of these logic or address signals can be transmitted from the printer as a pair of current signals. As shown in the embodiment of
Examples of circuitry for transmitting and receiving data in a printing apparatus according to one embodiment will now be described. A current driver circuit may be used in the printer electronics to receive the data signal, as a voltage from the other printer controller electronics. The data signal can comprise a clock signal, a primitive print signal, a printer firing or select signal, a signal function or other signal utilized in the printer, and is then converted to a pair of differential currents.
The two currents are then transmitted from the printer electronics to a printhead, such as via a flexible cable or other conductors. The printhead (or its carrier, for example) can receive the pair of signals and convert the signals to a single data signal for use by other components in the printhead. To receive and convert the signals, the printhead or carrier can include a current sense circuit, a current amplification circuit, a current to voltage (I/V) circuit , and a CMOS output circuit.
As mentioned, the receiver circuits can be provided on a printhead cartridge or carrier, and can be part of an integrated circuit on the same. These circuits or other appropriate current receiving circuitry, can be provided for each two differential current signal lines to be received from the printer electronics and representing a data level. Each signal to be provided to the printhead can thus be carried by a pair of conductors as a differential current pair. This receiving circuitry on the printhead can then convert the pair of currents to a CMOS voltage. The output voltage Vout can then be used as it typically would be on a printhead, such as by supplying it to latch circuitry, logic circuitry, memory circuitry and driver circuitry to drive a print actuator element. Suitable circuitry for addressing actuators and transferring serial print data through a printhead is disclosed in U.S. Pat. Nos. 6,547,356 and 6,312,079, the relevant disclosures of which are hereby incorporated herein by reference.
For example,
The foregoing description of various embodiments and principles of the inventions has been presented for the purposes of illustration and description. It is not intended to be exhausted or to limit the inventions to the precise form disclosed. Many alternatives, modifications and variations will be apparent to those skilled in the art. For example, some principles of the inventions may be used with different types of printers, printing devices, printheads, materials, and circuit elements. As another example, although embodiments use differential currents, other currents or current mode signals can be utilized. Moreover, although multiple inventive aspects and principles have been presented, these need not be utilized in combination, and various combinations of inventive aspects and principles are possible in light of the various embodiments provided above. Accordingly, the above description is intended to embrace all possible alternatives, modifications, aspects, combinations, principles, and variations that have been discussed or suggested herein, as well as all others that fall within the principles, spirit and broad scope of the inventions as defined by the claims.
Number | Date | Country | |
---|---|---|---|
Parent | 11278261 | Mar 2006 | US |
Child | 12336642 | US |