The subject matter herein generally relates to displays, particularly relates to a micro-light emitting diode (LED) display panel and a method for making the micro-LED display panel.
A micro-LED display panel generally includes a plurality of micro-LEDs arranged in a matrix. Each micro-LED has an upper end and a lower end, an upper electrode is formed on the upper end, and a lower electrode is formed on the lower end. Both the upper electrode and the lower electrode are electrically connected to a driving circuit by metal lines and are fed with different voltages to form a voltage difference, then the micro-LED will emit light. The metal line connected between the driving circuit and the upper electrode needs to climb a slope to overcome a height differential of the micro-LED (about 30-50 microns). However, the metal line is prone to breaking at this location.
Therefore, there is room for improvement in the art.
Implementations of the present technology will now be described, by way of embodiments only, with reference to the attached figures.
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein may be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts may be exaggerated to better illustrate details and features of the present disclosure.
The term “coupled” is defined as coupled, whether directly or indirectly through intervening components, and is not necessarily limited to physical connections. The connection can be such that the objects are permanently coupled or releasably coupled. The term “comprising” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series, and the like.
The Micro-LED in this disclosure refers to an LED having a size less than or equal to a few millimeters (such as several millimeters, hundreds of microns, or less than or equal to 100 microns).
As shown in
As shown in
As shown in
The conductive blocks 50 and the driving circuit 30 are arranged on a same surface of the substrate 10. As shown in
In order to achieve electrical connection between the driving circuit 30 and the upper electrodes 27, a plurality of top wires 60 is further provided on the surface of the insulating layer 40 away from the substrate 10 to connect between the upper electrodes 27 and the conductive block 50. In this way, the upper electrode 27 is electrically coupled to the top wire 60. The top wire 60 is electrically coupled to the conductive block 50 and the conductive block 50 is electrically coupled to the connecting wire 51. The connecting wire 51 is electrically connected to the driving circuit 30, which achieves electrical connection between the upper electrode 27 and the driving circuit 30. Since the top wire 60 only extends on the surface of the insulating layer 40 away from the substrate 10, the top wire 60 is not required to climb a slope.
In this embodiment, as shown in
In this embodiment, the lower electrodes 25 of each column of micro-LEDs 20 is electrically connected to the driving circuit 30 by one single bottom wire 80. The lower electrodes 25 of the micro-LEDs 20 in different columns are connected to different bottom wires 80. The connecting wires 51 and the bottom wires 80 may be formed by patterning one single conductive layer.
In this embodiment, a height/thickness of the conductive block 50 is equal to that of the micro-LED 20. Alternatively, the height/thickness of the conductive block 50 can be slightly greater than the height/thickness of the micro-LED 20.
In this embodiment, the insulating layer 40 includes a flat layer 41 and a filling layer 43 stacked on the flat layer 41, wherein the flat layer 41 is between the substrate and the filling layer 43. The flat layer 41 and the filling layer 43 can be made of insulating materials, such as silicon oxide, silicon nitride, etc.; or an insulating photoresist material can be selected.
The micro-LED display panel 100 realizes the electrical connection between the upper electrodes 27 of the micro-LED 20 and the driving circuit 30 by the conductive blocks 50 on the substrate 10 and the top wires 60 on the insulating layer 40. The top wires 60 only extend on the surface of the insulating layer 40 away from the substrate 10, thus the top wire 60 is not required to be raised.
A method for making the micro-LED display panel 100 is also provided. As shown in
Step S1: providing a substrate 10.
Step S2: transferring a plurality of micro-LEDs 20 on a surface of the substrate 10.
Step S3: transferring a plurality of conductive blocks 50 on the surface of the substrate 10 having the micro-LEDs 20, the plurality of conductive blocks 50 being around the plurality of micro-LEDs 20.
Step S4: forming an insulating layer 40 on the substrate 10, the plurality of micro-LEDs 20 and the plurality of conductive blocks 50 being embedded in the insulating layer 40, and a surface of each micro-LED 20 away from the substrate 10 and a surface of each conductive block 50 away from the substrate 10 being exposed from the insulating layer 40.
Step S5: forming a plurality of upper electrodes 27 on the insulating layer 40, each upper electrode 27 covering a top surface 23 of one micro-LED 20 away from the substrate 10.
Step S6: forming a plurality of top wires 60 on the surface of the insulating layer 40 away from the substrate 10, each top wire 60 being electrically connected to at least one upper electrode 27 and a surface of at least one conductive block 50 away from the substrate 10.
Step 1 is shown in
The substrate 10 may also carry a driving circuit (not shown in
Step 2 is shown in
Step 3 is shown in
Step S4 is shown in
Step S5 is shown in
Step 6 is shown in
It is to be understood, even though information and advantages of the present embodiments have been set forth in the foregoing description, together with details of the structures and functions of the present embodiments, the disclosure is illustrative only; changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the present embodiments to the full extent indicated by the plain meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
202010794487.0 | Aug 2020 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20110315956 | Tischler | Dec 2011 | A1 |
20170338212 | Kuo | Nov 2017 | A1 |
20180157351 | Lee | Jun 2018 | A1 |
20180247973 | Daikoku | Aug 2018 | A1 |
20190115333 | Wu | Apr 2019 | A1 |
20190333897 | Chen | Oct 2019 | A1 |
20200259050 | Wu | Aug 2020 | A1 |
20210050495 | Yang | Feb 2021 | A1 |
20210175278 | Lo | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
109494216 | Mar 2019 | CN |
2000-504153 | Apr 2000 | JP |
201806191 | Feb 2018 | TW |
Number | Date | Country | |
---|---|---|---|
20220045123 A1 | Feb 2022 | US |