This invention relates generally to a burner for a gas fired furnace, and specifically to a gas burner having a foreshortened axial length and a performance about equal to burners of greater length.
Most in-shot burners found in the prior art have an overall length of five inches or more. The term overall length as herein used, refers to the axial length of the burner assembly as measured over the spud holder located at the input end of the burner and the flame retainer housing located at the output end of the burner. Attempts to reduce the length of in-shot burners used in gas furnaces and, in particular, non-condensing multi-poise furnaces, have resulted in a reduction in burner performance primarily because the shorter burners generally can not effectively draw in sufficient primary air to optimally support combustion. In addition, shorter burners found in the prior art do not provide good fuel and air mixing or the stable burning characteristics needed to avoid pulsation, blow-off and flashback in the burner. Shorter burners are highly desirous in multi-poised furnaces which are designed to operate not only in an upright position, but also when lying on one side or the other or in an inverted position. By shortening the burner section inside the casing, sufficient room can be gained to permit the flue pipe to be repositioned internally to accommodate any of the multiple furnace positions.
Additionally, it has been found that short burners can be readily formed in multiple burner units using well known plate stamping techniques. The burner units can be fabricated containing different numbers to accommodate various size furnaces. The units are easy to install and are not only space saving, but also cost effective.
It is therefore an object of the present invention to improve gas furnaces by shortening the length of the burner section without adversely effecting furnace performance.
It is a further object of the present invention to provide, a gas burner for a multi-poise furnace that saves sufficient space within the furnace casing to allow the vent pipe to be turned to a variety of positions internally to accommodate various furnace operating positions.
Yet another object of the present invention is to provide an in-shot gas burner that is under five inches in length and which exhibits good entrainment properties as well as good stability.
A still further object of the present invention is to provide a burner unit containing a plurality of micro burners that is economical to fabricate and easy to install within a gas furnace.
These and other objects of the present invention are attained by a micro inshot gas burner that is under four inches in length and which is ideally well suited for use in a multi-poised furnace. The burner includes a venturi tube having a converging inlet section and a diverging outlet section. A flame retainer housing is joined to the outlet section of the venturi tube and contains a flame retainer. A spud holder is mounted adjacent to the inlet section of the venturi tube in axial alignment therewith. The overall length of the burner as measured over the spud holder and the flame retainer housing is less than four inches. The geometry of the burner is such that the burner provides about 20,000 BTU.
For a better understanding of the these and other objects of the present invention, reference should be made to the following detailed description of the invention which is to be read in association with the accompanying drawings, wherein:
Turning initially to
Turning now to
With further reference to
Each burner includes the previously noted spud holder 33 that is centered upon the axis 35 of the burner and is positioned adjacent to and in axial alignment with a venturi tube 37. Each venturi tube contains a converging inlet section 38 that communicates with a diverging outlet section 39 through a necked down throat 40. A flame retainer housing 41 is integrally joined to the outlet side of the venturi tube and contains a cylindrical type flame retainer. One type of flame retainer is illustrated in FIG. 5. The flame retainer includes a cylindrical hub 43 with a centrally located hole 44 having an inside diameter (ID). A plurality of axially aligned splines 45 radially extend about the outer periphery of the hub. The splines are equally spaced about the hub and are brought to a radial depth that is about 25% that of the outside diameter (OD) of the flame retainer. Preferably, the hub contains 24 splines and the sidewalls of each spline converges radially in an outward direction at an angle of about 15°. The axial length (AL) of the flame retainer is about one-third the outside diameter of the retainer, while the inside diameter of the hub is about one half the outside diameter of the retainer.
A second type of flame retainer, generally referenced 80, is illustrated in FIG. 7. The retainer is basically in the shape of an annular ring having an outside diameter E of about 1.03″ and an inside diameter F of about 0.457″. The retainer has an axial length W of about 0.368.″ A series of through holes 82—82 are equally spaced about a hole circle 84 that is centered between the inside diameter and the outside diameter of the retainer. Although the number of smaller through holes may vary depending on the particular application, eight holes each having a diameter V of about 0.157″ are employed in this embodiment of the invention. Although the outside diameter of the retainer may vary in various applications, it is desirous to maintain the relationship of the central hole diameter to the outside diameter constant for all applications. That is, the outside diameter of the retainer should be about 2.23 that of the retainer's inside diameter and the outside diameter of the retainer should be about 6.62 times that of each of the smaller through holes.
The geometry of each burner is shown in further detail in
Through computations and experimentation, burner parameters have been arrived at that provide a burner having an overall axial length of about 3.8 inches that is capable of delivering between 5,000 and 5,800 Btus per unit of length per hour and an input rate over the diffused length of about 9,900 Btus per inch. This micro burner's capacity is thus equal to or better than more conventional gas burners having an overall length of 5 inches or more. As a result, a considerable space savings is realized within the furnace casing which permits the flue pipe to pass within the furnace casing. Accordingly, the present burner is ideally suited for use in multi-poised furnaces.
Testing showed that changes in the inside diameter of the flame retainer and the exit diameter of the venturi tube had the greatest effect on burner performance. Further testing of a 3.8 inch burner found that the optimum exit diameter of the venturi was about between 0.900 inches and 1.00 inches with 0.98 inches being optimum. This, in turn, dictated the approximated outside diameter (OD) of the flame retainer which is about equal to the exit diameter of the venturi tube. The size of the ID opening was adjusted to determine optimum burning characteristics. With about a 1.00 inch outside diameter and about a 0.46″ inside diameter, the retainers as herein described provided the necessary primary air entrainment and mixing within the burner as well as an overall reduction in noise levels. Although the remaining burner parameters were found to have a lesser effect on burner performance, further testing identified optimum size ranges for these parameters.
By maintaining a throat diameter (D2) of about between 0.650-0.70 inches and holding the angle of divergence to between 4° and 5°, a desired capacity of between 5,000 and 5,800 Btus per inch of burner per hour was maintained. The entrance to the venturi tube (D2) is between 1.40 and 1.50 inches with the entrance being located a distance (L4) about 0.690 to 0.710 inches from the venturi throat. The combined length (L2) of the venturi tube and the retainer housing was held to between 2.9 inches and 3.00 inches with the axial length (L5) of the housing being about 0.38 inches. Accordingly, the diverging section of the venturi tube is about 1.44 times that of the throat and the entrance diameter is about 2.11 times that of the throat. Tests conducted upon the shortened burners confirmed experimentally applicants' calculations and enabled applicants to further refine the 3.8 inches burner geometry within the above noted ranges.
Turning once again to
A generous opening 57 is stamped into each of the plates 35,36 between the spud holder exit and the entrance to the venturi tube. The width of the opening is at least equal to the diameter of the venturi entrance. The area of each opening is sufficiently large so that an unimpeded flow of air will be available to support the combustion when the burner is operating at capacity.
The plates have an overall width of 3.8 inches which is equal to the overall length of the burners. Accordingly, the entrance to each spud holder is coextensive with one side edge of the plates 37, 38 and the exit to the flame retainer housing is similarly coextensive with the opposite side edge of the plates.
While the present invention has been particularly shown and described with reference to the preferred mode as illustrated in the drawing, it will be understood by one skilled in the art that various changes in detail may be effected therein without departing from the spirit and scope of the invention as defined by the claims.
This is a continuation application of U.S. Ser. No. 10/045,994, filed Oct. 19, 2001, now abandoned, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3259170 | Koehrer | Jul 1966 | A |
3653371 | McManus | Apr 1972 | A |
4846143 | Csadenyi | Jul 1989 | A |
5035609 | Riehl | Jul 1991 | A |
5062788 | Best | Nov 1991 | A |
5108284 | Gruswitz | Apr 1992 | A |
5628303 | Ahmady et al. | May 1997 | A |
6036481 | Legutko et al. | Mar 2000 | A |
6347935 | Schindler et al. | Feb 2002 | B1 |
6729874 | Poe et al. | May 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20040072115 A1 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10045994 | Oct 2001 | US |
Child | 10634522 | US |